xref: /linux/drivers/gpu/drm/i915/i915_gem.c (revision c1aac62f36c1e37ee81c9e09ee9ee733eef05dcb)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_frontbuffer.h"
36 #include "intel_mocs.h"
37 #include <linux/dma-fence-array.h>
38 #include <linux/reservation.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/pci.h>
43 #include <linux/dma-buf.h>
44 
45 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
46 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
47 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
48 
49 static bool cpu_cache_is_coherent(struct drm_device *dev,
50 				  enum i915_cache_level level)
51 {
52 	return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
53 }
54 
55 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56 {
57 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
58 		return false;
59 
60 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
61 		return true;
62 
63 	return obj->pin_display;
64 }
65 
66 static int
67 insert_mappable_node(struct i915_ggtt *ggtt,
68                      struct drm_mm_node *node, u32 size)
69 {
70 	memset(node, 0, sizeof(*node));
71 	return drm_mm_insert_node_in_range_generic(&ggtt->base.mm, node,
72 						   size, 0, -1,
73 						   0, ggtt->mappable_end,
74 						   DRM_MM_SEARCH_DEFAULT,
75 						   DRM_MM_CREATE_DEFAULT);
76 }
77 
78 static void
79 remove_mappable_node(struct drm_mm_node *node)
80 {
81 	drm_mm_remove_node(node);
82 }
83 
84 /* some bookkeeping */
85 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
86 				  u64 size)
87 {
88 	spin_lock(&dev_priv->mm.object_stat_lock);
89 	dev_priv->mm.object_count++;
90 	dev_priv->mm.object_memory += size;
91 	spin_unlock(&dev_priv->mm.object_stat_lock);
92 }
93 
94 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
95 				     u64 size)
96 {
97 	spin_lock(&dev_priv->mm.object_stat_lock);
98 	dev_priv->mm.object_count--;
99 	dev_priv->mm.object_memory -= size;
100 	spin_unlock(&dev_priv->mm.object_stat_lock);
101 }
102 
103 static int
104 i915_gem_wait_for_error(struct i915_gpu_error *error)
105 {
106 	int ret;
107 
108 	might_sleep();
109 
110 	if (!i915_reset_in_progress(error))
111 		return 0;
112 
113 	/*
114 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
115 	 * userspace. If it takes that long something really bad is going on and
116 	 * we should simply try to bail out and fail as gracefully as possible.
117 	 */
118 	ret = wait_event_interruptible_timeout(error->reset_queue,
119 					       !i915_reset_in_progress(error),
120 					       I915_RESET_TIMEOUT);
121 	if (ret == 0) {
122 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
123 		return -EIO;
124 	} else if (ret < 0) {
125 		return ret;
126 	} else {
127 		return 0;
128 	}
129 }
130 
131 int i915_mutex_lock_interruptible(struct drm_device *dev)
132 {
133 	struct drm_i915_private *dev_priv = to_i915(dev);
134 	int ret;
135 
136 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
137 	if (ret)
138 		return ret;
139 
140 	ret = mutex_lock_interruptible(&dev->struct_mutex);
141 	if (ret)
142 		return ret;
143 
144 	return 0;
145 }
146 
147 int
148 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
149 			    struct drm_file *file)
150 {
151 	struct drm_i915_private *dev_priv = to_i915(dev);
152 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
153 	struct drm_i915_gem_get_aperture *args = data;
154 	struct i915_vma *vma;
155 	size_t pinned;
156 
157 	pinned = 0;
158 	mutex_lock(&dev->struct_mutex);
159 	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
160 		if (i915_vma_is_pinned(vma))
161 			pinned += vma->node.size;
162 	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
163 		if (i915_vma_is_pinned(vma))
164 			pinned += vma->node.size;
165 	mutex_unlock(&dev->struct_mutex);
166 
167 	args->aper_size = ggtt->base.total;
168 	args->aper_available_size = args->aper_size - pinned;
169 
170 	return 0;
171 }
172 
173 static struct sg_table *
174 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
175 {
176 	struct address_space *mapping = obj->base.filp->f_mapping;
177 	drm_dma_handle_t *phys;
178 	struct sg_table *st;
179 	struct scatterlist *sg;
180 	char *vaddr;
181 	int i;
182 
183 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
184 		return ERR_PTR(-EINVAL);
185 
186 	/* Always aligning to the object size, allows a single allocation
187 	 * to handle all possible callers, and given typical object sizes,
188 	 * the alignment of the buddy allocation will naturally match.
189 	 */
190 	phys = drm_pci_alloc(obj->base.dev,
191 			     obj->base.size,
192 			     roundup_pow_of_two(obj->base.size));
193 	if (!phys)
194 		return ERR_PTR(-ENOMEM);
195 
196 	vaddr = phys->vaddr;
197 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
198 		struct page *page;
199 		char *src;
200 
201 		page = shmem_read_mapping_page(mapping, i);
202 		if (IS_ERR(page)) {
203 			st = ERR_CAST(page);
204 			goto err_phys;
205 		}
206 
207 		src = kmap_atomic(page);
208 		memcpy(vaddr, src, PAGE_SIZE);
209 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
210 		kunmap_atomic(src);
211 
212 		put_page(page);
213 		vaddr += PAGE_SIZE;
214 	}
215 
216 	i915_gem_chipset_flush(to_i915(obj->base.dev));
217 
218 	st = kmalloc(sizeof(*st), GFP_KERNEL);
219 	if (!st) {
220 		st = ERR_PTR(-ENOMEM);
221 		goto err_phys;
222 	}
223 
224 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
225 		kfree(st);
226 		st = ERR_PTR(-ENOMEM);
227 		goto err_phys;
228 	}
229 
230 	sg = st->sgl;
231 	sg->offset = 0;
232 	sg->length = obj->base.size;
233 
234 	sg_dma_address(sg) = phys->busaddr;
235 	sg_dma_len(sg) = obj->base.size;
236 
237 	obj->phys_handle = phys;
238 	return st;
239 
240 err_phys:
241 	drm_pci_free(obj->base.dev, phys);
242 	return st;
243 }
244 
245 static void
246 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
247 				struct sg_table *pages,
248 				bool needs_clflush)
249 {
250 	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
251 
252 	if (obj->mm.madv == I915_MADV_DONTNEED)
253 		obj->mm.dirty = false;
254 
255 	if (needs_clflush &&
256 	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
257 	    !cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
258 		drm_clflush_sg(pages);
259 
260 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
261 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
262 }
263 
264 static void
265 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
266 			       struct sg_table *pages)
267 {
268 	__i915_gem_object_release_shmem(obj, pages, false);
269 
270 	if (obj->mm.dirty) {
271 		struct address_space *mapping = obj->base.filp->f_mapping;
272 		char *vaddr = obj->phys_handle->vaddr;
273 		int i;
274 
275 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
276 			struct page *page;
277 			char *dst;
278 
279 			page = shmem_read_mapping_page(mapping, i);
280 			if (IS_ERR(page))
281 				continue;
282 
283 			dst = kmap_atomic(page);
284 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
285 			memcpy(dst, vaddr, PAGE_SIZE);
286 			kunmap_atomic(dst);
287 
288 			set_page_dirty(page);
289 			if (obj->mm.madv == I915_MADV_WILLNEED)
290 				mark_page_accessed(page);
291 			put_page(page);
292 			vaddr += PAGE_SIZE;
293 		}
294 		obj->mm.dirty = false;
295 	}
296 
297 	sg_free_table(pages);
298 	kfree(pages);
299 
300 	drm_pci_free(obj->base.dev, obj->phys_handle);
301 }
302 
303 static void
304 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
305 {
306 	i915_gem_object_unpin_pages(obj);
307 }
308 
309 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
310 	.get_pages = i915_gem_object_get_pages_phys,
311 	.put_pages = i915_gem_object_put_pages_phys,
312 	.release = i915_gem_object_release_phys,
313 };
314 
315 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316 {
317 	struct i915_vma *vma;
318 	LIST_HEAD(still_in_list);
319 	int ret;
320 
321 	lockdep_assert_held(&obj->base.dev->struct_mutex);
322 
323 	/* Closed vma are removed from the obj->vma_list - but they may
324 	 * still have an active binding on the object. To remove those we
325 	 * must wait for all rendering to complete to the object (as unbinding
326 	 * must anyway), and retire the requests.
327 	 */
328 	ret = i915_gem_object_wait(obj,
329 				   I915_WAIT_INTERRUPTIBLE |
330 				   I915_WAIT_LOCKED |
331 				   I915_WAIT_ALL,
332 				   MAX_SCHEDULE_TIMEOUT,
333 				   NULL);
334 	if (ret)
335 		return ret;
336 
337 	i915_gem_retire_requests(to_i915(obj->base.dev));
338 
339 	while ((vma = list_first_entry_or_null(&obj->vma_list,
340 					       struct i915_vma,
341 					       obj_link))) {
342 		list_move_tail(&vma->obj_link, &still_in_list);
343 		ret = i915_vma_unbind(vma);
344 		if (ret)
345 			break;
346 	}
347 	list_splice(&still_in_list, &obj->vma_list);
348 
349 	return ret;
350 }
351 
352 static long
353 i915_gem_object_wait_fence(struct dma_fence *fence,
354 			   unsigned int flags,
355 			   long timeout,
356 			   struct intel_rps_client *rps)
357 {
358 	struct drm_i915_gem_request *rq;
359 
360 	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
361 
362 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
363 		return timeout;
364 
365 	if (!dma_fence_is_i915(fence))
366 		return dma_fence_wait_timeout(fence,
367 					      flags & I915_WAIT_INTERRUPTIBLE,
368 					      timeout);
369 
370 	rq = to_request(fence);
371 	if (i915_gem_request_completed(rq))
372 		goto out;
373 
374 	/* This client is about to stall waiting for the GPU. In many cases
375 	 * this is undesirable and limits the throughput of the system, as
376 	 * many clients cannot continue processing user input/output whilst
377 	 * blocked. RPS autotuning may take tens of milliseconds to respond
378 	 * to the GPU load and thus incurs additional latency for the client.
379 	 * We can circumvent that by promoting the GPU frequency to maximum
380 	 * before we wait. This makes the GPU throttle up much more quickly
381 	 * (good for benchmarks and user experience, e.g. window animations),
382 	 * but at a cost of spending more power processing the workload
383 	 * (bad for battery). Not all clients even want their results
384 	 * immediately and for them we should just let the GPU select its own
385 	 * frequency to maximise efficiency. To prevent a single client from
386 	 * forcing the clocks too high for the whole system, we only allow
387 	 * each client to waitboost once in a busy period.
388 	 */
389 	if (rps) {
390 		if (INTEL_GEN(rq->i915) >= 6)
391 			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
392 		else
393 			rps = NULL;
394 	}
395 
396 	timeout = i915_wait_request(rq, flags, timeout);
397 
398 out:
399 	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
400 		i915_gem_request_retire_upto(rq);
401 
402 	if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
403 		/* The GPU is now idle and this client has stalled.
404 		 * Since no other client has submitted a request in the
405 		 * meantime, assume that this client is the only one
406 		 * supplying work to the GPU but is unable to keep that
407 		 * work supplied because it is waiting. Since the GPU is
408 		 * then never kept fully busy, RPS autoclocking will
409 		 * keep the clocks relatively low, causing further delays.
410 		 * Compensate by giving the synchronous client credit for
411 		 * a waitboost next time.
412 		 */
413 		spin_lock(&rq->i915->rps.client_lock);
414 		list_del_init(&rps->link);
415 		spin_unlock(&rq->i915->rps.client_lock);
416 	}
417 
418 	return timeout;
419 }
420 
421 static long
422 i915_gem_object_wait_reservation(struct reservation_object *resv,
423 				 unsigned int flags,
424 				 long timeout,
425 				 struct intel_rps_client *rps)
426 {
427 	struct dma_fence *excl;
428 
429 	if (flags & I915_WAIT_ALL) {
430 		struct dma_fence **shared;
431 		unsigned int count, i;
432 		int ret;
433 
434 		ret = reservation_object_get_fences_rcu(resv,
435 							&excl, &count, &shared);
436 		if (ret)
437 			return ret;
438 
439 		for (i = 0; i < count; i++) {
440 			timeout = i915_gem_object_wait_fence(shared[i],
441 							     flags, timeout,
442 							     rps);
443 			if (timeout <= 0)
444 				break;
445 
446 			dma_fence_put(shared[i]);
447 		}
448 
449 		for (; i < count; i++)
450 			dma_fence_put(shared[i]);
451 		kfree(shared);
452 	} else {
453 		excl = reservation_object_get_excl_rcu(resv);
454 	}
455 
456 	if (excl && timeout > 0)
457 		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
458 
459 	dma_fence_put(excl);
460 
461 	return timeout;
462 }
463 
464 static void __fence_set_priority(struct dma_fence *fence, int prio)
465 {
466 	struct drm_i915_gem_request *rq;
467 	struct intel_engine_cs *engine;
468 
469 	if (!dma_fence_is_i915(fence))
470 		return;
471 
472 	rq = to_request(fence);
473 	engine = rq->engine;
474 	if (!engine->schedule)
475 		return;
476 
477 	engine->schedule(rq, prio);
478 }
479 
480 static void fence_set_priority(struct dma_fence *fence, int prio)
481 {
482 	/* Recurse once into a fence-array */
483 	if (dma_fence_is_array(fence)) {
484 		struct dma_fence_array *array = to_dma_fence_array(fence);
485 		int i;
486 
487 		for (i = 0; i < array->num_fences; i++)
488 			__fence_set_priority(array->fences[i], prio);
489 	} else {
490 		__fence_set_priority(fence, prio);
491 	}
492 }
493 
494 int
495 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
496 			      unsigned int flags,
497 			      int prio)
498 {
499 	struct dma_fence *excl;
500 
501 	if (flags & I915_WAIT_ALL) {
502 		struct dma_fence **shared;
503 		unsigned int count, i;
504 		int ret;
505 
506 		ret = reservation_object_get_fences_rcu(obj->resv,
507 							&excl, &count, &shared);
508 		if (ret)
509 			return ret;
510 
511 		for (i = 0; i < count; i++) {
512 			fence_set_priority(shared[i], prio);
513 			dma_fence_put(shared[i]);
514 		}
515 
516 		kfree(shared);
517 	} else {
518 		excl = reservation_object_get_excl_rcu(obj->resv);
519 	}
520 
521 	if (excl) {
522 		fence_set_priority(excl, prio);
523 		dma_fence_put(excl);
524 	}
525 	return 0;
526 }
527 
528 /**
529  * Waits for rendering to the object to be completed
530  * @obj: i915 gem object
531  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
532  * @timeout: how long to wait
533  * @rps: client (user process) to charge for any waitboosting
534  */
535 int
536 i915_gem_object_wait(struct drm_i915_gem_object *obj,
537 		     unsigned int flags,
538 		     long timeout,
539 		     struct intel_rps_client *rps)
540 {
541 	might_sleep();
542 #if IS_ENABLED(CONFIG_LOCKDEP)
543 	GEM_BUG_ON(debug_locks &&
544 		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
545 		   !!(flags & I915_WAIT_LOCKED));
546 #endif
547 	GEM_BUG_ON(timeout < 0);
548 
549 	timeout = i915_gem_object_wait_reservation(obj->resv,
550 						   flags, timeout,
551 						   rps);
552 	return timeout < 0 ? timeout : 0;
553 }
554 
555 static struct intel_rps_client *to_rps_client(struct drm_file *file)
556 {
557 	struct drm_i915_file_private *fpriv = file->driver_priv;
558 
559 	return &fpriv->rps;
560 }
561 
562 int
563 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
564 			    int align)
565 {
566 	int ret;
567 
568 	if (align > obj->base.size)
569 		return -EINVAL;
570 
571 	if (obj->ops == &i915_gem_phys_ops)
572 		return 0;
573 
574 	if (obj->mm.madv != I915_MADV_WILLNEED)
575 		return -EFAULT;
576 
577 	if (obj->base.filp == NULL)
578 		return -EINVAL;
579 
580 	ret = i915_gem_object_unbind(obj);
581 	if (ret)
582 		return ret;
583 
584 	__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
585 	if (obj->mm.pages)
586 		return -EBUSY;
587 
588 	obj->ops = &i915_gem_phys_ops;
589 
590 	return i915_gem_object_pin_pages(obj);
591 }
592 
593 static int
594 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
595 		     struct drm_i915_gem_pwrite *args,
596 		     struct drm_file *file)
597 {
598 	void *vaddr = obj->phys_handle->vaddr + args->offset;
599 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
600 
601 	/* We manually control the domain here and pretend that it
602 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
603 	 */
604 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
605 	if (copy_from_user(vaddr, user_data, args->size))
606 		return -EFAULT;
607 
608 	drm_clflush_virt_range(vaddr, args->size);
609 	i915_gem_chipset_flush(to_i915(obj->base.dev));
610 
611 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
612 	return 0;
613 }
614 
615 void *i915_gem_object_alloc(struct drm_device *dev)
616 {
617 	struct drm_i915_private *dev_priv = to_i915(dev);
618 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
619 }
620 
621 void i915_gem_object_free(struct drm_i915_gem_object *obj)
622 {
623 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
624 	kmem_cache_free(dev_priv->objects, obj);
625 }
626 
627 static int
628 i915_gem_create(struct drm_file *file,
629 		struct drm_device *dev,
630 		uint64_t size,
631 		uint32_t *handle_p)
632 {
633 	struct drm_i915_gem_object *obj;
634 	int ret;
635 	u32 handle;
636 
637 	size = roundup(size, PAGE_SIZE);
638 	if (size == 0)
639 		return -EINVAL;
640 
641 	/* Allocate the new object */
642 	obj = i915_gem_object_create(dev, size);
643 	if (IS_ERR(obj))
644 		return PTR_ERR(obj);
645 
646 	ret = drm_gem_handle_create(file, &obj->base, &handle);
647 	/* drop reference from allocate - handle holds it now */
648 	i915_gem_object_put(obj);
649 	if (ret)
650 		return ret;
651 
652 	*handle_p = handle;
653 	return 0;
654 }
655 
656 int
657 i915_gem_dumb_create(struct drm_file *file,
658 		     struct drm_device *dev,
659 		     struct drm_mode_create_dumb *args)
660 {
661 	/* have to work out size/pitch and return them */
662 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
663 	args->size = args->pitch * args->height;
664 	return i915_gem_create(file, dev,
665 			       args->size, &args->handle);
666 }
667 
668 /**
669  * Creates a new mm object and returns a handle to it.
670  * @dev: drm device pointer
671  * @data: ioctl data blob
672  * @file: drm file pointer
673  */
674 int
675 i915_gem_create_ioctl(struct drm_device *dev, void *data,
676 		      struct drm_file *file)
677 {
678 	struct drm_i915_gem_create *args = data;
679 
680 	i915_gem_flush_free_objects(to_i915(dev));
681 
682 	return i915_gem_create(file, dev,
683 			       args->size, &args->handle);
684 }
685 
686 static inline int
687 __copy_to_user_swizzled(char __user *cpu_vaddr,
688 			const char *gpu_vaddr, int gpu_offset,
689 			int length)
690 {
691 	int ret, cpu_offset = 0;
692 
693 	while (length > 0) {
694 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
695 		int this_length = min(cacheline_end - gpu_offset, length);
696 		int swizzled_gpu_offset = gpu_offset ^ 64;
697 
698 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
699 				     gpu_vaddr + swizzled_gpu_offset,
700 				     this_length);
701 		if (ret)
702 			return ret + length;
703 
704 		cpu_offset += this_length;
705 		gpu_offset += this_length;
706 		length -= this_length;
707 	}
708 
709 	return 0;
710 }
711 
712 static inline int
713 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
714 			  const char __user *cpu_vaddr,
715 			  int length)
716 {
717 	int ret, cpu_offset = 0;
718 
719 	while (length > 0) {
720 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
721 		int this_length = min(cacheline_end - gpu_offset, length);
722 		int swizzled_gpu_offset = gpu_offset ^ 64;
723 
724 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
725 				       cpu_vaddr + cpu_offset,
726 				       this_length);
727 		if (ret)
728 			return ret + length;
729 
730 		cpu_offset += this_length;
731 		gpu_offset += this_length;
732 		length -= this_length;
733 	}
734 
735 	return 0;
736 }
737 
738 /*
739  * Pins the specified object's pages and synchronizes the object with
740  * GPU accesses. Sets needs_clflush to non-zero if the caller should
741  * flush the object from the CPU cache.
742  */
743 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
744 				    unsigned int *needs_clflush)
745 {
746 	int ret;
747 
748 	lockdep_assert_held(&obj->base.dev->struct_mutex);
749 
750 	*needs_clflush = 0;
751 	if (!i915_gem_object_has_struct_page(obj))
752 		return -ENODEV;
753 
754 	ret = i915_gem_object_wait(obj,
755 				   I915_WAIT_INTERRUPTIBLE |
756 				   I915_WAIT_LOCKED,
757 				   MAX_SCHEDULE_TIMEOUT,
758 				   NULL);
759 	if (ret)
760 		return ret;
761 
762 	ret = i915_gem_object_pin_pages(obj);
763 	if (ret)
764 		return ret;
765 
766 	i915_gem_object_flush_gtt_write_domain(obj);
767 
768 	/* If we're not in the cpu read domain, set ourself into the gtt
769 	 * read domain and manually flush cachelines (if required). This
770 	 * optimizes for the case when the gpu will dirty the data
771 	 * anyway again before the next pread happens.
772 	 */
773 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
774 		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
775 							obj->cache_level);
776 
777 	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
778 		ret = i915_gem_object_set_to_cpu_domain(obj, false);
779 		if (ret)
780 			goto err_unpin;
781 
782 		*needs_clflush = 0;
783 	}
784 
785 	/* return with the pages pinned */
786 	return 0;
787 
788 err_unpin:
789 	i915_gem_object_unpin_pages(obj);
790 	return ret;
791 }
792 
793 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
794 				     unsigned int *needs_clflush)
795 {
796 	int ret;
797 
798 	lockdep_assert_held(&obj->base.dev->struct_mutex);
799 
800 	*needs_clflush = 0;
801 	if (!i915_gem_object_has_struct_page(obj))
802 		return -ENODEV;
803 
804 	ret = i915_gem_object_wait(obj,
805 				   I915_WAIT_INTERRUPTIBLE |
806 				   I915_WAIT_LOCKED |
807 				   I915_WAIT_ALL,
808 				   MAX_SCHEDULE_TIMEOUT,
809 				   NULL);
810 	if (ret)
811 		return ret;
812 
813 	ret = i915_gem_object_pin_pages(obj);
814 	if (ret)
815 		return ret;
816 
817 	i915_gem_object_flush_gtt_write_domain(obj);
818 
819 	/* If we're not in the cpu write domain, set ourself into the
820 	 * gtt write domain and manually flush cachelines (as required).
821 	 * This optimizes for the case when the gpu will use the data
822 	 * right away and we therefore have to clflush anyway.
823 	 */
824 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
825 		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;
826 
827 	/* Same trick applies to invalidate partially written cachelines read
828 	 * before writing.
829 	 */
830 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
831 		*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
832 							 obj->cache_level);
833 
834 	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
835 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
836 		if (ret)
837 			goto err_unpin;
838 
839 		*needs_clflush = 0;
840 	}
841 
842 	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
843 		obj->cache_dirty = true;
844 
845 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
846 	obj->mm.dirty = true;
847 	/* return with the pages pinned */
848 	return 0;
849 
850 err_unpin:
851 	i915_gem_object_unpin_pages(obj);
852 	return ret;
853 }
854 
855 static void
856 shmem_clflush_swizzled_range(char *addr, unsigned long length,
857 			     bool swizzled)
858 {
859 	if (unlikely(swizzled)) {
860 		unsigned long start = (unsigned long) addr;
861 		unsigned long end = (unsigned long) addr + length;
862 
863 		/* For swizzling simply ensure that we always flush both
864 		 * channels. Lame, but simple and it works. Swizzled
865 		 * pwrite/pread is far from a hotpath - current userspace
866 		 * doesn't use it at all. */
867 		start = round_down(start, 128);
868 		end = round_up(end, 128);
869 
870 		drm_clflush_virt_range((void *)start, end - start);
871 	} else {
872 		drm_clflush_virt_range(addr, length);
873 	}
874 
875 }
876 
877 /* Only difference to the fast-path function is that this can handle bit17
878  * and uses non-atomic copy and kmap functions. */
879 static int
880 shmem_pread_slow(struct page *page, int offset, int length,
881 		 char __user *user_data,
882 		 bool page_do_bit17_swizzling, bool needs_clflush)
883 {
884 	char *vaddr;
885 	int ret;
886 
887 	vaddr = kmap(page);
888 	if (needs_clflush)
889 		shmem_clflush_swizzled_range(vaddr + offset, length,
890 					     page_do_bit17_swizzling);
891 
892 	if (page_do_bit17_swizzling)
893 		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
894 	else
895 		ret = __copy_to_user(user_data, vaddr + offset, length);
896 	kunmap(page);
897 
898 	return ret ? - EFAULT : 0;
899 }
900 
901 static int
902 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
903 	    bool page_do_bit17_swizzling, bool needs_clflush)
904 {
905 	int ret;
906 
907 	ret = -ENODEV;
908 	if (!page_do_bit17_swizzling) {
909 		char *vaddr = kmap_atomic(page);
910 
911 		if (needs_clflush)
912 			drm_clflush_virt_range(vaddr + offset, length);
913 		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
914 		kunmap_atomic(vaddr);
915 	}
916 	if (ret == 0)
917 		return 0;
918 
919 	return shmem_pread_slow(page, offset, length, user_data,
920 				page_do_bit17_swizzling, needs_clflush);
921 }
922 
923 static int
924 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
925 		     struct drm_i915_gem_pread *args)
926 {
927 	char __user *user_data;
928 	u64 remain;
929 	unsigned int obj_do_bit17_swizzling;
930 	unsigned int needs_clflush;
931 	unsigned int idx, offset;
932 	int ret;
933 
934 	obj_do_bit17_swizzling = 0;
935 	if (i915_gem_object_needs_bit17_swizzle(obj))
936 		obj_do_bit17_swizzling = BIT(17);
937 
938 	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
939 	if (ret)
940 		return ret;
941 
942 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
943 	mutex_unlock(&obj->base.dev->struct_mutex);
944 	if (ret)
945 		return ret;
946 
947 	remain = args->size;
948 	user_data = u64_to_user_ptr(args->data_ptr);
949 	offset = offset_in_page(args->offset);
950 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
951 		struct page *page = i915_gem_object_get_page(obj, idx);
952 		int length;
953 
954 		length = remain;
955 		if (offset + length > PAGE_SIZE)
956 			length = PAGE_SIZE - offset;
957 
958 		ret = shmem_pread(page, offset, length, user_data,
959 				  page_to_phys(page) & obj_do_bit17_swizzling,
960 				  needs_clflush);
961 		if (ret)
962 			break;
963 
964 		remain -= length;
965 		user_data += length;
966 		offset = 0;
967 	}
968 
969 	i915_gem_obj_finish_shmem_access(obj);
970 	return ret;
971 }
972 
973 static inline bool
974 gtt_user_read(struct io_mapping *mapping,
975 	      loff_t base, int offset,
976 	      char __user *user_data, int length)
977 {
978 	void *vaddr;
979 	unsigned long unwritten;
980 
981 	/* We can use the cpu mem copy function because this is X86. */
982 	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
983 	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
984 	io_mapping_unmap_atomic(vaddr);
985 	if (unwritten) {
986 		vaddr = (void __force *)
987 			io_mapping_map_wc(mapping, base, PAGE_SIZE);
988 		unwritten = copy_to_user(user_data, vaddr + offset, length);
989 		io_mapping_unmap(vaddr);
990 	}
991 	return unwritten;
992 }
993 
994 static int
995 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
996 		   const struct drm_i915_gem_pread *args)
997 {
998 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
999 	struct i915_ggtt *ggtt = &i915->ggtt;
1000 	struct drm_mm_node node;
1001 	struct i915_vma *vma;
1002 	void __user *user_data;
1003 	u64 remain, offset;
1004 	int ret;
1005 
1006 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1007 	if (ret)
1008 		return ret;
1009 
1010 	intel_runtime_pm_get(i915);
1011 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1012 				       PIN_MAPPABLE | PIN_NONBLOCK);
1013 	if (!IS_ERR(vma)) {
1014 		node.start = i915_ggtt_offset(vma);
1015 		node.allocated = false;
1016 		ret = i915_vma_put_fence(vma);
1017 		if (ret) {
1018 			i915_vma_unpin(vma);
1019 			vma = ERR_PTR(ret);
1020 		}
1021 	}
1022 	if (IS_ERR(vma)) {
1023 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1024 		if (ret)
1025 			goto out_unlock;
1026 		GEM_BUG_ON(!node.allocated);
1027 	}
1028 
1029 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
1030 	if (ret)
1031 		goto out_unpin;
1032 
1033 	mutex_unlock(&i915->drm.struct_mutex);
1034 
1035 	user_data = u64_to_user_ptr(args->data_ptr);
1036 	remain = args->size;
1037 	offset = args->offset;
1038 
1039 	while (remain > 0) {
1040 		/* Operation in this page
1041 		 *
1042 		 * page_base = page offset within aperture
1043 		 * page_offset = offset within page
1044 		 * page_length = bytes to copy for this page
1045 		 */
1046 		u32 page_base = node.start;
1047 		unsigned page_offset = offset_in_page(offset);
1048 		unsigned page_length = PAGE_SIZE - page_offset;
1049 		page_length = remain < page_length ? remain : page_length;
1050 		if (node.allocated) {
1051 			wmb();
1052 			ggtt->base.insert_page(&ggtt->base,
1053 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1054 					       node.start, I915_CACHE_NONE, 0);
1055 			wmb();
1056 		} else {
1057 			page_base += offset & PAGE_MASK;
1058 		}
1059 
1060 		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1061 				  user_data, page_length)) {
1062 			ret = -EFAULT;
1063 			break;
1064 		}
1065 
1066 		remain -= page_length;
1067 		user_data += page_length;
1068 		offset += page_length;
1069 	}
1070 
1071 	mutex_lock(&i915->drm.struct_mutex);
1072 out_unpin:
1073 	if (node.allocated) {
1074 		wmb();
1075 		ggtt->base.clear_range(&ggtt->base,
1076 				       node.start, node.size);
1077 		remove_mappable_node(&node);
1078 	} else {
1079 		i915_vma_unpin(vma);
1080 	}
1081 out_unlock:
1082 	intel_runtime_pm_put(i915);
1083 	mutex_unlock(&i915->drm.struct_mutex);
1084 
1085 	return ret;
1086 }
1087 
1088 /**
1089  * Reads data from the object referenced by handle.
1090  * @dev: drm device pointer
1091  * @data: ioctl data blob
1092  * @file: drm file pointer
1093  *
1094  * On error, the contents of *data are undefined.
1095  */
1096 int
1097 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1098 		     struct drm_file *file)
1099 {
1100 	struct drm_i915_gem_pread *args = data;
1101 	struct drm_i915_gem_object *obj;
1102 	int ret;
1103 
1104 	if (args->size == 0)
1105 		return 0;
1106 
1107 	if (!access_ok(VERIFY_WRITE,
1108 		       u64_to_user_ptr(args->data_ptr),
1109 		       args->size))
1110 		return -EFAULT;
1111 
1112 	obj = i915_gem_object_lookup(file, args->handle);
1113 	if (!obj)
1114 		return -ENOENT;
1115 
1116 	/* Bounds check source.  */
1117 	if (args->offset > obj->base.size ||
1118 	    args->size > obj->base.size - args->offset) {
1119 		ret = -EINVAL;
1120 		goto out;
1121 	}
1122 
1123 	trace_i915_gem_object_pread(obj, args->offset, args->size);
1124 
1125 	ret = i915_gem_object_wait(obj,
1126 				   I915_WAIT_INTERRUPTIBLE,
1127 				   MAX_SCHEDULE_TIMEOUT,
1128 				   to_rps_client(file));
1129 	if (ret)
1130 		goto out;
1131 
1132 	ret = i915_gem_object_pin_pages(obj);
1133 	if (ret)
1134 		goto out;
1135 
1136 	ret = i915_gem_shmem_pread(obj, args);
1137 	if (ret == -EFAULT || ret == -ENODEV)
1138 		ret = i915_gem_gtt_pread(obj, args);
1139 
1140 	i915_gem_object_unpin_pages(obj);
1141 out:
1142 	i915_gem_object_put(obj);
1143 	return ret;
1144 }
1145 
1146 /* This is the fast write path which cannot handle
1147  * page faults in the source data
1148  */
1149 
1150 static inline bool
1151 ggtt_write(struct io_mapping *mapping,
1152 	   loff_t base, int offset,
1153 	   char __user *user_data, int length)
1154 {
1155 	void *vaddr;
1156 	unsigned long unwritten;
1157 
1158 	/* We can use the cpu mem copy function because this is X86. */
1159 	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1160 	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1161 						      user_data, length);
1162 	io_mapping_unmap_atomic(vaddr);
1163 	if (unwritten) {
1164 		vaddr = (void __force *)
1165 			io_mapping_map_wc(mapping, base, PAGE_SIZE);
1166 		unwritten = copy_from_user(vaddr + offset, user_data, length);
1167 		io_mapping_unmap(vaddr);
1168 	}
1169 
1170 	return unwritten;
1171 }
1172 
1173 /**
1174  * This is the fast pwrite path, where we copy the data directly from the
1175  * user into the GTT, uncached.
1176  * @obj: i915 GEM object
1177  * @args: pwrite arguments structure
1178  */
1179 static int
1180 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1181 			 const struct drm_i915_gem_pwrite *args)
1182 {
1183 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1184 	struct i915_ggtt *ggtt = &i915->ggtt;
1185 	struct drm_mm_node node;
1186 	struct i915_vma *vma;
1187 	u64 remain, offset;
1188 	void __user *user_data;
1189 	int ret;
1190 
1191 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1192 	if (ret)
1193 		return ret;
1194 
1195 	intel_runtime_pm_get(i915);
1196 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1197 				       PIN_MAPPABLE | PIN_NONBLOCK);
1198 	if (!IS_ERR(vma)) {
1199 		node.start = i915_ggtt_offset(vma);
1200 		node.allocated = false;
1201 		ret = i915_vma_put_fence(vma);
1202 		if (ret) {
1203 			i915_vma_unpin(vma);
1204 			vma = ERR_PTR(ret);
1205 		}
1206 	}
1207 	if (IS_ERR(vma)) {
1208 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1209 		if (ret)
1210 			goto out_unlock;
1211 		GEM_BUG_ON(!node.allocated);
1212 	}
1213 
1214 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1215 	if (ret)
1216 		goto out_unpin;
1217 
1218 	mutex_unlock(&i915->drm.struct_mutex);
1219 
1220 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1221 
1222 	user_data = u64_to_user_ptr(args->data_ptr);
1223 	offset = args->offset;
1224 	remain = args->size;
1225 	while (remain) {
1226 		/* Operation in this page
1227 		 *
1228 		 * page_base = page offset within aperture
1229 		 * page_offset = offset within page
1230 		 * page_length = bytes to copy for this page
1231 		 */
1232 		u32 page_base = node.start;
1233 		unsigned int page_offset = offset_in_page(offset);
1234 		unsigned int page_length = PAGE_SIZE - page_offset;
1235 		page_length = remain < page_length ? remain : page_length;
1236 		if (node.allocated) {
1237 			wmb(); /* flush the write before we modify the GGTT */
1238 			ggtt->base.insert_page(&ggtt->base,
1239 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1240 					       node.start, I915_CACHE_NONE, 0);
1241 			wmb(); /* flush modifications to the GGTT (insert_page) */
1242 		} else {
1243 			page_base += offset & PAGE_MASK;
1244 		}
1245 		/* If we get a fault while copying data, then (presumably) our
1246 		 * source page isn't available.  Return the error and we'll
1247 		 * retry in the slow path.
1248 		 * If the object is non-shmem backed, we retry again with the
1249 		 * path that handles page fault.
1250 		 */
1251 		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1252 			       user_data, page_length)) {
1253 			ret = -EFAULT;
1254 			break;
1255 		}
1256 
1257 		remain -= page_length;
1258 		user_data += page_length;
1259 		offset += page_length;
1260 	}
1261 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1262 
1263 	mutex_lock(&i915->drm.struct_mutex);
1264 out_unpin:
1265 	if (node.allocated) {
1266 		wmb();
1267 		ggtt->base.clear_range(&ggtt->base,
1268 				       node.start, node.size);
1269 		remove_mappable_node(&node);
1270 	} else {
1271 		i915_vma_unpin(vma);
1272 	}
1273 out_unlock:
1274 	intel_runtime_pm_put(i915);
1275 	mutex_unlock(&i915->drm.struct_mutex);
1276 	return ret;
1277 }
1278 
1279 static int
1280 shmem_pwrite_slow(struct page *page, int offset, int length,
1281 		  char __user *user_data,
1282 		  bool page_do_bit17_swizzling,
1283 		  bool needs_clflush_before,
1284 		  bool needs_clflush_after)
1285 {
1286 	char *vaddr;
1287 	int ret;
1288 
1289 	vaddr = kmap(page);
1290 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1291 		shmem_clflush_swizzled_range(vaddr + offset, length,
1292 					     page_do_bit17_swizzling);
1293 	if (page_do_bit17_swizzling)
1294 		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1295 						length);
1296 	else
1297 		ret = __copy_from_user(vaddr + offset, user_data, length);
1298 	if (needs_clflush_after)
1299 		shmem_clflush_swizzled_range(vaddr + offset, length,
1300 					     page_do_bit17_swizzling);
1301 	kunmap(page);
1302 
1303 	return ret ? -EFAULT : 0;
1304 }
1305 
1306 /* Per-page copy function for the shmem pwrite fastpath.
1307  * Flushes invalid cachelines before writing to the target if
1308  * needs_clflush_before is set and flushes out any written cachelines after
1309  * writing if needs_clflush is set.
1310  */
1311 static int
1312 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1313 	     bool page_do_bit17_swizzling,
1314 	     bool needs_clflush_before,
1315 	     bool needs_clflush_after)
1316 {
1317 	int ret;
1318 
1319 	ret = -ENODEV;
1320 	if (!page_do_bit17_swizzling) {
1321 		char *vaddr = kmap_atomic(page);
1322 
1323 		if (needs_clflush_before)
1324 			drm_clflush_virt_range(vaddr + offset, len);
1325 		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1326 		if (needs_clflush_after)
1327 			drm_clflush_virt_range(vaddr + offset, len);
1328 
1329 		kunmap_atomic(vaddr);
1330 	}
1331 	if (ret == 0)
1332 		return ret;
1333 
1334 	return shmem_pwrite_slow(page, offset, len, user_data,
1335 				 page_do_bit17_swizzling,
1336 				 needs_clflush_before,
1337 				 needs_clflush_after);
1338 }
1339 
1340 static int
1341 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1342 		      const struct drm_i915_gem_pwrite *args)
1343 {
1344 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1345 	void __user *user_data;
1346 	u64 remain;
1347 	unsigned int obj_do_bit17_swizzling;
1348 	unsigned int partial_cacheline_write;
1349 	unsigned int needs_clflush;
1350 	unsigned int offset, idx;
1351 	int ret;
1352 
1353 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1354 	if (ret)
1355 		return ret;
1356 
1357 	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1358 	mutex_unlock(&i915->drm.struct_mutex);
1359 	if (ret)
1360 		return ret;
1361 
1362 	obj_do_bit17_swizzling = 0;
1363 	if (i915_gem_object_needs_bit17_swizzle(obj))
1364 		obj_do_bit17_swizzling = BIT(17);
1365 
1366 	/* If we don't overwrite a cacheline completely we need to be
1367 	 * careful to have up-to-date data by first clflushing. Don't
1368 	 * overcomplicate things and flush the entire patch.
1369 	 */
1370 	partial_cacheline_write = 0;
1371 	if (needs_clflush & CLFLUSH_BEFORE)
1372 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1373 
1374 	user_data = u64_to_user_ptr(args->data_ptr);
1375 	remain = args->size;
1376 	offset = offset_in_page(args->offset);
1377 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1378 		struct page *page = i915_gem_object_get_page(obj, idx);
1379 		int length;
1380 
1381 		length = remain;
1382 		if (offset + length > PAGE_SIZE)
1383 			length = PAGE_SIZE - offset;
1384 
1385 		ret = shmem_pwrite(page, offset, length, user_data,
1386 				   page_to_phys(page) & obj_do_bit17_swizzling,
1387 				   (offset | length) & partial_cacheline_write,
1388 				   needs_clflush & CLFLUSH_AFTER);
1389 		if (ret)
1390 			break;
1391 
1392 		remain -= length;
1393 		user_data += length;
1394 		offset = 0;
1395 	}
1396 
1397 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1398 	i915_gem_obj_finish_shmem_access(obj);
1399 	return ret;
1400 }
1401 
1402 /**
1403  * Writes data to the object referenced by handle.
1404  * @dev: drm device
1405  * @data: ioctl data blob
1406  * @file: drm file
1407  *
1408  * On error, the contents of the buffer that were to be modified are undefined.
1409  */
1410 int
1411 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1412 		      struct drm_file *file)
1413 {
1414 	struct drm_i915_gem_pwrite *args = data;
1415 	struct drm_i915_gem_object *obj;
1416 	int ret;
1417 
1418 	if (args->size == 0)
1419 		return 0;
1420 
1421 	if (!access_ok(VERIFY_READ,
1422 		       u64_to_user_ptr(args->data_ptr),
1423 		       args->size))
1424 		return -EFAULT;
1425 
1426 	obj = i915_gem_object_lookup(file, args->handle);
1427 	if (!obj)
1428 		return -ENOENT;
1429 
1430 	/* Bounds check destination. */
1431 	if (args->offset > obj->base.size ||
1432 	    args->size > obj->base.size - args->offset) {
1433 		ret = -EINVAL;
1434 		goto err;
1435 	}
1436 
1437 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1438 
1439 	ret = i915_gem_object_wait(obj,
1440 				   I915_WAIT_INTERRUPTIBLE |
1441 				   I915_WAIT_ALL,
1442 				   MAX_SCHEDULE_TIMEOUT,
1443 				   to_rps_client(file));
1444 	if (ret)
1445 		goto err;
1446 
1447 	ret = i915_gem_object_pin_pages(obj);
1448 	if (ret)
1449 		goto err;
1450 
1451 	ret = -EFAULT;
1452 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1453 	 * it would end up going through the fenced access, and we'll get
1454 	 * different detiling behavior between reading and writing.
1455 	 * pread/pwrite currently are reading and writing from the CPU
1456 	 * perspective, requiring manual detiling by the client.
1457 	 */
1458 	if (!i915_gem_object_has_struct_page(obj) ||
1459 	    cpu_write_needs_clflush(obj))
1460 		/* Note that the gtt paths might fail with non-page-backed user
1461 		 * pointers (e.g. gtt mappings when moving data between
1462 		 * textures). Fallback to the shmem path in that case.
1463 		 */
1464 		ret = i915_gem_gtt_pwrite_fast(obj, args);
1465 
1466 	if (ret == -EFAULT || ret == -ENOSPC) {
1467 		if (obj->phys_handle)
1468 			ret = i915_gem_phys_pwrite(obj, args, file);
1469 		else
1470 			ret = i915_gem_shmem_pwrite(obj, args);
1471 	}
1472 
1473 	i915_gem_object_unpin_pages(obj);
1474 err:
1475 	i915_gem_object_put(obj);
1476 	return ret;
1477 }
1478 
1479 static inline enum fb_op_origin
1480 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1481 {
1482 	return (domain == I915_GEM_DOMAIN_GTT ?
1483 		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1484 }
1485 
1486 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1487 {
1488 	struct drm_i915_private *i915;
1489 	struct list_head *list;
1490 	struct i915_vma *vma;
1491 
1492 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
1493 		if (!i915_vma_is_ggtt(vma))
1494 			continue;
1495 
1496 		if (i915_vma_is_active(vma))
1497 			continue;
1498 
1499 		if (!drm_mm_node_allocated(&vma->node))
1500 			continue;
1501 
1502 		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1503 	}
1504 
1505 	i915 = to_i915(obj->base.dev);
1506 	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1507 	list_move_tail(&obj->global_link, list);
1508 }
1509 
1510 /**
1511  * Called when user space prepares to use an object with the CPU, either
1512  * through the mmap ioctl's mapping or a GTT mapping.
1513  * @dev: drm device
1514  * @data: ioctl data blob
1515  * @file: drm file
1516  */
1517 int
1518 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1519 			  struct drm_file *file)
1520 {
1521 	struct drm_i915_gem_set_domain *args = data;
1522 	struct drm_i915_gem_object *obj;
1523 	uint32_t read_domains = args->read_domains;
1524 	uint32_t write_domain = args->write_domain;
1525 	int err;
1526 
1527 	/* Only handle setting domains to types used by the CPU. */
1528 	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1529 		return -EINVAL;
1530 
1531 	/* Having something in the write domain implies it's in the read
1532 	 * domain, and only that read domain.  Enforce that in the request.
1533 	 */
1534 	if (write_domain != 0 && read_domains != write_domain)
1535 		return -EINVAL;
1536 
1537 	obj = i915_gem_object_lookup(file, args->handle);
1538 	if (!obj)
1539 		return -ENOENT;
1540 
1541 	/* Try to flush the object off the GPU without holding the lock.
1542 	 * We will repeat the flush holding the lock in the normal manner
1543 	 * to catch cases where we are gazumped.
1544 	 */
1545 	err = i915_gem_object_wait(obj,
1546 				   I915_WAIT_INTERRUPTIBLE |
1547 				   (write_domain ? I915_WAIT_ALL : 0),
1548 				   MAX_SCHEDULE_TIMEOUT,
1549 				   to_rps_client(file));
1550 	if (err)
1551 		goto out;
1552 
1553 	/* Flush and acquire obj->pages so that we are coherent through
1554 	 * direct access in memory with previous cached writes through
1555 	 * shmemfs and that our cache domain tracking remains valid.
1556 	 * For example, if the obj->filp was moved to swap without us
1557 	 * being notified and releasing the pages, we would mistakenly
1558 	 * continue to assume that the obj remained out of the CPU cached
1559 	 * domain.
1560 	 */
1561 	err = i915_gem_object_pin_pages(obj);
1562 	if (err)
1563 		goto out;
1564 
1565 	err = i915_mutex_lock_interruptible(dev);
1566 	if (err)
1567 		goto out_unpin;
1568 
1569 	if (read_domains & I915_GEM_DOMAIN_GTT)
1570 		err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1571 	else
1572 		err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1573 
1574 	/* And bump the LRU for this access */
1575 	i915_gem_object_bump_inactive_ggtt(obj);
1576 
1577 	mutex_unlock(&dev->struct_mutex);
1578 
1579 	if (write_domain != 0)
1580 		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1581 
1582 out_unpin:
1583 	i915_gem_object_unpin_pages(obj);
1584 out:
1585 	i915_gem_object_put(obj);
1586 	return err;
1587 }
1588 
1589 /**
1590  * Called when user space has done writes to this buffer
1591  * @dev: drm device
1592  * @data: ioctl data blob
1593  * @file: drm file
1594  */
1595 int
1596 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1597 			 struct drm_file *file)
1598 {
1599 	struct drm_i915_gem_sw_finish *args = data;
1600 	struct drm_i915_gem_object *obj;
1601 	int err = 0;
1602 
1603 	obj = i915_gem_object_lookup(file, args->handle);
1604 	if (!obj)
1605 		return -ENOENT;
1606 
1607 	/* Pinned buffers may be scanout, so flush the cache */
1608 	if (READ_ONCE(obj->pin_display)) {
1609 		err = i915_mutex_lock_interruptible(dev);
1610 		if (!err) {
1611 			i915_gem_object_flush_cpu_write_domain(obj);
1612 			mutex_unlock(&dev->struct_mutex);
1613 		}
1614 	}
1615 
1616 	i915_gem_object_put(obj);
1617 	return err;
1618 }
1619 
1620 /**
1621  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1622  *			 it is mapped to.
1623  * @dev: drm device
1624  * @data: ioctl data blob
1625  * @file: drm file
1626  *
1627  * While the mapping holds a reference on the contents of the object, it doesn't
1628  * imply a ref on the object itself.
1629  *
1630  * IMPORTANT:
1631  *
1632  * DRM driver writers who look a this function as an example for how to do GEM
1633  * mmap support, please don't implement mmap support like here. The modern way
1634  * to implement DRM mmap support is with an mmap offset ioctl (like
1635  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1636  * That way debug tooling like valgrind will understand what's going on, hiding
1637  * the mmap call in a driver private ioctl will break that. The i915 driver only
1638  * does cpu mmaps this way because we didn't know better.
1639  */
1640 int
1641 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1642 		    struct drm_file *file)
1643 {
1644 	struct drm_i915_gem_mmap *args = data;
1645 	struct drm_i915_gem_object *obj;
1646 	unsigned long addr;
1647 
1648 	if (args->flags & ~(I915_MMAP_WC))
1649 		return -EINVAL;
1650 
1651 	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1652 		return -ENODEV;
1653 
1654 	obj = i915_gem_object_lookup(file, args->handle);
1655 	if (!obj)
1656 		return -ENOENT;
1657 
1658 	/* prime objects have no backing filp to GEM mmap
1659 	 * pages from.
1660 	 */
1661 	if (!obj->base.filp) {
1662 		i915_gem_object_put(obj);
1663 		return -EINVAL;
1664 	}
1665 
1666 	addr = vm_mmap(obj->base.filp, 0, args->size,
1667 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1668 		       args->offset);
1669 	if (args->flags & I915_MMAP_WC) {
1670 		struct mm_struct *mm = current->mm;
1671 		struct vm_area_struct *vma;
1672 
1673 		if (down_write_killable(&mm->mmap_sem)) {
1674 			i915_gem_object_put(obj);
1675 			return -EINTR;
1676 		}
1677 		vma = find_vma(mm, addr);
1678 		if (vma)
1679 			vma->vm_page_prot =
1680 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1681 		else
1682 			addr = -ENOMEM;
1683 		up_write(&mm->mmap_sem);
1684 
1685 		/* This may race, but that's ok, it only gets set */
1686 		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1687 	}
1688 	i915_gem_object_put(obj);
1689 	if (IS_ERR((void *)addr))
1690 		return addr;
1691 
1692 	args->addr_ptr = (uint64_t) addr;
1693 
1694 	return 0;
1695 }
1696 
1697 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1698 {
1699 	u64 size;
1700 
1701 	size = i915_gem_object_get_stride(obj);
1702 	size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;
1703 
1704 	return size >> PAGE_SHIFT;
1705 }
1706 
1707 /**
1708  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1709  *
1710  * A history of the GTT mmap interface:
1711  *
1712  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1713  *     aligned and suitable for fencing, and still fit into the available
1714  *     mappable space left by the pinned display objects. A classic problem
1715  *     we called the page-fault-of-doom where we would ping-pong between
1716  *     two objects that could not fit inside the GTT and so the memcpy
1717  *     would page one object in at the expense of the other between every
1718  *     single byte.
1719  *
1720  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1721  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1722  *     object is too large for the available space (or simply too large
1723  *     for the mappable aperture!), a view is created instead and faulted
1724  *     into userspace. (This view is aligned and sized appropriately for
1725  *     fenced access.)
1726  *
1727  * Restrictions:
1728  *
1729  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1730  *    hangs on some architectures, corruption on others. An attempt to service
1731  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1732  *
1733  *  * the object must be able to fit into RAM (physical memory, though no
1734  *    limited to the mappable aperture).
1735  *
1736  *
1737  * Caveats:
1738  *
1739  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1740  *    all data to system memory. Subsequent access will not be synchronized.
1741  *
1742  *  * all mappings are revoked on runtime device suspend.
1743  *
1744  *  * there are only 8, 16 or 32 fence registers to share between all users
1745  *    (older machines require fence register for display and blitter access
1746  *    as well). Contention of the fence registers will cause the previous users
1747  *    to be unmapped and any new access will generate new page faults.
1748  *
1749  *  * running out of memory while servicing a fault may generate a SIGBUS,
1750  *    rather than the expected SIGSEGV.
1751  */
1752 int i915_gem_mmap_gtt_version(void)
1753 {
1754 	return 1;
1755 }
1756 
1757 /**
1758  * i915_gem_fault - fault a page into the GTT
1759  * @area: CPU VMA in question
1760  * @vmf: fault info
1761  *
1762  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1763  * from userspace.  The fault handler takes care of binding the object to
1764  * the GTT (if needed), allocating and programming a fence register (again,
1765  * only if needed based on whether the old reg is still valid or the object
1766  * is tiled) and inserting a new PTE into the faulting process.
1767  *
1768  * Note that the faulting process may involve evicting existing objects
1769  * from the GTT and/or fence registers to make room.  So performance may
1770  * suffer if the GTT working set is large or there are few fence registers
1771  * left.
1772  *
1773  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1774  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1775  */
1776 int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1777 {
1778 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1779 	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1780 	struct drm_device *dev = obj->base.dev;
1781 	struct drm_i915_private *dev_priv = to_i915(dev);
1782 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1783 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1784 	struct i915_vma *vma;
1785 	pgoff_t page_offset;
1786 	unsigned int flags;
1787 	int ret;
1788 
1789 	/* We don't use vmf->pgoff since that has the fake offset */
1790 	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1791 
1792 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1793 
1794 	/* Try to flush the object off the GPU first without holding the lock.
1795 	 * Upon acquiring the lock, we will perform our sanity checks and then
1796 	 * repeat the flush holding the lock in the normal manner to catch cases
1797 	 * where we are gazumped.
1798 	 */
1799 	ret = i915_gem_object_wait(obj,
1800 				   I915_WAIT_INTERRUPTIBLE,
1801 				   MAX_SCHEDULE_TIMEOUT,
1802 				   NULL);
1803 	if (ret)
1804 		goto err;
1805 
1806 	ret = i915_gem_object_pin_pages(obj);
1807 	if (ret)
1808 		goto err;
1809 
1810 	intel_runtime_pm_get(dev_priv);
1811 
1812 	ret = i915_mutex_lock_interruptible(dev);
1813 	if (ret)
1814 		goto err_rpm;
1815 
1816 	/* Access to snoopable pages through the GTT is incoherent. */
1817 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1818 		ret = -EFAULT;
1819 		goto err_unlock;
1820 	}
1821 
1822 	/* If the object is smaller than a couple of partial vma, it is
1823 	 * not worth only creating a single partial vma - we may as well
1824 	 * clear enough space for the full object.
1825 	 */
1826 	flags = PIN_MAPPABLE;
1827 	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1828 		flags |= PIN_NONBLOCK | PIN_NONFAULT;
1829 
1830 	/* Now pin it into the GTT as needed */
1831 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1832 	if (IS_ERR(vma)) {
1833 		struct i915_ggtt_view view;
1834 		unsigned int chunk_size;
1835 
1836 		/* Use a partial view if it is bigger than available space */
1837 		chunk_size = MIN_CHUNK_PAGES;
1838 		if (i915_gem_object_is_tiled(obj))
1839 			chunk_size = roundup(chunk_size, tile_row_pages(obj));
1840 
1841 		memset(&view, 0, sizeof(view));
1842 		view.type = I915_GGTT_VIEW_PARTIAL;
1843 		view.params.partial.offset = rounddown(page_offset, chunk_size);
1844 		view.params.partial.size =
1845 			min_t(unsigned int, chunk_size,
1846 			      vma_pages(area) - view.params.partial.offset);
1847 
1848 		/* If the partial covers the entire object, just create a
1849 		 * normal VMA.
1850 		 */
1851 		if (chunk_size >= obj->base.size >> PAGE_SHIFT)
1852 			view.type = I915_GGTT_VIEW_NORMAL;
1853 
1854 		/* Userspace is now writing through an untracked VMA, abandon
1855 		 * all hope that the hardware is able to track future writes.
1856 		 */
1857 		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1858 
1859 		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1860 	}
1861 	if (IS_ERR(vma)) {
1862 		ret = PTR_ERR(vma);
1863 		goto err_unlock;
1864 	}
1865 
1866 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1867 	if (ret)
1868 		goto err_unpin;
1869 
1870 	ret = i915_vma_get_fence(vma);
1871 	if (ret)
1872 		goto err_unpin;
1873 
1874 	/* Mark as being mmapped into userspace for later revocation */
1875 	assert_rpm_wakelock_held(dev_priv);
1876 	if (list_empty(&obj->userfault_link))
1877 		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1878 
1879 	/* Finally, remap it using the new GTT offset */
1880 	ret = remap_io_mapping(area,
1881 			       area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
1882 			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1883 			       min_t(u64, vma->size, area->vm_end - area->vm_start),
1884 			       &ggtt->mappable);
1885 
1886 err_unpin:
1887 	__i915_vma_unpin(vma);
1888 err_unlock:
1889 	mutex_unlock(&dev->struct_mutex);
1890 err_rpm:
1891 	intel_runtime_pm_put(dev_priv);
1892 	i915_gem_object_unpin_pages(obj);
1893 err:
1894 	switch (ret) {
1895 	case -EIO:
1896 		/*
1897 		 * We eat errors when the gpu is terminally wedged to avoid
1898 		 * userspace unduly crashing (gl has no provisions for mmaps to
1899 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1900 		 * and so needs to be reported.
1901 		 */
1902 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1903 			ret = VM_FAULT_SIGBUS;
1904 			break;
1905 		}
1906 	case -EAGAIN:
1907 		/*
1908 		 * EAGAIN means the gpu is hung and we'll wait for the error
1909 		 * handler to reset everything when re-faulting in
1910 		 * i915_mutex_lock_interruptible.
1911 		 */
1912 	case 0:
1913 	case -ERESTARTSYS:
1914 	case -EINTR:
1915 	case -EBUSY:
1916 		/*
1917 		 * EBUSY is ok: this just means that another thread
1918 		 * already did the job.
1919 		 */
1920 		ret = VM_FAULT_NOPAGE;
1921 		break;
1922 	case -ENOMEM:
1923 		ret = VM_FAULT_OOM;
1924 		break;
1925 	case -ENOSPC:
1926 	case -EFAULT:
1927 		ret = VM_FAULT_SIGBUS;
1928 		break;
1929 	default:
1930 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1931 		ret = VM_FAULT_SIGBUS;
1932 		break;
1933 	}
1934 	return ret;
1935 }
1936 
1937 /**
1938  * i915_gem_release_mmap - remove physical page mappings
1939  * @obj: obj in question
1940  *
1941  * Preserve the reservation of the mmapping with the DRM core code, but
1942  * relinquish ownership of the pages back to the system.
1943  *
1944  * It is vital that we remove the page mapping if we have mapped a tiled
1945  * object through the GTT and then lose the fence register due to
1946  * resource pressure. Similarly if the object has been moved out of the
1947  * aperture, than pages mapped into userspace must be revoked. Removing the
1948  * mapping will then trigger a page fault on the next user access, allowing
1949  * fixup by i915_gem_fault().
1950  */
1951 void
1952 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1953 {
1954 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1955 
1956 	/* Serialisation between user GTT access and our code depends upon
1957 	 * revoking the CPU's PTE whilst the mutex is held. The next user
1958 	 * pagefault then has to wait until we release the mutex.
1959 	 *
1960 	 * Note that RPM complicates somewhat by adding an additional
1961 	 * requirement that operations to the GGTT be made holding the RPM
1962 	 * wakeref.
1963 	 */
1964 	lockdep_assert_held(&i915->drm.struct_mutex);
1965 	intel_runtime_pm_get(i915);
1966 
1967 	if (list_empty(&obj->userfault_link))
1968 		goto out;
1969 
1970 	list_del_init(&obj->userfault_link);
1971 	drm_vma_node_unmap(&obj->base.vma_node,
1972 			   obj->base.dev->anon_inode->i_mapping);
1973 
1974 	/* Ensure that the CPU's PTE are revoked and there are not outstanding
1975 	 * memory transactions from userspace before we return. The TLB
1976 	 * flushing implied above by changing the PTE above *should* be
1977 	 * sufficient, an extra barrier here just provides us with a bit
1978 	 * of paranoid documentation about our requirement to serialise
1979 	 * memory writes before touching registers / GSM.
1980 	 */
1981 	wmb();
1982 
1983 out:
1984 	intel_runtime_pm_put(i915);
1985 }
1986 
1987 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
1988 {
1989 	struct drm_i915_gem_object *obj, *on;
1990 	int i;
1991 
1992 	/*
1993 	 * Only called during RPM suspend. All users of the userfault_list
1994 	 * must be holding an RPM wakeref to ensure that this can not
1995 	 * run concurrently with themselves (and use the struct_mutex for
1996 	 * protection between themselves).
1997 	 */
1998 
1999 	list_for_each_entry_safe(obj, on,
2000 				 &dev_priv->mm.userfault_list, userfault_link) {
2001 		list_del_init(&obj->userfault_link);
2002 		drm_vma_node_unmap(&obj->base.vma_node,
2003 				   obj->base.dev->anon_inode->i_mapping);
2004 	}
2005 
2006 	/* The fence will be lost when the device powers down. If any were
2007 	 * in use by hardware (i.e. they are pinned), we should not be powering
2008 	 * down! All other fences will be reacquired by the user upon waking.
2009 	 */
2010 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2011 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2012 
2013 		/* Ideally we want to assert that the fence register is not
2014 		 * live at this point (i.e. that no piece of code will be
2015 		 * trying to write through fence + GTT, as that both violates
2016 		 * our tracking of activity and associated locking/barriers,
2017 		 * but also is illegal given that the hw is powered down).
2018 		 *
2019 		 * Previously we used reg->pin_count as a "liveness" indicator.
2020 		 * That is not sufficient, and we need a more fine-grained
2021 		 * tool if we want to have a sanity check here.
2022 		 */
2023 
2024 		if (!reg->vma)
2025 			continue;
2026 
2027 		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2028 		reg->dirty = true;
2029 	}
2030 }
2031 
2032 /**
2033  * i915_gem_get_ggtt_size - return required global GTT size for an object
2034  * @dev_priv: i915 device
2035  * @size: object size
2036  * @tiling_mode: tiling mode
2037  *
2038  * Return the required global GTT size for an object, taking into account
2039  * potential fence register mapping.
2040  */
2041 u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
2042 			   u64 size, int tiling_mode)
2043 {
2044 	u64 ggtt_size;
2045 
2046 	GEM_BUG_ON(size == 0);
2047 
2048 	if (INTEL_GEN(dev_priv) >= 4 ||
2049 	    tiling_mode == I915_TILING_NONE)
2050 		return size;
2051 
2052 	/* Previous chips need a power-of-two fence region when tiling */
2053 	if (IS_GEN3(dev_priv))
2054 		ggtt_size = 1024*1024;
2055 	else
2056 		ggtt_size = 512*1024;
2057 
2058 	while (ggtt_size < size)
2059 		ggtt_size <<= 1;
2060 
2061 	return ggtt_size;
2062 }
2063 
2064 /**
2065  * i915_gem_get_ggtt_alignment - return required global GTT alignment
2066  * @dev_priv: i915 device
2067  * @size: object size
2068  * @tiling_mode: tiling mode
2069  * @fenced: is fenced alignment required or not
2070  *
2071  * Return the required global GTT alignment for an object, taking into account
2072  * potential fence register mapping.
2073  */
2074 u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
2075 				int tiling_mode, bool fenced)
2076 {
2077 	GEM_BUG_ON(size == 0);
2078 
2079 	/*
2080 	 * Minimum alignment is 4k (GTT page size), but might be greater
2081 	 * if a fence register is needed for the object.
2082 	 */
2083 	if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
2084 	    tiling_mode == I915_TILING_NONE)
2085 		return 4096;
2086 
2087 	/*
2088 	 * Previous chips need to be aligned to the size of the smallest
2089 	 * fence register that can contain the object.
2090 	 */
2091 	return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
2092 }
2093 
2094 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2095 {
2096 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2097 	int err;
2098 
2099 	err = drm_gem_create_mmap_offset(&obj->base);
2100 	if (!err)
2101 		return 0;
2102 
2103 	/* We can idle the GPU locklessly to flush stale objects, but in order
2104 	 * to claim that space for ourselves, we need to take the big
2105 	 * struct_mutex to free the requests+objects and allocate our slot.
2106 	 */
2107 	err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2108 	if (err)
2109 		return err;
2110 
2111 	err = i915_mutex_lock_interruptible(&dev_priv->drm);
2112 	if (!err) {
2113 		i915_gem_retire_requests(dev_priv);
2114 		err = drm_gem_create_mmap_offset(&obj->base);
2115 		mutex_unlock(&dev_priv->drm.struct_mutex);
2116 	}
2117 
2118 	return err;
2119 }
2120 
2121 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2122 {
2123 	drm_gem_free_mmap_offset(&obj->base);
2124 }
2125 
2126 int
2127 i915_gem_mmap_gtt(struct drm_file *file,
2128 		  struct drm_device *dev,
2129 		  uint32_t handle,
2130 		  uint64_t *offset)
2131 {
2132 	struct drm_i915_gem_object *obj;
2133 	int ret;
2134 
2135 	obj = i915_gem_object_lookup(file, handle);
2136 	if (!obj)
2137 		return -ENOENT;
2138 
2139 	ret = i915_gem_object_create_mmap_offset(obj);
2140 	if (ret == 0)
2141 		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2142 
2143 	i915_gem_object_put(obj);
2144 	return ret;
2145 }
2146 
2147 /**
2148  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2149  * @dev: DRM device
2150  * @data: GTT mapping ioctl data
2151  * @file: GEM object info
2152  *
2153  * Simply returns the fake offset to userspace so it can mmap it.
2154  * The mmap call will end up in drm_gem_mmap(), which will set things
2155  * up so we can get faults in the handler above.
2156  *
2157  * The fault handler will take care of binding the object into the GTT
2158  * (since it may have been evicted to make room for something), allocating
2159  * a fence register, and mapping the appropriate aperture address into
2160  * userspace.
2161  */
2162 int
2163 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2164 			struct drm_file *file)
2165 {
2166 	struct drm_i915_gem_mmap_gtt *args = data;
2167 
2168 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2169 }
2170 
2171 /* Immediately discard the backing storage */
2172 static void
2173 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2174 {
2175 	i915_gem_object_free_mmap_offset(obj);
2176 
2177 	if (obj->base.filp == NULL)
2178 		return;
2179 
2180 	/* Our goal here is to return as much of the memory as
2181 	 * is possible back to the system as we are called from OOM.
2182 	 * To do this we must instruct the shmfs to drop all of its
2183 	 * backing pages, *now*.
2184 	 */
2185 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2186 	obj->mm.madv = __I915_MADV_PURGED;
2187 }
2188 
2189 /* Try to discard unwanted pages */
2190 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2191 {
2192 	struct address_space *mapping;
2193 
2194 	lockdep_assert_held(&obj->mm.lock);
2195 	GEM_BUG_ON(obj->mm.pages);
2196 
2197 	switch (obj->mm.madv) {
2198 	case I915_MADV_DONTNEED:
2199 		i915_gem_object_truncate(obj);
2200 	case __I915_MADV_PURGED:
2201 		return;
2202 	}
2203 
2204 	if (obj->base.filp == NULL)
2205 		return;
2206 
2207 	mapping = obj->base.filp->f_mapping,
2208 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2209 }
2210 
2211 static void
2212 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2213 			      struct sg_table *pages)
2214 {
2215 	struct sgt_iter sgt_iter;
2216 	struct page *page;
2217 
2218 	__i915_gem_object_release_shmem(obj, pages, true);
2219 
2220 	i915_gem_gtt_finish_pages(obj, pages);
2221 
2222 	if (i915_gem_object_needs_bit17_swizzle(obj))
2223 		i915_gem_object_save_bit_17_swizzle(obj, pages);
2224 
2225 	for_each_sgt_page(page, sgt_iter, pages) {
2226 		if (obj->mm.dirty)
2227 			set_page_dirty(page);
2228 
2229 		if (obj->mm.madv == I915_MADV_WILLNEED)
2230 			mark_page_accessed(page);
2231 
2232 		put_page(page);
2233 	}
2234 	obj->mm.dirty = false;
2235 
2236 	sg_free_table(pages);
2237 	kfree(pages);
2238 }
2239 
2240 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2241 {
2242 	struct radix_tree_iter iter;
2243 	void **slot;
2244 
2245 	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2246 		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2247 }
2248 
2249 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2250 				 enum i915_mm_subclass subclass)
2251 {
2252 	struct sg_table *pages;
2253 
2254 	if (i915_gem_object_has_pinned_pages(obj))
2255 		return;
2256 
2257 	GEM_BUG_ON(obj->bind_count);
2258 	if (!READ_ONCE(obj->mm.pages))
2259 		return;
2260 
2261 	/* May be called by shrinker from within get_pages() (on another bo) */
2262 	mutex_lock_nested(&obj->mm.lock, subclass);
2263 	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2264 		goto unlock;
2265 
2266 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2267 	 * array, hence protect them from being reaped by removing them from gtt
2268 	 * lists early. */
2269 	pages = fetch_and_zero(&obj->mm.pages);
2270 	GEM_BUG_ON(!pages);
2271 
2272 	if (obj->mm.mapping) {
2273 		void *ptr;
2274 
2275 		ptr = ptr_mask_bits(obj->mm.mapping);
2276 		if (is_vmalloc_addr(ptr))
2277 			vunmap(ptr);
2278 		else
2279 			kunmap(kmap_to_page(ptr));
2280 
2281 		obj->mm.mapping = NULL;
2282 	}
2283 
2284 	__i915_gem_object_reset_page_iter(obj);
2285 
2286 	obj->ops->put_pages(obj, pages);
2287 unlock:
2288 	mutex_unlock(&obj->mm.lock);
2289 }
2290 
2291 static void i915_sg_trim(struct sg_table *orig_st)
2292 {
2293 	struct sg_table new_st;
2294 	struct scatterlist *sg, *new_sg;
2295 	unsigned int i;
2296 
2297 	if (orig_st->nents == orig_st->orig_nents)
2298 		return;
2299 
2300 	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2301 		return;
2302 
2303 	new_sg = new_st.sgl;
2304 	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2305 		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2306 		/* called before being DMA mapped, no need to copy sg->dma_* */
2307 		new_sg = sg_next(new_sg);
2308 	}
2309 
2310 	sg_free_table(orig_st);
2311 
2312 	*orig_st = new_st;
2313 }
2314 
2315 static struct sg_table *
2316 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2317 {
2318 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2319 	const unsigned long page_count = obj->base.size / PAGE_SIZE;
2320 	unsigned long i;
2321 	struct address_space *mapping;
2322 	struct sg_table *st;
2323 	struct scatterlist *sg;
2324 	struct sgt_iter sgt_iter;
2325 	struct page *page;
2326 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2327 	unsigned int max_segment;
2328 	int ret;
2329 	gfp_t gfp;
2330 
2331 	/* Assert that the object is not currently in any GPU domain. As it
2332 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2333 	 * a GPU cache
2334 	 */
2335 	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2336 	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2337 
2338 	max_segment = swiotlb_max_segment();
2339 	if (!max_segment)
2340 		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2341 
2342 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2343 	if (st == NULL)
2344 		return ERR_PTR(-ENOMEM);
2345 
2346 rebuild_st:
2347 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2348 		kfree(st);
2349 		return ERR_PTR(-ENOMEM);
2350 	}
2351 
2352 	/* Get the list of pages out of our struct file.  They'll be pinned
2353 	 * at this point until we release them.
2354 	 *
2355 	 * Fail silently without starting the shrinker
2356 	 */
2357 	mapping = obj->base.filp->f_mapping;
2358 	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2359 	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2360 	sg = st->sgl;
2361 	st->nents = 0;
2362 	for (i = 0; i < page_count; i++) {
2363 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2364 		if (IS_ERR(page)) {
2365 			i915_gem_shrink(dev_priv,
2366 					page_count,
2367 					I915_SHRINK_BOUND |
2368 					I915_SHRINK_UNBOUND |
2369 					I915_SHRINK_PURGEABLE);
2370 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2371 		}
2372 		if (IS_ERR(page)) {
2373 			/* We've tried hard to allocate the memory by reaping
2374 			 * our own buffer, now let the real VM do its job and
2375 			 * go down in flames if truly OOM.
2376 			 */
2377 			page = shmem_read_mapping_page(mapping, i);
2378 			if (IS_ERR(page)) {
2379 				ret = PTR_ERR(page);
2380 				goto err_sg;
2381 			}
2382 		}
2383 		if (!i ||
2384 		    sg->length >= max_segment ||
2385 		    page_to_pfn(page) != last_pfn + 1) {
2386 			if (i)
2387 				sg = sg_next(sg);
2388 			st->nents++;
2389 			sg_set_page(sg, page, PAGE_SIZE, 0);
2390 		} else {
2391 			sg->length += PAGE_SIZE;
2392 		}
2393 		last_pfn = page_to_pfn(page);
2394 
2395 		/* Check that the i965g/gm workaround works. */
2396 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2397 	}
2398 	if (sg) /* loop terminated early; short sg table */
2399 		sg_mark_end(sg);
2400 
2401 	/* Trim unused sg entries to avoid wasting memory. */
2402 	i915_sg_trim(st);
2403 
2404 	ret = i915_gem_gtt_prepare_pages(obj, st);
2405 	if (ret) {
2406 		/* DMA remapping failed? One possible cause is that
2407 		 * it could not reserve enough large entries, asking
2408 		 * for PAGE_SIZE chunks instead may be helpful.
2409 		 */
2410 		if (max_segment > PAGE_SIZE) {
2411 			for_each_sgt_page(page, sgt_iter, st)
2412 				put_page(page);
2413 			sg_free_table(st);
2414 
2415 			max_segment = PAGE_SIZE;
2416 			goto rebuild_st;
2417 		} else {
2418 			dev_warn(&dev_priv->drm.pdev->dev,
2419 				 "Failed to DMA remap %lu pages\n",
2420 				 page_count);
2421 			goto err_pages;
2422 		}
2423 	}
2424 
2425 	if (i915_gem_object_needs_bit17_swizzle(obj))
2426 		i915_gem_object_do_bit_17_swizzle(obj, st);
2427 
2428 	return st;
2429 
2430 err_sg:
2431 	sg_mark_end(sg);
2432 err_pages:
2433 	for_each_sgt_page(page, sgt_iter, st)
2434 		put_page(page);
2435 	sg_free_table(st);
2436 	kfree(st);
2437 
2438 	/* shmemfs first checks if there is enough memory to allocate the page
2439 	 * and reports ENOSPC should there be insufficient, along with the usual
2440 	 * ENOMEM for a genuine allocation failure.
2441 	 *
2442 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2443 	 * space and so want to translate the error from shmemfs back to our
2444 	 * usual understanding of ENOMEM.
2445 	 */
2446 	if (ret == -ENOSPC)
2447 		ret = -ENOMEM;
2448 
2449 	return ERR_PTR(ret);
2450 }
2451 
2452 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2453 				 struct sg_table *pages)
2454 {
2455 	lockdep_assert_held(&obj->mm.lock);
2456 
2457 	obj->mm.get_page.sg_pos = pages->sgl;
2458 	obj->mm.get_page.sg_idx = 0;
2459 
2460 	obj->mm.pages = pages;
2461 
2462 	if (i915_gem_object_is_tiled(obj) &&
2463 	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2464 		GEM_BUG_ON(obj->mm.quirked);
2465 		__i915_gem_object_pin_pages(obj);
2466 		obj->mm.quirked = true;
2467 	}
2468 }
2469 
2470 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2471 {
2472 	struct sg_table *pages;
2473 
2474 	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2475 
2476 	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2477 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2478 		return -EFAULT;
2479 	}
2480 
2481 	pages = obj->ops->get_pages(obj);
2482 	if (unlikely(IS_ERR(pages)))
2483 		return PTR_ERR(pages);
2484 
2485 	__i915_gem_object_set_pages(obj, pages);
2486 	return 0;
2487 }
2488 
2489 /* Ensure that the associated pages are gathered from the backing storage
2490  * and pinned into our object. i915_gem_object_pin_pages() may be called
2491  * multiple times before they are released by a single call to
2492  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2493  * either as a result of memory pressure (reaping pages under the shrinker)
2494  * or as the object is itself released.
2495  */
2496 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2497 {
2498 	int err;
2499 
2500 	err = mutex_lock_interruptible(&obj->mm.lock);
2501 	if (err)
2502 		return err;
2503 
2504 	if (unlikely(!obj->mm.pages)) {
2505 		err = ____i915_gem_object_get_pages(obj);
2506 		if (err)
2507 			goto unlock;
2508 
2509 		smp_mb__before_atomic();
2510 	}
2511 	atomic_inc(&obj->mm.pages_pin_count);
2512 
2513 unlock:
2514 	mutex_unlock(&obj->mm.lock);
2515 	return err;
2516 }
2517 
2518 /* The 'mapping' part of i915_gem_object_pin_map() below */
2519 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2520 				 enum i915_map_type type)
2521 {
2522 	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2523 	struct sg_table *sgt = obj->mm.pages;
2524 	struct sgt_iter sgt_iter;
2525 	struct page *page;
2526 	struct page *stack_pages[32];
2527 	struct page **pages = stack_pages;
2528 	unsigned long i = 0;
2529 	pgprot_t pgprot;
2530 	void *addr;
2531 
2532 	/* A single page can always be kmapped */
2533 	if (n_pages == 1 && type == I915_MAP_WB)
2534 		return kmap(sg_page(sgt->sgl));
2535 
2536 	if (n_pages > ARRAY_SIZE(stack_pages)) {
2537 		/* Too big for stack -- allocate temporary array instead */
2538 		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2539 		if (!pages)
2540 			return NULL;
2541 	}
2542 
2543 	for_each_sgt_page(page, sgt_iter, sgt)
2544 		pages[i++] = page;
2545 
2546 	/* Check that we have the expected number of pages */
2547 	GEM_BUG_ON(i != n_pages);
2548 
2549 	switch (type) {
2550 	case I915_MAP_WB:
2551 		pgprot = PAGE_KERNEL;
2552 		break;
2553 	case I915_MAP_WC:
2554 		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2555 		break;
2556 	}
2557 	addr = vmap(pages, n_pages, 0, pgprot);
2558 
2559 	if (pages != stack_pages)
2560 		drm_free_large(pages);
2561 
2562 	return addr;
2563 }
2564 
2565 /* get, pin, and map the pages of the object into kernel space */
2566 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2567 			      enum i915_map_type type)
2568 {
2569 	enum i915_map_type has_type;
2570 	bool pinned;
2571 	void *ptr;
2572 	int ret;
2573 
2574 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2575 
2576 	ret = mutex_lock_interruptible(&obj->mm.lock);
2577 	if (ret)
2578 		return ERR_PTR(ret);
2579 
2580 	pinned = true;
2581 	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2582 		if (unlikely(!obj->mm.pages)) {
2583 			ret = ____i915_gem_object_get_pages(obj);
2584 			if (ret)
2585 				goto err_unlock;
2586 
2587 			smp_mb__before_atomic();
2588 		}
2589 		atomic_inc(&obj->mm.pages_pin_count);
2590 		pinned = false;
2591 	}
2592 	GEM_BUG_ON(!obj->mm.pages);
2593 
2594 	ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2595 	if (ptr && has_type != type) {
2596 		if (pinned) {
2597 			ret = -EBUSY;
2598 			goto err_unpin;
2599 		}
2600 
2601 		if (is_vmalloc_addr(ptr))
2602 			vunmap(ptr);
2603 		else
2604 			kunmap(kmap_to_page(ptr));
2605 
2606 		ptr = obj->mm.mapping = NULL;
2607 	}
2608 
2609 	if (!ptr) {
2610 		ptr = i915_gem_object_map(obj, type);
2611 		if (!ptr) {
2612 			ret = -ENOMEM;
2613 			goto err_unpin;
2614 		}
2615 
2616 		obj->mm.mapping = ptr_pack_bits(ptr, type);
2617 	}
2618 
2619 out_unlock:
2620 	mutex_unlock(&obj->mm.lock);
2621 	return ptr;
2622 
2623 err_unpin:
2624 	atomic_dec(&obj->mm.pages_pin_count);
2625 err_unlock:
2626 	ptr = ERR_PTR(ret);
2627 	goto out_unlock;
2628 }
2629 
2630 static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2631 {
2632 	unsigned long elapsed;
2633 
2634 	if (ctx->hang_stats.banned)
2635 		return true;
2636 
2637 	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2638 	if (ctx->hang_stats.ban_period_seconds &&
2639 	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2640 		DRM_DEBUG("context hanging too fast, banning!\n");
2641 		return true;
2642 	}
2643 
2644 	return false;
2645 }
2646 
2647 static void i915_set_reset_status(struct i915_gem_context *ctx,
2648 				  const bool guilty)
2649 {
2650 	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2651 
2652 	if (guilty) {
2653 		hs->banned = i915_context_is_banned(ctx);
2654 		hs->batch_active++;
2655 		hs->guilty_ts = get_seconds();
2656 	} else {
2657 		hs->batch_pending++;
2658 	}
2659 }
2660 
2661 struct drm_i915_gem_request *
2662 i915_gem_find_active_request(struct intel_engine_cs *engine)
2663 {
2664 	struct drm_i915_gem_request *request;
2665 
2666 	/* We are called by the error capture and reset at a random
2667 	 * point in time. In particular, note that neither is crucially
2668 	 * ordered with an interrupt. After a hang, the GPU is dead and we
2669 	 * assume that no more writes can happen (we waited long enough for
2670 	 * all writes that were in transaction to be flushed) - adding an
2671 	 * extra delay for a recent interrupt is pointless. Hence, we do
2672 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2673 	 */
2674 	list_for_each_entry(request, &engine->timeline->requests, link) {
2675 		if (__i915_gem_request_completed(request))
2676 			continue;
2677 
2678 		return request;
2679 	}
2680 
2681 	return NULL;
2682 }
2683 
2684 static void reset_request(struct drm_i915_gem_request *request)
2685 {
2686 	void *vaddr = request->ring->vaddr;
2687 	u32 head;
2688 
2689 	/* As this request likely depends on state from the lost
2690 	 * context, clear out all the user operations leaving the
2691 	 * breadcrumb at the end (so we get the fence notifications).
2692 	 */
2693 	head = request->head;
2694 	if (request->postfix < head) {
2695 		memset(vaddr + head, 0, request->ring->size - head);
2696 		head = 0;
2697 	}
2698 	memset(vaddr + head, 0, request->postfix - head);
2699 }
2700 
2701 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2702 {
2703 	struct drm_i915_gem_request *request;
2704 	struct i915_gem_context *incomplete_ctx;
2705 	struct intel_timeline *timeline;
2706 	unsigned long flags;
2707 	bool ring_hung;
2708 
2709 	if (engine->irq_seqno_barrier)
2710 		engine->irq_seqno_barrier(engine);
2711 
2712 	request = i915_gem_find_active_request(engine);
2713 	if (!request)
2714 		return;
2715 
2716 	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2717 	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine))
2718 		ring_hung = false;
2719 
2720 	i915_set_reset_status(request->ctx, ring_hung);
2721 	if (!ring_hung)
2722 		return;
2723 
2724 	DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2725 			 engine->name, request->global_seqno);
2726 
2727 	/* Setup the CS to resume from the breadcrumb of the hung request */
2728 	engine->reset_hw(engine, request);
2729 
2730 	/* Users of the default context do not rely on logical state
2731 	 * preserved between batches. They have to emit full state on
2732 	 * every batch and so it is safe to execute queued requests following
2733 	 * the hang.
2734 	 *
2735 	 * Other contexts preserve state, now corrupt. We want to skip all
2736 	 * queued requests that reference the corrupt context.
2737 	 */
2738 	incomplete_ctx = request->ctx;
2739 	if (i915_gem_context_is_default(incomplete_ctx))
2740 		return;
2741 
2742 	timeline = i915_gem_context_lookup_timeline(incomplete_ctx, engine);
2743 
2744 	spin_lock_irqsave(&engine->timeline->lock, flags);
2745 	spin_lock(&timeline->lock);
2746 
2747 	list_for_each_entry_continue(request, &engine->timeline->requests, link)
2748 		if (request->ctx == incomplete_ctx)
2749 			reset_request(request);
2750 
2751 	list_for_each_entry(request, &timeline->requests, link)
2752 		reset_request(request);
2753 
2754 	spin_unlock(&timeline->lock);
2755 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2756 }
2757 
2758 void i915_gem_reset(struct drm_i915_private *dev_priv)
2759 {
2760 	struct intel_engine_cs *engine;
2761 	enum intel_engine_id id;
2762 
2763 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2764 
2765 	i915_gem_retire_requests(dev_priv);
2766 
2767 	for_each_engine(engine, dev_priv, id)
2768 		i915_gem_reset_engine(engine);
2769 
2770 	i915_gem_restore_fences(dev_priv);
2771 
2772 	if (dev_priv->gt.awake) {
2773 		intel_sanitize_gt_powersave(dev_priv);
2774 		intel_enable_gt_powersave(dev_priv);
2775 		if (INTEL_GEN(dev_priv) >= 6)
2776 			gen6_rps_busy(dev_priv);
2777 	}
2778 }
2779 
2780 static void nop_submit_request(struct drm_i915_gem_request *request)
2781 {
2782 	i915_gem_request_submit(request);
2783 	intel_engine_init_global_seqno(request->engine, request->global_seqno);
2784 }
2785 
2786 static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
2787 {
2788 	engine->submit_request = nop_submit_request;
2789 
2790 	/* Mark all pending requests as complete so that any concurrent
2791 	 * (lockless) lookup doesn't try and wait upon the request as we
2792 	 * reset it.
2793 	 */
2794 	intel_engine_init_global_seqno(engine,
2795 				       intel_engine_last_submit(engine));
2796 
2797 	/*
2798 	 * Clear the execlists queue up before freeing the requests, as those
2799 	 * are the ones that keep the context and ringbuffer backing objects
2800 	 * pinned in place.
2801 	 */
2802 
2803 	if (i915.enable_execlists) {
2804 		unsigned long flags;
2805 
2806 		spin_lock_irqsave(&engine->timeline->lock, flags);
2807 
2808 		i915_gem_request_put(engine->execlist_port[0].request);
2809 		i915_gem_request_put(engine->execlist_port[1].request);
2810 		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2811 		engine->execlist_queue = RB_ROOT;
2812 		engine->execlist_first = NULL;
2813 
2814 		spin_unlock_irqrestore(&engine->timeline->lock, flags);
2815 	}
2816 }
2817 
2818 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2819 {
2820 	struct intel_engine_cs *engine;
2821 	enum intel_engine_id id;
2822 
2823 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2824 	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2825 
2826 	i915_gem_context_lost(dev_priv);
2827 	for_each_engine(engine, dev_priv, id)
2828 		i915_gem_cleanup_engine(engine);
2829 	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2830 
2831 	i915_gem_retire_requests(dev_priv);
2832 }
2833 
2834 static void
2835 i915_gem_retire_work_handler(struct work_struct *work)
2836 {
2837 	struct drm_i915_private *dev_priv =
2838 		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2839 	struct drm_device *dev = &dev_priv->drm;
2840 
2841 	/* Come back later if the device is busy... */
2842 	if (mutex_trylock(&dev->struct_mutex)) {
2843 		i915_gem_retire_requests(dev_priv);
2844 		mutex_unlock(&dev->struct_mutex);
2845 	}
2846 
2847 	/* Keep the retire handler running until we are finally idle.
2848 	 * We do not need to do this test under locking as in the worst-case
2849 	 * we queue the retire worker once too often.
2850 	 */
2851 	if (READ_ONCE(dev_priv->gt.awake)) {
2852 		i915_queue_hangcheck(dev_priv);
2853 		queue_delayed_work(dev_priv->wq,
2854 				   &dev_priv->gt.retire_work,
2855 				   round_jiffies_up_relative(HZ));
2856 	}
2857 }
2858 
2859 static void
2860 i915_gem_idle_work_handler(struct work_struct *work)
2861 {
2862 	struct drm_i915_private *dev_priv =
2863 		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2864 	struct drm_device *dev = &dev_priv->drm;
2865 	struct intel_engine_cs *engine;
2866 	enum intel_engine_id id;
2867 	bool rearm_hangcheck;
2868 
2869 	if (!READ_ONCE(dev_priv->gt.awake))
2870 		return;
2871 
2872 	/*
2873 	 * Wait for last execlists context complete, but bail out in case a
2874 	 * new request is submitted.
2875 	 */
2876 	wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
2877 		 intel_execlists_idle(dev_priv), 10);
2878 
2879 	if (READ_ONCE(dev_priv->gt.active_requests))
2880 		return;
2881 
2882 	rearm_hangcheck =
2883 		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2884 
2885 	if (!mutex_trylock(&dev->struct_mutex)) {
2886 		/* Currently busy, come back later */
2887 		mod_delayed_work(dev_priv->wq,
2888 				 &dev_priv->gt.idle_work,
2889 				 msecs_to_jiffies(50));
2890 		goto out_rearm;
2891 	}
2892 
2893 	/*
2894 	 * New request retired after this work handler started, extend active
2895 	 * period until next instance of the work.
2896 	 */
2897 	if (work_pending(work))
2898 		goto out_unlock;
2899 
2900 	if (dev_priv->gt.active_requests)
2901 		goto out_unlock;
2902 
2903 	if (wait_for(intel_execlists_idle(dev_priv), 10))
2904 		DRM_ERROR("Timeout waiting for engines to idle\n");
2905 
2906 	for_each_engine(engine, dev_priv, id)
2907 		i915_gem_batch_pool_fini(&engine->batch_pool);
2908 
2909 	GEM_BUG_ON(!dev_priv->gt.awake);
2910 	dev_priv->gt.awake = false;
2911 	rearm_hangcheck = false;
2912 
2913 	if (INTEL_GEN(dev_priv) >= 6)
2914 		gen6_rps_idle(dev_priv);
2915 	intel_runtime_pm_put(dev_priv);
2916 out_unlock:
2917 	mutex_unlock(&dev->struct_mutex);
2918 
2919 out_rearm:
2920 	if (rearm_hangcheck) {
2921 		GEM_BUG_ON(!dev_priv->gt.awake);
2922 		i915_queue_hangcheck(dev_priv);
2923 	}
2924 }
2925 
2926 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2927 {
2928 	struct drm_i915_gem_object *obj = to_intel_bo(gem);
2929 	struct drm_i915_file_private *fpriv = file->driver_priv;
2930 	struct i915_vma *vma, *vn;
2931 
2932 	mutex_lock(&obj->base.dev->struct_mutex);
2933 	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2934 		if (vma->vm->file == fpriv)
2935 			i915_vma_close(vma);
2936 
2937 	if (i915_gem_object_is_active(obj) &&
2938 	    !i915_gem_object_has_active_reference(obj)) {
2939 		i915_gem_object_set_active_reference(obj);
2940 		i915_gem_object_get(obj);
2941 	}
2942 	mutex_unlock(&obj->base.dev->struct_mutex);
2943 }
2944 
2945 static unsigned long to_wait_timeout(s64 timeout_ns)
2946 {
2947 	if (timeout_ns < 0)
2948 		return MAX_SCHEDULE_TIMEOUT;
2949 
2950 	if (timeout_ns == 0)
2951 		return 0;
2952 
2953 	return nsecs_to_jiffies_timeout(timeout_ns);
2954 }
2955 
2956 /**
2957  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2958  * @dev: drm device pointer
2959  * @data: ioctl data blob
2960  * @file: drm file pointer
2961  *
2962  * Returns 0 if successful, else an error is returned with the remaining time in
2963  * the timeout parameter.
2964  *  -ETIME: object is still busy after timeout
2965  *  -ERESTARTSYS: signal interrupted the wait
2966  *  -ENONENT: object doesn't exist
2967  * Also possible, but rare:
2968  *  -EAGAIN: GPU wedged
2969  *  -ENOMEM: damn
2970  *  -ENODEV: Internal IRQ fail
2971  *  -E?: The add request failed
2972  *
2973  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2974  * non-zero timeout parameter the wait ioctl will wait for the given number of
2975  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2976  * without holding struct_mutex the object may become re-busied before this
2977  * function completes. A similar but shorter * race condition exists in the busy
2978  * ioctl
2979  */
2980 int
2981 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2982 {
2983 	struct drm_i915_gem_wait *args = data;
2984 	struct drm_i915_gem_object *obj;
2985 	ktime_t start;
2986 	long ret;
2987 
2988 	if (args->flags != 0)
2989 		return -EINVAL;
2990 
2991 	obj = i915_gem_object_lookup(file, args->bo_handle);
2992 	if (!obj)
2993 		return -ENOENT;
2994 
2995 	start = ktime_get();
2996 
2997 	ret = i915_gem_object_wait(obj,
2998 				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
2999 				   to_wait_timeout(args->timeout_ns),
3000 				   to_rps_client(file));
3001 
3002 	if (args->timeout_ns > 0) {
3003 		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3004 		if (args->timeout_ns < 0)
3005 			args->timeout_ns = 0;
3006 	}
3007 
3008 	i915_gem_object_put(obj);
3009 	return ret;
3010 }
3011 
3012 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3013 {
3014 	int ret, i;
3015 
3016 	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3017 		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3018 		if (ret)
3019 			return ret;
3020 	}
3021 
3022 	return 0;
3023 }
3024 
3025 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3026 {
3027 	int ret;
3028 
3029 	if (flags & I915_WAIT_LOCKED) {
3030 		struct i915_gem_timeline *tl;
3031 
3032 		lockdep_assert_held(&i915->drm.struct_mutex);
3033 
3034 		list_for_each_entry(tl, &i915->gt.timelines, link) {
3035 			ret = wait_for_timeline(tl, flags);
3036 			if (ret)
3037 				return ret;
3038 		}
3039 	} else {
3040 		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3041 		if (ret)
3042 			return ret;
3043 	}
3044 
3045 	return 0;
3046 }
3047 
3048 void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3049 			     bool force)
3050 {
3051 	/* If we don't have a page list set up, then we're not pinned
3052 	 * to GPU, and we can ignore the cache flush because it'll happen
3053 	 * again at bind time.
3054 	 */
3055 	if (!obj->mm.pages)
3056 		return;
3057 
3058 	/*
3059 	 * Stolen memory is always coherent with the GPU as it is explicitly
3060 	 * marked as wc by the system, or the system is cache-coherent.
3061 	 */
3062 	if (obj->stolen || obj->phys_handle)
3063 		return;
3064 
3065 	/* If the GPU is snooping the contents of the CPU cache,
3066 	 * we do not need to manually clear the CPU cache lines.  However,
3067 	 * the caches are only snooped when the render cache is
3068 	 * flushed/invalidated.  As we always have to emit invalidations
3069 	 * and flushes when moving into and out of the RENDER domain, correct
3070 	 * snooping behaviour occurs naturally as the result of our domain
3071 	 * tracking.
3072 	 */
3073 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3074 		obj->cache_dirty = true;
3075 		return;
3076 	}
3077 
3078 	trace_i915_gem_object_clflush(obj);
3079 	drm_clflush_sg(obj->mm.pages);
3080 	obj->cache_dirty = false;
3081 }
3082 
3083 /** Flushes the GTT write domain for the object if it's dirty. */
3084 static void
3085 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3086 {
3087 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3088 
3089 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3090 		return;
3091 
3092 	/* No actual flushing is required for the GTT write domain.  Writes
3093 	 * to it "immediately" go to main memory as far as we know, so there's
3094 	 * no chipset flush.  It also doesn't land in render cache.
3095 	 *
3096 	 * However, we do have to enforce the order so that all writes through
3097 	 * the GTT land before any writes to the device, such as updates to
3098 	 * the GATT itself.
3099 	 *
3100 	 * We also have to wait a bit for the writes to land from the GTT.
3101 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3102 	 * timing. This issue has only been observed when switching quickly
3103 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
3104 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
3105 	 * system agents we cannot reproduce this behaviour).
3106 	 */
3107 	wmb();
3108 	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3109 		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3110 
3111 	intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3112 
3113 	obj->base.write_domain = 0;
3114 	trace_i915_gem_object_change_domain(obj,
3115 					    obj->base.read_domains,
3116 					    I915_GEM_DOMAIN_GTT);
3117 }
3118 
3119 /** Flushes the CPU write domain for the object if it's dirty. */
3120 static void
3121 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3122 {
3123 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3124 		return;
3125 
3126 	i915_gem_clflush_object(obj, obj->pin_display);
3127 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3128 
3129 	obj->base.write_domain = 0;
3130 	trace_i915_gem_object_change_domain(obj,
3131 					    obj->base.read_domains,
3132 					    I915_GEM_DOMAIN_CPU);
3133 }
3134 
3135 /**
3136  * Moves a single object to the GTT read, and possibly write domain.
3137  * @obj: object to act on
3138  * @write: ask for write access or read only
3139  *
3140  * This function returns when the move is complete, including waiting on
3141  * flushes to occur.
3142  */
3143 int
3144 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3145 {
3146 	uint32_t old_write_domain, old_read_domains;
3147 	int ret;
3148 
3149 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3150 
3151 	ret = i915_gem_object_wait(obj,
3152 				   I915_WAIT_INTERRUPTIBLE |
3153 				   I915_WAIT_LOCKED |
3154 				   (write ? I915_WAIT_ALL : 0),
3155 				   MAX_SCHEDULE_TIMEOUT,
3156 				   NULL);
3157 	if (ret)
3158 		return ret;
3159 
3160 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3161 		return 0;
3162 
3163 	/* Flush and acquire obj->pages so that we are coherent through
3164 	 * direct access in memory with previous cached writes through
3165 	 * shmemfs and that our cache domain tracking remains valid.
3166 	 * For example, if the obj->filp was moved to swap without us
3167 	 * being notified and releasing the pages, we would mistakenly
3168 	 * continue to assume that the obj remained out of the CPU cached
3169 	 * domain.
3170 	 */
3171 	ret = i915_gem_object_pin_pages(obj);
3172 	if (ret)
3173 		return ret;
3174 
3175 	i915_gem_object_flush_cpu_write_domain(obj);
3176 
3177 	/* Serialise direct access to this object with the barriers for
3178 	 * coherent writes from the GPU, by effectively invalidating the
3179 	 * GTT domain upon first access.
3180 	 */
3181 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3182 		mb();
3183 
3184 	old_write_domain = obj->base.write_domain;
3185 	old_read_domains = obj->base.read_domains;
3186 
3187 	/* It should now be out of any other write domains, and we can update
3188 	 * the domain values for our changes.
3189 	 */
3190 	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3191 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3192 	if (write) {
3193 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3194 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3195 		obj->mm.dirty = true;
3196 	}
3197 
3198 	trace_i915_gem_object_change_domain(obj,
3199 					    old_read_domains,
3200 					    old_write_domain);
3201 
3202 	i915_gem_object_unpin_pages(obj);
3203 	return 0;
3204 }
3205 
3206 /**
3207  * Changes the cache-level of an object across all VMA.
3208  * @obj: object to act on
3209  * @cache_level: new cache level to set for the object
3210  *
3211  * After this function returns, the object will be in the new cache-level
3212  * across all GTT and the contents of the backing storage will be coherent,
3213  * with respect to the new cache-level. In order to keep the backing storage
3214  * coherent for all users, we only allow a single cache level to be set
3215  * globally on the object and prevent it from being changed whilst the
3216  * hardware is reading from the object. That is if the object is currently
3217  * on the scanout it will be set to uncached (or equivalent display
3218  * cache coherency) and all non-MOCS GPU access will also be uncached so
3219  * that all direct access to the scanout remains coherent.
3220  */
3221 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3222 				    enum i915_cache_level cache_level)
3223 {
3224 	struct i915_vma *vma;
3225 	int ret;
3226 
3227 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3228 
3229 	if (obj->cache_level == cache_level)
3230 		return 0;
3231 
3232 	/* Inspect the list of currently bound VMA and unbind any that would
3233 	 * be invalid given the new cache-level. This is principally to
3234 	 * catch the issue of the CS prefetch crossing page boundaries and
3235 	 * reading an invalid PTE on older architectures.
3236 	 */
3237 restart:
3238 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3239 		if (!drm_mm_node_allocated(&vma->node))
3240 			continue;
3241 
3242 		if (i915_vma_is_pinned(vma)) {
3243 			DRM_DEBUG("can not change the cache level of pinned objects\n");
3244 			return -EBUSY;
3245 		}
3246 
3247 		if (i915_gem_valid_gtt_space(vma, cache_level))
3248 			continue;
3249 
3250 		ret = i915_vma_unbind(vma);
3251 		if (ret)
3252 			return ret;
3253 
3254 		/* As unbinding may affect other elements in the
3255 		 * obj->vma_list (due to side-effects from retiring
3256 		 * an active vma), play safe and restart the iterator.
3257 		 */
3258 		goto restart;
3259 	}
3260 
3261 	/* We can reuse the existing drm_mm nodes but need to change the
3262 	 * cache-level on the PTE. We could simply unbind them all and
3263 	 * rebind with the correct cache-level on next use. However since
3264 	 * we already have a valid slot, dma mapping, pages etc, we may as
3265 	 * rewrite the PTE in the belief that doing so tramples upon less
3266 	 * state and so involves less work.
3267 	 */
3268 	if (obj->bind_count) {
3269 		/* Before we change the PTE, the GPU must not be accessing it.
3270 		 * If we wait upon the object, we know that all the bound
3271 		 * VMA are no longer active.
3272 		 */
3273 		ret = i915_gem_object_wait(obj,
3274 					   I915_WAIT_INTERRUPTIBLE |
3275 					   I915_WAIT_LOCKED |
3276 					   I915_WAIT_ALL,
3277 					   MAX_SCHEDULE_TIMEOUT,
3278 					   NULL);
3279 		if (ret)
3280 			return ret;
3281 
3282 		if (!HAS_LLC(to_i915(obj->base.dev)) &&
3283 		    cache_level != I915_CACHE_NONE) {
3284 			/* Access to snoopable pages through the GTT is
3285 			 * incoherent and on some machines causes a hard
3286 			 * lockup. Relinquish the CPU mmaping to force
3287 			 * userspace to refault in the pages and we can
3288 			 * then double check if the GTT mapping is still
3289 			 * valid for that pointer access.
3290 			 */
3291 			i915_gem_release_mmap(obj);
3292 
3293 			/* As we no longer need a fence for GTT access,
3294 			 * we can relinquish it now (and so prevent having
3295 			 * to steal a fence from someone else on the next
3296 			 * fence request). Note GPU activity would have
3297 			 * dropped the fence as all snoopable access is
3298 			 * supposed to be linear.
3299 			 */
3300 			list_for_each_entry(vma, &obj->vma_list, obj_link) {
3301 				ret = i915_vma_put_fence(vma);
3302 				if (ret)
3303 					return ret;
3304 			}
3305 		} else {
3306 			/* We either have incoherent backing store and
3307 			 * so no GTT access or the architecture is fully
3308 			 * coherent. In such cases, existing GTT mmaps
3309 			 * ignore the cache bit in the PTE and we can
3310 			 * rewrite it without confusing the GPU or having
3311 			 * to force userspace to fault back in its mmaps.
3312 			 */
3313 		}
3314 
3315 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3316 			if (!drm_mm_node_allocated(&vma->node))
3317 				continue;
3318 
3319 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3320 			if (ret)
3321 				return ret;
3322 		}
3323 	}
3324 
3325 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3326 	    cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3327 		obj->cache_dirty = true;
3328 
3329 	list_for_each_entry(vma, &obj->vma_list, obj_link)
3330 		vma->node.color = cache_level;
3331 	obj->cache_level = cache_level;
3332 
3333 	return 0;
3334 }
3335 
3336 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3337 			       struct drm_file *file)
3338 {
3339 	struct drm_i915_gem_caching *args = data;
3340 	struct drm_i915_gem_object *obj;
3341 	int err = 0;
3342 
3343 	rcu_read_lock();
3344 	obj = i915_gem_object_lookup_rcu(file, args->handle);
3345 	if (!obj) {
3346 		err = -ENOENT;
3347 		goto out;
3348 	}
3349 
3350 	switch (obj->cache_level) {
3351 	case I915_CACHE_LLC:
3352 	case I915_CACHE_L3_LLC:
3353 		args->caching = I915_CACHING_CACHED;
3354 		break;
3355 
3356 	case I915_CACHE_WT:
3357 		args->caching = I915_CACHING_DISPLAY;
3358 		break;
3359 
3360 	default:
3361 		args->caching = I915_CACHING_NONE;
3362 		break;
3363 	}
3364 out:
3365 	rcu_read_unlock();
3366 	return err;
3367 }
3368 
3369 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3370 			       struct drm_file *file)
3371 {
3372 	struct drm_i915_private *i915 = to_i915(dev);
3373 	struct drm_i915_gem_caching *args = data;
3374 	struct drm_i915_gem_object *obj;
3375 	enum i915_cache_level level;
3376 	int ret;
3377 
3378 	switch (args->caching) {
3379 	case I915_CACHING_NONE:
3380 		level = I915_CACHE_NONE;
3381 		break;
3382 	case I915_CACHING_CACHED:
3383 		/*
3384 		 * Due to a HW issue on BXT A stepping, GPU stores via a
3385 		 * snooped mapping may leave stale data in a corresponding CPU
3386 		 * cacheline, whereas normally such cachelines would get
3387 		 * invalidated.
3388 		 */
3389 		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3390 			return -ENODEV;
3391 
3392 		level = I915_CACHE_LLC;
3393 		break;
3394 	case I915_CACHING_DISPLAY:
3395 		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3396 		break;
3397 	default:
3398 		return -EINVAL;
3399 	}
3400 
3401 	ret = i915_mutex_lock_interruptible(dev);
3402 	if (ret)
3403 		return ret;
3404 
3405 	obj = i915_gem_object_lookup(file, args->handle);
3406 	if (!obj) {
3407 		ret = -ENOENT;
3408 		goto unlock;
3409 	}
3410 
3411 	ret = i915_gem_object_set_cache_level(obj, level);
3412 	i915_gem_object_put(obj);
3413 unlock:
3414 	mutex_unlock(&dev->struct_mutex);
3415 	return ret;
3416 }
3417 
3418 /*
3419  * Prepare buffer for display plane (scanout, cursors, etc).
3420  * Can be called from an uninterruptible phase (modesetting) and allows
3421  * any flushes to be pipelined (for pageflips).
3422  */
3423 struct i915_vma *
3424 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3425 				     u32 alignment,
3426 				     const struct i915_ggtt_view *view)
3427 {
3428 	struct i915_vma *vma;
3429 	u32 old_read_domains, old_write_domain;
3430 	int ret;
3431 
3432 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3433 
3434 	/* Mark the pin_display early so that we account for the
3435 	 * display coherency whilst setting up the cache domains.
3436 	 */
3437 	obj->pin_display++;
3438 
3439 	/* The display engine is not coherent with the LLC cache on gen6.  As
3440 	 * a result, we make sure that the pinning that is about to occur is
3441 	 * done with uncached PTEs. This is lowest common denominator for all
3442 	 * chipsets.
3443 	 *
3444 	 * However for gen6+, we could do better by using the GFDT bit instead
3445 	 * of uncaching, which would allow us to flush all the LLC-cached data
3446 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3447 	 */
3448 	ret = i915_gem_object_set_cache_level(obj,
3449 					      HAS_WT(to_i915(obj->base.dev)) ?
3450 					      I915_CACHE_WT : I915_CACHE_NONE);
3451 	if (ret) {
3452 		vma = ERR_PTR(ret);
3453 		goto err_unpin_display;
3454 	}
3455 
3456 	/* As the user may map the buffer once pinned in the display plane
3457 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3458 	 * always use map_and_fenceable for all scanout buffers. However,
3459 	 * it may simply be too big to fit into mappable, in which case
3460 	 * put it anyway and hope that userspace can cope (but always first
3461 	 * try to preserve the existing ABI).
3462 	 */
3463 	vma = ERR_PTR(-ENOSPC);
3464 	if (view->type == I915_GGTT_VIEW_NORMAL)
3465 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3466 					       PIN_MAPPABLE | PIN_NONBLOCK);
3467 	if (IS_ERR(vma)) {
3468 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3469 		unsigned int flags;
3470 
3471 		/* Valleyview is definitely limited to scanning out the first
3472 		 * 512MiB. Lets presume this behaviour was inherited from the
3473 		 * g4x display engine and that all earlier gen are similarly
3474 		 * limited. Testing suggests that it is a little more
3475 		 * complicated than this. For example, Cherryview appears quite
3476 		 * happy to scanout from anywhere within its global aperture.
3477 		 */
3478 		flags = 0;
3479 		if (HAS_GMCH_DISPLAY(i915))
3480 			flags = PIN_MAPPABLE;
3481 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3482 	}
3483 	if (IS_ERR(vma))
3484 		goto err_unpin_display;
3485 
3486 	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3487 
3488 	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3489 	if (obj->cache_dirty || obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3490 		i915_gem_clflush_object(obj, true);
3491 		intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
3492 	}
3493 
3494 	old_write_domain = obj->base.write_domain;
3495 	old_read_domains = obj->base.read_domains;
3496 
3497 	/* It should now be out of any other write domains, and we can update
3498 	 * the domain values for our changes.
3499 	 */
3500 	obj->base.write_domain = 0;
3501 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3502 
3503 	trace_i915_gem_object_change_domain(obj,
3504 					    old_read_domains,
3505 					    old_write_domain);
3506 
3507 	return vma;
3508 
3509 err_unpin_display:
3510 	obj->pin_display--;
3511 	return vma;
3512 }
3513 
3514 void
3515 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3516 {
3517 	lockdep_assert_held(&vma->vm->dev->struct_mutex);
3518 
3519 	if (WARN_ON(vma->obj->pin_display == 0))
3520 		return;
3521 
3522 	if (--vma->obj->pin_display == 0)
3523 		vma->display_alignment = 0;
3524 
3525 	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3526 	if (!i915_vma_is_active(vma))
3527 		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3528 
3529 	i915_vma_unpin(vma);
3530 }
3531 
3532 /**
3533  * Moves a single object to the CPU read, and possibly write domain.
3534  * @obj: object to act on
3535  * @write: requesting write or read-only access
3536  *
3537  * This function returns when the move is complete, including waiting on
3538  * flushes to occur.
3539  */
3540 int
3541 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3542 {
3543 	uint32_t old_write_domain, old_read_domains;
3544 	int ret;
3545 
3546 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3547 
3548 	ret = i915_gem_object_wait(obj,
3549 				   I915_WAIT_INTERRUPTIBLE |
3550 				   I915_WAIT_LOCKED |
3551 				   (write ? I915_WAIT_ALL : 0),
3552 				   MAX_SCHEDULE_TIMEOUT,
3553 				   NULL);
3554 	if (ret)
3555 		return ret;
3556 
3557 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3558 		return 0;
3559 
3560 	i915_gem_object_flush_gtt_write_domain(obj);
3561 
3562 	old_write_domain = obj->base.write_domain;
3563 	old_read_domains = obj->base.read_domains;
3564 
3565 	/* Flush the CPU cache if it's still invalid. */
3566 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3567 		i915_gem_clflush_object(obj, false);
3568 
3569 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3570 	}
3571 
3572 	/* It should now be out of any other write domains, and we can update
3573 	 * the domain values for our changes.
3574 	 */
3575 	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3576 
3577 	/* If we're writing through the CPU, then the GPU read domains will
3578 	 * need to be invalidated at next use.
3579 	 */
3580 	if (write) {
3581 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3582 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3583 	}
3584 
3585 	trace_i915_gem_object_change_domain(obj,
3586 					    old_read_domains,
3587 					    old_write_domain);
3588 
3589 	return 0;
3590 }
3591 
3592 /* Throttle our rendering by waiting until the ring has completed our requests
3593  * emitted over 20 msec ago.
3594  *
3595  * Note that if we were to use the current jiffies each time around the loop,
3596  * we wouldn't escape the function with any frames outstanding if the time to
3597  * render a frame was over 20ms.
3598  *
3599  * This should get us reasonable parallelism between CPU and GPU but also
3600  * relatively low latency when blocking on a particular request to finish.
3601  */
3602 static int
3603 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3604 {
3605 	struct drm_i915_private *dev_priv = to_i915(dev);
3606 	struct drm_i915_file_private *file_priv = file->driver_priv;
3607 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3608 	struct drm_i915_gem_request *request, *target = NULL;
3609 	long ret;
3610 
3611 	/* ABI: return -EIO if already wedged */
3612 	if (i915_terminally_wedged(&dev_priv->gpu_error))
3613 		return -EIO;
3614 
3615 	spin_lock(&file_priv->mm.lock);
3616 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3617 		if (time_after_eq(request->emitted_jiffies, recent_enough))
3618 			break;
3619 
3620 		/*
3621 		 * Note that the request might not have been submitted yet.
3622 		 * In which case emitted_jiffies will be zero.
3623 		 */
3624 		if (!request->emitted_jiffies)
3625 			continue;
3626 
3627 		target = request;
3628 	}
3629 	if (target)
3630 		i915_gem_request_get(target);
3631 	spin_unlock(&file_priv->mm.lock);
3632 
3633 	if (target == NULL)
3634 		return 0;
3635 
3636 	ret = i915_wait_request(target,
3637 				I915_WAIT_INTERRUPTIBLE,
3638 				MAX_SCHEDULE_TIMEOUT);
3639 	i915_gem_request_put(target);
3640 
3641 	return ret < 0 ? ret : 0;
3642 }
3643 
3644 struct i915_vma *
3645 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3646 			 const struct i915_ggtt_view *view,
3647 			 u64 size,
3648 			 u64 alignment,
3649 			 u64 flags)
3650 {
3651 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3652 	struct i915_address_space *vm = &dev_priv->ggtt.base;
3653 	struct i915_vma *vma;
3654 	int ret;
3655 
3656 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3657 
3658 	vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3659 	if (IS_ERR(vma))
3660 		return vma;
3661 
3662 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
3663 		if (flags & PIN_NONBLOCK &&
3664 		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3665 			return ERR_PTR(-ENOSPC);
3666 
3667 		if (flags & PIN_MAPPABLE) {
3668 			u32 fence_size;
3669 
3670 			fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size,
3671 							    i915_gem_object_get_tiling(obj));
3672 			/* If the required space is larger than the available
3673 			 * aperture, we will not able to find a slot for the
3674 			 * object and unbinding the object now will be in
3675 			 * vain. Worse, doing so may cause us to ping-pong
3676 			 * the object in and out of the Global GTT and
3677 			 * waste a lot of cycles under the mutex.
3678 			 */
3679 			if (fence_size > dev_priv->ggtt.mappable_end)
3680 				return ERR_PTR(-E2BIG);
3681 
3682 			/* If NONBLOCK is set the caller is optimistically
3683 			 * trying to cache the full object within the mappable
3684 			 * aperture, and *must* have a fallback in place for
3685 			 * situations where we cannot bind the object. We
3686 			 * can be a little more lax here and use the fallback
3687 			 * more often to avoid costly migrations of ourselves
3688 			 * and other objects within the aperture.
3689 			 *
3690 			 * Half-the-aperture is used as a simple heuristic.
3691 			 * More interesting would to do search for a free
3692 			 * block prior to making the commitment to unbind.
3693 			 * That caters for the self-harm case, and with a
3694 			 * little more heuristics (e.g. NOFAULT, NOEVICT)
3695 			 * we could try to minimise harm to others.
3696 			 */
3697 			if (flags & PIN_NONBLOCK &&
3698 			    fence_size > dev_priv->ggtt.mappable_end / 2)
3699 				return ERR_PTR(-ENOSPC);
3700 		}
3701 
3702 		WARN(i915_vma_is_pinned(vma),
3703 		     "bo is already pinned in ggtt with incorrect alignment:"
3704 		     " offset=%08x, req.alignment=%llx,"
3705 		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3706 		     i915_ggtt_offset(vma), alignment,
3707 		     !!(flags & PIN_MAPPABLE),
3708 		     i915_vma_is_map_and_fenceable(vma));
3709 		ret = i915_vma_unbind(vma);
3710 		if (ret)
3711 			return ERR_PTR(ret);
3712 	}
3713 
3714 	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3715 	if (ret)
3716 		return ERR_PTR(ret);
3717 
3718 	return vma;
3719 }
3720 
3721 static __always_inline unsigned int __busy_read_flag(unsigned int id)
3722 {
3723 	/* Note that we could alias engines in the execbuf API, but
3724 	 * that would be very unwise as it prevents userspace from
3725 	 * fine control over engine selection. Ahem.
3726 	 *
3727 	 * This should be something like EXEC_MAX_ENGINE instead of
3728 	 * I915_NUM_ENGINES.
3729 	 */
3730 	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3731 	return 0x10000 << id;
3732 }
3733 
3734 static __always_inline unsigned int __busy_write_id(unsigned int id)
3735 {
3736 	/* The uABI guarantees an active writer is also amongst the read
3737 	 * engines. This would be true if we accessed the activity tracking
3738 	 * under the lock, but as we perform the lookup of the object and
3739 	 * its activity locklessly we can not guarantee that the last_write
3740 	 * being active implies that we have set the same engine flag from
3741 	 * last_read - hence we always set both read and write busy for
3742 	 * last_write.
3743 	 */
3744 	return id | __busy_read_flag(id);
3745 }
3746 
3747 static __always_inline unsigned int
3748 __busy_set_if_active(const struct dma_fence *fence,
3749 		     unsigned int (*flag)(unsigned int id))
3750 {
3751 	struct drm_i915_gem_request *rq;
3752 
3753 	/* We have to check the current hw status of the fence as the uABI
3754 	 * guarantees forward progress. We could rely on the idle worker
3755 	 * to eventually flush us, but to minimise latency just ask the
3756 	 * hardware.
3757 	 *
3758 	 * Note we only report on the status of native fences.
3759 	 */
3760 	if (!dma_fence_is_i915(fence))
3761 		return 0;
3762 
3763 	/* opencode to_request() in order to avoid const warnings */
3764 	rq = container_of(fence, struct drm_i915_gem_request, fence);
3765 	if (i915_gem_request_completed(rq))
3766 		return 0;
3767 
3768 	return flag(rq->engine->exec_id);
3769 }
3770 
3771 static __always_inline unsigned int
3772 busy_check_reader(const struct dma_fence *fence)
3773 {
3774 	return __busy_set_if_active(fence, __busy_read_flag);
3775 }
3776 
3777 static __always_inline unsigned int
3778 busy_check_writer(const struct dma_fence *fence)
3779 {
3780 	if (!fence)
3781 		return 0;
3782 
3783 	return __busy_set_if_active(fence, __busy_write_id);
3784 }
3785 
3786 int
3787 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3788 		    struct drm_file *file)
3789 {
3790 	struct drm_i915_gem_busy *args = data;
3791 	struct drm_i915_gem_object *obj;
3792 	struct reservation_object_list *list;
3793 	unsigned int seq;
3794 	int err;
3795 
3796 	err = -ENOENT;
3797 	rcu_read_lock();
3798 	obj = i915_gem_object_lookup_rcu(file, args->handle);
3799 	if (!obj)
3800 		goto out;
3801 
3802 	/* A discrepancy here is that we do not report the status of
3803 	 * non-i915 fences, i.e. even though we may report the object as idle,
3804 	 * a call to set-domain may still stall waiting for foreign rendering.
3805 	 * This also means that wait-ioctl may report an object as busy,
3806 	 * where busy-ioctl considers it idle.
3807 	 *
3808 	 * We trade the ability to warn of foreign fences to report on which
3809 	 * i915 engines are active for the object.
3810 	 *
3811 	 * Alternatively, we can trade that extra information on read/write
3812 	 * activity with
3813 	 *	args->busy =
3814 	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
3815 	 * to report the overall busyness. This is what the wait-ioctl does.
3816 	 *
3817 	 */
3818 retry:
3819 	seq = raw_read_seqcount(&obj->resv->seq);
3820 
3821 	/* Translate the exclusive fence to the READ *and* WRITE engine */
3822 	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3823 
3824 	/* Translate shared fences to READ set of engines */
3825 	list = rcu_dereference(obj->resv->fence);
3826 	if (list) {
3827 		unsigned int shared_count = list->shared_count, i;
3828 
3829 		for (i = 0; i < shared_count; ++i) {
3830 			struct dma_fence *fence =
3831 				rcu_dereference(list->shared[i]);
3832 
3833 			args->busy |= busy_check_reader(fence);
3834 		}
3835 	}
3836 
3837 	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
3838 		goto retry;
3839 
3840 	err = 0;
3841 out:
3842 	rcu_read_unlock();
3843 	return err;
3844 }
3845 
3846 int
3847 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3848 			struct drm_file *file_priv)
3849 {
3850 	return i915_gem_ring_throttle(dev, file_priv);
3851 }
3852 
3853 int
3854 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3855 		       struct drm_file *file_priv)
3856 {
3857 	struct drm_i915_private *dev_priv = to_i915(dev);
3858 	struct drm_i915_gem_madvise *args = data;
3859 	struct drm_i915_gem_object *obj;
3860 	int err;
3861 
3862 	switch (args->madv) {
3863 	case I915_MADV_DONTNEED:
3864 	case I915_MADV_WILLNEED:
3865 	    break;
3866 	default:
3867 	    return -EINVAL;
3868 	}
3869 
3870 	obj = i915_gem_object_lookup(file_priv, args->handle);
3871 	if (!obj)
3872 		return -ENOENT;
3873 
3874 	err = mutex_lock_interruptible(&obj->mm.lock);
3875 	if (err)
3876 		goto out;
3877 
3878 	if (obj->mm.pages &&
3879 	    i915_gem_object_is_tiled(obj) &&
3880 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3881 		if (obj->mm.madv == I915_MADV_WILLNEED) {
3882 			GEM_BUG_ON(!obj->mm.quirked);
3883 			__i915_gem_object_unpin_pages(obj);
3884 			obj->mm.quirked = false;
3885 		}
3886 		if (args->madv == I915_MADV_WILLNEED) {
3887 			GEM_BUG_ON(obj->mm.quirked);
3888 			__i915_gem_object_pin_pages(obj);
3889 			obj->mm.quirked = true;
3890 		}
3891 	}
3892 
3893 	if (obj->mm.madv != __I915_MADV_PURGED)
3894 		obj->mm.madv = args->madv;
3895 
3896 	/* if the object is no longer attached, discard its backing storage */
3897 	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
3898 		i915_gem_object_truncate(obj);
3899 
3900 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
3901 	mutex_unlock(&obj->mm.lock);
3902 
3903 out:
3904 	i915_gem_object_put(obj);
3905 	return err;
3906 }
3907 
3908 static void
3909 frontbuffer_retire(struct i915_gem_active *active,
3910 		   struct drm_i915_gem_request *request)
3911 {
3912 	struct drm_i915_gem_object *obj =
3913 		container_of(active, typeof(*obj), frontbuffer_write);
3914 
3915 	intel_fb_obj_flush(obj, true, ORIGIN_CS);
3916 }
3917 
3918 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3919 			  const struct drm_i915_gem_object_ops *ops)
3920 {
3921 	mutex_init(&obj->mm.lock);
3922 
3923 	INIT_LIST_HEAD(&obj->global_link);
3924 	INIT_LIST_HEAD(&obj->userfault_link);
3925 	INIT_LIST_HEAD(&obj->obj_exec_link);
3926 	INIT_LIST_HEAD(&obj->vma_list);
3927 	INIT_LIST_HEAD(&obj->batch_pool_link);
3928 
3929 	obj->ops = ops;
3930 
3931 	reservation_object_init(&obj->__builtin_resv);
3932 	obj->resv = &obj->__builtin_resv;
3933 
3934 	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
3935 	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
3936 
3937 	obj->mm.madv = I915_MADV_WILLNEED;
3938 	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
3939 	mutex_init(&obj->mm.get_page.lock);
3940 
3941 	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3942 }
3943 
3944 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3945 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
3946 		 I915_GEM_OBJECT_IS_SHRINKABLE,
3947 	.get_pages = i915_gem_object_get_pages_gtt,
3948 	.put_pages = i915_gem_object_put_pages_gtt,
3949 };
3950 
3951 /* Note we don't consider signbits :| */
3952 #define overflows_type(x, T) \
3953 	(sizeof(x) > sizeof(T) && (x) >> (sizeof(T) * BITS_PER_BYTE))
3954 
3955 struct drm_i915_gem_object *
3956 i915_gem_object_create(struct drm_device *dev, u64 size)
3957 {
3958 	struct drm_i915_private *dev_priv = to_i915(dev);
3959 	struct drm_i915_gem_object *obj;
3960 	struct address_space *mapping;
3961 	gfp_t mask;
3962 	int ret;
3963 
3964 	/* There is a prevalence of the assumption that we fit the object's
3965 	 * page count inside a 32bit _signed_ variable. Let's document this and
3966 	 * catch if we ever need to fix it. In the meantime, if you do spot
3967 	 * such a local variable, please consider fixing!
3968 	 */
3969 	if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
3970 		return ERR_PTR(-E2BIG);
3971 
3972 	if (overflows_type(size, obj->base.size))
3973 		return ERR_PTR(-E2BIG);
3974 
3975 	obj = i915_gem_object_alloc(dev);
3976 	if (obj == NULL)
3977 		return ERR_PTR(-ENOMEM);
3978 
3979 	ret = drm_gem_object_init(dev, &obj->base, size);
3980 	if (ret)
3981 		goto fail;
3982 
3983 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3984 	if (IS_CRESTLINE(dev_priv) || IS_BROADWATER(dev_priv)) {
3985 		/* 965gm cannot relocate objects above 4GiB. */
3986 		mask &= ~__GFP_HIGHMEM;
3987 		mask |= __GFP_DMA32;
3988 	}
3989 
3990 	mapping = obj->base.filp->f_mapping;
3991 	mapping_set_gfp_mask(mapping, mask);
3992 
3993 	i915_gem_object_init(obj, &i915_gem_object_ops);
3994 
3995 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3996 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3997 
3998 	if (HAS_LLC(dev_priv)) {
3999 		/* On some devices, we can have the GPU use the LLC (the CPU
4000 		 * cache) for about a 10% performance improvement
4001 		 * compared to uncached.  Graphics requests other than
4002 		 * display scanout are coherent with the CPU in
4003 		 * accessing this cache.  This means in this mode we
4004 		 * don't need to clflush on the CPU side, and on the
4005 		 * GPU side we only need to flush internal caches to
4006 		 * get data visible to the CPU.
4007 		 *
4008 		 * However, we maintain the display planes as UC, and so
4009 		 * need to rebind when first used as such.
4010 		 */
4011 		obj->cache_level = I915_CACHE_LLC;
4012 	} else
4013 		obj->cache_level = I915_CACHE_NONE;
4014 
4015 	trace_i915_gem_object_create(obj);
4016 
4017 	return obj;
4018 
4019 fail:
4020 	i915_gem_object_free(obj);
4021 	return ERR_PTR(ret);
4022 }
4023 
4024 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4025 {
4026 	/* If we are the last user of the backing storage (be it shmemfs
4027 	 * pages or stolen etc), we know that the pages are going to be
4028 	 * immediately released. In this case, we can then skip copying
4029 	 * back the contents from the GPU.
4030 	 */
4031 
4032 	if (obj->mm.madv != I915_MADV_WILLNEED)
4033 		return false;
4034 
4035 	if (obj->base.filp == NULL)
4036 		return true;
4037 
4038 	/* At first glance, this looks racy, but then again so would be
4039 	 * userspace racing mmap against close. However, the first external
4040 	 * reference to the filp can only be obtained through the
4041 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4042 	 * acquiring such a reference whilst we are in the middle of
4043 	 * freeing the object.
4044 	 */
4045 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4046 }
4047 
4048 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4049 				    struct llist_node *freed)
4050 {
4051 	struct drm_i915_gem_object *obj, *on;
4052 
4053 	mutex_lock(&i915->drm.struct_mutex);
4054 	intel_runtime_pm_get(i915);
4055 	llist_for_each_entry(obj, freed, freed) {
4056 		struct i915_vma *vma, *vn;
4057 
4058 		trace_i915_gem_object_destroy(obj);
4059 
4060 		GEM_BUG_ON(i915_gem_object_is_active(obj));
4061 		list_for_each_entry_safe(vma, vn,
4062 					 &obj->vma_list, obj_link) {
4063 			GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4064 			GEM_BUG_ON(i915_vma_is_active(vma));
4065 			vma->flags &= ~I915_VMA_PIN_MASK;
4066 			i915_vma_close(vma);
4067 		}
4068 		GEM_BUG_ON(!list_empty(&obj->vma_list));
4069 		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4070 
4071 		list_del(&obj->global_link);
4072 	}
4073 	intel_runtime_pm_put(i915);
4074 	mutex_unlock(&i915->drm.struct_mutex);
4075 
4076 	llist_for_each_entry_safe(obj, on, freed, freed) {
4077 		GEM_BUG_ON(obj->bind_count);
4078 		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4079 
4080 		if (obj->ops->release)
4081 			obj->ops->release(obj);
4082 
4083 		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4084 			atomic_set(&obj->mm.pages_pin_count, 0);
4085 		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4086 		GEM_BUG_ON(obj->mm.pages);
4087 
4088 		if (obj->base.import_attach)
4089 			drm_prime_gem_destroy(&obj->base, NULL);
4090 
4091 		reservation_object_fini(&obj->__builtin_resv);
4092 		drm_gem_object_release(&obj->base);
4093 		i915_gem_info_remove_obj(i915, obj->base.size);
4094 
4095 		kfree(obj->bit_17);
4096 		i915_gem_object_free(obj);
4097 	}
4098 }
4099 
4100 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4101 {
4102 	struct llist_node *freed;
4103 
4104 	freed = llist_del_all(&i915->mm.free_list);
4105 	if (unlikely(freed))
4106 		__i915_gem_free_objects(i915, freed);
4107 }
4108 
4109 static void __i915_gem_free_work(struct work_struct *work)
4110 {
4111 	struct drm_i915_private *i915 =
4112 		container_of(work, struct drm_i915_private, mm.free_work);
4113 	struct llist_node *freed;
4114 
4115 	/* All file-owned VMA should have been released by this point through
4116 	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4117 	 * However, the object may also be bound into the global GTT (e.g.
4118 	 * older GPUs without per-process support, or for direct access through
4119 	 * the GTT either for the user or for scanout). Those VMA still need to
4120 	 * unbound now.
4121 	 */
4122 
4123 	while ((freed = llist_del_all(&i915->mm.free_list)))
4124 		__i915_gem_free_objects(i915, freed);
4125 }
4126 
4127 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4128 {
4129 	struct drm_i915_gem_object *obj =
4130 		container_of(head, typeof(*obj), rcu);
4131 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4132 
4133 	/* We can't simply use call_rcu() from i915_gem_free_object()
4134 	 * as we need to block whilst unbinding, and the call_rcu
4135 	 * task may be called from softirq context. So we take a
4136 	 * detour through a worker.
4137 	 */
4138 	if (llist_add(&obj->freed, &i915->mm.free_list))
4139 		schedule_work(&i915->mm.free_work);
4140 }
4141 
4142 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4143 {
4144 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4145 
4146 	if (obj->mm.quirked)
4147 		__i915_gem_object_unpin_pages(obj);
4148 
4149 	if (discard_backing_storage(obj))
4150 		obj->mm.madv = I915_MADV_DONTNEED;
4151 
4152 	/* Before we free the object, make sure any pure RCU-only
4153 	 * read-side critical sections are complete, e.g.
4154 	 * i915_gem_busy_ioctl(). For the corresponding synchronized
4155 	 * lookup see i915_gem_object_lookup_rcu().
4156 	 */
4157 	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4158 }
4159 
4160 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4161 {
4162 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4163 
4164 	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4165 	if (i915_gem_object_is_active(obj))
4166 		i915_gem_object_set_active_reference(obj);
4167 	else
4168 		i915_gem_object_put(obj);
4169 }
4170 
4171 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4172 {
4173 	struct intel_engine_cs *engine;
4174 	enum intel_engine_id id;
4175 
4176 	for_each_engine(engine, dev_priv, id)
4177 		GEM_BUG_ON(engine->last_context != dev_priv->kernel_context);
4178 }
4179 
4180 int i915_gem_suspend(struct drm_device *dev)
4181 {
4182 	struct drm_i915_private *dev_priv = to_i915(dev);
4183 	int ret;
4184 
4185 	intel_suspend_gt_powersave(dev_priv);
4186 
4187 	mutex_lock(&dev->struct_mutex);
4188 
4189 	/* We have to flush all the executing contexts to main memory so
4190 	 * that they can saved in the hibernation image. To ensure the last
4191 	 * context image is coherent, we have to switch away from it. That
4192 	 * leaves the dev_priv->kernel_context still active when
4193 	 * we actually suspend, and its image in memory may not match the GPU
4194 	 * state. Fortunately, the kernel_context is disposable and we do
4195 	 * not rely on its state.
4196 	 */
4197 	ret = i915_gem_switch_to_kernel_context(dev_priv);
4198 	if (ret)
4199 		goto err;
4200 
4201 	ret = i915_gem_wait_for_idle(dev_priv,
4202 				     I915_WAIT_INTERRUPTIBLE |
4203 				     I915_WAIT_LOCKED);
4204 	if (ret)
4205 		goto err;
4206 
4207 	i915_gem_retire_requests(dev_priv);
4208 	GEM_BUG_ON(dev_priv->gt.active_requests);
4209 
4210 	assert_kernel_context_is_current(dev_priv);
4211 	i915_gem_context_lost(dev_priv);
4212 	mutex_unlock(&dev->struct_mutex);
4213 
4214 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4215 	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4216 	flush_delayed_work(&dev_priv->gt.idle_work);
4217 	flush_work(&dev_priv->mm.free_work);
4218 
4219 	/* Assert that we sucessfully flushed all the work and
4220 	 * reset the GPU back to its idle, low power state.
4221 	 */
4222 	WARN_ON(dev_priv->gt.awake);
4223 	WARN_ON(!intel_execlists_idle(dev_priv));
4224 
4225 	/*
4226 	 * Neither the BIOS, ourselves or any other kernel
4227 	 * expects the system to be in execlists mode on startup,
4228 	 * so we need to reset the GPU back to legacy mode. And the only
4229 	 * known way to disable logical contexts is through a GPU reset.
4230 	 *
4231 	 * So in order to leave the system in a known default configuration,
4232 	 * always reset the GPU upon unload and suspend. Afterwards we then
4233 	 * clean up the GEM state tracking, flushing off the requests and
4234 	 * leaving the system in a known idle state.
4235 	 *
4236 	 * Note that is of the upmost importance that the GPU is idle and
4237 	 * all stray writes are flushed *before* we dismantle the backing
4238 	 * storage for the pinned objects.
4239 	 *
4240 	 * However, since we are uncertain that resetting the GPU on older
4241 	 * machines is a good idea, we don't - just in case it leaves the
4242 	 * machine in an unusable condition.
4243 	 */
4244 	if (HAS_HW_CONTEXTS(dev_priv)) {
4245 		int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
4246 		WARN_ON(reset && reset != -ENODEV);
4247 	}
4248 
4249 	return 0;
4250 
4251 err:
4252 	mutex_unlock(&dev->struct_mutex);
4253 	return ret;
4254 }
4255 
4256 void i915_gem_resume(struct drm_device *dev)
4257 {
4258 	struct drm_i915_private *dev_priv = to_i915(dev);
4259 
4260 	WARN_ON(dev_priv->gt.awake);
4261 
4262 	mutex_lock(&dev->struct_mutex);
4263 	i915_gem_restore_gtt_mappings(dev_priv);
4264 
4265 	/* As we didn't flush the kernel context before suspend, we cannot
4266 	 * guarantee that the context image is complete. So let's just reset
4267 	 * it and start again.
4268 	 */
4269 	dev_priv->gt.resume(dev_priv);
4270 
4271 	mutex_unlock(&dev->struct_mutex);
4272 }
4273 
4274 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4275 {
4276 	if (INTEL_GEN(dev_priv) < 5 ||
4277 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4278 		return;
4279 
4280 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4281 				 DISP_TILE_SURFACE_SWIZZLING);
4282 
4283 	if (IS_GEN5(dev_priv))
4284 		return;
4285 
4286 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4287 	if (IS_GEN6(dev_priv))
4288 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4289 	else if (IS_GEN7(dev_priv))
4290 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4291 	else if (IS_GEN8(dev_priv))
4292 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4293 	else
4294 		BUG();
4295 }
4296 
4297 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4298 {
4299 	I915_WRITE(RING_CTL(base), 0);
4300 	I915_WRITE(RING_HEAD(base), 0);
4301 	I915_WRITE(RING_TAIL(base), 0);
4302 	I915_WRITE(RING_START(base), 0);
4303 }
4304 
4305 static void init_unused_rings(struct drm_i915_private *dev_priv)
4306 {
4307 	if (IS_I830(dev_priv)) {
4308 		init_unused_ring(dev_priv, PRB1_BASE);
4309 		init_unused_ring(dev_priv, SRB0_BASE);
4310 		init_unused_ring(dev_priv, SRB1_BASE);
4311 		init_unused_ring(dev_priv, SRB2_BASE);
4312 		init_unused_ring(dev_priv, SRB3_BASE);
4313 	} else if (IS_GEN2(dev_priv)) {
4314 		init_unused_ring(dev_priv, SRB0_BASE);
4315 		init_unused_ring(dev_priv, SRB1_BASE);
4316 	} else if (IS_GEN3(dev_priv)) {
4317 		init_unused_ring(dev_priv, PRB1_BASE);
4318 		init_unused_ring(dev_priv, PRB2_BASE);
4319 	}
4320 }
4321 
4322 int
4323 i915_gem_init_hw(struct drm_device *dev)
4324 {
4325 	struct drm_i915_private *dev_priv = to_i915(dev);
4326 	struct intel_engine_cs *engine;
4327 	enum intel_engine_id id;
4328 	int ret;
4329 
4330 	dev_priv->gt.last_init_time = ktime_get();
4331 
4332 	/* Double layer security blanket, see i915_gem_init() */
4333 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4334 
4335 	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4336 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4337 
4338 	if (IS_HASWELL(dev_priv))
4339 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4340 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4341 
4342 	if (HAS_PCH_NOP(dev_priv)) {
4343 		if (IS_IVYBRIDGE(dev_priv)) {
4344 			u32 temp = I915_READ(GEN7_MSG_CTL);
4345 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4346 			I915_WRITE(GEN7_MSG_CTL, temp);
4347 		} else if (INTEL_GEN(dev_priv) >= 7) {
4348 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4349 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4350 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4351 		}
4352 	}
4353 
4354 	i915_gem_init_swizzling(dev_priv);
4355 
4356 	/*
4357 	 * At least 830 can leave some of the unused rings
4358 	 * "active" (ie. head != tail) after resume which
4359 	 * will prevent c3 entry. Makes sure all unused rings
4360 	 * are totally idle.
4361 	 */
4362 	init_unused_rings(dev_priv);
4363 
4364 	BUG_ON(!dev_priv->kernel_context);
4365 
4366 	ret = i915_ppgtt_init_hw(dev_priv);
4367 	if (ret) {
4368 		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4369 		goto out;
4370 	}
4371 
4372 	/* Need to do basic initialisation of all rings first: */
4373 	for_each_engine(engine, dev_priv, id) {
4374 		ret = engine->init_hw(engine);
4375 		if (ret)
4376 			goto out;
4377 	}
4378 
4379 	intel_mocs_init_l3cc_table(dev);
4380 
4381 	/* We can't enable contexts until all firmware is loaded */
4382 	ret = intel_guc_setup(dev);
4383 	if (ret)
4384 		goto out;
4385 
4386 out:
4387 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4388 	return ret;
4389 }
4390 
4391 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4392 {
4393 	if (INTEL_INFO(dev_priv)->gen < 6)
4394 		return false;
4395 
4396 	/* TODO: make semaphores and Execlists play nicely together */
4397 	if (i915.enable_execlists)
4398 		return false;
4399 
4400 	if (value >= 0)
4401 		return value;
4402 
4403 #ifdef CONFIG_INTEL_IOMMU
4404 	/* Enable semaphores on SNB when IO remapping is off */
4405 	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4406 		return false;
4407 #endif
4408 
4409 	return true;
4410 }
4411 
4412 int i915_gem_init(struct drm_device *dev)
4413 {
4414 	struct drm_i915_private *dev_priv = to_i915(dev);
4415 	int ret;
4416 
4417 	mutex_lock(&dev->struct_mutex);
4418 
4419 	if (!i915.enable_execlists) {
4420 		dev_priv->gt.resume = intel_legacy_submission_resume;
4421 		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4422 	} else {
4423 		dev_priv->gt.resume = intel_lr_context_resume;
4424 		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4425 	}
4426 
4427 	/* This is just a security blanket to placate dragons.
4428 	 * On some systems, we very sporadically observe that the first TLBs
4429 	 * used by the CS may be stale, despite us poking the TLB reset. If
4430 	 * we hold the forcewake during initialisation these problems
4431 	 * just magically go away.
4432 	 */
4433 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4434 
4435 	i915_gem_init_userptr(dev_priv);
4436 
4437 	ret = i915_gem_init_ggtt(dev_priv);
4438 	if (ret)
4439 		goto out_unlock;
4440 
4441 	ret = i915_gem_context_init(dev);
4442 	if (ret)
4443 		goto out_unlock;
4444 
4445 	ret = intel_engines_init(dev);
4446 	if (ret)
4447 		goto out_unlock;
4448 
4449 	ret = i915_gem_init_hw(dev);
4450 	if (ret == -EIO) {
4451 		/* Allow engine initialisation to fail by marking the GPU as
4452 		 * wedged. But we only want to do this where the GPU is angry,
4453 		 * for all other failure, such as an allocation failure, bail.
4454 		 */
4455 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4456 		i915_gem_set_wedged(dev_priv);
4457 		ret = 0;
4458 	}
4459 
4460 out_unlock:
4461 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4462 	mutex_unlock(&dev->struct_mutex);
4463 
4464 	return ret;
4465 }
4466 
4467 void
4468 i915_gem_cleanup_engines(struct drm_device *dev)
4469 {
4470 	struct drm_i915_private *dev_priv = to_i915(dev);
4471 	struct intel_engine_cs *engine;
4472 	enum intel_engine_id id;
4473 
4474 	for_each_engine(engine, dev_priv, id)
4475 		dev_priv->gt.cleanup_engine(engine);
4476 }
4477 
4478 void
4479 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4480 {
4481 	int i;
4482 
4483 	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4484 	    !IS_CHERRYVIEW(dev_priv))
4485 		dev_priv->num_fence_regs = 32;
4486 	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4487 		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
4488 		dev_priv->num_fence_regs = 16;
4489 	else
4490 		dev_priv->num_fence_regs = 8;
4491 
4492 	if (intel_vgpu_active(dev_priv))
4493 		dev_priv->num_fence_regs =
4494 				I915_READ(vgtif_reg(avail_rs.fence_num));
4495 
4496 	/* Initialize fence registers to zero */
4497 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
4498 		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4499 
4500 		fence->i915 = dev_priv;
4501 		fence->id = i;
4502 		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4503 	}
4504 	i915_gem_restore_fences(dev_priv);
4505 
4506 	i915_gem_detect_bit_6_swizzle(dev_priv);
4507 }
4508 
4509 int
4510 i915_gem_load_init(struct drm_device *dev)
4511 {
4512 	struct drm_i915_private *dev_priv = to_i915(dev);
4513 	int err = -ENOMEM;
4514 
4515 	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4516 	if (!dev_priv->objects)
4517 		goto err_out;
4518 
4519 	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4520 	if (!dev_priv->vmas)
4521 		goto err_objects;
4522 
4523 	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4524 					SLAB_HWCACHE_ALIGN |
4525 					SLAB_RECLAIM_ACCOUNT |
4526 					SLAB_DESTROY_BY_RCU);
4527 	if (!dev_priv->requests)
4528 		goto err_vmas;
4529 
4530 	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4531 					    SLAB_HWCACHE_ALIGN |
4532 					    SLAB_RECLAIM_ACCOUNT);
4533 	if (!dev_priv->dependencies)
4534 		goto err_requests;
4535 
4536 	mutex_lock(&dev_priv->drm.struct_mutex);
4537 	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4538 	err = i915_gem_timeline_init__global(dev_priv);
4539 	mutex_unlock(&dev_priv->drm.struct_mutex);
4540 	if (err)
4541 		goto err_dependencies;
4542 
4543 	INIT_LIST_HEAD(&dev_priv->context_list);
4544 	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4545 	init_llist_head(&dev_priv->mm.free_list);
4546 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4547 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4548 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4549 	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4550 	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4551 			  i915_gem_retire_work_handler);
4552 	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4553 			  i915_gem_idle_work_handler);
4554 	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4555 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4556 
4557 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4558 
4559 	init_waitqueue_head(&dev_priv->pending_flip_queue);
4560 
4561 	dev_priv->mm.interruptible = true;
4562 
4563 	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4564 
4565 	spin_lock_init(&dev_priv->fb_tracking.lock);
4566 
4567 	return 0;
4568 
4569 err_dependencies:
4570 	kmem_cache_destroy(dev_priv->dependencies);
4571 err_requests:
4572 	kmem_cache_destroy(dev_priv->requests);
4573 err_vmas:
4574 	kmem_cache_destroy(dev_priv->vmas);
4575 err_objects:
4576 	kmem_cache_destroy(dev_priv->objects);
4577 err_out:
4578 	return err;
4579 }
4580 
4581 void i915_gem_load_cleanup(struct drm_device *dev)
4582 {
4583 	struct drm_i915_private *dev_priv = to_i915(dev);
4584 
4585 	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4586 
4587 	mutex_lock(&dev_priv->drm.struct_mutex);
4588 	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4589 	WARN_ON(!list_empty(&dev_priv->gt.timelines));
4590 	mutex_unlock(&dev_priv->drm.struct_mutex);
4591 
4592 	kmem_cache_destroy(dev_priv->dependencies);
4593 	kmem_cache_destroy(dev_priv->requests);
4594 	kmem_cache_destroy(dev_priv->vmas);
4595 	kmem_cache_destroy(dev_priv->objects);
4596 
4597 	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4598 	rcu_barrier();
4599 }
4600 
4601 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4602 {
4603 	intel_runtime_pm_get(dev_priv);
4604 
4605 	mutex_lock(&dev_priv->drm.struct_mutex);
4606 	i915_gem_shrink_all(dev_priv);
4607 	mutex_unlock(&dev_priv->drm.struct_mutex);
4608 
4609 	intel_runtime_pm_put(dev_priv);
4610 
4611 	return 0;
4612 }
4613 
4614 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4615 {
4616 	struct drm_i915_gem_object *obj;
4617 	struct list_head *phases[] = {
4618 		&dev_priv->mm.unbound_list,
4619 		&dev_priv->mm.bound_list,
4620 		NULL
4621 	}, **p;
4622 
4623 	/* Called just before we write the hibernation image.
4624 	 *
4625 	 * We need to update the domain tracking to reflect that the CPU
4626 	 * will be accessing all the pages to create and restore from the
4627 	 * hibernation, and so upon restoration those pages will be in the
4628 	 * CPU domain.
4629 	 *
4630 	 * To make sure the hibernation image contains the latest state,
4631 	 * we update that state just before writing out the image.
4632 	 *
4633 	 * To try and reduce the hibernation image, we manually shrink
4634 	 * the objects as well.
4635 	 */
4636 
4637 	mutex_lock(&dev_priv->drm.struct_mutex);
4638 	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4639 
4640 	for (p = phases; *p; p++) {
4641 		list_for_each_entry(obj, *p, global_link) {
4642 			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4643 			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4644 		}
4645 	}
4646 	mutex_unlock(&dev_priv->drm.struct_mutex);
4647 
4648 	return 0;
4649 }
4650 
4651 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4652 {
4653 	struct drm_i915_file_private *file_priv = file->driver_priv;
4654 	struct drm_i915_gem_request *request;
4655 
4656 	/* Clean up our request list when the client is going away, so that
4657 	 * later retire_requests won't dereference our soon-to-be-gone
4658 	 * file_priv.
4659 	 */
4660 	spin_lock(&file_priv->mm.lock);
4661 	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4662 		request->file_priv = NULL;
4663 	spin_unlock(&file_priv->mm.lock);
4664 
4665 	if (!list_empty(&file_priv->rps.link)) {
4666 		spin_lock(&to_i915(dev)->rps.client_lock);
4667 		list_del(&file_priv->rps.link);
4668 		spin_unlock(&to_i915(dev)->rps.client_lock);
4669 	}
4670 }
4671 
4672 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4673 {
4674 	struct drm_i915_file_private *file_priv;
4675 	int ret;
4676 
4677 	DRM_DEBUG("\n");
4678 
4679 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4680 	if (!file_priv)
4681 		return -ENOMEM;
4682 
4683 	file->driver_priv = file_priv;
4684 	file_priv->dev_priv = to_i915(dev);
4685 	file_priv->file = file;
4686 	INIT_LIST_HEAD(&file_priv->rps.link);
4687 
4688 	spin_lock_init(&file_priv->mm.lock);
4689 	INIT_LIST_HEAD(&file_priv->mm.request_list);
4690 
4691 	file_priv->bsd_engine = -1;
4692 
4693 	ret = i915_gem_context_open(dev, file);
4694 	if (ret)
4695 		kfree(file_priv);
4696 
4697 	return ret;
4698 }
4699 
4700 /**
4701  * i915_gem_track_fb - update frontbuffer tracking
4702  * @old: current GEM buffer for the frontbuffer slots
4703  * @new: new GEM buffer for the frontbuffer slots
4704  * @frontbuffer_bits: bitmask of frontbuffer slots
4705  *
4706  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4707  * from @old and setting them in @new. Both @old and @new can be NULL.
4708  */
4709 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4710 		       struct drm_i915_gem_object *new,
4711 		       unsigned frontbuffer_bits)
4712 {
4713 	/* Control of individual bits within the mask are guarded by
4714 	 * the owning plane->mutex, i.e. we can never see concurrent
4715 	 * manipulation of individual bits. But since the bitfield as a whole
4716 	 * is updated using RMW, we need to use atomics in order to update
4717 	 * the bits.
4718 	 */
4719 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4720 		     sizeof(atomic_t) * BITS_PER_BYTE);
4721 
4722 	if (old) {
4723 		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4724 		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4725 	}
4726 
4727 	if (new) {
4728 		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4729 		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4730 	}
4731 }
4732 
4733 /* Allocate a new GEM object and fill it with the supplied data */
4734 struct drm_i915_gem_object *
4735 i915_gem_object_create_from_data(struct drm_device *dev,
4736 			         const void *data, size_t size)
4737 {
4738 	struct drm_i915_gem_object *obj;
4739 	struct sg_table *sg;
4740 	size_t bytes;
4741 	int ret;
4742 
4743 	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4744 	if (IS_ERR(obj))
4745 		return obj;
4746 
4747 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
4748 	if (ret)
4749 		goto fail;
4750 
4751 	ret = i915_gem_object_pin_pages(obj);
4752 	if (ret)
4753 		goto fail;
4754 
4755 	sg = obj->mm.pages;
4756 	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4757 	obj->mm.dirty = true; /* Backing store is now out of date */
4758 	i915_gem_object_unpin_pages(obj);
4759 
4760 	if (WARN_ON(bytes != size)) {
4761 		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4762 		ret = -EFAULT;
4763 		goto fail;
4764 	}
4765 
4766 	return obj;
4767 
4768 fail:
4769 	i915_gem_object_put(obj);
4770 	return ERR_PTR(ret);
4771 }
4772 
4773 struct scatterlist *
4774 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
4775 		       unsigned int n,
4776 		       unsigned int *offset)
4777 {
4778 	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4779 	struct scatterlist *sg;
4780 	unsigned int idx, count;
4781 
4782 	might_sleep();
4783 	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
4784 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4785 
4786 	/* As we iterate forward through the sg, we record each entry in a
4787 	 * radixtree for quick repeated (backwards) lookups. If we have seen
4788 	 * this index previously, we will have an entry for it.
4789 	 *
4790 	 * Initial lookup is O(N), but this is amortized to O(1) for
4791 	 * sequential page access (where each new request is consecutive
4792 	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
4793 	 * i.e. O(1) with a large constant!
4794 	 */
4795 	if (n < READ_ONCE(iter->sg_idx))
4796 		goto lookup;
4797 
4798 	mutex_lock(&iter->lock);
4799 
4800 	/* We prefer to reuse the last sg so that repeated lookup of this
4801 	 * (or the subsequent) sg are fast - comparing against the last
4802 	 * sg is faster than going through the radixtree.
4803 	 */
4804 
4805 	sg = iter->sg_pos;
4806 	idx = iter->sg_idx;
4807 	count = __sg_page_count(sg);
4808 
4809 	while (idx + count <= n) {
4810 		unsigned long exception, i;
4811 		int ret;
4812 
4813 		/* If we cannot allocate and insert this entry, or the
4814 		 * individual pages from this range, cancel updating the
4815 		 * sg_idx so that on this lookup we are forced to linearly
4816 		 * scan onwards, but on future lookups we will try the
4817 		 * insertion again (in which case we need to be careful of
4818 		 * the error return reporting that we have already inserted
4819 		 * this index).
4820 		 */
4821 		ret = radix_tree_insert(&iter->radix, idx, sg);
4822 		if (ret && ret != -EEXIST)
4823 			goto scan;
4824 
4825 		exception =
4826 			RADIX_TREE_EXCEPTIONAL_ENTRY |
4827 			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
4828 		for (i = 1; i < count; i++) {
4829 			ret = radix_tree_insert(&iter->radix, idx + i,
4830 						(void *)exception);
4831 			if (ret && ret != -EEXIST)
4832 				goto scan;
4833 		}
4834 
4835 		idx += count;
4836 		sg = ____sg_next(sg);
4837 		count = __sg_page_count(sg);
4838 	}
4839 
4840 scan:
4841 	iter->sg_pos = sg;
4842 	iter->sg_idx = idx;
4843 
4844 	mutex_unlock(&iter->lock);
4845 
4846 	if (unlikely(n < idx)) /* insertion completed by another thread */
4847 		goto lookup;
4848 
4849 	/* In case we failed to insert the entry into the radixtree, we need
4850 	 * to look beyond the current sg.
4851 	 */
4852 	while (idx + count <= n) {
4853 		idx += count;
4854 		sg = ____sg_next(sg);
4855 		count = __sg_page_count(sg);
4856 	}
4857 
4858 	*offset = n - idx;
4859 	return sg;
4860 
4861 lookup:
4862 	rcu_read_lock();
4863 
4864 	sg = radix_tree_lookup(&iter->radix, n);
4865 	GEM_BUG_ON(!sg);
4866 
4867 	/* If this index is in the middle of multi-page sg entry,
4868 	 * the radixtree will contain an exceptional entry that points
4869 	 * to the start of that range. We will return the pointer to
4870 	 * the base page and the offset of this page within the
4871 	 * sg entry's range.
4872 	 */
4873 	*offset = 0;
4874 	if (unlikely(radix_tree_exception(sg))) {
4875 		unsigned long base =
4876 			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
4877 
4878 		sg = radix_tree_lookup(&iter->radix, base);
4879 		GEM_BUG_ON(!sg);
4880 
4881 		*offset = n - base;
4882 	}
4883 
4884 	rcu_read_unlock();
4885 
4886 	return sg;
4887 }
4888 
4889 struct page *
4890 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
4891 {
4892 	struct scatterlist *sg;
4893 	unsigned int offset;
4894 
4895 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
4896 
4897 	sg = i915_gem_object_get_sg(obj, n, &offset);
4898 	return nth_page(sg_page(sg), offset);
4899 }
4900 
4901 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
4902 struct page *
4903 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
4904 			       unsigned int n)
4905 {
4906 	struct page *page;
4907 
4908 	page = i915_gem_object_get_page(obj, n);
4909 	if (!obj->mm.dirty)
4910 		set_page_dirty(page);
4911 
4912 	return page;
4913 }
4914 
4915 dma_addr_t
4916 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
4917 				unsigned long n)
4918 {
4919 	struct scatterlist *sg;
4920 	unsigned int offset;
4921 
4922 	sg = i915_gem_object_get_sg(obj, n, &offset);
4923 	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
4924 }
4925