1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <drm/drmP.h> 29 #include <drm/drm_vma_manager.h> 30 #include <drm/i915_drm.h> 31 #include "i915_drv.h" 32 #include "i915_gem_clflush.h" 33 #include "i915_vgpu.h" 34 #include "i915_trace.h" 35 #include "intel_drv.h" 36 #include "intel_frontbuffer.h" 37 #include "intel_mocs.h" 38 #include "i915_gemfs.h" 39 #include <linux/dma-fence-array.h> 40 #include <linux/kthread.h> 41 #include <linux/reservation.h> 42 #include <linux/shmem_fs.h> 43 #include <linux/slab.h> 44 #include <linux/stop_machine.h> 45 #include <linux/swap.h> 46 #include <linux/pci.h> 47 #include <linux/dma-buf.h> 48 49 static void i915_gem_flush_free_objects(struct drm_i915_private *i915); 50 51 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj) 52 { 53 if (obj->cache_dirty) 54 return false; 55 56 if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE)) 57 return true; 58 59 return obj->pin_global; /* currently in use by HW, keep flushed */ 60 } 61 62 static int 63 insert_mappable_node(struct i915_ggtt *ggtt, 64 struct drm_mm_node *node, u32 size) 65 { 66 memset(node, 0, sizeof(*node)); 67 return drm_mm_insert_node_in_range(&ggtt->base.mm, node, 68 size, 0, I915_COLOR_UNEVICTABLE, 69 0, ggtt->mappable_end, 70 DRM_MM_INSERT_LOW); 71 } 72 73 static void 74 remove_mappable_node(struct drm_mm_node *node) 75 { 76 drm_mm_remove_node(node); 77 } 78 79 /* some bookkeeping */ 80 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv, 81 u64 size) 82 { 83 spin_lock(&dev_priv->mm.object_stat_lock); 84 dev_priv->mm.object_count++; 85 dev_priv->mm.object_memory += size; 86 spin_unlock(&dev_priv->mm.object_stat_lock); 87 } 88 89 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, 90 u64 size) 91 { 92 spin_lock(&dev_priv->mm.object_stat_lock); 93 dev_priv->mm.object_count--; 94 dev_priv->mm.object_memory -= size; 95 spin_unlock(&dev_priv->mm.object_stat_lock); 96 } 97 98 static int 99 i915_gem_wait_for_error(struct i915_gpu_error *error) 100 { 101 int ret; 102 103 might_sleep(); 104 105 /* 106 * Only wait 10 seconds for the gpu reset to complete to avoid hanging 107 * userspace. If it takes that long something really bad is going on and 108 * we should simply try to bail out and fail as gracefully as possible. 109 */ 110 ret = wait_event_interruptible_timeout(error->reset_queue, 111 !i915_reset_backoff(error), 112 I915_RESET_TIMEOUT); 113 if (ret == 0) { 114 DRM_ERROR("Timed out waiting for the gpu reset to complete\n"); 115 return -EIO; 116 } else if (ret < 0) { 117 return ret; 118 } else { 119 return 0; 120 } 121 } 122 123 int i915_mutex_lock_interruptible(struct drm_device *dev) 124 { 125 struct drm_i915_private *dev_priv = to_i915(dev); 126 int ret; 127 128 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 129 if (ret) 130 return ret; 131 132 ret = mutex_lock_interruptible(&dev->struct_mutex); 133 if (ret) 134 return ret; 135 136 return 0; 137 } 138 139 int 140 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 141 struct drm_file *file) 142 { 143 struct drm_i915_private *dev_priv = to_i915(dev); 144 struct i915_ggtt *ggtt = &dev_priv->ggtt; 145 struct drm_i915_gem_get_aperture *args = data; 146 struct i915_vma *vma; 147 u64 pinned; 148 149 pinned = ggtt->base.reserved; 150 mutex_lock(&dev->struct_mutex); 151 list_for_each_entry(vma, &ggtt->base.active_list, vm_link) 152 if (i915_vma_is_pinned(vma)) 153 pinned += vma->node.size; 154 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link) 155 if (i915_vma_is_pinned(vma)) 156 pinned += vma->node.size; 157 mutex_unlock(&dev->struct_mutex); 158 159 args->aper_size = ggtt->base.total; 160 args->aper_available_size = args->aper_size - pinned; 161 162 return 0; 163 } 164 165 static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj) 166 { 167 struct address_space *mapping = obj->base.filp->f_mapping; 168 drm_dma_handle_t *phys; 169 struct sg_table *st; 170 struct scatterlist *sg; 171 char *vaddr; 172 int i; 173 int err; 174 175 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj))) 176 return -EINVAL; 177 178 /* Always aligning to the object size, allows a single allocation 179 * to handle all possible callers, and given typical object sizes, 180 * the alignment of the buddy allocation will naturally match. 181 */ 182 phys = drm_pci_alloc(obj->base.dev, 183 roundup_pow_of_two(obj->base.size), 184 roundup_pow_of_two(obj->base.size)); 185 if (!phys) 186 return -ENOMEM; 187 188 vaddr = phys->vaddr; 189 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { 190 struct page *page; 191 char *src; 192 193 page = shmem_read_mapping_page(mapping, i); 194 if (IS_ERR(page)) { 195 err = PTR_ERR(page); 196 goto err_phys; 197 } 198 199 src = kmap_atomic(page); 200 memcpy(vaddr, src, PAGE_SIZE); 201 drm_clflush_virt_range(vaddr, PAGE_SIZE); 202 kunmap_atomic(src); 203 204 put_page(page); 205 vaddr += PAGE_SIZE; 206 } 207 208 i915_gem_chipset_flush(to_i915(obj->base.dev)); 209 210 st = kmalloc(sizeof(*st), GFP_KERNEL); 211 if (!st) { 212 err = -ENOMEM; 213 goto err_phys; 214 } 215 216 if (sg_alloc_table(st, 1, GFP_KERNEL)) { 217 kfree(st); 218 err = -ENOMEM; 219 goto err_phys; 220 } 221 222 sg = st->sgl; 223 sg->offset = 0; 224 sg->length = obj->base.size; 225 226 sg_dma_address(sg) = phys->busaddr; 227 sg_dma_len(sg) = obj->base.size; 228 229 obj->phys_handle = phys; 230 231 __i915_gem_object_set_pages(obj, st, sg->length); 232 233 return 0; 234 235 err_phys: 236 drm_pci_free(obj->base.dev, phys); 237 238 return err; 239 } 240 241 static void __start_cpu_write(struct drm_i915_gem_object *obj) 242 { 243 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 244 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 245 if (cpu_write_needs_clflush(obj)) 246 obj->cache_dirty = true; 247 } 248 249 static void 250 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj, 251 struct sg_table *pages, 252 bool needs_clflush) 253 { 254 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED); 255 256 if (obj->mm.madv == I915_MADV_DONTNEED) 257 obj->mm.dirty = false; 258 259 if (needs_clflush && 260 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 && 261 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)) 262 drm_clflush_sg(pages); 263 264 __start_cpu_write(obj); 265 } 266 267 static void 268 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj, 269 struct sg_table *pages) 270 { 271 __i915_gem_object_release_shmem(obj, pages, false); 272 273 if (obj->mm.dirty) { 274 struct address_space *mapping = obj->base.filp->f_mapping; 275 char *vaddr = obj->phys_handle->vaddr; 276 int i; 277 278 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { 279 struct page *page; 280 char *dst; 281 282 page = shmem_read_mapping_page(mapping, i); 283 if (IS_ERR(page)) 284 continue; 285 286 dst = kmap_atomic(page); 287 drm_clflush_virt_range(vaddr, PAGE_SIZE); 288 memcpy(dst, vaddr, PAGE_SIZE); 289 kunmap_atomic(dst); 290 291 set_page_dirty(page); 292 if (obj->mm.madv == I915_MADV_WILLNEED) 293 mark_page_accessed(page); 294 put_page(page); 295 vaddr += PAGE_SIZE; 296 } 297 obj->mm.dirty = false; 298 } 299 300 sg_free_table(pages); 301 kfree(pages); 302 303 drm_pci_free(obj->base.dev, obj->phys_handle); 304 } 305 306 static void 307 i915_gem_object_release_phys(struct drm_i915_gem_object *obj) 308 { 309 i915_gem_object_unpin_pages(obj); 310 } 311 312 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = { 313 .get_pages = i915_gem_object_get_pages_phys, 314 .put_pages = i915_gem_object_put_pages_phys, 315 .release = i915_gem_object_release_phys, 316 }; 317 318 static const struct drm_i915_gem_object_ops i915_gem_object_ops; 319 320 int i915_gem_object_unbind(struct drm_i915_gem_object *obj) 321 { 322 struct i915_vma *vma; 323 LIST_HEAD(still_in_list); 324 int ret; 325 326 lockdep_assert_held(&obj->base.dev->struct_mutex); 327 328 /* Closed vma are removed from the obj->vma_list - but they may 329 * still have an active binding on the object. To remove those we 330 * must wait for all rendering to complete to the object (as unbinding 331 * must anyway), and retire the requests. 332 */ 333 ret = i915_gem_object_set_to_cpu_domain(obj, false); 334 if (ret) 335 return ret; 336 337 while ((vma = list_first_entry_or_null(&obj->vma_list, 338 struct i915_vma, 339 obj_link))) { 340 list_move_tail(&vma->obj_link, &still_in_list); 341 ret = i915_vma_unbind(vma); 342 if (ret) 343 break; 344 } 345 list_splice(&still_in_list, &obj->vma_list); 346 347 return ret; 348 } 349 350 static long 351 i915_gem_object_wait_fence(struct dma_fence *fence, 352 unsigned int flags, 353 long timeout, 354 struct intel_rps_client *rps_client) 355 { 356 struct drm_i915_gem_request *rq; 357 358 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1); 359 360 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 361 return timeout; 362 363 if (!dma_fence_is_i915(fence)) 364 return dma_fence_wait_timeout(fence, 365 flags & I915_WAIT_INTERRUPTIBLE, 366 timeout); 367 368 rq = to_request(fence); 369 if (i915_gem_request_completed(rq)) 370 goto out; 371 372 /* This client is about to stall waiting for the GPU. In many cases 373 * this is undesirable and limits the throughput of the system, as 374 * many clients cannot continue processing user input/output whilst 375 * blocked. RPS autotuning may take tens of milliseconds to respond 376 * to the GPU load and thus incurs additional latency for the client. 377 * We can circumvent that by promoting the GPU frequency to maximum 378 * before we wait. This makes the GPU throttle up much more quickly 379 * (good for benchmarks and user experience, e.g. window animations), 380 * but at a cost of spending more power processing the workload 381 * (bad for battery). Not all clients even want their results 382 * immediately and for them we should just let the GPU select its own 383 * frequency to maximise efficiency. To prevent a single client from 384 * forcing the clocks too high for the whole system, we only allow 385 * each client to waitboost once in a busy period. 386 */ 387 if (rps_client) { 388 if (INTEL_GEN(rq->i915) >= 6) 389 gen6_rps_boost(rq, rps_client); 390 else 391 rps_client = NULL; 392 } 393 394 timeout = i915_wait_request(rq, flags, timeout); 395 396 out: 397 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq)) 398 i915_gem_request_retire_upto(rq); 399 400 return timeout; 401 } 402 403 static long 404 i915_gem_object_wait_reservation(struct reservation_object *resv, 405 unsigned int flags, 406 long timeout, 407 struct intel_rps_client *rps_client) 408 { 409 unsigned int seq = __read_seqcount_begin(&resv->seq); 410 struct dma_fence *excl; 411 bool prune_fences = false; 412 413 if (flags & I915_WAIT_ALL) { 414 struct dma_fence **shared; 415 unsigned int count, i; 416 int ret; 417 418 ret = reservation_object_get_fences_rcu(resv, 419 &excl, &count, &shared); 420 if (ret) 421 return ret; 422 423 for (i = 0; i < count; i++) { 424 timeout = i915_gem_object_wait_fence(shared[i], 425 flags, timeout, 426 rps_client); 427 if (timeout < 0) 428 break; 429 430 dma_fence_put(shared[i]); 431 } 432 433 for (; i < count; i++) 434 dma_fence_put(shared[i]); 435 kfree(shared); 436 437 prune_fences = count && timeout >= 0; 438 } else { 439 excl = reservation_object_get_excl_rcu(resv); 440 } 441 442 if (excl && timeout >= 0) { 443 timeout = i915_gem_object_wait_fence(excl, flags, timeout, 444 rps_client); 445 prune_fences = timeout >= 0; 446 } 447 448 dma_fence_put(excl); 449 450 /* Oportunistically prune the fences iff we know they have *all* been 451 * signaled and that the reservation object has not been changed (i.e. 452 * no new fences have been added). 453 */ 454 if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) { 455 if (reservation_object_trylock(resv)) { 456 if (!__read_seqcount_retry(&resv->seq, seq)) 457 reservation_object_add_excl_fence(resv, NULL); 458 reservation_object_unlock(resv); 459 } 460 } 461 462 return timeout; 463 } 464 465 static void __fence_set_priority(struct dma_fence *fence, int prio) 466 { 467 struct drm_i915_gem_request *rq; 468 struct intel_engine_cs *engine; 469 470 if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence)) 471 return; 472 473 rq = to_request(fence); 474 engine = rq->engine; 475 if (!engine->schedule) 476 return; 477 478 engine->schedule(rq, prio); 479 } 480 481 static void fence_set_priority(struct dma_fence *fence, int prio) 482 { 483 /* Recurse once into a fence-array */ 484 if (dma_fence_is_array(fence)) { 485 struct dma_fence_array *array = to_dma_fence_array(fence); 486 int i; 487 488 for (i = 0; i < array->num_fences; i++) 489 __fence_set_priority(array->fences[i], prio); 490 } else { 491 __fence_set_priority(fence, prio); 492 } 493 } 494 495 int 496 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj, 497 unsigned int flags, 498 int prio) 499 { 500 struct dma_fence *excl; 501 502 if (flags & I915_WAIT_ALL) { 503 struct dma_fence **shared; 504 unsigned int count, i; 505 int ret; 506 507 ret = reservation_object_get_fences_rcu(obj->resv, 508 &excl, &count, &shared); 509 if (ret) 510 return ret; 511 512 for (i = 0; i < count; i++) { 513 fence_set_priority(shared[i], prio); 514 dma_fence_put(shared[i]); 515 } 516 517 kfree(shared); 518 } else { 519 excl = reservation_object_get_excl_rcu(obj->resv); 520 } 521 522 if (excl) { 523 fence_set_priority(excl, prio); 524 dma_fence_put(excl); 525 } 526 return 0; 527 } 528 529 /** 530 * Waits for rendering to the object to be completed 531 * @obj: i915 gem object 532 * @flags: how to wait (under a lock, for all rendering or just for writes etc) 533 * @timeout: how long to wait 534 * @rps_client: client (user process) to charge for any waitboosting 535 */ 536 int 537 i915_gem_object_wait(struct drm_i915_gem_object *obj, 538 unsigned int flags, 539 long timeout, 540 struct intel_rps_client *rps_client) 541 { 542 might_sleep(); 543 #if IS_ENABLED(CONFIG_LOCKDEP) 544 GEM_BUG_ON(debug_locks && 545 !!lockdep_is_held(&obj->base.dev->struct_mutex) != 546 !!(flags & I915_WAIT_LOCKED)); 547 #endif 548 GEM_BUG_ON(timeout < 0); 549 550 timeout = i915_gem_object_wait_reservation(obj->resv, 551 flags, timeout, 552 rps_client); 553 return timeout < 0 ? timeout : 0; 554 } 555 556 static struct intel_rps_client *to_rps_client(struct drm_file *file) 557 { 558 struct drm_i915_file_private *fpriv = file->driver_priv; 559 560 return &fpriv->rps_client; 561 } 562 563 static int 564 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj, 565 struct drm_i915_gem_pwrite *args, 566 struct drm_file *file) 567 { 568 void *vaddr = obj->phys_handle->vaddr + args->offset; 569 char __user *user_data = u64_to_user_ptr(args->data_ptr); 570 571 /* We manually control the domain here and pretend that it 572 * remains coherent i.e. in the GTT domain, like shmem_pwrite. 573 */ 574 intel_fb_obj_invalidate(obj, ORIGIN_CPU); 575 if (copy_from_user(vaddr, user_data, args->size)) 576 return -EFAULT; 577 578 drm_clflush_virt_range(vaddr, args->size); 579 i915_gem_chipset_flush(to_i915(obj->base.dev)); 580 581 intel_fb_obj_flush(obj, ORIGIN_CPU); 582 return 0; 583 } 584 585 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv) 586 { 587 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL); 588 } 589 590 void i915_gem_object_free(struct drm_i915_gem_object *obj) 591 { 592 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 593 kmem_cache_free(dev_priv->objects, obj); 594 } 595 596 static int 597 i915_gem_create(struct drm_file *file, 598 struct drm_i915_private *dev_priv, 599 uint64_t size, 600 uint32_t *handle_p) 601 { 602 struct drm_i915_gem_object *obj; 603 int ret; 604 u32 handle; 605 606 size = roundup(size, PAGE_SIZE); 607 if (size == 0) 608 return -EINVAL; 609 610 /* Allocate the new object */ 611 obj = i915_gem_object_create(dev_priv, size); 612 if (IS_ERR(obj)) 613 return PTR_ERR(obj); 614 615 ret = drm_gem_handle_create(file, &obj->base, &handle); 616 /* drop reference from allocate - handle holds it now */ 617 i915_gem_object_put(obj); 618 if (ret) 619 return ret; 620 621 *handle_p = handle; 622 return 0; 623 } 624 625 int 626 i915_gem_dumb_create(struct drm_file *file, 627 struct drm_device *dev, 628 struct drm_mode_create_dumb *args) 629 { 630 /* have to work out size/pitch and return them */ 631 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64); 632 args->size = args->pitch * args->height; 633 return i915_gem_create(file, to_i915(dev), 634 args->size, &args->handle); 635 } 636 637 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj) 638 { 639 return !(obj->cache_level == I915_CACHE_NONE || 640 obj->cache_level == I915_CACHE_WT); 641 } 642 643 /** 644 * Creates a new mm object and returns a handle to it. 645 * @dev: drm device pointer 646 * @data: ioctl data blob 647 * @file: drm file pointer 648 */ 649 int 650 i915_gem_create_ioctl(struct drm_device *dev, void *data, 651 struct drm_file *file) 652 { 653 struct drm_i915_private *dev_priv = to_i915(dev); 654 struct drm_i915_gem_create *args = data; 655 656 i915_gem_flush_free_objects(dev_priv); 657 658 return i915_gem_create(file, dev_priv, 659 args->size, &args->handle); 660 } 661 662 static inline enum fb_op_origin 663 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain) 664 { 665 return (domain == I915_GEM_DOMAIN_GTT ? 666 obj->frontbuffer_ggtt_origin : ORIGIN_CPU); 667 } 668 669 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv) 670 { 671 /* 672 * No actual flushing is required for the GTT write domain for reads 673 * from the GTT domain. Writes to it "immediately" go to main memory 674 * as far as we know, so there's no chipset flush. It also doesn't 675 * land in the GPU render cache. 676 * 677 * However, we do have to enforce the order so that all writes through 678 * the GTT land before any writes to the device, such as updates to 679 * the GATT itself. 680 * 681 * We also have to wait a bit for the writes to land from the GTT. 682 * An uncached read (i.e. mmio) seems to be ideal for the round-trip 683 * timing. This issue has only been observed when switching quickly 684 * between GTT writes and CPU reads from inside the kernel on recent hw, 685 * and it appears to only affect discrete GTT blocks (i.e. on LLC 686 * system agents we cannot reproduce this behaviour, until Cannonlake 687 * that was!). 688 */ 689 690 wmb(); 691 692 intel_runtime_pm_get(dev_priv); 693 spin_lock_irq(&dev_priv->uncore.lock); 694 695 POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE)); 696 697 spin_unlock_irq(&dev_priv->uncore.lock); 698 intel_runtime_pm_put(dev_priv); 699 } 700 701 static void 702 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains) 703 { 704 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 705 struct i915_vma *vma; 706 707 if (!(obj->base.write_domain & flush_domains)) 708 return; 709 710 switch (obj->base.write_domain) { 711 case I915_GEM_DOMAIN_GTT: 712 i915_gem_flush_ggtt_writes(dev_priv); 713 714 intel_fb_obj_flush(obj, 715 fb_write_origin(obj, I915_GEM_DOMAIN_GTT)); 716 717 for_each_ggtt_vma(vma, obj) { 718 if (vma->iomap) 719 continue; 720 721 i915_vma_unset_ggtt_write(vma); 722 } 723 break; 724 725 case I915_GEM_DOMAIN_CPU: 726 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC); 727 break; 728 729 case I915_GEM_DOMAIN_RENDER: 730 if (gpu_write_needs_clflush(obj)) 731 obj->cache_dirty = true; 732 break; 733 } 734 735 obj->base.write_domain = 0; 736 } 737 738 static inline int 739 __copy_to_user_swizzled(char __user *cpu_vaddr, 740 const char *gpu_vaddr, int gpu_offset, 741 int length) 742 { 743 int ret, cpu_offset = 0; 744 745 while (length > 0) { 746 int cacheline_end = ALIGN(gpu_offset + 1, 64); 747 int this_length = min(cacheline_end - gpu_offset, length); 748 int swizzled_gpu_offset = gpu_offset ^ 64; 749 750 ret = __copy_to_user(cpu_vaddr + cpu_offset, 751 gpu_vaddr + swizzled_gpu_offset, 752 this_length); 753 if (ret) 754 return ret + length; 755 756 cpu_offset += this_length; 757 gpu_offset += this_length; 758 length -= this_length; 759 } 760 761 return 0; 762 } 763 764 static inline int 765 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset, 766 const char __user *cpu_vaddr, 767 int length) 768 { 769 int ret, cpu_offset = 0; 770 771 while (length > 0) { 772 int cacheline_end = ALIGN(gpu_offset + 1, 64); 773 int this_length = min(cacheline_end - gpu_offset, length); 774 int swizzled_gpu_offset = gpu_offset ^ 64; 775 776 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset, 777 cpu_vaddr + cpu_offset, 778 this_length); 779 if (ret) 780 return ret + length; 781 782 cpu_offset += this_length; 783 gpu_offset += this_length; 784 length -= this_length; 785 } 786 787 return 0; 788 } 789 790 /* 791 * Pins the specified object's pages and synchronizes the object with 792 * GPU accesses. Sets needs_clflush to non-zero if the caller should 793 * flush the object from the CPU cache. 794 */ 795 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, 796 unsigned int *needs_clflush) 797 { 798 int ret; 799 800 lockdep_assert_held(&obj->base.dev->struct_mutex); 801 802 *needs_clflush = 0; 803 if (!i915_gem_object_has_struct_page(obj)) 804 return -ENODEV; 805 806 ret = i915_gem_object_wait(obj, 807 I915_WAIT_INTERRUPTIBLE | 808 I915_WAIT_LOCKED, 809 MAX_SCHEDULE_TIMEOUT, 810 NULL); 811 if (ret) 812 return ret; 813 814 ret = i915_gem_object_pin_pages(obj); 815 if (ret) 816 return ret; 817 818 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ || 819 !static_cpu_has(X86_FEATURE_CLFLUSH)) { 820 ret = i915_gem_object_set_to_cpu_domain(obj, false); 821 if (ret) 822 goto err_unpin; 823 else 824 goto out; 825 } 826 827 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); 828 829 /* If we're not in the cpu read domain, set ourself into the gtt 830 * read domain and manually flush cachelines (if required). This 831 * optimizes for the case when the gpu will dirty the data 832 * anyway again before the next pread happens. 833 */ 834 if (!obj->cache_dirty && 835 !(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) 836 *needs_clflush = CLFLUSH_BEFORE; 837 838 out: 839 /* return with the pages pinned */ 840 return 0; 841 842 err_unpin: 843 i915_gem_object_unpin_pages(obj); 844 return ret; 845 } 846 847 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj, 848 unsigned int *needs_clflush) 849 { 850 int ret; 851 852 lockdep_assert_held(&obj->base.dev->struct_mutex); 853 854 *needs_clflush = 0; 855 if (!i915_gem_object_has_struct_page(obj)) 856 return -ENODEV; 857 858 ret = i915_gem_object_wait(obj, 859 I915_WAIT_INTERRUPTIBLE | 860 I915_WAIT_LOCKED | 861 I915_WAIT_ALL, 862 MAX_SCHEDULE_TIMEOUT, 863 NULL); 864 if (ret) 865 return ret; 866 867 ret = i915_gem_object_pin_pages(obj); 868 if (ret) 869 return ret; 870 871 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE || 872 !static_cpu_has(X86_FEATURE_CLFLUSH)) { 873 ret = i915_gem_object_set_to_cpu_domain(obj, true); 874 if (ret) 875 goto err_unpin; 876 else 877 goto out; 878 } 879 880 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); 881 882 /* If we're not in the cpu write domain, set ourself into the 883 * gtt write domain and manually flush cachelines (as required). 884 * This optimizes for the case when the gpu will use the data 885 * right away and we therefore have to clflush anyway. 886 */ 887 if (!obj->cache_dirty) { 888 *needs_clflush |= CLFLUSH_AFTER; 889 890 /* 891 * Same trick applies to invalidate partially written 892 * cachelines read before writing. 893 */ 894 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) 895 *needs_clflush |= CLFLUSH_BEFORE; 896 } 897 898 out: 899 intel_fb_obj_invalidate(obj, ORIGIN_CPU); 900 obj->mm.dirty = true; 901 /* return with the pages pinned */ 902 return 0; 903 904 err_unpin: 905 i915_gem_object_unpin_pages(obj); 906 return ret; 907 } 908 909 static void 910 shmem_clflush_swizzled_range(char *addr, unsigned long length, 911 bool swizzled) 912 { 913 if (unlikely(swizzled)) { 914 unsigned long start = (unsigned long) addr; 915 unsigned long end = (unsigned long) addr + length; 916 917 /* For swizzling simply ensure that we always flush both 918 * channels. Lame, but simple and it works. Swizzled 919 * pwrite/pread is far from a hotpath - current userspace 920 * doesn't use it at all. */ 921 start = round_down(start, 128); 922 end = round_up(end, 128); 923 924 drm_clflush_virt_range((void *)start, end - start); 925 } else { 926 drm_clflush_virt_range(addr, length); 927 } 928 929 } 930 931 /* Only difference to the fast-path function is that this can handle bit17 932 * and uses non-atomic copy and kmap functions. */ 933 static int 934 shmem_pread_slow(struct page *page, int offset, int length, 935 char __user *user_data, 936 bool page_do_bit17_swizzling, bool needs_clflush) 937 { 938 char *vaddr; 939 int ret; 940 941 vaddr = kmap(page); 942 if (needs_clflush) 943 shmem_clflush_swizzled_range(vaddr + offset, length, 944 page_do_bit17_swizzling); 945 946 if (page_do_bit17_swizzling) 947 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length); 948 else 949 ret = __copy_to_user(user_data, vaddr + offset, length); 950 kunmap(page); 951 952 return ret ? - EFAULT : 0; 953 } 954 955 static int 956 shmem_pread(struct page *page, int offset, int length, char __user *user_data, 957 bool page_do_bit17_swizzling, bool needs_clflush) 958 { 959 int ret; 960 961 ret = -ENODEV; 962 if (!page_do_bit17_swizzling) { 963 char *vaddr = kmap_atomic(page); 964 965 if (needs_clflush) 966 drm_clflush_virt_range(vaddr + offset, length); 967 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length); 968 kunmap_atomic(vaddr); 969 } 970 if (ret == 0) 971 return 0; 972 973 return shmem_pread_slow(page, offset, length, user_data, 974 page_do_bit17_swizzling, needs_clflush); 975 } 976 977 static int 978 i915_gem_shmem_pread(struct drm_i915_gem_object *obj, 979 struct drm_i915_gem_pread *args) 980 { 981 char __user *user_data; 982 u64 remain; 983 unsigned int obj_do_bit17_swizzling; 984 unsigned int needs_clflush; 985 unsigned int idx, offset; 986 int ret; 987 988 obj_do_bit17_swizzling = 0; 989 if (i915_gem_object_needs_bit17_swizzle(obj)) 990 obj_do_bit17_swizzling = BIT(17); 991 992 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex); 993 if (ret) 994 return ret; 995 996 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush); 997 mutex_unlock(&obj->base.dev->struct_mutex); 998 if (ret) 999 return ret; 1000 1001 remain = args->size; 1002 user_data = u64_to_user_ptr(args->data_ptr); 1003 offset = offset_in_page(args->offset); 1004 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { 1005 struct page *page = i915_gem_object_get_page(obj, idx); 1006 int length; 1007 1008 length = remain; 1009 if (offset + length > PAGE_SIZE) 1010 length = PAGE_SIZE - offset; 1011 1012 ret = shmem_pread(page, offset, length, user_data, 1013 page_to_phys(page) & obj_do_bit17_swizzling, 1014 needs_clflush); 1015 if (ret) 1016 break; 1017 1018 remain -= length; 1019 user_data += length; 1020 offset = 0; 1021 } 1022 1023 i915_gem_obj_finish_shmem_access(obj); 1024 return ret; 1025 } 1026 1027 static inline bool 1028 gtt_user_read(struct io_mapping *mapping, 1029 loff_t base, int offset, 1030 char __user *user_data, int length) 1031 { 1032 void __iomem *vaddr; 1033 unsigned long unwritten; 1034 1035 /* We can use the cpu mem copy function because this is X86. */ 1036 vaddr = io_mapping_map_atomic_wc(mapping, base); 1037 unwritten = __copy_to_user_inatomic(user_data, 1038 (void __force *)vaddr + offset, 1039 length); 1040 io_mapping_unmap_atomic(vaddr); 1041 if (unwritten) { 1042 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE); 1043 unwritten = copy_to_user(user_data, 1044 (void __force *)vaddr + offset, 1045 length); 1046 io_mapping_unmap(vaddr); 1047 } 1048 return unwritten; 1049 } 1050 1051 static int 1052 i915_gem_gtt_pread(struct drm_i915_gem_object *obj, 1053 const struct drm_i915_gem_pread *args) 1054 { 1055 struct drm_i915_private *i915 = to_i915(obj->base.dev); 1056 struct i915_ggtt *ggtt = &i915->ggtt; 1057 struct drm_mm_node node; 1058 struct i915_vma *vma; 1059 void __user *user_data; 1060 u64 remain, offset; 1061 int ret; 1062 1063 ret = mutex_lock_interruptible(&i915->drm.struct_mutex); 1064 if (ret) 1065 return ret; 1066 1067 intel_runtime_pm_get(i915); 1068 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 1069 PIN_MAPPABLE | 1070 PIN_NONFAULT | 1071 PIN_NONBLOCK); 1072 if (!IS_ERR(vma)) { 1073 node.start = i915_ggtt_offset(vma); 1074 node.allocated = false; 1075 ret = i915_vma_put_fence(vma); 1076 if (ret) { 1077 i915_vma_unpin(vma); 1078 vma = ERR_PTR(ret); 1079 } 1080 } 1081 if (IS_ERR(vma)) { 1082 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE); 1083 if (ret) 1084 goto out_unlock; 1085 GEM_BUG_ON(!node.allocated); 1086 } 1087 1088 ret = i915_gem_object_set_to_gtt_domain(obj, false); 1089 if (ret) 1090 goto out_unpin; 1091 1092 mutex_unlock(&i915->drm.struct_mutex); 1093 1094 user_data = u64_to_user_ptr(args->data_ptr); 1095 remain = args->size; 1096 offset = args->offset; 1097 1098 while (remain > 0) { 1099 /* Operation in this page 1100 * 1101 * page_base = page offset within aperture 1102 * page_offset = offset within page 1103 * page_length = bytes to copy for this page 1104 */ 1105 u32 page_base = node.start; 1106 unsigned page_offset = offset_in_page(offset); 1107 unsigned page_length = PAGE_SIZE - page_offset; 1108 page_length = remain < page_length ? remain : page_length; 1109 if (node.allocated) { 1110 wmb(); 1111 ggtt->base.insert_page(&ggtt->base, 1112 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), 1113 node.start, I915_CACHE_NONE, 0); 1114 wmb(); 1115 } else { 1116 page_base += offset & PAGE_MASK; 1117 } 1118 1119 if (gtt_user_read(&ggtt->iomap, page_base, page_offset, 1120 user_data, page_length)) { 1121 ret = -EFAULT; 1122 break; 1123 } 1124 1125 remain -= page_length; 1126 user_data += page_length; 1127 offset += page_length; 1128 } 1129 1130 mutex_lock(&i915->drm.struct_mutex); 1131 out_unpin: 1132 if (node.allocated) { 1133 wmb(); 1134 ggtt->base.clear_range(&ggtt->base, 1135 node.start, node.size); 1136 remove_mappable_node(&node); 1137 } else { 1138 i915_vma_unpin(vma); 1139 } 1140 out_unlock: 1141 intel_runtime_pm_put(i915); 1142 mutex_unlock(&i915->drm.struct_mutex); 1143 1144 return ret; 1145 } 1146 1147 /** 1148 * Reads data from the object referenced by handle. 1149 * @dev: drm device pointer 1150 * @data: ioctl data blob 1151 * @file: drm file pointer 1152 * 1153 * On error, the contents of *data are undefined. 1154 */ 1155 int 1156 i915_gem_pread_ioctl(struct drm_device *dev, void *data, 1157 struct drm_file *file) 1158 { 1159 struct drm_i915_gem_pread *args = data; 1160 struct drm_i915_gem_object *obj; 1161 int ret; 1162 1163 if (args->size == 0) 1164 return 0; 1165 1166 if (!access_ok(VERIFY_WRITE, 1167 u64_to_user_ptr(args->data_ptr), 1168 args->size)) 1169 return -EFAULT; 1170 1171 obj = i915_gem_object_lookup(file, args->handle); 1172 if (!obj) 1173 return -ENOENT; 1174 1175 /* Bounds check source. */ 1176 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) { 1177 ret = -EINVAL; 1178 goto out; 1179 } 1180 1181 trace_i915_gem_object_pread(obj, args->offset, args->size); 1182 1183 ret = i915_gem_object_wait(obj, 1184 I915_WAIT_INTERRUPTIBLE, 1185 MAX_SCHEDULE_TIMEOUT, 1186 to_rps_client(file)); 1187 if (ret) 1188 goto out; 1189 1190 ret = i915_gem_object_pin_pages(obj); 1191 if (ret) 1192 goto out; 1193 1194 ret = i915_gem_shmem_pread(obj, args); 1195 if (ret == -EFAULT || ret == -ENODEV) 1196 ret = i915_gem_gtt_pread(obj, args); 1197 1198 i915_gem_object_unpin_pages(obj); 1199 out: 1200 i915_gem_object_put(obj); 1201 return ret; 1202 } 1203 1204 /* This is the fast write path which cannot handle 1205 * page faults in the source data 1206 */ 1207 1208 static inline bool 1209 ggtt_write(struct io_mapping *mapping, 1210 loff_t base, int offset, 1211 char __user *user_data, int length) 1212 { 1213 void __iomem *vaddr; 1214 unsigned long unwritten; 1215 1216 /* We can use the cpu mem copy function because this is X86. */ 1217 vaddr = io_mapping_map_atomic_wc(mapping, base); 1218 unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset, 1219 user_data, length); 1220 io_mapping_unmap_atomic(vaddr); 1221 if (unwritten) { 1222 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE); 1223 unwritten = copy_from_user((void __force *)vaddr + offset, 1224 user_data, length); 1225 io_mapping_unmap(vaddr); 1226 } 1227 1228 return unwritten; 1229 } 1230 1231 /** 1232 * This is the fast pwrite path, where we copy the data directly from the 1233 * user into the GTT, uncached. 1234 * @obj: i915 GEM object 1235 * @args: pwrite arguments structure 1236 */ 1237 static int 1238 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj, 1239 const struct drm_i915_gem_pwrite *args) 1240 { 1241 struct drm_i915_private *i915 = to_i915(obj->base.dev); 1242 struct i915_ggtt *ggtt = &i915->ggtt; 1243 struct drm_mm_node node; 1244 struct i915_vma *vma; 1245 u64 remain, offset; 1246 void __user *user_data; 1247 int ret; 1248 1249 ret = mutex_lock_interruptible(&i915->drm.struct_mutex); 1250 if (ret) 1251 return ret; 1252 1253 if (i915_gem_object_has_struct_page(obj)) { 1254 /* 1255 * Avoid waking the device up if we can fallback, as 1256 * waking/resuming is very slow (worst-case 10-100 ms 1257 * depending on PCI sleeps and our own resume time). 1258 * This easily dwarfs any performance advantage from 1259 * using the cache bypass of indirect GGTT access. 1260 */ 1261 if (!intel_runtime_pm_get_if_in_use(i915)) { 1262 ret = -EFAULT; 1263 goto out_unlock; 1264 } 1265 } else { 1266 /* No backing pages, no fallback, we must force GGTT access */ 1267 intel_runtime_pm_get(i915); 1268 } 1269 1270 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 1271 PIN_MAPPABLE | 1272 PIN_NONFAULT | 1273 PIN_NONBLOCK); 1274 if (!IS_ERR(vma)) { 1275 node.start = i915_ggtt_offset(vma); 1276 node.allocated = false; 1277 ret = i915_vma_put_fence(vma); 1278 if (ret) { 1279 i915_vma_unpin(vma); 1280 vma = ERR_PTR(ret); 1281 } 1282 } 1283 if (IS_ERR(vma)) { 1284 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE); 1285 if (ret) 1286 goto out_rpm; 1287 GEM_BUG_ON(!node.allocated); 1288 } 1289 1290 ret = i915_gem_object_set_to_gtt_domain(obj, true); 1291 if (ret) 1292 goto out_unpin; 1293 1294 mutex_unlock(&i915->drm.struct_mutex); 1295 1296 intel_fb_obj_invalidate(obj, ORIGIN_CPU); 1297 1298 user_data = u64_to_user_ptr(args->data_ptr); 1299 offset = args->offset; 1300 remain = args->size; 1301 while (remain) { 1302 /* Operation in this page 1303 * 1304 * page_base = page offset within aperture 1305 * page_offset = offset within page 1306 * page_length = bytes to copy for this page 1307 */ 1308 u32 page_base = node.start; 1309 unsigned int page_offset = offset_in_page(offset); 1310 unsigned int page_length = PAGE_SIZE - page_offset; 1311 page_length = remain < page_length ? remain : page_length; 1312 if (node.allocated) { 1313 wmb(); /* flush the write before we modify the GGTT */ 1314 ggtt->base.insert_page(&ggtt->base, 1315 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), 1316 node.start, I915_CACHE_NONE, 0); 1317 wmb(); /* flush modifications to the GGTT (insert_page) */ 1318 } else { 1319 page_base += offset & PAGE_MASK; 1320 } 1321 /* If we get a fault while copying data, then (presumably) our 1322 * source page isn't available. Return the error and we'll 1323 * retry in the slow path. 1324 * If the object is non-shmem backed, we retry again with the 1325 * path that handles page fault. 1326 */ 1327 if (ggtt_write(&ggtt->iomap, page_base, page_offset, 1328 user_data, page_length)) { 1329 ret = -EFAULT; 1330 break; 1331 } 1332 1333 remain -= page_length; 1334 user_data += page_length; 1335 offset += page_length; 1336 } 1337 intel_fb_obj_flush(obj, ORIGIN_CPU); 1338 1339 mutex_lock(&i915->drm.struct_mutex); 1340 out_unpin: 1341 if (node.allocated) { 1342 wmb(); 1343 ggtt->base.clear_range(&ggtt->base, 1344 node.start, node.size); 1345 remove_mappable_node(&node); 1346 } else { 1347 i915_vma_unpin(vma); 1348 } 1349 out_rpm: 1350 intel_runtime_pm_put(i915); 1351 out_unlock: 1352 mutex_unlock(&i915->drm.struct_mutex); 1353 return ret; 1354 } 1355 1356 static int 1357 shmem_pwrite_slow(struct page *page, int offset, int length, 1358 char __user *user_data, 1359 bool page_do_bit17_swizzling, 1360 bool needs_clflush_before, 1361 bool needs_clflush_after) 1362 { 1363 char *vaddr; 1364 int ret; 1365 1366 vaddr = kmap(page); 1367 if (unlikely(needs_clflush_before || page_do_bit17_swizzling)) 1368 shmem_clflush_swizzled_range(vaddr + offset, length, 1369 page_do_bit17_swizzling); 1370 if (page_do_bit17_swizzling) 1371 ret = __copy_from_user_swizzled(vaddr, offset, user_data, 1372 length); 1373 else 1374 ret = __copy_from_user(vaddr + offset, user_data, length); 1375 if (needs_clflush_after) 1376 shmem_clflush_swizzled_range(vaddr + offset, length, 1377 page_do_bit17_swizzling); 1378 kunmap(page); 1379 1380 return ret ? -EFAULT : 0; 1381 } 1382 1383 /* Per-page copy function for the shmem pwrite fastpath. 1384 * Flushes invalid cachelines before writing to the target if 1385 * needs_clflush_before is set and flushes out any written cachelines after 1386 * writing if needs_clflush is set. 1387 */ 1388 static int 1389 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data, 1390 bool page_do_bit17_swizzling, 1391 bool needs_clflush_before, 1392 bool needs_clflush_after) 1393 { 1394 int ret; 1395 1396 ret = -ENODEV; 1397 if (!page_do_bit17_swizzling) { 1398 char *vaddr = kmap_atomic(page); 1399 1400 if (needs_clflush_before) 1401 drm_clflush_virt_range(vaddr + offset, len); 1402 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len); 1403 if (needs_clflush_after) 1404 drm_clflush_virt_range(vaddr + offset, len); 1405 1406 kunmap_atomic(vaddr); 1407 } 1408 if (ret == 0) 1409 return ret; 1410 1411 return shmem_pwrite_slow(page, offset, len, user_data, 1412 page_do_bit17_swizzling, 1413 needs_clflush_before, 1414 needs_clflush_after); 1415 } 1416 1417 static int 1418 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj, 1419 const struct drm_i915_gem_pwrite *args) 1420 { 1421 struct drm_i915_private *i915 = to_i915(obj->base.dev); 1422 void __user *user_data; 1423 u64 remain; 1424 unsigned int obj_do_bit17_swizzling; 1425 unsigned int partial_cacheline_write; 1426 unsigned int needs_clflush; 1427 unsigned int offset, idx; 1428 int ret; 1429 1430 ret = mutex_lock_interruptible(&i915->drm.struct_mutex); 1431 if (ret) 1432 return ret; 1433 1434 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush); 1435 mutex_unlock(&i915->drm.struct_mutex); 1436 if (ret) 1437 return ret; 1438 1439 obj_do_bit17_swizzling = 0; 1440 if (i915_gem_object_needs_bit17_swizzle(obj)) 1441 obj_do_bit17_swizzling = BIT(17); 1442 1443 /* If we don't overwrite a cacheline completely we need to be 1444 * careful to have up-to-date data by first clflushing. Don't 1445 * overcomplicate things and flush the entire patch. 1446 */ 1447 partial_cacheline_write = 0; 1448 if (needs_clflush & CLFLUSH_BEFORE) 1449 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1; 1450 1451 user_data = u64_to_user_ptr(args->data_ptr); 1452 remain = args->size; 1453 offset = offset_in_page(args->offset); 1454 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { 1455 struct page *page = i915_gem_object_get_page(obj, idx); 1456 int length; 1457 1458 length = remain; 1459 if (offset + length > PAGE_SIZE) 1460 length = PAGE_SIZE - offset; 1461 1462 ret = shmem_pwrite(page, offset, length, user_data, 1463 page_to_phys(page) & obj_do_bit17_swizzling, 1464 (offset | length) & partial_cacheline_write, 1465 needs_clflush & CLFLUSH_AFTER); 1466 if (ret) 1467 break; 1468 1469 remain -= length; 1470 user_data += length; 1471 offset = 0; 1472 } 1473 1474 intel_fb_obj_flush(obj, ORIGIN_CPU); 1475 i915_gem_obj_finish_shmem_access(obj); 1476 return ret; 1477 } 1478 1479 /** 1480 * Writes data to the object referenced by handle. 1481 * @dev: drm device 1482 * @data: ioctl data blob 1483 * @file: drm file 1484 * 1485 * On error, the contents of the buffer that were to be modified are undefined. 1486 */ 1487 int 1488 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 1489 struct drm_file *file) 1490 { 1491 struct drm_i915_gem_pwrite *args = data; 1492 struct drm_i915_gem_object *obj; 1493 int ret; 1494 1495 if (args->size == 0) 1496 return 0; 1497 1498 if (!access_ok(VERIFY_READ, 1499 u64_to_user_ptr(args->data_ptr), 1500 args->size)) 1501 return -EFAULT; 1502 1503 obj = i915_gem_object_lookup(file, args->handle); 1504 if (!obj) 1505 return -ENOENT; 1506 1507 /* Bounds check destination. */ 1508 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) { 1509 ret = -EINVAL; 1510 goto err; 1511 } 1512 1513 trace_i915_gem_object_pwrite(obj, args->offset, args->size); 1514 1515 ret = -ENODEV; 1516 if (obj->ops->pwrite) 1517 ret = obj->ops->pwrite(obj, args); 1518 if (ret != -ENODEV) 1519 goto err; 1520 1521 ret = i915_gem_object_wait(obj, 1522 I915_WAIT_INTERRUPTIBLE | 1523 I915_WAIT_ALL, 1524 MAX_SCHEDULE_TIMEOUT, 1525 to_rps_client(file)); 1526 if (ret) 1527 goto err; 1528 1529 ret = i915_gem_object_pin_pages(obj); 1530 if (ret) 1531 goto err; 1532 1533 ret = -EFAULT; 1534 /* We can only do the GTT pwrite on untiled buffers, as otherwise 1535 * it would end up going through the fenced access, and we'll get 1536 * different detiling behavior between reading and writing. 1537 * pread/pwrite currently are reading and writing from the CPU 1538 * perspective, requiring manual detiling by the client. 1539 */ 1540 if (!i915_gem_object_has_struct_page(obj) || 1541 cpu_write_needs_clflush(obj)) 1542 /* Note that the gtt paths might fail with non-page-backed user 1543 * pointers (e.g. gtt mappings when moving data between 1544 * textures). Fallback to the shmem path in that case. 1545 */ 1546 ret = i915_gem_gtt_pwrite_fast(obj, args); 1547 1548 if (ret == -EFAULT || ret == -ENOSPC) { 1549 if (obj->phys_handle) 1550 ret = i915_gem_phys_pwrite(obj, args, file); 1551 else 1552 ret = i915_gem_shmem_pwrite(obj, args); 1553 } 1554 1555 i915_gem_object_unpin_pages(obj); 1556 err: 1557 i915_gem_object_put(obj); 1558 return ret; 1559 } 1560 1561 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj) 1562 { 1563 struct drm_i915_private *i915; 1564 struct list_head *list; 1565 struct i915_vma *vma; 1566 1567 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 1568 1569 for_each_ggtt_vma(vma, obj) { 1570 if (i915_vma_is_active(vma)) 1571 continue; 1572 1573 if (!drm_mm_node_allocated(&vma->node)) 1574 continue; 1575 1576 list_move_tail(&vma->vm_link, &vma->vm->inactive_list); 1577 } 1578 1579 i915 = to_i915(obj->base.dev); 1580 spin_lock(&i915->mm.obj_lock); 1581 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list; 1582 list_move_tail(&obj->mm.link, list); 1583 spin_unlock(&i915->mm.obj_lock); 1584 } 1585 1586 /** 1587 * Called when user space prepares to use an object with the CPU, either 1588 * through the mmap ioctl's mapping or a GTT mapping. 1589 * @dev: drm device 1590 * @data: ioctl data blob 1591 * @file: drm file 1592 */ 1593 int 1594 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 1595 struct drm_file *file) 1596 { 1597 struct drm_i915_gem_set_domain *args = data; 1598 struct drm_i915_gem_object *obj; 1599 uint32_t read_domains = args->read_domains; 1600 uint32_t write_domain = args->write_domain; 1601 int err; 1602 1603 /* Only handle setting domains to types used by the CPU. */ 1604 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS) 1605 return -EINVAL; 1606 1607 /* Having something in the write domain implies it's in the read 1608 * domain, and only that read domain. Enforce that in the request. 1609 */ 1610 if (write_domain != 0 && read_domains != write_domain) 1611 return -EINVAL; 1612 1613 obj = i915_gem_object_lookup(file, args->handle); 1614 if (!obj) 1615 return -ENOENT; 1616 1617 /* Try to flush the object off the GPU without holding the lock. 1618 * We will repeat the flush holding the lock in the normal manner 1619 * to catch cases where we are gazumped. 1620 */ 1621 err = i915_gem_object_wait(obj, 1622 I915_WAIT_INTERRUPTIBLE | 1623 (write_domain ? I915_WAIT_ALL : 0), 1624 MAX_SCHEDULE_TIMEOUT, 1625 to_rps_client(file)); 1626 if (err) 1627 goto out; 1628 1629 /* 1630 * Proxy objects do not control access to the backing storage, ergo 1631 * they cannot be used as a means to manipulate the cache domain 1632 * tracking for that backing storage. The proxy object is always 1633 * considered to be outside of any cache domain. 1634 */ 1635 if (i915_gem_object_is_proxy(obj)) { 1636 err = -ENXIO; 1637 goto out; 1638 } 1639 1640 /* 1641 * Flush and acquire obj->pages so that we are coherent through 1642 * direct access in memory with previous cached writes through 1643 * shmemfs and that our cache domain tracking remains valid. 1644 * For example, if the obj->filp was moved to swap without us 1645 * being notified and releasing the pages, we would mistakenly 1646 * continue to assume that the obj remained out of the CPU cached 1647 * domain. 1648 */ 1649 err = i915_gem_object_pin_pages(obj); 1650 if (err) 1651 goto out; 1652 1653 err = i915_mutex_lock_interruptible(dev); 1654 if (err) 1655 goto out_unpin; 1656 1657 if (read_domains & I915_GEM_DOMAIN_WC) 1658 err = i915_gem_object_set_to_wc_domain(obj, write_domain); 1659 else if (read_domains & I915_GEM_DOMAIN_GTT) 1660 err = i915_gem_object_set_to_gtt_domain(obj, write_domain); 1661 else 1662 err = i915_gem_object_set_to_cpu_domain(obj, write_domain); 1663 1664 /* And bump the LRU for this access */ 1665 i915_gem_object_bump_inactive_ggtt(obj); 1666 1667 mutex_unlock(&dev->struct_mutex); 1668 1669 if (write_domain != 0) 1670 intel_fb_obj_invalidate(obj, 1671 fb_write_origin(obj, write_domain)); 1672 1673 out_unpin: 1674 i915_gem_object_unpin_pages(obj); 1675 out: 1676 i915_gem_object_put(obj); 1677 return err; 1678 } 1679 1680 /** 1681 * Called when user space has done writes to this buffer 1682 * @dev: drm device 1683 * @data: ioctl data blob 1684 * @file: drm file 1685 */ 1686 int 1687 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 1688 struct drm_file *file) 1689 { 1690 struct drm_i915_gem_sw_finish *args = data; 1691 struct drm_i915_gem_object *obj; 1692 1693 obj = i915_gem_object_lookup(file, args->handle); 1694 if (!obj) 1695 return -ENOENT; 1696 1697 /* 1698 * Proxy objects are barred from CPU access, so there is no 1699 * need to ban sw_finish as it is a nop. 1700 */ 1701 1702 /* Pinned buffers may be scanout, so flush the cache */ 1703 i915_gem_object_flush_if_display(obj); 1704 i915_gem_object_put(obj); 1705 1706 return 0; 1707 } 1708 1709 /** 1710 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address 1711 * it is mapped to. 1712 * @dev: drm device 1713 * @data: ioctl data blob 1714 * @file: drm file 1715 * 1716 * While the mapping holds a reference on the contents of the object, it doesn't 1717 * imply a ref on the object itself. 1718 * 1719 * IMPORTANT: 1720 * 1721 * DRM driver writers who look a this function as an example for how to do GEM 1722 * mmap support, please don't implement mmap support like here. The modern way 1723 * to implement DRM mmap support is with an mmap offset ioctl (like 1724 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly. 1725 * That way debug tooling like valgrind will understand what's going on, hiding 1726 * the mmap call in a driver private ioctl will break that. The i915 driver only 1727 * does cpu mmaps this way because we didn't know better. 1728 */ 1729 int 1730 i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 1731 struct drm_file *file) 1732 { 1733 struct drm_i915_gem_mmap *args = data; 1734 struct drm_i915_gem_object *obj; 1735 unsigned long addr; 1736 1737 if (args->flags & ~(I915_MMAP_WC)) 1738 return -EINVAL; 1739 1740 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT)) 1741 return -ENODEV; 1742 1743 obj = i915_gem_object_lookup(file, args->handle); 1744 if (!obj) 1745 return -ENOENT; 1746 1747 /* prime objects have no backing filp to GEM mmap 1748 * pages from. 1749 */ 1750 if (!obj->base.filp) { 1751 i915_gem_object_put(obj); 1752 return -ENXIO; 1753 } 1754 1755 addr = vm_mmap(obj->base.filp, 0, args->size, 1756 PROT_READ | PROT_WRITE, MAP_SHARED, 1757 args->offset); 1758 if (args->flags & I915_MMAP_WC) { 1759 struct mm_struct *mm = current->mm; 1760 struct vm_area_struct *vma; 1761 1762 if (down_write_killable(&mm->mmap_sem)) { 1763 i915_gem_object_put(obj); 1764 return -EINTR; 1765 } 1766 vma = find_vma(mm, addr); 1767 if (vma) 1768 vma->vm_page_prot = 1769 pgprot_writecombine(vm_get_page_prot(vma->vm_flags)); 1770 else 1771 addr = -ENOMEM; 1772 up_write(&mm->mmap_sem); 1773 1774 /* This may race, but that's ok, it only gets set */ 1775 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU); 1776 } 1777 i915_gem_object_put(obj); 1778 if (IS_ERR((void *)addr)) 1779 return addr; 1780 1781 args->addr_ptr = (uint64_t) addr; 1782 1783 return 0; 1784 } 1785 1786 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj) 1787 { 1788 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT; 1789 } 1790 1791 /** 1792 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps 1793 * 1794 * A history of the GTT mmap interface: 1795 * 1796 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to 1797 * aligned and suitable for fencing, and still fit into the available 1798 * mappable space left by the pinned display objects. A classic problem 1799 * we called the page-fault-of-doom where we would ping-pong between 1800 * two objects that could not fit inside the GTT and so the memcpy 1801 * would page one object in at the expense of the other between every 1802 * single byte. 1803 * 1804 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none 1805 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the 1806 * object is too large for the available space (or simply too large 1807 * for the mappable aperture!), a view is created instead and faulted 1808 * into userspace. (This view is aligned and sized appropriately for 1809 * fenced access.) 1810 * 1811 * 2 - Recognise WC as a separate cache domain so that we can flush the 1812 * delayed writes via GTT before performing direct access via WC. 1813 * 1814 * Restrictions: 1815 * 1816 * * snoopable objects cannot be accessed via the GTT. It can cause machine 1817 * hangs on some architectures, corruption on others. An attempt to service 1818 * a GTT page fault from a snoopable object will generate a SIGBUS. 1819 * 1820 * * the object must be able to fit into RAM (physical memory, though no 1821 * limited to the mappable aperture). 1822 * 1823 * 1824 * Caveats: 1825 * 1826 * * a new GTT page fault will synchronize rendering from the GPU and flush 1827 * all data to system memory. Subsequent access will not be synchronized. 1828 * 1829 * * all mappings are revoked on runtime device suspend. 1830 * 1831 * * there are only 8, 16 or 32 fence registers to share between all users 1832 * (older machines require fence register for display and blitter access 1833 * as well). Contention of the fence registers will cause the previous users 1834 * to be unmapped and any new access will generate new page faults. 1835 * 1836 * * running out of memory while servicing a fault may generate a SIGBUS, 1837 * rather than the expected SIGSEGV. 1838 */ 1839 int i915_gem_mmap_gtt_version(void) 1840 { 1841 return 2; 1842 } 1843 1844 static inline struct i915_ggtt_view 1845 compute_partial_view(struct drm_i915_gem_object *obj, 1846 pgoff_t page_offset, 1847 unsigned int chunk) 1848 { 1849 struct i915_ggtt_view view; 1850 1851 if (i915_gem_object_is_tiled(obj)) 1852 chunk = roundup(chunk, tile_row_pages(obj)); 1853 1854 view.type = I915_GGTT_VIEW_PARTIAL; 1855 view.partial.offset = rounddown(page_offset, chunk); 1856 view.partial.size = 1857 min_t(unsigned int, chunk, 1858 (obj->base.size >> PAGE_SHIFT) - view.partial.offset); 1859 1860 /* If the partial covers the entire object, just create a normal VMA. */ 1861 if (chunk >= obj->base.size >> PAGE_SHIFT) 1862 view.type = I915_GGTT_VIEW_NORMAL; 1863 1864 return view; 1865 } 1866 1867 /** 1868 * i915_gem_fault - fault a page into the GTT 1869 * @vmf: fault info 1870 * 1871 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped 1872 * from userspace. The fault handler takes care of binding the object to 1873 * the GTT (if needed), allocating and programming a fence register (again, 1874 * only if needed based on whether the old reg is still valid or the object 1875 * is tiled) and inserting a new PTE into the faulting process. 1876 * 1877 * Note that the faulting process may involve evicting existing objects 1878 * from the GTT and/or fence registers to make room. So performance may 1879 * suffer if the GTT working set is large or there are few fence registers 1880 * left. 1881 * 1882 * The current feature set supported by i915_gem_fault() and thus GTT mmaps 1883 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version). 1884 */ 1885 int i915_gem_fault(struct vm_fault *vmf) 1886 { 1887 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */ 1888 struct vm_area_struct *area = vmf->vma; 1889 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data); 1890 struct drm_device *dev = obj->base.dev; 1891 struct drm_i915_private *dev_priv = to_i915(dev); 1892 struct i915_ggtt *ggtt = &dev_priv->ggtt; 1893 bool write = !!(vmf->flags & FAULT_FLAG_WRITE); 1894 struct i915_vma *vma; 1895 pgoff_t page_offset; 1896 unsigned int flags; 1897 int ret; 1898 1899 /* We don't use vmf->pgoff since that has the fake offset */ 1900 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT; 1901 1902 trace_i915_gem_object_fault(obj, page_offset, true, write); 1903 1904 /* Try to flush the object off the GPU first without holding the lock. 1905 * Upon acquiring the lock, we will perform our sanity checks and then 1906 * repeat the flush holding the lock in the normal manner to catch cases 1907 * where we are gazumped. 1908 */ 1909 ret = i915_gem_object_wait(obj, 1910 I915_WAIT_INTERRUPTIBLE, 1911 MAX_SCHEDULE_TIMEOUT, 1912 NULL); 1913 if (ret) 1914 goto err; 1915 1916 ret = i915_gem_object_pin_pages(obj); 1917 if (ret) 1918 goto err; 1919 1920 intel_runtime_pm_get(dev_priv); 1921 1922 ret = i915_mutex_lock_interruptible(dev); 1923 if (ret) 1924 goto err_rpm; 1925 1926 /* Access to snoopable pages through the GTT is incoherent. */ 1927 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) { 1928 ret = -EFAULT; 1929 goto err_unlock; 1930 } 1931 1932 /* If the object is smaller than a couple of partial vma, it is 1933 * not worth only creating a single partial vma - we may as well 1934 * clear enough space for the full object. 1935 */ 1936 flags = PIN_MAPPABLE; 1937 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT) 1938 flags |= PIN_NONBLOCK | PIN_NONFAULT; 1939 1940 /* Now pin it into the GTT as needed */ 1941 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags); 1942 if (IS_ERR(vma)) { 1943 /* Use a partial view if it is bigger than available space */ 1944 struct i915_ggtt_view view = 1945 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES); 1946 1947 /* Userspace is now writing through an untracked VMA, abandon 1948 * all hope that the hardware is able to track future writes. 1949 */ 1950 obj->frontbuffer_ggtt_origin = ORIGIN_CPU; 1951 1952 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE); 1953 } 1954 if (IS_ERR(vma)) { 1955 ret = PTR_ERR(vma); 1956 goto err_unlock; 1957 } 1958 1959 ret = i915_gem_object_set_to_gtt_domain(obj, write); 1960 if (ret) 1961 goto err_unpin; 1962 1963 ret = i915_vma_pin_fence(vma); 1964 if (ret) 1965 goto err_unpin; 1966 1967 /* Finally, remap it using the new GTT offset */ 1968 ret = remap_io_mapping(area, 1969 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT), 1970 (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT, 1971 min_t(u64, vma->size, area->vm_end - area->vm_start), 1972 &ggtt->iomap); 1973 if (ret) 1974 goto err_fence; 1975 1976 /* Mark as being mmapped into userspace for later revocation */ 1977 assert_rpm_wakelock_held(dev_priv); 1978 if (!i915_vma_set_userfault(vma) && !obj->userfault_count++) 1979 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list); 1980 GEM_BUG_ON(!obj->userfault_count); 1981 1982 i915_vma_set_ggtt_write(vma); 1983 1984 err_fence: 1985 i915_vma_unpin_fence(vma); 1986 err_unpin: 1987 __i915_vma_unpin(vma); 1988 err_unlock: 1989 mutex_unlock(&dev->struct_mutex); 1990 err_rpm: 1991 intel_runtime_pm_put(dev_priv); 1992 i915_gem_object_unpin_pages(obj); 1993 err: 1994 switch (ret) { 1995 case -EIO: 1996 /* 1997 * We eat errors when the gpu is terminally wedged to avoid 1998 * userspace unduly crashing (gl has no provisions for mmaps to 1999 * fail). But any other -EIO isn't ours (e.g. swap in failure) 2000 * and so needs to be reported. 2001 */ 2002 if (!i915_terminally_wedged(&dev_priv->gpu_error)) { 2003 ret = VM_FAULT_SIGBUS; 2004 break; 2005 } 2006 case -EAGAIN: 2007 /* 2008 * EAGAIN means the gpu is hung and we'll wait for the error 2009 * handler to reset everything when re-faulting in 2010 * i915_mutex_lock_interruptible. 2011 */ 2012 case 0: 2013 case -ERESTARTSYS: 2014 case -EINTR: 2015 case -EBUSY: 2016 /* 2017 * EBUSY is ok: this just means that another thread 2018 * already did the job. 2019 */ 2020 ret = VM_FAULT_NOPAGE; 2021 break; 2022 case -ENOMEM: 2023 ret = VM_FAULT_OOM; 2024 break; 2025 case -ENOSPC: 2026 case -EFAULT: 2027 ret = VM_FAULT_SIGBUS; 2028 break; 2029 default: 2030 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret); 2031 ret = VM_FAULT_SIGBUS; 2032 break; 2033 } 2034 return ret; 2035 } 2036 2037 static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj) 2038 { 2039 struct i915_vma *vma; 2040 2041 GEM_BUG_ON(!obj->userfault_count); 2042 2043 obj->userfault_count = 0; 2044 list_del(&obj->userfault_link); 2045 drm_vma_node_unmap(&obj->base.vma_node, 2046 obj->base.dev->anon_inode->i_mapping); 2047 2048 for_each_ggtt_vma(vma, obj) 2049 i915_vma_unset_userfault(vma); 2050 } 2051 2052 /** 2053 * i915_gem_release_mmap - remove physical page mappings 2054 * @obj: obj in question 2055 * 2056 * Preserve the reservation of the mmapping with the DRM core code, but 2057 * relinquish ownership of the pages back to the system. 2058 * 2059 * It is vital that we remove the page mapping if we have mapped a tiled 2060 * object through the GTT and then lose the fence register due to 2061 * resource pressure. Similarly if the object has been moved out of the 2062 * aperture, than pages mapped into userspace must be revoked. Removing the 2063 * mapping will then trigger a page fault on the next user access, allowing 2064 * fixup by i915_gem_fault(). 2065 */ 2066 void 2067 i915_gem_release_mmap(struct drm_i915_gem_object *obj) 2068 { 2069 struct drm_i915_private *i915 = to_i915(obj->base.dev); 2070 2071 /* Serialisation between user GTT access and our code depends upon 2072 * revoking the CPU's PTE whilst the mutex is held. The next user 2073 * pagefault then has to wait until we release the mutex. 2074 * 2075 * Note that RPM complicates somewhat by adding an additional 2076 * requirement that operations to the GGTT be made holding the RPM 2077 * wakeref. 2078 */ 2079 lockdep_assert_held(&i915->drm.struct_mutex); 2080 intel_runtime_pm_get(i915); 2081 2082 if (!obj->userfault_count) 2083 goto out; 2084 2085 __i915_gem_object_release_mmap(obj); 2086 2087 /* Ensure that the CPU's PTE are revoked and there are not outstanding 2088 * memory transactions from userspace before we return. The TLB 2089 * flushing implied above by changing the PTE above *should* be 2090 * sufficient, an extra barrier here just provides us with a bit 2091 * of paranoid documentation about our requirement to serialise 2092 * memory writes before touching registers / GSM. 2093 */ 2094 wmb(); 2095 2096 out: 2097 intel_runtime_pm_put(i915); 2098 } 2099 2100 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv) 2101 { 2102 struct drm_i915_gem_object *obj, *on; 2103 int i; 2104 2105 /* 2106 * Only called during RPM suspend. All users of the userfault_list 2107 * must be holding an RPM wakeref to ensure that this can not 2108 * run concurrently with themselves (and use the struct_mutex for 2109 * protection between themselves). 2110 */ 2111 2112 list_for_each_entry_safe(obj, on, 2113 &dev_priv->mm.userfault_list, userfault_link) 2114 __i915_gem_object_release_mmap(obj); 2115 2116 /* The fence will be lost when the device powers down. If any were 2117 * in use by hardware (i.e. they are pinned), we should not be powering 2118 * down! All other fences will be reacquired by the user upon waking. 2119 */ 2120 for (i = 0; i < dev_priv->num_fence_regs; i++) { 2121 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i]; 2122 2123 /* Ideally we want to assert that the fence register is not 2124 * live at this point (i.e. that no piece of code will be 2125 * trying to write through fence + GTT, as that both violates 2126 * our tracking of activity and associated locking/barriers, 2127 * but also is illegal given that the hw is powered down). 2128 * 2129 * Previously we used reg->pin_count as a "liveness" indicator. 2130 * That is not sufficient, and we need a more fine-grained 2131 * tool if we want to have a sanity check here. 2132 */ 2133 2134 if (!reg->vma) 2135 continue; 2136 2137 GEM_BUG_ON(i915_vma_has_userfault(reg->vma)); 2138 reg->dirty = true; 2139 } 2140 } 2141 2142 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj) 2143 { 2144 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 2145 int err; 2146 2147 err = drm_gem_create_mmap_offset(&obj->base); 2148 if (likely(!err)) 2149 return 0; 2150 2151 /* Attempt to reap some mmap space from dead objects */ 2152 do { 2153 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE); 2154 if (err) 2155 break; 2156 2157 i915_gem_drain_freed_objects(dev_priv); 2158 err = drm_gem_create_mmap_offset(&obj->base); 2159 if (!err) 2160 break; 2161 2162 } while (flush_delayed_work(&dev_priv->gt.retire_work)); 2163 2164 return err; 2165 } 2166 2167 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj) 2168 { 2169 drm_gem_free_mmap_offset(&obj->base); 2170 } 2171 2172 int 2173 i915_gem_mmap_gtt(struct drm_file *file, 2174 struct drm_device *dev, 2175 uint32_t handle, 2176 uint64_t *offset) 2177 { 2178 struct drm_i915_gem_object *obj; 2179 int ret; 2180 2181 obj = i915_gem_object_lookup(file, handle); 2182 if (!obj) 2183 return -ENOENT; 2184 2185 ret = i915_gem_object_create_mmap_offset(obj); 2186 if (ret == 0) 2187 *offset = drm_vma_node_offset_addr(&obj->base.vma_node); 2188 2189 i915_gem_object_put(obj); 2190 return ret; 2191 } 2192 2193 /** 2194 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing 2195 * @dev: DRM device 2196 * @data: GTT mapping ioctl data 2197 * @file: GEM object info 2198 * 2199 * Simply returns the fake offset to userspace so it can mmap it. 2200 * The mmap call will end up in drm_gem_mmap(), which will set things 2201 * up so we can get faults in the handler above. 2202 * 2203 * The fault handler will take care of binding the object into the GTT 2204 * (since it may have been evicted to make room for something), allocating 2205 * a fence register, and mapping the appropriate aperture address into 2206 * userspace. 2207 */ 2208 int 2209 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 2210 struct drm_file *file) 2211 { 2212 struct drm_i915_gem_mmap_gtt *args = data; 2213 2214 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset); 2215 } 2216 2217 /* Immediately discard the backing storage */ 2218 static void 2219 i915_gem_object_truncate(struct drm_i915_gem_object *obj) 2220 { 2221 i915_gem_object_free_mmap_offset(obj); 2222 2223 if (obj->base.filp == NULL) 2224 return; 2225 2226 /* Our goal here is to return as much of the memory as 2227 * is possible back to the system as we are called from OOM. 2228 * To do this we must instruct the shmfs to drop all of its 2229 * backing pages, *now*. 2230 */ 2231 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1); 2232 obj->mm.madv = __I915_MADV_PURGED; 2233 obj->mm.pages = ERR_PTR(-EFAULT); 2234 } 2235 2236 /* Try to discard unwanted pages */ 2237 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj) 2238 { 2239 struct address_space *mapping; 2240 2241 lockdep_assert_held(&obj->mm.lock); 2242 GEM_BUG_ON(i915_gem_object_has_pages(obj)); 2243 2244 switch (obj->mm.madv) { 2245 case I915_MADV_DONTNEED: 2246 i915_gem_object_truncate(obj); 2247 case __I915_MADV_PURGED: 2248 return; 2249 } 2250 2251 if (obj->base.filp == NULL) 2252 return; 2253 2254 mapping = obj->base.filp->f_mapping, 2255 invalidate_mapping_pages(mapping, 0, (loff_t)-1); 2256 } 2257 2258 static void 2259 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj, 2260 struct sg_table *pages) 2261 { 2262 struct sgt_iter sgt_iter; 2263 struct page *page; 2264 2265 __i915_gem_object_release_shmem(obj, pages, true); 2266 2267 i915_gem_gtt_finish_pages(obj, pages); 2268 2269 if (i915_gem_object_needs_bit17_swizzle(obj)) 2270 i915_gem_object_save_bit_17_swizzle(obj, pages); 2271 2272 for_each_sgt_page(page, sgt_iter, pages) { 2273 if (obj->mm.dirty) 2274 set_page_dirty(page); 2275 2276 if (obj->mm.madv == I915_MADV_WILLNEED) 2277 mark_page_accessed(page); 2278 2279 put_page(page); 2280 } 2281 obj->mm.dirty = false; 2282 2283 sg_free_table(pages); 2284 kfree(pages); 2285 } 2286 2287 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj) 2288 { 2289 struct radix_tree_iter iter; 2290 void __rcu **slot; 2291 2292 rcu_read_lock(); 2293 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0) 2294 radix_tree_delete(&obj->mm.get_page.radix, iter.index); 2295 rcu_read_unlock(); 2296 } 2297 2298 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj, 2299 enum i915_mm_subclass subclass) 2300 { 2301 struct drm_i915_private *i915 = to_i915(obj->base.dev); 2302 struct sg_table *pages; 2303 2304 if (i915_gem_object_has_pinned_pages(obj)) 2305 return; 2306 2307 GEM_BUG_ON(obj->bind_count); 2308 if (!i915_gem_object_has_pages(obj)) 2309 return; 2310 2311 /* May be called by shrinker from within get_pages() (on another bo) */ 2312 mutex_lock_nested(&obj->mm.lock, subclass); 2313 if (unlikely(atomic_read(&obj->mm.pages_pin_count))) 2314 goto unlock; 2315 2316 /* ->put_pages might need to allocate memory for the bit17 swizzle 2317 * array, hence protect them from being reaped by removing them from gtt 2318 * lists early. */ 2319 pages = fetch_and_zero(&obj->mm.pages); 2320 GEM_BUG_ON(!pages); 2321 2322 spin_lock(&i915->mm.obj_lock); 2323 list_del(&obj->mm.link); 2324 spin_unlock(&i915->mm.obj_lock); 2325 2326 if (obj->mm.mapping) { 2327 void *ptr; 2328 2329 ptr = page_mask_bits(obj->mm.mapping); 2330 if (is_vmalloc_addr(ptr)) 2331 vunmap(ptr); 2332 else 2333 kunmap(kmap_to_page(ptr)); 2334 2335 obj->mm.mapping = NULL; 2336 } 2337 2338 __i915_gem_object_reset_page_iter(obj); 2339 2340 if (!IS_ERR(pages)) 2341 obj->ops->put_pages(obj, pages); 2342 2343 obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0; 2344 2345 unlock: 2346 mutex_unlock(&obj->mm.lock); 2347 } 2348 2349 static bool i915_sg_trim(struct sg_table *orig_st) 2350 { 2351 struct sg_table new_st; 2352 struct scatterlist *sg, *new_sg; 2353 unsigned int i; 2354 2355 if (orig_st->nents == orig_st->orig_nents) 2356 return false; 2357 2358 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN)) 2359 return false; 2360 2361 new_sg = new_st.sgl; 2362 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) { 2363 sg_set_page(new_sg, sg_page(sg), sg->length, 0); 2364 /* called before being DMA mapped, no need to copy sg->dma_* */ 2365 new_sg = sg_next(new_sg); 2366 } 2367 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */ 2368 2369 sg_free_table(orig_st); 2370 2371 *orig_st = new_st; 2372 return true; 2373 } 2374 2375 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj) 2376 { 2377 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 2378 const unsigned long page_count = obj->base.size / PAGE_SIZE; 2379 unsigned long i; 2380 struct address_space *mapping; 2381 struct sg_table *st; 2382 struct scatterlist *sg; 2383 struct sgt_iter sgt_iter; 2384 struct page *page; 2385 unsigned long last_pfn = 0; /* suppress gcc warning */ 2386 unsigned int max_segment = i915_sg_segment_size(); 2387 unsigned int sg_page_sizes; 2388 gfp_t noreclaim; 2389 int ret; 2390 2391 /* Assert that the object is not currently in any GPU domain. As it 2392 * wasn't in the GTT, there shouldn't be any way it could have been in 2393 * a GPU cache 2394 */ 2395 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS); 2396 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS); 2397 2398 st = kmalloc(sizeof(*st), GFP_KERNEL); 2399 if (st == NULL) 2400 return -ENOMEM; 2401 2402 rebuild_st: 2403 if (sg_alloc_table(st, page_count, GFP_KERNEL)) { 2404 kfree(st); 2405 return -ENOMEM; 2406 } 2407 2408 /* Get the list of pages out of our struct file. They'll be pinned 2409 * at this point until we release them. 2410 * 2411 * Fail silently without starting the shrinker 2412 */ 2413 mapping = obj->base.filp->f_mapping; 2414 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM); 2415 noreclaim |= __GFP_NORETRY | __GFP_NOWARN; 2416 2417 sg = st->sgl; 2418 st->nents = 0; 2419 sg_page_sizes = 0; 2420 for (i = 0; i < page_count; i++) { 2421 const unsigned int shrink[] = { 2422 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE, 2423 0, 2424 }, *s = shrink; 2425 gfp_t gfp = noreclaim; 2426 2427 do { 2428 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 2429 if (likely(!IS_ERR(page))) 2430 break; 2431 2432 if (!*s) { 2433 ret = PTR_ERR(page); 2434 goto err_sg; 2435 } 2436 2437 i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++); 2438 cond_resched(); 2439 2440 /* We've tried hard to allocate the memory by reaping 2441 * our own buffer, now let the real VM do its job and 2442 * go down in flames if truly OOM. 2443 * 2444 * However, since graphics tend to be disposable, 2445 * defer the oom here by reporting the ENOMEM back 2446 * to userspace. 2447 */ 2448 if (!*s) { 2449 /* reclaim and warn, but no oom */ 2450 gfp = mapping_gfp_mask(mapping); 2451 2452 /* Our bo are always dirty and so we require 2453 * kswapd to reclaim our pages (direct reclaim 2454 * does not effectively begin pageout of our 2455 * buffers on its own). However, direct reclaim 2456 * only waits for kswapd when under allocation 2457 * congestion. So as a result __GFP_RECLAIM is 2458 * unreliable and fails to actually reclaim our 2459 * dirty pages -- unless you try over and over 2460 * again with !__GFP_NORETRY. However, we still 2461 * want to fail this allocation rather than 2462 * trigger the out-of-memory killer and for 2463 * this we want __GFP_RETRY_MAYFAIL. 2464 */ 2465 gfp |= __GFP_RETRY_MAYFAIL; 2466 } 2467 } while (1); 2468 2469 if (!i || 2470 sg->length >= max_segment || 2471 page_to_pfn(page) != last_pfn + 1) { 2472 if (i) { 2473 sg_page_sizes |= sg->length; 2474 sg = sg_next(sg); 2475 } 2476 st->nents++; 2477 sg_set_page(sg, page, PAGE_SIZE, 0); 2478 } else { 2479 sg->length += PAGE_SIZE; 2480 } 2481 last_pfn = page_to_pfn(page); 2482 2483 /* Check that the i965g/gm workaround works. */ 2484 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL)); 2485 } 2486 if (sg) { /* loop terminated early; short sg table */ 2487 sg_page_sizes |= sg->length; 2488 sg_mark_end(sg); 2489 } 2490 2491 /* Trim unused sg entries to avoid wasting memory. */ 2492 i915_sg_trim(st); 2493 2494 ret = i915_gem_gtt_prepare_pages(obj, st); 2495 if (ret) { 2496 /* DMA remapping failed? One possible cause is that 2497 * it could not reserve enough large entries, asking 2498 * for PAGE_SIZE chunks instead may be helpful. 2499 */ 2500 if (max_segment > PAGE_SIZE) { 2501 for_each_sgt_page(page, sgt_iter, st) 2502 put_page(page); 2503 sg_free_table(st); 2504 2505 max_segment = PAGE_SIZE; 2506 goto rebuild_st; 2507 } else { 2508 dev_warn(&dev_priv->drm.pdev->dev, 2509 "Failed to DMA remap %lu pages\n", 2510 page_count); 2511 goto err_pages; 2512 } 2513 } 2514 2515 if (i915_gem_object_needs_bit17_swizzle(obj)) 2516 i915_gem_object_do_bit_17_swizzle(obj, st); 2517 2518 __i915_gem_object_set_pages(obj, st, sg_page_sizes); 2519 2520 return 0; 2521 2522 err_sg: 2523 sg_mark_end(sg); 2524 err_pages: 2525 for_each_sgt_page(page, sgt_iter, st) 2526 put_page(page); 2527 sg_free_table(st); 2528 kfree(st); 2529 2530 /* shmemfs first checks if there is enough memory to allocate the page 2531 * and reports ENOSPC should there be insufficient, along with the usual 2532 * ENOMEM for a genuine allocation failure. 2533 * 2534 * We use ENOSPC in our driver to mean that we have run out of aperture 2535 * space and so want to translate the error from shmemfs back to our 2536 * usual understanding of ENOMEM. 2537 */ 2538 if (ret == -ENOSPC) 2539 ret = -ENOMEM; 2540 2541 return ret; 2542 } 2543 2544 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj, 2545 struct sg_table *pages, 2546 unsigned int sg_page_sizes) 2547 { 2548 struct drm_i915_private *i915 = to_i915(obj->base.dev); 2549 unsigned long supported = INTEL_INFO(i915)->page_sizes; 2550 int i; 2551 2552 lockdep_assert_held(&obj->mm.lock); 2553 2554 obj->mm.get_page.sg_pos = pages->sgl; 2555 obj->mm.get_page.sg_idx = 0; 2556 2557 obj->mm.pages = pages; 2558 2559 if (i915_gem_object_is_tiled(obj) && 2560 i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) { 2561 GEM_BUG_ON(obj->mm.quirked); 2562 __i915_gem_object_pin_pages(obj); 2563 obj->mm.quirked = true; 2564 } 2565 2566 GEM_BUG_ON(!sg_page_sizes); 2567 obj->mm.page_sizes.phys = sg_page_sizes; 2568 2569 /* 2570 * Calculate the supported page-sizes which fit into the given 2571 * sg_page_sizes. This will give us the page-sizes which we may be able 2572 * to use opportunistically when later inserting into the GTT. For 2573 * example if phys=2G, then in theory we should be able to use 1G, 2M, 2574 * 64K or 4K pages, although in practice this will depend on a number of 2575 * other factors. 2576 */ 2577 obj->mm.page_sizes.sg = 0; 2578 for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) { 2579 if (obj->mm.page_sizes.phys & ~0u << i) 2580 obj->mm.page_sizes.sg |= BIT(i); 2581 } 2582 GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg)); 2583 2584 spin_lock(&i915->mm.obj_lock); 2585 list_add(&obj->mm.link, &i915->mm.unbound_list); 2586 spin_unlock(&i915->mm.obj_lock); 2587 } 2588 2589 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 2590 { 2591 int err; 2592 2593 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) { 2594 DRM_DEBUG("Attempting to obtain a purgeable object\n"); 2595 return -EFAULT; 2596 } 2597 2598 err = obj->ops->get_pages(obj); 2599 GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj)); 2600 2601 return err; 2602 } 2603 2604 /* Ensure that the associated pages are gathered from the backing storage 2605 * and pinned into our object. i915_gem_object_pin_pages() may be called 2606 * multiple times before they are released by a single call to 2607 * i915_gem_object_unpin_pages() - once the pages are no longer referenced 2608 * either as a result of memory pressure (reaping pages under the shrinker) 2609 * or as the object is itself released. 2610 */ 2611 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 2612 { 2613 int err; 2614 2615 err = mutex_lock_interruptible(&obj->mm.lock); 2616 if (err) 2617 return err; 2618 2619 if (unlikely(!i915_gem_object_has_pages(obj))) { 2620 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj)); 2621 2622 err = ____i915_gem_object_get_pages(obj); 2623 if (err) 2624 goto unlock; 2625 2626 smp_mb__before_atomic(); 2627 } 2628 atomic_inc(&obj->mm.pages_pin_count); 2629 2630 unlock: 2631 mutex_unlock(&obj->mm.lock); 2632 return err; 2633 } 2634 2635 /* The 'mapping' part of i915_gem_object_pin_map() below */ 2636 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj, 2637 enum i915_map_type type) 2638 { 2639 unsigned long n_pages = obj->base.size >> PAGE_SHIFT; 2640 struct sg_table *sgt = obj->mm.pages; 2641 struct sgt_iter sgt_iter; 2642 struct page *page; 2643 struct page *stack_pages[32]; 2644 struct page **pages = stack_pages; 2645 unsigned long i = 0; 2646 pgprot_t pgprot; 2647 void *addr; 2648 2649 /* A single page can always be kmapped */ 2650 if (n_pages == 1 && type == I915_MAP_WB) 2651 return kmap(sg_page(sgt->sgl)); 2652 2653 if (n_pages > ARRAY_SIZE(stack_pages)) { 2654 /* Too big for stack -- allocate temporary array instead */ 2655 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL); 2656 if (!pages) 2657 return NULL; 2658 } 2659 2660 for_each_sgt_page(page, sgt_iter, sgt) 2661 pages[i++] = page; 2662 2663 /* Check that we have the expected number of pages */ 2664 GEM_BUG_ON(i != n_pages); 2665 2666 switch (type) { 2667 default: 2668 MISSING_CASE(type); 2669 /* fallthrough to use PAGE_KERNEL anyway */ 2670 case I915_MAP_WB: 2671 pgprot = PAGE_KERNEL; 2672 break; 2673 case I915_MAP_WC: 2674 pgprot = pgprot_writecombine(PAGE_KERNEL_IO); 2675 break; 2676 } 2677 addr = vmap(pages, n_pages, 0, pgprot); 2678 2679 if (pages != stack_pages) 2680 kvfree(pages); 2681 2682 return addr; 2683 } 2684 2685 /* get, pin, and map the pages of the object into kernel space */ 2686 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj, 2687 enum i915_map_type type) 2688 { 2689 enum i915_map_type has_type; 2690 bool pinned; 2691 void *ptr; 2692 int ret; 2693 2694 if (unlikely(!i915_gem_object_has_struct_page(obj))) 2695 return ERR_PTR(-ENXIO); 2696 2697 ret = mutex_lock_interruptible(&obj->mm.lock); 2698 if (ret) 2699 return ERR_PTR(ret); 2700 2701 pinned = !(type & I915_MAP_OVERRIDE); 2702 type &= ~I915_MAP_OVERRIDE; 2703 2704 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) { 2705 if (unlikely(!i915_gem_object_has_pages(obj))) { 2706 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj)); 2707 2708 ret = ____i915_gem_object_get_pages(obj); 2709 if (ret) 2710 goto err_unlock; 2711 2712 smp_mb__before_atomic(); 2713 } 2714 atomic_inc(&obj->mm.pages_pin_count); 2715 pinned = false; 2716 } 2717 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 2718 2719 ptr = page_unpack_bits(obj->mm.mapping, &has_type); 2720 if (ptr && has_type != type) { 2721 if (pinned) { 2722 ret = -EBUSY; 2723 goto err_unpin; 2724 } 2725 2726 if (is_vmalloc_addr(ptr)) 2727 vunmap(ptr); 2728 else 2729 kunmap(kmap_to_page(ptr)); 2730 2731 ptr = obj->mm.mapping = NULL; 2732 } 2733 2734 if (!ptr) { 2735 ptr = i915_gem_object_map(obj, type); 2736 if (!ptr) { 2737 ret = -ENOMEM; 2738 goto err_unpin; 2739 } 2740 2741 obj->mm.mapping = page_pack_bits(ptr, type); 2742 } 2743 2744 out_unlock: 2745 mutex_unlock(&obj->mm.lock); 2746 return ptr; 2747 2748 err_unpin: 2749 atomic_dec(&obj->mm.pages_pin_count); 2750 err_unlock: 2751 ptr = ERR_PTR(ret); 2752 goto out_unlock; 2753 } 2754 2755 static int 2756 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj, 2757 const struct drm_i915_gem_pwrite *arg) 2758 { 2759 struct address_space *mapping = obj->base.filp->f_mapping; 2760 char __user *user_data = u64_to_user_ptr(arg->data_ptr); 2761 u64 remain, offset; 2762 unsigned int pg; 2763 2764 /* Before we instantiate/pin the backing store for our use, we 2765 * can prepopulate the shmemfs filp efficiently using a write into 2766 * the pagecache. We avoid the penalty of instantiating all the 2767 * pages, important if the user is just writing to a few and never 2768 * uses the object on the GPU, and using a direct write into shmemfs 2769 * allows it to avoid the cost of retrieving a page (either swapin 2770 * or clearing-before-use) before it is overwritten. 2771 */ 2772 if (i915_gem_object_has_pages(obj)) 2773 return -ENODEV; 2774 2775 if (obj->mm.madv != I915_MADV_WILLNEED) 2776 return -EFAULT; 2777 2778 /* Before the pages are instantiated the object is treated as being 2779 * in the CPU domain. The pages will be clflushed as required before 2780 * use, and we can freely write into the pages directly. If userspace 2781 * races pwrite with any other operation; corruption will ensue - 2782 * that is userspace's prerogative! 2783 */ 2784 2785 remain = arg->size; 2786 offset = arg->offset; 2787 pg = offset_in_page(offset); 2788 2789 do { 2790 unsigned int len, unwritten; 2791 struct page *page; 2792 void *data, *vaddr; 2793 int err; 2794 2795 len = PAGE_SIZE - pg; 2796 if (len > remain) 2797 len = remain; 2798 2799 err = pagecache_write_begin(obj->base.filp, mapping, 2800 offset, len, 0, 2801 &page, &data); 2802 if (err < 0) 2803 return err; 2804 2805 vaddr = kmap(page); 2806 unwritten = copy_from_user(vaddr + pg, user_data, len); 2807 kunmap(page); 2808 2809 err = pagecache_write_end(obj->base.filp, mapping, 2810 offset, len, len - unwritten, 2811 page, data); 2812 if (err < 0) 2813 return err; 2814 2815 if (unwritten) 2816 return -EFAULT; 2817 2818 remain -= len; 2819 user_data += len; 2820 offset += len; 2821 pg = 0; 2822 } while (remain); 2823 2824 return 0; 2825 } 2826 2827 static bool ban_context(const struct i915_gem_context *ctx, 2828 unsigned int score) 2829 { 2830 return (i915_gem_context_is_bannable(ctx) && 2831 score >= CONTEXT_SCORE_BAN_THRESHOLD); 2832 } 2833 2834 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx) 2835 { 2836 unsigned int score; 2837 bool banned; 2838 2839 atomic_inc(&ctx->guilty_count); 2840 2841 score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score); 2842 banned = ban_context(ctx, score); 2843 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n", 2844 ctx->name, score, yesno(banned)); 2845 if (!banned) 2846 return; 2847 2848 i915_gem_context_set_banned(ctx); 2849 if (!IS_ERR_OR_NULL(ctx->file_priv)) { 2850 atomic_inc(&ctx->file_priv->context_bans); 2851 DRM_DEBUG_DRIVER("client %s has had %d context banned\n", 2852 ctx->name, atomic_read(&ctx->file_priv->context_bans)); 2853 } 2854 } 2855 2856 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx) 2857 { 2858 atomic_inc(&ctx->active_count); 2859 } 2860 2861 struct drm_i915_gem_request * 2862 i915_gem_find_active_request(struct intel_engine_cs *engine) 2863 { 2864 struct drm_i915_gem_request *request, *active = NULL; 2865 unsigned long flags; 2866 2867 /* We are called by the error capture and reset at a random 2868 * point in time. In particular, note that neither is crucially 2869 * ordered with an interrupt. After a hang, the GPU is dead and we 2870 * assume that no more writes can happen (we waited long enough for 2871 * all writes that were in transaction to be flushed) - adding an 2872 * extra delay for a recent interrupt is pointless. Hence, we do 2873 * not need an engine->irq_seqno_barrier() before the seqno reads. 2874 */ 2875 spin_lock_irqsave(&engine->timeline->lock, flags); 2876 list_for_each_entry(request, &engine->timeline->requests, link) { 2877 if (__i915_gem_request_completed(request, 2878 request->global_seqno)) 2879 continue; 2880 2881 GEM_BUG_ON(request->engine != engine); 2882 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, 2883 &request->fence.flags)); 2884 2885 active = request; 2886 break; 2887 } 2888 spin_unlock_irqrestore(&engine->timeline->lock, flags); 2889 2890 return active; 2891 } 2892 2893 static bool engine_stalled(struct intel_engine_cs *engine) 2894 { 2895 if (!engine->hangcheck.stalled) 2896 return false; 2897 2898 /* Check for possible seqno movement after hang declaration */ 2899 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) { 2900 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name); 2901 return false; 2902 } 2903 2904 return true; 2905 } 2906 2907 /* 2908 * Ensure irq handler finishes, and not run again. 2909 * Also return the active request so that we only search for it once. 2910 */ 2911 struct drm_i915_gem_request * 2912 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine) 2913 { 2914 struct drm_i915_gem_request *request = NULL; 2915 2916 /* 2917 * During the reset sequence, we must prevent the engine from 2918 * entering RC6. As the context state is undefined until we restart 2919 * the engine, if it does enter RC6 during the reset, the state 2920 * written to the powercontext is undefined and so we may lose 2921 * GPU state upon resume, i.e. fail to restart after a reset. 2922 */ 2923 intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL); 2924 2925 /* 2926 * Prevent the signaler thread from updating the request 2927 * state (by calling dma_fence_signal) as we are processing 2928 * the reset. The write from the GPU of the seqno is 2929 * asynchronous and the signaler thread may see a different 2930 * value to us and declare the request complete, even though 2931 * the reset routine have picked that request as the active 2932 * (incomplete) request. This conflict is not handled 2933 * gracefully! 2934 */ 2935 kthread_park(engine->breadcrumbs.signaler); 2936 2937 /* 2938 * Prevent request submission to the hardware until we have 2939 * completed the reset in i915_gem_reset_finish(). If a request 2940 * is completed by one engine, it may then queue a request 2941 * to a second via its execlists->tasklet *just* as we are 2942 * calling engine->init_hw() and also writing the ELSP. 2943 * Turning off the execlists->tasklet until the reset is over 2944 * prevents the race. 2945 */ 2946 tasklet_kill(&engine->execlists.tasklet); 2947 tasklet_disable(&engine->execlists.tasklet); 2948 2949 /* 2950 * We're using worker to queue preemption requests from the tasklet in 2951 * GuC submission mode. 2952 * Even though tasklet was disabled, we may still have a worker queued. 2953 * Let's make sure that all workers scheduled before disabling the 2954 * tasklet are completed before continuing with the reset. 2955 */ 2956 if (engine->i915->guc.preempt_wq) 2957 flush_workqueue(engine->i915->guc.preempt_wq); 2958 2959 if (engine->irq_seqno_barrier) 2960 engine->irq_seqno_barrier(engine); 2961 2962 request = i915_gem_find_active_request(engine); 2963 if (request && request->fence.error == -EIO) 2964 request = ERR_PTR(-EIO); /* Previous reset failed! */ 2965 2966 return request; 2967 } 2968 2969 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv) 2970 { 2971 struct intel_engine_cs *engine; 2972 struct drm_i915_gem_request *request; 2973 enum intel_engine_id id; 2974 int err = 0; 2975 2976 for_each_engine(engine, dev_priv, id) { 2977 request = i915_gem_reset_prepare_engine(engine); 2978 if (IS_ERR(request)) { 2979 err = PTR_ERR(request); 2980 continue; 2981 } 2982 2983 engine->hangcheck.active_request = request; 2984 } 2985 2986 i915_gem_revoke_fences(dev_priv); 2987 2988 return err; 2989 } 2990 2991 static void skip_request(struct drm_i915_gem_request *request) 2992 { 2993 void *vaddr = request->ring->vaddr; 2994 u32 head; 2995 2996 /* As this request likely depends on state from the lost 2997 * context, clear out all the user operations leaving the 2998 * breadcrumb at the end (so we get the fence notifications). 2999 */ 3000 head = request->head; 3001 if (request->postfix < head) { 3002 memset(vaddr + head, 0, request->ring->size - head); 3003 head = 0; 3004 } 3005 memset(vaddr + head, 0, request->postfix - head); 3006 3007 dma_fence_set_error(&request->fence, -EIO); 3008 } 3009 3010 static void engine_skip_context(struct drm_i915_gem_request *request) 3011 { 3012 struct intel_engine_cs *engine = request->engine; 3013 struct i915_gem_context *hung_ctx = request->ctx; 3014 struct intel_timeline *timeline; 3015 unsigned long flags; 3016 3017 timeline = i915_gem_context_lookup_timeline(hung_ctx, engine); 3018 3019 spin_lock_irqsave(&engine->timeline->lock, flags); 3020 spin_lock(&timeline->lock); 3021 3022 list_for_each_entry_continue(request, &engine->timeline->requests, link) 3023 if (request->ctx == hung_ctx) 3024 skip_request(request); 3025 3026 list_for_each_entry(request, &timeline->requests, link) 3027 skip_request(request); 3028 3029 spin_unlock(&timeline->lock); 3030 spin_unlock_irqrestore(&engine->timeline->lock, flags); 3031 } 3032 3033 /* Returns the request if it was guilty of the hang */ 3034 static struct drm_i915_gem_request * 3035 i915_gem_reset_request(struct intel_engine_cs *engine, 3036 struct drm_i915_gem_request *request) 3037 { 3038 /* The guilty request will get skipped on a hung engine. 3039 * 3040 * Users of client default contexts do not rely on logical 3041 * state preserved between batches so it is safe to execute 3042 * queued requests following the hang. Non default contexts 3043 * rely on preserved state, so skipping a batch loses the 3044 * evolution of the state and it needs to be considered corrupted. 3045 * Executing more queued batches on top of corrupted state is 3046 * risky. But we take the risk by trying to advance through 3047 * the queued requests in order to make the client behaviour 3048 * more predictable around resets, by not throwing away random 3049 * amount of batches it has prepared for execution. Sophisticated 3050 * clients can use gem_reset_stats_ioctl and dma fence status 3051 * (exported via sync_file info ioctl on explicit fences) to observe 3052 * when it loses the context state and should rebuild accordingly. 3053 * 3054 * The context ban, and ultimately the client ban, mechanism are safety 3055 * valves if client submission ends up resulting in nothing more than 3056 * subsequent hangs. 3057 */ 3058 3059 if (engine_stalled(engine)) { 3060 i915_gem_context_mark_guilty(request->ctx); 3061 skip_request(request); 3062 3063 /* If this context is now banned, skip all pending requests. */ 3064 if (i915_gem_context_is_banned(request->ctx)) 3065 engine_skip_context(request); 3066 } else { 3067 /* 3068 * Since this is not the hung engine, it may have advanced 3069 * since the hang declaration. Double check by refinding 3070 * the active request at the time of the reset. 3071 */ 3072 request = i915_gem_find_active_request(engine); 3073 if (request) { 3074 i915_gem_context_mark_innocent(request->ctx); 3075 dma_fence_set_error(&request->fence, -EAGAIN); 3076 3077 /* Rewind the engine to replay the incomplete rq */ 3078 spin_lock_irq(&engine->timeline->lock); 3079 request = list_prev_entry(request, link); 3080 if (&request->link == &engine->timeline->requests) 3081 request = NULL; 3082 spin_unlock_irq(&engine->timeline->lock); 3083 } 3084 } 3085 3086 return request; 3087 } 3088 3089 void i915_gem_reset_engine(struct intel_engine_cs *engine, 3090 struct drm_i915_gem_request *request) 3091 { 3092 /* 3093 * Make sure this write is visible before we re-enable the interrupt 3094 * handlers on another CPU, as tasklet_enable() resolves to just 3095 * a compiler barrier which is insufficient for our purpose here. 3096 */ 3097 smp_store_mb(engine->irq_posted, 0); 3098 3099 if (request) 3100 request = i915_gem_reset_request(engine, request); 3101 3102 if (request) { 3103 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n", 3104 engine->name, request->global_seqno); 3105 } 3106 3107 /* Setup the CS to resume from the breadcrumb of the hung request */ 3108 engine->reset_hw(engine, request); 3109 } 3110 3111 void i915_gem_reset(struct drm_i915_private *dev_priv) 3112 { 3113 struct intel_engine_cs *engine; 3114 enum intel_engine_id id; 3115 3116 lockdep_assert_held(&dev_priv->drm.struct_mutex); 3117 3118 i915_gem_retire_requests(dev_priv); 3119 3120 for_each_engine(engine, dev_priv, id) { 3121 struct i915_gem_context *ctx; 3122 3123 i915_gem_reset_engine(engine, engine->hangcheck.active_request); 3124 ctx = fetch_and_zero(&engine->last_retired_context); 3125 if (ctx) 3126 engine->context_unpin(engine, ctx); 3127 3128 /* 3129 * Ostensibily, we always want a context loaded for powersaving, 3130 * so if the engine is idle after the reset, send a request 3131 * to load our scratch kernel_context. 3132 * 3133 * More mysteriously, if we leave the engine idle after a reset, 3134 * the next userspace batch may hang, with what appears to be 3135 * an incoherent read by the CS (presumably stale TLB). An 3136 * empty request appears sufficient to paper over the glitch. 3137 */ 3138 if (list_empty(&engine->timeline->requests)) { 3139 struct drm_i915_gem_request *rq; 3140 3141 rq = i915_gem_request_alloc(engine, 3142 dev_priv->kernel_context); 3143 if (!IS_ERR(rq)) 3144 __i915_add_request(rq, false); 3145 } 3146 } 3147 3148 i915_gem_restore_fences(dev_priv); 3149 3150 if (dev_priv->gt.awake) { 3151 intel_sanitize_gt_powersave(dev_priv); 3152 intel_enable_gt_powersave(dev_priv); 3153 if (INTEL_GEN(dev_priv) >= 6) 3154 gen6_rps_busy(dev_priv); 3155 } 3156 } 3157 3158 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine) 3159 { 3160 tasklet_enable(&engine->execlists.tasklet); 3161 kthread_unpark(engine->breadcrumbs.signaler); 3162 3163 intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL); 3164 } 3165 3166 void i915_gem_reset_finish(struct drm_i915_private *dev_priv) 3167 { 3168 struct intel_engine_cs *engine; 3169 enum intel_engine_id id; 3170 3171 lockdep_assert_held(&dev_priv->drm.struct_mutex); 3172 3173 for_each_engine(engine, dev_priv, id) { 3174 engine->hangcheck.active_request = NULL; 3175 i915_gem_reset_finish_engine(engine); 3176 } 3177 } 3178 3179 static void nop_submit_request(struct drm_i915_gem_request *request) 3180 { 3181 dma_fence_set_error(&request->fence, -EIO); 3182 3183 i915_gem_request_submit(request); 3184 } 3185 3186 static void nop_complete_submit_request(struct drm_i915_gem_request *request) 3187 { 3188 unsigned long flags; 3189 3190 dma_fence_set_error(&request->fence, -EIO); 3191 3192 spin_lock_irqsave(&request->engine->timeline->lock, flags); 3193 __i915_gem_request_submit(request); 3194 intel_engine_init_global_seqno(request->engine, request->global_seqno); 3195 spin_unlock_irqrestore(&request->engine->timeline->lock, flags); 3196 } 3197 3198 void i915_gem_set_wedged(struct drm_i915_private *i915) 3199 { 3200 struct intel_engine_cs *engine; 3201 enum intel_engine_id id; 3202 3203 /* 3204 * First, stop submission to hw, but do not yet complete requests by 3205 * rolling the global seqno forward (since this would complete requests 3206 * for which we haven't set the fence error to EIO yet). 3207 */ 3208 for_each_engine(engine, i915, id) { 3209 i915_gem_reset_prepare_engine(engine); 3210 engine->submit_request = nop_submit_request; 3211 } 3212 3213 /* 3214 * Make sure no one is running the old callback before we proceed with 3215 * cancelling requests and resetting the completion tracking. Otherwise 3216 * we might submit a request to the hardware which never completes. 3217 */ 3218 synchronize_rcu(); 3219 3220 for_each_engine(engine, i915, id) { 3221 /* Mark all executing requests as skipped */ 3222 engine->cancel_requests(engine); 3223 3224 /* 3225 * Only once we've force-cancelled all in-flight requests can we 3226 * start to complete all requests. 3227 */ 3228 engine->submit_request = nop_complete_submit_request; 3229 } 3230 3231 /* 3232 * Make sure no request can slip through without getting completed by 3233 * either this call here to intel_engine_init_global_seqno, or the one 3234 * in nop_complete_submit_request. 3235 */ 3236 synchronize_rcu(); 3237 3238 for_each_engine(engine, i915, id) { 3239 unsigned long flags; 3240 3241 /* Mark all pending requests as complete so that any concurrent 3242 * (lockless) lookup doesn't try and wait upon the request as we 3243 * reset it. 3244 */ 3245 spin_lock_irqsave(&engine->timeline->lock, flags); 3246 intel_engine_init_global_seqno(engine, 3247 intel_engine_last_submit(engine)); 3248 spin_unlock_irqrestore(&engine->timeline->lock, flags); 3249 3250 i915_gem_reset_finish_engine(engine); 3251 } 3252 3253 set_bit(I915_WEDGED, &i915->gpu_error.flags); 3254 wake_up_all(&i915->gpu_error.reset_queue); 3255 } 3256 3257 bool i915_gem_unset_wedged(struct drm_i915_private *i915) 3258 { 3259 struct i915_gem_timeline *tl; 3260 int i; 3261 3262 lockdep_assert_held(&i915->drm.struct_mutex); 3263 if (!test_bit(I915_WEDGED, &i915->gpu_error.flags)) 3264 return true; 3265 3266 /* Before unwedging, make sure that all pending operations 3267 * are flushed and errored out - we may have requests waiting upon 3268 * third party fences. We marked all inflight requests as EIO, and 3269 * every execbuf since returned EIO, for consistency we want all 3270 * the currently pending requests to also be marked as EIO, which 3271 * is done inside our nop_submit_request - and so we must wait. 3272 * 3273 * No more can be submitted until we reset the wedged bit. 3274 */ 3275 list_for_each_entry(tl, &i915->gt.timelines, link) { 3276 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) { 3277 struct drm_i915_gem_request *rq; 3278 3279 rq = i915_gem_active_peek(&tl->engine[i].last_request, 3280 &i915->drm.struct_mutex); 3281 if (!rq) 3282 continue; 3283 3284 /* We can't use our normal waiter as we want to 3285 * avoid recursively trying to handle the current 3286 * reset. The basic dma_fence_default_wait() installs 3287 * a callback for dma_fence_signal(), which is 3288 * triggered by our nop handler (indirectly, the 3289 * callback enables the signaler thread which is 3290 * woken by the nop_submit_request() advancing the seqno 3291 * and when the seqno passes the fence, the signaler 3292 * then signals the fence waking us up). 3293 */ 3294 if (dma_fence_default_wait(&rq->fence, true, 3295 MAX_SCHEDULE_TIMEOUT) < 0) 3296 return false; 3297 } 3298 } 3299 3300 /* Undo nop_submit_request. We prevent all new i915 requests from 3301 * being queued (by disallowing execbuf whilst wedged) so having 3302 * waited for all active requests above, we know the system is idle 3303 * and do not have to worry about a thread being inside 3304 * engine->submit_request() as we swap over. So unlike installing 3305 * the nop_submit_request on reset, we can do this from normal 3306 * context and do not require stop_machine(). 3307 */ 3308 intel_engines_reset_default_submission(i915); 3309 i915_gem_contexts_lost(i915); 3310 3311 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */ 3312 clear_bit(I915_WEDGED, &i915->gpu_error.flags); 3313 3314 return true; 3315 } 3316 3317 static void 3318 i915_gem_retire_work_handler(struct work_struct *work) 3319 { 3320 struct drm_i915_private *dev_priv = 3321 container_of(work, typeof(*dev_priv), gt.retire_work.work); 3322 struct drm_device *dev = &dev_priv->drm; 3323 3324 /* Come back later if the device is busy... */ 3325 if (mutex_trylock(&dev->struct_mutex)) { 3326 i915_gem_retire_requests(dev_priv); 3327 mutex_unlock(&dev->struct_mutex); 3328 } 3329 3330 /* 3331 * Keep the retire handler running until we are finally idle. 3332 * We do not need to do this test under locking as in the worst-case 3333 * we queue the retire worker once too often. 3334 */ 3335 if (READ_ONCE(dev_priv->gt.awake)) 3336 queue_delayed_work(dev_priv->wq, 3337 &dev_priv->gt.retire_work, 3338 round_jiffies_up_relative(HZ)); 3339 } 3340 3341 static inline bool 3342 new_requests_since_last_retire(const struct drm_i915_private *i915) 3343 { 3344 return (READ_ONCE(i915->gt.active_requests) || 3345 work_pending(&i915->gt.idle_work.work)); 3346 } 3347 3348 static void 3349 i915_gem_idle_work_handler(struct work_struct *work) 3350 { 3351 struct drm_i915_private *dev_priv = 3352 container_of(work, typeof(*dev_priv), gt.idle_work.work); 3353 bool rearm_hangcheck; 3354 ktime_t end; 3355 3356 if (!READ_ONCE(dev_priv->gt.awake)) 3357 return; 3358 3359 /* 3360 * Wait for last execlists context complete, but bail out in case a 3361 * new request is submitted. 3362 */ 3363 end = ktime_add_ms(ktime_get(), I915_IDLE_ENGINES_TIMEOUT); 3364 do { 3365 if (new_requests_since_last_retire(dev_priv)) 3366 return; 3367 3368 if (intel_engines_are_idle(dev_priv)) 3369 break; 3370 3371 usleep_range(100, 500); 3372 } while (ktime_before(ktime_get(), end)); 3373 3374 rearm_hangcheck = 3375 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work); 3376 3377 if (!mutex_trylock(&dev_priv->drm.struct_mutex)) { 3378 /* Currently busy, come back later */ 3379 mod_delayed_work(dev_priv->wq, 3380 &dev_priv->gt.idle_work, 3381 msecs_to_jiffies(50)); 3382 goto out_rearm; 3383 } 3384 3385 /* 3386 * New request retired after this work handler started, extend active 3387 * period until next instance of the work. 3388 */ 3389 if (new_requests_since_last_retire(dev_priv)) 3390 goto out_unlock; 3391 3392 /* 3393 * Be paranoid and flush a concurrent interrupt to make sure 3394 * we don't reactivate any irq tasklets after parking. 3395 * 3396 * FIXME: Note that even though we have waited for execlists to be idle, 3397 * there may still be an in-flight interrupt even though the CSB 3398 * is now empty. synchronize_irq() makes sure that a residual interrupt 3399 * is completed before we continue, but it doesn't prevent the HW from 3400 * raising a spurious interrupt later. To complete the shield we should 3401 * coordinate disabling the CS irq with flushing the interrupts. 3402 */ 3403 synchronize_irq(dev_priv->drm.irq); 3404 3405 intel_engines_park(dev_priv); 3406 i915_gem_timelines_park(dev_priv); 3407 3408 i915_pmu_gt_parked(dev_priv); 3409 3410 GEM_BUG_ON(!dev_priv->gt.awake); 3411 dev_priv->gt.awake = false; 3412 rearm_hangcheck = false; 3413 3414 if (INTEL_GEN(dev_priv) >= 6) 3415 gen6_rps_idle(dev_priv); 3416 3417 intel_display_power_put(dev_priv, POWER_DOMAIN_GT_IRQ); 3418 3419 intel_runtime_pm_put(dev_priv); 3420 out_unlock: 3421 mutex_unlock(&dev_priv->drm.struct_mutex); 3422 3423 out_rearm: 3424 if (rearm_hangcheck) { 3425 GEM_BUG_ON(!dev_priv->gt.awake); 3426 i915_queue_hangcheck(dev_priv); 3427 } 3428 } 3429 3430 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file) 3431 { 3432 struct drm_i915_private *i915 = to_i915(gem->dev); 3433 struct drm_i915_gem_object *obj = to_intel_bo(gem); 3434 struct drm_i915_file_private *fpriv = file->driver_priv; 3435 struct i915_lut_handle *lut, *ln; 3436 3437 mutex_lock(&i915->drm.struct_mutex); 3438 3439 list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) { 3440 struct i915_gem_context *ctx = lut->ctx; 3441 struct i915_vma *vma; 3442 3443 GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF)); 3444 if (ctx->file_priv != fpriv) 3445 continue; 3446 3447 vma = radix_tree_delete(&ctx->handles_vma, lut->handle); 3448 GEM_BUG_ON(vma->obj != obj); 3449 3450 /* We allow the process to have multiple handles to the same 3451 * vma, in the same fd namespace, by virtue of flink/open. 3452 */ 3453 GEM_BUG_ON(!vma->open_count); 3454 if (!--vma->open_count && !i915_vma_is_ggtt(vma)) 3455 i915_vma_close(vma); 3456 3457 list_del(&lut->obj_link); 3458 list_del(&lut->ctx_link); 3459 3460 kmem_cache_free(i915->luts, lut); 3461 __i915_gem_object_release_unless_active(obj); 3462 } 3463 3464 mutex_unlock(&i915->drm.struct_mutex); 3465 } 3466 3467 static unsigned long to_wait_timeout(s64 timeout_ns) 3468 { 3469 if (timeout_ns < 0) 3470 return MAX_SCHEDULE_TIMEOUT; 3471 3472 if (timeout_ns == 0) 3473 return 0; 3474 3475 return nsecs_to_jiffies_timeout(timeout_ns); 3476 } 3477 3478 /** 3479 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT 3480 * @dev: drm device pointer 3481 * @data: ioctl data blob 3482 * @file: drm file pointer 3483 * 3484 * Returns 0 if successful, else an error is returned with the remaining time in 3485 * the timeout parameter. 3486 * -ETIME: object is still busy after timeout 3487 * -ERESTARTSYS: signal interrupted the wait 3488 * -ENONENT: object doesn't exist 3489 * Also possible, but rare: 3490 * -EAGAIN: incomplete, restart syscall 3491 * -ENOMEM: damn 3492 * -ENODEV: Internal IRQ fail 3493 * -E?: The add request failed 3494 * 3495 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any 3496 * non-zero timeout parameter the wait ioctl will wait for the given number of 3497 * nanoseconds on an object becoming unbusy. Since the wait itself does so 3498 * without holding struct_mutex the object may become re-busied before this 3499 * function completes. A similar but shorter * race condition exists in the busy 3500 * ioctl 3501 */ 3502 int 3503 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file) 3504 { 3505 struct drm_i915_gem_wait *args = data; 3506 struct drm_i915_gem_object *obj; 3507 ktime_t start; 3508 long ret; 3509 3510 if (args->flags != 0) 3511 return -EINVAL; 3512 3513 obj = i915_gem_object_lookup(file, args->bo_handle); 3514 if (!obj) 3515 return -ENOENT; 3516 3517 start = ktime_get(); 3518 3519 ret = i915_gem_object_wait(obj, 3520 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL, 3521 to_wait_timeout(args->timeout_ns), 3522 to_rps_client(file)); 3523 3524 if (args->timeout_ns > 0) { 3525 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start)); 3526 if (args->timeout_ns < 0) 3527 args->timeout_ns = 0; 3528 3529 /* 3530 * Apparently ktime isn't accurate enough and occasionally has a 3531 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch 3532 * things up to make the test happy. We allow up to 1 jiffy. 3533 * 3534 * This is a regression from the timespec->ktime conversion. 3535 */ 3536 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns)) 3537 args->timeout_ns = 0; 3538 3539 /* Asked to wait beyond the jiffie/scheduler precision? */ 3540 if (ret == -ETIME && args->timeout_ns) 3541 ret = -EAGAIN; 3542 } 3543 3544 i915_gem_object_put(obj); 3545 return ret; 3546 } 3547 3548 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags) 3549 { 3550 int ret, i; 3551 3552 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) { 3553 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags); 3554 if (ret) 3555 return ret; 3556 } 3557 3558 return 0; 3559 } 3560 3561 static int wait_for_engines(struct drm_i915_private *i915) 3562 { 3563 if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) { 3564 dev_err(i915->drm.dev, 3565 "Failed to idle engines, declaring wedged!\n"); 3566 if (drm_debug & DRM_UT_DRIVER) { 3567 struct drm_printer p = drm_debug_printer(__func__); 3568 struct intel_engine_cs *engine; 3569 enum intel_engine_id id; 3570 3571 for_each_engine(engine, i915, id) 3572 intel_engine_dump(engine, &p, 3573 "%s", engine->name); 3574 } 3575 3576 i915_gem_set_wedged(i915); 3577 return -EIO; 3578 } 3579 3580 return 0; 3581 } 3582 3583 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags) 3584 { 3585 int ret; 3586 3587 /* If the device is asleep, we have no requests outstanding */ 3588 if (!READ_ONCE(i915->gt.awake)) 3589 return 0; 3590 3591 if (flags & I915_WAIT_LOCKED) { 3592 struct i915_gem_timeline *tl; 3593 3594 lockdep_assert_held(&i915->drm.struct_mutex); 3595 3596 list_for_each_entry(tl, &i915->gt.timelines, link) { 3597 ret = wait_for_timeline(tl, flags); 3598 if (ret) 3599 return ret; 3600 } 3601 i915_gem_retire_requests(i915); 3602 3603 ret = wait_for_engines(i915); 3604 } else { 3605 ret = wait_for_timeline(&i915->gt.global_timeline, flags); 3606 } 3607 3608 return ret; 3609 } 3610 3611 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj) 3612 { 3613 /* 3614 * We manually flush the CPU domain so that we can override and 3615 * force the flush for the display, and perform it asyncrhonously. 3616 */ 3617 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); 3618 if (obj->cache_dirty) 3619 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE); 3620 obj->base.write_domain = 0; 3621 } 3622 3623 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj) 3624 { 3625 if (!READ_ONCE(obj->pin_global)) 3626 return; 3627 3628 mutex_lock(&obj->base.dev->struct_mutex); 3629 __i915_gem_object_flush_for_display(obj); 3630 mutex_unlock(&obj->base.dev->struct_mutex); 3631 } 3632 3633 /** 3634 * Moves a single object to the WC read, and possibly write domain. 3635 * @obj: object to act on 3636 * @write: ask for write access or read only 3637 * 3638 * This function returns when the move is complete, including waiting on 3639 * flushes to occur. 3640 */ 3641 int 3642 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write) 3643 { 3644 int ret; 3645 3646 lockdep_assert_held(&obj->base.dev->struct_mutex); 3647 3648 ret = i915_gem_object_wait(obj, 3649 I915_WAIT_INTERRUPTIBLE | 3650 I915_WAIT_LOCKED | 3651 (write ? I915_WAIT_ALL : 0), 3652 MAX_SCHEDULE_TIMEOUT, 3653 NULL); 3654 if (ret) 3655 return ret; 3656 3657 if (obj->base.write_domain == I915_GEM_DOMAIN_WC) 3658 return 0; 3659 3660 /* Flush and acquire obj->pages so that we are coherent through 3661 * direct access in memory with previous cached writes through 3662 * shmemfs and that our cache domain tracking remains valid. 3663 * For example, if the obj->filp was moved to swap without us 3664 * being notified and releasing the pages, we would mistakenly 3665 * continue to assume that the obj remained out of the CPU cached 3666 * domain. 3667 */ 3668 ret = i915_gem_object_pin_pages(obj); 3669 if (ret) 3670 return ret; 3671 3672 flush_write_domain(obj, ~I915_GEM_DOMAIN_WC); 3673 3674 /* Serialise direct access to this object with the barriers for 3675 * coherent writes from the GPU, by effectively invalidating the 3676 * WC domain upon first access. 3677 */ 3678 if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0) 3679 mb(); 3680 3681 /* It should now be out of any other write domains, and we can update 3682 * the domain values for our changes. 3683 */ 3684 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0); 3685 obj->base.read_domains |= I915_GEM_DOMAIN_WC; 3686 if (write) { 3687 obj->base.read_domains = I915_GEM_DOMAIN_WC; 3688 obj->base.write_domain = I915_GEM_DOMAIN_WC; 3689 obj->mm.dirty = true; 3690 } 3691 3692 i915_gem_object_unpin_pages(obj); 3693 return 0; 3694 } 3695 3696 /** 3697 * Moves a single object to the GTT read, and possibly write domain. 3698 * @obj: object to act on 3699 * @write: ask for write access or read only 3700 * 3701 * This function returns when the move is complete, including waiting on 3702 * flushes to occur. 3703 */ 3704 int 3705 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write) 3706 { 3707 int ret; 3708 3709 lockdep_assert_held(&obj->base.dev->struct_mutex); 3710 3711 ret = i915_gem_object_wait(obj, 3712 I915_WAIT_INTERRUPTIBLE | 3713 I915_WAIT_LOCKED | 3714 (write ? I915_WAIT_ALL : 0), 3715 MAX_SCHEDULE_TIMEOUT, 3716 NULL); 3717 if (ret) 3718 return ret; 3719 3720 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT) 3721 return 0; 3722 3723 /* Flush and acquire obj->pages so that we are coherent through 3724 * direct access in memory with previous cached writes through 3725 * shmemfs and that our cache domain tracking remains valid. 3726 * For example, if the obj->filp was moved to swap without us 3727 * being notified and releasing the pages, we would mistakenly 3728 * continue to assume that the obj remained out of the CPU cached 3729 * domain. 3730 */ 3731 ret = i915_gem_object_pin_pages(obj); 3732 if (ret) 3733 return ret; 3734 3735 flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT); 3736 3737 /* Serialise direct access to this object with the barriers for 3738 * coherent writes from the GPU, by effectively invalidating the 3739 * GTT domain upon first access. 3740 */ 3741 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 3742 mb(); 3743 3744 /* It should now be out of any other write domains, and we can update 3745 * the domain values for our changes. 3746 */ 3747 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0); 3748 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3749 if (write) { 3750 obj->base.read_domains = I915_GEM_DOMAIN_GTT; 3751 obj->base.write_domain = I915_GEM_DOMAIN_GTT; 3752 obj->mm.dirty = true; 3753 } 3754 3755 i915_gem_object_unpin_pages(obj); 3756 return 0; 3757 } 3758 3759 /** 3760 * Changes the cache-level of an object across all VMA. 3761 * @obj: object to act on 3762 * @cache_level: new cache level to set for the object 3763 * 3764 * After this function returns, the object will be in the new cache-level 3765 * across all GTT and the contents of the backing storage will be coherent, 3766 * with respect to the new cache-level. In order to keep the backing storage 3767 * coherent for all users, we only allow a single cache level to be set 3768 * globally on the object and prevent it from being changed whilst the 3769 * hardware is reading from the object. That is if the object is currently 3770 * on the scanout it will be set to uncached (or equivalent display 3771 * cache coherency) and all non-MOCS GPU access will also be uncached so 3772 * that all direct access to the scanout remains coherent. 3773 */ 3774 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3775 enum i915_cache_level cache_level) 3776 { 3777 struct i915_vma *vma; 3778 int ret; 3779 3780 lockdep_assert_held(&obj->base.dev->struct_mutex); 3781 3782 if (obj->cache_level == cache_level) 3783 return 0; 3784 3785 /* Inspect the list of currently bound VMA and unbind any that would 3786 * be invalid given the new cache-level. This is principally to 3787 * catch the issue of the CS prefetch crossing page boundaries and 3788 * reading an invalid PTE on older architectures. 3789 */ 3790 restart: 3791 list_for_each_entry(vma, &obj->vma_list, obj_link) { 3792 if (!drm_mm_node_allocated(&vma->node)) 3793 continue; 3794 3795 if (i915_vma_is_pinned(vma)) { 3796 DRM_DEBUG("can not change the cache level of pinned objects\n"); 3797 return -EBUSY; 3798 } 3799 3800 if (!i915_vma_is_closed(vma) && 3801 i915_gem_valid_gtt_space(vma, cache_level)) 3802 continue; 3803 3804 ret = i915_vma_unbind(vma); 3805 if (ret) 3806 return ret; 3807 3808 /* As unbinding may affect other elements in the 3809 * obj->vma_list (due to side-effects from retiring 3810 * an active vma), play safe and restart the iterator. 3811 */ 3812 goto restart; 3813 } 3814 3815 /* We can reuse the existing drm_mm nodes but need to change the 3816 * cache-level on the PTE. We could simply unbind them all and 3817 * rebind with the correct cache-level on next use. However since 3818 * we already have a valid slot, dma mapping, pages etc, we may as 3819 * rewrite the PTE in the belief that doing so tramples upon less 3820 * state and so involves less work. 3821 */ 3822 if (obj->bind_count) { 3823 /* Before we change the PTE, the GPU must not be accessing it. 3824 * If we wait upon the object, we know that all the bound 3825 * VMA are no longer active. 3826 */ 3827 ret = i915_gem_object_wait(obj, 3828 I915_WAIT_INTERRUPTIBLE | 3829 I915_WAIT_LOCKED | 3830 I915_WAIT_ALL, 3831 MAX_SCHEDULE_TIMEOUT, 3832 NULL); 3833 if (ret) 3834 return ret; 3835 3836 if (!HAS_LLC(to_i915(obj->base.dev)) && 3837 cache_level != I915_CACHE_NONE) { 3838 /* Access to snoopable pages through the GTT is 3839 * incoherent and on some machines causes a hard 3840 * lockup. Relinquish the CPU mmaping to force 3841 * userspace to refault in the pages and we can 3842 * then double check if the GTT mapping is still 3843 * valid for that pointer access. 3844 */ 3845 i915_gem_release_mmap(obj); 3846 3847 /* As we no longer need a fence for GTT access, 3848 * we can relinquish it now (and so prevent having 3849 * to steal a fence from someone else on the next 3850 * fence request). Note GPU activity would have 3851 * dropped the fence as all snoopable access is 3852 * supposed to be linear. 3853 */ 3854 for_each_ggtt_vma(vma, obj) { 3855 ret = i915_vma_put_fence(vma); 3856 if (ret) 3857 return ret; 3858 } 3859 } else { 3860 /* We either have incoherent backing store and 3861 * so no GTT access or the architecture is fully 3862 * coherent. In such cases, existing GTT mmaps 3863 * ignore the cache bit in the PTE and we can 3864 * rewrite it without confusing the GPU or having 3865 * to force userspace to fault back in its mmaps. 3866 */ 3867 } 3868 3869 list_for_each_entry(vma, &obj->vma_list, obj_link) { 3870 if (!drm_mm_node_allocated(&vma->node)) 3871 continue; 3872 3873 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE); 3874 if (ret) 3875 return ret; 3876 } 3877 } 3878 3879 list_for_each_entry(vma, &obj->vma_list, obj_link) 3880 vma->node.color = cache_level; 3881 i915_gem_object_set_cache_coherency(obj, cache_level); 3882 obj->cache_dirty = true; /* Always invalidate stale cachelines */ 3883 3884 return 0; 3885 } 3886 3887 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 3888 struct drm_file *file) 3889 { 3890 struct drm_i915_gem_caching *args = data; 3891 struct drm_i915_gem_object *obj; 3892 int err = 0; 3893 3894 rcu_read_lock(); 3895 obj = i915_gem_object_lookup_rcu(file, args->handle); 3896 if (!obj) { 3897 err = -ENOENT; 3898 goto out; 3899 } 3900 3901 switch (obj->cache_level) { 3902 case I915_CACHE_LLC: 3903 case I915_CACHE_L3_LLC: 3904 args->caching = I915_CACHING_CACHED; 3905 break; 3906 3907 case I915_CACHE_WT: 3908 args->caching = I915_CACHING_DISPLAY; 3909 break; 3910 3911 default: 3912 args->caching = I915_CACHING_NONE; 3913 break; 3914 } 3915 out: 3916 rcu_read_unlock(); 3917 return err; 3918 } 3919 3920 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 3921 struct drm_file *file) 3922 { 3923 struct drm_i915_private *i915 = to_i915(dev); 3924 struct drm_i915_gem_caching *args = data; 3925 struct drm_i915_gem_object *obj; 3926 enum i915_cache_level level; 3927 int ret = 0; 3928 3929 switch (args->caching) { 3930 case I915_CACHING_NONE: 3931 level = I915_CACHE_NONE; 3932 break; 3933 case I915_CACHING_CACHED: 3934 /* 3935 * Due to a HW issue on BXT A stepping, GPU stores via a 3936 * snooped mapping may leave stale data in a corresponding CPU 3937 * cacheline, whereas normally such cachelines would get 3938 * invalidated. 3939 */ 3940 if (!HAS_LLC(i915) && !HAS_SNOOP(i915)) 3941 return -ENODEV; 3942 3943 level = I915_CACHE_LLC; 3944 break; 3945 case I915_CACHING_DISPLAY: 3946 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE; 3947 break; 3948 default: 3949 return -EINVAL; 3950 } 3951 3952 obj = i915_gem_object_lookup(file, args->handle); 3953 if (!obj) 3954 return -ENOENT; 3955 3956 /* 3957 * The caching mode of proxy object is handled by its generator, and 3958 * not allowed to be changed by userspace. 3959 */ 3960 if (i915_gem_object_is_proxy(obj)) { 3961 ret = -ENXIO; 3962 goto out; 3963 } 3964 3965 if (obj->cache_level == level) 3966 goto out; 3967 3968 ret = i915_gem_object_wait(obj, 3969 I915_WAIT_INTERRUPTIBLE, 3970 MAX_SCHEDULE_TIMEOUT, 3971 to_rps_client(file)); 3972 if (ret) 3973 goto out; 3974 3975 ret = i915_mutex_lock_interruptible(dev); 3976 if (ret) 3977 goto out; 3978 3979 ret = i915_gem_object_set_cache_level(obj, level); 3980 mutex_unlock(&dev->struct_mutex); 3981 3982 out: 3983 i915_gem_object_put(obj); 3984 return ret; 3985 } 3986 3987 /* 3988 * Prepare buffer for display plane (scanout, cursors, etc). 3989 * Can be called from an uninterruptible phase (modesetting) and allows 3990 * any flushes to be pipelined (for pageflips). 3991 */ 3992 struct i915_vma * 3993 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3994 u32 alignment, 3995 const struct i915_ggtt_view *view) 3996 { 3997 struct i915_vma *vma; 3998 int ret; 3999 4000 lockdep_assert_held(&obj->base.dev->struct_mutex); 4001 4002 /* Mark the global pin early so that we account for the 4003 * display coherency whilst setting up the cache domains. 4004 */ 4005 obj->pin_global++; 4006 4007 /* The display engine is not coherent with the LLC cache on gen6. As 4008 * a result, we make sure that the pinning that is about to occur is 4009 * done with uncached PTEs. This is lowest common denominator for all 4010 * chipsets. 4011 * 4012 * However for gen6+, we could do better by using the GFDT bit instead 4013 * of uncaching, which would allow us to flush all the LLC-cached data 4014 * with that bit in the PTE to main memory with just one PIPE_CONTROL. 4015 */ 4016 ret = i915_gem_object_set_cache_level(obj, 4017 HAS_WT(to_i915(obj->base.dev)) ? 4018 I915_CACHE_WT : I915_CACHE_NONE); 4019 if (ret) { 4020 vma = ERR_PTR(ret); 4021 goto err_unpin_global; 4022 } 4023 4024 /* As the user may map the buffer once pinned in the display plane 4025 * (e.g. libkms for the bootup splash), we have to ensure that we 4026 * always use map_and_fenceable for all scanout buffers. However, 4027 * it may simply be too big to fit into mappable, in which case 4028 * put it anyway and hope that userspace can cope (but always first 4029 * try to preserve the existing ABI). 4030 */ 4031 vma = ERR_PTR(-ENOSPC); 4032 if (!view || view->type == I915_GGTT_VIEW_NORMAL) 4033 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, 4034 PIN_MAPPABLE | PIN_NONBLOCK); 4035 if (IS_ERR(vma)) { 4036 struct drm_i915_private *i915 = to_i915(obj->base.dev); 4037 unsigned int flags; 4038 4039 /* Valleyview is definitely limited to scanning out the first 4040 * 512MiB. Lets presume this behaviour was inherited from the 4041 * g4x display engine and that all earlier gen are similarly 4042 * limited. Testing suggests that it is a little more 4043 * complicated than this. For example, Cherryview appears quite 4044 * happy to scanout from anywhere within its global aperture. 4045 */ 4046 flags = 0; 4047 if (HAS_GMCH_DISPLAY(i915)) 4048 flags = PIN_MAPPABLE; 4049 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags); 4050 } 4051 if (IS_ERR(vma)) 4052 goto err_unpin_global; 4053 4054 vma->display_alignment = max_t(u64, vma->display_alignment, alignment); 4055 4056 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */ 4057 __i915_gem_object_flush_for_display(obj); 4058 intel_fb_obj_flush(obj, ORIGIN_DIRTYFB); 4059 4060 /* It should now be out of any other write domains, and we can update 4061 * the domain values for our changes. 4062 */ 4063 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 4064 4065 return vma; 4066 4067 err_unpin_global: 4068 obj->pin_global--; 4069 return vma; 4070 } 4071 4072 void 4073 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma) 4074 { 4075 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex); 4076 4077 if (WARN_ON(vma->obj->pin_global == 0)) 4078 return; 4079 4080 if (--vma->obj->pin_global == 0) 4081 vma->display_alignment = I915_GTT_MIN_ALIGNMENT; 4082 4083 /* Bump the LRU to try and avoid premature eviction whilst flipping */ 4084 i915_gem_object_bump_inactive_ggtt(vma->obj); 4085 4086 i915_vma_unpin(vma); 4087 } 4088 4089 /** 4090 * Moves a single object to the CPU read, and possibly write domain. 4091 * @obj: object to act on 4092 * @write: requesting write or read-only access 4093 * 4094 * This function returns when the move is complete, including waiting on 4095 * flushes to occur. 4096 */ 4097 int 4098 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write) 4099 { 4100 int ret; 4101 4102 lockdep_assert_held(&obj->base.dev->struct_mutex); 4103 4104 ret = i915_gem_object_wait(obj, 4105 I915_WAIT_INTERRUPTIBLE | 4106 I915_WAIT_LOCKED | 4107 (write ? I915_WAIT_ALL : 0), 4108 MAX_SCHEDULE_TIMEOUT, 4109 NULL); 4110 if (ret) 4111 return ret; 4112 4113 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); 4114 4115 /* Flush the CPU cache if it's still invalid. */ 4116 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) { 4117 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC); 4118 obj->base.read_domains |= I915_GEM_DOMAIN_CPU; 4119 } 4120 4121 /* It should now be out of any other write domains, and we can update 4122 * the domain values for our changes. 4123 */ 4124 GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU); 4125 4126 /* If we're writing through the CPU, then the GPU read domains will 4127 * need to be invalidated at next use. 4128 */ 4129 if (write) 4130 __start_cpu_write(obj); 4131 4132 return 0; 4133 } 4134 4135 /* Throttle our rendering by waiting until the ring has completed our requests 4136 * emitted over 20 msec ago. 4137 * 4138 * Note that if we were to use the current jiffies each time around the loop, 4139 * we wouldn't escape the function with any frames outstanding if the time to 4140 * render a frame was over 20ms. 4141 * 4142 * This should get us reasonable parallelism between CPU and GPU but also 4143 * relatively low latency when blocking on a particular request to finish. 4144 */ 4145 static int 4146 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file) 4147 { 4148 struct drm_i915_private *dev_priv = to_i915(dev); 4149 struct drm_i915_file_private *file_priv = file->driver_priv; 4150 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES; 4151 struct drm_i915_gem_request *request, *target = NULL; 4152 long ret; 4153 4154 /* ABI: return -EIO if already wedged */ 4155 if (i915_terminally_wedged(&dev_priv->gpu_error)) 4156 return -EIO; 4157 4158 spin_lock(&file_priv->mm.lock); 4159 list_for_each_entry(request, &file_priv->mm.request_list, client_link) { 4160 if (time_after_eq(request->emitted_jiffies, recent_enough)) 4161 break; 4162 4163 if (target) { 4164 list_del(&target->client_link); 4165 target->file_priv = NULL; 4166 } 4167 4168 target = request; 4169 } 4170 if (target) 4171 i915_gem_request_get(target); 4172 spin_unlock(&file_priv->mm.lock); 4173 4174 if (target == NULL) 4175 return 0; 4176 4177 ret = i915_wait_request(target, 4178 I915_WAIT_INTERRUPTIBLE, 4179 MAX_SCHEDULE_TIMEOUT); 4180 i915_gem_request_put(target); 4181 4182 return ret < 0 ? ret : 0; 4183 } 4184 4185 struct i915_vma * 4186 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, 4187 const struct i915_ggtt_view *view, 4188 u64 size, 4189 u64 alignment, 4190 u64 flags) 4191 { 4192 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 4193 struct i915_address_space *vm = &dev_priv->ggtt.base; 4194 struct i915_vma *vma; 4195 int ret; 4196 4197 lockdep_assert_held(&obj->base.dev->struct_mutex); 4198 4199 if (!view && flags & PIN_MAPPABLE) { 4200 /* If the required space is larger than the available 4201 * aperture, we will not able to find a slot for the 4202 * object and unbinding the object now will be in 4203 * vain. Worse, doing so may cause us to ping-pong 4204 * the object in and out of the Global GTT and 4205 * waste a lot of cycles under the mutex. 4206 */ 4207 if (obj->base.size > dev_priv->ggtt.mappable_end) 4208 return ERR_PTR(-E2BIG); 4209 4210 /* If NONBLOCK is set the caller is optimistically 4211 * trying to cache the full object within the mappable 4212 * aperture, and *must* have a fallback in place for 4213 * situations where we cannot bind the object. We 4214 * can be a little more lax here and use the fallback 4215 * more often to avoid costly migrations of ourselves 4216 * and other objects within the aperture. 4217 * 4218 * Half-the-aperture is used as a simple heuristic. 4219 * More interesting would to do search for a free 4220 * block prior to making the commitment to unbind. 4221 * That caters for the self-harm case, and with a 4222 * little more heuristics (e.g. NOFAULT, NOEVICT) 4223 * we could try to minimise harm to others. 4224 */ 4225 if (flags & PIN_NONBLOCK && 4226 obj->base.size > dev_priv->ggtt.mappable_end / 2) 4227 return ERR_PTR(-ENOSPC); 4228 } 4229 4230 vma = i915_vma_instance(obj, vm, view); 4231 if (unlikely(IS_ERR(vma))) 4232 return vma; 4233 4234 if (i915_vma_misplaced(vma, size, alignment, flags)) { 4235 if (flags & PIN_NONBLOCK) { 4236 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) 4237 return ERR_PTR(-ENOSPC); 4238 4239 if (flags & PIN_MAPPABLE && 4240 vma->fence_size > dev_priv->ggtt.mappable_end / 2) 4241 return ERR_PTR(-ENOSPC); 4242 } 4243 4244 WARN(i915_vma_is_pinned(vma), 4245 "bo is already pinned in ggtt with incorrect alignment:" 4246 " offset=%08x, req.alignment=%llx," 4247 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n", 4248 i915_ggtt_offset(vma), alignment, 4249 !!(flags & PIN_MAPPABLE), 4250 i915_vma_is_map_and_fenceable(vma)); 4251 ret = i915_vma_unbind(vma); 4252 if (ret) 4253 return ERR_PTR(ret); 4254 } 4255 4256 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL); 4257 if (ret) 4258 return ERR_PTR(ret); 4259 4260 return vma; 4261 } 4262 4263 static __always_inline unsigned int __busy_read_flag(unsigned int id) 4264 { 4265 /* Note that we could alias engines in the execbuf API, but 4266 * that would be very unwise as it prevents userspace from 4267 * fine control over engine selection. Ahem. 4268 * 4269 * This should be something like EXEC_MAX_ENGINE instead of 4270 * I915_NUM_ENGINES. 4271 */ 4272 BUILD_BUG_ON(I915_NUM_ENGINES > 16); 4273 return 0x10000 << id; 4274 } 4275 4276 static __always_inline unsigned int __busy_write_id(unsigned int id) 4277 { 4278 /* The uABI guarantees an active writer is also amongst the read 4279 * engines. This would be true if we accessed the activity tracking 4280 * under the lock, but as we perform the lookup of the object and 4281 * its activity locklessly we can not guarantee that the last_write 4282 * being active implies that we have set the same engine flag from 4283 * last_read - hence we always set both read and write busy for 4284 * last_write. 4285 */ 4286 return id | __busy_read_flag(id); 4287 } 4288 4289 static __always_inline unsigned int 4290 __busy_set_if_active(const struct dma_fence *fence, 4291 unsigned int (*flag)(unsigned int id)) 4292 { 4293 struct drm_i915_gem_request *rq; 4294 4295 /* We have to check the current hw status of the fence as the uABI 4296 * guarantees forward progress. We could rely on the idle worker 4297 * to eventually flush us, but to minimise latency just ask the 4298 * hardware. 4299 * 4300 * Note we only report on the status of native fences. 4301 */ 4302 if (!dma_fence_is_i915(fence)) 4303 return 0; 4304 4305 /* opencode to_request() in order to avoid const warnings */ 4306 rq = container_of(fence, struct drm_i915_gem_request, fence); 4307 if (i915_gem_request_completed(rq)) 4308 return 0; 4309 4310 return flag(rq->engine->uabi_id); 4311 } 4312 4313 static __always_inline unsigned int 4314 busy_check_reader(const struct dma_fence *fence) 4315 { 4316 return __busy_set_if_active(fence, __busy_read_flag); 4317 } 4318 4319 static __always_inline unsigned int 4320 busy_check_writer(const struct dma_fence *fence) 4321 { 4322 if (!fence) 4323 return 0; 4324 4325 return __busy_set_if_active(fence, __busy_write_id); 4326 } 4327 4328 int 4329 i915_gem_busy_ioctl(struct drm_device *dev, void *data, 4330 struct drm_file *file) 4331 { 4332 struct drm_i915_gem_busy *args = data; 4333 struct drm_i915_gem_object *obj; 4334 struct reservation_object_list *list; 4335 unsigned int seq; 4336 int err; 4337 4338 err = -ENOENT; 4339 rcu_read_lock(); 4340 obj = i915_gem_object_lookup_rcu(file, args->handle); 4341 if (!obj) 4342 goto out; 4343 4344 /* A discrepancy here is that we do not report the status of 4345 * non-i915 fences, i.e. even though we may report the object as idle, 4346 * a call to set-domain may still stall waiting for foreign rendering. 4347 * This also means that wait-ioctl may report an object as busy, 4348 * where busy-ioctl considers it idle. 4349 * 4350 * We trade the ability to warn of foreign fences to report on which 4351 * i915 engines are active for the object. 4352 * 4353 * Alternatively, we can trade that extra information on read/write 4354 * activity with 4355 * args->busy = 4356 * !reservation_object_test_signaled_rcu(obj->resv, true); 4357 * to report the overall busyness. This is what the wait-ioctl does. 4358 * 4359 */ 4360 retry: 4361 seq = raw_read_seqcount(&obj->resv->seq); 4362 4363 /* Translate the exclusive fence to the READ *and* WRITE engine */ 4364 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl)); 4365 4366 /* Translate shared fences to READ set of engines */ 4367 list = rcu_dereference(obj->resv->fence); 4368 if (list) { 4369 unsigned int shared_count = list->shared_count, i; 4370 4371 for (i = 0; i < shared_count; ++i) { 4372 struct dma_fence *fence = 4373 rcu_dereference(list->shared[i]); 4374 4375 args->busy |= busy_check_reader(fence); 4376 } 4377 } 4378 4379 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq)) 4380 goto retry; 4381 4382 err = 0; 4383 out: 4384 rcu_read_unlock(); 4385 return err; 4386 } 4387 4388 int 4389 i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 4390 struct drm_file *file_priv) 4391 { 4392 return i915_gem_ring_throttle(dev, file_priv); 4393 } 4394 4395 int 4396 i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 4397 struct drm_file *file_priv) 4398 { 4399 struct drm_i915_private *dev_priv = to_i915(dev); 4400 struct drm_i915_gem_madvise *args = data; 4401 struct drm_i915_gem_object *obj; 4402 int err; 4403 4404 switch (args->madv) { 4405 case I915_MADV_DONTNEED: 4406 case I915_MADV_WILLNEED: 4407 break; 4408 default: 4409 return -EINVAL; 4410 } 4411 4412 obj = i915_gem_object_lookup(file_priv, args->handle); 4413 if (!obj) 4414 return -ENOENT; 4415 4416 err = mutex_lock_interruptible(&obj->mm.lock); 4417 if (err) 4418 goto out; 4419 4420 if (i915_gem_object_has_pages(obj) && 4421 i915_gem_object_is_tiled(obj) && 4422 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) { 4423 if (obj->mm.madv == I915_MADV_WILLNEED) { 4424 GEM_BUG_ON(!obj->mm.quirked); 4425 __i915_gem_object_unpin_pages(obj); 4426 obj->mm.quirked = false; 4427 } 4428 if (args->madv == I915_MADV_WILLNEED) { 4429 GEM_BUG_ON(obj->mm.quirked); 4430 __i915_gem_object_pin_pages(obj); 4431 obj->mm.quirked = true; 4432 } 4433 } 4434 4435 if (obj->mm.madv != __I915_MADV_PURGED) 4436 obj->mm.madv = args->madv; 4437 4438 /* if the object is no longer attached, discard its backing storage */ 4439 if (obj->mm.madv == I915_MADV_DONTNEED && 4440 !i915_gem_object_has_pages(obj)) 4441 i915_gem_object_truncate(obj); 4442 4443 args->retained = obj->mm.madv != __I915_MADV_PURGED; 4444 mutex_unlock(&obj->mm.lock); 4445 4446 out: 4447 i915_gem_object_put(obj); 4448 return err; 4449 } 4450 4451 static void 4452 frontbuffer_retire(struct i915_gem_active *active, 4453 struct drm_i915_gem_request *request) 4454 { 4455 struct drm_i915_gem_object *obj = 4456 container_of(active, typeof(*obj), frontbuffer_write); 4457 4458 intel_fb_obj_flush(obj, ORIGIN_CS); 4459 } 4460 4461 void i915_gem_object_init(struct drm_i915_gem_object *obj, 4462 const struct drm_i915_gem_object_ops *ops) 4463 { 4464 mutex_init(&obj->mm.lock); 4465 4466 INIT_LIST_HEAD(&obj->vma_list); 4467 INIT_LIST_HEAD(&obj->lut_list); 4468 INIT_LIST_HEAD(&obj->batch_pool_link); 4469 4470 obj->ops = ops; 4471 4472 reservation_object_init(&obj->__builtin_resv); 4473 obj->resv = &obj->__builtin_resv; 4474 4475 obj->frontbuffer_ggtt_origin = ORIGIN_GTT; 4476 init_request_active(&obj->frontbuffer_write, frontbuffer_retire); 4477 4478 obj->mm.madv = I915_MADV_WILLNEED; 4479 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN); 4480 mutex_init(&obj->mm.get_page.lock); 4481 4482 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size); 4483 } 4484 4485 static const struct drm_i915_gem_object_ops i915_gem_object_ops = { 4486 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE | 4487 I915_GEM_OBJECT_IS_SHRINKABLE, 4488 4489 .get_pages = i915_gem_object_get_pages_gtt, 4490 .put_pages = i915_gem_object_put_pages_gtt, 4491 4492 .pwrite = i915_gem_object_pwrite_gtt, 4493 }; 4494 4495 static int i915_gem_object_create_shmem(struct drm_device *dev, 4496 struct drm_gem_object *obj, 4497 size_t size) 4498 { 4499 struct drm_i915_private *i915 = to_i915(dev); 4500 unsigned long flags = VM_NORESERVE; 4501 struct file *filp; 4502 4503 drm_gem_private_object_init(dev, obj, size); 4504 4505 if (i915->mm.gemfs) 4506 filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size, 4507 flags); 4508 else 4509 filp = shmem_file_setup("i915", size, flags); 4510 4511 if (IS_ERR(filp)) 4512 return PTR_ERR(filp); 4513 4514 obj->filp = filp; 4515 4516 return 0; 4517 } 4518 4519 struct drm_i915_gem_object * 4520 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size) 4521 { 4522 struct drm_i915_gem_object *obj; 4523 struct address_space *mapping; 4524 unsigned int cache_level; 4525 gfp_t mask; 4526 int ret; 4527 4528 /* There is a prevalence of the assumption that we fit the object's 4529 * page count inside a 32bit _signed_ variable. Let's document this and 4530 * catch if we ever need to fix it. In the meantime, if you do spot 4531 * such a local variable, please consider fixing! 4532 */ 4533 if (size >> PAGE_SHIFT > INT_MAX) 4534 return ERR_PTR(-E2BIG); 4535 4536 if (overflows_type(size, obj->base.size)) 4537 return ERR_PTR(-E2BIG); 4538 4539 obj = i915_gem_object_alloc(dev_priv); 4540 if (obj == NULL) 4541 return ERR_PTR(-ENOMEM); 4542 4543 ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size); 4544 if (ret) 4545 goto fail; 4546 4547 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; 4548 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) { 4549 /* 965gm cannot relocate objects above 4GiB. */ 4550 mask &= ~__GFP_HIGHMEM; 4551 mask |= __GFP_DMA32; 4552 } 4553 4554 mapping = obj->base.filp->f_mapping; 4555 mapping_set_gfp_mask(mapping, mask); 4556 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM)); 4557 4558 i915_gem_object_init(obj, &i915_gem_object_ops); 4559 4560 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 4561 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 4562 4563 if (HAS_LLC(dev_priv)) 4564 /* On some devices, we can have the GPU use the LLC (the CPU 4565 * cache) for about a 10% performance improvement 4566 * compared to uncached. Graphics requests other than 4567 * display scanout are coherent with the CPU in 4568 * accessing this cache. This means in this mode we 4569 * don't need to clflush on the CPU side, and on the 4570 * GPU side we only need to flush internal caches to 4571 * get data visible to the CPU. 4572 * 4573 * However, we maintain the display planes as UC, and so 4574 * need to rebind when first used as such. 4575 */ 4576 cache_level = I915_CACHE_LLC; 4577 else 4578 cache_level = I915_CACHE_NONE; 4579 4580 i915_gem_object_set_cache_coherency(obj, cache_level); 4581 4582 trace_i915_gem_object_create(obj); 4583 4584 return obj; 4585 4586 fail: 4587 i915_gem_object_free(obj); 4588 return ERR_PTR(ret); 4589 } 4590 4591 static bool discard_backing_storage(struct drm_i915_gem_object *obj) 4592 { 4593 /* If we are the last user of the backing storage (be it shmemfs 4594 * pages or stolen etc), we know that the pages are going to be 4595 * immediately released. In this case, we can then skip copying 4596 * back the contents from the GPU. 4597 */ 4598 4599 if (obj->mm.madv != I915_MADV_WILLNEED) 4600 return false; 4601 4602 if (obj->base.filp == NULL) 4603 return true; 4604 4605 /* At first glance, this looks racy, but then again so would be 4606 * userspace racing mmap against close. However, the first external 4607 * reference to the filp can only be obtained through the 4608 * i915_gem_mmap_ioctl() which safeguards us against the user 4609 * acquiring such a reference whilst we are in the middle of 4610 * freeing the object. 4611 */ 4612 return atomic_long_read(&obj->base.filp->f_count) == 1; 4613 } 4614 4615 static void __i915_gem_free_objects(struct drm_i915_private *i915, 4616 struct llist_node *freed) 4617 { 4618 struct drm_i915_gem_object *obj, *on; 4619 4620 intel_runtime_pm_get(i915); 4621 llist_for_each_entry_safe(obj, on, freed, freed) { 4622 struct i915_vma *vma, *vn; 4623 4624 trace_i915_gem_object_destroy(obj); 4625 4626 mutex_lock(&i915->drm.struct_mutex); 4627 4628 GEM_BUG_ON(i915_gem_object_is_active(obj)); 4629 list_for_each_entry_safe(vma, vn, 4630 &obj->vma_list, obj_link) { 4631 GEM_BUG_ON(i915_vma_is_active(vma)); 4632 vma->flags &= ~I915_VMA_PIN_MASK; 4633 i915_vma_close(vma); 4634 } 4635 GEM_BUG_ON(!list_empty(&obj->vma_list)); 4636 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree)); 4637 4638 /* This serializes freeing with the shrinker. Since the free 4639 * is delayed, first by RCU then by the workqueue, we want the 4640 * shrinker to be able to free pages of unreferenced objects, 4641 * or else we may oom whilst there are plenty of deferred 4642 * freed objects. 4643 */ 4644 if (i915_gem_object_has_pages(obj)) { 4645 spin_lock(&i915->mm.obj_lock); 4646 list_del_init(&obj->mm.link); 4647 spin_unlock(&i915->mm.obj_lock); 4648 } 4649 4650 mutex_unlock(&i915->drm.struct_mutex); 4651 4652 GEM_BUG_ON(obj->bind_count); 4653 GEM_BUG_ON(obj->userfault_count); 4654 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits)); 4655 GEM_BUG_ON(!list_empty(&obj->lut_list)); 4656 4657 if (obj->ops->release) 4658 obj->ops->release(obj); 4659 4660 if (WARN_ON(i915_gem_object_has_pinned_pages(obj))) 4661 atomic_set(&obj->mm.pages_pin_count, 0); 4662 __i915_gem_object_put_pages(obj, I915_MM_NORMAL); 4663 GEM_BUG_ON(i915_gem_object_has_pages(obj)); 4664 4665 if (obj->base.import_attach) 4666 drm_prime_gem_destroy(&obj->base, NULL); 4667 4668 reservation_object_fini(&obj->__builtin_resv); 4669 drm_gem_object_release(&obj->base); 4670 i915_gem_info_remove_obj(i915, obj->base.size); 4671 4672 kfree(obj->bit_17); 4673 i915_gem_object_free(obj); 4674 4675 if (on) 4676 cond_resched(); 4677 } 4678 intel_runtime_pm_put(i915); 4679 } 4680 4681 static void i915_gem_flush_free_objects(struct drm_i915_private *i915) 4682 { 4683 struct llist_node *freed; 4684 4685 /* Free the oldest, most stale object to keep the free_list short */ 4686 freed = NULL; 4687 if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */ 4688 /* Only one consumer of llist_del_first() allowed */ 4689 spin_lock(&i915->mm.free_lock); 4690 freed = llist_del_first(&i915->mm.free_list); 4691 spin_unlock(&i915->mm.free_lock); 4692 } 4693 if (unlikely(freed)) { 4694 freed->next = NULL; 4695 __i915_gem_free_objects(i915, freed); 4696 } 4697 } 4698 4699 static void __i915_gem_free_work(struct work_struct *work) 4700 { 4701 struct drm_i915_private *i915 = 4702 container_of(work, struct drm_i915_private, mm.free_work); 4703 struct llist_node *freed; 4704 4705 /* All file-owned VMA should have been released by this point through 4706 * i915_gem_close_object(), or earlier by i915_gem_context_close(). 4707 * However, the object may also be bound into the global GTT (e.g. 4708 * older GPUs without per-process support, or for direct access through 4709 * the GTT either for the user or for scanout). Those VMA still need to 4710 * unbound now. 4711 */ 4712 4713 spin_lock(&i915->mm.free_lock); 4714 while ((freed = llist_del_all(&i915->mm.free_list))) { 4715 spin_unlock(&i915->mm.free_lock); 4716 4717 __i915_gem_free_objects(i915, freed); 4718 if (need_resched()) 4719 return; 4720 4721 spin_lock(&i915->mm.free_lock); 4722 } 4723 spin_unlock(&i915->mm.free_lock); 4724 } 4725 4726 static void __i915_gem_free_object_rcu(struct rcu_head *head) 4727 { 4728 struct drm_i915_gem_object *obj = 4729 container_of(head, typeof(*obj), rcu); 4730 struct drm_i915_private *i915 = to_i915(obj->base.dev); 4731 4732 /* We can't simply use call_rcu() from i915_gem_free_object() 4733 * as we need to block whilst unbinding, and the call_rcu 4734 * task may be called from softirq context. So we take a 4735 * detour through a worker. 4736 */ 4737 if (llist_add(&obj->freed, &i915->mm.free_list)) 4738 schedule_work(&i915->mm.free_work); 4739 } 4740 4741 void i915_gem_free_object(struct drm_gem_object *gem_obj) 4742 { 4743 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); 4744 4745 if (obj->mm.quirked) 4746 __i915_gem_object_unpin_pages(obj); 4747 4748 if (discard_backing_storage(obj)) 4749 obj->mm.madv = I915_MADV_DONTNEED; 4750 4751 /* Before we free the object, make sure any pure RCU-only 4752 * read-side critical sections are complete, e.g. 4753 * i915_gem_busy_ioctl(). For the corresponding synchronized 4754 * lookup see i915_gem_object_lookup_rcu(). 4755 */ 4756 call_rcu(&obj->rcu, __i915_gem_free_object_rcu); 4757 } 4758 4759 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj) 4760 { 4761 lockdep_assert_held(&obj->base.dev->struct_mutex); 4762 4763 if (!i915_gem_object_has_active_reference(obj) && 4764 i915_gem_object_is_active(obj)) 4765 i915_gem_object_set_active_reference(obj); 4766 else 4767 i915_gem_object_put(obj); 4768 } 4769 4770 static void assert_kernel_context_is_current(struct drm_i915_private *i915) 4771 { 4772 struct i915_gem_context *kernel_context = i915->kernel_context; 4773 struct intel_engine_cs *engine; 4774 enum intel_engine_id id; 4775 4776 for_each_engine(engine, i915, id) { 4777 GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline->last_request)); 4778 GEM_BUG_ON(engine->last_retired_context != kernel_context); 4779 } 4780 } 4781 4782 void i915_gem_sanitize(struct drm_i915_private *i915) 4783 { 4784 if (i915_terminally_wedged(&i915->gpu_error)) { 4785 mutex_lock(&i915->drm.struct_mutex); 4786 i915_gem_unset_wedged(i915); 4787 mutex_unlock(&i915->drm.struct_mutex); 4788 } 4789 4790 /* 4791 * If we inherit context state from the BIOS or earlier occupants 4792 * of the GPU, the GPU may be in an inconsistent state when we 4793 * try to take over. The only way to remove the earlier state 4794 * is by resetting. However, resetting on earlier gen is tricky as 4795 * it may impact the display and we are uncertain about the stability 4796 * of the reset, so this could be applied to even earlier gen. 4797 */ 4798 if (INTEL_GEN(i915) >= 5) { 4799 int reset = intel_gpu_reset(i915, ALL_ENGINES); 4800 WARN_ON(reset && reset != -ENODEV); 4801 } 4802 } 4803 4804 int i915_gem_suspend(struct drm_i915_private *dev_priv) 4805 { 4806 struct drm_device *dev = &dev_priv->drm; 4807 int ret; 4808 4809 intel_runtime_pm_get(dev_priv); 4810 intel_suspend_gt_powersave(dev_priv); 4811 4812 mutex_lock(&dev->struct_mutex); 4813 4814 /* We have to flush all the executing contexts to main memory so 4815 * that they can saved in the hibernation image. To ensure the last 4816 * context image is coherent, we have to switch away from it. That 4817 * leaves the dev_priv->kernel_context still active when 4818 * we actually suspend, and its image in memory may not match the GPU 4819 * state. Fortunately, the kernel_context is disposable and we do 4820 * not rely on its state. 4821 */ 4822 if (!i915_terminally_wedged(&dev_priv->gpu_error)) { 4823 ret = i915_gem_switch_to_kernel_context(dev_priv); 4824 if (ret) 4825 goto err_unlock; 4826 4827 ret = i915_gem_wait_for_idle(dev_priv, 4828 I915_WAIT_INTERRUPTIBLE | 4829 I915_WAIT_LOCKED); 4830 if (ret && ret != -EIO) 4831 goto err_unlock; 4832 4833 assert_kernel_context_is_current(dev_priv); 4834 } 4835 i915_gem_contexts_lost(dev_priv); 4836 mutex_unlock(&dev->struct_mutex); 4837 4838 intel_guc_suspend(dev_priv); 4839 4840 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work); 4841 cancel_delayed_work_sync(&dev_priv->gt.retire_work); 4842 4843 /* As the idle_work is rearming if it detects a race, play safe and 4844 * repeat the flush until it is definitely idle. 4845 */ 4846 drain_delayed_work(&dev_priv->gt.idle_work); 4847 4848 /* Assert that we sucessfully flushed all the work and 4849 * reset the GPU back to its idle, low power state. 4850 */ 4851 WARN_ON(dev_priv->gt.awake); 4852 if (WARN_ON(!intel_engines_are_idle(dev_priv))) 4853 i915_gem_set_wedged(dev_priv); /* no hope, discard everything */ 4854 4855 /* 4856 * Neither the BIOS, ourselves or any other kernel 4857 * expects the system to be in execlists mode on startup, 4858 * so we need to reset the GPU back to legacy mode. And the only 4859 * known way to disable logical contexts is through a GPU reset. 4860 * 4861 * So in order to leave the system in a known default configuration, 4862 * always reset the GPU upon unload and suspend. Afterwards we then 4863 * clean up the GEM state tracking, flushing off the requests and 4864 * leaving the system in a known idle state. 4865 * 4866 * Note that is of the upmost importance that the GPU is idle and 4867 * all stray writes are flushed *before* we dismantle the backing 4868 * storage for the pinned objects. 4869 * 4870 * However, since we are uncertain that resetting the GPU on older 4871 * machines is a good idea, we don't - just in case it leaves the 4872 * machine in an unusable condition. 4873 */ 4874 i915_gem_sanitize(dev_priv); 4875 4876 intel_runtime_pm_put(dev_priv); 4877 return 0; 4878 4879 err_unlock: 4880 mutex_unlock(&dev->struct_mutex); 4881 intel_runtime_pm_put(dev_priv); 4882 return ret; 4883 } 4884 4885 void i915_gem_resume(struct drm_i915_private *i915) 4886 { 4887 WARN_ON(i915->gt.awake); 4888 4889 mutex_lock(&i915->drm.struct_mutex); 4890 intel_uncore_forcewake_get(i915, FORCEWAKE_ALL); 4891 4892 i915_gem_restore_gtt_mappings(i915); 4893 i915_gem_restore_fences(i915); 4894 4895 /* 4896 * As we didn't flush the kernel context before suspend, we cannot 4897 * guarantee that the context image is complete. So let's just reset 4898 * it and start again. 4899 */ 4900 i915->gt.resume(i915); 4901 4902 if (i915_gem_init_hw(i915)) 4903 goto err_wedged; 4904 4905 intel_guc_resume(i915); 4906 4907 /* Always reload a context for powersaving. */ 4908 if (i915_gem_switch_to_kernel_context(i915)) 4909 goto err_wedged; 4910 4911 out_unlock: 4912 intel_uncore_forcewake_put(i915, FORCEWAKE_ALL); 4913 mutex_unlock(&i915->drm.struct_mutex); 4914 return; 4915 4916 err_wedged: 4917 if (!i915_terminally_wedged(&i915->gpu_error)) { 4918 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n"); 4919 i915_gem_set_wedged(i915); 4920 } 4921 goto out_unlock; 4922 } 4923 4924 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv) 4925 { 4926 if (INTEL_GEN(dev_priv) < 5 || 4927 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) 4928 return; 4929 4930 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | 4931 DISP_TILE_SURFACE_SWIZZLING); 4932 4933 if (IS_GEN5(dev_priv)) 4934 return; 4935 4936 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL); 4937 if (IS_GEN6(dev_priv)) 4938 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); 4939 else if (IS_GEN7(dev_priv)) 4940 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); 4941 else if (IS_GEN8(dev_priv)) 4942 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW)); 4943 else 4944 BUG(); 4945 } 4946 4947 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base) 4948 { 4949 I915_WRITE(RING_CTL(base), 0); 4950 I915_WRITE(RING_HEAD(base), 0); 4951 I915_WRITE(RING_TAIL(base), 0); 4952 I915_WRITE(RING_START(base), 0); 4953 } 4954 4955 static void init_unused_rings(struct drm_i915_private *dev_priv) 4956 { 4957 if (IS_I830(dev_priv)) { 4958 init_unused_ring(dev_priv, PRB1_BASE); 4959 init_unused_ring(dev_priv, SRB0_BASE); 4960 init_unused_ring(dev_priv, SRB1_BASE); 4961 init_unused_ring(dev_priv, SRB2_BASE); 4962 init_unused_ring(dev_priv, SRB3_BASE); 4963 } else if (IS_GEN2(dev_priv)) { 4964 init_unused_ring(dev_priv, SRB0_BASE); 4965 init_unused_ring(dev_priv, SRB1_BASE); 4966 } else if (IS_GEN3(dev_priv)) { 4967 init_unused_ring(dev_priv, PRB1_BASE); 4968 init_unused_ring(dev_priv, PRB2_BASE); 4969 } 4970 } 4971 4972 static int __i915_gem_restart_engines(void *data) 4973 { 4974 struct drm_i915_private *i915 = data; 4975 struct intel_engine_cs *engine; 4976 enum intel_engine_id id; 4977 int err; 4978 4979 for_each_engine(engine, i915, id) { 4980 err = engine->init_hw(engine); 4981 if (err) 4982 return err; 4983 } 4984 4985 return 0; 4986 } 4987 4988 int i915_gem_init_hw(struct drm_i915_private *dev_priv) 4989 { 4990 int ret; 4991 4992 dev_priv->gt.last_init_time = ktime_get(); 4993 4994 /* Double layer security blanket, see i915_gem_init() */ 4995 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); 4996 4997 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9) 4998 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf)); 4999 5000 if (IS_HASWELL(dev_priv)) 5001 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ? 5002 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); 5003 5004 if (HAS_PCH_NOP(dev_priv)) { 5005 if (IS_IVYBRIDGE(dev_priv)) { 5006 u32 temp = I915_READ(GEN7_MSG_CTL); 5007 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK); 5008 I915_WRITE(GEN7_MSG_CTL, temp); 5009 } else if (INTEL_GEN(dev_priv) >= 7) { 5010 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT); 5011 temp &= ~RESET_PCH_HANDSHAKE_ENABLE; 5012 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp); 5013 } 5014 } 5015 5016 i915_gem_init_swizzling(dev_priv); 5017 5018 /* 5019 * At least 830 can leave some of the unused rings 5020 * "active" (ie. head != tail) after resume which 5021 * will prevent c3 entry. Makes sure all unused rings 5022 * are totally idle. 5023 */ 5024 init_unused_rings(dev_priv); 5025 5026 BUG_ON(!dev_priv->kernel_context); 5027 if (i915_terminally_wedged(&dev_priv->gpu_error)) { 5028 ret = -EIO; 5029 goto out; 5030 } 5031 5032 ret = i915_ppgtt_init_hw(dev_priv); 5033 if (ret) { 5034 DRM_ERROR("PPGTT enable HW failed %d\n", ret); 5035 goto out; 5036 } 5037 5038 /* We can't enable contexts until all firmware is loaded */ 5039 ret = intel_uc_init_hw(dev_priv); 5040 if (ret) 5041 goto out; 5042 5043 intel_mocs_init_l3cc_table(dev_priv); 5044 5045 /* Only when the HW is re-initialised, can we replay the requests */ 5046 ret = __i915_gem_restart_engines(dev_priv); 5047 out: 5048 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 5049 return ret; 5050 } 5051 5052 static int __intel_engines_record_defaults(struct drm_i915_private *i915) 5053 { 5054 struct i915_gem_context *ctx; 5055 struct intel_engine_cs *engine; 5056 enum intel_engine_id id; 5057 int err; 5058 5059 /* 5060 * As we reset the gpu during very early sanitisation, the current 5061 * register state on the GPU should reflect its defaults values. 5062 * We load a context onto the hw (with restore-inhibit), then switch 5063 * over to a second context to save that default register state. We 5064 * can then prime every new context with that state so they all start 5065 * from the same default HW values. 5066 */ 5067 5068 ctx = i915_gem_context_create_kernel(i915, 0); 5069 if (IS_ERR(ctx)) 5070 return PTR_ERR(ctx); 5071 5072 for_each_engine(engine, i915, id) { 5073 struct drm_i915_gem_request *rq; 5074 5075 rq = i915_gem_request_alloc(engine, ctx); 5076 if (IS_ERR(rq)) { 5077 err = PTR_ERR(rq); 5078 goto out_ctx; 5079 } 5080 5081 err = 0; 5082 if (engine->init_context) 5083 err = engine->init_context(rq); 5084 5085 __i915_add_request(rq, true); 5086 if (err) 5087 goto err_active; 5088 } 5089 5090 err = i915_gem_switch_to_kernel_context(i915); 5091 if (err) 5092 goto err_active; 5093 5094 err = i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED); 5095 if (err) 5096 goto err_active; 5097 5098 assert_kernel_context_is_current(i915); 5099 5100 for_each_engine(engine, i915, id) { 5101 struct i915_vma *state; 5102 5103 state = ctx->engine[id].state; 5104 if (!state) 5105 continue; 5106 5107 /* 5108 * As we will hold a reference to the logical state, it will 5109 * not be torn down with the context, and importantly the 5110 * object will hold onto its vma (making it possible for a 5111 * stray GTT write to corrupt our defaults). Unmap the vma 5112 * from the GTT to prevent such accidents and reclaim the 5113 * space. 5114 */ 5115 err = i915_vma_unbind(state); 5116 if (err) 5117 goto err_active; 5118 5119 err = i915_gem_object_set_to_cpu_domain(state->obj, false); 5120 if (err) 5121 goto err_active; 5122 5123 engine->default_state = i915_gem_object_get(state->obj); 5124 } 5125 5126 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) { 5127 unsigned int found = intel_engines_has_context_isolation(i915); 5128 5129 /* 5130 * Make sure that classes with multiple engine instances all 5131 * share the same basic configuration. 5132 */ 5133 for_each_engine(engine, i915, id) { 5134 unsigned int bit = BIT(engine->uabi_class); 5135 unsigned int expected = engine->default_state ? bit : 0; 5136 5137 if ((found & bit) != expected) { 5138 DRM_ERROR("mismatching default context state for class %d on engine %s\n", 5139 engine->uabi_class, engine->name); 5140 } 5141 } 5142 } 5143 5144 out_ctx: 5145 i915_gem_context_set_closed(ctx); 5146 i915_gem_context_put(ctx); 5147 return err; 5148 5149 err_active: 5150 /* 5151 * If we have to abandon now, we expect the engines to be idle 5152 * and ready to be torn-down. First try to flush any remaining 5153 * request, ensure we are pointing at the kernel context and 5154 * then remove it. 5155 */ 5156 if (WARN_ON(i915_gem_switch_to_kernel_context(i915))) 5157 goto out_ctx; 5158 5159 if (WARN_ON(i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED))) 5160 goto out_ctx; 5161 5162 i915_gem_contexts_lost(i915); 5163 goto out_ctx; 5164 } 5165 5166 int i915_gem_init(struct drm_i915_private *dev_priv) 5167 { 5168 int ret; 5169 5170 /* 5171 * We need to fallback to 4K pages since gvt gtt handling doesn't 5172 * support huge page entries - we will need to check either hypervisor 5173 * mm can support huge guest page or just do emulation in gvt. 5174 */ 5175 if (intel_vgpu_active(dev_priv)) 5176 mkwrite_device_info(dev_priv)->page_sizes = 5177 I915_GTT_PAGE_SIZE_4K; 5178 5179 dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1); 5180 5181 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) { 5182 dev_priv->gt.resume = intel_lr_context_resume; 5183 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup; 5184 } else { 5185 dev_priv->gt.resume = intel_legacy_submission_resume; 5186 dev_priv->gt.cleanup_engine = intel_engine_cleanup; 5187 } 5188 5189 ret = i915_gem_init_userptr(dev_priv); 5190 if (ret) 5191 return ret; 5192 5193 ret = intel_uc_init_wq(dev_priv); 5194 if (ret) 5195 return ret; 5196 5197 /* This is just a security blanket to placate dragons. 5198 * On some systems, we very sporadically observe that the first TLBs 5199 * used by the CS may be stale, despite us poking the TLB reset. If 5200 * we hold the forcewake during initialisation these problems 5201 * just magically go away. 5202 */ 5203 mutex_lock(&dev_priv->drm.struct_mutex); 5204 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); 5205 5206 ret = i915_gem_init_ggtt(dev_priv); 5207 if (ret) { 5208 GEM_BUG_ON(ret == -EIO); 5209 goto err_unlock; 5210 } 5211 5212 ret = i915_gem_contexts_init(dev_priv); 5213 if (ret) { 5214 GEM_BUG_ON(ret == -EIO); 5215 goto err_ggtt; 5216 } 5217 5218 ret = intel_engines_init(dev_priv); 5219 if (ret) { 5220 GEM_BUG_ON(ret == -EIO); 5221 goto err_context; 5222 } 5223 5224 intel_init_gt_powersave(dev_priv); 5225 5226 ret = intel_uc_init(dev_priv); 5227 if (ret) 5228 goto err_pm; 5229 5230 ret = i915_gem_init_hw(dev_priv); 5231 if (ret) 5232 goto err_uc_init; 5233 5234 /* 5235 * Despite its name intel_init_clock_gating applies both display 5236 * clock gating workarounds; GT mmio workarounds and the occasional 5237 * GT power context workaround. Worse, sometimes it includes a context 5238 * register workaround which we need to apply before we record the 5239 * default HW state for all contexts. 5240 * 5241 * FIXME: break up the workarounds and apply them at the right time! 5242 */ 5243 intel_init_clock_gating(dev_priv); 5244 5245 ret = __intel_engines_record_defaults(dev_priv); 5246 if (ret) 5247 goto err_init_hw; 5248 5249 if (i915_inject_load_failure()) { 5250 ret = -ENODEV; 5251 goto err_init_hw; 5252 } 5253 5254 if (i915_inject_load_failure()) { 5255 ret = -EIO; 5256 goto err_init_hw; 5257 } 5258 5259 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 5260 mutex_unlock(&dev_priv->drm.struct_mutex); 5261 5262 return 0; 5263 5264 /* 5265 * Unwinding is complicated by that we want to handle -EIO to mean 5266 * disable GPU submission but keep KMS alive. We want to mark the 5267 * HW as irrevisibly wedged, but keep enough state around that the 5268 * driver doesn't explode during runtime. 5269 */ 5270 err_init_hw: 5271 i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED); 5272 i915_gem_contexts_lost(dev_priv); 5273 intel_uc_fini_hw(dev_priv); 5274 err_uc_init: 5275 intel_uc_fini(dev_priv); 5276 err_pm: 5277 if (ret != -EIO) { 5278 intel_cleanup_gt_powersave(dev_priv); 5279 i915_gem_cleanup_engines(dev_priv); 5280 } 5281 err_context: 5282 if (ret != -EIO) 5283 i915_gem_contexts_fini(dev_priv); 5284 err_ggtt: 5285 err_unlock: 5286 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 5287 mutex_unlock(&dev_priv->drm.struct_mutex); 5288 5289 intel_uc_fini_wq(dev_priv); 5290 5291 if (ret != -EIO) 5292 i915_gem_cleanup_userptr(dev_priv); 5293 5294 if (ret == -EIO) { 5295 /* 5296 * Allow engine initialisation to fail by marking the GPU as 5297 * wedged. But we only want to do this where the GPU is angry, 5298 * for all other failure, such as an allocation failure, bail. 5299 */ 5300 if (!i915_terminally_wedged(&dev_priv->gpu_error)) { 5301 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n"); 5302 i915_gem_set_wedged(dev_priv); 5303 } 5304 ret = 0; 5305 } 5306 5307 i915_gem_drain_freed_objects(dev_priv); 5308 return ret; 5309 } 5310 5311 void i915_gem_init_mmio(struct drm_i915_private *i915) 5312 { 5313 i915_gem_sanitize(i915); 5314 } 5315 5316 void 5317 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv) 5318 { 5319 struct intel_engine_cs *engine; 5320 enum intel_engine_id id; 5321 5322 for_each_engine(engine, dev_priv, id) 5323 dev_priv->gt.cleanup_engine(engine); 5324 } 5325 5326 void 5327 i915_gem_load_init_fences(struct drm_i915_private *dev_priv) 5328 { 5329 int i; 5330 5331 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) && 5332 !IS_CHERRYVIEW(dev_priv)) 5333 dev_priv->num_fence_regs = 32; 5334 else if (INTEL_INFO(dev_priv)->gen >= 4 || 5335 IS_I945G(dev_priv) || IS_I945GM(dev_priv) || 5336 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) 5337 dev_priv->num_fence_regs = 16; 5338 else 5339 dev_priv->num_fence_regs = 8; 5340 5341 if (intel_vgpu_active(dev_priv)) 5342 dev_priv->num_fence_regs = 5343 I915_READ(vgtif_reg(avail_rs.fence_num)); 5344 5345 /* Initialize fence registers to zero */ 5346 for (i = 0; i < dev_priv->num_fence_regs; i++) { 5347 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i]; 5348 5349 fence->i915 = dev_priv; 5350 fence->id = i; 5351 list_add_tail(&fence->link, &dev_priv->mm.fence_list); 5352 } 5353 i915_gem_restore_fences(dev_priv); 5354 5355 i915_gem_detect_bit_6_swizzle(dev_priv); 5356 } 5357 5358 static void i915_gem_init__mm(struct drm_i915_private *i915) 5359 { 5360 spin_lock_init(&i915->mm.object_stat_lock); 5361 spin_lock_init(&i915->mm.obj_lock); 5362 spin_lock_init(&i915->mm.free_lock); 5363 5364 init_llist_head(&i915->mm.free_list); 5365 5366 INIT_LIST_HEAD(&i915->mm.unbound_list); 5367 INIT_LIST_HEAD(&i915->mm.bound_list); 5368 INIT_LIST_HEAD(&i915->mm.fence_list); 5369 INIT_LIST_HEAD(&i915->mm.userfault_list); 5370 5371 INIT_WORK(&i915->mm.free_work, __i915_gem_free_work); 5372 } 5373 5374 int 5375 i915_gem_load_init(struct drm_i915_private *dev_priv) 5376 { 5377 int err = -ENOMEM; 5378 5379 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN); 5380 if (!dev_priv->objects) 5381 goto err_out; 5382 5383 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN); 5384 if (!dev_priv->vmas) 5385 goto err_objects; 5386 5387 dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0); 5388 if (!dev_priv->luts) 5389 goto err_vmas; 5390 5391 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request, 5392 SLAB_HWCACHE_ALIGN | 5393 SLAB_RECLAIM_ACCOUNT | 5394 SLAB_TYPESAFE_BY_RCU); 5395 if (!dev_priv->requests) 5396 goto err_luts; 5397 5398 dev_priv->dependencies = KMEM_CACHE(i915_dependency, 5399 SLAB_HWCACHE_ALIGN | 5400 SLAB_RECLAIM_ACCOUNT); 5401 if (!dev_priv->dependencies) 5402 goto err_requests; 5403 5404 dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN); 5405 if (!dev_priv->priorities) 5406 goto err_dependencies; 5407 5408 mutex_lock(&dev_priv->drm.struct_mutex); 5409 INIT_LIST_HEAD(&dev_priv->gt.timelines); 5410 err = i915_gem_timeline_init__global(dev_priv); 5411 mutex_unlock(&dev_priv->drm.struct_mutex); 5412 if (err) 5413 goto err_priorities; 5414 5415 i915_gem_init__mm(dev_priv); 5416 5417 INIT_DELAYED_WORK(&dev_priv->gt.retire_work, 5418 i915_gem_retire_work_handler); 5419 INIT_DELAYED_WORK(&dev_priv->gt.idle_work, 5420 i915_gem_idle_work_handler); 5421 init_waitqueue_head(&dev_priv->gpu_error.wait_queue); 5422 init_waitqueue_head(&dev_priv->gpu_error.reset_queue); 5423 5424 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0); 5425 5426 spin_lock_init(&dev_priv->fb_tracking.lock); 5427 5428 err = i915_gemfs_init(dev_priv); 5429 if (err) 5430 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err); 5431 5432 return 0; 5433 5434 err_priorities: 5435 kmem_cache_destroy(dev_priv->priorities); 5436 err_dependencies: 5437 kmem_cache_destroy(dev_priv->dependencies); 5438 err_requests: 5439 kmem_cache_destroy(dev_priv->requests); 5440 err_luts: 5441 kmem_cache_destroy(dev_priv->luts); 5442 err_vmas: 5443 kmem_cache_destroy(dev_priv->vmas); 5444 err_objects: 5445 kmem_cache_destroy(dev_priv->objects); 5446 err_out: 5447 return err; 5448 } 5449 5450 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv) 5451 { 5452 i915_gem_drain_freed_objects(dev_priv); 5453 WARN_ON(!llist_empty(&dev_priv->mm.free_list)); 5454 WARN_ON(dev_priv->mm.object_count); 5455 5456 mutex_lock(&dev_priv->drm.struct_mutex); 5457 i915_gem_timeline_fini(&dev_priv->gt.global_timeline); 5458 WARN_ON(!list_empty(&dev_priv->gt.timelines)); 5459 mutex_unlock(&dev_priv->drm.struct_mutex); 5460 5461 kmem_cache_destroy(dev_priv->priorities); 5462 kmem_cache_destroy(dev_priv->dependencies); 5463 kmem_cache_destroy(dev_priv->requests); 5464 kmem_cache_destroy(dev_priv->luts); 5465 kmem_cache_destroy(dev_priv->vmas); 5466 kmem_cache_destroy(dev_priv->objects); 5467 5468 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */ 5469 rcu_barrier(); 5470 5471 i915_gemfs_fini(dev_priv); 5472 } 5473 5474 int i915_gem_freeze(struct drm_i915_private *dev_priv) 5475 { 5476 /* Discard all purgeable objects, let userspace recover those as 5477 * required after resuming. 5478 */ 5479 i915_gem_shrink_all(dev_priv); 5480 5481 return 0; 5482 } 5483 5484 int i915_gem_freeze_late(struct drm_i915_private *dev_priv) 5485 { 5486 struct drm_i915_gem_object *obj; 5487 struct list_head *phases[] = { 5488 &dev_priv->mm.unbound_list, 5489 &dev_priv->mm.bound_list, 5490 NULL 5491 }, **p; 5492 5493 /* Called just before we write the hibernation image. 5494 * 5495 * We need to update the domain tracking to reflect that the CPU 5496 * will be accessing all the pages to create and restore from the 5497 * hibernation, and so upon restoration those pages will be in the 5498 * CPU domain. 5499 * 5500 * To make sure the hibernation image contains the latest state, 5501 * we update that state just before writing out the image. 5502 * 5503 * To try and reduce the hibernation image, we manually shrink 5504 * the objects as well, see i915_gem_freeze() 5505 */ 5506 5507 i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND); 5508 i915_gem_drain_freed_objects(dev_priv); 5509 5510 spin_lock(&dev_priv->mm.obj_lock); 5511 for (p = phases; *p; p++) { 5512 list_for_each_entry(obj, *p, mm.link) 5513 __start_cpu_write(obj); 5514 } 5515 spin_unlock(&dev_priv->mm.obj_lock); 5516 5517 return 0; 5518 } 5519 5520 void i915_gem_release(struct drm_device *dev, struct drm_file *file) 5521 { 5522 struct drm_i915_file_private *file_priv = file->driver_priv; 5523 struct drm_i915_gem_request *request; 5524 5525 /* Clean up our request list when the client is going away, so that 5526 * later retire_requests won't dereference our soon-to-be-gone 5527 * file_priv. 5528 */ 5529 spin_lock(&file_priv->mm.lock); 5530 list_for_each_entry(request, &file_priv->mm.request_list, client_link) 5531 request->file_priv = NULL; 5532 spin_unlock(&file_priv->mm.lock); 5533 } 5534 5535 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file) 5536 { 5537 struct drm_i915_file_private *file_priv; 5538 int ret; 5539 5540 DRM_DEBUG("\n"); 5541 5542 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL); 5543 if (!file_priv) 5544 return -ENOMEM; 5545 5546 file->driver_priv = file_priv; 5547 file_priv->dev_priv = i915; 5548 file_priv->file = file; 5549 5550 spin_lock_init(&file_priv->mm.lock); 5551 INIT_LIST_HEAD(&file_priv->mm.request_list); 5552 5553 file_priv->bsd_engine = -1; 5554 5555 ret = i915_gem_context_open(i915, file); 5556 if (ret) 5557 kfree(file_priv); 5558 5559 return ret; 5560 } 5561 5562 /** 5563 * i915_gem_track_fb - update frontbuffer tracking 5564 * @old: current GEM buffer for the frontbuffer slots 5565 * @new: new GEM buffer for the frontbuffer slots 5566 * @frontbuffer_bits: bitmask of frontbuffer slots 5567 * 5568 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them 5569 * from @old and setting them in @new. Both @old and @new can be NULL. 5570 */ 5571 void i915_gem_track_fb(struct drm_i915_gem_object *old, 5572 struct drm_i915_gem_object *new, 5573 unsigned frontbuffer_bits) 5574 { 5575 /* Control of individual bits within the mask are guarded by 5576 * the owning plane->mutex, i.e. we can never see concurrent 5577 * manipulation of individual bits. But since the bitfield as a whole 5578 * is updated using RMW, we need to use atomics in order to update 5579 * the bits. 5580 */ 5581 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 5582 sizeof(atomic_t) * BITS_PER_BYTE); 5583 5584 if (old) { 5585 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits)); 5586 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits); 5587 } 5588 5589 if (new) { 5590 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits); 5591 atomic_or(frontbuffer_bits, &new->frontbuffer_bits); 5592 } 5593 } 5594 5595 /* Allocate a new GEM object and fill it with the supplied data */ 5596 struct drm_i915_gem_object * 5597 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv, 5598 const void *data, size_t size) 5599 { 5600 struct drm_i915_gem_object *obj; 5601 struct file *file; 5602 size_t offset; 5603 int err; 5604 5605 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE)); 5606 if (IS_ERR(obj)) 5607 return obj; 5608 5609 GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU); 5610 5611 file = obj->base.filp; 5612 offset = 0; 5613 do { 5614 unsigned int len = min_t(typeof(size), size, PAGE_SIZE); 5615 struct page *page; 5616 void *pgdata, *vaddr; 5617 5618 err = pagecache_write_begin(file, file->f_mapping, 5619 offset, len, 0, 5620 &page, &pgdata); 5621 if (err < 0) 5622 goto fail; 5623 5624 vaddr = kmap(page); 5625 memcpy(vaddr, data, len); 5626 kunmap(page); 5627 5628 err = pagecache_write_end(file, file->f_mapping, 5629 offset, len, len, 5630 page, pgdata); 5631 if (err < 0) 5632 goto fail; 5633 5634 size -= len; 5635 data += len; 5636 offset += len; 5637 } while (size); 5638 5639 return obj; 5640 5641 fail: 5642 i915_gem_object_put(obj); 5643 return ERR_PTR(err); 5644 } 5645 5646 struct scatterlist * 5647 i915_gem_object_get_sg(struct drm_i915_gem_object *obj, 5648 unsigned int n, 5649 unsigned int *offset) 5650 { 5651 struct i915_gem_object_page_iter *iter = &obj->mm.get_page; 5652 struct scatterlist *sg; 5653 unsigned int idx, count; 5654 5655 might_sleep(); 5656 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT); 5657 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 5658 5659 /* As we iterate forward through the sg, we record each entry in a 5660 * radixtree for quick repeated (backwards) lookups. If we have seen 5661 * this index previously, we will have an entry for it. 5662 * 5663 * Initial lookup is O(N), but this is amortized to O(1) for 5664 * sequential page access (where each new request is consecutive 5665 * to the previous one). Repeated lookups are O(lg(obj->base.size)), 5666 * i.e. O(1) with a large constant! 5667 */ 5668 if (n < READ_ONCE(iter->sg_idx)) 5669 goto lookup; 5670 5671 mutex_lock(&iter->lock); 5672 5673 /* We prefer to reuse the last sg so that repeated lookup of this 5674 * (or the subsequent) sg are fast - comparing against the last 5675 * sg is faster than going through the radixtree. 5676 */ 5677 5678 sg = iter->sg_pos; 5679 idx = iter->sg_idx; 5680 count = __sg_page_count(sg); 5681 5682 while (idx + count <= n) { 5683 unsigned long exception, i; 5684 int ret; 5685 5686 /* If we cannot allocate and insert this entry, or the 5687 * individual pages from this range, cancel updating the 5688 * sg_idx so that on this lookup we are forced to linearly 5689 * scan onwards, but on future lookups we will try the 5690 * insertion again (in which case we need to be careful of 5691 * the error return reporting that we have already inserted 5692 * this index). 5693 */ 5694 ret = radix_tree_insert(&iter->radix, idx, sg); 5695 if (ret && ret != -EEXIST) 5696 goto scan; 5697 5698 exception = 5699 RADIX_TREE_EXCEPTIONAL_ENTRY | 5700 idx << RADIX_TREE_EXCEPTIONAL_SHIFT; 5701 for (i = 1; i < count; i++) { 5702 ret = radix_tree_insert(&iter->radix, idx + i, 5703 (void *)exception); 5704 if (ret && ret != -EEXIST) 5705 goto scan; 5706 } 5707 5708 idx += count; 5709 sg = ____sg_next(sg); 5710 count = __sg_page_count(sg); 5711 } 5712 5713 scan: 5714 iter->sg_pos = sg; 5715 iter->sg_idx = idx; 5716 5717 mutex_unlock(&iter->lock); 5718 5719 if (unlikely(n < idx)) /* insertion completed by another thread */ 5720 goto lookup; 5721 5722 /* In case we failed to insert the entry into the radixtree, we need 5723 * to look beyond the current sg. 5724 */ 5725 while (idx + count <= n) { 5726 idx += count; 5727 sg = ____sg_next(sg); 5728 count = __sg_page_count(sg); 5729 } 5730 5731 *offset = n - idx; 5732 return sg; 5733 5734 lookup: 5735 rcu_read_lock(); 5736 5737 sg = radix_tree_lookup(&iter->radix, n); 5738 GEM_BUG_ON(!sg); 5739 5740 /* If this index is in the middle of multi-page sg entry, 5741 * the radixtree will contain an exceptional entry that points 5742 * to the start of that range. We will return the pointer to 5743 * the base page and the offset of this page within the 5744 * sg entry's range. 5745 */ 5746 *offset = 0; 5747 if (unlikely(radix_tree_exception(sg))) { 5748 unsigned long base = 5749 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT; 5750 5751 sg = radix_tree_lookup(&iter->radix, base); 5752 GEM_BUG_ON(!sg); 5753 5754 *offset = n - base; 5755 } 5756 5757 rcu_read_unlock(); 5758 5759 return sg; 5760 } 5761 5762 struct page * 5763 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n) 5764 { 5765 struct scatterlist *sg; 5766 unsigned int offset; 5767 5768 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj)); 5769 5770 sg = i915_gem_object_get_sg(obj, n, &offset); 5771 return nth_page(sg_page(sg), offset); 5772 } 5773 5774 /* Like i915_gem_object_get_page(), but mark the returned page dirty */ 5775 struct page * 5776 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, 5777 unsigned int n) 5778 { 5779 struct page *page; 5780 5781 page = i915_gem_object_get_page(obj, n); 5782 if (!obj->mm.dirty) 5783 set_page_dirty(page); 5784 5785 return page; 5786 } 5787 5788 dma_addr_t 5789 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, 5790 unsigned long n) 5791 { 5792 struct scatterlist *sg; 5793 unsigned int offset; 5794 5795 sg = i915_gem_object_get_sg(obj, n, &offset); 5796 return sg_dma_address(sg) + (offset << PAGE_SHIFT); 5797 } 5798 5799 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align) 5800 { 5801 struct sg_table *pages; 5802 int err; 5803 5804 if (align > obj->base.size) 5805 return -EINVAL; 5806 5807 if (obj->ops == &i915_gem_phys_ops) 5808 return 0; 5809 5810 if (obj->ops != &i915_gem_object_ops) 5811 return -EINVAL; 5812 5813 err = i915_gem_object_unbind(obj); 5814 if (err) 5815 return err; 5816 5817 mutex_lock(&obj->mm.lock); 5818 5819 if (obj->mm.madv != I915_MADV_WILLNEED) { 5820 err = -EFAULT; 5821 goto err_unlock; 5822 } 5823 5824 if (obj->mm.quirked) { 5825 err = -EFAULT; 5826 goto err_unlock; 5827 } 5828 5829 if (obj->mm.mapping) { 5830 err = -EBUSY; 5831 goto err_unlock; 5832 } 5833 5834 pages = fetch_and_zero(&obj->mm.pages); 5835 if (pages) { 5836 struct drm_i915_private *i915 = to_i915(obj->base.dev); 5837 5838 __i915_gem_object_reset_page_iter(obj); 5839 5840 spin_lock(&i915->mm.obj_lock); 5841 list_del(&obj->mm.link); 5842 spin_unlock(&i915->mm.obj_lock); 5843 } 5844 5845 obj->ops = &i915_gem_phys_ops; 5846 5847 err = ____i915_gem_object_get_pages(obj); 5848 if (err) 5849 goto err_xfer; 5850 5851 /* Perma-pin (until release) the physical set of pages */ 5852 __i915_gem_object_pin_pages(obj); 5853 5854 if (!IS_ERR_OR_NULL(pages)) 5855 i915_gem_object_ops.put_pages(obj, pages); 5856 mutex_unlock(&obj->mm.lock); 5857 return 0; 5858 5859 err_xfer: 5860 obj->ops = &i915_gem_object_ops; 5861 obj->mm.pages = pages; 5862 err_unlock: 5863 mutex_unlock(&obj->mm.lock); 5864 return err; 5865 } 5866 5867 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 5868 #include "selftests/scatterlist.c" 5869 #include "selftests/mock_gem_device.c" 5870 #include "selftests/huge_gem_object.c" 5871 #include "selftests/huge_pages.c" 5872 #include "selftests/i915_gem_object.c" 5873 #include "selftests/i915_gem_coherency.c" 5874 #endif 5875