xref: /linux/drivers/gpu/drm/i915/i915_gem.c (revision c4ee0af3fa0dc65f690fc908f02b8355f9576ea0)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39 
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42 						   bool force);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 			       bool readonly);
46 static __must_check int
47 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
48 			   struct i915_address_space *vm,
49 			   unsigned alignment,
50 			   bool map_and_fenceable,
51 			   bool nonblocking);
52 static int i915_gem_phys_pwrite(struct drm_device *dev,
53 				struct drm_i915_gem_object *obj,
54 				struct drm_i915_gem_pwrite *args,
55 				struct drm_file *file);
56 
57 static void i915_gem_write_fence(struct drm_device *dev, int reg,
58 				 struct drm_i915_gem_object *obj);
59 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
60 					 struct drm_i915_fence_reg *fence,
61 					 bool enable);
62 
63 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
64 					     struct shrink_control *sc);
65 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
66 					    struct shrink_control *sc);
67 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
68 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
69 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
70 
71 static bool cpu_cache_is_coherent(struct drm_device *dev,
72 				  enum i915_cache_level level)
73 {
74 	return HAS_LLC(dev) || level != I915_CACHE_NONE;
75 }
76 
77 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
78 {
79 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
80 		return true;
81 
82 	return obj->pin_display;
83 }
84 
85 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
86 {
87 	if (obj->tiling_mode)
88 		i915_gem_release_mmap(obj);
89 
90 	/* As we do not have an associated fence register, we will force
91 	 * a tiling change if we ever need to acquire one.
92 	 */
93 	obj->fence_dirty = false;
94 	obj->fence_reg = I915_FENCE_REG_NONE;
95 }
96 
97 /* some bookkeeping */
98 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
99 				  size_t size)
100 {
101 	spin_lock(&dev_priv->mm.object_stat_lock);
102 	dev_priv->mm.object_count++;
103 	dev_priv->mm.object_memory += size;
104 	spin_unlock(&dev_priv->mm.object_stat_lock);
105 }
106 
107 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
108 				     size_t size)
109 {
110 	spin_lock(&dev_priv->mm.object_stat_lock);
111 	dev_priv->mm.object_count--;
112 	dev_priv->mm.object_memory -= size;
113 	spin_unlock(&dev_priv->mm.object_stat_lock);
114 }
115 
116 static int
117 i915_gem_wait_for_error(struct i915_gpu_error *error)
118 {
119 	int ret;
120 
121 #define EXIT_COND (!i915_reset_in_progress(error) || \
122 		   i915_terminally_wedged(error))
123 	if (EXIT_COND)
124 		return 0;
125 
126 	/*
127 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
128 	 * userspace. If it takes that long something really bad is going on and
129 	 * we should simply try to bail out and fail as gracefully as possible.
130 	 */
131 	ret = wait_event_interruptible_timeout(error->reset_queue,
132 					       EXIT_COND,
133 					       10*HZ);
134 	if (ret == 0) {
135 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
136 		return -EIO;
137 	} else if (ret < 0) {
138 		return ret;
139 	}
140 #undef EXIT_COND
141 
142 	return 0;
143 }
144 
145 int i915_mutex_lock_interruptible(struct drm_device *dev)
146 {
147 	struct drm_i915_private *dev_priv = dev->dev_private;
148 	int ret;
149 
150 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
151 	if (ret)
152 		return ret;
153 
154 	ret = mutex_lock_interruptible(&dev->struct_mutex);
155 	if (ret)
156 		return ret;
157 
158 	WARN_ON(i915_verify_lists(dev));
159 	return 0;
160 }
161 
162 static inline bool
163 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
164 {
165 	return i915_gem_obj_bound_any(obj) && !obj->active;
166 }
167 
168 int
169 i915_gem_init_ioctl(struct drm_device *dev, void *data,
170 		    struct drm_file *file)
171 {
172 	struct drm_i915_private *dev_priv = dev->dev_private;
173 	struct drm_i915_gem_init *args = data;
174 
175 	if (drm_core_check_feature(dev, DRIVER_MODESET))
176 		return -ENODEV;
177 
178 	if (args->gtt_start >= args->gtt_end ||
179 	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
180 		return -EINVAL;
181 
182 	/* GEM with user mode setting was never supported on ilk and later. */
183 	if (INTEL_INFO(dev)->gen >= 5)
184 		return -ENODEV;
185 
186 	mutex_lock(&dev->struct_mutex);
187 	i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
188 				  args->gtt_end);
189 	dev_priv->gtt.mappable_end = args->gtt_end;
190 	mutex_unlock(&dev->struct_mutex);
191 
192 	return 0;
193 }
194 
195 int
196 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
197 			    struct drm_file *file)
198 {
199 	struct drm_i915_private *dev_priv = dev->dev_private;
200 	struct drm_i915_gem_get_aperture *args = data;
201 	struct drm_i915_gem_object *obj;
202 	size_t pinned;
203 
204 	pinned = 0;
205 	mutex_lock(&dev->struct_mutex);
206 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
207 		if (obj->pin_count)
208 			pinned += i915_gem_obj_ggtt_size(obj);
209 	mutex_unlock(&dev->struct_mutex);
210 
211 	args->aper_size = dev_priv->gtt.base.total;
212 	args->aper_available_size = args->aper_size - pinned;
213 
214 	return 0;
215 }
216 
217 void *i915_gem_object_alloc(struct drm_device *dev)
218 {
219 	struct drm_i915_private *dev_priv = dev->dev_private;
220 	return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
221 }
222 
223 void i915_gem_object_free(struct drm_i915_gem_object *obj)
224 {
225 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
226 	kmem_cache_free(dev_priv->slab, obj);
227 }
228 
229 static int
230 i915_gem_create(struct drm_file *file,
231 		struct drm_device *dev,
232 		uint64_t size,
233 		uint32_t *handle_p)
234 {
235 	struct drm_i915_gem_object *obj;
236 	int ret;
237 	u32 handle;
238 
239 	size = roundup(size, PAGE_SIZE);
240 	if (size == 0)
241 		return -EINVAL;
242 
243 	/* Allocate the new object */
244 	obj = i915_gem_alloc_object(dev, size);
245 	if (obj == NULL)
246 		return -ENOMEM;
247 
248 	ret = drm_gem_handle_create(file, &obj->base, &handle);
249 	/* drop reference from allocate - handle holds it now */
250 	drm_gem_object_unreference_unlocked(&obj->base);
251 	if (ret)
252 		return ret;
253 
254 	*handle_p = handle;
255 	return 0;
256 }
257 
258 int
259 i915_gem_dumb_create(struct drm_file *file,
260 		     struct drm_device *dev,
261 		     struct drm_mode_create_dumb *args)
262 {
263 	/* have to work out size/pitch and return them */
264 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
265 	args->size = args->pitch * args->height;
266 	return i915_gem_create(file, dev,
267 			       args->size, &args->handle);
268 }
269 
270 /**
271  * Creates a new mm object and returns a handle to it.
272  */
273 int
274 i915_gem_create_ioctl(struct drm_device *dev, void *data,
275 		      struct drm_file *file)
276 {
277 	struct drm_i915_gem_create *args = data;
278 
279 	return i915_gem_create(file, dev,
280 			       args->size, &args->handle);
281 }
282 
283 static inline int
284 __copy_to_user_swizzled(char __user *cpu_vaddr,
285 			const char *gpu_vaddr, int gpu_offset,
286 			int length)
287 {
288 	int ret, cpu_offset = 0;
289 
290 	while (length > 0) {
291 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
292 		int this_length = min(cacheline_end - gpu_offset, length);
293 		int swizzled_gpu_offset = gpu_offset ^ 64;
294 
295 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
296 				     gpu_vaddr + swizzled_gpu_offset,
297 				     this_length);
298 		if (ret)
299 			return ret + length;
300 
301 		cpu_offset += this_length;
302 		gpu_offset += this_length;
303 		length -= this_length;
304 	}
305 
306 	return 0;
307 }
308 
309 static inline int
310 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
311 			  const char __user *cpu_vaddr,
312 			  int length)
313 {
314 	int ret, cpu_offset = 0;
315 
316 	while (length > 0) {
317 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
318 		int this_length = min(cacheline_end - gpu_offset, length);
319 		int swizzled_gpu_offset = gpu_offset ^ 64;
320 
321 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
322 				       cpu_vaddr + cpu_offset,
323 				       this_length);
324 		if (ret)
325 			return ret + length;
326 
327 		cpu_offset += this_length;
328 		gpu_offset += this_length;
329 		length -= this_length;
330 	}
331 
332 	return 0;
333 }
334 
335 /* Per-page copy function for the shmem pread fastpath.
336  * Flushes invalid cachelines before reading the target if
337  * needs_clflush is set. */
338 static int
339 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
340 		 char __user *user_data,
341 		 bool page_do_bit17_swizzling, bool needs_clflush)
342 {
343 	char *vaddr;
344 	int ret;
345 
346 	if (unlikely(page_do_bit17_swizzling))
347 		return -EINVAL;
348 
349 	vaddr = kmap_atomic(page);
350 	if (needs_clflush)
351 		drm_clflush_virt_range(vaddr + shmem_page_offset,
352 				       page_length);
353 	ret = __copy_to_user_inatomic(user_data,
354 				      vaddr + shmem_page_offset,
355 				      page_length);
356 	kunmap_atomic(vaddr);
357 
358 	return ret ? -EFAULT : 0;
359 }
360 
361 static void
362 shmem_clflush_swizzled_range(char *addr, unsigned long length,
363 			     bool swizzled)
364 {
365 	if (unlikely(swizzled)) {
366 		unsigned long start = (unsigned long) addr;
367 		unsigned long end = (unsigned long) addr + length;
368 
369 		/* For swizzling simply ensure that we always flush both
370 		 * channels. Lame, but simple and it works. Swizzled
371 		 * pwrite/pread is far from a hotpath - current userspace
372 		 * doesn't use it at all. */
373 		start = round_down(start, 128);
374 		end = round_up(end, 128);
375 
376 		drm_clflush_virt_range((void *)start, end - start);
377 	} else {
378 		drm_clflush_virt_range(addr, length);
379 	}
380 
381 }
382 
383 /* Only difference to the fast-path function is that this can handle bit17
384  * and uses non-atomic copy and kmap functions. */
385 static int
386 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
387 		 char __user *user_data,
388 		 bool page_do_bit17_swizzling, bool needs_clflush)
389 {
390 	char *vaddr;
391 	int ret;
392 
393 	vaddr = kmap(page);
394 	if (needs_clflush)
395 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
396 					     page_length,
397 					     page_do_bit17_swizzling);
398 
399 	if (page_do_bit17_swizzling)
400 		ret = __copy_to_user_swizzled(user_data,
401 					      vaddr, shmem_page_offset,
402 					      page_length);
403 	else
404 		ret = __copy_to_user(user_data,
405 				     vaddr + shmem_page_offset,
406 				     page_length);
407 	kunmap(page);
408 
409 	return ret ? - EFAULT : 0;
410 }
411 
412 static int
413 i915_gem_shmem_pread(struct drm_device *dev,
414 		     struct drm_i915_gem_object *obj,
415 		     struct drm_i915_gem_pread *args,
416 		     struct drm_file *file)
417 {
418 	char __user *user_data;
419 	ssize_t remain;
420 	loff_t offset;
421 	int shmem_page_offset, page_length, ret = 0;
422 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
423 	int prefaulted = 0;
424 	int needs_clflush = 0;
425 	struct sg_page_iter sg_iter;
426 
427 	user_data = to_user_ptr(args->data_ptr);
428 	remain = args->size;
429 
430 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
431 
432 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
433 		/* If we're not in the cpu read domain, set ourself into the gtt
434 		 * read domain and manually flush cachelines (if required). This
435 		 * optimizes for the case when the gpu will dirty the data
436 		 * anyway again before the next pread happens. */
437 		needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
438 		ret = i915_gem_object_wait_rendering(obj, true);
439 		if (ret)
440 			return ret;
441 	}
442 
443 	ret = i915_gem_object_get_pages(obj);
444 	if (ret)
445 		return ret;
446 
447 	i915_gem_object_pin_pages(obj);
448 
449 	offset = args->offset;
450 
451 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
452 			 offset >> PAGE_SHIFT) {
453 		struct page *page = sg_page_iter_page(&sg_iter);
454 
455 		if (remain <= 0)
456 			break;
457 
458 		/* Operation in this page
459 		 *
460 		 * shmem_page_offset = offset within page in shmem file
461 		 * page_length = bytes to copy for this page
462 		 */
463 		shmem_page_offset = offset_in_page(offset);
464 		page_length = remain;
465 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
466 			page_length = PAGE_SIZE - shmem_page_offset;
467 
468 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
469 			(page_to_phys(page) & (1 << 17)) != 0;
470 
471 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
472 				       user_data, page_do_bit17_swizzling,
473 				       needs_clflush);
474 		if (ret == 0)
475 			goto next_page;
476 
477 		mutex_unlock(&dev->struct_mutex);
478 
479 		if (likely(!i915_prefault_disable) && !prefaulted) {
480 			ret = fault_in_multipages_writeable(user_data, remain);
481 			/* Userspace is tricking us, but we've already clobbered
482 			 * its pages with the prefault and promised to write the
483 			 * data up to the first fault. Hence ignore any errors
484 			 * and just continue. */
485 			(void)ret;
486 			prefaulted = 1;
487 		}
488 
489 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
490 				       user_data, page_do_bit17_swizzling,
491 				       needs_clflush);
492 
493 		mutex_lock(&dev->struct_mutex);
494 
495 next_page:
496 		mark_page_accessed(page);
497 
498 		if (ret)
499 			goto out;
500 
501 		remain -= page_length;
502 		user_data += page_length;
503 		offset += page_length;
504 	}
505 
506 out:
507 	i915_gem_object_unpin_pages(obj);
508 
509 	return ret;
510 }
511 
512 /**
513  * Reads data from the object referenced by handle.
514  *
515  * On error, the contents of *data are undefined.
516  */
517 int
518 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
519 		     struct drm_file *file)
520 {
521 	struct drm_i915_gem_pread *args = data;
522 	struct drm_i915_gem_object *obj;
523 	int ret = 0;
524 
525 	if (args->size == 0)
526 		return 0;
527 
528 	if (!access_ok(VERIFY_WRITE,
529 		       to_user_ptr(args->data_ptr),
530 		       args->size))
531 		return -EFAULT;
532 
533 	ret = i915_mutex_lock_interruptible(dev);
534 	if (ret)
535 		return ret;
536 
537 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
538 	if (&obj->base == NULL) {
539 		ret = -ENOENT;
540 		goto unlock;
541 	}
542 
543 	/* Bounds check source.  */
544 	if (args->offset > obj->base.size ||
545 	    args->size > obj->base.size - args->offset) {
546 		ret = -EINVAL;
547 		goto out;
548 	}
549 
550 	/* prime objects have no backing filp to GEM pread/pwrite
551 	 * pages from.
552 	 */
553 	if (!obj->base.filp) {
554 		ret = -EINVAL;
555 		goto out;
556 	}
557 
558 	trace_i915_gem_object_pread(obj, args->offset, args->size);
559 
560 	ret = i915_gem_shmem_pread(dev, obj, args, file);
561 
562 out:
563 	drm_gem_object_unreference(&obj->base);
564 unlock:
565 	mutex_unlock(&dev->struct_mutex);
566 	return ret;
567 }
568 
569 /* This is the fast write path which cannot handle
570  * page faults in the source data
571  */
572 
573 static inline int
574 fast_user_write(struct io_mapping *mapping,
575 		loff_t page_base, int page_offset,
576 		char __user *user_data,
577 		int length)
578 {
579 	void __iomem *vaddr_atomic;
580 	void *vaddr;
581 	unsigned long unwritten;
582 
583 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
584 	/* We can use the cpu mem copy function because this is X86. */
585 	vaddr = (void __force*)vaddr_atomic + page_offset;
586 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
587 						      user_data, length);
588 	io_mapping_unmap_atomic(vaddr_atomic);
589 	return unwritten;
590 }
591 
592 /**
593  * This is the fast pwrite path, where we copy the data directly from the
594  * user into the GTT, uncached.
595  */
596 static int
597 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598 			 struct drm_i915_gem_object *obj,
599 			 struct drm_i915_gem_pwrite *args,
600 			 struct drm_file *file)
601 {
602 	drm_i915_private_t *dev_priv = dev->dev_private;
603 	ssize_t remain;
604 	loff_t offset, page_base;
605 	char __user *user_data;
606 	int page_offset, page_length, ret;
607 
608 	ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
609 	if (ret)
610 		goto out;
611 
612 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
613 	if (ret)
614 		goto out_unpin;
615 
616 	ret = i915_gem_object_put_fence(obj);
617 	if (ret)
618 		goto out_unpin;
619 
620 	user_data = to_user_ptr(args->data_ptr);
621 	remain = args->size;
622 
623 	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
624 
625 	while (remain > 0) {
626 		/* Operation in this page
627 		 *
628 		 * page_base = page offset within aperture
629 		 * page_offset = offset within page
630 		 * page_length = bytes to copy for this page
631 		 */
632 		page_base = offset & PAGE_MASK;
633 		page_offset = offset_in_page(offset);
634 		page_length = remain;
635 		if ((page_offset + remain) > PAGE_SIZE)
636 			page_length = PAGE_SIZE - page_offset;
637 
638 		/* If we get a fault while copying data, then (presumably) our
639 		 * source page isn't available.  Return the error and we'll
640 		 * retry in the slow path.
641 		 */
642 		if (fast_user_write(dev_priv->gtt.mappable, page_base,
643 				    page_offset, user_data, page_length)) {
644 			ret = -EFAULT;
645 			goto out_unpin;
646 		}
647 
648 		remain -= page_length;
649 		user_data += page_length;
650 		offset += page_length;
651 	}
652 
653 out_unpin:
654 	i915_gem_object_unpin(obj);
655 out:
656 	return ret;
657 }
658 
659 /* Per-page copy function for the shmem pwrite fastpath.
660  * Flushes invalid cachelines before writing to the target if
661  * needs_clflush_before is set and flushes out any written cachelines after
662  * writing if needs_clflush is set. */
663 static int
664 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
665 		  char __user *user_data,
666 		  bool page_do_bit17_swizzling,
667 		  bool needs_clflush_before,
668 		  bool needs_clflush_after)
669 {
670 	char *vaddr;
671 	int ret;
672 
673 	if (unlikely(page_do_bit17_swizzling))
674 		return -EINVAL;
675 
676 	vaddr = kmap_atomic(page);
677 	if (needs_clflush_before)
678 		drm_clflush_virt_range(vaddr + shmem_page_offset,
679 				       page_length);
680 	ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
681 						user_data,
682 						page_length);
683 	if (needs_clflush_after)
684 		drm_clflush_virt_range(vaddr + shmem_page_offset,
685 				       page_length);
686 	kunmap_atomic(vaddr);
687 
688 	return ret ? -EFAULT : 0;
689 }
690 
691 /* Only difference to the fast-path function is that this can handle bit17
692  * and uses non-atomic copy and kmap functions. */
693 static int
694 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
695 		  char __user *user_data,
696 		  bool page_do_bit17_swizzling,
697 		  bool needs_clflush_before,
698 		  bool needs_clflush_after)
699 {
700 	char *vaddr;
701 	int ret;
702 
703 	vaddr = kmap(page);
704 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
705 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706 					     page_length,
707 					     page_do_bit17_swizzling);
708 	if (page_do_bit17_swizzling)
709 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
710 						user_data,
711 						page_length);
712 	else
713 		ret = __copy_from_user(vaddr + shmem_page_offset,
714 				       user_data,
715 				       page_length);
716 	if (needs_clflush_after)
717 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
718 					     page_length,
719 					     page_do_bit17_swizzling);
720 	kunmap(page);
721 
722 	return ret ? -EFAULT : 0;
723 }
724 
725 static int
726 i915_gem_shmem_pwrite(struct drm_device *dev,
727 		      struct drm_i915_gem_object *obj,
728 		      struct drm_i915_gem_pwrite *args,
729 		      struct drm_file *file)
730 {
731 	ssize_t remain;
732 	loff_t offset;
733 	char __user *user_data;
734 	int shmem_page_offset, page_length, ret = 0;
735 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
736 	int hit_slowpath = 0;
737 	int needs_clflush_after = 0;
738 	int needs_clflush_before = 0;
739 	struct sg_page_iter sg_iter;
740 
741 	user_data = to_user_ptr(args->data_ptr);
742 	remain = args->size;
743 
744 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
745 
746 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
747 		/* If we're not in the cpu write domain, set ourself into the gtt
748 		 * write domain and manually flush cachelines (if required). This
749 		 * optimizes for the case when the gpu will use the data
750 		 * right away and we therefore have to clflush anyway. */
751 		needs_clflush_after = cpu_write_needs_clflush(obj);
752 		ret = i915_gem_object_wait_rendering(obj, false);
753 		if (ret)
754 			return ret;
755 	}
756 	/* Same trick applies to invalidate partially written cachelines read
757 	 * before writing. */
758 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
759 		needs_clflush_before =
760 			!cpu_cache_is_coherent(dev, obj->cache_level);
761 
762 	ret = i915_gem_object_get_pages(obj);
763 	if (ret)
764 		return ret;
765 
766 	i915_gem_object_pin_pages(obj);
767 
768 	offset = args->offset;
769 	obj->dirty = 1;
770 
771 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
772 			 offset >> PAGE_SHIFT) {
773 		struct page *page = sg_page_iter_page(&sg_iter);
774 		int partial_cacheline_write;
775 
776 		if (remain <= 0)
777 			break;
778 
779 		/* Operation in this page
780 		 *
781 		 * shmem_page_offset = offset within page in shmem file
782 		 * page_length = bytes to copy for this page
783 		 */
784 		shmem_page_offset = offset_in_page(offset);
785 
786 		page_length = remain;
787 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
788 			page_length = PAGE_SIZE - shmem_page_offset;
789 
790 		/* If we don't overwrite a cacheline completely we need to be
791 		 * careful to have up-to-date data by first clflushing. Don't
792 		 * overcomplicate things and flush the entire patch. */
793 		partial_cacheline_write = needs_clflush_before &&
794 			((shmem_page_offset | page_length)
795 				& (boot_cpu_data.x86_clflush_size - 1));
796 
797 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
798 			(page_to_phys(page) & (1 << 17)) != 0;
799 
800 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
801 					user_data, page_do_bit17_swizzling,
802 					partial_cacheline_write,
803 					needs_clflush_after);
804 		if (ret == 0)
805 			goto next_page;
806 
807 		hit_slowpath = 1;
808 		mutex_unlock(&dev->struct_mutex);
809 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
810 					user_data, page_do_bit17_swizzling,
811 					partial_cacheline_write,
812 					needs_clflush_after);
813 
814 		mutex_lock(&dev->struct_mutex);
815 
816 next_page:
817 		set_page_dirty(page);
818 		mark_page_accessed(page);
819 
820 		if (ret)
821 			goto out;
822 
823 		remain -= page_length;
824 		user_data += page_length;
825 		offset += page_length;
826 	}
827 
828 out:
829 	i915_gem_object_unpin_pages(obj);
830 
831 	if (hit_slowpath) {
832 		/*
833 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
834 		 * cachelines in-line while writing and the object moved
835 		 * out of the cpu write domain while we've dropped the lock.
836 		 */
837 		if (!needs_clflush_after &&
838 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
839 			if (i915_gem_clflush_object(obj, obj->pin_display))
840 				i915_gem_chipset_flush(dev);
841 		}
842 	}
843 
844 	if (needs_clflush_after)
845 		i915_gem_chipset_flush(dev);
846 
847 	return ret;
848 }
849 
850 /**
851  * Writes data to the object referenced by handle.
852  *
853  * On error, the contents of the buffer that were to be modified are undefined.
854  */
855 int
856 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
857 		      struct drm_file *file)
858 {
859 	struct drm_i915_gem_pwrite *args = data;
860 	struct drm_i915_gem_object *obj;
861 	int ret;
862 
863 	if (args->size == 0)
864 		return 0;
865 
866 	if (!access_ok(VERIFY_READ,
867 		       to_user_ptr(args->data_ptr),
868 		       args->size))
869 		return -EFAULT;
870 
871 	if (likely(!i915_prefault_disable)) {
872 		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
873 						   args->size);
874 		if (ret)
875 			return -EFAULT;
876 	}
877 
878 	ret = i915_mutex_lock_interruptible(dev);
879 	if (ret)
880 		return ret;
881 
882 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
883 	if (&obj->base == NULL) {
884 		ret = -ENOENT;
885 		goto unlock;
886 	}
887 
888 	/* Bounds check destination. */
889 	if (args->offset > obj->base.size ||
890 	    args->size > obj->base.size - args->offset) {
891 		ret = -EINVAL;
892 		goto out;
893 	}
894 
895 	/* prime objects have no backing filp to GEM pread/pwrite
896 	 * pages from.
897 	 */
898 	if (!obj->base.filp) {
899 		ret = -EINVAL;
900 		goto out;
901 	}
902 
903 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
904 
905 	ret = -EFAULT;
906 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
907 	 * it would end up going through the fenced access, and we'll get
908 	 * different detiling behavior between reading and writing.
909 	 * pread/pwrite currently are reading and writing from the CPU
910 	 * perspective, requiring manual detiling by the client.
911 	 */
912 	if (obj->phys_obj) {
913 		ret = i915_gem_phys_pwrite(dev, obj, args, file);
914 		goto out;
915 	}
916 
917 	if (obj->tiling_mode == I915_TILING_NONE &&
918 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
919 	    cpu_write_needs_clflush(obj)) {
920 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
921 		/* Note that the gtt paths might fail with non-page-backed user
922 		 * pointers (e.g. gtt mappings when moving data between
923 		 * textures). Fallback to the shmem path in that case. */
924 	}
925 
926 	if (ret == -EFAULT || ret == -ENOSPC)
927 		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
928 
929 out:
930 	drm_gem_object_unreference(&obj->base);
931 unlock:
932 	mutex_unlock(&dev->struct_mutex);
933 	return ret;
934 }
935 
936 int
937 i915_gem_check_wedge(struct i915_gpu_error *error,
938 		     bool interruptible)
939 {
940 	if (i915_reset_in_progress(error)) {
941 		/* Non-interruptible callers can't handle -EAGAIN, hence return
942 		 * -EIO unconditionally for these. */
943 		if (!interruptible)
944 			return -EIO;
945 
946 		/* Recovery complete, but the reset failed ... */
947 		if (i915_terminally_wedged(error))
948 			return -EIO;
949 
950 		return -EAGAIN;
951 	}
952 
953 	return 0;
954 }
955 
956 /*
957  * Compare seqno against outstanding lazy request. Emit a request if they are
958  * equal.
959  */
960 static int
961 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
962 {
963 	int ret;
964 
965 	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
966 
967 	ret = 0;
968 	if (seqno == ring->outstanding_lazy_seqno)
969 		ret = i915_add_request(ring, NULL);
970 
971 	return ret;
972 }
973 
974 static void fake_irq(unsigned long data)
975 {
976 	wake_up_process((struct task_struct *)data);
977 }
978 
979 static bool missed_irq(struct drm_i915_private *dev_priv,
980 		       struct intel_ring_buffer *ring)
981 {
982 	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
983 }
984 
985 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
986 {
987 	if (file_priv == NULL)
988 		return true;
989 
990 	return !atomic_xchg(&file_priv->rps_wait_boost, true);
991 }
992 
993 /**
994  * __wait_seqno - wait until execution of seqno has finished
995  * @ring: the ring expected to report seqno
996  * @seqno: duh!
997  * @reset_counter: reset sequence associated with the given seqno
998  * @interruptible: do an interruptible wait (normally yes)
999  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1000  *
1001  * Note: It is of utmost importance that the passed in seqno and reset_counter
1002  * values have been read by the caller in an smp safe manner. Where read-side
1003  * locks are involved, it is sufficient to read the reset_counter before
1004  * unlocking the lock that protects the seqno. For lockless tricks, the
1005  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1006  * inserted.
1007  *
1008  * Returns 0 if the seqno was found within the alloted time. Else returns the
1009  * errno with remaining time filled in timeout argument.
1010  */
1011 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1012 			unsigned reset_counter,
1013 			bool interruptible,
1014 			struct timespec *timeout,
1015 			struct drm_i915_file_private *file_priv)
1016 {
1017 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1018 	struct timespec before, now;
1019 	DEFINE_WAIT(wait);
1020 	long timeout_jiffies;
1021 	int ret;
1022 
1023 	WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1024 
1025 	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1026 		return 0;
1027 
1028 	timeout_jiffies = timeout ? timespec_to_jiffies_timeout(timeout) : 1;
1029 
1030 	if (dev_priv->info->gen >= 6 && can_wait_boost(file_priv)) {
1031 		gen6_rps_boost(dev_priv);
1032 		if (file_priv)
1033 			mod_delayed_work(dev_priv->wq,
1034 					 &file_priv->mm.idle_work,
1035 					 msecs_to_jiffies(100));
1036 	}
1037 
1038 	if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)) &&
1039 	    WARN_ON(!ring->irq_get(ring)))
1040 		return -ENODEV;
1041 
1042 	/* Record current time in case interrupted by signal, or wedged */
1043 	trace_i915_gem_request_wait_begin(ring, seqno);
1044 	getrawmonotonic(&before);
1045 	for (;;) {
1046 		struct timer_list timer;
1047 		unsigned long expire;
1048 
1049 		prepare_to_wait(&ring->irq_queue, &wait,
1050 				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1051 
1052 		/* We need to check whether any gpu reset happened in between
1053 		 * the caller grabbing the seqno and now ... */
1054 		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1055 			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
1056 			 * is truely gone. */
1057 			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1058 			if (ret == 0)
1059 				ret = -EAGAIN;
1060 			break;
1061 		}
1062 
1063 		if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1064 			ret = 0;
1065 			break;
1066 		}
1067 
1068 		if (interruptible && signal_pending(current)) {
1069 			ret = -ERESTARTSYS;
1070 			break;
1071 		}
1072 
1073 		if (timeout_jiffies <= 0) {
1074 			ret = -ETIME;
1075 			break;
1076 		}
1077 
1078 		timer.function = NULL;
1079 		if (timeout || missed_irq(dev_priv, ring)) {
1080 			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1081 			expire = jiffies + (missed_irq(dev_priv, ring) ? 1: timeout_jiffies);
1082 			mod_timer(&timer, expire);
1083 		}
1084 
1085 		io_schedule();
1086 
1087 		if (timeout)
1088 			timeout_jiffies = expire - jiffies;
1089 
1090 		if (timer.function) {
1091 			del_singleshot_timer_sync(&timer);
1092 			destroy_timer_on_stack(&timer);
1093 		}
1094 	}
1095 	getrawmonotonic(&now);
1096 	trace_i915_gem_request_wait_end(ring, seqno);
1097 
1098 	ring->irq_put(ring);
1099 
1100 	finish_wait(&ring->irq_queue, &wait);
1101 
1102 	if (timeout) {
1103 		struct timespec sleep_time = timespec_sub(now, before);
1104 		*timeout = timespec_sub(*timeout, sleep_time);
1105 		if (!timespec_valid(timeout)) /* i.e. negative time remains */
1106 			set_normalized_timespec(timeout, 0, 0);
1107 	}
1108 
1109 	return ret;
1110 }
1111 
1112 /**
1113  * Waits for a sequence number to be signaled, and cleans up the
1114  * request and object lists appropriately for that event.
1115  */
1116 int
1117 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1118 {
1119 	struct drm_device *dev = ring->dev;
1120 	struct drm_i915_private *dev_priv = dev->dev_private;
1121 	bool interruptible = dev_priv->mm.interruptible;
1122 	int ret;
1123 
1124 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1125 	BUG_ON(seqno == 0);
1126 
1127 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1128 	if (ret)
1129 		return ret;
1130 
1131 	ret = i915_gem_check_olr(ring, seqno);
1132 	if (ret)
1133 		return ret;
1134 
1135 	return __wait_seqno(ring, seqno,
1136 			    atomic_read(&dev_priv->gpu_error.reset_counter),
1137 			    interruptible, NULL, NULL);
1138 }
1139 
1140 static int
1141 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1142 				     struct intel_ring_buffer *ring)
1143 {
1144 	i915_gem_retire_requests_ring(ring);
1145 
1146 	/* Manually manage the write flush as we may have not yet
1147 	 * retired the buffer.
1148 	 *
1149 	 * Note that the last_write_seqno is always the earlier of
1150 	 * the two (read/write) seqno, so if we haved successfully waited,
1151 	 * we know we have passed the last write.
1152 	 */
1153 	obj->last_write_seqno = 0;
1154 	obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1155 
1156 	return 0;
1157 }
1158 
1159 /**
1160  * Ensures that all rendering to the object has completed and the object is
1161  * safe to unbind from the GTT or access from the CPU.
1162  */
1163 static __must_check int
1164 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1165 			       bool readonly)
1166 {
1167 	struct intel_ring_buffer *ring = obj->ring;
1168 	u32 seqno;
1169 	int ret;
1170 
1171 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1172 	if (seqno == 0)
1173 		return 0;
1174 
1175 	ret = i915_wait_seqno(ring, seqno);
1176 	if (ret)
1177 		return ret;
1178 
1179 	return i915_gem_object_wait_rendering__tail(obj, ring);
1180 }
1181 
1182 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1183  * as the object state may change during this call.
1184  */
1185 static __must_check int
1186 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1187 					    struct drm_file *file,
1188 					    bool readonly)
1189 {
1190 	struct drm_device *dev = obj->base.dev;
1191 	struct drm_i915_private *dev_priv = dev->dev_private;
1192 	struct intel_ring_buffer *ring = obj->ring;
1193 	unsigned reset_counter;
1194 	u32 seqno;
1195 	int ret;
1196 
1197 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1198 	BUG_ON(!dev_priv->mm.interruptible);
1199 
1200 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1201 	if (seqno == 0)
1202 		return 0;
1203 
1204 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1205 	if (ret)
1206 		return ret;
1207 
1208 	ret = i915_gem_check_olr(ring, seqno);
1209 	if (ret)
1210 		return ret;
1211 
1212 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1213 	mutex_unlock(&dev->struct_mutex);
1214 	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file->driver_priv);
1215 	mutex_lock(&dev->struct_mutex);
1216 	if (ret)
1217 		return ret;
1218 
1219 	return i915_gem_object_wait_rendering__tail(obj, ring);
1220 }
1221 
1222 /**
1223  * Called when user space prepares to use an object with the CPU, either
1224  * through the mmap ioctl's mapping or a GTT mapping.
1225  */
1226 int
1227 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1228 			  struct drm_file *file)
1229 {
1230 	struct drm_i915_gem_set_domain *args = data;
1231 	struct drm_i915_gem_object *obj;
1232 	uint32_t read_domains = args->read_domains;
1233 	uint32_t write_domain = args->write_domain;
1234 	int ret;
1235 
1236 	/* Only handle setting domains to types used by the CPU. */
1237 	if (write_domain & I915_GEM_GPU_DOMAINS)
1238 		return -EINVAL;
1239 
1240 	if (read_domains & I915_GEM_GPU_DOMAINS)
1241 		return -EINVAL;
1242 
1243 	/* Having something in the write domain implies it's in the read
1244 	 * domain, and only that read domain.  Enforce that in the request.
1245 	 */
1246 	if (write_domain != 0 && read_domains != write_domain)
1247 		return -EINVAL;
1248 
1249 	ret = i915_mutex_lock_interruptible(dev);
1250 	if (ret)
1251 		return ret;
1252 
1253 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1254 	if (&obj->base == NULL) {
1255 		ret = -ENOENT;
1256 		goto unlock;
1257 	}
1258 
1259 	/* Try to flush the object off the GPU without holding the lock.
1260 	 * We will repeat the flush holding the lock in the normal manner
1261 	 * to catch cases where we are gazumped.
1262 	 */
1263 	ret = i915_gem_object_wait_rendering__nonblocking(obj, file, !write_domain);
1264 	if (ret)
1265 		goto unref;
1266 
1267 	if (read_domains & I915_GEM_DOMAIN_GTT) {
1268 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1269 
1270 		/* Silently promote "you're not bound, there was nothing to do"
1271 		 * to success, since the client was just asking us to
1272 		 * make sure everything was done.
1273 		 */
1274 		if (ret == -EINVAL)
1275 			ret = 0;
1276 	} else {
1277 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1278 	}
1279 
1280 unref:
1281 	drm_gem_object_unreference(&obj->base);
1282 unlock:
1283 	mutex_unlock(&dev->struct_mutex);
1284 	return ret;
1285 }
1286 
1287 /**
1288  * Called when user space has done writes to this buffer
1289  */
1290 int
1291 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1292 			 struct drm_file *file)
1293 {
1294 	struct drm_i915_gem_sw_finish *args = data;
1295 	struct drm_i915_gem_object *obj;
1296 	int ret = 0;
1297 
1298 	ret = i915_mutex_lock_interruptible(dev);
1299 	if (ret)
1300 		return ret;
1301 
1302 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1303 	if (&obj->base == NULL) {
1304 		ret = -ENOENT;
1305 		goto unlock;
1306 	}
1307 
1308 	/* Pinned buffers may be scanout, so flush the cache */
1309 	if (obj->pin_display)
1310 		i915_gem_object_flush_cpu_write_domain(obj, true);
1311 
1312 	drm_gem_object_unreference(&obj->base);
1313 unlock:
1314 	mutex_unlock(&dev->struct_mutex);
1315 	return ret;
1316 }
1317 
1318 /**
1319  * Maps the contents of an object, returning the address it is mapped
1320  * into.
1321  *
1322  * While the mapping holds a reference on the contents of the object, it doesn't
1323  * imply a ref on the object itself.
1324  */
1325 int
1326 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1327 		    struct drm_file *file)
1328 {
1329 	struct drm_i915_gem_mmap *args = data;
1330 	struct drm_gem_object *obj;
1331 	unsigned long addr;
1332 
1333 	obj = drm_gem_object_lookup(dev, file, args->handle);
1334 	if (obj == NULL)
1335 		return -ENOENT;
1336 
1337 	/* prime objects have no backing filp to GEM mmap
1338 	 * pages from.
1339 	 */
1340 	if (!obj->filp) {
1341 		drm_gem_object_unreference_unlocked(obj);
1342 		return -EINVAL;
1343 	}
1344 
1345 	addr = vm_mmap(obj->filp, 0, args->size,
1346 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1347 		       args->offset);
1348 	drm_gem_object_unreference_unlocked(obj);
1349 	if (IS_ERR((void *)addr))
1350 		return addr;
1351 
1352 	args->addr_ptr = (uint64_t) addr;
1353 
1354 	return 0;
1355 }
1356 
1357 /**
1358  * i915_gem_fault - fault a page into the GTT
1359  * vma: VMA in question
1360  * vmf: fault info
1361  *
1362  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1363  * from userspace.  The fault handler takes care of binding the object to
1364  * the GTT (if needed), allocating and programming a fence register (again,
1365  * only if needed based on whether the old reg is still valid or the object
1366  * is tiled) and inserting a new PTE into the faulting process.
1367  *
1368  * Note that the faulting process may involve evicting existing objects
1369  * from the GTT and/or fence registers to make room.  So performance may
1370  * suffer if the GTT working set is large or there are few fence registers
1371  * left.
1372  */
1373 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1374 {
1375 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1376 	struct drm_device *dev = obj->base.dev;
1377 	drm_i915_private_t *dev_priv = dev->dev_private;
1378 	pgoff_t page_offset;
1379 	unsigned long pfn;
1380 	int ret = 0;
1381 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1382 
1383 	/* We don't use vmf->pgoff since that has the fake offset */
1384 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1385 		PAGE_SHIFT;
1386 
1387 	ret = i915_mutex_lock_interruptible(dev);
1388 	if (ret)
1389 		goto out;
1390 
1391 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1392 
1393 	/* Access to snoopable pages through the GTT is incoherent. */
1394 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1395 		ret = -EINVAL;
1396 		goto unlock;
1397 	}
1398 
1399 	/* Now bind it into the GTT if needed */
1400 	ret = i915_gem_obj_ggtt_pin(obj,  0, true, false);
1401 	if (ret)
1402 		goto unlock;
1403 
1404 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1405 	if (ret)
1406 		goto unpin;
1407 
1408 	ret = i915_gem_object_get_fence(obj);
1409 	if (ret)
1410 		goto unpin;
1411 
1412 	obj->fault_mappable = true;
1413 
1414 	pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1415 	pfn >>= PAGE_SHIFT;
1416 	pfn += page_offset;
1417 
1418 	/* Finally, remap it using the new GTT offset */
1419 	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1420 unpin:
1421 	i915_gem_object_unpin(obj);
1422 unlock:
1423 	mutex_unlock(&dev->struct_mutex);
1424 out:
1425 	switch (ret) {
1426 	case -EIO:
1427 		/* If this -EIO is due to a gpu hang, give the reset code a
1428 		 * chance to clean up the mess. Otherwise return the proper
1429 		 * SIGBUS. */
1430 		if (i915_terminally_wedged(&dev_priv->gpu_error))
1431 			return VM_FAULT_SIGBUS;
1432 	case -EAGAIN:
1433 		/*
1434 		 * EAGAIN means the gpu is hung and we'll wait for the error
1435 		 * handler to reset everything when re-faulting in
1436 		 * i915_mutex_lock_interruptible.
1437 		 */
1438 	case 0:
1439 	case -ERESTARTSYS:
1440 	case -EINTR:
1441 	case -EBUSY:
1442 		/*
1443 		 * EBUSY is ok: this just means that another thread
1444 		 * already did the job.
1445 		 */
1446 		return VM_FAULT_NOPAGE;
1447 	case -ENOMEM:
1448 		return VM_FAULT_OOM;
1449 	case -ENOSPC:
1450 		return VM_FAULT_SIGBUS;
1451 	default:
1452 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1453 		return VM_FAULT_SIGBUS;
1454 	}
1455 }
1456 
1457 /**
1458  * i915_gem_release_mmap - remove physical page mappings
1459  * @obj: obj in question
1460  *
1461  * Preserve the reservation of the mmapping with the DRM core code, but
1462  * relinquish ownership of the pages back to the system.
1463  *
1464  * It is vital that we remove the page mapping if we have mapped a tiled
1465  * object through the GTT and then lose the fence register due to
1466  * resource pressure. Similarly if the object has been moved out of the
1467  * aperture, than pages mapped into userspace must be revoked. Removing the
1468  * mapping will then trigger a page fault on the next user access, allowing
1469  * fixup by i915_gem_fault().
1470  */
1471 void
1472 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1473 {
1474 	if (!obj->fault_mappable)
1475 		return;
1476 
1477 	drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
1478 	obj->fault_mappable = false;
1479 }
1480 
1481 uint32_t
1482 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1483 {
1484 	uint32_t gtt_size;
1485 
1486 	if (INTEL_INFO(dev)->gen >= 4 ||
1487 	    tiling_mode == I915_TILING_NONE)
1488 		return size;
1489 
1490 	/* Previous chips need a power-of-two fence region when tiling */
1491 	if (INTEL_INFO(dev)->gen == 3)
1492 		gtt_size = 1024*1024;
1493 	else
1494 		gtt_size = 512*1024;
1495 
1496 	while (gtt_size < size)
1497 		gtt_size <<= 1;
1498 
1499 	return gtt_size;
1500 }
1501 
1502 /**
1503  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1504  * @obj: object to check
1505  *
1506  * Return the required GTT alignment for an object, taking into account
1507  * potential fence register mapping.
1508  */
1509 uint32_t
1510 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1511 			   int tiling_mode, bool fenced)
1512 {
1513 	/*
1514 	 * Minimum alignment is 4k (GTT page size), but might be greater
1515 	 * if a fence register is needed for the object.
1516 	 */
1517 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1518 	    tiling_mode == I915_TILING_NONE)
1519 		return 4096;
1520 
1521 	/*
1522 	 * Previous chips need to be aligned to the size of the smallest
1523 	 * fence register that can contain the object.
1524 	 */
1525 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1526 }
1527 
1528 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1529 {
1530 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1531 	int ret;
1532 
1533 	if (drm_vma_node_has_offset(&obj->base.vma_node))
1534 		return 0;
1535 
1536 	dev_priv->mm.shrinker_no_lock_stealing = true;
1537 
1538 	ret = drm_gem_create_mmap_offset(&obj->base);
1539 	if (ret != -ENOSPC)
1540 		goto out;
1541 
1542 	/* Badly fragmented mmap space? The only way we can recover
1543 	 * space is by destroying unwanted objects. We can't randomly release
1544 	 * mmap_offsets as userspace expects them to be persistent for the
1545 	 * lifetime of the objects. The closest we can is to release the
1546 	 * offsets on purgeable objects by truncating it and marking it purged,
1547 	 * which prevents userspace from ever using that object again.
1548 	 */
1549 	i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1550 	ret = drm_gem_create_mmap_offset(&obj->base);
1551 	if (ret != -ENOSPC)
1552 		goto out;
1553 
1554 	i915_gem_shrink_all(dev_priv);
1555 	ret = drm_gem_create_mmap_offset(&obj->base);
1556 out:
1557 	dev_priv->mm.shrinker_no_lock_stealing = false;
1558 
1559 	return ret;
1560 }
1561 
1562 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1563 {
1564 	drm_gem_free_mmap_offset(&obj->base);
1565 }
1566 
1567 int
1568 i915_gem_mmap_gtt(struct drm_file *file,
1569 		  struct drm_device *dev,
1570 		  uint32_t handle,
1571 		  uint64_t *offset)
1572 {
1573 	struct drm_i915_private *dev_priv = dev->dev_private;
1574 	struct drm_i915_gem_object *obj;
1575 	int ret;
1576 
1577 	ret = i915_mutex_lock_interruptible(dev);
1578 	if (ret)
1579 		return ret;
1580 
1581 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1582 	if (&obj->base == NULL) {
1583 		ret = -ENOENT;
1584 		goto unlock;
1585 	}
1586 
1587 	if (obj->base.size > dev_priv->gtt.mappable_end) {
1588 		ret = -E2BIG;
1589 		goto out;
1590 	}
1591 
1592 	if (obj->madv != I915_MADV_WILLNEED) {
1593 		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1594 		ret = -EINVAL;
1595 		goto out;
1596 	}
1597 
1598 	ret = i915_gem_object_create_mmap_offset(obj);
1599 	if (ret)
1600 		goto out;
1601 
1602 	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1603 
1604 out:
1605 	drm_gem_object_unreference(&obj->base);
1606 unlock:
1607 	mutex_unlock(&dev->struct_mutex);
1608 	return ret;
1609 }
1610 
1611 /**
1612  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1613  * @dev: DRM device
1614  * @data: GTT mapping ioctl data
1615  * @file: GEM object info
1616  *
1617  * Simply returns the fake offset to userspace so it can mmap it.
1618  * The mmap call will end up in drm_gem_mmap(), which will set things
1619  * up so we can get faults in the handler above.
1620  *
1621  * The fault handler will take care of binding the object into the GTT
1622  * (since it may have been evicted to make room for something), allocating
1623  * a fence register, and mapping the appropriate aperture address into
1624  * userspace.
1625  */
1626 int
1627 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1628 			struct drm_file *file)
1629 {
1630 	struct drm_i915_gem_mmap_gtt *args = data;
1631 
1632 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1633 }
1634 
1635 /* Immediately discard the backing storage */
1636 static void
1637 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1638 {
1639 	struct inode *inode;
1640 
1641 	i915_gem_object_free_mmap_offset(obj);
1642 
1643 	if (obj->base.filp == NULL)
1644 		return;
1645 
1646 	/* Our goal here is to return as much of the memory as
1647 	 * is possible back to the system as we are called from OOM.
1648 	 * To do this we must instruct the shmfs to drop all of its
1649 	 * backing pages, *now*.
1650 	 */
1651 	inode = file_inode(obj->base.filp);
1652 	shmem_truncate_range(inode, 0, (loff_t)-1);
1653 
1654 	obj->madv = __I915_MADV_PURGED;
1655 }
1656 
1657 static inline int
1658 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1659 {
1660 	return obj->madv == I915_MADV_DONTNEED;
1661 }
1662 
1663 static void
1664 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1665 {
1666 	struct sg_page_iter sg_iter;
1667 	int ret;
1668 
1669 	BUG_ON(obj->madv == __I915_MADV_PURGED);
1670 
1671 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
1672 	if (ret) {
1673 		/* In the event of a disaster, abandon all caches and
1674 		 * hope for the best.
1675 		 */
1676 		WARN_ON(ret != -EIO);
1677 		i915_gem_clflush_object(obj, true);
1678 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1679 	}
1680 
1681 	if (i915_gem_object_needs_bit17_swizzle(obj))
1682 		i915_gem_object_save_bit_17_swizzle(obj);
1683 
1684 	if (obj->madv == I915_MADV_DONTNEED)
1685 		obj->dirty = 0;
1686 
1687 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1688 		struct page *page = sg_page_iter_page(&sg_iter);
1689 
1690 		if (obj->dirty)
1691 			set_page_dirty(page);
1692 
1693 		if (obj->madv == I915_MADV_WILLNEED)
1694 			mark_page_accessed(page);
1695 
1696 		page_cache_release(page);
1697 	}
1698 	obj->dirty = 0;
1699 
1700 	sg_free_table(obj->pages);
1701 	kfree(obj->pages);
1702 }
1703 
1704 int
1705 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1706 {
1707 	const struct drm_i915_gem_object_ops *ops = obj->ops;
1708 
1709 	if (obj->pages == NULL)
1710 		return 0;
1711 
1712 	if (obj->pages_pin_count)
1713 		return -EBUSY;
1714 
1715 	BUG_ON(i915_gem_obj_bound_any(obj));
1716 
1717 	/* ->put_pages might need to allocate memory for the bit17 swizzle
1718 	 * array, hence protect them from being reaped by removing them from gtt
1719 	 * lists early. */
1720 	list_del(&obj->global_list);
1721 
1722 	ops->put_pages(obj);
1723 	obj->pages = NULL;
1724 
1725 	if (i915_gem_object_is_purgeable(obj))
1726 		i915_gem_object_truncate(obj);
1727 
1728 	return 0;
1729 }
1730 
1731 static unsigned long
1732 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1733 		  bool purgeable_only)
1734 {
1735 	struct list_head still_bound_list;
1736 	struct drm_i915_gem_object *obj, *next;
1737 	unsigned long count = 0;
1738 
1739 	list_for_each_entry_safe(obj, next,
1740 				 &dev_priv->mm.unbound_list,
1741 				 global_list) {
1742 		if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1743 		    i915_gem_object_put_pages(obj) == 0) {
1744 			count += obj->base.size >> PAGE_SHIFT;
1745 			if (count >= target)
1746 				return count;
1747 		}
1748 	}
1749 
1750 	/*
1751 	 * As we may completely rewrite the bound list whilst unbinding
1752 	 * (due to retiring requests) we have to strictly process only
1753 	 * one element of the list at the time, and recheck the list
1754 	 * on every iteration.
1755 	 */
1756 	INIT_LIST_HEAD(&still_bound_list);
1757 	while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1758 		struct i915_vma *vma, *v;
1759 
1760 		obj = list_first_entry(&dev_priv->mm.bound_list,
1761 				       typeof(*obj), global_list);
1762 		list_move_tail(&obj->global_list, &still_bound_list);
1763 
1764 		if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1765 			continue;
1766 
1767 		/*
1768 		 * Hold a reference whilst we unbind this object, as we may
1769 		 * end up waiting for and retiring requests. This might
1770 		 * release the final reference (held by the active list)
1771 		 * and result in the object being freed from under us.
1772 		 * in this object being freed.
1773 		 *
1774 		 * Note 1: Shrinking the bound list is special since only active
1775 		 * (and hence bound objects) can contain such limbo objects, so
1776 		 * we don't need special tricks for shrinking the unbound list.
1777 		 * The only other place where we have to be careful with active
1778 		 * objects suddenly disappearing due to retiring requests is the
1779 		 * eviction code.
1780 		 *
1781 		 * Note 2: Even though the bound list doesn't hold a reference
1782 		 * to the object we can safely grab one here: The final object
1783 		 * unreferencing and the bound_list are both protected by the
1784 		 * dev->struct_mutex and so we won't ever be able to observe an
1785 		 * object on the bound_list with a reference count equals 0.
1786 		 */
1787 		drm_gem_object_reference(&obj->base);
1788 
1789 		list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1790 			if (i915_vma_unbind(vma))
1791 				break;
1792 
1793 		if (i915_gem_object_put_pages(obj) == 0)
1794 			count += obj->base.size >> PAGE_SHIFT;
1795 
1796 		drm_gem_object_unreference(&obj->base);
1797 	}
1798 	list_splice(&still_bound_list, &dev_priv->mm.bound_list);
1799 
1800 	return count;
1801 }
1802 
1803 static unsigned long
1804 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1805 {
1806 	return __i915_gem_shrink(dev_priv, target, true);
1807 }
1808 
1809 static unsigned long
1810 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1811 {
1812 	struct drm_i915_gem_object *obj, *next;
1813 	long freed = 0;
1814 
1815 	i915_gem_evict_everything(dev_priv->dev);
1816 
1817 	list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1818 				 global_list) {
1819 		if (i915_gem_object_put_pages(obj) == 0)
1820 			freed += obj->base.size >> PAGE_SHIFT;
1821 	}
1822 	return freed;
1823 }
1824 
1825 static int
1826 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1827 {
1828 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1829 	int page_count, i;
1830 	struct address_space *mapping;
1831 	struct sg_table *st;
1832 	struct scatterlist *sg;
1833 	struct sg_page_iter sg_iter;
1834 	struct page *page;
1835 	unsigned long last_pfn = 0;	/* suppress gcc warning */
1836 	gfp_t gfp;
1837 
1838 	/* Assert that the object is not currently in any GPU domain. As it
1839 	 * wasn't in the GTT, there shouldn't be any way it could have been in
1840 	 * a GPU cache
1841 	 */
1842 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1843 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1844 
1845 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1846 	if (st == NULL)
1847 		return -ENOMEM;
1848 
1849 	page_count = obj->base.size / PAGE_SIZE;
1850 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1851 		kfree(st);
1852 		return -ENOMEM;
1853 	}
1854 
1855 	/* Get the list of pages out of our struct file.  They'll be pinned
1856 	 * at this point until we release them.
1857 	 *
1858 	 * Fail silently without starting the shrinker
1859 	 */
1860 	mapping = file_inode(obj->base.filp)->i_mapping;
1861 	gfp = mapping_gfp_mask(mapping);
1862 	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1863 	gfp &= ~(__GFP_IO | __GFP_WAIT);
1864 	sg = st->sgl;
1865 	st->nents = 0;
1866 	for (i = 0; i < page_count; i++) {
1867 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1868 		if (IS_ERR(page)) {
1869 			i915_gem_purge(dev_priv, page_count);
1870 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1871 		}
1872 		if (IS_ERR(page)) {
1873 			/* We've tried hard to allocate the memory by reaping
1874 			 * our own buffer, now let the real VM do its job and
1875 			 * go down in flames if truly OOM.
1876 			 */
1877 			gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1878 			gfp |= __GFP_IO | __GFP_WAIT;
1879 
1880 			i915_gem_shrink_all(dev_priv);
1881 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1882 			if (IS_ERR(page))
1883 				goto err_pages;
1884 
1885 			gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1886 			gfp &= ~(__GFP_IO | __GFP_WAIT);
1887 		}
1888 #ifdef CONFIG_SWIOTLB
1889 		if (swiotlb_nr_tbl()) {
1890 			st->nents++;
1891 			sg_set_page(sg, page, PAGE_SIZE, 0);
1892 			sg = sg_next(sg);
1893 			continue;
1894 		}
1895 #endif
1896 		if (!i || page_to_pfn(page) != last_pfn + 1) {
1897 			if (i)
1898 				sg = sg_next(sg);
1899 			st->nents++;
1900 			sg_set_page(sg, page, PAGE_SIZE, 0);
1901 		} else {
1902 			sg->length += PAGE_SIZE;
1903 		}
1904 		last_pfn = page_to_pfn(page);
1905 
1906 		/* Check that the i965g/gm workaround works. */
1907 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
1908 	}
1909 #ifdef CONFIG_SWIOTLB
1910 	if (!swiotlb_nr_tbl())
1911 #endif
1912 		sg_mark_end(sg);
1913 	obj->pages = st;
1914 
1915 	if (i915_gem_object_needs_bit17_swizzle(obj))
1916 		i915_gem_object_do_bit_17_swizzle(obj);
1917 
1918 	return 0;
1919 
1920 err_pages:
1921 	sg_mark_end(sg);
1922 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1923 		page_cache_release(sg_page_iter_page(&sg_iter));
1924 	sg_free_table(st);
1925 	kfree(st);
1926 	return PTR_ERR(page);
1927 }
1928 
1929 /* Ensure that the associated pages are gathered from the backing storage
1930  * and pinned into our object. i915_gem_object_get_pages() may be called
1931  * multiple times before they are released by a single call to
1932  * i915_gem_object_put_pages() - once the pages are no longer referenced
1933  * either as a result of memory pressure (reaping pages under the shrinker)
1934  * or as the object is itself released.
1935  */
1936 int
1937 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1938 {
1939 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1940 	const struct drm_i915_gem_object_ops *ops = obj->ops;
1941 	int ret;
1942 
1943 	if (obj->pages)
1944 		return 0;
1945 
1946 	if (obj->madv != I915_MADV_WILLNEED) {
1947 		DRM_ERROR("Attempting to obtain a purgeable object\n");
1948 		return -EINVAL;
1949 	}
1950 
1951 	BUG_ON(obj->pages_pin_count);
1952 
1953 	ret = ops->get_pages(obj);
1954 	if (ret)
1955 		return ret;
1956 
1957 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1958 	return 0;
1959 }
1960 
1961 static void
1962 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1963 			       struct intel_ring_buffer *ring)
1964 {
1965 	struct drm_device *dev = obj->base.dev;
1966 	struct drm_i915_private *dev_priv = dev->dev_private;
1967 	u32 seqno = intel_ring_get_seqno(ring);
1968 
1969 	BUG_ON(ring == NULL);
1970 	if (obj->ring != ring && obj->last_write_seqno) {
1971 		/* Keep the seqno relative to the current ring */
1972 		obj->last_write_seqno = seqno;
1973 	}
1974 	obj->ring = ring;
1975 
1976 	/* Add a reference if we're newly entering the active list. */
1977 	if (!obj->active) {
1978 		drm_gem_object_reference(&obj->base);
1979 		obj->active = 1;
1980 	}
1981 
1982 	list_move_tail(&obj->ring_list, &ring->active_list);
1983 
1984 	obj->last_read_seqno = seqno;
1985 
1986 	if (obj->fenced_gpu_access) {
1987 		obj->last_fenced_seqno = seqno;
1988 
1989 		/* Bump MRU to take account of the delayed flush */
1990 		if (obj->fence_reg != I915_FENCE_REG_NONE) {
1991 			struct drm_i915_fence_reg *reg;
1992 
1993 			reg = &dev_priv->fence_regs[obj->fence_reg];
1994 			list_move_tail(&reg->lru_list,
1995 				       &dev_priv->mm.fence_list);
1996 		}
1997 	}
1998 }
1999 
2000 void i915_vma_move_to_active(struct i915_vma *vma,
2001 			     struct intel_ring_buffer *ring)
2002 {
2003 	list_move_tail(&vma->mm_list, &vma->vm->active_list);
2004 	return i915_gem_object_move_to_active(vma->obj, ring);
2005 }
2006 
2007 static void
2008 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2009 {
2010 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2011 	struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2012 	struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2013 
2014 	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2015 	BUG_ON(!obj->active);
2016 
2017 	list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
2018 
2019 	list_del_init(&obj->ring_list);
2020 	obj->ring = NULL;
2021 
2022 	obj->last_read_seqno = 0;
2023 	obj->last_write_seqno = 0;
2024 	obj->base.write_domain = 0;
2025 
2026 	obj->last_fenced_seqno = 0;
2027 	obj->fenced_gpu_access = false;
2028 
2029 	obj->active = 0;
2030 	drm_gem_object_unreference(&obj->base);
2031 
2032 	WARN_ON(i915_verify_lists(dev));
2033 }
2034 
2035 static int
2036 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2037 {
2038 	struct drm_i915_private *dev_priv = dev->dev_private;
2039 	struct intel_ring_buffer *ring;
2040 	int ret, i, j;
2041 
2042 	/* Carefully retire all requests without writing to the rings */
2043 	for_each_ring(ring, dev_priv, i) {
2044 		ret = intel_ring_idle(ring);
2045 		if (ret)
2046 			return ret;
2047 	}
2048 	i915_gem_retire_requests(dev);
2049 
2050 	/* Finally reset hw state */
2051 	for_each_ring(ring, dev_priv, i) {
2052 		intel_ring_init_seqno(ring, seqno);
2053 
2054 		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2055 			ring->sync_seqno[j] = 0;
2056 	}
2057 
2058 	return 0;
2059 }
2060 
2061 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2062 {
2063 	struct drm_i915_private *dev_priv = dev->dev_private;
2064 	int ret;
2065 
2066 	if (seqno == 0)
2067 		return -EINVAL;
2068 
2069 	/* HWS page needs to be set less than what we
2070 	 * will inject to ring
2071 	 */
2072 	ret = i915_gem_init_seqno(dev, seqno - 1);
2073 	if (ret)
2074 		return ret;
2075 
2076 	/* Carefully set the last_seqno value so that wrap
2077 	 * detection still works
2078 	 */
2079 	dev_priv->next_seqno = seqno;
2080 	dev_priv->last_seqno = seqno - 1;
2081 	if (dev_priv->last_seqno == 0)
2082 		dev_priv->last_seqno--;
2083 
2084 	return 0;
2085 }
2086 
2087 int
2088 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2089 {
2090 	struct drm_i915_private *dev_priv = dev->dev_private;
2091 
2092 	/* reserve 0 for non-seqno */
2093 	if (dev_priv->next_seqno == 0) {
2094 		int ret = i915_gem_init_seqno(dev, 0);
2095 		if (ret)
2096 			return ret;
2097 
2098 		dev_priv->next_seqno = 1;
2099 	}
2100 
2101 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2102 	return 0;
2103 }
2104 
2105 int __i915_add_request(struct intel_ring_buffer *ring,
2106 		       struct drm_file *file,
2107 		       struct drm_i915_gem_object *obj,
2108 		       u32 *out_seqno)
2109 {
2110 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
2111 	struct drm_i915_gem_request *request;
2112 	u32 request_ring_position, request_start;
2113 	int was_empty;
2114 	int ret;
2115 
2116 	request_start = intel_ring_get_tail(ring);
2117 	/*
2118 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
2119 	 * after having emitted the batchbuffer command. Hence we need to fix
2120 	 * things up similar to emitting the lazy request. The difference here
2121 	 * is that the flush _must_ happen before the next request, no matter
2122 	 * what.
2123 	 */
2124 	ret = intel_ring_flush_all_caches(ring);
2125 	if (ret)
2126 		return ret;
2127 
2128 	request = ring->preallocated_lazy_request;
2129 	if (WARN_ON(request == NULL))
2130 		return -ENOMEM;
2131 
2132 	/* Record the position of the start of the request so that
2133 	 * should we detect the updated seqno part-way through the
2134 	 * GPU processing the request, we never over-estimate the
2135 	 * position of the head.
2136 	 */
2137 	request_ring_position = intel_ring_get_tail(ring);
2138 
2139 	ret = ring->add_request(ring);
2140 	if (ret)
2141 		return ret;
2142 
2143 	request->seqno = intel_ring_get_seqno(ring);
2144 	request->ring = ring;
2145 	request->head = request_start;
2146 	request->tail = request_ring_position;
2147 
2148 	/* Whilst this request exists, batch_obj will be on the
2149 	 * active_list, and so will hold the active reference. Only when this
2150 	 * request is retired will the the batch_obj be moved onto the
2151 	 * inactive_list and lose its active reference. Hence we do not need
2152 	 * to explicitly hold another reference here.
2153 	 */
2154 	request->batch_obj = obj;
2155 
2156 	/* Hold a reference to the current context so that we can inspect
2157 	 * it later in case a hangcheck error event fires.
2158 	 */
2159 	request->ctx = ring->last_context;
2160 	if (request->ctx)
2161 		i915_gem_context_reference(request->ctx);
2162 
2163 	request->emitted_jiffies = jiffies;
2164 	was_empty = list_empty(&ring->request_list);
2165 	list_add_tail(&request->list, &ring->request_list);
2166 	request->file_priv = NULL;
2167 
2168 	if (file) {
2169 		struct drm_i915_file_private *file_priv = file->driver_priv;
2170 
2171 		spin_lock(&file_priv->mm.lock);
2172 		request->file_priv = file_priv;
2173 		list_add_tail(&request->client_list,
2174 			      &file_priv->mm.request_list);
2175 		spin_unlock(&file_priv->mm.lock);
2176 	}
2177 
2178 	trace_i915_gem_request_add(ring, request->seqno);
2179 	ring->outstanding_lazy_seqno = 0;
2180 	ring->preallocated_lazy_request = NULL;
2181 
2182 	if (!dev_priv->ums.mm_suspended) {
2183 		i915_queue_hangcheck(ring->dev);
2184 
2185 		if (was_empty) {
2186 			cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2187 			queue_delayed_work(dev_priv->wq,
2188 					   &dev_priv->mm.retire_work,
2189 					   round_jiffies_up_relative(HZ));
2190 			intel_mark_busy(dev_priv->dev);
2191 		}
2192 	}
2193 
2194 	if (out_seqno)
2195 		*out_seqno = request->seqno;
2196 	return 0;
2197 }
2198 
2199 static inline void
2200 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2201 {
2202 	struct drm_i915_file_private *file_priv = request->file_priv;
2203 
2204 	if (!file_priv)
2205 		return;
2206 
2207 	spin_lock(&file_priv->mm.lock);
2208 	list_del(&request->client_list);
2209 	request->file_priv = NULL;
2210 	spin_unlock(&file_priv->mm.lock);
2211 }
2212 
2213 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2214 				    struct i915_address_space *vm)
2215 {
2216 	if (acthd >= i915_gem_obj_offset(obj, vm) &&
2217 	    acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
2218 		return true;
2219 
2220 	return false;
2221 }
2222 
2223 static bool i915_head_inside_request(const u32 acthd_unmasked,
2224 				     const u32 request_start,
2225 				     const u32 request_end)
2226 {
2227 	const u32 acthd = acthd_unmasked & HEAD_ADDR;
2228 
2229 	if (request_start < request_end) {
2230 		if (acthd >= request_start && acthd < request_end)
2231 			return true;
2232 	} else if (request_start > request_end) {
2233 		if (acthd >= request_start || acthd < request_end)
2234 			return true;
2235 	}
2236 
2237 	return false;
2238 }
2239 
2240 static struct i915_address_space *
2241 request_to_vm(struct drm_i915_gem_request *request)
2242 {
2243 	struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2244 	struct i915_address_space *vm;
2245 
2246 	vm = &dev_priv->gtt.base;
2247 
2248 	return vm;
2249 }
2250 
2251 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2252 				const u32 acthd, bool *inside)
2253 {
2254 	/* There is a possibility that unmasked head address
2255 	 * pointing inside the ring, matches the batch_obj address range.
2256 	 * However this is extremely unlikely.
2257 	 */
2258 	if (request->batch_obj) {
2259 		if (i915_head_inside_object(acthd, request->batch_obj,
2260 					    request_to_vm(request))) {
2261 			*inside = true;
2262 			return true;
2263 		}
2264 	}
2265 
2266 	if (i915_head_inside_request(acthd, request->head, request->tail)) {
2267 		*inside = false;
2268 		return true;
2269 	}
2270 
2271 	return false;
2272 }
2273 
2274 static bool i915_context_is_banned(const struct i915_ctx_hang_stats *hs)
2275 {
2276 	const unsigned long elapsed = get_seconds() - hs->guilty_ts;
2277 
2278 	if (hs->banned)
2279 		return true;
2280 
2281 	if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2282 		DRM_ERROR("context hanging too fast, declaring banned!\n");
2283 		return true;
2284 	}
2285 
2286 	return false;
2287 }
2288 
2289 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2290 				  struct drm_i915_gem_request *request,
2291 				  u32 acthd)
2292 {
2293 	struct i915_ctx_hang_stats *hs = NULL;
2294 	bool inside, guilty;
2295 	unsigned long offset = 0;
2296 
2297 	/* Innocent until proven guilty */
2298 	guilty = false;
2299 
2300 	if (request->batch_obj)
2301 		offset = i915_gem_obj_offset(request->batch_obj,
2302 					     request_to_vm(request));
2303 
2304 	if (ring->hangcheck.action != HANGCHECK_WAIT &&
2305 	    i915_request_guilty(request, acthd, &inside)) {
2306 		DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2307 			  ring->name,
2308 			  inside ? "inside" : "flushing",
2309 			  offset,
2310 			  request->ctx ? request->ctx->id : 0,
2311 			  acthd);
2312 
2313 		guilty = true;
2314 	}
2315 
2316 	/* If contexts are disabled or this is the default context, use
2317 	 * file_priv->reset_state
2318 	 */
2319 	if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2320 		hs = &request->ctx->hang_stats;
2321 	else if (request->file_priv)
2322 		hs = &request->file_priv->hang_stats;
2323 
2324 	if (hs) {
2325 		if (guilty) {
2326 			hs->banned = i915_context_is_banned(hs);
2327 			hs->batch_active++;
2328 			hs->guilty_ts = get_seconds();
2329 		} else {
2330 			hs->batch_pending++;
2331 		}
2332 	}
2333 }
2334 
2335 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2336 {
2337 	list_del(&request->list);
2338 	i915_gem_request_remove_from_client(request);
2339 
2340 	if (request->ctx)
2341 		i915_gem_context_unreference(request->ctx);
2342 
2343 	kfree(request);
2344 }
2345 
2346 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2347 				       struct intel_ring_buffer *ring)
2348 {
2349 	u32 completed_seqno = ring->get_seqno(ring, false);
2350 	u32 acthd = intel_ring_get_active_head(ring);
2351 	struct drm_i915_gem_request *request;
2352 
2353 	list_for_each_entry(request, &ring->request_list, list) {
2354 		if (i915_seqno_passed(completed_seqno, request->seqno))
2355 			continue;
2356 
2357 		i915_set_reset_status(ring, request, acthd);
2358 	}
2359 }
2360 
2361 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2362 					struct intel_ring_buffer *ring)
2363 {
2364 	while (!list_empty(&ring->request_list)) {
2365 		struct drm_i915_gem_request *request;
2366 
2367 		request = list_first_entry(&ring->request_list,
2368 					   struct drm_i915_gem_request,
2369 					   list);
2370 
2371 		i915_gem_free_request(request);
2372 	}
2373 
2374 	while (!list_empty(&ring->active_list)) {
2375 		struct drm_i915_gem_object *obj;
2376 
2377 		obj = list_first_entry(&ring->active_list,
2378 				       struct drm_i915_gem_object,
2379 				       ring_list);
2380 
2381 		i915_gem_object_move_to_inactive(obj);
2382 	}
2383 }
2384 
2385 void i915_gem_restore_fences(struct drm_device *dev)
2386 {
2387 	struct drm_i915_private *dev_priv = dev->dev_private;
2388 	int i;
2389 
2390 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2391 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2392 
2393 		/*
2394 		 * Commit delayed tiling changes if we have an object still
2395 		 * attached to the fence, otherwise just clear the fence.
2396 		 */
2397 		if (reg->obj) {
2398 			i915_gem_object_update_fence(reg->obj, reg,
2399 						     reg->obj->tiling_mode);
2400 		} else {
2401 			i915_gem_write_fence(dev, i, NULL);
2402 		}
2403 	}
2404 }
2405 
2406 void i915_gem_reset(struct drm_device *dev)
2407 {
2408 	struct drm_i915_private *dev_priv = dev->dev_private;
2409 	struct intel_ring_buffer *ring;
2410 	int i;
2411 
2412 	/*
2413 	 * Before we free the objects from the requests, we need to inspect
2414 	 * them for finding the guilty party. As the requests only borrow
2415 	 * their reference to the objects, the inspection must be done first.
2416 	 */
2417 	for_each_ring(ring, dev_priv, i)
2418 		i915_gem_reset_ring_status(dev_priv, ring);
2419 
2420 	for_each_ring(ring, dev_priv, i)
2421 		i915_gem_reset_ring_cleanup(dev_priv, ring);
2422 
2423 	i915_gem_cleanup_ringbuffer(dev);
2424 
2425 	i915_gem_restore_fences(dev);
2426 }
2427 
2428 /**
2429  * This function clears the request list as sequence numbers are passed.
2430  */
2431 void
2432 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2433 {
2434 	uint32_t seqno;
2435 
2436 	if (list_empty(&ring->request_list))
2437 		return;
2438 
2439 	WARN_ON(i915_verify_lists(ring->dev));
2440 
2441 	seqno = ring->get_seqno(ring, true);
2442 
2443 	while (!list_empty(&ring->request_list)) {
2444 		struct drm_i915_gem_request *request;
2445 
2446 		request = list_first_entry(&ring->request_list,
2447 					   struct drm_i915_gem_request,
2448 					   list);
2449 
2450 		if (!i915_seqno_passed(seqno, request->seqno))
2451 			break;
2452 
2453 		trace_i915_gem_request_retire(ring, request->seqno);
2454 		/* We know the GPU must have read the request to have
2455 		 * sent us the seqno + interrupt, so use the position
2456 		 * of tail of the request to update the last known position
2457 		 * of the GPU head.
2458 		 */
2459 		ring->last_retired_head = request->tail;
2460 
2461 		i915_gem_free_request(request);
2462 	}
2463 
2464 	/* Move any buffers on the active list that are no longer referenced
2465 	 * by the ringbuffer to the flushing/inactive lists as appropriate.
2466 	 */
2467 	while (!list_empty(&ring->active_list)) {
2468 		struct drm_i915_gem_object *obj;
2469 
2470 		obj = list_first_entry(&ring->active_list,
2471 				      struct drm_i915_gem_object,
2472 				      ring_list);
2473 
2474 		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2475 			break;
2476 
2477 		i915_gem_object_move_to_inactive(obj);
2478 	}
2479 
2480 	if (unlikely(ring->trace_irq_seqno &&
2481 		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2482 		ring->irq_put(ring);
2483 		ring->trace_irq_seqno = 0;
2484 	}
2485 
2486 	WARN_ON(i915_verify_lists(ring->dev));
2487 }
2488 
2489 bool
2490 i915_gem_retire_requests(struct drm_device *dev)
2491 {
2492 	drm_i915_private_t *dev_priv = dev->dev_private;
2493 	struct intel_ring_buffer *ring;
2494 	bool idle = true;
2495 	int i;
2496 
2497 	for_each_ring(ring, dev_priv, i) {
2498 		i915_gem_retire_requests_ring(ring);
2499 		idle &= list_empty(&ring->request_list);
2500 	}
2501 
2502 	if (idle)
2503 		mod_delayed_work(dev_priv->wq,
2504 				   &dev_priv->mm.idle_work,
2505 				   msecs_to_jiffies(100));
2506 
2507 	return idle;
2508 }
2509 
2510 static void
2511 i915_gem_retire_work_handler(struct work_struct *work)
2512 {
2513 	struct drm_i915_private *dev_priv =
2514 		container_of(work, typeof(*dev_priv), mm.retire_work.work);
2515 	struct drm_device *dev = dev_priv->dev;
2516 	bool idle;
2517 
2518 	/* Come back later if the device is busy... */
2519 	idle = false;
2520 	if (mutex_trylock(&dev->struct_mutex)) {
2521 		idle = i915_gem_retire_requests(dev);
2522 		mutex_unlock(&dev->struct_mutex);
2523 	}
2524 	if (!idle)
2525 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2526 				   round_jiffies_up_relative(HZ));
2527 }
2528 
2529 static void
2530 i915_gem_idle_work_handler(struct work_struct *work)
2531 {
2532 	struct drm_i915_private *dev_priv =
2533 		container_of(work, typeof(*dev_priv), mm.idle_work.work);
2534 
2535 	intel_mark_idle(dev_priv->dev);
2536 }
2537 
2538 /**
2539  * Ensures that an object will eventually get non-busy by flushing any required
2540  * write domains, emitting any outstanding lazy request and retiring and
2541  * completed requests.
2542  */
2543 static int
2544 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2545 {
2546 	int ret;
2547 
2548 	if (obj->active) {
2549 		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2550 		if (ret)
2551 			return ret;
2552 
2553 		i915_gem_retire_requests_ring(obj->ring);
2554 	}
2555 
2556 	return 0;
2557 }
2558 
2559 /**
2560  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2561  * @DRM_IOCTL_ARGS: standard ioctl arguments
2562  *
2563  * Returns 0 if successful, else an error is returned with the remaining time in
2564  * the timeout parameter.
2565  *  -ETIME: object is still busy after timeout
2566  *  -ERESTARTSYS: signal interrupted the wait
2567  *  -ENONENT: object doesn't exist
2568  * Also possible, but rare:
2569  *  -EAGAIN: GPU wedged
2570  *  -ENOMEM: damn
2571  *  -ENODEV: Internal IRQ fail
2572  *  -E?: The add request failed
2573  *
2574  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2575  * non-zero timeout parameter the wait ioctl will wait for the given number of
2576  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2577  * without holding struct_mutex the object may become re-busied before this
2578  * function completes. A similar but shorter * race condition exists in the busy
2579  * ioctl
2580  */
2581 int
2582 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2583 {
2584 	drm_i915_private_t *dev_priv = dev->dev_private;
2585 	struct drm_i915_gem_wait *args = data;
2586 	struct drm_i915_gem_object *obj;
2587 	struct intel_ring_buffer *ring = NULL;
2588 	struct timespec timeout_stack, *timeout = NULL;
2589 	unsigned reset_counter;
2590 	u32 seqno = 0;
2591 	int ret = 0;
2592 
2593 	if (args->timeout_ns >= 0) {
2594 		timeout_stack = ns_to_timespec(args->timeout_ns);
2595 		timeout = &timeout_stack;
2596 	}
2597 
2598 	ret = i915_mutex_lock_interruptible(dev);
2599 	if (ret)
2600 		return ret;
2601 
2602 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2603 	if (&obj->base == NULL) {
2604 		mutex_unlock(&dev->struct_mutex);
2605 		return -ENOENT;
2606 	}
2607 
2608 	/* Need to make sure the object gets inactive eventually. */
2609 	ret = i915_gem_object_flush_active(obj);
2610 	if (ret)
2611 		goto out;
2612 
2613 	if (obj->active) {
2614 		seqno = obj->last_read_seqno;
2615 		ring = obj->ring;
2616 	}
2617 
2618 	if (seqno == 0)
2619 		 goto out;
2620 
2621 	/* Do this after OLR check to make sure we make forward progress polling
2622 	 * on this IOCTL with a 0 timeout (like busy ioctl)
2623 	 */
2624 	if (!args->timeout_ns) {
2625 		ret = -ETIME;
2626 		goto out;
2627 	}
2628 
2629 	drm_gem_object_unreference(&obj->base);
2630 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2631 	mutex_unlock(&dev->struct_mutex);
2632 
2633 	ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2634 	if (timeout)
2635 		args->timeout_ns = timespec_to_ns(timeout);
2636 	return ret;
2637 
2638 out:
2639 	drm_gem_object_unreference(&obj->base);
2640 	mutex_unlock(&dev->struct_mutex);
2641 	return ret;
2642 }
2643 
2644 /**
2645  * i915_gem_object_sync - sync an object to a ring.
2646  *
2647  * @obj: object which may be in use on another ring.
2648  * @to: ring we wish to use the object on. May be NULL.
2649  *
2650  * This code is meant to abstract object synchronization with the GPU.
2651  * Calling with NULL implies synchronizing the object with the CPU
2652  * rather than a particular GPU ring.
2653  *
2654  * Returns 0 if successful, else propagates up the lower layer error.
2655  */
2656 int
2657 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2658 		     struct intel_ring_buffer *to)
2659 {
2660 	struct intel_ring_buffer *from = obj->ring;
2661 	u32 seqno;
2662 	int ret, idx;
2663 
2664 	if (from == NULL || to == from)
2665 		return 0;
2666 
2667 	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2668 		return i915_gem_object_wait_rendering(obj, false);
2669 
2670 	idx = intel_ring_sync_index(from, to);
2671 
2672 	seqno = obj->last_read_seqno;
2673 	if (seqno <= from->sync_seqno[idx])
2674 		return 0;
2675 
2676 	ret = i915_gem_check_olr(obj->ring, seqno);
2677 	if (ret)
2678 		return ret;
2679 
2680 	trace_i915_gem_ring_sync_to(from, to, seqno);
2681 	ret = to->sync_to(to, from, seqno);
2682 	if (!ret)
2683 		/* We use last_read_seqno because sync_to()
2684 		 * might have just caused seqno wrap under
2685 		 * the radar.
2686 		 */
2687 		from->sync_seqno[idx] = obj->last_read_seqno;
2688 
2689 	return ret;
2690 }
2691 
2692 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2693 {
2694 	u32 old_write_domain, old_read_domains;
2695 
2696 	/* Force a pagefault for domain tracking on next user access */
2697 	i915_gem_release_mmap(obj);
2698 
2699 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2700 		return;
2701 
2702 	/* Wait for any direct GTT access to complete */
2703 	mb();
2704 
2705 	old_read_domains = obj->base.read_domains;
2706 	old_write_domain = obj->base.write_domain;
2707 
2708 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2709 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2710 
2711 	trace_i915_gem_object_change_domain(obj,
2712 					    old_read_domains,
2713 					    old_write_domain);
2714 }
2715 
2716 int i915_vma_unbind(struct i915_vma *vma)
2717 {
2718 	struct drm_i915_gem_object *obj = vma->obj;
2719 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2720 	int ret;
2721 
2722 	/* For now we only ever use 1 vma per object */
2723 	WARN_ON(!list_is_singular(&obj->vma_list));
2724 
2725 	if (list_empty(&vma->vma_link))
2726 		return 0;
2727 
2728 	if (!drm_mm_node_allocated(&vma->node)) {
2729 		i915_gem_vma_destroy(vma);
2730 
2731 		return 0;
2732 	}
2733 
2734 	if (obj->pin_count)
2735 		return -EBUSY;
2736 
2737 	BUG_ON(obj->pages == NULL);
2738 
2739 	ret = i915_gem_object_finish_gpu(obj);
2740 	if (ret)
2741 		return ret;
2742 	/* Continue on if we fail due to EIO, the GPU is hung so we
2743 	 * should be safe and we need to cleanup or else we might
2744 	 * cause memory corruption through use-after-free.
2745 	 */
2746 
2747 	i915_gem_object_finish_gtt(obj);
2748 
2749 	/* release the fence reg _after_ flushing */
2750 	ret = i915_gem_object_put_fence(obj);
2751 	if (ret)
2752 		return ret;
2753 
2754 	trace_i915_vma_unbind(vma);
2755 
2756 	if (obj->has_global_gtt_mapping)
2757 		i915_gem_gtt_unbind_object(obj);
2758 	if (obj->has_aliasing_ppgtt_mapping) {
2759 		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2760 		obj->has_aliasing_ppgtt_mapping = 0;
2761 	}
2762 	i915_gem_gtt_finish_object(obj);
2763 	i915_gem_object_unpin_pages(obj);
2764 
2765 	list_del(&vma->mm_list);
2766 	/* Avoid an unnecessary call to unbind on rebind. */
2767 	if (i915_is_ggtt(vma->vm))
2768 		obj->map_and_fenceable = true;
2769 
2770 	drm_mm_remove_node(&vma->node);
2771 
2772 	i915_gem_vma_destroy(vma);
2773 
2774 	/* Since the unbound list is global, only move to that list if
2775 	 * no more VMAs exist. */
2776 	if (list_empty(&obj->vma_list))
2777 		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2778 
2779 	return 0;
2780 }
2781 
2782 /**
2783  * Unbinds an object from the global GTT aperture.
2784  */
2785 int
2786 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2787 {
2788 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2789 	struct i915_address_space *ggtt = &dev_priv->gtt.base;
2790 
2791 	if (!i915_gem_obj_ggtt_bound(obj))
2792 		return 0;
2793 
2794 	if (obj->pin_count)
2795 		return -EBUSY;
2796 
2797 	BUG_ON(obj->pages == NULL);
2798 
2799 	return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2800 }
2801 
2802 int i915_gpu_idle(struct drm_device *dev)
2803 {
2804 	drm_i915_private_t *dev_priv = dev->dev_private;
2805 	struct intel_ring_buffer *ring;
2806 	int ret, i;
2807 
2808 	/* Flush everything onto the inactive list. */
2809 	for_each_ring(ring, dev_priv, i) {
2810 		ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2811 		if (ret)
2812 			return ret;
2813 
2814 		ret = intel_ring_idle(ring);
2815 		if (ret)
2816 			return ret;
2817 	}
2818 
2819 	return 0;
2820 }
2821 
2822 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2823 				 struct drm_i915_gem_object *obj)
2824 {
2825 	drm_i915_private_t *dev_priv = dev->dev_private;
2826 	int fence_reg;
2827 	int fence_pitch_shift;
2828 
2829 	if (INTEL_INFO(dev)->gen >= 6) {
2830 		fence_reg = FENCE_REG_SANDYBRIDGE_0;
2831 		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2832 	} else {
2833 		fence_reg = FENCE_REG_965_0;
2834 		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2835 	}
2836 
2837 	fence_reg += reg * 8;
2838 
2839 	/* To w/a incoherency with non-atomic 64-bit register updates,
2840 	 * we split the 64-bit update into two 32-bit writes. In order
2841 	 * for a partial fence not to be evaluated between writes, we
2842 	 * precede the update with write to turn off the fence register,
2843 	 * and only enable the fence as the last step.
2844 	 *
2845 	 * For extra levels of paranoia, we make sure each step lands
2846 	 * before applying the next step.
2847 	 */
2848 	I915_WRITE(fence_reg, 0);
2849 	POSTING_READ(fence_reg);
2850 
2851 	if (obj) {
2852 		u32 size = i915_gem_obj_ggtt_size(obj);
2853 		uint64_t val;
2854 
2855 		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2856 				 0xfffff000) << 32;
2857 		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2858 		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2859 		if (obj->tiling_mode == I915_TILING_Y)
2860 			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2861 		val |= I965_FENCE_REG_VALID;
2862 
2863 		I915_WRITE(fence_reg + 4, val >> 32);
2864 		POSTING_READ(fence_reg + 4);
2865 
2866 		I915_WRITE(fence_reg + 0, val);
2867 		POSTING_READ(fence_reg);
2868 	} else {
2869 		I915_WRITE(fence_reg + 4, 0);
2870 		POSTING_READ(fence_reg + 4);
2871 	}
2872 }
2873 
2874 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2875 				 struct drm_i915_gem_object *obj)
2876 {
2877 	drm_i915_private_t *dev_priv = dev->dev_private;
2878 	u32 val;
2879 
2880 	if (obj) {
2881 		u32 size = i915_gem_obj_ggtt_size(obj);
2882 		int pitch_val;
2883 		int tile_width;
2884 
2885 		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2886 		     (size & -size) != size ||
2887 		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2888 		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2889 		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2890 
2891 		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2892 			tile_width = 128;
2893 		else
2894 			tile_width = 512;
2895 
2896 		/* Note: pitch better be a power of two tile widths */
2897 		pitch_val = obj->stride / tile_width;
2898 		pitch_val = ffs(pitch_val) - 1;
2899 
2900 		val = i915_gem_obj_ggtt_offset(obj);
2901 		if (obj->tiling_mode == I915_TILING_Y)
2902 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2903 		val |= I915_FENCE_SIZE_BITS(size);
2904 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2905 		val |= I830_FENCE_REG_VALID;
2906 	} else
2907 		val = 0;
2908 
2909 	if (reg < 8)
2910 		reg = FENCE_REG_830_0 + reg * 4;
2911 	else
2912 		reg = FENCE_REG_945_8 + (reg - 8) * 4;
2913 
2914 	I915_WRITE(reg, val);
2915 	POSTING_READ(reg);
2916 }
2917 
2918 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2919 				struct drm_i915_gem_object *obj)
2920 {
2921 	drm_i915_private_t *dev_priv = dev->dev_private;
2922 	uint32_t val;
2923 
2924 	if (obj) {
2925 		u32 size = i915_gem_obj_ggtt_size(obj);
2926 		uint32_t pitch_val;
2927 
2928 		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2929 		     (size & -size) != size ||
2930 		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2931 		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2932 		     i915_gem_obj_ggtt_offset(obj), size);
2933 
2934 		pitch_val = obj->stride / 128;
2935 		pitch_val = ffs(pitch_val) - 1;
2936 
2937 		val = i915_gem_obj_ggtt_offset(obj);
2938 		if (obj->tiling_mode == I915_TILING_Y)
2939 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2940 		val |= I830_FENCE_SIZE_BITS(size);
2941 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2942 		val |= I830_FENCE_REG_VALID;
2943 	} else
2944 		val = 0;
2945 
2946 	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2947 	POSTING_READ(FENCE_REG_830_0 + reg * 4);
2948 }
2949 
2950 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2951 {
2952 	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2953 }
2954 
2955 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2956 				 struct drm_i915_gem_object *obj)
2957 {
2958 	struct drm_i915_private *dev_priv = dev->dev_private;
2959 
2960 	/* Ensure that all CPU reads are completed before installing a fence
2961 	 * and all writes before removing the fence.
2962 	 */
2963 	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2964 		mb();
2965 
2966 	WARN(obj && (!obj->stride || !obj->tiling_mode),
2967 	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2968 	     obj->stride, obj->tiling_mode);
2969 
2970 	switch (INTEL_INFO(dev)->gen) {
2971 	case 8:
2972 	case 7:
2973 	case 6:
2974 	case 5:
2975 	case 4: i965_write_fence_reg(dev, reg, obj); break;
2976 	case 3: i915_write_fence_reg(dev, reg, obj); break;
2977 	case 2: i830_write_fence_reg(dev, reg, obj); break;
2978 	default: BUG();
2979 	}
2980 
2981 	/* And similarly be paranoid that no direct access to this region
2982 	 * is reordered to before the fence is installed.
2983 	 */
2984 	if (i915_gem_object_needs_mb(obj))
2985 		mb();
2986 }
2987 
2988 static inline int fence_number(struct drm_i915_private *dev_priv,
2989 			       struct drm_i915_fence_reg *fence)
2990 {
2991 	return fence - dev_priv->fence_regs;
2992 }
2993 
2994 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2995 					 struct drm_i915_fence_reg *fence,
2996 					 bool enable)
2997 {
2998 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2999 	int reg = fence_number(dev_priv, fence);
3000 
3001 	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3002 
3003 	if (enable) {
3004 		obj->fence_reg = reg;
3005 		fence->obj = obj;
3006 		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3007 	} else {
3008 		obj->fence_reg = I915_FENCE_REG_NONE;
3009 		fence->obj = NULL;
3010 		list_del_init(&fence->lru_list);
3011 	}
3012 	obj->fence_dirty = false;
3013 }
3014 
3015 static int
3016 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3017 {
3018 	if (obj->last_fenced_seqno) {
3019 		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3020 		if (ret)
3021 			return ret;
3022 
3023 		obj->last_fenced_seqno = 0;
3024 	}
3025 
3026 	obj->fenced_gpu_access = false;
3027 	return 0;
3028 }
3029 
3030 int
3031 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3032 {
3033 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3034 	struct drm_i915_fence_reg *fence;
3035 	int ret;
3036 
3037 	ret = i915_gem_object_wait_fence(obj);
3038 	if (ret)
3039 		return ret;
3040 
3041 	if (obj->fence_reg == I915_FENCE_REG_NONE)
3042 		return 0;
3043 
3044 	fence = &dev_priv->fence_regs[obj->fence_reg];
3045 
3046 	i915_gem_object_fence_lost(obj);
3047 	i915_gem_object_update_fence(obj, fence, false);
3048 
3049 	return 0;
3050 }
3051 
3052 static struct drm_i915_fence_reg *
3053 i915_find_fence_reg(struct drm_device *dev)
3054 {
3055 	struct drm_i915_private *dev_priv = dev->dev_private;
3056 	struct drm_i915_fence_reg *reg, *avail;
3057 	int i;
3058 
3059 	/* First try to find a free reg */
3060 	avail = NULL;
3061 	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3062 		reg = &dev_priv->fence_regs[i];
3063 		if (!reg->obj)
3064 			return reg;
3065 
3066 		if (!reg->pin_count)
3067 			avail = reg;
3068 	}
3069 
3070 	if (avail == NULL)
3071 		return NULL;
3072 
3073 	/* None available, try to steal one or wait for a user to finish */
3074 	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3075 		if (reg->pin_count)
3076 			continue;
3077 
3078 		return reg;
3079 	}
3080 
3081 	return NULL;
3082 }
3083 
3084 /**
3085  * i915_gem_object_get_fence - set up fencing for an object
3086  * @obj: object to map through a fence reg
3087  *
3088  * When mapping objects through the GTT, userspace wants to be able to write
3089  * to them without having to worry about swizzling if the object is tiled.
3090  * This function walks the fence regs looking for a free one for @obj,
3091  * stealing one if it can't find any.
3092  *
3093  * It then sets up the reg based on the object's properties: address, pitch
3094  * and tiling format.
3095  *
3096  * For an untiled surface, this removes any existing fence.
3097  */
3098 int
3099 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3100 {
3101 	struct drm_device *dev = obj->base.dev;
3102 	struct drm_i915_private *dev_priv = dev->dev_private;
3103 	bool enable = obj->tiling_mode != I915_TILING_NONE;
3104 	struct drm_i915_fence_reg *reg;
3105 	int ret;
3106 
3107 	/* Have we updated the tiling parameters upon the object and so
3108 	 * will need to serialise the write to the associated fence register?
3109 	 */
3110 	if (obj->fence_dirty) {
3111 		ret = i915_gem_object_wait_fence(obj);
3112 		if (ret)
3113 			return ret;
3114 	}
3115 
3116 	/* Just update our place in the LRU if our fence is getting reused. */
3117 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
3118 		reg = &dev_priv->fence_regs[obj->fence_reg];
3119 		if (!obj->fence_dirty) {
3120 			list_move_tail(&reg->lru_list,
3121 				       &dev_priv->mm.fence_list);
3122 			return 0;
3123 		}
3124 	} else if (enable) {
3125 		reg = i915_find_fence_reg(dev);
3126 		if (reg == NULL)
3127 			return -EDEADLK;
3128 
3129 		if (reg->obj) {
3130 			struct drm_i915_gem_object *old = reg->obj;
3131 
3132 			ret = i915_gem_object_wait_fence(old);
3133 			if (ret)
3134 				return ret;
3135 
3136 			i915_gem_object_fence_lost(old);
3137 		}
3138 	} else
3139 		return 0;
3140 
3141 	i915_gem_object_update_fence(obj, reg, enable);
3142 
3143 	return 0;
3144 }
3145 
3146 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3147 				     struct drm_mm_node *gtt_space,
3148 				     unsigned long cache_level)
3149 {
3150 	struct drm_mm_node *other;
3151 
3152 	/* On non-LLC machines we have to be careful when putting differing
3153 	 * types of snoopable memory together to avoid the prefetcher
3154 	 * crossing memory domains and dying.
3155 	 */
3156 	if (HAS_LLC(dev))
3157 		return true;
3158 
3159 	if (!drm_mm_node_allocated(gtt_space))
3160 		return true;
3161 
3162 	if (list_empty(&gtt_space->node_list))
3163 		return true;
3164 
3165 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3166 	if (other->allocated && !other->hole_follows && other->color != cache_level)
3167 		return false;
3168 
3169 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3170 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3171 		return false;
3172 
3173 	return true;
3174 }
3175 
3176 static void i915_gem_verify_gtt(struct drm_device *dev)
3177 {
3178 #if WATCH_GTT
3179 	struct drm_i915_private *dev_priv = dev->dev_private;
3180 	struct drm_i915_gem_object *obj;
3181 	int err = 0;
3182 
3183 	list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3184 		if (obj->gtt_space == NULL) {
3185 			printk(KERN_ERR "object found on GTT list with no space reserved\n");
3186 			err++;
3187 			continue;
3188 		}
3189 
3190 		if (obj->cache_level != obj->gtt_space->color) {
3191 			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3192 			       i915_gem_obj_ggtt_offset(obj),
3193 			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3194 			       obj->cache_level,
3195 			       obj->gtt_space->color);
3196 			err++;
3197 			continue;
3198 		}
3199 
3200 		if (!i915_gem_valid_gtt_space(dev,
3201 					      obj->gtt_space,
3202 					      obj->cache_level)) {
3203 			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3204 			       i915_gem_obj_ggtt_offset(obj),
3205 			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3206 			       obj->cache_level);
3207 			err++;
3208 			continue;
3209 		}
3210 	}
3211 
3212 	WARN_ON(err);
3213 #endif
3214 }
3215 
3216 /**
3217  * Finds free space in the GTT aperture and binds the object there.
3218  */
3219 static int
3220 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3221 			   struct i915_address_space *vm,
3222 			   unsigned alignment,
3223 			   bool map_and_fenceable,
3224 			   bool nonblocking)
3225 {
3226 	struct drm_device *dev = obj->base.dev;
3227 	drm_i915_private_t *dev_priv = dev->dev_private;
3228 	u32 size, fence_size, fence_alignment, unfenced_alignment;
3229 	size_t gtt_max =
3230 		map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
3231 	struct i915_vma *vma;
3232 	int ret;
3233 
3234 	fence_size = i915_gem_get_gtt_size(dev,
3235 					   obj->base.size,
3236 					   obj->tiling_mode);
3237 	fence_alignment = i915_gem_get_gtt_alignment(dev,
3238 						     obj->base.size,
3239 						     obj->tiling_mode, true);
3240 	unfenced_alignment =
3241 		i915_gem_get_gtt_alignment(dev,
3242 						    obj->base.size,
3243 						    obj->tiling_mode, false);
3244 
3245 	if (alignment == 0)
3246 		alignment = map_and_fenceable ? fence_alignment :
3247 						unfenced_alignment;
3248 	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3249 		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3250 		return -EINVAL;
3251 	}
3252 
3253 	size = map_and_fenceable ? fence_size : obj->base.size;
3254 
3255 	/* If the object is bigger than the entire aperture, reject it early
3256 	 * before evicting everything in a vain attempt to find space.
3257 	 */
3258 	if (obj->base.size > gtt_max) {
3259 		DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3260 			  obj->base.size,
3261 			  map_and_fenceable ? "mappable" : "total",
3262 			  gtt_max);
3263 		return -E2BIG;
3264 	}
3265 
3266 	ret = i915_gem_object_get_pages(obj);
3267 	if (ret)
3268 		return ret;
3269 
3270 	i915_gem_object_pin_pages(obj);
3271 
3272 	BUG_ON(!i915_is_ggtt(vm));
3273 
3274 	vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3275 	if (IS_ERR(vma)) {
3276 		ret = PTR_ERR(vma);
3277 		goto err_unpin;
3278 	}
3279 
3280 	/* For now we only ever use 1 vma per object */
3281 	WARN_ON(!list_is_singular(&obj->vma_list));
3282 
3283 search_free:
3284 	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3285 						  size, alignment,
3286 						  obj->cache_level, 0, gtt_max,
3287 						  DRM_MM_SEARCH_DEFAULT);
3288 	if (ret) {
3289 		ret = i915_gem_evict_something(dev, vm, size, alignment,
3290 					       obj->cache_level,
3291 					       map_and_fenceable,
3292 					       nonblocking);
3293 		if (ret == 0)
3294 			goto search_free;
3295 
3296 		goto err_free_vma;
3297 	}
3298 	if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3299 					      obj->cache_level))) {
3300 		ret = -EINVAL;
3301 		goto err_remove_node;
3302 	}
3303 
3304 	ret = i915_gem_gtt_prepare_object(obj);
3305 	if (ret)
3306 		goto err_remove_node;
3307 
3308 	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3309 	list_add_tail(&vma->mm_list, &vm->inactive_list);
3310 
3311 	if (i915_is_ggtt(vm)) {
3312 		bool mappable, fenceable;
3313 
3314 		fenceable = (vma->node.size == fence_size &&
3315 			     (vma->node.start & (fence_alignment - 1)) == 0);
3316 
3317 		mappable = (vma->node.start + obj->base.size <=
3318 			    dev_priv->gtt.mappable_end);
3319 
3320 		obj->map_and_fenceable = mappable && fenceable;
3321 	}
3322 
3323 	WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
3324 
3325 	trace_i915_vma_bind(vma, map_and_fenceable);
3326 	i915_gem_verify_gtt(dev);
3327 	return 0;
3328 
3329 err_remove_node:
3330 	drm_mm_remove_node(&vma->node);
3331 err_free_vma:
3332 	i915_gem_vma_destroy(vma);
3333 err_unpin:
3334 	i915_gem_object_unpin_pages(obj);
3335 	return ret;
3336 }
3337 
3338 bool
3339 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3340 			bool force)
3341 {
3342 	/* If we don't have a page list set up, then we're not pinned
3343 	 * to GPU, and we can ignore the cache flush because it'll happen
3344 	 * again at bind time.
3345 	 */
3346 	if (obj->pages == NULL)
3347 		return false;
3348 
3349 	/*
3350 	 * Stolen memory is always coherent with the GPU as it is explicitly
3351 	 * marked as wc by the system, or the system is cache-coherent.
3352 	 */
3353 	if (obj->stolen)
3354 		return false;
3355 
3356 	/* If the GPU is snooping the contents of the CPU cache,
3357 	 * we do not need to manually clear the CPU cache lines.  However,
3358 	 * the caches are only snooped when the render cache is
3359 	 * flushed/invalidated.  As we always have to emit invalidations
3360 	 * and flushes when moving into and out of the RENDER domain, correct
3361 	 * snooping behaviour occurs naturally as the result of our domain
3362 	 * tracking.
3363 	 */
3364 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3365 		return false;
3366 
3367 	trace_i915_gem_object_clflush(obj);
3368 	drm_clflush_sg(obj->pages);
3369 
3370 	return true;
3371 }
3372 
3373 /** Flushes the GTT write domain for the object if it's dirty. */
3374 static void
3375 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3376 {
3377 	uint32_t old_write_domain;
3378 
3379 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3380 		return;
3381 
3382 	/* No actual flushing is required for the GTT write domain.  Writes
3383 	 * to it immediately go to main memory as far as we know, so there's
3384 	 * no chipset flush.  It also doesn't land in render cache.
3385 	 *
3386 	 * However, we do have to enforce the order so that all writes through
3387 	 * the GTT land before any writes to the device, such as updates to
3388 	 * the GATT itself.
3389 	 */
3390 	wmb();
3391 
3392 	old_write_domain = obj->base.write_domain;
3393 	obj->base.write_domain = 0;
3394 
3395 	trace_i915_gem_object_change_domain(obj,
3396 					    obj->base.read_domains,
3397 					    old_write_domain);
3398 }
3399 
3400 /** Flushes the CPU write domain for the object if it's dirty. */
3401 static void
3402 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3403 				       bool force)
3404 {
3405 	uint32_t old_write_domain;
3406 
3407 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3408 		return;
3409 
3410 	if (i915_gem_clflush_object(obj, force))
3411 		i915_gem_chipset_flush(obj->base.dev);
3412 
3413 	old_write_domain = obj->base.write_domain;
3414 	obj->base.write_domain = 0;
3415 
3416 	trace_i915_gem_object_change_domain(obj,
3417 					    obj->base.read_domains,
3418 					    old_write_domain);
3419 }
3420 
3421 /**
3422  * Moves a single object to the GTT read, and possibly write domain.
3423  *
3424  * This function returns when the move is complete, including waiting on
3425  * flushes to occur.
3426  */
3427 int
3428 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3429 {
3430 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3431 	uint32_t old_write_domain, old_read_domains;
3432 	int ret;
3433 
3434 	/* Not valid to be called on unbound objects. */
3435 	if (!i915_gem_obj_bound_any(obj))
3436 		return -EINVAL;
3437 
3438 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3439 		return 0;
3440 
3441 	ret = i915_gem_object_wait_rendering(obj, !write);
3442 	if (ret)
3443 		return ret;
3444 
3445 	i915_gem_object_flush_cpu_write_domain(obj, false);
3446 
3447 	/* Serialise direct access to this object with the barriers for
3448 	 * coherent writes from the GPU, by effectively invalidating the
3449 	 * GTT domain upon first access.
3450 	 */
3451 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3452 		mb();
3453 
3454 	old_write_domain = obj->base.write_domain;
3455 	old_read_domains = obj->base.read_domains;
3456 
3457 	/* It should now be out of any other write domains, and we can update
3458 	 * the domain values for our changes.
3459 	 */
3460 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3461 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3462 	if (write) {
3463 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3464 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3465 		obj->dirty = 1;
3466 	}
3467 
3468 	trace_i915_gem_object_change_domain(obj,
3469 					    old_read_domains,
3470 					    old_write_domain);
3471 
3472 	/* And bump the LRU for this access */
3473 	if (i915_gem_object_is_inactive(obj)) {
3474 		struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3475 		if (vma)
3476 			list_move_tail(&vma->mm_list,
3477 				       &dev_priv->gtt.base.inactive_list);
3478 
3479 	}
3480 
3481 	return 0;
3482 }
3483 
3484 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3485 				    enum i915_cache_level cache_level)
3486 {
3487 	struct drm_device *dev = obj->base.dev;
3488 	drm_i915_private_t *dev_priv = dev->dev_private;
3489 	struct i915_vma *vma;
3490 	int ret;
3491 
3492 	if (obj->cache_level == cache_level)
3493 		return 0;
3494 
3495 	if (obj->pin_count) {
3496 		DRM_DEBUG("can not change the cache level of pinned objects\n");
3497 		return -EBUSY;
3498 	}
3499 
3500 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
3501 		if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3502 			ret = i915_vma_unbind(vma);
3503 			if (ret)
3504 				return ret;
3505 
3506 			break;
3507 		}
3508 	}
3509 
3510 	if (i915_gem_obj_bound_any(obj)) {
3511 		ret = i915_gem_object_finish_gpu(obj);
3512 		if (ret)
3513 			return ret;
3514 
3515 		i915_gem_object_finish_gtt(obj);
3516 
3517 		/* Before SandyBridge, you could not use tiling or fence
3518 		 * registers with snooped memory, so relinquish any fences
3519 		 * currently pointing to our region in the aperture.
3520 		 */
3521 		if (INTEL_INFO(dev)->gen < 6) {
3522 			ret = i915_gem_object_put_fence(obj);
3523 			if (ret)
3524 				return ret;
3525 		}
3526 
3527 		if (obj->has_global_gtt_mapping)
3528 			i915_gem_gtt_bind_object(obj, cache_level);
3529 		if (obj->has_aliasing_ppgtt_mapping)
3530 			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3531 					       obj, cache_level);
3532 	}
3533 
3534 	list_for_each_entry(vma, &obj->vma_list, vma_link)
3535 		vma->node.color = cache_level;
3536 	obj->cache_level = cache_level;
3537 
3538 	if (cpu_write_needs_clflush(obj)) {
3539 		u32 old_read_domains, old_write_domain;
3540 
3541 		/* If we're coming from LLC cached, then we haven't
3542 		 * actually been tracking whether the data is in the
3543 		 * CPU cache or not, since we only allow one bit set
3544 		 * in obj->write_domain and have been skipping the clflushes.
3545 		 * Just set it to the CPU cache for now.
3546 		 */
3547 		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3548 
3549 		old_read_domains = obj->base.read_domains;
3550 		old_write_domain = obj->base.write_domain;
3551 
3552 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3553 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3554 
3555 		trace_i915_gem_object_change_domain(obj,
3556 						    old_read_domains,
3557 						    old_write_domain);
3558 	}
3559 
3560 	i915_gem_verify_gtt(dev);
3561 	return 0;
3562 }
3563 
3564 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3565 			       struct drm_file *file)
3566 {
3567 	struct drm_i915_gem_caching *args = data;
3568 	struct drm_i915_gem_object *obj;
3569 	int ret;
3570 
3571 	ret = i915_mutex_lock_interruptible(dev);
3572 	if (ret)
3573 		return ret;
3574 
3575 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3576 	if (&obj->base == NULL) {
3577 		ret = -ENOENT;
3578 		goto unlock;
3579 	}
3580 
3581 	switch (obj->cache_level) {
3582 	case I915_CACHE_LLC:
3583 	case I915_CACHE_L3_LLC:
3584 		args->caching = I915_CACHING_CACHED;
3585 		break;
3586 
3587 	case I915_CACHE_WT:
3588 		args->caching = I915_CACHING_DISPLAY;
3589 		break;
3590 
3591 	default:
3592 		args->caching = I915_CACHING_NONE;
3593 		break;
3594 	}
3595 
3596 	drm_gem_object_unreference(&obj->base);
3597 unlock:
3598 	mutex_unlock(&dev->struct_mutex);
3599 	return ret;
3600 }
3601 
3602 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3603 			       struct drm_file *file)
3604 {
3605 	struct drm_i915_gem_caching *args = data;
3606 	struct drm_i915_gem_object *obj;
3607 	enum i915_cache_level level;
3608 	int ret;
3609 
3610 	switch (args->caching) {
3611 	case I915_CACHING_NONE:
3612 		level = I915_CACHE_NONE;
3613 		break;
3614 	case I915_CACHING_CACHED:
3615 		level = I915_CACHE_LLC;
3616 		break;
3617 	case I915_CACHING_DISPLAY:
3618 		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3619 		break;
3620 	default:
3621 		return -EINVAL;
3622 	}
3623 
3624 	ret = i915_mutex_lock_interruptible(dev);
3625 	if (ret)
3626 		return ret;
3627 
3628 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3629 	if (&obj->base == NULL) {
3630 		ret = -ENOENT;
3631 		goto unlock;
3632 	}
3633 
3634 	ret = i915_gem_object_set_cache_level(obj, level);
3635 
3636 	drm_gem_object_unreference(&obj->base);
3637 unlock:
3638 	mutex_unlock(&dev->struct_mutex);
3639 	return ret;
3640 }
3641 
3642 static bool is_pin_display(struct drm_i915_gem_object *obj)
3643 {
3644 	/* There are 3 sources that pin objects:
3645 	 *   1. The display engine (scanouts, sprites, cursors);
3646 	 *   2. Reservations for execbuffer;
3647 	 *   3. The user.
3648 	 *
3649 	 * We can ignore reservations as we hold the struct_mutex and
3650 	 * are only called outside of the reservation path.  The user
3651 	 * can only increment pin_count once, and so if after
3652 	 * subtracting the potential reference by the user, any pin_count
3653 	 * remains, it must be due to another use by the display engine.
3654 	 */
3655 	return obj->pin_count - !!obj->user_pin_count;
3656 }
3657 
3658 /*
3659  * Prepare buffer for display plane (scanout, cursors, etc).
3660  * Can be called from an uninterruptible phase (modesetting) and allows
3661  * any flushes to be pipelined (for pageflips).
3662  */
3663 int
3664 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3665 				     u32 alignment,
3666 				     struct intel_ring_buffer *pipelined)
3667 {
3668 	u32 old_read_domains, old_write_domain;
3669 	int ret;
3670 
3671 	if (pipelined != obj->ring) {
3672 		ret = i915_gem_object_sync(obj, pipelined);
3673 		if (ret)
3674 			return ret;
3675 	}
3676 
3677 	/* Mark the pin_display early so that we account for the
3678 	 * display coherency whilst setting up the cache domains.
3679 	 */
3680 	obj->pin_display = true;
3681 
3682 	/* The display engine is not coherent with the LLC cache on gen6.  As
3683 	 * a result, we make sure that the pinning that is about to occur is
3684 	 * done with uncached PTEs. This is lowest common denominator for all
3685 	 * chipsets.
3686 	 *
3687 	 * However for gen6+, we could do better by using the GFDT bit instead
3688 	 * of uncaching, which would allow us to flush all the LLC-cached data
3689 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3690 	 */
3691 	ret = i915_gem_object_set_cache_level(obj,
3692 					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3693 	if (ret)
3694 		goto err_unpin_display;
3695 
3696 	/* As the user may map the buffer once pinned in the display plane
3697 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3698 	 * always use map_and_fenceable for all scanout buffers.
3699 	 */
3700 	ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
3701 	if (ret)
3702 		goto err_unpin_display;
3703 
3704 	i915_gem_object_flush_cpu_write_domain(obj, true);
3705 
3706 	old_write_domain = obj->base.write_domain;
3707 	old_read_domains = obj->base.read_domains;
3708 
3709 	/* It should now be out of any other write domains, and we can update
3710 	 * the domain values for our changes.
3711 	 */
3712 	obj->base.write_domain = 0;
3713 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3714 
3715 	trace_i915_gem_object_change_domain(obj,
3716 					    old_read_domains,
3717 					    old_write_domain);
3718 
3719 	return 0;
3720 
3721 err_unpin_display:
3722 	obj->pin_display = is_pin_display(obj);
3723 	return ret;
3724 }
3725 
3726 void
3727 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3728 {
3729 	i915_gem_object_unpin(obj);
3730 	obj->pin_display = is_pin_display(obj);
3731 }
3732 
3733 int
3734 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3735 {
3736 	int ret;
3737 
3738 	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3739 		return 0;
3740 
3741 	ret = i915_gem_object_wait_rendering(obj, false);
3742 	if (ret)
3743 		return ret;
3744 
3745 	/* Ensure that we invalidate the GPU's caches and TLBs. */
3746 	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3747 	return 0;
3748 }
3749 
3750 /**
3751  * Moves a single object to the CPU read, and possibly write domain.
3752  *
3753  * This function returns when the move is complete, including waiting on
3754  * flushes to occur.
3755  */
3756 int
3757 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3758 {
3759 	uint32_t old_write_domain, old_read_domains;
3760 	int ret;
3761 
3762 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3763 		return 0;
3764 
3765 	ret = i915_gem_object_wait_rendering(obj, !write);
3766 	if (ret)
3767 		return ret;
3768 
3769 	i915_gem_object_flush_gtt_write_domain(obj);
3770 
3771 	old_write_domain = obj->base.write_domain;
3772 	old_read_domains = obj->base.read_domains;
3773 
3774 	/* Flush the CPU cache if it's still invalid. */
3775 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3776 		i915_gem_clflush_object(obj, false);
3777 
3778 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3779 	}
3780 
3781 	/* It should now be out of any other write domains, and we can update
3782 	 * the domain values for our changes.
3783 	 */
3784 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3785 
3786 	/* If we're writing through the CPU, then the GPU read domains will
3787 	 * need to be invalidated at next use.
3788 	 */
3789 	if (write) {
3790 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3791 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3792 	}
3793 
3794 	trace_i915_gem_object_change_domain(obj,
3795 					    old_read_domains,
3796 					    old_write_domain);
3797 
3798 	return 0;
3799 }
3800 
3801 /* Throttle our rendering by waiting until the ring has completed our requests
3802  * emitted over 20 msec ago.
3803  *
3804  * Note that if we were to use the current jiffies each time around the loop,
3805  * we wouldn't escape the function with any frames outstanding if the time to
3806  * render a frame was over 20ms.
3807  *
3808  * This should get us reasonable parallelism between CPU and GPU but also
3809  * relatively low latency when blocking on a particular request to finish.
3810  */
3811 static int
3812 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3813 {
3814 	struct drm_i915_private *dev_priv = dev->dev_private;
3815 	struct drm_i915_file_private *file_priv = file->driver_priv;
3816 	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3817 	struct drm_i915_gem_request *request;
3818 	struct intel_ring_buffer *ring = NULL;
3819 	unsigned reset_counter;
3820 	u32 seqno = 0;
3821 	int ret;
3822 
3823 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3824 	if (ret)
3825 		return ret;
3826 
3827 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3828 	if (ret)
3829 		return ret;
3830 
3831 	spin_lock(&file_priv->mm.lock);
3832 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3833 		if (time_after_eq(request->emitted_jiffies, recent_enough))
3834 			break;
3835 
3836 		ring = request->ring;
3837 		seqno = request->seqno;
3838 	}
3839 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3840 	spin_unlock(&file_priv->mm.lock);
3841 
3842 	if (seqno == 0)
3843 		return 0;
3844 
3845 	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
3846 	if (ret == 0)
3847 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3848 
3849 	return ret;
3850 }
3851 
3852 int
3853 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3854 		    struct i915_address_space *vm,
3855 		    uint32_t alignment,
3856 		    bool map_and_fenceable,
3857 		    bool nonblocking)
3858 {
3859 	struct i915_vma *vma;
3860 	int ret;
3861 
3862 	if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3863 		return -EBUSY;
3864 
3865 	WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3866 
3867 	vma = i915_gem_obj_to_vma(obj, vm);
3868 
3869 	if (vma) {
3870 		if ((alignment &&
3871 		     vma->node.start & (alignment - 1)) ||
3872 		    (map_and_fenceable && !obj->map_and_fenceable)) {
3873 			WARN(obj->pin_count,
3874 			     "bo is already pinned with incorrect alignment:"
3875 			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3876 			     " obj->map_and_fenceable=%d\n",
3877 			     i915_gem_obj_offset(obj, vm), alignment,
3878 			     map_and_fenceable,
3879 			     obj->map_and_fenceable);
3880 			ret = i915_vma_unbind(vma);
3881 			if (ret)
3882 				return ret;
3883 		}
3884 	}
3885 
3886 	if (!i915_gem_obj_bound(obj, vm)) {
3887 		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3888 
3889 		ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3890 						 map_and_fenceable,
3891 						 nonblocking);
3892 		if (ret)
3893 			return ret;
3894 
3895 		if (!dev_priv->mm.aliasing_ppgtt)
3896 			i915_gem_gtt_bind_object(obj, obj->cache_level);
3897 	}
3898 
3899 	if (!obj->has_global_gtt_mapping && map_and_fenceable)
3900 		i915_gem_gtt_bind_object(obj, obj->cache_level);
3901 
3902 	obj->pin_count++;
3903 	obj->pin_mappable |= map_and_fenceable;
3904 
3905 	return 0;
3906 }
3907 
3908 void
3909 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3910 {
3911 	BUG_ON(obj->pin_count == 0);
3912 	BUG_ON(!i915_gem_obj_bound_any(obj));
3913 
3914 	if (--obj->pin_count == 0)
3915 		obj->pin_mappable = false;
3916 }
3917 
3918 int
3919 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3920 		   struct drm_file *file)
3921 {
3922 	struct drm_i915_gem_pin *args = data;
3923 	struct drm_i915_gem_object *obj;
3924 	int ret;
3925 
3926 	ret = i915_mutex_lock_interruptible(dev);
3927 	if (ret)
3928 		return ret;
3929 
3930 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3931 	if (&obj->base == NULL) {
3932 		ret = -ENOENT;
3933 		goto unlock;
3934 	}
3935 
3936 	if (obj->madv != I915_MADV_WILLNEED) {
3937 		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3938 		ret = -EINVAL;
3939 		goto out;
3940 	}
3941 
3942 	if (obj->pin_filp != NULL && obj->pin_filp != file) {
3943 		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3944 			  args->handle);
3945 		ret = -EINVAL;
3946 		goto out;
3947 	}
3948 
3949 	if (obj->user_pin_count == ULONG_MAX) {
3950 		ret = -EBUSY;
3951 		goto out;
3952 	}
3953 
3954 	if (obj->user_pin_count == 0) {
3955 		ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
3956 		if (ret)
3957 			goto out;
3958 	}
3959 
3960 	obj->user_pin_count++;
3961 	obj->pin_filp = file;
3962 
3963 	args->offset = i915_gem_obj_ggtt_offset(obj);
3964 out:
3965 	drm_gem_object_unreference(&obj->base);
3966 unlock:
3967 	mutex_unlock(&dev->struct_mutex);
3968 	return ret;
3969 }
3970 
3971 int
3972 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3973 		     struct drm_file *file)
3974 {
3975 	struct drm_i915_gem_pin *args = data;
3976 	struct drm_i915_gem_object *obj;
3977 	int ret;
3978 
3979 	ret = i915_mutex_lock_interruptible(dev);
3980 	if (ret)
3981 		return ret;
3982 
3983 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3984 	if (&obj->base == NULL) {
3985 		ret = -ENOENT;
3986 		goto unlock;
3987 	}
3988 
3989 	if (obj->pin_filp != file) {
3990 		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3991 			  args->handle);
3992 		ret = -EINVAL;
3993 		goto out;
3994 	}
3995 	obj->user_pin_count--;
3996 	if (obj->user_pin_count == 0) {
3997 		obj->pin_filp = NULL;
3998 		i915_gem_object_unpin(obj);
3999 	}
4000 
4001 out:
4002 	drm_gem_object_unreference(&obj->base);
4003 unlock:
4004 	mutex_unlock(&dev->struct_mutex);
4005 	return ret;
4006 }
4007 
4008 int
4009 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4010 		    struct drm_file *file)
4011 {
4012 	struct drm_i915_gem_busy *args = data;
4013 	struct drm_i915_gem_object *obj;
4014 	int ret;
4015 
4016 	ret = i915_mutex_lock_interruptible(dev);
4017 	if (ret)
4018 		return ret;
4019 
4020 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4021 	if (&obj->base == NULL) {
4022 		ret = -ENOENT;
4023 		goto unlock;
4024 	}
4025 
4026 	/* Count all active objects as busy, even if they are currently not used
4027 	 * by the gpu. Users of this interface expect objects to eventually
4028 	 * become non-busy without any further actions, therefore emit any
4029 	 * necessary flushes here.
4030 	 */
4031 	ret = i915_gem_object_flush_active(obj);
4032 
4033 	args->busy = obj->active;
4034 	if (obj->ring) {
4035 		BUILD_BUG_ON(I915_NUM_RINGS > 16);
4036 		args->busy |= intel_ring_flag(obj->ring) << 16;
4037 	}
4038 
4039 	drm_gem_object_unreference(&obj->base);
4040 unlock:
4041 	mutex_unlock(&dev->struct_mutex);
4042 	return ret;
4043 }
4044 
4045 int
4046 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4047 			struct drm_file *file_priv)
4048 {
4049 	return i915_gem_ring_throttle(dev, file_priv);
4050 }
4051 
4052 int
4053 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4054 		       struct drm_file *file_priv)
4055 {
4056 	struct drm_i915_gem_madvise *args = data;
4057 	struct drm_i915_gem_object *obj;
4058 	int ret;
4059 
4060 	switch (args->madv) {
4061 	case I915_MADV_DONTNEED:
4062 	case I915_MADV_WILLNEED:
4063 	    break;
4064 	default:
4065 	    return -EINVAL;
4066 	}
4067 
4068 	ret = i915_mutex_lock_interruptible(dev);
4069 	if (ret)
4070 		return ret;
4071 
4072 	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4073 	if (&obj->base == NULL) {
4074 		ret = -ENOENT;
4075 		goto unlock;
4076 	}
4077 
4078 	if (obj->pin_count) {
4079 		ret = -EINVAL;
4080 		goto out;
4081 	}
4082 
4083 	if (obj->madv != __I915_MADV_PURGED)
4084 		obj->madv = args->madv;
4085 
4086 	/* if the object is no longer attached, discard its backing storage */
4087 	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4088 		i915_gem_object_truncate(obj);
4089 
4090 	args->retained = obj->madv != __I915_MADV_PURGED;
4091 
4092 out:
4093 	drm_gem_object_unreference(&obj->base);
4094 unlock:
4095 	mutex_unlock(&dev->struct_mutex);
4096 	return ret;
4097 }
4098 
4099 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4100 			  const struct drm_i915_gem_object_ops *ops)
4101 {
4102 	INIT_LIST_HEAD(&obj->global_list);
4103 	INIT_LIST_HEAD(&obj->ring_list);
4104 	INIT_LIST_HEAD(&obj->obj_exec_link);
4105 	INIT_LIST_HEAD(&obj->vma_list);
4106 
4107 	obj->ops = ops;
4108 
4109 	obj->fence_reg = I915_FENCE_REG_NONE;
4110 	obj->madv = I915_MADV_WILLNEED;
4111 	/* Avoid an unnecessary call to unbind on the first bind. */
4112 	obj->map_and_fenceable = true;
4113 
4114 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4115 }
4116 
4117 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4118 	.get_pages = i915_gem_object_get_pages_gtt,
4119 	.put_pages = i915_gem_object_put_pages_gtt,
4120 };
4121 
4122 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4123 						  size_t size)
4124 {
4125 	struct drm_i915_gem_object *obj;
4126 	struct address_space *mapping;
4127 	gfp_t mask;
4128 
4129 	obj = i915_gem_object_alloc(dev);
4130 	if (obj == NULL)
4131 		return NULL;
4132 
4133 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4134 		i915_gem_object_free(obj);
4135 		return NULL;
4136 	}
4137 
4138 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4139 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4140 		/* 965gm cannot relocate objects above 4GiB. */
4141 		mask &= ~__GFP_HIGHMEM;
4142 		mask |= __GFP_DMA32;
4143 	}
4144 
4145 	mapping = file_inode(obj->base.filp)->i_mapping;
4146 	mapping_set_gfp_mask(mapping, mask);
4147 
4148 	i915_gem_object_init(obj, &i915_gem_object_ops);
4149 
4150 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4151 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4152 
4153 	if (HAS_LLC(dev)) {
4154 		/* On some devices, we can have the GPU use the LLC (the CPU
4155 		 * cache) for about a 10% performance improvement
4156 		 * compared to uncached.  Graphics requests other than
4157 		 * display scanout are coherent with the CPU in
4158 		 * accessing this cache.  This means in this mode we
4159 		 * don't need to clflush on the CPU side, and on the
4160 		 * GPU side we only need to flush internal caches to
4161 		 * get data visible to the CPU.
4162 		 *
4163 		 * However, we maintain the display planes as UC, and so
4164 		 * need to rebind when first used as such.
4165 		 */
4166 		obj->cache_level = I915_CACHE_LLC;
4167 	} else
4168 		obj->cache_level = I915_CACHE_NONE;
4169 
4170 	trace_i915_gem_object_create(obj);
4171 
4172 	return obj;
4173 }
4174 
4175 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4176 {
4177 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4178 	struct drm_device *dev = obj->base.dev;
4179 	drm_i915_private_t *dev_priv = dev->dev_private;
4180 	struct i915_vma *vma, *next;
4181 
4182 	trace_i915_gem_object_destroy(obj);
4183 
4184 	if (obj->phys_obj)
4185 		i915_gem_detach_phys_object(dev, obj);
4186 
4187 	obj->pin_count = 0;
4188 	/* NB: 0 or 1 elements */
4189 	WARN_ON(!list_empty(&obj->vma_list) &&
4190 		!list_is_singular(&obj->vma_list));
4191 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4192 		int ret = i915_vma_unbind(vma);
4193 		if (WARN_ON(ret == -ERESTARTSYS)) {
4194 			bool was_interruptible;
4195 
4196 			was_interruptible = dev_priv->mm.interruptible;
4197 			dev_priv->mm.interruptible = false;
4198 
4199 			WARN_ON(i915_vma_unbind(vma));
4200 
4201 			dev_priv->mm.interruptible = was_interruptible;
4202 		}
4203 	}
4204 
4205 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4206 	 * before progressing. */
4207 	if (obj->stolen)
4208 		i915_gem_object_unpin_pages(obj);
4209 
4210 	if (WARN_ON(obj->pages_pin_count))
4211 		obj->pages_pin_count = 0;
4212 	i915_gem_object_put_pages(obj);
4213 	i915_gem_object_free_mmap_offset(obj);
4214 	i915_gem_object_release_stolen(obj);
4215 
4216 	BUG_ON(obj->pages);
4217 
4218 	if (obj->base.import_attach)
4219 		drm_prime_gem_destroy(&obj->base, NULL);
4220 
4221 	drm_gem_object_release(&obj->base);
4222 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4223 
4224 	kfree(obj->bit_17);
4225 	i915_gem_object_free(obj);
4226 }
4227 
4228 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4229 				     struct i915_address_space *vm)
4230 {
4231 	struct i915_vma *vma;
4232 	list_for_each_entry(vma, &obj->vma_list, vma_link)
4233 		if (vma->vm == vm)
4234 			return vma;
4235 
4236 	return NULL;
4237 }
4238 
4239 static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
4240 					      struct i915_address_space *vm)
4241 {
4242 	struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4243 	if (vma == NULL)
4244 		return ERR_PTR(-ENOMEM);
4245 
4246 	INIT_LIST_HEAD(&vma->vma_link);
4247 	INIT_LIST_HEAD(&vma->mm_list);
4248 	INIT_LIST_HEAD(&vma->exec_list);
4249 	vma->vm = vm;
4250 	vma->obj = obj;
4251 
4252 	/* Keep GGTT vmas first to make debug easier */
4253 	if (i915_is_ggtt(vm))
4254 		list_add(&vma->vma_link, &obj->vma_list);
4255 	else
4256 		list_add_tail(&vma->vma_link, &obj->vma_list);
4257 
4258 	return vma;
4259 }
4260 
4261 struct i915_vma *
4262 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
4263 				  struct i915_address_space *vm)
4264 {
4265 	struct i915_vma *vma;
4266 
4267 	vma = i915_gem_obj_to_vma(obj, vm);
4268 	if (!vma)
4269 		vma = __i915_gem_vma_create(obj, vm);
4270 
4271 	return vma;
4272 }
4273 
4274 void i915_gem_vma_destroy(struct i915_vma *vma)
4275 {
4276 	WARN_ON(vma->node.allocated);
4277 
4278 	/* Keep the vma as a placeholder in the execbuffer reservation lists */
4279 	if (!list_empty(&vma->exec_list))
4280 		return;
4281 
4282 	list_del(&vma->vma_link);
4283 
4284 	kfree(vma);
4285 }
4286 
4287 int
4288 i915_gem_suspend(struct drm_device *dev)
4289 {
4290 	drm_i915_private_t *dev_priv = dev->dev_private;
4291 	int ret = 0;
4292 
4293 	mutex_lock(&dev->struct_mutex);
4294 	if (dev_priv->ums.mm_suspended)
4295 		goto err;
4296 
4297 	ret = i915_gpu_idle(dev);
4298 	if (ret)
4299 		goto err;
4300 
4301 	i915_gem_retire_requests(dev);
4302 
4303 	/* Under UMS, be paranoid and evict. */
4304 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4305 		i915_gem_evict_everything(dev);
4306 
4307 	i915_kernel_lost_context(dev);
4308 	i915_gem_cleanup_ringbuffer(dev);
4309 
4310 	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
4311 	 * We need to replace this with a semaphore, or something.
4312 	 * And not confound ums.mm_suspended!
4313 	 */
4314 	dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4315 							     DRIVER_MODESET);
4316 	mutex_unlock(&dev->struct_mutex);
4317 
4318 	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4319 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4320 	cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4321 
4322 	return 0;
4323 
4324 err:
4325 	mutex_unlock(&dev->struct_mutex);
4326 	return ret;
4327 }
4328 
4329 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
4330 {
4331 	struct drm_device *dev = ring->dev;
4332 	drm_i915_private_t *dev_priv = dev->dev_private;
4333 	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4334 	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4335 	int i, ret;
4336 
4337 	if (!HAS_L3_DPF(dev) || !remap_info)
4338 		return 0;
4339 
4340 	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4341 	if (ret)
4342 		return ret;
4343 
4344 	/*
4345 	 * Note: We do not worry about the concurrent register cacheline hang
4346 	 * here because no other code should access these registers other than
4347 	 * at initialization time.
4348 	 */
4349 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4350 		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4351 		intel_ring_emit(ring, reg_base + i);
4352 		intel_ring_emit(ring, remap_info[i/4]);
4353 	}
4354 
4355 	intel_ring_advance(ring);
4356 
4357 	return ret;
4358 }
4359 
4360 void i915_gem_init_swizzling(struct drm_device *dev)
4361 {
4362 	drm_i915_private_t *dev_priv = dev->dev_private;
4363 
4364 	if (INTEL_INFO(dev)->gen < 5 ||
4365 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4366 		return;
4367 
4368 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4369 				 DISP_TILE_SURFACE_SWIZZLING);
4370 
4371 	if (IS_GEN5(dev))
4372 		return;
4373 
4374 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4375 	if (IS_GEN6(dev))
4376 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4377 	else if (IS_GEN7(dev))
4378 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4379 	else if (IS_GEN8(dev))
4380 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4381 	else
4382 		BUG();
4383 }
4384 
4385 static bool
4386 intel_enable_blt(struct drm_device *dev)
4387 {
4388 	if (!HAS_BLT(dev))
4389 		return false;
4390 
4391 	/* The blitter was dysfunctional on early prototypes */
4392 	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4393 		DRM_INFO("BLT not supported on this pre-production hardware;"
4394 			 " graphics performance will be degraded.\n");
4395 		return false;
4396 	}
4397 
4398 	return true;
4399 }
4400 
4401 static int i915_gem_init_rings(struct drm_device *dev)
4402 {
4403 	struct drm_i915_private *dev_priv = dev->dev_private;
4404 	int ret;
4405 
4406 	ret = intel_init_render_ring_buffer(dev);
4407 	if (ret)
4408 		return ret;
4409 
4410 	if (HAS_BSD(dev)) {
4411 		ret = intel_init_bsd_ring_buffer(dev);
4412 		if (ret)
4413 			goto cleanup_render_ring;
4414 	}
4415 
4416 	if (intel_enable_blt(dev)) {
4417 		ret = intel_init_blt_ring_buffer(dev);
4418 		if (ret)
4419 			goto cleanup_bsd_ring;
4420 	}
4421 
4422 	if (HAS_VEBOX(dev)) {
4423 		ret = intel_init_vebox_ring_buffer(dev);
4424 		if (ret)
4425 			goto cleanup_blt_ring;
4426 	}
4427 
4428 
4429 	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4430 	if (ret)
4431 		goto cleanup_vebox_ring;
4432 
4433 	return 0;
4434 
4435 cleanup_vebox_ring:
4436 	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4437 cleanup_blt_ring:
4438 	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4439 cleanup_bsd_ring:
4440 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4441 cleanup_render_ring:
4442 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4443 
4444 	return ret;
4445 }
4446 
4447 int
4448 i915_gem_init_hw(struct drm_device *dev)
4449 {
4450 	drm_i915_private_t *dev_priv = dev->dev_private;
4451 	int ret, i;
4452 
4453 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4454 		return -EIO;
4455 
4456 	if (dev_priv->ellc_size)
4457 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4458 
4459 	if (IS_HASWELL(dev))
4460 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4461 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4462 
4463 	if (HAS_PCH_NOP(dev)) {
4464 		u32 temp = I915_READ(GEN7_MSG_CTL);
4465 		temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4466 		I915_WRITE(GEN7_MSG_CTL, temp);
4467 	}
4468 
4469 	i915_gem_init_swizzling(dev);
4470 
4471 	ret = i915_gem_init_rings(dev);
4472 	if (ret)
4473 		return ret;
4474 
4475 	for (i = 0; i < NUM_L3_SLICES(dev); i++)
4476 		i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4477 
4478 	/*
4479 	 * XXX: There was some w/a described somewhere suggesting loading
4480 	 * contexts before PPGTT.
4481 	 */
4482 	i915_gem_context_init(dev);
4483 	if (dev_priv->mm.aliasing_ppgtt) {
4484 		ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4485 		if (ret) {
4486 			i915_gem_cleanup_aliasing_ppgtt(dev);
4487 			DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4488 		}
4489 	}
4490 
4491 	return 0;
4492 }
4493 
4494 int i915_gem_init(struct drm_device *dev)
4495 {
4496 	struct drm_i915_private *dev_priv = dev->dev_private;
4497 	int ret;
4498 
4499 	mutex_lock(&dev->struct_mutex);
4500 
4501 	if (IS_VALLEYVIEW(dev)) {
4502 		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4503 		I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4504 		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4505 			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4506 	}
4507 
4508 	i915_gem_init_global_gtt(dev);
4509 
4510 	ret = i915_gem_init_hw(dev);
4511 	mutex_unlock(&dev->struct_mutex);
4512 	if (ret) {
4513 		i915_gem_cleanup_aliasing_ppgtt(dev);
4514 		return ret;
4515 	}
4516 
4517 	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4518 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4519 		dev_priv->dri1.allow_batchbuffer = 1;
4520 	return 0;
4521 }
4522 
4523 void
4524 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4525 {
4526 	drm_i915_private_t *dev_priv = dev->dev_private;
4527 	struct intel_ring_buffer *ring;
4528 	int i;
4529 
4530 	for_each_ring(ring, dev_priv, i)
4531 		intel_cleanup_ring_buffer(ring);
4532 }
4533 
4534 int
4535 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4536 		       struct drm_file *file_priv)
4537 {
4538 	struct drm_i915_private *dev_priv = dev->dev_private;
4539 	int ret;
4540 
4541 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4542 		return 0;
4543 
4544 	if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4545 		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4546 		atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4547 	}
4548 
4549 	mutex_lock(&dev->struct_mutex);
4550 	dev_priv->ums.mm_suspended = 0;
4551 
4552 	ret = i915_gem_init_hw(dev);
4553 	if (ret != 0) {
4554 		mutex_unlock(&dev->struct_mutex);
4555 		return ret;
4556 	}
4557 
4558 	BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4559 	mutex_unlock(&dev->struct_mutex);
4560 
4561 	ret = drm_irq_install(dev);
4562 	if (ret)
4563 		goto cleanup_ringbuffer;
4564 
4565 	return 0;
4566 
4567 cleanup_ringbuffer:
4568 	mutex_lock(&dev->struct_mutex);
4569 	i915_gem_cleanup_ringbuffer(dev);
4570 	dev_priv->ums.mm_suspended = 1;
4571 	mutex_unlock(&dev->struct_mutex);
4572 
4573 	return ret;
4574 }
4575 
4576 int
4577 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4578 		       struct drm_file *file_priv)
4579 {
4580 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4581 		return 0;
4582 
4583 	drm_irq_uninstall(dev);
4584 
4585 	return i915_gem_suspend(dev);
4586 }
4587 
4588 void
4589 i915_gem_lastclose(struct drm_device *dev)
4590 {
4591 	int ret;
4592 
4593 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4594 		return;
4595 
4596 	ret = i915_gem_suspend(dev);
4597 	if (ret)
4598 		DRM_ERROR("failed to idle hardware: %d\n", ret);
4599 }
4600 
4601 static void
4602 init_ring_lists(struct intel_ring_buffer *ring)
4603 {
4604 	INIT_LIST_HEAD(&ring->active_list);
4605 	INIT_LIST_HEAD(&ring->request_list);
4606 }
4607 
4608 static void i915_init_vm(struct drm_i915_private *dev_priv,
4609 			 struct i915_address_space *vm)
4610 {
4611 	vm->dev = dev_priv->dev;
4612 	INIT_LIST_HEAD(&vm->active_list);
4613 	INIT_LIST_HEAD(&vm->inactive_list);
4614 	INIT_LIST_HEAD(&vm->global_link);
4615 	list_add(&vm->global_link, &dev_priv->vm_list);
4616 }
4617 
4618 void
4619 i915_gem_load(struct drm_device *dev)
4620 {
4621 	drm_i915_private_t *dev_priv = dev->dev_private;
4622 	int i;
4623 
4624 	dev_priv->slab =
4625 		kmem_cache_create("i915_gem_object",
4626 				  sizeof(struct drm_i915_gem_object), 0,
4627 				  SLAB_HWCACHE_ALIGN,
4628 				  NULL);
4629 
4630 	INIT_LIST_HEAD(&dev_priv->vm_list);
4631 	i915_init_vm(dev_priv, &dev_priv->gtt.base);
4632 
4633 	INIT_LIST_HEAD(&dev_priv->context_list);
4634 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4635 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4636 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4637 	for (i = 0; i < I915_NUM_RINGS; i++)
4638 		init_ring_lists(&dev_priv->ring[i]);
4639 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4640 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4641 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4642 			  i915_gem_retire_work_handler);
4643 	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4644 			  i915_gem_idle_work_handler);
4645 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4646 
4647 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4648 	if (IS_GEN3(dev)) {
4649 		I915_WRITE(MI_ARB_STATE,
4650 			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4651 	}
4652 
4653 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4654 
4655 	/* Old X drivers will take 0-2 for front, back, depth buffers */
4656 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4657 		dev_priv->fence_reg_start = 3;
4658 
4659 	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4660 		dev_priv->num_fence_regs = 32;
4661 	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4662 		dev_priv->num_fence_regs = 16;
4663 	else
4664 		dev_priv->num_fence_regs = 8;
4665 
4666 	/* Initialize fence registers to zero */
4667 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4668 	i915_gem_restore_fences(dev);
4669 
4670 	i915_gem_detect_bit_6_swizzle(dev);
4671 	init_waitqueue_head(&dev_priv->pending_flip_queue);
4672 
4673 	dev_priv->mm.interruptible = true;
4674 
4675 	dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4676 	dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
4677 	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4678 	register_shrinker(&dev_priv->mm.inactive_shrinker);
4679 }
4680 
4681 /*
4682  * Create a physically contiguous memory object for this object
4683  * e.g. for cursor + overlay regs
4684  */
4685 static int i915_gem_init_phys_object(struct drm_device *dev,
4686 				     int id, int size, int align)
4687 {
4688 	drm_i915_private_t *dev_priv = dev->dev_private;
4689 	struct drm_i915_gem_phys_object *phys_obj;
4690 	int ret;
4691 
4692 	if (dev_priv->mm.phys_objs[id - 1] || !size)
4693 		return 0;
4694 
4695 	phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
4696 	if (!phys_obj)
4697 		return -ENOMEM;
4698 
4699 	phys_obj->id = id;
4700 
4701 	phys_obj->handle = drm_pci_alloc(dev, size, align);
4702 	if (!phys_obj->handle) {
4703 		ret = -ENOMEM;
4704 		goto kfree_obj;
4705 	}
4706 #ifdef CONFIG_X86
4707 	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4708 #endif
4709 
4710 	dev_priv->mm.phys_objs[id - 1] = phys_obj;
4711 
4712 	return 0;
4713 kfree_obj:
4714 	kfree(phys_obj);
4715 	return ret;
4716 }
4717 
4718 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4719 {
4720 	drm_i915_private_t *dev_priv = dev->dev_private;
4721 	struct drm_i915_gem_phys_object *phys_obj;
4722 
4723 	if (!dev_priv->mm.phys_objs[id - 1])
4724 		return;
4725 
4726 	phys_obj = dev_priv->mm.phys_objs[id - 1];
4727 	if (phys_obj->cur_obj) {
4728 		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4729 	}
4730 
4731 #ifdef CONFIG_X86
4732 	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4733 #endif
4734 	drm_pci_free(dev, phys_obj->handle);
4735 	kfree(phys_obj);
4736 	dev_priv->mm.phys_objs[id - 1] = NULL;
4737 }
4738 
4739 void i915_gem_free_all_phys_object(struct drm_device *dev)
4740 {
4741 	int i;
4742 
4743 	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4744 		i915_gem_free_phys_object(dev, i);
4745 }
4746 
4747 void i915_gem_detach_phys_object(struct drm_device *dev,
4748 				 struct drm_i915_gem_object *obj)
4749 {
4750 	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4751 	char *vaddr;
4752 	int i;
4753 	int page_count;
4754 
4755 	if (!obj->phys_obj)
4756 		return;
4757 	vaddr = obj->phys_obj->handle->vaddr;
4758 
4759 	page_count = obj->base.size / PAGE_SIZE;
4760 	for (i = 0; i < page_count; i++) {
4761 		struct page *page = shmem_read_mapping_page(mapping, i);
4762 		if (!IS_ERR(page)) {
4763 			char *dst = kmap_atomic(page);
4764 			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4765 			kunmap_atomic(dst);
4766 
4767 			drm_clflush_pages(&page, 1);
4768 
4769 			set_page_dirty(page);
4770 			mark_page_accessed(page);
4771 			page_cache_release(page);
4772 		}
4773 	}
4774 	i915_gem_chipset_flush(dev);
4775 
4776 	obj->phys_obj->cur_obj = NULL;
4777 	obj->phys_obj = NULL;
4778 }
4779 
4780 int
4781 i915_gem_attach_phys_object(struct drm_device *dev,
4782 			    struct drm_i915_gem_object *obj,
4783 			    int id,
4784 			    int align)
4785 {
4786 	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4787 	drm_i915_private_t *dev_priv = dev->dev_private;
4788 	int ret = 0;
4789 	int page_count;
4790 	int i;
4791 
4792 	if (id > I915_MAX_PHYS_OBJECT)
4793 		return -EINVAL;
4794 
4795 	if (obj->phys_obj) {
4796 		if (obj->phys_obj->id == id)
4797 			return 0;
4798 		i915_gem_detach_phys_object(dev, obj);
4799 	}
4800 
4801 	/* create a new object */
4802 	if (!dev_priv->mm.phys_objs[id - 1]) {
4803 		ret = i915_gem_init_phys_object(dev, id,
4804 						obj->base.size, align);
4805 		if (ret) {
4806 			DRM_ERROR("failed to init phys object %d size: %zu\n",
4807 				  id, obj->base.size);
4808 			return ret;
4809 		}
4810 	}
4811 
4812 	/* bind to the object */
4813 	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4814 	obj->phys_obj->cur_obj = obj;
4815 
4816 	page_count = obj->base.size / PAGE_SIZE;
4817 
4818 	for (i = 0; i < page_count; i++) {
4819 		struct page *page;
4820 		char *dst, *src;
4821 
4822 		page = shmem_read_mapping_page(mapping, i);
4823 		if (IS_ERR(page))
4824 			return PTR_ERR(page);
4825 
4826 		src = kmap_atomic(page);
4827 		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4828 		memcpy(dst, src, PAGE_SIZE);
4829 		kunmap_atomic(src);
4830 
4831 		mark_page_accessed(page);
4832 		page_cache_release(page);
4833 	}
4834 
4835 	return 0;
4836 }
4837 
4838 static int
4839 i915_gem_phys_pwrite(struct drm_device *dev,
4840 		     struct drm_i915_gem_object *obj,
4841 		     struct drm_i915_gem_pwrite *args,
4842 		     struct drm_file *file_priv)
4843 {
4844 	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4845 	char __user *user_data = to_user_ptr(args->data_ptr);
4846 
4847 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4848 		unsigned long unwritten;
4849 
4850 		/* The physical object once assigned is fixed for the lifetime
4851 		 * of the obj, so we can safely drop the lock and continue
4852 		 * to access vaddr.
4853 		 */
4854 		mutex_unlock(&dev->struct_mutex);
4855 		unwritten = copy_from_user(vaddr, user_data, args->size);
4856 		mutex_lock(&dev->struct_mutex);
4857 		if (unwritten)
4858 			return -EFAULT;
4859 	}
4860 
4861 	i915_gem_chipset_flush(dev);
4862 	return 0;
4863 }
4864 
4865 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4866 {
4867 	struct drm_i915_file_private *file_priv = file->driver_priv;
4868 
4869 	cancel_delayed_work_sync(&file_priv->mm.idle_work);
4870 
4871 	/* Clean up our request list when the client is going away, so that
4872 	 * later retire_requests won't dereference our soon-to-be-gone
4873 	 * file_priv.
4874 	 */
4875 	spin_lock(&file_priv->mm.lock);
4876 	while (!list_empty(&file_priv->mm.request_list)) {
4877 		struct drm_i915_gem_request *request;
4878 
4879 		request = list_first_entry(&file_priv->mm.request_list,
4880 					   struct drm_i915_gem_request,
4881 					   client_list);
4882 		list_del(&request->client_list);
4883 		request->file_priv = NULL;
4884 	}
4885 	spin_unlock(&file_priv->mm.lock);
4886 }
4887 
4888 static void
4889 i915_gem_file_idle_work_handler(struct work_struct *work)
4890 {
4891 	struct drm_i915_file_private *file_priv =
4892 		container_of(work, typeof(*file_priv), mm.idle_work.work);
4893 
4894 	atomic_set(&file_priv->rps_wait_boost, false);
4895 }
4896 
4897 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4898 {
4899 	struct drm_i915_file_private *file_priv;
4900 
4901 	DRM_DEBUG_DRIVER("\n");
4902 
4903 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4904 	if (!file_priv)
4905 		return -ENOMEM;
4906 
4907 	file->driver_priv = file_priv;
4908 	file_priv->dev_priv = dev->dev_private;
4909 
4910 	spin_lock_init(&file_priv->mm.lock);
4911 	INIT_LIST_HEAD(&file_priv->mm.request_list);
4912 	INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4913 			  i915_gem_file_idle_work_handler);
4914 
4915 	idr_init(&file_priv->context_idr);
4916 
4917 	return 0;
4918 }
4919 
4920 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4921 {
4922 	if (!mutex_is_locked(mutex))
4923 		return false;
4924 
4925 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4926 	return mutex->owner == task;
4927 #else
4928 	/* Since UP may be pre-empted, we cannot assume that we own the lock */
4929 	return false;
4930 #endif
4931 }
4932 
4933 static unsigned long
4934 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
4935 {
4936 	struct drm_i915_private *dev_priv =
4937 		container_of(shrinker,
4938 			     struct drm_i915_private,
4939 			     mm.inactive_shrinker);
4940 	struct drm_device *dev = dev_priv->dev;
4941 	struct drm_i915_gem_object *obj;
4942 	bool unlock = true;
4943 	unsigned long count;
4944 
4945 	if (!mutex_trylock(&dev->struct_mutex)) {
4946 		if (!mutex_is_locked_by(&dev->struct_mutex, current))
4947 			return 0;
4948 
4949 		if (dev_priv->mm.shrinker_no_lock_stealing)
4950 			return 0;
4951 
4952 		unlock = false;
4953 	}
4954 
4955 	count = 0;
4956 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4957 		if (obj->pages_pin_count == 0)
4958 			count += obj->base.size >> PAGE_SHIFT;
4959 
4960 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4961 		if (obj->active)
4962 			continue;
4963 
4964 		if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4965 			count += obj->base.size >> PAGE_SHIFT;
4966 	}
4967 
4968 	if (unlock)
4969 		mutex_unlock(&dev->struct_mutex);
4970 
4971 	return count;
4972 }
4973 
4974 /* All the new VM stuff */
4975 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4976 				  struct i915_address_space *vm)
4977 {
4978 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4979 	struct i915_vma *vma;
4980 
4981 	if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4982 		vm = &dev_priv->gtt.base;
4983 
4984 	BUG_ON(list_empty(&o->vma_list));
4985 	list_for_each_entry(vma, &o->vma_list, vma_link) {
4986 		if (vma->vm == vm)
4987 			return vma->node.start;
4988 
4989 	}
4990 	return -1;
4991 }
4992 
4993 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4994 			struct i915_address_space *vm)
4995 {
4996 	struct i915_vma *vma;
4997 
4998 	list_for_each_entry(vma, &o->vma_list, vma_link)
4999 		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5000 			return true;
5001 
5002 	return false;
5003 }
5004 
5005 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5006 {
5007 	struct i915_vma *vma;
5008 
5009 	list_for_each_entry(vma, &o->vma_list, vma_link)
5010 		if (drm_mm_node_allocated(&vma->node))
5011 			return true;
5012 
5013 	return false;
5014 }
5015 
5016 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5017 				struct i915_address_space *vm)
5018 {
5019 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5020 	struct i915_vma *vma;
5021 
5022 	if (vm == &dev_priv->mm.aliasing_ppgtt->base)
5023 		vm = &dev_priv->gtt.base;
5024 
5025 	BUG_ON(list_empty(&o->vma_list));
5026 
5027 	list_for_each_entry(vma, &o->vma_list, vma_link)
5028 		if (vma->vm == vm)
5029 			return vma->node.size;
5030 
5031 	return 0;
5032 }
5033 
5034 static unsigned long
5035 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5036 {
5037 	struct drm_i915_private *dev_priv =
5038 		container_of(shrinker,
5039 			     struct drm_i915_private,
5040 			     mm.inactive_shrinker);
5041 	struct drm_device *dev = dev_priv->dev;
5042 	unsigned long freed;
5043 	bool unlock = true;
5044 
5045 	if (!mutex_trylock(&dev->struct_mutex)) {
5046 		if (!mutex_is_locked_by(&dev->struct_mutex, current))
5047 			return SHRINK_STOP;
5048 
5049 		if (dev_priv->mm.shrinker_no_lock_stealing)
5050 			return SHRINK_STOP;
5051 
5052 		unlock = false;
5053 	}
5054 
5055 	freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5056 	if (freed < sc->nr_to_scan)
5057 		freed += __i915_gem_shrink(dev_priv,
5058 					   sc->nr_to_scan - freed,
5059 					   false);
5060 	if (freed < sc->nr_to_scan)
5061 		freed += i915_gem_shrink_all(dev_priv);
5062 
5063 	if (unlock)
5064 		mutex_unlock(&dev->struct_mutex);
5065 
5066 	return freed;
5067 }
5068 
5069 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5070 {
5071 	struct i915_vma *vma;
5072 
5073 	if (WARN_ON(list_empty(&obj->vma_list)))
5074 		return NULL;
5075 
5076 	vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5077 	if (WARN_ON(vma->vm != obj_to_ggtt(obj)))
5078 		return NULL;
5079 
5080 	return vma;
5081 }
5082