1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <drm/drmP.h> 29 #include <drm/drm_vma_manager.h> 30 #include <drm/i915_drm.h> 31 #include "i915_drv.h" 32 #include "i915_vgpu.h" 33 #include "i915_trace.h" 34 #include "intel_drv.h" 35 #include <linux/shmem_fs.h> 36 #include <linux/slab.h> 37 #include <linux/swap.h> 38 #include <linux/pci.h> 39 #include <linux/dma-buf.h> 40 41 #define RQ_BUG_ON(expr) 42 43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj); 44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj); 45 static void 46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj); 47 static void 48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring); 49 50 static bool cpu_cache_is_coherent(struct drm_device *dev, 51 enum i915_cache_level level) 52 { 53 return HAS_LLC(dev) || level != I915_CACHE_NONE; 54 } 55 56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj) 57 { 58 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) 59 return true; 60 61 return obj->pin_display; 62 } 63 64 /* some bookkeeping */ 65 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv, 66 size_t size) 67 { 68 spin_lock(&dev_priv->mm.object_stat_lock); 69 dev_priv->mm.object_count++; 70 dev_priv->mm.object_memory += size; 71 spin_unlock(&dev_priv->mm.object_stat_lock); 72 } 73 74 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, 75 size_t size) 76 { 77 spin_lock(&dev_priv->mm.object_stat_lock); 78 dev_priv->mm.object_count--; 79 dev_priv->mm.object_memory -= size; 80 spin_unlock(&dev_priv->mm.object_stat_lock); 81 } 82 83 static int 84 i915_gem_wait_for_error(struct i915_gpu_error *error) 85 { 86 int ret; 87 88 #define EXIT_COND (!i915_reset_in_progress(error) || \ 89 i915_terminally_wedged(error)) 90 if (EXIT_COND) 91 return 0; 92 93 /* 94 * Only wait 10 seconds for the gpu reset to complete to avoid hanging 95 * userspace. If it takes that long something really bad is going on and 96 * we should simply try to bail out and fail as gracefully as possible. 97 */ 98 ret = wait_event_interruptible_timeout(error->reset_queue, 99 EXIT_COND, 100 10*HZ); 101 if (ret == 0) { 102 DRM_ERROR("Timed out waiting for the gpu reset to complete\n"); 103 return -EIO; 104 } else if (ret < 0) { 105 return ret; 106 } 107 #undef EXIT_COND 108 109 return 0; 110 } 111 112 int i915_mutex_lock_interruptible(struct drm_device *dev) 113 { 114 struct drm_i915_private *dev_priv = dev->dev_private; 115 int ret; 116 117 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 118 if (ret) 119 return ret; 120 121 ret = mutex_lock_interruptible(&dev->struct_mutex); 122 if (ret) 123 return ret; 124 125 WARN_ON(i915_verify_lists(dev)); 126 return 0; 127 } 128 129 int 130 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 131 struct drm_file *file) 132 { 133 struct drm_i915_private *dev_priv = dev->dev_private; 134 struct drm_i915_gem_get_aperture *args = data; 135 struct i915_gtt *ggtt = &dev_priv->gtt; 136 struct i915_vma *vma; 137 size_t pinned; 138 139 pinned = 0; 140 mutex_lock(&dev->struct_mutex); 141 list_for_each_entry(vma, &ggtt->base.active_list, mm_list) 142 if (vma->pin_count) 143 pinned += vma->node.size; 144 list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list) 145 if (vma->pin_count) 146 pinned += vma->node.size; 147 mutex_unlock(&dev->struct_mutex); 148 149 args->aper_size = dev_priv->gtt.base.total; 150 args->aper_available_size = args->aper_size - pinned; 151 152 return 0; 153 } 154 155 static int 156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj) 157 { 158 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping; 159 char *vaddr = obj->phys_handle->vaddr; 160 struct sg_table *st; 161 struct scatterlist *sg; 162 int i; 163 164 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj))) 165 return -EINVAL; 166 167 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { 168 struct page *page; 169 char *src; 170 171 page = shmem_read_mapping_page(mapping, i); 172 if (IS_ERR(page)) 173 return PTR_ERR(page); 174 175 src = kmap_atomic(page); 176 memcpy(vaddr, src, PAGE_SIZE); 177 drm_clflush_virt_range(vaddr, PAGE_SIZE); 178 kunmap_atomic(src); 179 180 page_cache_release(page); 181 vaddr += PAGE_SIZE; 182 } 183 184 i915_gem_chipset_flush(obj->base.dev); 185 186 st = kmalloc(sizeof(*st), GFP_KERNEL); 187 if (st == NULL) 188 return -ENOMEM; 189 190 if (sg_alloc_table(st, 1, GFP_KERNEL)) { 191 kfree(st); 192 return -ENOMEM; 193 } 194 195 sg = st->sgl; 196 sg->offset = 0; 197 sg->length = obj->base.size; 198 199 sg_dma_address(sg) = obj->phys_handle->busaddr; 200 sg_dma_len(sg) = obj->base.size; 201 202 obj->pages = st; 203 return 0; 204 } 205 206 static void 207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj) 208 { 209 int ret; 210 211 BUG_ON(obj->madv == __I915_MADV_PURGED); 212 213 ret = i915_gem_object_set_to_cpu_domain(obj, true); 214 if (ret) { 215 /* In the event of a disaster, abandon all caches and 216 * hope for the best. 217 */ 218 WARN_ON(ret != -EIO); 219 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU; 220 } 221 222 if (obj->madv == I915_MADV_DONTNEED) 223 obj->dirty = 0; 224 225 if (obj->dirty) { 226 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping; 227 char *vaddr = obj->phys_handle->vaddr; 228 int i; 229 230 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { 231 struct page *page; 232 char *dst; 233 234 page = shmem_read_mapping_page(mapping, i); 235 if (IS_ERR(page)) 236 continue; 237 238 dst = kmap_atomic(page); 239 drm_clflush_virt_range(vaddr, PAGE_SIZE); 240 memcpy(dst, vaddr, PAGE_SIZE); 241 kunmap_atomic(dst); 242 243 set_page_dirty(page); 244 if (obj->madv == I915_MADV_WILLNEED) 245 mark_page_accessed(page); 246 page_cache_release(page); 247 vaddr += PAGE_SIZE; 248 } 249 obj->dirty = 0; 250 } 251 252 sg_free_table(obj->pages); 253 kfree(obj->pages); 254 } 255 256 static void 257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj) 258 { 259 drm_pci_free(obj->base.dev, obj->phys_handle); 260 } 261 262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = { 263 .get_pages = i915_gem_object_get_pages_phys, 264 .put_pages = i915_gem_object_put_pages_phys, 265 .release = i915_gem_object_release_phys, 266 }; 267 268 static int 269 drop_pages(struct drm_i915_gem_object *obj) 270 { 271 struct i915_vma *vma, *next; 272 int ret; 273 274 drm_gem_object_reference(&obj->base); 275 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) 276 if (i915_vma_unbind(vma)) 277 break; 278 279 ret = i915_gem_object_put_pages(obj); 280 drm_gem_object_unreference(&obj->base); 281 282 return ret; 283 } 284 285 int 286 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, 287 int align) 288 { 289 drm_dma_handle_t *phys; 290 int ret; 291 292 if (obj->phys_handle) { 293 if ((unsigned long)obj->phys_handle->vaddr & (align -1)) 294 return -EBUSY; 295 296 return 0; 297 } 298 299 if (obj->madv != I915_MADV_WILLNEED) 300 return -EFAULT; 301 302 if (obj->base.filp == NULL) 303 return -EINVAL; 304 305 ret = drop_pages(obj); 306 if (ret) 307 return ret; 308 309 /* create a new object */ 310 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align); 311 if (!phys) 312 return -ENOMEM; 313 314 obj->phys_handle = phys; 315 obj->ops = &i915_gem_phys_ops; 316 317 return i915_gem_object_get_pages(obj); 318 } 319 320 static int 321 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj, 322 struct drm_i915_gem_pwrite *args, 323 struct drm_file *file_priv) 324 { 325 struct drm_device *dev = obj->base.dev; 326 void *vaddr = obj->phys_handle->vaddr + args->offset; 327 char __user *user_data = to_user_ptr(args->data_ptr); 328 int ret = 0; 329 330 /* We manually control the domain here and pretend that it 331 * remains coherent i.e. in the GTT domain, like shmem_pwrite. 332 */ 333 ret = i915_gem_object_wait_rendering(obj, false); 334 if (ret) 335 return ret; 336 337 intel_fb_obj_invalidate(obj, ORIGIN_CPU); 338 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) { 339 unsigned long unwritten; 340 341 /* The physical object once assigned is fixed for the lifetime 342 * of the obj, so we can safely drop the lock and continue 343 * to access vaddr. 344 */ 345 mutex_unlock(&dev->struct_mutex); 346 unwritten = copy_from_user(vaddr, user_data, args->size); 347 mutex_lock(&dev->struct_mutex); 348 if (unwritten) { 349 ret = -EFAULT; 350 goto out; 351 } 352 } 353 354 drm_clflush_virt_range(vaddr, args->size); 355 i915_gem_chipset_flush(dev); 356 357 out: 358 intel_fb_obj_flush(obj, false, ORIGIN_CPU); 359 return ret; 360 } 361 362 void *i915_gem_object_alloc(struct drm_device *dev) 363 { 364 struct drm_i915_private *dev_priv = dev->dev_private; 365 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL); 366 } 367 368 void i915_gem_object_free(struct drm_i915_gem_object *obj) 369 { 370 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 371 kmem_cache_free(dev_priv->objects, obj); 372 } 373 374 static int 375 i915_gem_create(struct drm_file *file, 376 struct drm_device *dev, 377 uint64_t size, 378 uint32_t *handle_p) 379 { 380 struct drm_i915_gem_object *obj; 381 int ret; 382 u32 handle; 383 384 size = roundup(size, PAGE_SIZE); 385 if (size == 0) 386 return -EINVAL; 387 388 /* Allocate the new object */ 389 obj = i915_gem_alloc_object(dev, size); 390 if (obj == NULL) 391 return -ENOMEM; 392 393 ret = drm_gem_handle_create(file, &obj->base, &handle); 394 /* drop reference from allocate - handle holds it now */ 395 drm_gem_object_unreference_unlocked(&obj->base); 396 if (ret) 397 return ret; 398 399 *handle_p = handle; 400 return 0; 401 } 402 403 int 404 i915_gem_dumb_create(struct drm_file *file, 405 struct drm_device *dev, 406 struct drm_mode_create_dumb *args) 407 { 408 /* have to work out size/pitch and return them */ 409 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64); 410 args->size = args->pitch * args->height; 411 return i915_gem_create(file, dev, 412 args->size, &args->handle); 413 } 414 415 /** 416 * Creates a new mm object and returns a handle to it. 417 */ 418 int 419 i915_gem_create_ioctl(struct drm_device *dev, void *data, 420 struct drm_file *file) 421 { 422 struct drm_i915_gem_create *args = data; 423 424 return i915_gem_create(file, dev, 425 args->size, &args->handle); 426 } 427 428 static inline int 429 __copy_to_user_swizzled(char __user *cpu_vaddr, 430 const char *gpu_vaddr, int gpu_offset, 431 int length) 432 { 433 int ret, cpu_offset = 0; 434 435 while (length > 0) { 436 int cacheline_end = ALIGN(gpu_offset + 1, 64); 437 int this_length = min(cacheline_end - gpu_offset, length); 438 int swizzled_gpu_offset = gpu_offset ^ 64; 439 440 ret = __copy_to_user(cpu_vaddr + cpu_offset, 441 gpu_vaddr + swizzled_gpu_offset, 442 this_length); 443 if (ret) 444 return ret + length; 445 446 cpu_offset += this_length; 447 gpu_offset += this_length; 448 length -= this_length; 449 } 450 451 return 0; 452 } 453 454 static inline int 455 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset, 456 const char __user *cpu_vaddr, 457 int length) 458 { 459 int ret, cpu_offset = 0; 460 461 while (length > 0) { 462 int cacheline_end = ALIGN(gpu_offset + 1, 64); 463 int this_length = min(cacheline_end - gpu_offset, length); 464 int swizzled_gpu_offset = gpu_offset ^ 64; 465 466 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset, 467 cpu_vaddr + cpu_offset, 468 this_length); 469 if (ret) 470 return ret + length; 471 472 cpu_offset += this_length; 473 gpu_offset += this_length; 474 length -= this_length; 475 } 476 477 return 0; 478 } 479 480 /* 481 * Pins the specified object's pages and synchronizes the object with 482 * GPU accesses. Sets needs_clflush to non-zero if the caller should 483 * flush the object from the CPU cache. 484 */ 485 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, 486 int *needs_clflush) 487 { 488 int ret; 489 490 *needs_clflush = 0; 491 492 if (!obj->base.filp) 493 return -EINVAL; 494 495 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) { 496 /* If we're not in the cpu read domain, set ourself into the gtt 497 * read domain and manually flush cachelines (if required). This 498 * optimizes for the case when the gpu will dirty the data 499 * anyway again before the next pread happens. */ 500 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev, 501 obj->cache_level); 502 ret = i915_gem_object_wait_rendering(obj, true); 503 if (ret) 504 return ret; 505 } 506 507 ret = i915_gem_object_get_pages(obj); 508 if (ret) 509 return ret; 510 511 i915_gem_object_pin_pages(obj); 512 513 return ret; 514 } 515 516 /* Per-page copy function for the shmem pread fastpath. 517 * Flushes invalid cachelines before reading the target if 518 * needs_clflush is set. */ 519 static int 520 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length, 521 char __user *user_data, 522 bool page_do_bit17_swizzling, bool needs_clflush) 523 { 524 char *vaddr; 525 int ret; 526 527 if (unlikely(page_do_bit17_swizzling)) 528 return -EINVAL; 529 530 vaddr = kmap_atomic(page); 531 if (needs_clflush) 532 drm_clflush_virt_range(vaddr + shmem_page_offset, 533 page_length); 534 ret = __copy_to_user_inatomic(user_data, 535 vaddr + shmem_page_offset, 536 page_length); 537 kunmap_atomic(vaddr); 538 539 return ret ? -EFAULT : 0; 540 } 541 542 static void 543 shmem_clflush_swizzled_range(char *addr, unsigned long length, 544 bool swizzled) 545 { 546 if (unlikely(swizzled)) { 547 unsigned long start = (unsigned long) addr; 548 unsigned long end = (unsigned long) addr + length; 549 550 /* For swizzling simply ensure that we always flush both 551 * channels. Lame, but simple and it works. Swizzled 552 * pwrite/pread is far from a hotpath - current userspace 553 * doesn't use it at all. */ 554 start = round_down(start, 128); 555 end = round_up(end, 128); 556 557 drm_clflush_virt_range((void *)start, end - start); 558 } else { 559 drm_clflush_virt_range(addr, length); 560 } 561 562 } 563 564 /* Only difference to the fast-path function is that this can handle bit17 565 * and uses non-atomic copy and kmap functions. */ 566 static int 567 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length, 568 char __user *user_data, 569 bool page_do_bit17_swizzling, bool needs_clflush) 570 { 571 char *vaddr; 572 int ret; 573 574 vaddr = kmap(page); 575 if (needs_clflush) 576 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 577 page_length, 578 page_do_bit17_swizzling); 579 580 if (page_do_bit17_swizzling) 581 ret = __copy_to_user_swizzled(user_data, 582 vaddr, shmem_page_offset, 583 page_length); 584 else 585 ret = __copy_to_user(user_data, 586 vaddr + shmem_page_offset, 587 page_length); 588 kunmap(page); 589 590 return ret ? - EFAULT : 0; 591 } 592 593 static int 594 i915_gem_shmem_pread(struct drm_device *dev, 595 struct drm_i915_gem_object *obj, 596 struct drm_i915_gem_pread *args, 597 struct drm_file *file) 598 { 599 char __user *user_data; 600 ssize_t remain; 601 loff_t offset; 602 int shmem_page_offset, page_length, ret = 0; 603 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 604 int prefaulted = 0; 605 int needs_clflush = 0; 606 struct sg_page_iter sg_iter; 607 608 user_data = to_user_ptr(args->data_ptr); 609 remain = args->size; 610 611 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 612 613 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush); 614 if (ret) 615 return ret; 616 617 offset = args->offset; 618 619 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 620 offset >> PAGE_SHIFT) { 621 struct page *page = sg_page_iter_page(&sg_iter); 622 623 if (remain <= 0) 624 break; 625 626 /* Operation in this page 627 * 628 * shmem_page_offset = offset within page in shmem file 629 * page_length = bytes to copy for this page 630 */ 631 shmem_page_offset = offset_in_page(offset); 632 page_length = remain; 633 if ((shmem_page_offset + page_length) > PAGE_SIZE) 634 page_length = PAGE_SIZE - shmem_page_offset; 635 636 page_do_bit17_swizzling = obj_do_bit17_swizzling && 637 (page_to_phys(page) & (1 << 17)) != 0; 638 639 ret = shmem_pread_fast(page, shmem_page_offset, page_length, 640 user_data, page_do_bit17_swizzling, 641 needs_clflush); 642 if (ret == 0) 643 goto next_page; 644 645 mutex_unlock(&dev->struct_mutex); 646 647 if (likely(!i915.prefault_disable) && !prefaulted) { 648 ret = fault_in_multipages_writeable(user_data, remain); 649 /* Userspace is tricking us, but we've already clobbered 650 * its pages with the prefault and promised to write the 651 * data up to the first fault. Hence ignore any errors 652 * and just continue. */ 653 (void)ret; 654 prefaulted = 1; 655 } 656 657 ret = shmem_pread_slow(page, shmem_page_offset, page_length, 658 user_data, page_do_bit17_swizzling, 659 needs_clflush); 660 661 mutex_lock(&dev->struct_mutex); 662 663 if (ret) 664 goto out; 665 666 next_page: 667 remain -= page_length; 668 user_data += page_length; 669 offset += page_length; 670 } 671 672 out: 673 i915_gem_object_unpin_pages(obj); 674 675 return ret; 676 } 677 678 /** 679 * Reads data from the object referenced by handle. 680 * 681 * On error, the contents of *data are undefined. 682 */ 683 int 684 i915_gem_pread_ioctl(struct drm_device *dev, void *data, 685 struct drm_file *file) 686 { 687 struct drm_i915_gem_pread *args = data; 688 struct drm_i915_gem_object *obj; 689 int ret = 0; 690 691 if (args->size == 0) 692 return 0; 693 694 if (!access_ok(VERIFY_WRITE, 695 to_user_ptr(args->data_ptr), 696 args->size)) 697 return -EFAULT; 698 699 ret = i915_mutex_lock_interruptible(dev); 700 if (ret) 701 return ret; 702 703 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 704 if (&obj->base == NULL) { 705 ret = -ENOENT; 706 goto unlock; 707 } 708 709 /* Bounds check source. */ 710 if (args->offset > obj->base.size || 711 args->size > obj->base.size - args->offset) { 712 ret = -EINVAL; 713 goto out; 714 } 715 716 /* prime objects have no backing filp to GEM pread/pwrite 717 * pages from. 718 */ 719 if (!obj->base.filp) { 720 ret = -EINVAL; 721 goto out; 722 } 723 724 trace_i915_gem_object_pread(obj, args->offset, args->size); 725 726 ret = i915_gem_shmem_pread(dev, obj, args, file); 727 728 out: 729 drm_gem_object_unreference(&obj->base); 730 unlock: 731 mutex_unlock(&dev->struct_mutex); 732 return ret; 733 } 734 735 /* This is the fast write path which cannot handle 736 * page faults in the source data 737 */ 738 739 static inline int 740 fast_user_write(struct io_mapping *mapping, 741 loff_t page_base, int page_offset, 742 char __user *user_data, 743 int length) 744 { 745 void __iomem *vaddr_atomic; 746 void *vaddr; 747 unsigned long unwritten; 748 749 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base); 750 /* We can use the cpu mem copy function because this is X86. */ 751 vaddr = (void __force*)vaddr_atomic + page_offset; 752 unwritten = __copy_from_user_inatomic_nocache(vaddr, 753 user_data, length); 754 io_mapping_unmap_atomic(vaddr_atomic); 755 return unwritten; 756 } 757 758 /** 759 * This is the fast pwrite path, where we copy the data directly from the 760 * user into the GTT, uncached. 761 */ 762 static int 763 i915_gem_gtt_pwrite_fast(struct drm_device *dev, 764 struct drm_i915_gem_object *obj, 765 struct drm_i915_gem_pwrite *args, 766 struct drm_file *file) 767 { 768 struct drm_i915_private *dev_priv = dev->dev_private; 769 ssize_t remain; 770 loff_t offset, page_base; 771 char __user *user_data; 772 int page_offset, page_length, ret; 773 774 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK); 775 if (ret) 776 goto out; 777 778 ret = i915_gem_object_set_to_gtt_domain(obj, true); 779 if (ret) 780 goto out_unpin; 781 782 ret = i915_gem_object_put_fence(obj); 783 if (ret) 784 goto out_unpin; 785 786 user_data = to_user_ptr(args->data_ptr); 787 remain = args->size; 788 789 offset = i915_gem_obj_ggtt_offset(obj) + args->offset; 790 791 intel_fb_obj_invalidate(obj, ORIGIN_GTT); 792 793 while (remain > 0) { 794 /* Operation in this page 795 * 796 * page_base = page offset within aperture 797 * page_offset = offset within page 798 * page_length = bytes to copy for this page 799 */ 800 page_base = offset & PAGE_MASK; 801 page_offset = offset_in_page(offset); 802 page_length = remain; 803 if ((page_offset + remain) > PAGE_SIZE) 804 page_length = PAGE_SIZE - page_offset; 805 806 /* If we get a fault while copying data, then (presumably) our 807 * source page isn't available. Return the error and we'll 808 * retry in the slow path. 809 */ 810 if (fast_user_write(dev_priv->gtt.mappable, page_base, 811 page_offset, user_data, page_length)) { 812 ret = -EFAULT; 813 goto out_flush; 814 } 815 816 remain -= page_length; 817 user_data += page_length; 818 offset += page_length; 819 } 820 821 out_flush: 822 intel_fb_obj_flush(obj, false, ORIGIN_GTT); 823 out_unpin: 824 i915_gem_object_ggtt_unpin(obj); 825 out: 826 return ret; 827 } 828 829 /* Per-page copy function for the shmem pwrite fastpath. 830 * Flushes invalid cachelines before writing to the target if 831 * needs_clflush_before is set and flushes out any written cachelines after 832 * writing if needs_clflush is set. */ 833 static int 834 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length, 835 char __user *user_data, 836 bool page_do_bit17_swizzling, 837 bool needs_clflush_before, 838 bool needs_clflush_after) 839 { 840 char *vaddr; 841 int ret; 842 843 if (unlikely(page_do_bit17_swizzling)) 844 return -EINVAL; 845 846 vaddr = kmap_atomic(page); 847 if (needs_clflush_before) 848 drm_clflush_virt_range(vaddr + shmem_page_offset, 849 page_length); 850 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset, 851 user_data, page_length); 852 if (needs_clflush_after) 853 drm_clflush_virt_range(vaddr + shmem_page_offset, 854 page_length); 855 kunmap_atomic(vaddr); 856 857 return ret ? -EFAULT : 0; 858 } 859 860 /* Only difference to the fast-path function is that this can handle bit17 861 * and uses non-atomic copy and kmap functions. */ 862 static int 863 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length, 864 char __user *user_data, 865 bool page_do_bit17_swizzling, 866 bool needs_clflush_before, 867 bool needs_clflush_after) 868 { 869 char *vaddr; 870 int ret; 871 872 vaddr = kmap(page); 873 if (unlikely(needs_clflush_before || page_do_bit17_swizzling)) 874 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 875 page_length, 876 page_do_bit17_swizzling); 877 if (page_do_bit17_swizzling) 878 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset, 879 user_data, 880 page_length); 881 else 882 ret = __copy_from_user(vaddr + shmem_page_offset, 883 user_data, 884 page_length); 885 if (needs_clflush_after) 886 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 887 page_length, 888 page_do_bit17_swizzling); 889 kunmap(page); 890 891 return ret ? -EFAULT : 0; 892 } 893 894 static int 895 i915_gem_shmem_pwrite(struct drm_device *dev, 896 struct drm_i915_gem_object *obj, 897 struct drm_i915_gem_pwrite *args, 898 struct drm_file *file) 899 { 900 ssize_t remain; 901 loff_t offset; 902 char __user *user_data; 903 int shmem_page_offset, page_length, ret = 0; 904 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 905 int hit_slowpath = 0; 906 int needs_clflush_after = 0; 907 int needs_clflush_before = 0; 908 struct sg_page_iter sg_iter; 909 910 user_data = to_user_ptr(args->data_ptr); 911 remain = args->size; 912 913 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 914 915 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 916 /* If we're not in the cpu write domain, set ourself into the gtt 917 * write domain and manually flush cachelines (if required). This 918 * optimizes for the case when the gpu will use the data 919 * right away and we therefore have to clflush anyway. */ 920 needs_clflush_after = cpu_write_needs_clflush(obj); 921 ret = i915_gem_object_wait_rendering(obj, false); 922 if (ret) 923 return ret; 924 } 925 /* Same trick applies to invalidate partially written cachelines read 926 * before writing. */ 927 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) 928 needs_clflush_before = 929 !cpu_cache_is_coherent(dev, obj->cache_level); 930 931 ret = i915_gem_object_get_pages(obj); 932 if (ret) 933 return ret; 934 935 intel_fb_obj_invalidate(obj, ORIGIN_CPU); 936 937 i915_gem_object_pin_pages(obj); 938 939 offset = args->offset; 940 obj->dirty = 1; 941 942 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 943 offset >> PAGE_SHIFT) { 944 struct page *page = sg_page_iter_page(&sg_iter); 945 int partial_cacheline_write; 946 947 if (remain <= 0) 948 break; 949 950 /* Operation in this page 951 * 952 * shmem_page_offset = offset within page in shmem file 953 * page_length = bytes to copy for this page 954 */ 955 shmem_page_offset = offset_in_page(offset); 956 957 page_length = remain; 958 if ((shmem_page_offset + page_length) > PAGE_SIZE) 959 page_length = PAGE_SIZE - shmem_page_offset; 960 961 /* If we don't overwrite a cacheline completely we need to be 962 * careful to have up-to-date data by first clflushing. Don't 963 * overcomplicate things and flush the entire patch. */ 964 partial_cacheline_write = needs_clflush_before && 965 ((shmem_page_offset | page_length) 966 & (boot_cpu_data.x86_clflush_size - 1)); 967 968 page_do_bit17_swizzling = obj_do_bit17_swizzling && 969 (page_to_phys(page) & (1 << 17)) != 0; 970 971 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length, 972 user_data, page_do_bit17_swizzling, 973 partial_cacheline_write, 974 needs_clflush_after); 975 if (ret == 0) 976 goto next_page; 977 978 hit_slowpath = 1; 979 mutex_unlock(&dev->struct_mutex); 980 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length, 981 user_data, page_do_bit17_swizzling, 982 partial_cacheline_write, 983 needs_clflush_after); 984 985 mutex_lock(&dev->struct_mutex); 986 987 if (ret) 988 goto out; 989 990 next_page: 991 remain -= page_length; 992 user_data += page_length; 993 offset += page_length; 994 } 995 996 out: 997 i915_gem_object_unpin_pages(obj); 998 999 if (hit_slowpath) { 1000 /* 1001 * Fixup: Flush cpu caches in case we didn't flush the dirty 1002 * cachelines in-line while writing and the object moved 1003 * out of the cpu write domain while we've dropped the lock. 1004 */ 1005 if (!needs_clflush_after && 1006 obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 1007 if (i915_gem_clflush_object(obj, obj->pin_display)) 1008 needs_clflush_after = true; 1009 } 1010 } 1011 1012 if (needs_clflush_after) 1013 i915_gem_chipset_flush(dev); 1014 else 1015 obj->cache_dirty = true; 1016 1017 intel_fb_obj_flush(obj, false, ORIGIN_CPU); 1018 return ret; 1019 } 1020 1021 /** 1022 * Writes data to the object referenced by handle. 1023 * 1024 * On error, the contents of the buffer that were to be modified are undefined. 1025 */ 1026 int 1027 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 1028 struct drm_file *file) 1029 { 1030 struct drm_i915_private *dev_priv = dev->dev_private; 1031 struct drm_i915_gem_pwrite *args = data; 1032 struct drm_i915_gem_object *obj; 1033 int ret; 1034 1035 if (args->size == 0) 1036 return 0; 1037 1038 if (!access_ok(VERIFY_READ, 1039 to_user_ptr(args->data_ptr), 1040 args->size)) 1041 return -EFAULT; 1042 1043 if (likely(!i915.prefault_disable)) { 1044 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr), 1045 args->size); 1046 if (ret) 1047 return -EFAULT; 1048 } 1049 1050 intel_runtime_pm_get(dev_priv); 1051 1052 ret = i915_mutex_lock_interruptible(dev); 1053 if (ret) 1054 goto put_rpm; 1055 1056 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1057 if (&obj->base == NULL) { 1058 ret = -ENOENT; 1059 goto unlock; 1060 } 1061 1062 /* Bounds check destination. */ 1063 if (args->offset > obj->base.size || 1064 args->size > obj->base.size - args->offset) { 1065 ret = -EINVAL; 1066 goto out; 1067 } 1068 1069 /* prime objects have no backing filp to GEM pread/pwrite 1070 * pages from. 1071 */ 1072 if (!obj->base.filp) { 1073 ret = -EINVAL; 1074 goto out; 1075 } 1076 1077 trace_i915_gem_object_pwrite(obj, args->offset, args->size); 1078 1079 ret = -EFAULT; 1080 /* We can only do the GTT pwrite on untiled buffers, as otherwise 1081 * it would end up going through the fenced access, and we'll get 1082 * different detiling behavior between reading and writing. 1083 * pread/pwrite currently are reading and writing from the CPU 1084 * perspective, requiring manual detiling by the client. 1085 */ 1086 if (obj->tiling_mode == I915_TILING_NONE && 1087 obj->base.write_domain != I915_GEM_DOMAIN_CPU && 1088 cpu_write_needs_clflush(obj)) { 1089 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file); 1090 /* Note that the gtt paths might fail with non-page-backed user 1091 * pointers (e.g. gtt mappings when moving data between 1092 * textures). Fallback to the shmem path in that case. */ 1093 } 1094 1095 if (ret == -EFAULT || ret == -ENOSPC) { 1096 if (obj->phys_handle) 1097 ret = i915_gem_phys_pwrite(obj, args, file); 1098 else 1099 ret = i915_gem_shmem_pwrite(dev, obj, args, file); 1100 } 1101 1102 out: 1103 drm_gem_object_unreference(&obj->base); 1104 unlock: 1105 mutex_unlock(&dev->struct_mutex); 1106 put_rpm: 1107 intel_runtime_pm_put(dev_priv); 1108 1109 return ret; 1110 } 1111 1112 int 1113 i915_gem_check_wedge(struct i915_gpu_error *error, 1114 bool interruptible) 1115 { 1116 if (i915_reset_in_progress(error)) { 1117 /* Non-interruptible callers can't handle -EAGAIN, hence return 1118 * -EIO unconditionally for these. */ 1119 if (!interruptible) 1120 return -EIO; 1121 1122 /* Recovery complete, but the reset failed ... */ 1123 if (i915_terminally_wedged(error)) 1124 return -EIO; 1125 1126 /* 1127 * Check if GPU Reset is in progress - we need intel_ring_begin 1128 * to work properly to reinit the hw state while the gpu is 1129 * still marked as reset-in-progress. Handle this with a flag. 1130 */ 1131 if (!error->reload_in_reset) 1132 return -EAGAIN; 1133 } 1134 1135 return 0; 1136 } 1137 1138 static void fake_irq(unsigned long data) 1139 { 1140 wake_up_process((struct task_struct *)data); 1141 } 1142 1143 static bool missed_irq(struct drm_i915_private *dev_priv, 1144 struct intel_engine_cs *ring) 1145 { 1146 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings); 1147 } 1148 1149 static unsigned long local_clock_us(unsigned *cpu) 1150 { 1151 unsigned long t; 1152 1153 /* Cheaply and approximately convert from nanoseconds to microseconds. 1154 * The result and subsequent calculations are also defined in the same 1155 * approximate microseconds units. The principal source of timing 1156 * error here is from the simple truncation. 1157 * 1158 * Note that local_clock() is only defined wrt to the current CPU; 1159 * the comparisons are no longer valid if we switch CPUs. Instead of 1160 * blocking preemption for the entire busywait, we can detect the CPU 1161 * switch and use that as indicator of system load and a reason to 1162 * stop busywaiting, see busywait_stop(). 1163 */ 1164 *cpu = get_cpu(); 1165 t = local_clock() >> 10; 1166 put_cpu(); 1167 1168 return t; 1169 } 1170 1171 static bool busywait_stop(unsigned long timeout, unsigned cpu) 1172 { 1173 unsigned this_cpu; 1174 1175 if (time_after(local_clock_us(&this_cpu), timeout)) 1176 return true; 1177 1178 return this_cpu != cpu; 1179 } 1180 1181 static int __i915_spin_request(struct drm_i915_gem_request *req, int state) 1182 { 1183 unsigned long timeout; 1184 unsigned cpu; 1185 1186 /* When waiting for high frequency requests, e.g. during synchronous 1187 * rendering split between the CPU and GPU, the finite amount of time 1188 * required to set up the irq and wait upon it limits the response 1189 * rate. By busywaiting on the request completion for a short while we 1190 * can service the high frequency waits as quick as possible. However, 1191 * if it is a slow request, we want to sleep as quickly as possible. 1192 * The tradeoff between waiting and sleeping is roughly the time it 1193 * takes to sleep on a request, on the order of a microsecond. 1194 */ 1195 1196 if (req->ring->irq_refcount) 1197 return -EBUSY; 1198 1199 /* Only spin if we know the GPU is processing this request */ 1200 if (!i915_gem_request_started(req, true)) 1201 return -EAGAIN; 1202 1203 timeout = local_clock_us(&cpu) + 5; 1204 while (!need_resched()) { 1205 if (i915_gem_request_completed(req, true)) 1206 return 0; 1207 1208 if (signal_pending_state(state, current)) 1209 break; 1210 1211 if (busywait_stop(timeout, cpu)) 1212 break; 1213 1214 cpu_relax_lowlatency(); 1215 } 1216 1217 if (i915_gem_request_completed(req, false)) 1218 return 0; 1219 1220 return -EAGAIN; 1221 } 1222 1223 /** 1224 * __i915_wait_request - wait until execution of request has finished 1225 * @req: duh! 1226 * @reset_counter: reset sequence associated with the given request 1227 * @interruptible: do an interruptible wait (normally yes) 1228 * @timeout: in - how long to wait (NULL forever); out - how much time remaining 1229 * 1230 * Note: It is of utmost importance that the passed in seqno and reset_counter 1231 * values have been read by the caller in an smp safe manner. Where read-side 1232 * locks are involved, it is sufficient to read the reset_counter before 1233 * unlocking the lock that protects the seqno. For lockless tricks, the 1234 * reset_counter _must_ be read before, and an appropriate smp_rmb must be 1235 * inserted. 1236 * 1237 * Returns 0 if the request was found within the alloted time. Else returns the 1238 * errno with remaining time filled in timeout argument. 1239 */ 1240 int __i915_wait_request(struct drm_i915_gem_request *req, 1241 unsigned reset_counter, 1242 bool interruptible, 1243 s64 *timeout, 1244 struct intel_rps_client *rps) 1245 { 1246 struct intel_engine_cs *ring = i915_gem_request_get_ring(req); 1247 struct drm_device *dev = ring->dev; 1248 struct drm_i915_private *dev_priv = dev->dev_private; 1249 const bool irq_test_in_progress = 1250 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring); 1251 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1252 DEFINE_WAIT(wait); 1253 unsigned long timeout_expire; 1254 s64 before = 0; /* Only to silence a compiler warning. */ 1255 int ret; 1256 1257 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled"); 1258 1259 if (list_empty(&req->list)) 1260 return 0; 1261 1262 if (i915_gem_request_completed(req, true)) 1263 return 0; 1264 1265 timeout_expire = 0; 1266 if (timeout) { 1267 if (WARN_ON(*timeout < 0)) 1268 return -EINVAL; 1269 1270 if (*timeout == 0) 1271 return -ETIME; 1272 1273 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout); 1274 1275 /* 1276 * Record current time in case interrupted by signal, or wedged. 1277 */ 1278 before = ktime_get_raw_ns(); 1279 } 1280 1281 if (INTEL_INFO(dev_priv)->gen >= 6) 1282 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies); 1283 1284 trace_i915_gem_request_wait_begin(req); 1285 1286 /* Optimistic spin for the next jiffie before touching IRQs */ 1287 ret = __i915_spin_request(req, state); 1288 if (ret == 0) 1289 goto out; 1290 1291 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) { 1292 ret = -ENODEV; 1293 goto out; 1294 } 1295 1296 for (;;) { 1297 struct timer_list timer; 1298 1299 prepare_to_wait(&ring->irq_queue, &wait, state); 1300 1301 /* We need to check whether any gpu reset happened in between 1302 * the caller grabbing the seqno and now ... */ 1303 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) { 1304 /* ... but upgrade the -EAGAIN to an -EIO if the gpu 1305 * is truely gone. */ 1306 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible); 1307 if (ret == 0) 1308 ret = -EAGAIN; 1309 break; 1310 } 1311 1312 if (i915_gem_request_completed(req, false)) { 1313 ret = 0; 1314 break; 1315 } 1316 1317 if (signal_pending_state(state, current)) { 1318 ret = -ERESTARTSYS; 1319 break; 1320 } 1321 1322 if (timeout && time_after_eq(jiffies, timeout_expire)) { 1323 ret = -ETIME; 1324 break; 1325 } 1326 1327 timer.function = NULL; 1328 if (timeout || missed_irq(dev_priv, ring)) { 1329 unsigned long expire; 1330 1331 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current); 1332 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire; 1333 mod_timer(&timer, expire); 1334 } 1335 1336 io_schedule(); 1337 1338 if (timer.function) { 1339 del_singleshot_timer_sync(&timer); 1340 destroy_timer_on_stack(&timer); 1341 } 1342 } 1343 if (!irq_test_in_progress) 1344 ring->irq_put(ring); 1345 1346 finish_wait(&ring->irq_queue, &wait); 1347 1348 out: 1349 trace_i915_gem_request_wait_end(req); 1350 1351 if (timeout) { 1352 s64 tres = *timeout - (ktime_get_raw_ns() - before); 1353 1354 *timeout = tres < 0 ? 0 : tres; 1355 1356 /* 1357 * Apparently ktime isn't accurate enough and occasionally has a 1358 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch 1359 * things up to make the test happy. We allow up to 1 jiffy. 1360 * 1361 * This is a regrssion from the timespec->ktime conversion. 1362 */ 1363 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000) 1364 *timeout = 0; 1365 } 1366 1367 return ret; 1368 } 1369 1370 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req, 1371 struct drm_file *file) 1372 { 1373 struct drm_i915_private *dev_private; 1374 struct drm_i915_file_private *file_priv; 1375 1376 WARN_ON(!req || !file || req->file_priv); 1377 1378 if (!req || !file) 1379 return -EINVAL; 1380 1381 if (req->file_priv) 1382 return -EINVAL; 1383 1384 dev_private = req->ring->dev->dev_private; 1385 file_priv = file->driver_priv; 1386 1387 spin_lock(&file_priv->mm.lock); 1388 req->file_priv = file_priv; 1389 list_add_tail(&req->client_list, &file_priv->mm.request_list); 1390 spin_unlock(&file_priv->mm.lock); 1391 1392 req->pid = get_pid(task_pid(current)); 1393 1394 return 0; 1395 } 1396 1397 static inline void 1398 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request) 1399 { 1400 struct drm_i915_file_private *file_priv = request->file_priv; 1401 1402 if (!file_priv) 1403 return; 1404 1405 spin_lock(&file_priv->mm.lock); 1406 list_del(&request->client_list); 1407 request->file_priv = NULL; 1408 spin_unlock(&file_priv->mm.lock); 1409 1410 put_pid(request->pid); 1411 request->pid = NULL; 1412 } 1413 1414 static void i915_gem_request_retire(struct drm_i915_gem_request *request) 1415 { 1416 trace_i915_gem_request_retire(request); 1417 1418 /* We know the GPU must have read the request to have 1419 * sent us the seqno + interrupt, so use the position 1420 * of tail of the request to update the last known position 1421 * of the GPU head. 1422 * 1423 * Note this requires that we are always called in request 1424 * completion order. 1425 */ 1426 request->ringbuf->last_retired_head = request->postfix; 1427 1428 list_del_init(&request->list); 1429 i915_gem_request_remove_from_client(request); 1430 1431 i915_gem_request_unreference(request); 1432 } 1433 1434 static void 1435 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req) 1436 { 1437 struct intel_engine_cs *engine = req->ring; 1438 struct drm_i915_gem_request *tmp; 1439 1440 lockdep_assert_held(&engine->dev->struct_mutex); 1441 1442 if (list_empty(&req->list)) 1443 return; 1444 1445 do { 1446 tmp = list_first_entry(&engine->request_list, 1447 typeof(*tmp), list); 1448 1449 i915_gem_request_retire(tmp); 1450 } while (tmp != req); 1451 1452 WARN_ON(i915_verify_lists(engine->dev)); 1453 } 1454 1455 /** 1456 * Waits for a request to be signaled, and cleans up the 1457 * request and object lists appropriately for that event. 1458 */ 1459 int 1460 i915_wait_request(struct drm_i915_gem_request *req) 1461 { 1462 struct drm_device *dev; 1463 struct drm_i915_private *dev_priv; 1464 bool interruptible; 1465 int ret; 1466 1467 BUG_ON(req == NULL); 1468 1469 dev = req->ring->dev; 1470 dev_priv = dev->dev_private; 1471 interruptible = dev_priv->mm.interruptible; 1472 1473 BUG_ON(!mutex_is_locked(&dev->struct_mutex)); 1474 1475 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible); 1476 if (ret) 1477 return ret; 1478 1479 ret = __i915_wait_request(req, 1480 atomic_read(&dev_priv->gpu_error.reset_counter), 1481 interruptible, NULL, NULL); 1482 if (ret) 1483 return ret; 1484 1485 __i915_gem_request_retire__upto(req); 1486 return 0; 1487 } 1488 1489 /** 1490 * Ensures that all rendering to the object has completed and the object is 1491 * safe to unbind from the GTT or access from the CPU. 1492 */ 1493 int 1494 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, 1495 bool readonly) 1496 { 1497 int ret, i; 1498 1499 if (!obj->active) 1500 return 0; 1501 1502 if (readonly) { 1503 if (obj->last_write_req != NULL) { 1504 ret = i915_wait_request(obj->last_write_req); 1505 if (ret) 1506 return ret; 1507 1508 i = obj->last_write_req->ring->id; 1509 if (obj->last_read_req[i] == obj->last_write_req) 1510 i915_gem_object_retire__read(obj, i); 1511 else 1512 i915_gem_object_retire__write(obj); 1513 } 1514 } else { 1515 for (i = 0; i < I915_NUM_RINGS; i++) { 1516 if (obj->last_read_req[i] == NULL) 1517 continue; 1518 1519 ret = i915_wait_request(obj->last_read_req[i]); 1520 if (ret) 1521 return ret; 1522 1523 i915_gem_object_retire__read(obj, i); 1524 } 1525 RQ_BUG_ON(obj->active); 1526 } 1527 1528 return 0; 1529 } 1530 1531 static void 1532 i915_gem_object_retire_request(struct drm_i915_gem_object *obj, 1533 struct drm_i915_gem_request *req) 1534 { 1535 int ring = req->ring->id; 1536 1537 if (obj->last_read_req[ring] == req) 1538 i915_gem_object_retire__read(obj, ring); 1539 else if (obj->last_write_req == req) 1540 i915_gem_object_retire__write(obj); 1541 1542 __i915_gem_request_retire__upto(req); 1543 } 1544 1545 /* A nonblocking variant of the above wait. This is a highly dangerous routine 1546 * as the object state may change during this call. 1547 */ 1548 static __must_check int 1549 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj, 1550 struct intel_rps_client *rps, 1551 bool readonly) 1552 { 1553 struct drm_device *dev = obj->base.dev; 1554 struct drm_i915_private *dev_priv = dev->dev_private; 1555 struct drm_i915_gem_request *requests[I915_NUM_RINGS]; 1556 unsigned reset_counter; 1557 int ret, i, n = 0; 1558 1559 BUG_ON(!mutex_is_locked(&dev->struct_mutex)); 1560 BUG_ON(!dev_priv->mm.interruptible); 1561 1562 if (!obj->active) 1563 return 0; 1564 1565 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true); 1566 if (ret) 1567 return ret; 1568 1569 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 1570 1571 if (readonly) { 1572 struct drm_i915_gem_request *req; 1573 1574 req = obj->last_write_req; 1575 if (req == NULL) 1576 return 0; 1577 1578 requests[n++] = i915_gem_request_reference(req); 1579 } else { 1580 for (i = 0; i < I915_NUM_RINGS; i++) { 1581 struct drm_i915_gem_request *req; 1582 1583 req = obj->last_read_req[i]; 1584 if (req == NULL) 1585 continue; 1586 1587 requests[n++] = i915_gem_request_reference(req); 1588 } 1589 } 1590 1591 mutex_unlock(&dev->struct_mutex); 1592 for (i = 0; ret == 0 && i < n; i++) 1593 ret = __i915_wait_request(requests[i], reset_counter, true, 1594 NULL, rps); 1595 mutex_lock(&dev->struct_mutex); 1596 1597 for (i = 0; i < n; i++) { 1598 if (ret == 0) 1599 i915_gem_object_retire_request(obj, requests[i]); 1600 i915_gem_request_unreference(requests[i]); 1601 } 1602 1603 return ret; 1604 } 1605 1606 static struct intel_rps_client *to_rps_client(struct drm_file *file) 1607 { 1608 struct drm_i915_file_private *fpriv = file->driver_priv; 1609 return &fpriv->rps; 1610 } 1611 1612 /** 1613 * Called when user space prepares to use an object with the CPU, either 1614 * through the mmap ioctl's mapping or a GTT mapping. 1615 */ 1616 int 1617 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 1618 struct drm_file *file) 1619 { 1620 struct drm_i915_gem_set_domain *args = data; 1621 struct drm_i915_gem_object *obj; 1622 uint32_t read_domains = args->read_domains; 1623 uint32_t write_domain = args->write_domain; 1624 int ret; 1625 1626 /* Only handle setting domains to types used by the CPU. */ 1627 if (write_domain & I915_GEM_GPU_DOMAINS) 1628 return -EINVAL; 1629 1630 if (read_domains & I915_GEM_GPU_DOMAINS) 1631 return -EINVAL; 1632 1633 /* Having something in the write domain implies it's in the read 1634 * domain, and only that read domain. Enforce that in the request. 1635 */ 1636 if (write_domain != 0 && read_domains != write_domain) 1637 return -EINVAL; 1638 1639 ret = i915_mutex_lock_interruptible(dev); 1640 if (ret) 1641 return ret; 1642 1643 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1644 if (&obj->base == NULL) { 1645 ret = -ENOENT; 1646 goto unlock; 1647 } 1648 1649 /* Try to flush the object off the GPU without holding the lock. 1650 * We will repeat the flush holding the lock in the normal manner 1651 * to catch cases where we are gazumped. 1652 */ 1653 ret = i915_gem_object_wait_rendering__nonblocking(obj, 1654 to_rps_client(file), 1655 !write_domain); 1656 if (ret) 1657 goto unref; 1658 1659 if (read_domains & I915_GEM_DOMAIN_GTT) 1660 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0); 1661 else 1662 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0); 1663 1664 if (write_domain != 0) 1665 intel_fb_obj_invalidate(obj, 1666 write_domain == I915_GEM_DOMAIN_GTT ? 1667 ORIGIN_GTT : ORIGIN_CPU); 1668 1669 unref: 1670 drm_gem_object_unreference(&obj->base); 1671 unlock: 1672 mutex_unlock(&dev->struct_mutex); 1673 return ret; 1674 } 1675 1676 /** 1677 * Called when user space has done writes to this buffer 1678 */ 1679 int 1680 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 1681 struct drm_file *file) 1682 { 1683 struct drm_i915_gem_sw_finish *args = data; 1684 struct drm_i915_gem_object *obj; 1685 int ret = 0; 1686 1687 ret = i915_mutex_lock_interruptible(dev); 1688 if (ret) 1689 return ret; 1690 1691 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1692 if (&obj->base == NULL) { 1693 ret = -ENOENT; 1694 goto unlock; 1695 } 1696 1697 /* Pinned buffers may be scanout, so flush the cache */ 1698 if (obj->pin_display) 1699 i915_gem_object_flush_cpu_write_domain(obj); 1700 1701 drm_gem_object_unreference(&obj->base); 1702 unlock: 1703 mutex_unlock(&dev->struct_mutex); 1704 return ret; 1705 } 1706 1707 /** 1708 * Maps the contents of an object, returning the address it is mapped 1709 * into. 1710 * 1711 * While the mapping holds a reference on the contents of the object, it doesn't 1712 * imply a ref on the object itself. 1713 * 1714 * IMPORTANT: 1715 * 1716 * DRM driver writers who look a this function as an example for how to do GEM 1717 * mmap support, please don't implement mmap support like here. The modern way 1718 * to implement DRM mmap support is with an mmap offset ioctl (like 1719 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly. 1720 * That way debug tooling like valgrind will understand what's going on, hiding 1721 * the mmap call in a driver private ioctl will break that. The i915 driver only 1722 * does cpu mmaps this way because we didn't know better. 1723 */ 1724 int 1725 i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 1726 struct drm_file *file) 1727 { 1728 struct drm_i915_gem_mmap *args = data; 1729 struct drm_gem_object *obj; 1730 unsigned long addr; 1731 1732 if (args->flags & ~(I915_MMAP_WC)) 1733 return -EINVAL; 1734 1735 if (args->flags & I915_MMAP_WC && !cpu_has_pat) 1736 return -ENODEV; 1737 1738 obj = drm_gem_object_lookup(dev, file, args->handle); 1739 if (obj == NULL) 1740 return -ENOENT; 1741 1742 /* prime objects have no backing filp to GEM mmap 1743 * pages from. 1744 */ 1745 if (!obj->filp) { 1746 drm_gem_object_unreference_unlocked(obj); 1747 return -EINVAL; 1748 } 1749 1750 addr = vm_mmap(obj->filp, 0, args->size, 1751 PROT_READ | PROT_WRITE, MAP_SHARED, 1752 args->offset); 1753 if (args->flags & I915_MMAP_WC) { 1754 struct mm_struct *mm = current->mm; 1755 struct vm_area_struct *vma; 1756 1757 down_write(&mm->mmap_sem); 1758 vma = find_vma(mm, addr); 1759 if (vma) 1760 vma->vm_page_prot = 1761 pgprot_writecombine(vm_get_page_prot(vma->vm_flags)); 1762 else 1763 addr = -ENOMEM; 1764 up_write(&mm->mmap_sem); 1765 } 1766 drm_gem_object_unreference_unlocked(obj); 1767 if (IS_ERR((void *)addr)) 1768 return addr; 1769 1770 args->addr_ptr = (uint64_t) addr; 1771 1772 return 0; 1773 } 1774 1775 /** 1776 * i915_gem_fault - fault a page into the GTT 1777 * @vma: VMA in question 1778 * @vmf: fault info 1779 * 1780 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped 1781 * from userspace. The fault handler takes care of binding the object to 1782 * the GTT (if needed), allocating and programming a fence register (again, 1783 * only if needed based on whether the old reg is still valid or the object 1784 * is tiled) and inserting a new PTE into the faulting process. 1785 * 1786 * Note that the faulting process may involve evicting existing objects 1787 * from the GTT and/or fence registers to make room. So performance may 1788 * suffer if the GTT working set is large or there are few fence registers 1789 * left. 1790 */ 1791 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1792 { 1793 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data); 1794 struct drm_device *dev = obj->base.dev; 1795 struct drm_i915_private *dev_priv = dev->dev_private; 1796 struct i915_ggtt_view view = i915_ggtt_view_normal; 1797 pgoff_t page_offset; 1798 unsigned long pfn; 1799 int ret = 0; 1800 bool write = !!(vmf->flags & FAULT_FLAG_WRITE); 1801 1802 intel_runtime_pm_get(dev_priv); 1803 1804 /* We don't use vmf->pgoff since that has the fake offset */ 1805 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >> 1806 PAGE_SHIFT; 1807 1808 ret = i915_mutex_lock_interruptible(dev); 1809 if (ret) 1810 goto out; 1811 1812 trace_i915_gem_object_fault(obj, page_offset, true, write); 1813 1814 /* Try to flush the object off the GPU first without holding the lock. 1815 * Upon reacquiring the lock, we will perform our sanity checks and then 1816 * repeat the flush holding the lock in the normal manner to catch cases 1817 * where we are gazumped. 1818 */ 1819 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write); 1820 if (ret) 1821 goto unlock; 1822 1823 /* Access to snoopable pages through the GTT is incoherent. */ 1824 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) { 1825 ret = -EFAULT; 1826 goto unlock; 1827 } 1828 1829 /* Use a partial view if the object is bigger than the aperture. */ 1830 if (obj->base.size >= dev_priv->gtt.mappable_end && 1831 obj->tiling_mode == I915_TILING_NONE) { 1832 static const unsigned int chunk_size = 256; // 1 MiB 1833 1834 memset(&view, 0, sizeof(view)); 1835 view.type = I915_GGTT_VIEW_PARTIAL; 1836 view.params.partial.offset = rounddown(page_offset, chunk_size); 1837 view.params.partial.size = 1838 min_t(unsigned int, 1839 chunk_size, 1840 (vma->vm_end - vma->vm_start)/PAGE_SIZE - 1841 view.params.partial.offset); 1842 } 1843 1844 /* Now pin it into the GTT if needed */ 1845 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE); 1846 if (ret) 1847 goto unlock; 1848 1849 ret = i915_gem_object_set_to_gtt_domain(obj, write); 1850 if (ret) 1851 goto unpin; 1852 1853 ret = i915_gem_object_get_fence(obj); 1854 if (ret) 1855 goto unpin; 1856 1857 /* Finally, remap it using the new GTT offset */ 1858 pfn = dev_priv->gtt.mappable_base + 1859 i915_gem_obj_ggtt_offset_view(obj, &view); 1860 pfn >>= PAGE_SHIFT; 1861 1862 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) { 1863 /* Overriding existing pages in partial view does not cause 1864 * us any trouble as TLBs are still valid because the fault 1865 * is due to userspace losing part of the mapping or never 1866 * having accessed it before (at this partials' range). 1867 */ 1868 unsigned long base = vma->vm_start + 1869 (view.params.partial.offset << PAGE_SHIFT); 1870 unsigned int i; 1871 1872 for (i = 0; i < view.params.partial.size; i++) { 1873 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i); 1874 if (ret) 1875 break; 1876 } 1877 1878 obj->fault_mappable = true; 1879 } else { 1880 if (!obj->fault_mappable) { 1881 unsigned long size = min_t(unsigned long, 1882 vma->vm_end - vma->vm_start, 1883 obj->base.size); 1884 int i; 1885 1886 for (i = 0; i < size >> PAGE_SHIFT; i++) { 1887 ret = vm_insert_pfn(vma, 1888 (unsigned long)vma->vm_start + i * PAGE_SIZE, 1889 pfn + i); 1890 if (ret) 1891 break; 1892 } 1893 1894 obj->fault_mappable = true; 1895 } else 1896 ret = vm_insert_pfn(vma, 1897 (unsigned long)vmf->virtual_address, 1898 pfn + page_offset); 1899 } 1900 unpin: 1901 i915_gem_object_ggtt_unpin_view(obj, &view); 1902 unlock: 1903 mutex_unlock(&dev->struct_mutex); 1904 out: 1905 switch (ret) { 1906 case -EIO: 1907 /* 1908 * We eat errors when the gpu is terminally wedged to avoid 1909 * userspace unduly crashing (gl has no provisions for mmaps to 1910 * fail). But any other -EIO isn't ours (e.g. swap in failure) 1911 * and so needs to be reported. 1912 */ 1913 if (!i915_terminally_wedged(&dev_priv->gpu_error)) { 1914 ret = VM_FAULT_SIGBUS; 1915 break; 1916 } 1917 case -EAGAIN: 1918 /* 1919 * EAGAIN means the gpu is hung and we'll wait for the error 1920 * handler to reset everything when re-faulting in 1921 * i915_mutex_lock_interruptible. 1922 */ 1923 case 0: 1924 case -ERESTARTSYS: 1925 case -EINTR: 1926 case -EBUSY: 1927 /* 1928 * EBUSY is ok: this just means that another thread 1929 * already did the job. 1930 */ 1931 ret = VM_FAULT_NOPAGE; 1932 break; 1933 case -ENOMEM: 1934 ret = VM_FAULT_OOM; 1935 break; 1936 case -ENOSPC: 1937 case -EFAULT: 1938 ret = VM_FAULT_SIGBUS; 1939 break; 1940 default: 1941 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret); 1942 ret = VM_FAULT_SIGBUS; 1943 break; 1944 } 1945 1946 intel_runtime_pm_put(dev_priv); 1947 return ret; 1948 } 1949 1950 /** 1951 * i915_gem_release_mmap - remove physical page mappings 1952 * @obj: obj in question 1953 * 1954 * Preserve the reservation of the mmapping with the DRM core code, but 1955 * relinquish ownership of the pages back to the system. 1956 * 1957 * It is vital that we remove the page mapping if we have mapped a tiled 1958 * object through the GTT and then lose the fence register due to 1959 * resource pressure. Similarly if the object has been moved out of the 1960 * aperture, than pages mapped into userspace must be revoked. Removing the 1961 * mapping will then trigger a page fault on the next user access, allowing 1962 * fixup by i915_gem_fault(). 1963 */ 1964 void 1965 i915_gem_release_mmap(struct drm_i915_gem_object *obj) 1966 { 1967 if (!obj->fault_mappable) 1968 return; 1969 1970 drm_vma_node_unmap(&obj->base.vma_node, 1971 obj->base.dev->anon_inode->i_mapping); 1972 obj->fault_mappable = false; 1973 } 1974 1975 void 1976 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv) 1977 { 1978 struct drm_i915_gem_object *obj; 1979 1980 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) 1981 i915_gem_release_mmap(obj); 1982 } 1983 1984 uint32_t 1985 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode) 1986 { 1987 uint32_t gtt_size; 1988 1989 if (INTEL_INFO(dev)->gen >= 4 || 1990 tiling_mode == I915_TILING_NONE) 1991 return size; 1992 1993 /* Previous chips need a power-of-two fence region when tiling */ 1994 if (INTEL_INFO(dev)->gen == 3) 1995 gtt_size = 1024*1024; 1996 else 1997 gtt_size = 512*1024; 1998 1999 while (gtt_size < size) 2000 gtt_size <<= 1; 2001 2002 return gtt_size; 2003 } 2004 2005 /** 2006 * i915_gem_get_gtt_alignment - return required GTT alignment for an object 2007 * @obj: object to check 2008 * 2009 * Return the required GTT alignment for an object, taking into account 2010 * potential fence register mapping. 2011 */ 2012 uint32_t 2013 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size, 2014 int tiling_mode, bool fenced) 2015 { 2016 /* 2017 * Minimum alignment is 4k (GTT page size), but might be greater 2018 * if a fence register is needed for the object. 2019 */ 2020 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) || 2021 tiling_mode == I915_TILING_NONE) 2022 return 4096; 2023 2024 /* 2025 * Previous chips need to be aligned to the size of the smallest 2026 * fence register that can contain the object. 2027 */ 2028 return i915_gem_get_gtt_size(dev, size, tiling_mode); 2029 } 2030 2031 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj) 2032 { 2033 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2034 int ret; 2035 2036 if (drm_vma_node_has_offset(&obj->base.vma_node)) 2037 return 0; 2038 2039 dev_priv->mm.shrinker_no_lock_stealing = true; 2040 2041 ret = drm_gem_create_mmap_offset(&obj->base); 2042 if (ret != -ENOSPC) 2043 goto out; 2044 2045 /* Badly fragmented mmap space? The only way we can recover 2046 * space is by destroying unwanted objects. We can't randomly release 2047 * mmap_offsets as userspace expects them to be persistent for the 2048 * lifetime of the objects. The closest we can is to release the 2049 * offsets on purgeable objects by truncating it and marking it purged, 2050 * which prevents userspace from ever using that object again. 2051 */ 2052 i915_gem_shrink(dev_priv, 2053 obj->base.size >> PAGE_SHIFT, 2054 I915_SHRINK_BOUND | 2055 I915_SHRINK_UNBOUND | 2056 I915_SHRINK_PURGEABLE); 2057 ret = drm_gem_create_mmap_offset(&obj->base); 2058 if (ret != -ENOSPC) 2059 goto out; 2060 2061 i915_gem_shrink_all(dev_priv); 2062 ret = drm_gem_create_mmap_offset(&obj->base); 2063 out: 2064 dev_priv->mm.shrinker_no_lock_stealing = false; 2065 2066 return ret; 2067 } 2068 2069 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj) 2070 { 2071 drm_gem_free_mmap_offset(&obj->base); 2072 } 2073 2074 int 2075 i915_gem_mmap_gtt(struct drm_file *file, 2076 struct drm_device *dev, 2077 uint32_t handle, 2078 uint64_t *offset) 2079 { 2080 struct drm_i915_gem_object *obj; 2081 int ret; 2082 2083 ret = i915_mutex_lock_interruptible(dev); 2084 if (ret) 2085 return ret; 2086 2087 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle)); 2088 if (&obj->base == NULL) { 2089 ret = -ENOENT; 2090 goto unlock; 2091 } 2092 2093 if (obj->madv != I915_MADV_WILLNEED) { 2094 DRM_DEBUG("Attempting to mmap a purgeable buffer\n"); 2095 ret = -EFAULT; 2096 goto out; 2097 } 2098 2099 ret = i915_gem_object_create_mmap_offset(obj); 2100 if (ret) 2101 goto out; 2102 2103 *offset = drm_vma_node_offset_addr(&obj->base.vma_node); 2104 2105 out: 2106 drm_gem_object_unreference(&obj->base); 2107 unlock: 2108 mutex_unlock(&dev->struct_mutex); 2109 return ret; 2110 } 2111 2112 /** 2113 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing 2114 * @dev: DRM device 2115 * @data: GTT mapping ioctl data 2116 * @file: GEM object info 2117 * 2118 * Simply returns the fake offset to userspace so it can mmap it. 2119 * The mmap call will end up in drm_gem_mmap(), which will set things 2120 * up so we can get faults in the handler above. 2121 * 2122 * The fault handler will take care of binding the object into the GTT 2123 * (since it may have been evicted to make room for something), allocating 2124 * a fence register, and mapping the appropriate aperture address into 2125 * userspace. 2126 */ 2127 int 2128 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 2129 struct drm_file *file) 2130 { 2131 struct drm_i915_gem_mmap_gtt *args = data; 2132 2133 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset); 2134 } 2135 2136 /* Immediately discard the backing storage */ 2137 static void 2138 i915_gem_object_truncate(struct drm_i915_gem_object *obj) 2139 { 2140 i915_gem_object_free_mmap_offset(obj); 2141 2142 if (obj->base.filp == NULL) 2143 return; 2144 2145 /* Our goal here is to return as much of the memory as 2146 * is possible back to the system as we are called from OOM. 2147 * To do this we must instruct the shmfs to drop all of its 2148 * backing pages, *now*. 2149 */ 2150 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1); 2151 obj->madv = __I915_MADV_PURGED; 2152 } 2153 2154 /* Try to discard unwanted pages */ 2155 static void 2156 i915_gem_object_invalidate(struct drm_i915_gem_object *obj) 2157 { 2158 struct address_space *mapping; 2159 2160 switch (obj->madv) { 2161 case I915_MADV_DONTNEED: 2162 i915_gem_object_truncate(obj); 2163 case __I915_MADV_PURGED: 2164 return; 2165 } 2166 2167 if (obj->base.filp == NULL) 2168 return; 2169 2170 mapping = file_inode(obj->base.filp)->i_mapping, 2171 invalidate_mapping_pages(mapping, 0, (loff_t)-1); 2172 } 2173 2174 static void 2175 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj) 2176 { 2177 struct sg_page_iter sg_iter; 2178 int ret; 2179 2180 BUG_ON(obj->madv == __I915_MADV_PURGED); 2181 2182 ret = i915_gem_object_set_to_cpu_domain(obj, true); 2183 if (ret) { 2184 /* In the event of a disaster, abandon all caches and 2185 * hope for the best. 2186 */ 2187 WARN_ON(ret != -EIO); 2188 i915_gem_clflush_object(obj, true); 2189 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU; 2190 } 2191 2192 i915_gem_gtt_finish_object(obj); 2193 2194 if (i915_gem_object_needs_bit17_swizzle(obj)) 2195 i915_gem_object_save_bit_17_swizzle(obj); 2196 2197 if (obj->madv == I915_MADV_DONTNEED) 2198 obj->dirty = 0; 2199 2200 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) { 2201 struct page *page = sg_page_iter_page(&sg_iter); 2202 2203 if (obj->dirty) 2204 set_page_dirty(page); 2205 2206 if (obj->madv == I915_MADV_WILLNEED) 2207 mark_page_accessed(page); 2208 2209 page_cache_release(page); 2210 } 2211 obj->dirty = 0; 2212 2213 sg_free_table(obj->pages); 2214 kfree(obj->pages); 2215 } 2216 2217 int 2218 i915_gem_object_put_pages(struct drm_i915_gem_object *obj) 2219 { 2220 const struct drm_i915_gem_object_ops *ops = obj->ops; 2221 2222 if (obj->pages == NULL) 2223 return 0; 2224 2225 if (obj->pages_pin_count) 2226 return -EBUSY; 2227 2228 BUG_ON(i915_gem_obj_bound_any(obj)); 2229 2230 /* ->put_pages might need to allocate memory for the bit17 swizzle 2231 * array, hence protect them from being reaped by removing them from gtt 2232 * lists early. */ 2233 list_del(&obj->global_list); 2234 2235 ops->put_pages(obj); 2236 obj->pages = NULL; 2237 2238 i915_gem_object_invalidate(obj); 2239 2240 return 0; 2241 } 2242 2243 static int 2244 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj) 2245 { 2246 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2247 int page_count, i; 2248 struct address_space *mapping; 2249 struct sg_table *st; 2250 struct scatterlist *sg; 2251 struct sg_page_iter sg_iter; 2252 struct page *page; 2253 unsigned long last_pfn = 0; /* suppress gcc warning */ 2254 int ret; 2255 gfp_t gfp; 2256 2257 /* Assert that the object is not currently in any GPU domain. As it 2258 * wasn't in the GTT, there shouldn't be any way it could have been in 2259 * a GPU cache 2260 */ 2261 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS); 2262 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS); 2263 2264 st = kmalloc(sizeof(*st), GFP_KERNEL); 2265 if (st == NULL) 2266 return -ENOMEM; 2267 2268 page_count = obj->base.size / PAGE_SIZE; 2269 if (sg_alloc_table(st, page_count, GFP_KERNEL)) { 2270 kfree(st); 2271 return -ENOMEM; 2272 } 2273 2274 /* Get the list of pages out of our struct file. They'll be pinned 2275 * at this point until we release them. 2276 * 2277 * Fail silently without starting the shrinker 2278 */ 2279 mapping = file_inode(obj->base.filp)->i_mapping; 2280 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM)); 2281 gfp |= __GFP_NORETRY | __GFP_NOWARN; 2282 sg = st->sgl; 2283 st->nents = 0; 2284 for (i = 0; i < page_count; i++) { 2285 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 2286 if (IS_ERR(page)) { 2287 i915_gem_shrink(dev_priv, 2288 page_count, 2289 I915_SHRINK_BOUND | 2290 I915_SHRINK_UNBOUND | 2291 I915_SHRINK_PURGEABLE); 2292 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 2293 } 2294 if (IS_ERR(page)) { 2295 /* We've tried hard to allocate the memory by reaping 2296 * our own buffer, now let the real VM do its job and 2297 * go down in flames if truly OOM. 2298 */ 2299 i915_gem_shrink_all(dev_priv); 2300 page = shmem_read_mapping_page(mapping, i); 2301 if (IS_ERR(page)) { 2302 ret = PTR_ERR(page); 2303 goto err_pages; 2304 } 2305 } 2306 #ifdef CONFIG_SWIOTLB 2307 if (swiotlb_nr_tbl()) { 2308 st->nents++; 2309 sg_set_page(sg, page, PAGE_SIZE, 0); 2310 sg = sg_next(sg); 2311 continue; 2312 } 2313 #endif 2314 if (!i || page_to_pfn(page) != last_pfn + 1) { 2315 if (i) 2316 sg = sg_next(sg); 2317 st->nents++; 2318 sg_set_page(sg, page, PAGE_SIZE, 0); 2319 } else { 2320 sg->length += PAGE_SIZE; 2321 } 2322 last_pfn = page_to_pfn(page); 2323 2324 /* Check that the i965g/gm workaround works. */ 2325 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL)); 2326 } 2327 #ifdef CONFIG_SWIOTLB 2328 if (!swiotlb_nr_tbl()) 2329 #endif 2330 sg_mark_end(sg); 2331 obj->pages = st; 2332 2333 ret = i915_gem_gtt_prepare_object(obj); 2334 if (ret) 2335 goto err_pages; 2336 2337 if (i915_gem_object_needs_bit17_swizzle(obj)) 2338 i915_gem_object_do_bit_17_swizzle(obj); 2339 2340 if (obj->tiling_mode != I915_TILING_NONE && 2341 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) 2342 i915_gem_object_pin_pages(obj); 2343 2344 return 0; 2345 2346 err_pages: 2347 sg_mark_end(sg); 2348 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) 2349 page_cache_release(sg_page_iter_page(&sg_iter)); 2350 sg_free_table(st); 2351 kfree(st); 2352 2353 /* shmemfs first checks if there is enough memory to allocate the page 2354 * and reports ENOSPC should there be insufficient, along with the usual 2355 * ENOMEM for a genuine allocation failure. 2356 * 2357 * We use ENOSPC in our driver to mean that we have run out of aperture 2358 * space and so want to translate the error from shmemfs back to our 2359 * usual understanding of ENOMEM. 2360 */ 2361 if (ret == -ENOSPC) 2362 ret = -ENOMEM; 2363 2364 return ret; 2365 } 2366 2367 /* Ensure that the associated pages are gathered from the backing storage 2368 * and pinned into our object. i915_gem_object_get_pages() may be called 2369 * multiple times before they are released by a single call to 2370 * i915_gem_object_put_pages() - once the pages are no longer referenced 2371 * either as a result of memory pressure (reaping pages under the shrinker) 2372 * or as the object is itself released. 2373 */ 2374 int 2375 i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 2376 { 2377 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2378 const struct drm_i915_gem_object_ops *ops = obj->ops; 2379 int ret; 2380 2381 if (obj->pages) 2382 return 0; 2383 2384 if (obj->madv != I915_MADV_WILLNEED) { 2385 DRM_DEBUG("Attempting to obtain a purgeable object\n"); 2386 return -EFAULT; 2387 } 2388 2389 BUG_ON(obj->pages_pin_count); 2390 2391 ret = ops->get_pages(obj); 2392 if (ret) 2393 return ret; 2394 2395 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list); 2396 2397 obj->get_page.sg = obj->pages->sgl; 2398 obj->get_page.last = 0; 2399 2400 return 0; 2401 } 2402 2403 void i915_vma_move_to_active(struct i915_vma *vma, 2404 struct drm_i915_gem_request *req) 2405 { 2406 struct drm_i915_gem_object *obj = vma->obj; 2407 struct intel_engine_cs *ring; 2408 2409 ring = i915_gem_request_get_ring(req); 2410 2411 /* Add a reference if we're newly entering the active list. */ 2412 if (obj->active == 0) 2413 drm_gem_object_reference(&obj->base); 2414 obj->active |= intel_ring_flag(ring); 2415 2416 list_move_tail(&obj->ring_list[ring->id], &ring->active_list); 2417 i915_gem_request_assign(&obj->last_read_req[ring->id], req); 2418 2419 list_move_tail(&vma->mm_list, &vma->vm->active_list); 2420 } 2421 2422 static void 2423 i915_gem_object_retire__write(struct drm_i915_gem_object *obj) 2424 { 2425 RQ_BUG_ON(obj->last_write_req == NULL); 2426 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring))); 2427 2428 i915_gem_request_assign(&obj->last_write_req, NULL); 2429 intel_fb_obj_flush(obj, true, ORIGIN_CS); 2430 } 2431 2432 static void 2433 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring) 2434 { 2435 struct i915_vma *vma; 2436 2437 RQ_BUG_ON(obj->last_read_req[ring] == NULL); 2438 RQ_BUG_ON(!(obj->active & (1 << ring))); 2439 2440 list_del_init(&obj->ring_list[ring]); 2441 i915_gem_request_assign(&obj->last_read_req[ring], NULL); 2442 2443 if (obj->last_write_req && obj->last_write_req->ring->id == ring) 2444 i915_gem_object_retire__write(obj); 2445 2446 obj->active &= ~(1 << ring); 2447 if (obj->active) 2448 return; 2449 2450 /* Bump our place on the bound list to keep it roughly in LRU order 2451 * so that we don't steal from recently used but inactive objects 2452 * (unless we are forced to ofc!) 2453 */ 2454 list_move_tail(&obj->global_list, 2455 &to_i915(obj->base.dev)->mm.bound_list); 2456 2457 list_for_each_entry(vma, &obj->vma_list, vma_link) { 2458 if (!list_empty(&vma->mm_list)) 2459 list_move_tail(&vma->mm_list, &vma->vm->inactive_list); 2460 } 2461 2462 i915_gem_request_assign(&obj->last_fenced_req, NULL); 2463 drm_gem_object_unreference(&obj->base); 2464 } 2465 2466 static int 2467 i915_gem_init_seqno(struct drm_device *dev, u32 seqno) 2468 { 2469 struct drm_i915_private *dev_priv = dev->dev_private; 2470 struct intel_engine_cs *ring; 2471 int ret, i, j; 2472 2473 /* Carefully retire all requests without writing to the rings */ 2474 for_each_ring(ring, dev_priv, i) { 2475 ret = intel_ring_idle(ring); 2476 if (ret) 2477 return ret; 2478 } 2479 i915_gem_retire_requests(dev); 2480 2481 /* Finally reset hw state */ 2482 for_each_ring(ring, dev_priv, i) { 2483 intel_ring_init_seqno(ring, seqno); 2484 2485 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++) 2486 ring->semaphore.sync_seqno[j] = 0; 2487 } 2488 2489 return 0; 2490 } 2491 2492 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno) 2493 { 2494 struct drm_i915_private *dev_priv = dev->dev_private; 2495 int ret; 2496 2497 if (seqno == 0) 2498 return -EINVAL; 2499 2500 /* HWS page needs to be set less than what we 2501 * will inject to ring 2502 */ 2503 ret = i915_gem_init_seqno(dev, seqno - 1); 2504 if (ret) 2505 return ret; 2506 2507 /* Carefully set the last_seqno value so that wrap 2508 * detection still works 2509 */ 2510 dev_priv->next_seqno = seqno; 2511 dev_priv->last_seqno = seqno - 1; 2512 if (dev_priv->last_seqno == 0) 2513 dev_priv->last_seqno--; 2514 2515 return 0; 2516 } 2517 2518 int 2519 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno) 2520 { 2521 struct drm_i915_private *dev_priv = dev->dev_private; 2522 2523 /* reserve 0 for non-seqno */ 2524 if (dev_priv->next_seqno == 0) { 2525 int ret = i915_gem_init_seqno(dev, 0); 2526 if (ret) 2527 return ret; 2528 2529 dev_priv->next_seqno = 1; 2530 } 2531 2532 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++; 2533 return 0; 2534 } 2535 2536 /* 2537 * NB: This function is not allowed to fail. Doing so would mean the the 2538 * request is not being tracked for completion but the work itself is 2539 * going to happen on the hardware. This would be a Bad Thing(tm). 2540 */ 2541 void __i915_add_request(struct drm_i915_gem_request *request, 2542 struct drm_i915_gem_object *obj, 2543 bool flush_caches) 2544 { 2545 struct intel_engine_cs *ring; 2546 struct drm_i915_private *dev_priv; 2547 struct intel_ringbuffer *ringbuf; 2548 u32 request_start; 2549 int ret; 2550 2551 if (WARN_ON(request == NULL)) 2552 return; 2553 2554 ring = request->ring; 2555 dev_priv = ring->dev->dev_private; 2556 ringbuf = request->ringbuf; 2557 2558 /* 2559 * To ensure that this call will not fail, space for its emissions 2560 * should already have been reserved in the ring buffer. Let the ring 2561 * know that it is time to use that space up. 2562 */ 2563 intel_ring_reserved_space_use(ringbuf); 2564 2565 request_start = intel_ring_get_tail(ringbuf); 2566 /* 2567 * Emit any outstanding flushes - execbuf can fail to emit the flush 2568 * after having emitted the batchbuffer command. Hence we need to fix 2569 * things up similar to emitting the lazy request. The difference here 2570 * is that the flush _must_ happen before the next request, no matter 2571 * what. 2572 */ 2573 if (flush_caches) { 2574 if (i915.enable_execlists) 2575 ret = logical_ring_flush_all_caches(request); 2576 else 2577 ret = intel_ring_flush_all_caches(request); 2578 /* Not allowed to fail! */ 2579 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret); 2580 } 2581 2582 /* Record the position of the start of the request so that 2583 * should we detect the updated seqno part-way through the 2584 * GPU processing the request, we never over-estimate the 2585 * position of the head. 2586 */ 2587 request->postfix = intel_ring_get_tail(ringbuf); 2588 2589 if (i915.enable_execlists) 2590 ret = ring->emit_request(request); 2591 else { 2592 ret = ring->add_request(request); 2593 2594 request->tail = intel_ring_get_tail(ringbuf); 2595 } 2596 /* Not allowed to fail! */ 2597 WARN(ret, "emit|add_request failed: %d!\n", ret); 2598 2599 request->head = request_start; 2600 2601 /* Whilst this request exists, batch_obj will be on the 2602 * active_list, and so will hold the active reference. Only when this 2603 * request is retired will the the batch_obj be moved onto the 2604 * inactive_list and lose its active reference. Hence we do not need 2605 * to explicitly hold another reference here. 2606 */ 2607 request->batch_obj = obj; 2608 2609 request->emitted_jiffies = jiffies; 2610 request->previous_seqno = ring->last_submitted_seqno; 2611 ring->last_submitted_seqno = request->seqno; 2612 list_add_tail(&request->list, &ring->request_list); 2613 2614 trace_i915_gem_request_add(request); 2615 2616 i915_queue_hangcheck(ring->dev); 2617 2618 queue_delayed_work(dev_priv->wq, 2619 &dev_priv->mm.retire_work, 2620 round_jiffies_up_relative(HZ)); 2621 intel_mark_busy(dev_priv->dev); 2622 2623 /* Sanity check that the reserved size was large enough. */ 2624 intel_ring_reserved_space_end(ringbuf); 2625 } 2626 2627 static bool i915_context_is_banned(struct drm_i915_private *dev_priv, 2628 const struct intel_context *ctx) 2629 { 2630 unsigned long elapsed; 2631 2632 elapsed = get_seconds() - ctx->hang_stats.guilty_ts; 2633 2634 if (ctx->hang_stats.banned) 2635 return true; 2636 2637 if (ctx->hang_stats.ban_period_seconds && 2638 elapsed <= ctx->hang_stats.ban_period_seconds) { 2639 if (!i915_gem_context_is_default(ctx)) { 2640 DRM_DEBUG("context hanging too fast, banning!\n"); 2641 return true; 2642 } else if (i915_stop_ring_allow_ban(dev_priv)) { 2643 if (i915_stop_ring_allow_warn(dev_priv)) 2644 DRM_ERROR("gpu hanging too fast, banning!\n"); 2645 return true; 2646 } 2647 } 2648 2649 return false; 2650 } 2651 2652 static void i915_set_reset_status(struct drm_i915_private *dev_priv, 2653 struct intel_context *ctx, 2654 const bool guilty) 2655 { 2656 struct i915_ctx_hang_stats *hs; 2657 2658 if (WARN_ON(!ctx)) 2659 return; 2660 2661 hs = &ctx->hang_stats; 2662 2663 if (guilty) { 2664 hs->banned = i915_context_is_banned(dev_priv, ctx); 2665 hs->batch_active++; 2666 hs->guilty_ts = get_seconds(); 2667 } else { 2668 hs->batch_pending++; 2669 } 2670 } 2671 2672 void i915_gem_request_free(struct kref *req_ref) 2673 { 2674 struct drm_i915_gem_request *req = container_of(req_ref, 2675 typeof(*req), ref); 2676 struct intel_context *ctx = req->ctx; 2677 2678 if (req->file_priv) 2679 i915_gem_request_remove_from_client(req); 2680 2681 if (ctx) { 2682 if (i915.enable_execlists && ctx != req->i915->kernel_context) 2683 intel_lr_context_unpin(req); 2684 2685 i915_gem_context_unreference(ctx); 2686 } 2687 2688 kmem_cache_free(req->i915->requests, req); 2689 } 2690 2691 static inline int 2692 __i915_gem_request_alloc(struct intel_engine_cs *ring, 2693 struct intel_context *ctx, 2694 struct drm_i915_gem_request **req_out) 2695 { 2696 struct drm_i915_private *dev_priv = to_i915(ring->dev); 2697 struct drm_i915_gem_request *req; 2698 int ret; 2699 2700 if (!req_out) 2701 return -EINVAL; 2702 2703 *req_out = NULL; 2704 2705 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL); 2706 if (req == NULL) 2707 return -ENOMEM; 2708 2709 ret = i915_gem_get_seqno(ring->dev, &req->seqno); 2710 if (ret) 2711 goto err; 2712 2713 kref_init(&req->ref); 2714 req->i915 = dev_priv; 2715 req->ring = ring; 2716 req->ctx = ctx; 2717 i915_gem_context_reference(req->ctx); 2718 2719 if (i915.enable_execlists) 2720 ret = intel_logical_ring_alloc_request_extras(req); 2721 else 2722 ret = intel_ring_alloc_request_extras(req); 2723 if (ret) { 2724 i915_gem_context_unreference(req->ctx); 2725 goto err; 2726 } 2727 2728 /* 2729 * Reserve space in the ring buffer for all the commands required to 2730 * eventually emit this request. This is to guarantee that the 2731 * i915_add_request() call can't fail. Note that the reserve may need 2732 * to be redone if the request is not actually submitted straight 2733 * away, e.g. because a GPU scheduler has deferred it. 2734 */ 2735 if (i915.enable_execlists) 2736 ret = intel_logical_ring_reserve_space(req); 2737 else 2738 ret = intel_ring_reserve_space(req); 2739 if (ret) { 2740 /* 2741 * At this point, the request is fully allocated even if not 2742 * fully prepared. Thus it can be cleaned up using the proper 2743 * free code. 2744 */ 2745 i915_gem_request_cancel(req); 2746 return ret; 2747 } 2748 2749 *req_out = req; 2750 return 0; 2751 2752 err: 2753 kmem_cache_free(dev_priv->requests, req); 2754 return ret; 2755 } 2756 2757 /** 2758 * i915_gem_request_alloc - allocate a request structure 2759 * 2760 * @engine: engine that we wish to issue the request on. 2761 * @ctx: context that the request will be associated with. 2762 * This can be NULL if the request is not directly related to 2763 * any specific user context, in which case this function will 2764 * choose an appropriate context to use. 2765 * 2766 * Returns a pointer to the allocated request if successful, 2767 * or an error code if not. 2768 */ 2769 struct drm_i915_gem_request * 2770 i915_gem_request_alloc(struct intel_engine_cs *engine, 2771 struct intel_context *ctx) 2772 { 2773 struct drm_i915_gem_request *req; 2774 int err; 2775 2776 if (ctx == NULL) 2777 ctx = to_i915(engine->dev)->kernel_context; 2778 err = __i915_gem_request_alloc(engine, ctx, &req); 2779 return err ? ERR_PTR(err) : req; 2780 } 2781 2782 void i915_gem_request_cancel(struct drm_i915_gem_request *req) 2783 { 2784 intel_ring_reserved_space_cancel(req->ringbuf); 2785 2786 i915_gem_request_unreference(req); 2787 } 2788 2789 struct drm_i915_gem_request * 2790 i915_gem_find_active_request(struct intel_engine_cs *ring) 2791 { 2792 struct drm_i915_gem_request *request; 2793 2794 list_for_each_entry(request, &ring->request_list, list) { 2795 if (i915_gem_request_completed(request, false)) 2796 continue; 2797 2798 return request; 2799 } 2800 2801 return NULL; 2802 } 2803 2804 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv, 2805 struct intel_engine_cs *ring) 2806 { 2807 struct drm_i915_gem_request *request; 2808 bool ring_hung; 2809 2810 request = i915_gem_find_active_request(ring); 2811 2812 if (request == NULL) 2813 return; 2814 2815 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG; 2816 2817 i915_set_reset_status(dev_priv, request->ctx, ring_hung); 2818 2819 list_for_each_entry_continue(request, &ring->request_list, list) 2820 i915_set_reset_status(dev_priv, request->ctx, false); 2821 } 2822 2823 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv, 2824 struct intel_engine_cs *ring) 2825 { 2826 struct intel_ringbuffer *buffer; 2827 2828 while (!list_empty(&ring->active_list)) { 2829 struct drm_i915_gem_object *obj; 2830 2831 obj = list_first_entry(&ring->active_list, 2832 struct drm_i915_gem_object, 2833 ring_list[ring->id]); 2834 2835 i915_gem_object_retire__read(obj, ring->id); 2836 } 2837 2838 /* 2839 * Clear the execlists queue up before freeing the requests, as those 2840 * are the ones that keep the context and ringbuffer backing objects 2841 * pinned in place. 2842 */ 2843 2844 if (i915.enable_execlists) { 2845 spin_lock_irq(&ring->execlist_lock); 2846 2847 /* list_splice_tail_init checks for empty lists */ 2848 list_splice_tail_init(&ring->execlist_queue, 2849 &ring->execlist_retired_req_list); 2850 2851 spin_unlock_irq(&ring->execlist_lock); 2852 intel_execlists_retire_requests(ring); 2853 } 2854 2855 /* 2856 * We must free the requests after all the corresponding objects have 2857 * been moved off active lists. Which is the same order as the normal 2858 * retire_requests function does. This is important if object hold 2859 * implicit references on things like e.g. ppgtt address spaces through 2860 * the request. 2861 */ 2862 while (!list_empty(&ring->request_list)) { 2863 struct drm_i915_gem_request *request; 2864 2865 request = list_first_entry(&ring->request_list, 2866 struct drm_i915_gem_request, 2867 list); 2868 2869 i915_gem_request_retire(request); 2870 } 2871 2872 /* Having flushed all requests from all queues, we know that all 2873 * ringbuffers must now be empty. However, since we do not reclaim 2874 * all space when retiring the request (to prevent HEADs colliding 2875 * with rapid ringbuffer wraparound) the amount of available space 2876 * upon reset is less than when we start. Do one more pass over 2877 * all the ringbuffers to reset last_retired_head. 2878 */ 2879 list_for_each_entry(buffer, &ring->buffers, link) { 2880 buffer->last_retired_head = buffer->tail; 2881 intel_ring_update_space(buffer); 2882 } 2883 } 2884 2885 void i915_gem_reset(struct drm_device *dev) 2886 { 2887 struct drm_i915_private *dev_priv = dev->dev_private; 2888 struct intel_engine_cs *ring; 2889 int i; 2890 2891 /* 2892 * Before we free the objects from the requests, we need to inspect 2893 * them for finding the guilty party. As the requests only borrow 2894 * their reference to the objects, the inspection must be done first. 2895 */ 2896 for_each_ring(ring, dev_priv, i) 2897 i915_gem_reset_ring_status(dev_priv, ring); 2898 2899 for_each_ring(ring, dev_priv, i) 2900 i915_gem_reset_ring_cleanup(dev_priv, ring); 2901 2902 i915_gem_context_reset(dev); 2903 2904 i915_gem_restore_fences(dev); 2905 2906 WARN_ON(i915_verify_lists(dev)); 2907 } 2908 2909 /** 2910 * This function clears the request list as sequence numbers are passed. 2911 */ 2912 void 2913 i915_gem_retire_requests_ring(struct intel_engine_cs *ring) 2914 { 2915 WARN_ON(i915_verify_lists(ring->dev)); 2916 2917 /* Retire requests first as we use it above for the early return. 2918 * If we retire requests last, we may use a later seqno and so clear 2919 * the requests lists without clearing the active list, leading to 2920 * confusion. 2921 */ 2922 while (!list_empty(&ring->request_list)) { 2923 struct drm_i915_gem_request *request; 2924 2925 request = list_first_entry(&ring->request_list, 2926 struct drm_i915_gem_request, 2927 list); 2928 2929 if (!i915_gem_request_completed(request, true)) 2930 break; 2931 2932 i915_gem_request_retire(request); 2933 } 2934 2935 /* Move any buffers on the active list that are no longer referenced 2936 * by the ringbuffer to the flushing/inactive lists as appropriate, 2937 * before we free the context associated with the requests. 2938 */ 2939 while (!list_empty(&ring->active_list)) { 2940 struct drm_i915_gem_object *obj; 2941 2942 obj = list_first_entry(&ring->active_list, 2943 struct drm_i915_gem_object, 2944 ring_list[ring->id]); 2945 2946 if (!list_empty(&obj->last_read_req[ring->id]->list)) 2947 break; 2948 2949 i915_gem_object_retire__read(obj, ring->id); 2950 } 2951 2952 if (unlikely(ring->trace_irq_req && 2953 i915_gem_request_completed(ring->trace_irq_req, true))) { 2954 ring->irq_put(ring); 2955 i915_gem_request_assign(&ring->trace_irq_req, NULL); 2956 } 2957 2958 WARN_ON(i915_verify_lists(ring->dev)); 2959 } 2960 2961 bool 2962 i915_gem_retire_requests(struct drm_device *dev) 2963 { 2964 struct drm_i915_private *dev_priv = dev->dev_private; 2965 struct intel_engine_cs *ring; 2966 bool idle = true; 2967 int i; 2968 2969 for_each_ring(ring, dev_priv, i) { 2970 i915_gem_retire_requests_ring(ring); 2971 idle &= list_empty(&ring->request_list); 2972 if (i915.enable_execlists) { 2973 unsigned long flags; 2974 2975 spin_lock_irqsave(&ring->execlist_lock, flags); 2976 idle &= list_empty(&ring->execlist_queue); 2977 spin_unlock_irqrestore(&ring->execlist_lock, flags); 2978 2979 intel_execlists_retire_requests(ring); 2980 } 2981 } 2982 2983 if (idle) 2984 mod_delayed_work(dev_priv->wq, 2985 &dev_priv->mm.idle_work, 2986 msecs_to_jiffies(100)); 2987 2988 return idle; 2989 } 2990 2991 static void 2992 i915_gem_retire_work_handler(struct work_struct *work) 2993 { 2994 struct drm_i915_private *dev_priv = 2995 container_of(work, typeof(*dev_priv), mm.retire_work.work); 2996 struct drm_device *dev = dev_priv->dev; 2997 bool idle; 2998 2999 /* Come back later if the device is busy... */ 3000 idle = false; 3001 if (mutex_trylock(&dev->struct_mutex)) { 3002 idle = i915_gem_retire_requests(dev); 3003 mutex_unlock(&dev->struct_mutex); 3004 } 3005 if (!idle) 3006 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 3007 round_jiffies_up_relative(HZ)); 3008 } 3009 3010 static void 3011 i915_gem_idle_work_handler(struct work_struct *work) 3012 { 3013 struct drm_i915_private *dev_priv = 3014 container_of(work, typeof(*dev_priv), mm.idle_work.work); 3015 struct drm_device *dev = dev_priv->dev; 3016 struct intel_engine_cs *ring; 3017 int i; 3018 3019 for_each_ring(ring, dev_priv, i) 3020 if (!list_empty(&ring->request_list)) 3021 return; 3022 3023 /* we probably should sync with hangcheck here, using cancel_work_sync. 3024 * Also locking seems to be fubar here, ring->request_list is protected 3025 * by dev->struct_mutex. */ 3026 3027 intel_mark_idle(dev); 3028 3029 if (mutex_trylock(&dev->struct_mutex)) { 3030 struct intel_engine_cs *ring; 3031 int i; 3032 3033 for_each_ring(ring, dev_priv, i) 3034 i915_gem_batch_pool_fini(&ring->batch_pool); 3035 3036 mutex_unlock(&dev->struct_mutex); 3037 } 3038 } 3039 3040 /** 3041 * Ensures that an object will eventually get non-busy by flushing any required 3042 * write domains, emitting any outstanding lazy request and retiring and 3043 * completed requests. 3044 */ 3045 static int 3046 i915_gem_object_flush_active(struct drm_i915_gem_object *obj) 3047 { 3048 int i; 3049 3050 if (!obj->active) 3051 return 0; 3052 3053 for (i = 0; i < I915_NUM_RINGS; i++) { 3054 struct drm_i915_gem_request *req; 3055 3056 req = obj->last_read_req[i]; 3057 if (req == NULL) 3058 continue; 3059 3060 if (list_empty(&req->list)) 3061 goto retire; 3062 3063 if (i915_gem_request_completed(req, true)) { 3064 __i915_gem_request_retire__upto(req); 3065 retire: 3066 i915_gem_object_retire__read(obj, i); 3067 } 3068 } 3069 3070 return 0; 3071 } 3072 3073 /** 3074 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT 3075 * @DRM_IOCTL_ARGS: standard ioctl arguments 3076 * 3077 * Returns 0 if successful, else an error is returned with the remaining time in 3078 * the timeout parameter. 3079 * -ETIME: object is still busy after timeout 3080 * -ERESTARTSYS: signal interrupted the wait 3081 * -ENONENT: object doesn't exist 3082 * Also possible, but rare: 3083 * -EAGAIN: GPU wedged 3084 * -ENOMEM: damn 3085 * -ENODEV: Internal IRQ fail 3086 * -E?: The add request failed 3087 * 3088 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any 3089 * non-zero timeout parameter the wait ioctl will wait for the given number of 3090 * nanoseconds on an object becoming unbusy. Since the wait itself does so 3091 * without holding struct_mutex the object may become re-busied before this 3092 * function completes. A similar but shorter * race condition exists in the busy 3093 * ioctl 3094 */ 3095 int 3096 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file) 3097 { 3098 struct drm_i915_private *dev_priv = dev->dev_private; 3099 struct drm_i915_gem_wait *args = data; 3100 struct drm_i915_gem_object *obj; 3101 struct drm_i915_gem_request *req[I915_NUM_RINGS]; 3102 unsigned reset_counter; 3103 int i, n = 0; 3104 int ret; 3105 3106 if (args->flags != 0) 3107 return -EINVAL; 3108 3109 ret = i915_mutex_lock_interruptible(dev); 3110 if (ret) 3111 return ret; 3112 3113 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle)); 3114 if (&obj->base == NULL) { 3115 mutex_unlock(&dev->struct_mutex); 3116 return -ENOENT; 3117 } 3118 3119 /* Need to make sure the object gets inactive eventually. */ 3120 ret = i915_gem_object_flush_active(obj); 3121 if (ret) 3122 goto out; 3123 3124 if (!obj->active) 3125 goto out; 3126 3127 /* Do this after OLR check to make sure we make forward progress polling 3128 * on this IOCTL with a timeout == 0 (like busy ioctl) 3129 */ 3130 if (args->timeout_ns == 0) { 3131 ret = -ETIME; 3132 goto out; 3133 } 3134 3135 drm_gem_object_unreference(&obj->base); 3136 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 3137 3138 for (i = 0; i < I915_NUM_RINGS; i++) { 3139 if (obj->last_read_req[i] == NULL) 3140 continue; 3141 3142 req[n++] = i915_gem_request_reference(obj->last_read_req[i]); 3143 } 3144 3145 mutex_unlock(&dev->struct_mutex); 3146 3147 for (i = 0; i < n; i++) { 3148 if (ret == 0) 3149 ret = __i915_wait_request(req[i], reset_counter, true, 3150 args->timeout_ns > 0 ? &args->timeout_ns : NULL, 3151 to_rps_client(file)); 3152 i915_gem_request_unreference__unlocked(req[i]); 3153 } 3154 return ret; 3155 3156 out: 3157 drm_gem_object_unreference(&obj->base); 3158 mutex_unlock(&dev->struct_mutex); 3159 return ret; 3160 } 3161 3162 static int 3163 __i915_gem_object_sync(struct drm_i915_gem_object *obj, 3164 struct intel_engine_cs *to, 3165 struct drm_i915_gem_request *from_req, 3166 struct drm_i915_gem_request **to_req) 3167 { 3168 struct intel_engine_cs *from; 3169 int ret; 3170 3171 from = i915_gem_request_get_ring(from_req); 3172 if (to == from) 3173 return 0; 3174 3175 if (i915_gem_request_completed(from_req, true)) 3176 return 0; 3177 3178 if (!i915_semaphore_is_enabled(obj->base.dev)) { 3179 struct drm_i915_private *i915 = to_i915(obj->base.dev); 3180 ret = __i915_wait_request(from_req, 3181 atomic_read(&i915->gpu_error.reset_counter), 3182 i915->mm.interruptible, 3183 NULL, 3184 &i915->rps.semaphores); 3185 if (ret) 3186 return ret; 3187 3188 i915_gem_object_retire_request(obj, from_req); 3189 } else { 3190 int idx = intel_ring_sync_index(from, to); 3191 u32 seqno = i915_gem_request_get_seqno(from_req); 3192 3193 WARN_ON(!to_req); 3194 3195 if (seqno <= from->semaphore.sync_seqno[idx]) 3196 return 0; 3197 3198 if (*to_req == NULL) { 3199 struct drm_i915_gem_request *req; 3200 3201 req = i915_gem_request_alloc(to, NULL); 3202 if (IS_ERR(req)) 3203 return PTR_ERR(req); 3204 3205 *to_req = req; 3206 } 3207 3208 trace_i915_gem_ring_sync_to(*to_req, from, from_req); 3209 ret = to->semaphore.sync_to(*to_req, from, seqno); 3210 if (ret) 3211 return ret; 3212 3213 /* We use last_read_req because sync_to() 3214 * might have just caused seqno wrap under 3215 * the radar. 3216 */ 3217 from->semaphore.sync_seqno[idx] = 3218 i915_gem_request_get_seqno(obj->last_read_req[from->id]); 3219 } 3220 3221 return 0; 3222 } 3223 3224 /** 3225 * i915_gem_object_sync - sync an object to a ring. 3226 * 3227 * @obj: object which may be in use on another ring. 3228 * @to: ring we wish to use the object on. May be NULL. 3229 * @to_req: request we wish to use the object for. See below. 3230 * This will be allocated and returned if a request is 3231 * required but not passed in. 3232 * 3233 * This code is meant to abstract object synchronization with the GPU. 3234 * Calling with NULL implies synchronizing the object with the CPU 3235 * rather than a particular GPU ring. Conceptually we serialise writes 3236 * between engines inside the GPU. We only allow one engine to write 3237 * into a buffer at any time, but multiple readers. To ensure each has 3238 * a coherent view of memory, we must: 3239 * 3240 * - If there is an outstanding write request to the object, the new 3241 * request must wait for it to complete (either CPU or in hw, requests 3242 * on the same ring will be naturally ordered). 3243 * 3244 * - If we are a write request (pending_write_domain is set), the new 3245 * request must wait for outstanding read requests to complete. 3246 * 3247 * For CPU synchronisation (NULL to) no request is required. For syncing with 3248 * rings to_req must be non-NULL. However, a request does not have to be 3249 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a 3250 * request will be allocated automatically and returned through *to_req. Note 3251 * that it is not guaranteed that commands will be emitted (because the system 3252 * might already be idle). Hence there is no need to create a request that 3253 * might never have any work submitted. Note further that if a request is 3254 * returned in *to_req, it is the responsibility of the caller to submit 3255 * that request (after potentially adding more work to it). 3256 * 3257 * Returns 0 if successful, else propagates up the lower layer error. 3258 */ 3259 int 3260 i915_gem_object_sync(struct drm_i915_gem_object *obj, 3261 struct intel_engine_cs *to, 3262 struct drm_i915_gem_request **to_req) 3263 { 3264 const bool readonly = obj->base.pending_write_domain == 0; 3265 struct drm_i915_gem_request *req[I915_NUM_RINGS]; 3266 int ret, i, n; 3267 3268 if (!obj->active) 3269 return 0; 3270 3271 if (to == NULL) 3272 return i915_gem_object_wait_rendering(obj, readonly); 3273 3274 n = 0; 3275 if (readonly) { 3276 if (obj->last_write_req) 3277 req[n++] = obj->last_write_req; 3278 } else { 3279 for (i = 0; i < I915_NUM_RINGS; i++) 3280 if (obj->last_read_req[i]) 3281 req[n++] = obj->last_read_req[i]; 3282 } 3283 for (i = 0; i < n; i++) { 3284 ret = __i915_gem_object_sync(obj, to, req[i], to_req); 3285 if (ret) 3286 return ret; 3287 } 3288 3289 return 0; 3290 } 3291 3292 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj) 3293 { 3294 u32 old_write_domain, old_read_domains; 3295 3296 /* Force a pagefault for domain tracking on next user access */ 3297 i915_gem_release_mmap(obj); 3298 3299 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 3300 return; 3301 3302 /* Wait for any direct GTT access to complete */ 3303 mb(); 3304 3305 old_read_domains = obj->base.read_domains; 3306 old_write_domain = obj->base.write_domain; 3307 3308 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT; 3309 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT; 3310 3311 trace_i915_gem_object_change_domain(obj, 3312 old_read_domains, 3313 old_write_domain); 3314 } 3315 3316 static int __i915_vma_unbind(struct i915_vma *vma, bool wait) 3317 { 3318 struct drm_i915_gem_object *obj = vma->obj; 3319 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 3320 int ret; 3321 3322 if (list_empty(&vma->vma_link)) 3323 return 0; 3324 3325 if (!drm_mm_node_allocated(&vma->node)) { 3326 i915_gem_vma_destroy(vma); 3327 return 0; 3328 } 3329 3330 if (vma->pin_count) 3331 return -EBUSY; 3332 3333 BUG_ON(obj->pages == NULL); 3334 3335 if (wait) { 3336 ret = i915_gem_object_wait_rendering(obj, false); 3337 if (ret) 3338 return ret; 3339 } 3340 3341 if (i915_is_ggtt(vma->vm) && 3342 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) { 3343 i915_gem_object_finish_gtt(obj); 3344 3345 /* release the fence reg _after_ flushing */ 3346 ret = i915_gem_object_put_fence(obj); 3347 if (ret) 3348 return ret; 3349 } 3350 3351 trace_i915_vma_unbind(vma); 3352 3353 vma->vm->unbind_vma(vma); 3354 vma->bound = 0; 3355 3356 list_del_init(&vma->mm_list); 3357 if (i915_is_ggtt(vma->vm)) { 3358 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) { 3359 obj->map_and_fenceable = false; 3360 } else if (vma->ggtt_view.pages) { 3361 sg_free_table(vma->ggtt_view.pages); 3362 kfree(vma->ggtt_view.pages); 3363 } 3364 vma->ggtt_view.pages = NULL; 3365 } 3366 3367 drm_mm_remove_node(&vma->node); 3368 i915_gem_vma_destroy(vma); 3369 3370 /* Since the unbound list is global, only move to that list if 3371 * no more VMAs exist. */ 3372 if (list_empty(&obj->vma_list)) 3373 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list); 3374 3375 /* And finally now the object is completely decoupled from this vma, 3376 * we can drop its hold on the backing storage and allow it to be 3377 * reaped by the shrinker. 3378 */ 3379 i915_gem_object_unpin_pages(obj); 3380 3381 return 0; 3382 } 3383 3384 int i915_vma_unbind(struct i915_vma *vma) 3385 { 3386 return __i915_vma_unbind(vma, true); 3387 } 3388 3389 int __i915_vma_unbind_no_wait(struct i915_vma *vma) 3390 { 3391 return __i915_vma_unbind(vma, false); 3392 } 3393 3394 int i915_gpu_idle(struct drm_device *dev) 3395 { 3396 struct drm_i915_private *dev_priv = dev->dev_private; 3397 struct intel_engine_cs *ring; 3398 int ret, i; 3399 3400 /* Flush everything onto the inactive list. */ 3401 for_each_ring(ring, dev_priv, i) { 3402 if (!i915.enable_execlists) { 3403 struct drm_i915_gem_request *req; 3404 3405 req = i915_gem_request_alloc(ring, NULL); 3406 if (IS_ERR(req)) 3407 return PTR_ERR(req); 3408 3409 ret = i915_switch_context(req); 3410 if (ret) { 3411 i915_gem_request_cancel(req); 3412 return ret; 3413 } 3414 3415 i915_add_request_no_flush(req); 3416 } 3417 3418 ret = intel_ring_idle(ring); 3419 if (ret) 3420 return ret; 3421 } 3422 3423 WARN_ON(i915_verify_lists(dev)); 3424 return 0; 3425 } 3426 3427 static bool i915_gem_valid_gtt_space(struct i915_vma *vma, 3428 unsigned long cache_level) 3429 { 3430 struct drm_mm_node *gtt_space = &vma->node; 3431 struct drm_mm_node *other; 3432 3433 /* 3434 * On some machines we have to be careful when putting differing types 3435 * of snoopable memory together to avoid the prefetcher crossing memory 3436 * domains and dying. During vm initialisation, we decide whether or not 3437 * these constraints apply and set the drm_mm.color_adjust 3438 * appropriately. 3439 */ 3440 if (vma->vm->mm.color_adjust == NULL) 3441 return true; 3442 3443 if (!drm_mm_node_allocated(gtt_space)) 3444 return true; 3445 3446 if (list_empty(>t_space->node_list)) 3447 return true; 3448 3449 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list); 3450 if (other->allocated && !other->hole_follows && other->color != cache_level) 3451 return false; 3452 3453 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list); 3454 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level) 3455 return false; 3456 3457 return true; 3458 } 3459 3460 /** 3461 * Finds free space in the GTT aperture and binds the object or a view of it 3462 * there. 3463 */ 3464 static struct i915_vma * 3465 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj, 3466 struct i915_address_space *vm, 3467 const struct i915_ggtt_view *ggtt_view, 3468 unsigned alignment, 3469 uint64_t flags) 3470 { 3471 struct drm_device *dev = obj->base.dev; 3472 struct drm_i915_private *dev_priv = dev->dev_private; 3473 u32 fence_alignment, unfenced_alignment; 3474 u32 search_flag, alloc_flag; 3475 u64 start, end; 3476 u64 size, fence_size; 3477 struct i915_vma *vma; 3478 int ret; 3479 3480 if (i915_is_ggtt(vm)) { 3481 u32 view_size; 3482 3483 if (WARN_ON(!ggtt_view)) 3484 return ERR_PTR(-EINVAL); 3485 3486 view_size = i915_ggtt_view_size(obj, ggtt_view); 3487 3488 fence_size = i915_gem_get_gtt_size(dev, 3489 view_size, 3490 obj->tiling_mode); 3491 fence_alignment = i915_gem_get_gtt_alignment(dev, 3492 view_size, 3493 obj->tiling_mode, 3494 true); 3495 unfenced_alignment = i915_gem_get_gtt_alignment(dev, 3496 view_size, 3497 obj->tiling_mode, 3498 false); 3499 size = flags & PIN_MAPPABLE ? fence_size : view_size; 3500 } else { 3501 fence_size = i915_gem_get_gtt_size(dev, 3502 obj->base.size, 3503 obj->tiling_mode); 3504 fence_alignment = i915_gem_get_gtt_alignment(dev, 3505 obj->base.size, 3506 obj->tiling_mode, 3507 true); 3508 unfenced_alignment = 3509 i915_gem_get_gtt_alignment(dev, 3510 obj->base.size, 3511 obj->tiling_mode, 3512 false); 3513 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size; 3514 } 3515 3516 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0; 3517 end = vm->total; 3518 if (flags & PIN_MAPPABLE) 3519 end = min_t(u64, end, dev_priv->gtt.mappable_end); 3520 if (flags & PIN_ZONE_4G) 3521 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE); 3522 3523 if (alignment == 0) 3524 alignment = flags & PIN_MAPPABLE ? fence_alignment : 3525 unfenced_alignment; 3526 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) { 3527 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n", 3528 ggtt_view ? ggtt_view->type : 0, 3529 alignment); 3530 return ERR_PTR(-EINVAL); 3531 } 3532 3533 /* If binding the object/GGTT view requires more space than the entire 3534 * aperture has, reject it early before evicting everything in a vain 3535 * attempt to find space. 3536 */ 3537 if (size > end) { 3538 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n", 3539 ggtt_view ? ggtt_view->type : 0, 3540 size, 3541 flags & PIN_MAPPABLE ? "mappable" : "total", 3542 end); 3543 return ERR_PTR(-E2BIG); 3544 } 3545 3546 ret = i915_gem_object_get_pages(obj); 3547 if (ret) 3548 return ERR_PTR(ret); 3549 3550 i915_gem_object_pin_pages(obj); 3551 3552 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) : 3553 i915_gem_obj_lookup_or_create_vma(obj, vm); 3554 3555 if (IS_ERR(vma)) 3556 goto err_unpin; 3557 3558 if (flags & PIN_OFFSET_FIXED) { 3559 uint64_t offset = flags & PIN_OFFSET_MASK; 3560 3561 if (offset & (alignment - 1) || offset + size > end) { 3562 ret = -EINVAL; 3563 goto err_free_vma; 3564 } 3565 vma->node.start = offset; 3566 vma->node.size = size; 3567 vma->node.color = obj->cache_level; 3568 ret = drm_mm_reserve_node(&vm->mm, &vma->node); 3569 if (ret) { 3570 ret = i915_gem_evict_for_vma(vma); 3571 if (ret == 0) 3572 ret = drm_mm_reserve_node(&vm->mm, &vma->node); 3573 } 3574 if (ret) 3575 goto err_free_vma; 3576 } else { 3577 if (flags & PIN_HIGH) { 3578 search_flag = DRM_MM_SEARCH_BELOW; 3579 alloc_flag = DRM_MM_CREATE_TOP; 3580 } else { 3581 search_flag = DRM_MM_SEARCH_DEFAULT; 3582 alloc_flag = DRM_MM_CREATE_DEFAULT; 3583 } 3584 3585 search_free: 3586 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node, 3587 size, alignment, 3588 obj->cache_level, 3589 start, end, 3590 search_flag, 3591 alloc_flag); 3592 if (ret) { 3593 ret = i915_gem_evict_something(dev, vm, size, alignment, 3594 obj->cache_level, 3595 start, end, 3596 flags); 3597 if (ret == 0) 3598 goto search_free; 3599 3600 goto err_free_vma; 3601 } 3602 } 3603 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) { 3604 ret = -EINVAL; 3605 goto err_remove_node; 3606 } 3607 3608 trace_i915_vma_bind(vma, flags); 3609 ret = i915_vma_bind(vma, obj->cache_level, flags); 3610 if (ret) 3611 goto err_remove_node; 3612 3613 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list); 3614 list_add_tail(&vma->mm_list, &vm->inactive_list); 3615 3616 return vma; 3617 3618 err_remove_node: 3619 drm_mm_remove_node(&vma->node); 3620 err_free_vma: 3621 i915_gem_vma_destroy(vma); 3622 vma = ERR_PTR(ret); 3623 err_unpin: 3624 i915_gem_object_unpin_pages(obj); 3625 return vma; 3626 } 3627 3628 bool 3629 i915_gem_clflush_object(struct drm_i915_gem_object *obj, 3630 bool force) 3631 { 3632 /* If we don't have a page list set up, then we're not pinned 3633 * to GPU, and we can ignore the cache flush because it'll happen 3634 * again at bind time. 3635 */ 3636 if (obj->pages == NULL) 3637 return false; 3638 3639 /* 3640 * Stolen memory is always coherent with the GPU as it is explicitly 3641 * marked as wc by the system, or the system is cache-coherent. 3642 */ 3643 if (obj->stolen || obj->phys_handle) 3644 return false; 3645 3646 /* If the GPU is snooping the contents of the CPU cache, 3647 * we do not need to manually clear the CPU cache lines. However, 3648 * the caches are only snooped when the render cache is 3649 * flushed/invalidated. As we always have to emit invalidations 3650 * and flushes when moving into and out of the RENDER domain, correct 3651 * snooping behaviour occurs naturally as the result of our domain 3652 * tracking. 3653 */ 3654 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) { 3655 obj->cache_dirty = true; 3656 return false; 3657 } 3658 3659 trace_i915_gem_object_clflush(obj); 3660 drm_clflush_sg(obj->pages); 3661 obj->cache_dirty = false; 3662 3663 return true; 3664 } 3665 3666 /** Flushes the GTT write domain for the object if it's dirty. */ 3667 static void 3668 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj) 3669 { 3670 uint32_t old_write_domain; 3671 3672 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT) 3673 return; 3674 3675 /* No actual flushing is required for the GTT write domain. Writes 3676 * to it immediately go to main memory as far as we know, so there's 3677 * no chipset flush. It also doesn't land in render cache. 3678 * 3679 * However, we do have to enforce the order so that all writes through 3680 * the GTT land before any writes to the device, such as updates to 3681 * the GATT itself. 3682 */ 3683 wmb(); 3684 3685 old_write_domain = obj->base.write_domain; 3686 obj->base.write_domain = 0; 3687 3688 intel_fb_obj_flush(obj, false, ORIGIN_GTT); 3689 3690 trace_i915_gem_object_change_domain(obj, 3691 obj->base.read_domains, 3692 old_write_domain); 3693 } 3694 3695 /** Flushes the CPU write domain for the object if it's dirty. */ 3696 static void 3697 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj) 3698 { 3699 uint32_t old_write_domain; 3700 3701 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) 3702 return; 3703 3704 if (i915_gem_clflush_object(obj, obj->pin_display)) 3705 i915_gem_chipset_flush(obj->base.dev); 3706 3707 old_write_domain = obj->base.write_domain; 3708 obj->base.write_domain = 0; 3709 3710 intel_fb_obj_flush(obj, false, ORIGIN_CPU); 3711 3712 trace_i915_gem_object_change_domain(obj, 3713 obj->base.read_domains, 3714 old_write_domain); 3715 } 3716 3717 /** 3718 * Moves a single object to the GTT read, and possibly write domain. 3719 * 3720 * This function returns when the move is complete, including waiting on 3721 * flushes to occur. 3722 */ 3723 int 3724 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write) 3725 { 3726 uint32_t old_write_domain, old_read_domains; 3727 struct i915_vma *vma; 3728 int ret; 3729 3730 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT) 3731 return 0; 3732 3733 ret = i915_gem_object_wait_rendering(obj, !write); 3734 if (ret) 3735 return ret; 3736 3737 /* Flush and acquire obj->pages so that we are coherent through 3738 * direct access in memory with previous cached writes through 3739 * shmemfs and that our cache domain tracking remains valid. 3740 * For example, if the obj->filp was moved to swap without us 3741 * being notified and releasing the pages, we would mistakenly 3742 * continue to assume that the obj remained out of the CPU cached 3743 * domain. 3744 */ 3745 ret = i915_gem_object_get_pages(obj); 3746 if (ret) 3747 return ret; 3748 3749 i915_gem_object_flush_cpu_write_domain(obj); 3750 3751 /* Serialise direct access to this object with the barriers for 3752 * coherent writes from the GPU, by effectively invalidating the 3753 * GTT domain upon first access. 3754 */ 3755 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 3756 mb(); 3757 3758 old_write_domain = obj->base.write_domain; 3759 old_read_domains = obj->base.read_domains; 3760 3761 /* It should now be out of any other write domains, and we can update 3762 * the domain values for our changes. 3763 */ 3764 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0); 3765 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3766 if (write) { 3767 obj->base.read_domains = I915_GEM_DOMAIN_GTT; 3768 obj->base.write_domain = I915_GEM_DOMAIN_GTT; 3769 obj->dirty = 1; 3770 } 3771 3772 trace_i915_gem_object_change_domain(obj, 3773 old_read_domains, 3774 old_write_domain); 3775 3776 /* And bump the LRU for this access */ 3777 vma = i915_gem_obj_to_ggtt(obj); 3778 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active) 3779 list_move_tail(&vma->mm_list, 3780 &to_i915(obj->base.dev)->gtt.base.inactive_list); 3781 3782 return 0; 3783 } 3784 3785 /** 3786 * Changes the cache-level of an object across all VMA. 3787 * 3788 * After this function returns, the object will be in the new cache-level 3789 * across all GTT and the contents of the backing storage will be coherent, 3790 * with respect to the new cache-level. In order to keep the backing storage 3791 * coherent for all users, we only allow a single cache level to be set 3792 * globally on the object and prevent it from being changed whilst the 3793 * hardware is reading from the object. That is if the object is currently 3794 * on the scanout it will be set to uncached (or equivalent display 3795 * cache coherency) and all non-MOCS GPU access will also be uncached so 3796 * that all direct access to the scanout remains coherent. 3797 */ 3798 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3799 enum i915_cache_level cache_level) 3800 { 3801 struct drm_device *dev = obj->base.dev; 3802 struct i915_vma *vma, *next; 3803 bool bound = false; 3804 int ret = 0; 3805 3806 if (obj->cache_level == cache_level) 3807 goto out; 3808 3809 /* Inspect the list of currently bound VMA and unbind any that would 3810 * be invalid given the new cache-level. This is principally to 3811 * catch the issue of the CS prefetch crossing page boundaries and 3812 * reading an invalid PTE on older architectures. 3813 */ 3814 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) { 3815 if (!drm_mm_node_allocated(&vma->node)) 3816 continue; 3817 3818 if (vma->pin_count) { 3819 DRM_DEBUG("can not change the cache level of pinned objects\n"); 3820 return -EBUSY; 3821 } 3822 3823 if (!i915_gem_valid_gtt_space(vma, cache_level)) { 3824 ret = i915_vma_unbind(vma); 3825 if (ret) 3826 return ret; 3827 } else 3828 bound = true; 3829 } 3830 3831 /* We can reuse the existing drm_mm nodes but need to change the 3832 * cache-level on the PTE. We could simply unbind them all and 3833 * rebind with the correct cache-level on next use. However since 3834 * we already have a valid slot, dma mapping, pages etc, we may as 3835 * rewrite the PTE in the belief that doing so tramples upon less 3836 * state and so involves less work. 3837 */ 3838 if (bound) { 3839 /* Before we change the PTE, the GPU must not be accessing it. 3840 * If we wait upon the object, we know that all the bound 3841 * VMA are no longer active. 3842 */ 3843 ret = i915_gem_object_wait_rendering(obj, false); 3844 if (ret) 3845 return ret; 3846 3847 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) { 3848 /* Access to snoopable pages through the GTT is 3849 * incoherent and on some machines causes a hard 3850 * lockup. Relinquish the CPU mmaping to force 3851 * userspace to refault in the pages and we can 3852 * then double check if the GTT mapping is still 3853 * valid for that pointer access. 3854 */ 3855 i915_gem_release_mmap(obj); 3856 3857 /* As we no longer need a fence for GTT access, 3858 * we can relinquish it now (and so prevent having 3859 * to steal a fence from someone else on the next 3860 * fence request). Note GPU activity would have 3861 * dropped the fence as all snoopable access is 3862 * supposed to be linear. 3863 */ 3864 ret = i915_gem_object_put_fence(obj); 3865 if (ret) 3866 return ret; 3867 } else { 3868 /* We either have incoherent backing store and 3869 * so no GTT access or the architecture is fully 3870 * coherent. In such cases, existing GTT mmaps 3871 * ignore the cache bit in the PTE and we can 3872 * rewrite it without confusing the GPU or having 3873 * to force userspace to fault back in its mmaps. 3874 */ 3875 } 3876 3877 list_for_each_entry(vma, &obj->vma_list, vma_link) { 3878 if (!drm_mm_node_allocated(&vma->node)) 3879 continue; 3880 3881 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE); 3882 if (ret) 3883 return ret; 3884 } 3885 } 3886 3887 list_for_each_entry(vma, &obj->vma_list, vma_link) 3888 vma->node.color = cache_level; 3889 obj->cache_level = cache_level; 3890 3891 out: 3892 /* Flush the dirty CPU caches to the backing storage so that the 3893 * object is now coherent at its new cache level (with respect 3894 * to the access domain). 3895 */ 3896 if (obj->cache_dirty && 3897 obj->base.write_domain != I915_GEM_DOMAIN_CPU && 3898 cpu_write_needs_clflush(obj)) { 3899 if (i915_gem_clflush_object(obj, true)) 3900 i915_gem_chipset_flush(obj->base.dev); 3901 } 3902 3903 return 0; 3904 } 3905 3906 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 3907 struct drm_file *file) 3908 { 3909 struct drm_i915_gem_caching *args = data; 3910 struct drm_i915_gem_object *obj; 3911 3912 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3913 if (&obj->base == NULL) 3914 return -ENOENT; 3915 3916 switch (obj->cache_level) { 3917 case I915_CACHE_LLC: 3918 case I915_CACHE_L3_LLC: 3919 args->caching = I915_CACHING_CACHED; 3920 break; 3921 3922 case I915_CACHE_WT: 3923 args->caching = I915_CACHING_DISPLAY; 3924 break; 3925 3926 default: 3927 args->caching = I915_CACHING_NONE; 3928 break; 3929 } 3930 3931 drm_gem_object_unreference_unlocked(&obj->base); 3932 return 0; 3933 } 3934 3935 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 3936 struct drm_file *file) 3937 { 3938 struct drm_i915_private *dev_priv = dev->dev_private; 3939 struct drm_i915_gem_caching *args = data; 3940 struct drm_i915_gem_object *obj; 3941 enum i915_cache_level level; 3942 int ret; 3943 3944 switch (args->caching) { 3945 case I915_CACHING_NONE: 3946 level = I915_CACHE_NONE; 3947 break; 3948 case I915_CACHING_CACHED: 3949 /* 3950 * Due to a HW issue on BXT A stepping, GPU stores via a 3951 * snooped mapping may leave stale data in a corresponding CPU 3952 * cacheline, whereas normally such cachelines would get 3953 * invalidated. 3954 */ 3955 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) 3956 return -ENODEV; 3957 3958 level = I915_CACHE_LLC; 3959 break; 3960 case I915_CACHING_DISPLAY: 3961 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE; 3962 break; 3963 default: 3964 return -EINVAL; 3965 } 3966 3967 intel_runtime_pm_get(dev_priv); 3968 3969 ret = i915_mutex_lock_interruptible(dev); 3970 if (ret) 3971 goto rpm_put; 3972 3973 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3974 if (&obj->base == NULL) { 3975 ret = -ENOENT; 3976 goto unlock; 3977 } 3978 3979 ret = i915_gem_object_set_cache_level(obj, level); 3980 3981 drm_gem_object_unreference(&obj->base); 3982 unlock: 3983 mutex_unlock(&dev->struct_mutex); 3984 rpm_put: 3985 intel_runtime_pm_put(dev_priv); 3986 3987 return ret; 3988 } 3989 3990 /* 3991 * Prepare buffer for display plane (scanout, cursors, etc). 3992 * Can be called from an uninterruptible phase (modesetting) and allows 3993 * any flushes to be pipelined (for pageflips). 3994 */ 3995 int 3996 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3997 u32 alignment, 3998 const struct i915_ggtt_view *view) 3999 { 4000 u32 old_read_domains, old_write_domain; 4001 int ret; 4002 4003 /* Mark the pin_display early so that we account for the 4004 * display coherency whilst setting up the cache domains. 4005 */ 4006 obj->pin_display++; 4007 4008 /* The display engine is not coherent with the LLC cache on gen6. As 4009 * a result, we make sure that the pinning that is about to occur is 4010 * done with uncached PTEs. This is lowest common denominator for all 4011 * chipsets. 4012 * 4013 * However for gen6+, we could do better by using the GFDT bit instead 4014 * of uncaching, which would allow us to flush all the LLC-cached data 4015 * with that bit in the PTE to main memory with just one PIPE_CONTROL. 4016 */ 4017 ret = i915_gem_object_set_cache_level(obj, 4018 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE); 4019 if (ret) 4020 goto err_unpin_display; 4021 4022 /* As the user may map the buffer once pinned in the display plane 4023 * (e.g. libkms for the bootup splash), we have to ensure that we 4024 * always use map_and_fenceable for all scanout buffers. 4025 */ 4026 ret = i915_gem_object_ggtt_pin(obj, view, alignment, 4027 view->type == I915_GGTT_VIEW_NORMAL ? 4028 PIN_MAPPABLE : 0); 4029 if (ret) 4030 goto err_unpin_display; 4031 4032 i915_gem_object_flush_cpu_write_domain(obj); 4033 4034 old_write_domain = obj->base.write_domain; 4035 old_read_domains = obj->base.read_domains; 4036 4037 /* It should now be out of any other write domains, and we can update 4038 * the domain values for our changes. 4039 */ 4040 obj->base.write_domain = 0; 4041 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 4042 4043 trace_i915_gem_object_change_domain(obj, 4044 old_read_domains, 4045 old_write_domain); 4046 4047 return 0; 4048 4049 err_unpin_display: 4050 obj->pin_display--; 4051 return ret; 4052 } 4053 4054 void 4055 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj, 4056 const struct i915_ggtt_view *view) 4057 { 4058 if (WARN_ON(obj->pin_display == 0)) 4059 return; 4060 4061 i915_gem_object_ggtt_unpin_view(obj, view); 4062 4063 obj->pin_display--; 4064 } 4065 4066 /** 4067 * Moves a single object to the CPU read, and possibly write domain. 4068 * 4069 * This function returns when the move is complete, including waiting on 4070 * flushes to occur. 4071 */ 4072 int 4073 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write) 4074 { 4075 uint32_t old_write_domain, old_read_domains; 4076 int ret; 4077 4078 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) 4079 return 0; 4080 4081 ret = i915_gem_object_wait_rendering(obj, !write); 4082 if (ret) 4083 return ret; 4084 4085 i915_gem_object_flush_gtt_write_domain(obj); 4086 4087 old_write_domain = obj->base.write_domain; 4088 old_read_domains = obj->base.read_domains; 4089 4090 /* Flush the CPU cache if it's still invalid. */ 4091 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) { 4092 i915_gem_clflush_object(obj, false); 4093 4094 obj->base.read_domains |= I915_GEM_DOMAIN_CPU; 4095 } 4096 4097 /* It should now be out of any other write domains, and we can update 4098 * the domain values for our changes. 4099 */ 4100 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0); 4101 4102 /* If we're writing through the CPU, then the GPU read domains will 4103 * need to be invalidated at next use. 4104 */ 4105 if (write) { 4106 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 4107 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 4108 } 4109 4110 trace_i915_gem_object_change_domain(obj, 4111 old_read_domains, 4112 old_write_domain); 4113 4114 return 0; 4115 } 4116 4117 /* Throttle our rendering by waiting until the ring has completed our requests 4118 * emitted over 20 msec ago. 4119 * 4120 * Note that if we were to use the current jiffies each time around the loop, 4121 * we wouldn't escape the function with any frames outstanding if the time to 4122 * render a frame was over 20ms. 4123 * 4124 * This should get us reasonable parallelism between CPU and GPU but also 4125 * relatively low latency when blocking on a particular request to finish. 4126 */ 4127 static int 4128 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file) 4129 { 4130 struct drm_i915_private *dev_priv = dev->dev_private; 4131 struct drm_i915_file_private *file_priv = file->driver_priv; 4132 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES; 4133 struct drm_i915_gem_request *request, *target = NULL; 4134 unsigned reset_counter; 4135 int ret; 4136 4137 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 4138 if (ret) 4139 return ret; 4140 4141 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false); 4142 if (ret) 4143 return ret; 4144 4145 spin_lock(&file_priv->mm.lock); 4146 list_for_each_entry(request, &file_priv->mm.request_list, client_list) { 4147 if (time_after_eq(request->emitted_jiffies, recent_enough)) 4148 break; 4149 4150 /* 4151 * Note that the request might not have been submitted yet. 4152 * In which case emitted_jiffies will be zero. 4153 */ 4154 if (!request->emitted_jiffies) 4155 continue; 4156 4157 target = request; 4158 } 4159 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 4160 if (target) 4161 i915_gem_request_reference(target); 4162 spin_unlock(&file_priv->mm.lock); 4163 4164 if (target == NULL) 4165 return 0; 4166 4167 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL); 4168 if (ret == 0) 4169 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0); 4170 4171 i915_gem_request_unreference__unlocked(target); 4172 4173 return ret; 4174 } 4175 4176 static bool 4177 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags) 4178 { 4179 struct drm_i915_gem_object *obj = vma->obj; 4180 4181 if (alignment && 4182 vma->node.start & (alignment - 1)) 4183 return true; 4184 4185 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable) 4186 return true; 4187 4188 if (flags & PIN_OFFSET_BIAS && 4189 vma->node.start < (flags & PIN_OFFSET_MASK)) 4190 return true; 4191 4192 if (flags & PIN_OFFSET_FIXED && 4193 vma->node.start != (flags & PIN_OFFSET_MASK)) 4194 return true; 4195 4196 return false; 4197 } 4198 4199 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma) 4200 { 4201 struct drm_i915_gem_object *obj = vma->obj; 4202 bool mappable, fenceable; 4203 u32 fence_size, fence_alignment; 4204 4205 fence_size = i915_gem_get_gtt_size(obj->base.dev, 4206 obj->base.size, 4207 obj->tiling_mode); 4208 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev, 4209 obj->base.size, 4210 obj->tiling_mode, 4211 true); 4212 4213 fenceable = (vma->node.size == fence_size && 4214 (vma->node.start & (fence_alignment - 1)) == 0); 4215 4216 mappable = (vma->node.start + fence_size <= 4217 to_i915(obj->base.dev)->gtt.mappable_end); 4218 4219 obj->map_and_fenceable = mappable && fenceable; 4220 } 4221 4222 static int 4223 i915_gem_object_do_pin(struct drm_i915_gem_object *obj, 4224 struct i915_address_space *vm, 4225 const struct i915_ggtt_view *ggtt_view, 4226 uint32_t alignment, 4227 uint64_t flags) 4228 { 4229 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 4230 struct i915_vma *vma; 4231 unsigned bound; 4232 int ret; 4233 4234 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base)) 4235 return -ENODEV; 4236 4237 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm))) 4238 return -EINVAL; 4239 4240 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE)) 4241 return -EINVAL; 4242 4243 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view)) 4244 return -EINVAL; 4245 4246 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) : 4247 i915_gem_obj_to_vma(obj, vm); 4248 4249 if (IS_ERR(vma)) 4250 return PTR_ERR(vma); 4251 4252 if (vma) { 4253 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT)) 4254 return -EBUSY; 4255 4256 if (i915_vma_misplaced(vma, alignment, flags)) { 4257 WARN(vma->pin_count, 4258 "bo is already pinned in %s with incorrect alignment:" 4259 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d," 4260 " obj->map_and_fenceable=%d\n", 4261 ggtt_view ? "ggtt" : "ppgtt", 4262 upper_32_bits(vma->node.start), 4263 lower_32_bits(vma->node.start), 4264 alignment, 4265 !!(flags & PIN_MAPPABLE), 4266 obj->map_and_fenceable); 4267 ret = i915_vma_unbind(vma); 4268 if (ret) 4269 return ret; 4270 4271 vma = NULL; 4272 } 4273 } 4274 4275 bound = vma ? vma->bound : 0; 4276 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) { 4277 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment, 4278 flags); 4279 if (IS_ERR(vma)) 4280 return PTR_ERR(vma); 4281 } else { 4282 ret = i915_vma_bind(vma, obj->cache_level, flags); 4283 if (ret) 4284 return ret; 4285 } 4286 4287 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL && 4288 (bound ^ vma->bound) & GLOBAL_BIND) { 4289 __i915_vma_set_map_and_fenceable(vma); 4290 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable); 4291 } 4292 4293 vma->pin_count++; 4294 return 0; 4295 } 4296 4297 int 4298 i915_gem_object_pin(struct drm_i915_gem_object *obj, 4299 struct i915_address_space *vm, 4300 uint32_t alignment, 4301 uint64_t flags) 4302 { 4303 return i915_gem_object_do_pin(obj, vm, 4304 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL, 4305 alignment, flags); 4306 } 4307 4308 int 4309 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, 4310 const struct i915_ggtt_view *view, 4311 uint32_t alignment, 4312 uint64_t flags) 4313 { 4314 if (WARN_ONCE(!view, "no view specified")) 4315 return -EINVAL; 4316 4317 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view, 4318 alignment, flags | PIN_GLOBAL); 4319 } 4320 4321 void 4322 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj, 4323 const struct i915_ggtt_view *view) 4324 { 4325 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view); 4326 4327 BUG_ON(!vma); 4328 WARN_ON(vma->pin_count == 0); 4329 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view)); 4330 4331 --vma->pin_count; 4332 } 4333 4334 int 4335 i915_gem_busy_ioctl(struct drm_device *dev, void *data, 4336 struct drm_file *file) 4337 { 4338 struct drm_i915_gem_busy *args = data; 4339 struct drm_i915_gem_object *obj; 4340 int ret; 4341 4342 ret = i915_mutex_lock_interruptible(dev); 4343 if (ret) 4344 return ret; 4345 4346 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 4347 if (&obj->base == NULL) { 4348 ret = -ENOENT; 4349 goto unlock; 4350 } 4351 4352 /* Count all active objects as busy, even if they are currently not used 4353 * by the gpu. Users of this interface expect objects to eventually 4354 * become non-busy without any further actions, therefore emit any 4355 * necessary flushes here. 4356 */ 4357 ret = i915_gem_object_flush_active(obj); 4358 if (ret) 4359 goto unref; 4360 4361 args->busy = 0; 4362 if (obj->active) { 4363 int i; 4364 4365 for (i = 0; i < I915_NUM_RINGS; i++) { 4366 struct drm_i915_gem_request *req; 4367 4368 req = obj->last_read_req[i]; 4369 if (req) 4370 args->busy |= 1 << (16 + req->ring->exec_id); 4371 } 4372 if (obj->last_write_req) 4373 args->busy |= obj->last_write_req->ring->exec_id; 4374 } 4375 4376 unref: 4377 drm_gem_object_unreference(&obj->base); 4378 unlock: 4379 mutex_unlock(&dev->struct_mutex); 4380 return ret; 4381 } 4382 4383 int 4384 i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 4385 struct drm_file *file_priv) 4386 { 4387 return i915_gem_ring_throttle(dev, file_priv); 4388 } 4389 4390 int 4391 i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 4392 struct drm_file *file_priv) 4393 { 4394 struct drm_i915_private *dev_priv = dev->dev_private; 4395 struct drm_i915_gem_madvise *args = data; 4396 struct drm_i915_gem_object *obj; 4397 int ret; 4398 4399 switch (args->madv) { 4400 case I915_MADV_DONTNEED: 4401 case I915_MADV_WILLNEED: 4402 break; 4403 default: 4404 return -EINVAL; 4405 } 4406 4407 ret = i915_mutex_lock_interruptible(dev); 4408 if (ret) 4409 return ret; 4410 4411 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle)); 4412 if (&obj->base == NULL) { 4413 ret = -ENOENT; 4414 goto unlock; 4415 } 4416 4417 if (i915_gem_obj_is_pinned(obj)) { 4418 ret = -EINVAL; 4419 goto out; 4420 } 4421 4422 if (obj->pages && 4423 obj->tiling_mode != I915_TILING_NONE && 4424 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) { 4425 if (obj->madv == I915_MADV_WILLNEED) 4426 i915_gem_object_unpin_pages(obj); 4427 if (args->madv == I915_MADV_WILLNEED) 4428 i915_gem_object_pin_pages(obj); 4429 } 4430 4431 if (obj->madv != __I915_MADV_PURGED) 4432 obj->madv = args->madv; 4433 4434 /* if the object is no longer attached, discard its backing storage */ 4435 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL) 4436 i915_gem_object_truncate(obj); 4437 4438 args->retained = obj->madv != __I915_MADV_PURGED; 4439 4440 out: 4441 drm_gem_object_unreference(&obj->base); 4442 unlock: 4443 mutex_unlock(&dev->struct_mutex); 4444 return ret; 4445 } 4446 4447 void i915_gem_object_init(struct drm_i915_gem_object *obj, 4448 const struct drm_i915_gem_object_ops *ops) 4449 { 4450 int i; 4451 4452 INIT_LIST_HEAD(&obj->global_list); 4453 for (i = 0; i < I915_NUM_RINGS; i++) 4454 INIT_LIST_HEAD(&obj->ring_list[i]); 4455 INIT_LIST_HEAD(&obj->obj_exec_link); 4456 INIT_LIST_HEAD(&obj->vma_list); 4457 INIT_LIST_HEAD(&obj->batch_pool_link); 4458 4459 obj->ops = ops; 4460 4461 obj->fence_reg = I915_FENCE_REG_NONE; 4462 obj->madv = I915_MADV_WILLNEED; 4463 4464 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size); 4465 } 4466 4467 static const struct drm_i915_gem_object_ops i915_gem_object_ops = { 4468 .get_pages = i915_gem_object_get_pages_gtt, 4469 .put_pages = i915_gem_object_put_pages_gtt, 4470 }; 4471 4472 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev, 4473 size_t size) 4474 { 4475 struct drm_i915_gem_object *obj; 4476 struct address_space *mapping; 4477 gfp_t mask; 4478 4479 obj = i915_gem_object_alloc(dev); 4480 if (obj == NULL) 4481 return NULL; 4482 4483 if (drm_gem_object_init(dev, &obj->base, size) != 0) { 4484 i915_gem_object_free(obj); 4485 return NULL; 4486 } 4487 4488 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; 4489 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) { 4490 /* 965gm cannot relocate objects above 4GiB. */ 4491 mask &= ~__GFP_HIGHMEM; 4492 mask |= __GFP_DMA32; 4493 } 4494 4495 mapping = file_inode(obj->base.filp)->i_mapping; 4496 mapping_set_gfp_mask(mapping, mask); 4497 4498 i915_gem_object_init(obj, &i915_gem_object_ops); 4499 4500 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 4501 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 4502 4503 if (HAS_LLC(dev)) { 4504 /* On some devices, we can have the GPU use the LLC (the CPU 4505 * cache) for about a 10% performance improvement 4506 * compared to uncached. Graphics requests other than 4507 * display scanout are coherent with the CPU in 4508 * accessing this cache. This means in this mode we 4509 * don't need to clflush on the CPU side, and on the 4510 * GPU side we only need to flush internal caches to 4511 * get data visible to the CPU. 4512 * 4513 * However, we maintain the display planes as UC, and so 4514 * need to rebind when first used as such. 4515 */ 4516 obj->cache_level = I915_CACHE_LLC; 4517 } else 4518 obj->cache_level = I915_CACHE_NONE; 4519 4520 trace_i915_gem_object_create(obj); 4521 4522 return obj; 4523 } 4524 4525 static bool discard_backing_storage(struct drm_i915_gem_object *obj) 4526 { 4527 /* If we are the last user of the backing storage (be it shmemfs 4528 * pages or stolen etc), we know that the pages are going to be 4529 * immediately released. In this case, we can then skip copying 4530 * back the contents from the GPU. 4531 */ 4532 4533 if (obj->madv != I915_MADV_WILLNEED) 4534 return false; 4535 4536 if (obj->base.filp == NULL) 4537 return true; 4538 4539 /* At first glance, this looks racy, but then again so would be 4540 * userspace racing mmap against close. However, the first external 4541 * reference to the filp can only be obtained through the 4542 * i915_gem_mmap_ioctl() which safeguards us against the user 4543 * acquiring such a reference whilst we are in the middle of 4544 * freeing the object. 4545 */ 4546 return atomic_long_read(&obj->base.filp->f_count) == 1; 4547 } 4548 4549 void i915_gem_free_object(struct drm_gem_object *gem_obj) 4550 { 4551 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); 4552 struct drm_device *dev = obj->base.dev; 4553 struct drm_i915_private *dev_priv = dev->dev_private; 4554 struct i915_vma *vma, *next; 4555 4556 intel_runtime_pm_get(dev_priv); 4557 4558 trace_i915_gem_object_destroy(obj); 4559 4560 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) { 4561 int ret; 4562 4563 vma->pin_count = 0; 4564 ret = i915_vma_unbind(vma); 4565 if (WARN_ON(ret == -ERESTARTSYS)) { 4566 bool was_interruptible; 4567 4568 was_interruptible = dev_priv->mm.interruptible; 4569 dev_priv->mm.interruptible = false; 4570 4571 WARN_ON(i915_vma_unbind(vma)); 4572 4573 dev_priv->mm.interruptible = was_interruptible; 4574 } 4575 } 4576 4577 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up 4578 * before progressing. */ 4579 if (obj->stolen) 4580 i915_gem_object_unpin_pages(obj); 4581 4582 WARN_ON(obj->frontbuffer_bits); 4583 4584 if (obj->pages && obj->madv == I915_MADV_WILLNEED && 4585 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES && 4586 obj->tiling_mode != I915_TILING_NONE) 4587 i915_gem_object_unpin_pages(obj); 4588 4589 if (WARN_ON(obj->pages_pin_count)) 4590 obj->pages_pin_count = 0; 4591 if (discard_backing_storage(obj)) 4592 obj->madv = I915_MADV_DONTNEED; 4593 i915_gem_object_put_pages(obj); 4594 i915_gem_object_free_mmap_offset(obj); 4595 4596 BUG_ON(obj->pages); 4597 4598 if (obj->base.import_attach) 4599 drm_prime_gem_destroy(&obj->base, NULL); 4600 4601 if (obj->ops->release) 4602 obj->ops->release(obj); 4603 4604 drm_gem_object_release(&obj->base); 4605 i915_gem_info_remove_obj(dev_priv, obj->base.size); 4606 4607 kfree(obj->bit_17); 4608 i915_gem_object_free(obj); 4609 4610 intel_runtime_pm_put(dev_priv); 4611 } 4612 4613 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj, 4614 struct i915_address_space *vm) 4615 { 4616 struct i915_vma *vma; 4617 list_for_each_entry(vma, &obj->vma_list, vma_link) { 4618 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL && 4619 vma->vm == vm) 4620 return vma; 4621 } 4622 return NULL; 4623 } 4624 4625 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj, 4626 const struct i915_ggtt_view *view) 4627 { 4628 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj); 4629 struct i915_vma *vma; 4630 4631 if (WARN_ONCE(!view, "no view specified")) 4632 return ERR_PTR(-EINVAL); 4633 4634 list_for_each_entry(vma, &obj->vma_list, vma_link) 4635 if (vma->vm == ggtt && 4636 i915_ggtt_view_equal(&vma->ggtt_view, view)) 4637 return vma; 4638 return NULL; 4639 } 4640 4641 void i915_gem_vma_destroy(struct i915_vma *vma) 4642 { 4643 struct i915_address_space *vm = NULL; 4644 WARN_ON(vma->node.allocated); 4645 4646 /* Keep the vma as a placeholder in the execbuffer reservation lists */ 4647 if (!list_empty(&vma->exec_list)) 4648 return; 4649 4650 vm = vma->vm; 4651 4652 if (!i915_is_ggtt(vm)) 4653 i915_ppgtt_put(i915_vm_to_ppgtt(vm)); 4654 4655 list_del(&vma->vma_link); 4656 4657 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma); 4658 } 4659 4660 static void 4661 i915_gem_stop_ringbuffers(struct drm_device *dev) 4662 { 4663 struct drm_i915_private *dev_priv = dev->dev_private; 4664 struct intel_engine_cs *ring; 4665 int i; 4666 4667 for_each_ring(ring, dev_priv, i) 4668 dev_priv->gt.stop_ring(ring); 4669 } 4670 4671 int 4672 i915_gem_suspend(struct drm_device *dev) 4673 { 4674 struct drm_i915_private *dev_priv = dev->dev_private; 4675 int ret = 0; 4676 4677 mutex_lock(&dev->struct_mutex); 4678 ret = i915_gpu_idle(dev); 4679 if (ret) 4680 goto err; 4681 4682 i915_gem_retire_requests(dev); 4683 4684 i915_gem_stop_ringbuffers(dev); 4685 mutex_unlock(&dev->struct_mutex); 4686 4687 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work); 4688 cancel_delayed_work_sync(&dev_priv->mm.retire_work); 4689 flush_delayed_work(&dev_priv->mm.idle_work); 4690 4691 /* Assert that we sucessfully flushed all the work and 4692 * reset the GPU back to its idle, low power state. 4693 */ 4694 WARN_ON(dev_priv->mm.busy); 4695 4696 return 0; 4697 4698 err: 4699 mutex_unlock(&dev->struct_mutex); 4700 return ret; 4701 } 4702 4703 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice) 4704 { 4705 struct intel_engine_cs *ring = req->ring; 4706 struct drm_device *dev = ring->dev; 4707 struct drm_i915_private *dev_priv = dev->dev_private; 4708 u32 *remap_info = dev_priv->l3_parity.remap_info[slice]; 4709 int i, ret; 4710 4711 if (!HAS_L3_DPF(dev) || !remap_info) 4712 return 0; 4713 4714 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3); 4715 if (ret) 4716 return ret; 4717 4718 /* 4719 * Note: We do not worry about the concurrent register cacheline hang 4720 * here because no other code should access these registers other than 4721 * at initialization time. 4722 */ 4723 for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) { 4724 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); 4725 intel_ring_emit_reg(ring, GEN7_L3LOG(slice, i)); 4726 intel_ring_emit(ring, remap_info[i]); 4727 } 4728 4729 intel_ring_advance(ring); 4730 4731 return ret; 4732 } 4733 4734 void i915_gem_init_swizzling(struct drm_device *dev) 4735 { 4736 struct drm_i915_private *dev_priv = dev->dev_private; 4737 4738 if (INTEL_INFO(dev)->gen < 5 || 4739 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) 4740 return; 4741 4742 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | 4743 DISP_TILE_SURFACE_SWIZZLING); 4744 4745 if (IS_GEN5(dev)) 4746 return; 4747 4748 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL); 4749 if (IS_GEN6(dev)) 4750 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); 4751 else if (IS_GEN7(dev)) 4752 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); 4753 else if (IS_GEN8(dev)) 4754 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW)); 4755 else 4756 BUG(); 4757 } 4758 4759 static void init_unused_ring(struct drm_device *dev, u32 base) 4760 { 4761 struct drm_i915_private *dev_priv = dev->dev_private; 4762 4763 I915_WRITE(RING_CTL(base), 0); 4764 I915_WRITE(RING_HEAD(base), 0); 4765 I915_WRITE(RING_TAIL(base), 0); 4766 I915_WRITE(RING_START(base), 0); 4767 } 4768 4769 static void init_unused_rings(struct drm_device *dev) 4770 { 4771 if (IS_I830(dev)) { 4772 init_unused_ring(dev, PRB1_BASE); 4773 init_unused_ring(dev, SRB0_BASE); 4774 init_unused_ring(dev, SRB1_BASE); 4775 init_unused_ring(dev, SRB2_BASE); 4776 init_unused_ring(dev, SRB3_BASE); 4777 } else if (IS_GEN2(dev)) { 4778 init_unused_ring(dev, SRB0_BASE); 4779 init_unused_ring(dev, SRB1_BASE); 4780 } else if (IS_GEN3(dev)) { 4781 init_unused_ring(dev, PRB1_BASE); 4782 init_unused_ring(dev, PRB2_BASE); 4783 } 4784 } 4785 4786 int i915_gem_init_rings(struct drm_device *dev) 4787 { 4788 struct drm_i915_private *dev_priv = dev->dev_private; 4789 int ret; 4790 4791 ret = intel_init_render_ring_buffer(dev); 4792 if (ret) 4793 return ret; 4794 4795 if (HAS_BSD(dev)) { 4796 ret = intel_init_bsd_ring_buffer(dev); 4797 if (ret) 4798 goto cleanup_render_ring; 4799 } 4800 4801 if (HAS_BLT(dev)) { 4802 ret = intel_init_blt_ring_buffer(dev); 4803 if (ret) 4804 goto cleanup_bsd_ring; 4805 } 4806 4807 if (HAS_VEBOX(dev)) { 4808 ret = intel_init_vebox_ring_buffer(dev); 4809 if (ret) 4810 goto cleanup_blt_ring; 4811 } 4812 4813 if (HAS_BSD2(dev)) { 4814 ret = intel_init_bsd2_ring_buffer(dev); 4815 if (ret) 4816 goto cleanup_vebox_ring; 4817 } 4818 4819 return 0; 4820 4821 cleanup_vebox_ring: 4822 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]); 4823 cleanup_blt_ring: 4824 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]); 4825 cleanup_bsd_ring: 4826 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]); 4827 cleanup_render_ring: 4828 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]); 4829 4830 return ret; 4831 } 4832 4833 int 4834 i915_gem_init_hw(struct drm_device *dev) 4835 { 4836 struct drm_i915_private *dev_priv = dev->dev_private; 4837 struct intel_engine_cs *ring; 4838 int ret, i, j; 4839 4840 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt()) 4841 return -EIO; 4842 4843 /* Double layer security blanket, see i915_gem_init() */ 4844 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); 4845 4846 if (dev_priv->ellc_size) 4847 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf)); 4848 4849 if (IS_HASWELL(dev)) 4850 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ? 4851 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); 4852 4853 if (HAS_PCH_NOP(dev)) { 4854 if (IS_IVYBRIDGE(dev)) { 4855 u32 temp = I915_READ(GEN7_MSG_CTL); 4856 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK); 4857 I915_WRITE(GEN7_MSG_CTL, temp); 4858 } else if (INTEL_INFO(dev)->gen >= 7) { 4859 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT); 4860 temp &= ~RESET_PCH_HANDSHAKE_ENABLE; 4861 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp); 4862 } 4863 } 4864 4865 i915_gem_init_swizzling(dev); 4866 4867 /* 4868 * At least 830 can leave some of the unused rings 4869 * "active" (ie. head != tail) after resume which 4870 * will prevent c3 entry. Makes sure all unused rings 4871 * are totally idle. 4872 */ 4873 init_unused_rings(dev); 4874 4875 BUG_ON(!dev_priv->kernel_context); 4876 4877 ret = i915_ppgtt_init_hw(dev); 4878 if (ret) { 4879 DRM_ERROR("PPGTT enable HW failed %d\n", ret); 4880 goto out; 4881 } 4882 4883 /* Need to do basic initialisation of all rings first: */ 4884 for_each_ring(ring, dev_priv, i) { 4885 ret = ring->init_hw(ring); 4886 if (ret) 4887 goto out; 4888 } 4889 4890 /* We can't enable contexts until all firmware is loaded */ 4891 if (HAS_GUC_UCODE(dev)) { 4892 ret = intel_guc_ucode_load(dev); 4893 if (ret) { 4894 DRM_ERROR("Failed to initialize GuC, error %d\n", ret); 4895 ret = -EIO; 4896 goto out; 4897 } 4898 } 4899 4900 /* 4901 * Increment the next seqno by 0x100 so we have a visible break 4902 * on re-initialisation 4903 */ 4904 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100); 4905 if (ret) 4906 goto out; 4907 4908 /* Now it is safe to go back round and do everything else: */ 4909 for_each_ring(ring, dev_priv, i) { 4910 struct drm_i915_gem_request *req; 4911 4912 req = i915_gem_request_alloc(ring, NULL); 4913 if (IS_ERR(req)) { 4914 ret = PTR_ERR(req); 4915 i915_gem_cleanup_ringbuffer(dev); 4916 goto out; 4917 } 4918 4919 if (ring->id == RCS) { 4920 for (j = 0; j < NUM_L3_SLICES(dev); j++) 4921 i915_gem_l3_remap(req, j); 4922 } 4923 4924 ret = i915_ppgtt_init_ring(req); 4925 if (ret && ret != -EIO) { 4926 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret); 4927 i915_gem_request_cancel(req); 4928 i915_gem_cleanup_ringbuffer(dev); 4929 goto out; 4930 } 4931 4932 ret = i915_gem_context_enable(req); 4933 if (ret && ret != -EIO) { 4934 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret); 4935 i915_gem_request_cancel(req); 4936 i915_gem_cleanup_ringbuffer(dev); 4937 goto out; 4938 } 4939 4940 i915_add_request_no_flush(req); 4941 } 4942 4943 out: 4944 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 4945 return ret; 4946 } 4947 4948 int i915_gem_init(struct drm_device *dev) 4949 { 4950 struct drm_i915_private *dev_priv = dev->dev_private; 4951 int ret; 4952 4953 i915.enable_execlists = intel_sanitize_enable_execlists(dev, 4954 i915.enable_execlists); 4955 4956 mutex_lock(&dev->struct_mutex); 4957 4958 if (!i915.enable_execlists) { 4959 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission; 4960 dev_priv->gt.init_rings = i915_gem_init_rings; 4961 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer; 4962 dev_priv->gt.stop_ring = intel_stop_ring_buffer; 4963 } else { 4964 dev_priv->gt.execbuf_submit = intel_execlists_submission; 4965 dev_priv->gt.init_rings = intel_logical_rings_init; 4966 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup; 4967 dev_priv->gt.stop_ring = intel_logical_ring_stop; 4968 } 4969 4970 /* This is just a security blanket to placate dragons. 4971 * On some systems, we very sporadically observe that the first TLBs 4972 * used by the CS may be stale, despite us poking the TLB reset. If 4973 * we hold the forcewake during initialisation these problems 4974 * just magically go away. 4975 */ 4976 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); 4977 4978 ret = i915_gem_init_userptr(dev); 4979 if (ret) 4980 goto out_unlock; 4981 4982 i915_gem_init_global_gtt(dev); 4983 4984 ret = i915_gem_context_init(dev); 4985 if (ret) 4986 goto out_unlock; 4987 4988 ret = dev_priv->gt.init_rings(dev); 4989 if (ret) 4990 goto out_unlock; 4991 4992 ret = i915_gem_init_hw(dev); 4993 if (ret == -EIO) { 4994 /* Allow ring initialisation to fail by marking the GPU as 4995 * wedged. But we only want to do this where the GPU is angry, 4996 * for all other failure, such as an allocation failure, bail. 4997 */ 4998 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n"); 4999 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter); 5000 ret = 0; 5001 } 5002 5003 out_unlock: 5004 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 5005 mutex_unlock(&dev->struct_mutex); 5006 5007 return ret; 5008 } 5009 5010 void 5011 i915_gem_cleanup_ringbuffer(struct drm_device *dev) 5012 { 5013 struct drm_i915_private *dev_priv = dev->dev_private; 5014 struct intel_engine_cs *ring; 5015 int i; 5016 5017 for_each_ring(ring, dev_priv, i) 5018 dev_priv->gt.cleanup_ring(ring); 5019 5020 if (i915.enable_execlists) 5021 /* 5022 * Neither the BIOS, ourselves or any other kernel 5023 * expects the system to be in execlists mode on startup, 5024 * so we need to reset the GPU back to legacy mode. 5025 */ 5026 intel_gpu_reset(dev); 5027 } 5028 5029 static void 5030 init_ring_lists(struct intel_engine_cs *ring) 5031 { 5032 INIT_LIST_HEAD(&ring->active_list); 5033 INIT_LIST_HEAD(&ring->request_list); 5034 } 5035 5036 void 5037 i915_gem_load(struct drm_device *dev) 5038 { 5039 struct drm_i915_private *dev_priv = dev->dev_private; 5040 int i; 5041 5042 dev_priv->objects = 5043 kmem_cache_create("i915_gem_object", 5044 sizeof(struct drm_i915_gem_object), 0, 5045 SLAB_HWCACHE_ALIGN, 5046 NULL); 5047 dev_priv->vmas = 5048 kmem_cache_create("i915_gem_vma", 5049 sizeof(struct i915_vma), 0, 5050 SLAB_HWCACHE_ALIGN, 5051 NULL); 5052 dev_priv->requests = 5053 kmem_cache_create("i915_gem_request", 5054 sizeof(struct drm_i915_gem_request), 0, 5055 SLAB_HWCACHE_ALIGN, 5056 NULL); 5057 5058 INIT_LIST_HEAD(&dev_priv->vm_list); 5059 INIT_LIST_HEAD(&dev_priv->context_list); 5060 INIT_LIST_HEAD(&dev_priv->mm.unbound_list); 5061 INIT_LIST_HEAD(&dev_priv->mm.bound_list); 5062 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 5063 for (i = 0; i < I915_NUM_RINGS; i++) 5064 init_ring_lists(&dev_priv->ring[i]); 5065 for (i = 0; i < I915_MAX_NUM_FENCES; i++) 5066 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list); 5067 INIT_DELAYED_WORK(&dev_priv->mm.retire_work, 5068 i915_gem_retire_work_handler); 5069 INIT_DELAYED_WORK(&dev_priv->mm.idle_work, 5070 i915_gem_idle_work_handler); 5071 init_waitqueue_head(&dev_priv->gpu_error.reset_queue); 5072 5073 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL; 5074 5075 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) 5076 dev_priv->num_fence_regs = 32; 5077 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) 5078 dev_priv->num_fence_regs = 16; 5079 else 5080 dev_priv->num_fence_regs = 8; 5081 5082 if (intel_vgpu_active(dev)) 5083 dev_priv->num_fence_regs = 5084 I915_READ(vgtif_reg(avail_rs.fence_num)); 5085 5086 /* 5087 * Set initial sequence number for requests. 5088 * Using this number allows the wraparound to happen early, 5089 * catching any obvious problems. 5090 */ 5091 dev_priv->next_seqno = ((u32)~0 - 0x1100); 5092 dev_priv->last_seqno = ((u32)~0 - 0x1101); 5093 5094 /* Initialize fence registers to zero */ 5095 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 5096 i915_gem_restore_fences(dev); 5097 5098 i915_gem_detect_bit_6_swizzle(dev); 5099 init_waitqueue_head(&dev_priv->pending_flip_queue); 5100 5101 dev_priv->mm.interruptible = true; 5102 5103 i915_gem_shrinker_init(dev_priv); 5104 5105 mutex_init(&dev_priv->fb_tracking.lock); 5106 } 5107 5108 void i915_gem_release(struct drm_device *dev, struct drm_file *file) 5109 { 5110 struct drm_i915_file_private *file_priv = file->driver_priv; 5111 5112 /* Clean up our request list when the client is going away, so that 5113 * later retire_requests won't dereference our soon-to-be-gone 5114 * file_priv. 5115 */ 5116 spin_lock(&file_priv->mm.lock); 5117 while (!list_empty(&file_priv->mm.request_list)) { 5118 struct drm_i915_gem_request *request; 5119 5120 request = list_first_entry(&file_priv->mm.request_list, 5121 struct drm_i915_gem_request, 5122 client_list); 5123 list_del(&request->client_list); 5124 request->file_priv = NULL; 5125 } 5126 spin_unlock(&file_priv->mm.lock); 5127 5128 if (!list_empty(&file_priv->rps.link)) { 5129 spin_lock(&to_i915(dev)->rps.client_lock); 5130 list_del(&file_priv->rps.link); 5131 spin_unlock(&to_i915(dev)->rps.client_lock); 5132 } 5133 } 5134 5135 int i915_gem_open(struct drm_device *dev, struct drm_file *file) 5136 { 5137 struct drm_i915_file_private *file_priv; 5138 int ret; 5139 5140 DRM_DEBUG_DRIVER("\n"); 5141 5142 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL); 5143 if (!file_priv) 5144 return -ENOMEM; 5145 5146 file->driver_priv = file_priv; 5147 file_priv->dev_priv = dev->dev_private; 5148 file_priv->file = file; 5149 INIT_LIST_HEAD(&file_priv->rps.link); 5150 5151 spin_lock_init(&file_priv->mm.lock); 5152 INIT_LIST_HEAD(&file_priv->mm.request_list); 5153 5154 file_priv->bsd_ring = -1; 5155 5156 ret = i915_gem_context_open(dev, file); 5157 if (ret) 5158 kfree(file_priv); 5159 5160 return ret; 5161 } 5162 5163 /** 5164 * i915_gem_track_fb - update frontbuffer tracking 5165 * @old: current GEM buffer for the frontbuffer slots 5166 * @new: new GEM buffer for the frontbuffer slots 5167 * @frontbuffer_bits: bitmask of frontbuffer slots 5168 * 5169 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them 5170 * from @old and setting them in @new. Both @old and @new can be NULL. 5171 */ 5172 void i915_gem_track_fb(struct drm_i915_gem_object *old, 5173 struct drm_i915_gem_object *new, 5174 unsigned frontbuffer_bits) 5175 { 5176 if (old) { 5177 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex)); 5178 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits)); 5179 old->frontbuffer_bits &= ~frontbuffer_bits; 5180 } 5181 5182 if (new) { 5183 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex)); 5184 WARN_ON(new->frontbuffer_bits & frontbuffer_bits); 5185 new->frontbuffer_bits |= frontbuffer_bits; 5186 } 5187 } 5188 5189 /* All the new VM stuff */ 5190 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o, 5191 struct i915_address_space *vm) 5192 { 5193 struct drm_i915_private *dev_priv = o->base.dev->dev_private; 5194 struct i915_vma *vma; 5195 5196 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base); 5197 5198 list_for_each_entry(vma, &o->vma_list, vma_link) { 5199 if (i915_is_ggtt(vma->vm) && 5200 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL) 5201 continue; 5202 if (vma->vm == vm) 5203 return vma->node.start; 5204 } 5205 5206 WARN(1, "%s vma for this object not found.\n", 5207 i915_is_ggtt(vm) ? "global" : "ppgtt"); 5208 return -1; 5209 } 5210 5211 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o, 5212 const struct i915_ggtt_view *view) 5213 { 5214 struct i915_address_space *ggtt = i915_obj_to_ggtt(o); 5215 struct i915_vma *vma; 5216 5217 list_for_each_entry(vma, &o->vma_list, vma_link) 5218 if (vma->vm == ggtt && 5219 i915_ggtt_view_equal(&vma->ggtt_view, view)) 5220 return vma->node.start; 5221 5222 WARN(1, "global vma for this object not found. (view=%u)\n", view->type); 5223 return -1; 5224 } 5225 5226 bool i915_gem_obj_bound(struct drm_i915_gem_object *o, 5227 struct i915_address_space *vm) 5228 { 5229 struct i915_vma *vma; 5230 5231 list_for_each_entry(vma, &o->vma_list, vma_link) { 5232 if (i915_is_ggtt(vma->vm) && 5233 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL) 5234 continue; 5235 if (vma->vm == vm && drm_mm_node_allocated(&vma->node)) 5236 return true; 5237 } 5238 5239 return false; 5240 } 5241 5242 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o, 5243 const struct i915_ggtt_view *view) 5244 { 5245 struct i915_address_space *ggtt = i915_obj_to_ggtt(o); 5246 struct i915_vma *vma; 5247 5248 list_for_each_entry(vma, &o->vma_list, vma_link) 5249 if (vma->vm == ggtt && 5250 i915_ggtt_view_equal(&vma->ggtt_view, view) && 5251 drm_mm_node_allocated(&vma->node)) 5252 return true; 5253 5254 return false; 5255 } 5256 5257 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o) 5258 { 5259 struct i915_vma *vma; 5260 5261 list_for_each_entry(vma, &o->vma_list, vma_link) 5262 if (drm_mm_node_allocated(&vma->node)) 5263 return true; 5264 5265 return false; 5266 } 5267 5268 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o, 5269 struct i915_address_space *vm) 5270 { 5271 struct drm_i915_private *dev_priv = o->base.dev->dev_private; 5272 struct i915_vma *vma; 5273 5274 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base); 5275 5276 BUG_ON(list_empty(&o->vma_list)); 5277 5278 list_for_each_entry(vma, &o->vma_list, vma_link) { 5279 if (i915_is_ggtt(vma->vm) && 5280 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL) 5281 continue; 5282 if (vma->vm == vm) 5283 return vma->node.size; 5284 } 5285 return 0; 5286 } 5287 5288 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj) 5289 { 5290 struct i915_vma *vma; 5291 list_for_each_entry(vma, &obj->vma_list, vma_link) 5292 if (vma->pin_count > 0) 5293 return true; 5294 5295 return false; 5296 } 5297 5298 /* Like i915_gem_object_get_page(), but mark the returned page dirty */ 5299 struct page * 5300 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n) 5301 { 5302 struct page *page; 5303 5304 /* Only default objects have per-page dirty tracking */ 5305 if (WARN_ON(obj->ops != &i915_gem_object_ops)) 5306 return NULL; 5307 5308 page = i915_gem_object_get_page(obj, n); 5309 set_page_dirty(page); 5310 return page; 5311 } 5312 5313 /* Allocate a new GEM object and fill it with the supplied data */ 5314 struct drm_i915_gem_object * 5315 i915_gem_object_create_from_data(struct drm_device *dev, 5316 const void *data, size_t size) 5317 { 5318 struct drm_i915_gem_object *obj; 5319 struct sg_table *sg; 5320 size_t bytes; 5321 int ret; 5322 5323 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE)); 5324 if (IS_ERR_OR_NULL(obj)) 5325 return obj; 5326 5327 ret = i915_gem_object_set_to_cpu_domain(obj, true); 5328 if (ret) 5329 goto fail; 5330 5331 ret = i915_gem_object_get_pages(obj); 5332 if (ret) 5333 goto fail; 5334 5335 i915_gem_object_pin_pages(obj); 5336 sg = obj->pages; 5337 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size); 5338 obj->dirty = 1; /* Backing store is now out of date */ 5339 i915_gem_object_unpin_pages(obj); 5340 5341 if (WARN_ON(bytes != size)) { 5342 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size); 5343 ret = -EFAULT; 5344 goto fail; 5345 } 5346 5347 return obj; 5348 5349 fail: 5350 drm_gem_object_unreference(&obj->base); 5351 return ERR_PTR(ret); 5352 } 5353