xref: /linux/drivers/gpu/drm/i915/i915_gem.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40 
41 #define RQ_BUG_ON(expr)
42 
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49 
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51 				  enum i915_cache_level level)
52 {
53 	return HAS_LLC(dev) || level != I915_CACHE_NONE;
54 }
55 
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 		return true;
60 
61 	return obj->pin_display;
62 }
63 
64 /* some bookkeeping */
65 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66 				  size_t size)
67 {
68 	spin_lock(&dev_priv->mm.object_stat_lock);
69 	dev_priv->mm.object_count++;
70 	dev_priv->mm.object_memory += size;
71 	spin_unlock(&dev_priv->mm.object_stat_lock);
72 }
73 
74 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 				     size_t size)
76 {
77 	spin_lock(&dev_priv->mm.object_stat_lock);
78 	dev_priv->mm.object_count--;
79 	dev_priv->mm.object_memory -= size;
80 	spin_unlock(&dev_priv->mm.object_stat_lock);
81 }
82 
83 static int
84 i915_gem_wait_for_error(struct i915_gpu_error *error)
85 {
86 	int ret;
87 
88 #define EXIT_COND (!i915_reset_in_progress(error) || \
89 		   i915_terminally_wedged(error))
90 	if (EXIT_COND)
91 		return 0;
92 
93 	/*
94 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95 	 * userspace. If it takes that long something really bad is going on and
96 	 * we should simply try to bail out and fail as gracefully as possible.
97 	 */
98 	ret = wait_event_interruptible_timeout(error->reset_queue,
99 					       EXIT_COND,
100 					       10*HZ);
101 	if (ret == 0) {
102 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103 		return -EIO;
104 	} else if (ret < 0) {
105 		return ret;
106 	}
107 #undef EXIT_COND
108 
109 	return 0;
110 }
111 
112 int i915_mutex_lock_interruptible(struct drm_device *dev)
113 {
114 	struct drm_i915_private *dev_priv = dev->dev_private;
115 	int ret;
116 
117 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118 	if (ret)
119 		return ret;
120 
121 	ret = mutex_lock_interruptible(&dev->struct_mutex);
122 	if (ret)
123 		return ret;
124 
125 	WARN_ON(i915_verify_lists(dev));
126 	return 0;
127 }
128 
129 int
130 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131 			    struct drm_file *file)
132 {
133 	struct drm_i915_private *dev_priv = dev->dev_private;
134 	struct drm_i915_gem_get_aperture *args = data;
135 	struct i915_gtt *ggtt = &dev_priv->gtt;
136 	struct i915_vma *vma;
137 	size_t pinned;
138 
139 	pinned = 0;
140 	mutex_lock(&dev->struct_mutex);
141 	list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
142 		if (vma->pin_count)
143 			pinned += vma->node.size;
144 	list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
145 		if (vma->pin_count)
146 			pinned += vma->node.size;
147 	mutex_unlock(&dev->struct_mutex);
148 
149 	args->aper_size = dev_priv->gtt.base.total;
150 	args->aper_available_size = args->aper_size - pinned;
151 
152 	return 0;
153 }
154 
155 static int
156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157 {
158 	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 	char *vaddr = obj->phys_handle->vaddr;
160 	struct sg_table *st;
161 	struct scatterlist *sg;
162 	int i;
163 
164 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 		return -EINVAL;
166 
167 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 		struct page *page;
169 		char *src;
170 
171 		page = shmem_read_mapping_page(mapping, i);
172 		if (IS_ERR(page))
173 			return PTR_ERR(page);
174 
175 		src = kmap_atomic(page);
176 		memcpy(vaddr, src, PAGE_SIZE);
177 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 		kunmap_atomic(src);
179 
180 		page_cache_release(page);
181 		vaddr += PAGE_SIZE;
182 	}
183 
184 	i915_gem_chipset_flush(obj->base.dev);
185 
186 	st = kmalloc(sizeof(*st), GFP_KERNEL);
187 	if (st == NULL)
188 		return -ENOMEM;
189 
190 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 		kfree(st);
192 		return -ENOMEM;
193 	}
194 
195 	sg = st->sgl;
196 	sg->offset = 0;
197 	sg->length = obj->base.size;
198 
199 	sg_dma_address(sg) = obj->phys_handle->busaddr;
200 	sg_dma_len(sg) = obj->base.size;
201 
202 	obj->pages = st;
203 	return 0;
204 }
205 
206 static void
207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208 {
209 	int ret;
210 
211 	BUG_ON(obj->madv == __I915_MADV_PURGED);
212 
213 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 	if (ret) {
215 		/* In the event of a disaster, abandon all caches and
216 		 * hope for the best.
217 		 */
218 		WARN_ON(ret != -EIO);
219 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 	}
221 
222 	if (obj->madv == I915_MADV_DONTNEED)
223 		obj->dirty = 0;
224 
225 	if (obj->dirty) {
226 		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227 		char *vaddr = obj->phys_handle->vaddr;
228 		int i;
229 
230 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231 			struct page *page;
232 			char *dst;
233 
234 			page = shmem_read_mapping_page(mapping, i);
235 			if (IS_ERR(page))
236 				continue;
237 
238 			dst = kmap_atomic(page);
239 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 			memcpy(dst, vaddr, PAGE_SIZE);
241 			kunmap_atomic(dst);
242 
243 			set_page_dirty(page);
244 			if (obj->madv == I915_MADV_WILLNEED)
245 				mark_page_accessed(page);
246 			page_cache_release(page);
247 			vaddr += PAGE_SIZE;
248 		}
249 		obj->dirty = 0;
250 	}
251 
252 	sg_free_table(obj->pages);
253 	kfree(obj->pages);
254 }
255 
256 static void
257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258 {
259 	drm_pci_free(obj->base.dev, obj->phys_handle);
260 }
261 
262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 	.get_pages = i915_gem_object_get_pages_phys,
264 	.put_pages = i915_gem_object_put_pages_phys,
265 	.release = i915_gem_object_release_phys,
266 };
267 
268 static int
269 drop_pages(struct drm_i915_gem_object *obj)
270 {
271 	struct i915_vma *vma, *next;
272 	int ret;
273 
274 	drm_gem_object_reference(&obj->base);
275 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
276 		if (i915_vma_unbind(vma))
277 			break;
278 
279 	ret = i915_gem_object_put_pages(obj);
280 	drm_gem_object_unreference(&obj->base);
281 
282 	return ret;
283 }
284 
285 int
286 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287 			    int align)
288 {
289 	drm_dma_handle_t *phys;
290 	int ret;
291 
292 	if (obj->phys_handle) {
293 		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294 			return -EBUSY;
295 
296 		return 0;
297 	}
298 
299 	if (obj->madv != I915_MADV_WILLNEED)
300 		return -EFAULT;
301 
302 	if (obj->base.filp == NULL)
303 		return -EINVAL;
304 
305 	ret = drop_pages(obj);
306 	if (ret)
307 		return ret;
308 
309 	/* create a new object */
310 	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311 	if (!phys)
312 		return -ENOMEM;
313 
314 	obj->phys_handle = phys;
315 	obj->ops = &i915_gem_phys_ops;
316 
317 	return i915_gem_object_get_pages(obj);
318 }
319 
320 static int
321 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322 		     struct drm_i915_gem_pwrite *args,
323 		     struct drm_file *file_priv)
324 {
325 	struct drm_device *dev = obj->base.dev;
326 	void *vaddr = obj->phys_handle->vaddr + args->offset;
327 	char __user *user_data = to_user_ptr(args->data_ptr);
328 	int ret = 0;
329 
330 	/* We manually control the domain here and pretend that it
331 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332 	 */
333 	ret = i915_gem_object_wait_rendering(obj, false);
334 	if (ret)
335 		return ret;
336 
337 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339 		unsigned long unwritten;
340 
341 		/* The physical object once assigned is fixed for the lifetime
342 		 * of the obj, so we can safely drop the lock and continue
343 		 * to access vaddr.
344 		 */
345 		mutex_unlock(&dev->struct_mutex);
346 		unwritten = copy_from_user(vaddr, user_data, args->size);
347 		mutex_lock(&dev->struct_mutex);
348 		if (unwritten) {
349 			ret = -EFAULT;
350 			goto out;
351 		}
352 	}
353 
354 	drm_clflush_virt_range(vaddr, args->size);
355 	i915_gem_chipset_flush(dev);
356 
357 out:
358 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359 	return ret;
360 }
361 
362 void *i915_gem_object_alloc(struct drm_device *dev)
363 {
364 	struct drm_i915_private *dev_priv = dev->dev_private;
365 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 }
367 
368 void i915_gem_object_free(struct drm_i915_gem_object *obj)
369 {
370 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371 	kmem_cache_free(dev_priv->objects, obj);
372 }
373 
374 static int
375 i915_gem_create(struct drm_file *file,
376 		struct drm_device *dev,
377 		uint64_t size,
378 		uint32_t *handle_p)
379 {
380 	struct drm_i915_gem_object *obj;
381 	int ret;
382 	u32 handle;
383 
384 	size = roundup(size, PAGE_SIZE);
385 	if (size == 0)
386 		return -EINVAL;
387 
388 	/* Allocate the new object */
389 	obj = i915_gem_alloc_object(dev, size);
390 	if (obj == NULL)
391 		return -ENOMEM;
392 
393 	ret = drm_gem_handle_create(file, &obj->base, &handle);
394 	/* drop reference from allocate - handle holds it now */
395 	drm_gem_object_unreference_unlocked(&obj->base);
396 	if (ret)
397 		return ret;
398 
399 	*handle_p = handle;
400 	return 0;
401 }
402 
403 int
404 i915_gem_dumb_create(struct drm_file *file,
405 		     struct drm_device *dev,
406 		     struct drm_mode_create_dumb *args)
407 {
408 	/* have to work out size/pitch and return them */
409 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410 	args->size = args->pitch * args->height;
411 	return i915_gem_create(file, dev,
412 			       args->size, &args->handle);
413 }
414 
415 /**
416  * Creates a new mm object and returns a handle to it.
417  */
418 int
419 i915_gem_create_ioctl(struct drm_device *dev, void *data,
420 		      struct drm_file *file)
421 {
422 	struct drm_i915_gem_create *args = data;
423 
424 	return i915_gem_create(file, dev,
425 			       args->size, &args->handle);
426 }
427 
428 static inline int
429 __copy_to_user_swizzled(char __user *cpu_vaddr,
430 			const char *gpu_vaddr, int gpu_offset,
431 			int length)
432 {
433 	int ret, cpu_offset = 0;
434 
435 	while (length > 0) {
436 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
437 		int this_length = min(cacheline_end - gpu_offset, length);
438 		int swizzled_gpu_offset = gpu_offset ^ 64;
439 
440 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
441 				     gpu_vaddr + swizzled_gpu_offset,
442 				     this_length);
443 		if (ret)
444 			return ret + length;
445 
446 		cpu_offset += this_length;
447 		gpu_offset += this_length;
448 		length -= this_length;
449 	}
450 
451 	return 0;
452 }
453 
454 static inline int
455 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456 			  const char __user *cpu_vaddr,
457 			  int length)
458 {
459 	int ret, cpu_offset = 0;
460 
461 	while (length > 0) {
462 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 		int this_length = min(cacheline_end - gpu_offset, length);
464 		int swizzled_gpu_offset = gpu_offset ^ 64;
465 
466 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467 				       cpu_vaddr + cpu_offset,
468 				       this_length);
469 		if (ret)
470 			return ret + length;
471 
472 		cpu_offset += this_length;
473 		gpu_offset += this_length;
474 		length -= this_length;
475 	}
476 
477 	return 0;
478 }
479 
480 /*
481  * Pins the specified object's pages and synchronizes the object with
482  * GPU accesses. Sets needs_clflush to non-zero if the caller should
483  * flush the object from the CPU cache.
484  */
485 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486 				    int *needs_clflush)
487 {
488 	int ret;
489 
490 	*needs_clflush = 0;
491 
492 	if (!obj->base.filp)
493 		return -EINVAL;
494 
495 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496 		/* If we're not in the cpu read domain, set ourself into the gtt
497 		 * read domain and manually flush cachelines (if required). This
498 		 * optimizes for the case when the gpu will dirty the data
499 		 * anyway again before the next pread happens. */
500 		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501 							obj->cache_level);
502 		ret = i915_gem_object_wait_rendering(obj, true);
503 		if (ret)
504 			return ret;
505 	}
506 
507 	ret = i915_gem_object_get_pages(obj);
508 	if (ret)
509 		return ret;
510 
511 	i915_gem_object_pin_pages(obj);
512 
513 	return ret;
514 }
515 
516 /* Per-page copy function for the shmem pread fastpath.
517  * Flushes invalid cachelines before reading the target if
518  * needs_clflush is set. */
519 static int
520 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521 		 char __user *user_data,
522 		 bool page_do_bit17_swizzling, bool needs_clflush)
523 {
524 	char *vaddr;
525 	int ret;
526 
527 	if (unlikely(page_do_bit17_swizzling))
528 		return -EINVAL;
529 
530 	vaddr = kmap_atomic(page);
531 	if (needs_clflush)
532 		drm_clflush_virt_range(vaddr + shmem_page_offset,
533 				       page_length);
534 	ret = __copy_to_user_inatomic(user_data,
535 				      vaddr + shmem_page_offset,
536 				      page_length);
537 	kunmap_atomic(vaddr);
538 
539 	return ret ? -EFAULT : 0;
540 }
541 
542 static void
543 shmem_clflush_swizzled_range(char *addr, unsigned long length,
544 			     bool swizzled)
545 {
546 	if (unlikely(swizzled)) {
547 		unsigned long start = (unsigned long) addr;
548 		unsigned long end = (unsigned long) addr + length;
549 
550 		/* For swizzling simply ensure that we always flush both
551 		 * channels. Lame, but simple and it works. Swizzled
552 		 * pwrite/pread is far from a hotpath - current userspace
553 		 * doesn't use it at all. */
554 		start = round_down(start, 128);
555 		end = round_up(end, 128);
556 
557 		drm_clflush_virt_range((void *)start, end - start);
558 	} else {
559 		drm_clflush_virt_range(addr, length);
560 	}
561 
562 }
563 
564 /* Only difference to the fast-path function is that this can handle bit17
565  * and uses non-atomic copy and kmap functions. */
566 static int
567 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568 		 char __user *user_data,
569 		 bool page_do_bit17_swizzling, bool needs_clflush)
570 {
571 	char *vaddr;
572 	int ret;
573 
574 	vaddr = kmap(page);
575 	if (needs_clflush)
576 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577 					     page_length,
578 					     page_do_bit17_swizzling);
579 
580 	if (page_do_bit17_swizzling)
581 		ret = __copy_to_user_swizzled(user_data,
582 					      vaddr, shmem_page_offset,
583 					      page_length);
584 	else
585 		ret = __copy_to_user(user_data,
586 				     vaddr + shmem_page_offset,
587 				     page_length);
588 	kunmap(page);
589 
590 	return ret ? - EFAULT : 0;
591 }
592 
593 static int
594 i915_gem_shmem_pread(struct drm_device *dev,
595 		     struct drm_i915_gem_object *obj,
596 		     struct drm_i915_gem_pread *args,
597 		     struct drm_file *file)
598 {
599 	char __user *user_data;
600 	ssize_t remain;
601 	loff_t offset;
602 	int shmem_page_offset, page_length, ret = 0;
603 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604 	int prefaulted = 0;
605 	int needs_clflush = 0;
606 	struct sg_page_iter sg_iter;
607 
608 	user_data = to_user_ptr(args->data_ptr);
609 	remain = args->size;
610 
611 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612 
613 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614 	if (ret)
615 		return ret;
616 
617 	offset = args->offset;
618 
619 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620 			 offset >> PAGE_SHIFT) {
621 		struct page *page = sg_page_iter_page(&sg_iter);
622 
623 		if (remain <= 0)
624 			break;
625 
626 		/* Operation in this page
627 		 *
628 		 * shmem_page_offset = offset within page in shmem file
629 		 * page_length = bytes to copy for this page
630 		 */
631 		shmem_page_offset = offset_in_page(offset);
632 		page_length = remain;
633 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
634 			page_length = PAGE_SIZE - shmem_page_offset;
635 
636 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637 			(page_to_phys(page) & (1 << 17)) != 0;
638 
639 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640 				       user_data, page_do_bit17_swizzling,
641 				       needs_clflush);
642 		if (ret == 0)
643 			goto next_page;
644 
645 		mutex_unlock(&dev->struct_mutex);
646 
647 		if (likely(!i915.prefault_disable) && !prefaulted) {
648 			ret = fault_in_multipages_writeable(user_data, remain);
649 			/* Userspace is tricking us, but we've already clobbered
650 			 * its pages with the prefault and promised to write the
651 			 * data up to the first fault. Hence ignore any errors
652 			 * and just continue. */
653 			(void)ret;
654 			prefaulted = 1;
655 		}
656 
657 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658 				       user_data, page_do_bit17_swizzling,
659 				       needs_clflush);
660 
661 		mutex_lock(&dev->struct_mutex);
662 
663 		if (ret)
664 			goto out;
665 
666 next_page:
667 		remain -= page_length;
668 		user_data += page_length;
669 		offset += page_length;
670 	}
671 
672 out:
673 	i915_gem_object_unpin_pages(obj);
674 
675 	return ret;
676 }
677 
678 /**
679  * Reads data from the object referenced by handle.
680  *
681  * On error, the contents of *data are undefined.
682  */
683 int
684 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685 		     struct drm_file *file)
686 {
687 	struct drm_i915_gem_pread *args = data;
688 	struct drm_i915_gem_object *obj;
689 	int ret = 0;
690 
691 	if (args->size == 0)
692 		return 0;
693 
694 	if (!access_ok(VERIFY_WRITE,
695 		       to_user_ptr(args->data_ptr),
696 		       args->size))
697 		return -EFAULT;
698 
699 	ret = i915_mutex_lock_interruptible(dev);
700 	if (ret)
701 		return ret;
702 
703 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704 	if (&obj->base == NULL) {
705 		ret = -ENOENT;
706 		goto unlock;
707 	}
708 
709 	/* Bounds check source.  */
710 	if (args->offset > obj->base.size ||
711 	    args->size > obj->base.size - args->offset) {
712 		ret = -EINVAL;
713 		goto out;
714 	}
715 
716 	/* prime objects have no backing filp to GEM pread/pwrite
717 	 * pages from.
718 	 */
719 	if (!obj->base.filp) {
720 		ret = -EINVAL;
721 		goto out;
722 	}
723 
724 	trace_i915_gem_object_pread(obj, args->offset, args->size);
725 
726 	ret = i915_gem_shmem_pread(dev, obj, args, file);
727 
728 out:
729 	drm_gem_object_unreference(&obj->base);
730 unlock:
731 	mutex_unlock(&dev->struct_mutex);
732 	return ret;
733 }
734 
735 /* This is the fast write path which cannot handle
736  * page faults in the source data
737  */
738 
739 static inline int
740 fast_user_write(struct io_mapping *mapping,
741 		loff_t page_base, int page_offset,
742 		char __user *user_data,
743 		int length)
744 {
745 	void __iomem *vaddr_atomic;
746 	void *vaddr;
747 	unsigned long unwritten;
748 
749 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750 	/* We can use the cpu mem copy function because this is X86. */
751 	vaddr = (void __force*)vaddr_atomic + page_offset;
752 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
753 						      user_data, length);
754 	io_mapping_unmap_atomic(vaddr_atomic);
755 	return unwritten;
756 }
757 
758 /**
759  * This is the fast pwrite path, where we copy the data directly from the
760  * user into the GTT, uncached.
761  */
762 static int
763 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764 			 struct drm_i915_gem_object *obj,
765 			 struct drm_i915_gem_pwrite *args,
766 			 struct drm_file *file)
767 {
768 	struct drm_i915_private *dev_priv = dev->dev_private;
769 	ssize_t remain;
770 	loff_t offset, page_base;
771 	char __user *user_data;
772 	int page_offset, page_length, ret;
773 
774 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
775 	if (ret)
776 		goto out;
777 
778 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
779 	if (ret)
780 		goto out_unpin;
781 
782 	ret = i915_gem_object_put_fence(obj);
783 	if (ret)
784 		goto out_unpin;
785 
786 	user_data = to_user_ptr(args->data_ptr);
787 	remain = args->size;
788 
789 	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790 
791 	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792 
793 	while (remain > 0) {
794 		/* Operation in this page
795 		 *
796 		 * page_base = page offset within aperture
797 		 * page_offset = offset within page
798 		 * page_length = bytes to copy for this page
799 		 */
800 		page_base = offset & PAGE_MASK;
801 		page_offset = offset_in_page(offset);
802 		page_length = remain;
803 		if ((page_offset + remain) > PAGE_SIZE)
804 			page_length = PAGE_SIZE - page_offset;
805 
806 		/* If we get a fault while copying data, then (presumably) our
807 		 * source page isn't available.  Return the error and we'll
808 		 * retry in the slow path.
809 		 */
810 		if (fast_user_write(dev_priv->gtt.mappable, page_base,
811 				    page_offset, user_data, page_length)) {
812 			ret = -EFAULT;
813 			goto out_flush;
814 		}
815 
816 		remain -= page_length;
817 		user_data += page_length;
818 		offset += page_length;
819 	}
820 
821 out_flush:
822 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
823 out_unpin:
824 	i915_gem_object_ggtt_unpin(obj);
825 out:
826 	return ret;
827 }
828 
829 /* Per-page copy function for the shmem pwrite fastpath.
830  * Flushes invalid cachelines before writing to the target if
831  * needs_clflush_before is set and flushes out any written cachelines after
832  * writing if needs_clflush is set. */
833 static int
834 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835 		  char __user *user_data,
836 		  bool page_do_bit17_swizzling,
837 		  bool needs_clflush_before,
838 		  bool needs_clflush_after)
839 {
840 	char *vaddr;
841 	int ret;
842 
843 	if (unlikely(page_do_bit17_swizzling))
844 		return -EINVAL;
845 
846 	vaddr = kmap_atomic(page);
847 	if (needs_clflush_before)
848 		drm_clflush_virt_range(vaddr + shmem_page_offset,
849 				       page_length);
850 	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851 					user_data, page_length);
852 	if (needs_clflush_after)
853 		drm_clflush_virt_range(vaddr + shmem_page_offset,
854 				       page_length);
855 	kunmap_atomic(vaddr);
856 
857 	return ret ? -EFAULT : 0;
858 }
859 
860 /* Only difference to the fast-path function is that this can handle bit17
861  * and uses non-atomic copy and kmap functions. */
862 static int
863 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864 		  char __user *user_data,
865 		  bool page_do_bit17_swizzling,
866 		  bool needs_clflush_before,
867 		  bool needs_clflush_after)
868 {
869 	char *vaddr;
870 	int ret;
871 
872 	vaddr = kmap(page);
873 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875 					     page_length,
876 					     page_do_bit17_swizzling);
877 	if (page_do_bit17_swizzling)
878 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879 						user_data,
880 						page_length);
881 	else
882 		ret = __copy_from_user(vaddr + shmem_page_offset,
883 				       user_data,
884 				       page_length);
885 	if (needs_clflush_after)
886 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887 					     page_length,
888 					     page_do_bit17_swizzling);
889 	kunmap(page);
890 
891 	return ret ? -EFAULT : 0;
892 }
893 
894 static int
895 i915_gem_shmem_pwrite(struct drm_device *dev,
896 		      struct drm_i915_gem_object *obj,
897 		      struct drm_i915_gem_pwrite *args,
898 		      struct drm_file *file)
899 {
900 	ssize_t remain;
901 	loff_t offset;
902 	char __user *user_data;
903 	int shmem_page_offset, page_length, ret = 0;
904 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905 	int hit_slowpath = 0;
906 	int needs_clflush_after = 0;
907 	int needs_clflush_before = 0;
908 	struct sg_page_iter sg_iter;
909 
910 	user_data = to_user_ptr(args->data_ptr);
911 	remain = args->size;
912 
913 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914 
915 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916 		/* If we're not in the cpu write domain, set ourself into the gtt
917 		 * write domain and manually flush cachelines (if required). This
918 		 * optimizes for the case when the gpu will use the data
919 		 * right away and we therefore have to clflush anyway. */
920 		needs_clflush_after = cpu_write_needs_clflush(obj);
921 		ret = i915_gem_object_wait_rendering(obj, false);
922 		if (ret)
923 			return ret;
924 	}
925 	/* Same trick applies to invalidate partially written cachelines read
926 	 * before writing. */
927 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928 		needs_clflush_before =
929 			!cpu_cache_is_coherent(dev, obj->cache_level);
930 
931 	ret = i915_gem_object_get_pages(obj);
932 	if (ret)
933 		return ret;
934 
935 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936 
937 	i915_gem_object_pin_pages(obj);
938 
939 	offset = args->offset;
940 	obj->dirty = 1;
941 
942 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943 			 offset >> PAGE_SHIFT) {
944 		struct page *page = sg_page_iter_page(&sg_iter);
945 		int partial_cacheline_write;
946 
947 		if (remain <= 0)
948 			break;
949 
950 		/* Operation in this page
951 		 *
952 		 * shmem_page_offset = offset within page in shmem file
953 		 * page_length = bytes to copy for this page
954 		 */
955 		shmem_page_offset = offset_in_page(offset);
956 
957 		page_length = remain;
958 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
959 			page_length = PAGE_SIZE - shmem_page_offset;
960 
961 		/* If we don't overwrite a cacheline completely we need to be
962 		 * careful to have up-to-date data by first clflushing. Don't
963 		 * overcomplicate things and flush the entire patch. */
964 		partial_cacheline_write = needs_clflush_before &&
965 			((shmem_page_offset | page_length)
966 				& (boot_cpu_data.x86_clflush_size - 1));
967 
968 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969 			(page_to_phys(page) & (1 << 17)) != 0;
970 
971 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972 					user_data, page_do_bit17_swizzling,
973 					partial_cacheline_write,
974 					needs_clflush_after);
975 		if (ret == 0)
976 			goto next_page;
977 
978 		hit_slowpath = 1;
979 		mutex_unlock(&dev->struct_mutex);
980 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981 					user_data, page_do_bit17_swizzling,
982 					partial_cacheline_write,
983 					needs_clflush_after);
984 
985 		mutex_lock(&dev->struct_mutex);
986 
987 		if (ret)
988 			goto out;
989 
990 next_page:
991 		remain -= page_length;
992 		user_data += page_length;
993 		offset += page_length;
994 	}
995 
996 out:
997 	i915_gem_object_unpin_pages(obj);
998 
999 	if (hit_slowpath) {
1000 		/*
1001 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
1002 		 * cachelines in-line while writing and the object moved
1003 		 * out of the cpu write domain while we've dropped the lock.
1004 		 */
1005 		if (!needs_clflush_after &&
1006 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007 			if (i915_gem_clflush_object(obj, obj->pin_display))
1008 				needs_clflush_after = true;
1009 		}
1010 	}
1011 
1012 	if (needs_clflush_after)
1013 		i915_gem_chipset_flush(dev);
1014 	else
1015 		obj->cache_dirty = true;
1016 
1017 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1018 	return ret;
1019 }
1020 
1021 /**
1022  * Writes data to the object referenced by handle.
1023  *
1024  * On error, the contents of the buffer that were to be modified are undefined.
1025  */
1026 int
1027 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1028 		      struct drm_file *file)
1029 {
1030 	struct drm_i915_private *dev_priv = dev->dev_private;
1031 	struct drm_i915_gem_pwrite *args = data;
1032 	struct drm_i915_gem_object *obj;
1033 	int ret;
1034 
1035 	if (args->size == 0)
1036 		return 0;
1037 
1038 	if (!access_ok(VERIFY_READ,
1039 		       to_user_ptr(args->data_ptr),
1040 		       args->size))
1041 		return -EFAULT;
1042 
1043 	if (likely(!i915.prefault_disable)) {
1044 		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045 						   args->size);
1046 		if (ret)
1047 			return -EFAULT;
1048 	}
1049 
1050 	intel_runtime_pm_get(dev_priv);
1051 
1052 	ret = i915_mutex_lock_interruptible(dev);
1053 	if (ret)
1054 		goto put_rpm;
1055 
1056 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1057 	if (&obj->base == NULL) {
1058 		ret = -ENOENT;
1059 		goto unlock;
1060 	}
1061 
1062 	/* Bounds check destination. */
1063 	if (args->offset > obj->base.size ||
1064 	    args->size > obj->base.size - args->offset) {
1065 		ret = -EINVAL;
1066 		goto out;
1067 	}
1068 
1069 	/* prime objects have no backing filp to GEM pread/pwrite
1070 	 * pages from.
1071 	 */
1072 	if (!obj->base.filp) {
1073 		ret = -EINVAL;
1074 		goto out;
1075 	}
1076 
1077 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078 
1079 	ret = -EFAULT;
1080 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1081 	 * it would end up going through the fenced access, and we'll get
1082 	 * different detiling behavior between reading and writing.
1083 	 * pread/pwrite currently are reading and writing from the CPU
1084 	 * perspective, requiring manual detiling by the client.
1085 	 */
1086 	if (obj->tiling_mode == I915_TILING_NONE &&
1087 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088 	    cpu_write_needs_clflush(obj)) {
1089 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1090 		/* Note that the gtt paths might fail with non-page-backed user
1091 		 * pointers (e.g. gtt mappings when moving data between
1092 		 * textures). Fallback to the shmem path in that case. */
1093 	}
1094 
1095 	if (ret == -EFAULT || ret == -ENOSPC) {
1096 		if (obj->phys_handle)
1097 			ret = i915_gem_phys_pwrite(obj, args, file);
1098 		else
1099 			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100 	}
1101 
1102 out:
1103 	drm_gem_object_unreference(&obj->base);
1104 unlock:
1105 	mutex_unlock(&dev->struct_mutex);
1106 put_rpm:
1107 	intel_runtime_pm_put(dev_priv);
1108 
1109 	return ret;
1110 }
1111 
1112 int
1113 i915_gem_check_wedge(struct i915_gpu_error *error,
1114 		     bool interruptible)
1115 {
1116 	if (i915_reset_in_progress(error)) {
1117 		/* Non-interruptible callers can't handle -EAGAIN, hence return
1118 		 * -EIO unconditionally for these. */
1119 		if (!interruptible)
1120 			return -EIO;
1121 
1122 		/* Recovery complete, but the reset failed ... */
1123 		if (i915_terminally_wedged(error))
1124 			return -EIO;
1125 
1126 		/*
1127 		 * Check if GPU Reset is in progress - we need intel_ring_begin
1128 		 * to work properly to reinit the hw state while the gpu is
1129 		 * still marked as reset-in-progress. Handle this with a flag.
1130 		 */
1131 		if (!error->reload_in_reset)
1132 			return -EAGAIN;
1133 	}
1134 
1135 	return 0;
1136 }
1137 
1138 static void fake_irq(unsigned long data)
1139 {
1140 	wake_up_process((struct task_struct *)data);
1141 }
1142 
1143 static bool missed_irq(struct drm_i915_private *dev_priv,
1144 		       struct intel_engine_cs *ring)
1145 {
1146 	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147 }
1148 
1149 static unsigned long local_clock_us(unsigned *cpu)
1150 {
1151 	unsigned long t;
1152 
1153 	/* Cheaply and approximately convert from nanoseconds to microseconds.
1154 	 * The result and subsequent calculations are also defined in the same
1155 	 * approximate microseconds units. The principal source of timing
1156 	 * error here is from the simple truncation.
1157 	 *
1158 	 * Note that local_clock() is only defined wrt to the current CPU;
1159 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1160 	 * blocking preemption for the entire busywait, we can detect the CPU
1161 	 * switch and use that as indicator of system load and a reason to
1162 	 * stop busywaiting, see busywait_stop().
1163 	 */
1164 	*cpu = get_cpu();
1165 	t = local_clock() >> 10;
1166 	put_cpu();
1167 
1168 	return t;
1169 }
1170 
1171 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1172 {
1173 	unsigned this_cpu;
1174 
1175 	if (time_after(local_clock_us(&this_cpu), timeout))
1176 		return true;
1177 
1178 	return this_cpu != cpu;
1179 }
1180 
1181 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1182 {
1183 	unsigned long timeout;
1184 	unsigned cpu;
1185 
1186 	/* When waiting for high frequency requests, e.g. during synchronous
1187 	 * rendering split between the CPU and GPU, the finite amount of time
1188 	 * required to set up the irq and wait upon it limits the response
1189 	 * rate. By busywaiting on the request completion for a short while we
1190 	 * can service the high frequency waits as quick as possible. However,
1191 	 * if it is a slow request, we want to sleep as quickly as possible.
1192 	 * The tradeoff between waiting and sleeping is roughly the time it
1193 	 * takes to sleep on a request, on the order of a microsecond.
1194 	 */
1195 
1196 	if (req->ring->irq_refcount)
1197 		return -EBUSY;
1198 
1199 	/* Only spin if we know the GPU is processing this request */
1200 	if (!i915_gem_request_started(req, true))
1201 		return -EAGAIN;
1202 
1203 	timeout = local_clock_us(&cpu) + 5;
1204 	while (!need_resched()) {
1205 		if (i915_gem_request_completed(req, true))
1206 			return 0;
1207 
1208 		if (signal_pending_state(state, current))
1209 			break;
1210 
1211 		if (busywait_stop(timeout, cpu))
1212 			break;
1213 
1214 		cpu_relax_lowlatency();
1215 	}
1216 
1217 	if (i915_gem_request_completed(req, false))
1218 		return 0;
1219 
1220 	return -EAGAIN;
1221 }
1222 
1223 /**
1224  * __i915_wait_request - wait until execution of request has finished
1225  * @req: duh!
1226  * @reset_counter: reset sequence associated with the given request
1227  * @interruptible: do an interruptible wait (normally yes)
1228  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1229  *
1230  * Note: It is of utmost importance that the passed in seqno and reset_counter
1231  * values have been read by the caller in an smp safe manner. Where read-side
1232  * locks are involved, it is sufficient to read the reset_counter before
1233  * unlocking the lock that protects the seqno. For lockless tricks, the
1234  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1235  * inserted.
1236  *
1237  * Returns 0 if the request was found within the alloted time. Else returns the
1238  * errno with remaining time filled in timeout argument.
1239  */
1240 int __i915_wait_request(struct drm_i915_gem_request *req,
1241 			unsigned reset_counter,
1242 			bool interruptible,
1243 			s64 *timeout,
1244 			struct intel_rps_client *rps)
1245 {
1246 	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1247 	struct drm_device *dev = ring->dev;
1248 	struct drm_i915_private *dev_priv = dev->dev_private;
1249 	const bool irq_test_in_progress =
1250 		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1251 	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1252 	DEFINE_WAIT(wait);
1253 	unsigned long timeout_expire;
1254 	s64 before = 0; /* Only to silence a compiler warning. */
1255 	int ret;
1256 
1257 	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1258 
1259 	if (list_empty(&req->list))
1260 		return 0;
1261 
1262 	if (i915_gem_request_completed(req, true))
1263 		return 0;
1264 
1265 	timeout_expire = 0;
1266 	if (timeout) {
1267 		if (WARN_ON(*timeout < 0))
1268 			return -EINVAL;
1269 
1270 		if (*timeout == 0)
1271 			return -ETIME;
1272 
1273 		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1274 
1275 		/*
1276 		 * Record current time in case interrupted by signal, or wedged.
1277 		 */
1278 		before = ktime_get_raw_ns();
1279 	}
1280 
1281 	if (INTEL_INFO(dev_priv)->gen >= 6)
1282 		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1283 
1284 	trace_i915_gem_request_wait_begin(req);
1285 
1286 	/* Optimistic spin for the next jiffie before touching IRQs */
1287 	ret = __i915_spin_request(req, state);
1288 	if (ret == 0)
1289 		goto out;
1290 
1291 	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1292 		ret = -ENODEV;
1293 		goto out;
1294 	}
1295 
1296 	for (;;) {
1297 		struct timer_list timer;
1298 
1299 		prepare_to_wait(&ring->irq_queue, &wait, state);
1300 
1301 		/* We need to check whether any gpu reset happened in between
1302 		 * the caller grabbing the seqno and now ... */
1303 		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1304 			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
1305 			 * is truely gone. */
1306 			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1307 			if (ret == 0)
1308 				ret = -EAGAIN;
1309 			break;
1310 		}
1311 
1312 		if (i915_gem_request_completed(req, false)) {
1313 			ret = 0;
1314 			break;
1315 		}
1316 
1317 		if (signal_pending_state(state, current)) {
1318 			ret = -ERESTARTSYS;
1319 			break;
1320 		}
1321 
1322 		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1323 			ret = -ETIME;
1324 			break;
1325 		}
1326 
1327 		timer.function = NULL;
1328 		if (timeout || missed_irq(dev_priv, ring)) {
1329 			unsigned long expire;
1330 
1331 			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1332 			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1333 			mod_timer(&timer, expire);
1334 		}
1335 
1336 		io_schedule();
1337 
1338 		if (timer.function) {
1339 			del_singleshot_timer_sync(&timer);
1340 			destroy_timer_on_stack(&timer);
1341 		}
1342 	}
1343 	if (!irq_test_in_progress)
1344 		ring->irq_put(ring);
1345 
1346 	finish_wait(&ring->irq_queue, &wait);
1347 
1348 out:
1349 	trace_i915_gem_request_wait_end(req);
1350 
1351 	if (timeout) {
1352 		s64 tres = *timeout - (ktime_get_raw_ns() - before);
1353 
1354 		*timeout = tres < 0 ? 0 : tres;
1355 
1356 		/*
1357 		 * Apparently ktime isn't accurate enough and occasionally has a
1358 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1359 		 * things up to make the test happy. We allow up to 1 jiffy.
1360 		 *
1361 		 * This is a regrssion from the timespec->ktime conversion.
1362 		 */
1363 		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1364 			*timeout = 0;
1365 	}
1366 
1367 	return ret;
1368 }
1369 
1370 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1371 				   struct drm_file *file)
1372 {
1373 	struct drm_i915_private *dev_private;
1374 	struct drm_i915_file_private *file_priv;
1375 
1376 	WARN_ON(!req || !file || req->file_priv);
1377 
1378 	if (!req || !file)
1379 		return -EINVAL;
1380 
1381 	if (req->file_priv)
1382 		return -EINVAL;
1383 
1384 	dev_private = req->ring->dev->dev_private;
1385 	file_priv = file->driver_priv;
1386 
1387 	spin_lock(&file_priv->mm.lock);
1388 	req->file_priv = file_priv;
1389 	list_add_tail(&req->client_list, &file_priv->mm.request_list);
1390 	spin_unlock(&file_priv->mm.lock);
1391 
1392 	req->pid = get_pid(task_pid(current));
1393 
1394 	return 0;
1395 }
1396 
1397 static inline void
1398 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1399 {
1400 	struct drm_i915_file_private *file_priv = request->file_priv;
1401 
1402 	if (!file_priv)
1403 		return;
1404 
1405 	spin_lock(&file_priv->mm.lock);
1406 	list_del(&request->client_list);
1407 	request->file_priv = NULL;
1408 	spin_unlock(&file_priv->mm.lock);
1409 
1410 	put_pid(request->pid);
1411 	request->pid = NULL;
1412 }
1413 
1414 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1415 {
1416 	trace_i915_gem_request_retire(request);
1417 
1418 	/* We know the GPU must have read the request to have
1419 	 * sent us the seqno + interrupt, so use the position
1420 	 * of tail of the request to update the last known position
1421 	 * of the GPU head.
1422 	 *
1423 	 * Note this requires that we are always called in request
1424 	 * completion order.
1425 	 */
1426 	request->ringbuf->last_retired_head = request->postfix;
1427 
1428 	list_del_init(&request->list);
1429 	i915_gem_request_remove_from_client(request);
1430 
1431 	i915_gem_request_unreference(request);
1432 }
1433 
1434 static void
1435 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1436 {
1437 	struct intel_engine_cs *engine = req->ring;
1438 	struct drm_i915_gem_request *tmp;
1439 
1440 	lockdep_assert_held(&engine->dev->struct_mutex);
1441 
1442 	if (list_empty(&req->list))
1443 		return;
1444 
1445 	do {
1446 		tmp = list_first_entry(&engine->request_list,
1447 				       typeof(*tmp), list);
1448 
1449 		i915_gem_request_retire(tmp);
1450 	} while (tmp != req);
1451 
1452 	WARN_ON(i915_verify_lists(engine->dev));
1453 }
1454 
1455 /**
1456  * Waits for a request to be signaled, and cleans up the
1457  * request and object lists appropriately for that event.
1458  */
1459 int
1460 i915_wait_request(struct drm_i915_gem_request *req)
1461 {
1462 	struct drm_device *dev;
1463 	struct drm_i915_private *dev_priv;
1464 	bool interruptible;
1465 	int ret;
1466 
1467 	BUG_ON(req == NULL);
1468 
1469 	dev = req->ring->dev;
1470 	dev_priv = dev->dev_private;
1471 	interruptible = dev_priv->mm.interruptible;
1472 
1473 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1474 
1475 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1476 	if (ret)
1477 		return ret;
1478 
1479 	ret = __i915_wait_request(req,
1480 				  atomic_read(&dev_priv->gpu_error.reset_counter),
1481 				  interruptible, NULL, NULL);
1482 	if (ret)
1483 		return ret;
1484 
1485 	__i915_gem_request_retire__upto(req);
1486 	return 0;
1487 }
1488 
1489 /**
1490  * Ensures that all rendering to the object has completed and the object is
1491  * safe to unbind from the GTT or access from the CPU.
1492  */
1493 int
1494 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1495 			       bool readonly)
1496 {
1497 	int ret, i;
1498 
1499 	if (!obj->active)
1500 		return 0;
1501 
1502 	if (readonly) {
1503 		if (obj->last_write_req != NULL) {
1504 			ret = i915_wait_request(obj->last_write_req);
1505 			if (ret)
1506 				return ret;
1507 
1508 			i = obj->last_write_req->ring->id;
1509 			if (obj->last_read_req[i] == obj->last_write_req)
1510 				i915_gem_object_retire__read(obj, i);
1511 			else
1512 				i915_gem_object_retire__write(obj);
1513 		}
1514 	} else {
1515 		for (i = 0; i < I915_NUM_RINGS; i++) {
1516 			if (obj->last_read_req[i] == NULL)
1517 				continue;
1518 
1519 			ret = i915_wait_request(obj->last_read_req[i]);
1520 			if (ret)
1521 				return ret;
1522 
1523 			i915_gem_object_retire__read(obj, i);
1524 		}
1525 		RQ_BUG_ON(obj->active);
1526 	}
1527 
1528 	return 0;
1529 }
1530 
1531 static void
1532 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1533 			       struct drm_i915_gem_request *req)
1534 {
1535 	int ring = req->ring->id;
1536 
1537 	if (obj->last_read_req[ring] == req)
1538 		i915_gem_object_retire__read(obj, ring);
1539 	else if (obj->last_write_req == req)
1540 		i915_gem_object_retire__write(obj);
1541 
1542 	__i915_gem_request_retire__upto(req);
1543 }
1544 
1545 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1546  * as the object state may change during this call.
1547  */
1548 static __must_check int
1549 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1550 					    struct intel_rps_client *rps,
1551 					    bool readonly)
1552 {
1553 	struct drm_device *dev = obj->base.dev;
1554 	struct drm_i915_private *dev_priv = dev->dev_private;
1555 	struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1556 	unsigned reset_counter;
1557 	int ret, i, n = 0;
1558 
1559 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1560 	BUG_ON(!dev_priv->mm.interruptible);
1561 
1562 	if (!obj->active)
1563 		return 0;
1564 
1565 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1566 	if (ret)
1567 		return ret;
1568 
1569 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1570 
1571 	if (readonly) {
1572 		struct drm_i915_gem_request *req;
1573 
1574 		req = obj->last_write_req;
1575 		if (req == NULL)
1576 			return 0;
1577 
1578 		requests[n++] = i915_gem_request_reference(req);
1579 	} else {
1580 		for (i = 0; i < I915_NUM_RINGS; i++) {
1581 			struct drm_i915_gem_request *req;
1582 
1583 			req = obj->last_read_req[i];
1584 			if (req == NULL)
1585 				continue;
1586 
1587 			requests[n++] = i915_gem_request_reference(req);
1588 		}
1589 	}
1590 
1591 	mutex_unlock(&dev->struct_mutex);
1592 	for (i = 0; ret == 0 && i < n; i++)
1593 		ret = __i915_wait_request(requests[i], reset_counter, true,
1594 					  NULL, rps);
1595 	mutex_lock(&dev->struct_mutex);
1596 
1597 	for (i = 0; i < n; i++) {
1598 		if (ret == 0)
1599 			i915_gem_object_retire_request(obj, requests[i]);
1600 		i915_gem_request_unreference(requests[i]);
1601 	}
1602 
1603 	return ret;
1604 }
1605 
1606 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1607 {
1608 	struct drm_i915_file_private *fpriv = file->driver_priv;
1609 	return &fpriv->rps;
1610 }
1611 
1612 /**
1613  * Called when user space prepares to use an object with the CPU, either
1614  * through the mmap ioctl's mapping or a GTT mapping.
1615  */
1616 int
1617 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1618 			  struct drm_file *file)
1619 {
1620 	struct drm_i915_gem_set_domain *args = data;
1621 	struct drm_i915_gem_object *obj;
1622 	uint32_t read_domains = args->read_domains;
1623 	uint32_t write_domain = args->write_domain;
1624 	int ret;
1625 
1626 	/* Only handle setting domains to types used by the CPU. */
1627 	if (write_domain & I915_GEM_GPU_DOMAINS)
1628 		return -EINVAL;
1629 
1630 	if (read_domains & I915_GEM_GPU_DOMAINS)
1631 		return -EINVAL;
1632 
1633 	/* Having something in the write domain implies it's in the read
1634 	 * domain, and only that read domain.  Enforce that in the request.
1635 	 */
1636 	if (write_domain != 0 && read_domains != write_domain)
1637 		return -EINVAL;
1638 
1639 	ret = i915_mutex_lock_interruptible(dev);
1640 	if (ret)
1641 		return ret;
1642 
1643 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1644 	if (&obj->base == NULL) {
1645 		ret = -ENOENT;
1646 		goto unlock;
1647 	}
1648 
1649 	/* Try to flush the object off the GPU without holding the lock.
1650 	 * We will repeat the flush holding the lock in the normal manner
1651 	 * to catch cases where we are gazumped.
1652 	 */
1653 	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1654 							  to_rps_client(file),
1655 							  !write_domain);
1656 	if (ret)
1657 		goto unref;
1658 
1659 	if (read_domains & I915_GEM_DOMAIN_GTT)
1660 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1661 	else
1662 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1663 
1664 	if (write_domain != 0)
1665 		intel_fb_obj_invalidate(obj,
1666 					write_domain == I915_GEM_DOMAIN_GTT ?
1667 					ORIGIN_GTT : ORIGIN_CPU);
1668 
1669 unref:
1670 	drm_gem_object_unreference(&obj->base);
1671 unlock:
1672 	mutex_unlock(&dev->struct_mutex);
1673 	return ret;
1674 }
1675 
1676 /**
1677  * Called when user space has done writes to this buffer
1678  */
1679 int
1680 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1681 			 struct drm_file *file)
1682 {
1683 	struct drm_i915_gem_sw_finish *args = data;
1684 	struct drm_i915_gem_object *obj;
1685 	int ret = 0;
1686 
1687 	ret = i915_mutex_lock_interruptible(dev);
1688 	if (ret)
1689 		return ret;
1690 
1691 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1692 	if (&obj->base == NULL) {
1693 		ret = -ENOENT;
1694 		goto unlock;
1695 	}
1696 
1697 	/* Pinned buffers may be scanout, so flush the cache */
1698 	if (obj->pin_display)
1699 		i915_gem_object_flush_cpu_write_domain(obj);
1700 
1701 	drm_gem_object_unreference(&obj->base);
1702 unlock:
1703 	mutex_unlock(&dev->struct_mutex);
1704 	return ret;
1705 }
1706 
1707 /**
1708  * Maps the contents of an object, returning the address it is mapped
1709  * into.
1710  *
1711  * While the mapping holds a reference on the contents of the object, it doesn't
1712  * imply a ref on the object itself.
1713  *
1714  * IMPORTANT:
1715  *
1716  * DRM driver writers who look a this function as an example for how to do GEM
1717  * mmap support, please don't implement mmap support like here. The modern way
1718  * to implement DRM mmap support is with an mmap offset ioctl (like
1719  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1720  * That way debug tooling like valgrind will understand what's going on, hiding
1721  * the mmap call in a driver private ioctl will break that. The i915 driver only
1722  * does cpu mmaps this way because we didn't know better.
1723  */
1724 int
1725 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1726 		    struct drm_file *file)
1727 {
1728 	struct drm_i915_gem_mmap *args = data;
1729 	struct drm_gem_object *obj;
1730 	unsigned long addr;
1731 
1732 	if (args->flags & ~(I915_MMAP_WC))
1733 		return -EINVAL;
1734 
1735 	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1736 		return -ENODEV;
1737 
1738 	obj = drm_gem_object_lookup(dev, file, args->handle);
1739 	if (obj == NULL)
1740 		return -ENOENT;
1741 
1742 	/* prime objects have no backing filp to GEM mmap
1743 	 * pages from.
1744 	 */
1745 	if (!obj->filp) {
1746 		drm_gem_object_unreference_unlocked(obj);
1747 		return -EINVAL;
1748 	}
1749 
1750 	addr = vm_mmap(obj->filp, 0, args->size,
1751 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1752 		       args->offset);
1753 	if (args->flags & I915_MMAP_WC) {
1754 		struct mm_struct *mm = current->mm;
1755 		struct vm_area_struct *vma;
1756 
1757 		down_write(&mm->mmap_sem);
1758 		vma = find_vma(mm, addr);
1759 		if (vma)
1760 			vma->vm_page_prot =
1761 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1762 		else
1763 			addr = -ENOMEM;
1764 		up_write(&mm->mmap_sem);
1765 	}
1766 	drm_gem_object_unreference_unlocked(obj);
1767 	if (IS_ERR((void *)addr))
1768 		return addr;
1769 
1770 	args->addr_ptr = (uint64_t) addr;
1771 
1772 	return 0;
1773 }
1774 
1775 /**
1776  * i915_gem_fault - fault a page into the GTT
1777  * @vma: VMA in question
1778  * @vmf: fault info
1779  *
1780  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1781  * from userspace.  The fault handler takes care of binding the object to
1782  * the GTT (if needed), allocating and programming a fence register (again,
1783  * only if needed based on whether the old reg is still valid or the object
1784  * is tiled) and inserting a new PTE into the faulting process.
1785  *
1786  * Note that the faulting process may involve evicting existing objects
1787  * from the GTT and/or fence registers to make room.  So performance may
1788  * suffer if the GTT working set is large or there are few fence registers
1789  * left.
1790  */
1791 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1792 {
1793 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1794 	struct drm_device *dev = obj->base.dev;
1795 	struct drm_i915_private *dev_priv = dev->dev_private;
1796 	struct i915_ggtt_view view = i915_ggtt_view_normal;
1797 	pgoff_t page_offset;
1798 	unsigned long pfn;
1799 	int ret = 0;
1800 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1801 
1802 	intel_runtime_pm_get(dev_priv);
1803 
1804 	/* We don't use vmf->pgoff since that has the fake offset */
1805 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1806 		PAGE_SHIFT;
1807 
1808 	ret = i915_mutex_lock_interruptible(dev);
1809 	if (ret)
1810 		goto out;
1811 
1812 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1813 
1814 	/* Try to flush the object off the GPU first without holding the lock.
1815 	 * Upon reacquiring the lock, we will perform our sanity checks and then
1816 	 * repeat the flush holding the lock in the normal manner to catch cases
1817 	 * where we are gazumped.
1818 	 */
1819 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1820 	if (ret)
1821 		goto unlock;
1822 
1823 	/* Access to snoopable pages through the GTT is incoherent. */
1824 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1825 		ret = -EFAULT;
1826 		goto unlock;
1827 	}
1828 
1829 	/* Use a partial view if the object is bigger than the aperture. */
1830 	if (obj->base.size >= dev_priv->gtt.mappable_end &&
1831 	    obj->tiling_mode == I915_TILING_NONE) {
1832 		static const unsigned int chunk_size = 256; // 1 MiB
1833 
1834 		memset(&view, 0, sizeof(view));
1835 		view.type = I915_GGTT_VIEW_PARTIAL;
1836 		view.params.partial.offset = rounddown(page_offset, chunk_size);
1837 		view.params.partial.size =
1838 			min_t(unsigned int,
1839 			      chunk_size,
1840 			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1841 			      view.params.partial.offset);
1842 	}
1843 
1844 	/* Now pin it into the GTT if needed */
1845 	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1846 	if (ret)
1847 		goto unlock;
1848 
1849 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1850 	if (ret)
1851 		goto unpin;
1852 
1853 	ret = i915_gem_object_get_fence(obj);
1854 	if (ret)
1855 		goto unpin;
1856 
1857 	/* Finally, remap it using the new GTT offset */
1858 	pfn = dev_priv->gtt.mappable_base +
1859 		i915_gem_obj_ggtt_offset_view(obj, &view);
1860 	pfn >>= PAGE_SHIFT;
1861 
1862 	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1863 		/* Overriding existing pages in partial view does not cause
1864 		 * us any trouble as TLBs are still valid because the fault
1865 		 * is due to userspace losing part of the mapping or never
1866 		 * having accessed it before (at this partials' range).
1867 		 */
1868 		unsigned long base = vma->vm_start +
1869 				     (view.params.partial.offset << PAGE_SHIFT);
1870 		unsigned int i;
1871 
1872 		for (i = 0; i < view.params.partial.size; i++) {
1873 			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1874 			if (ret)
1875 				break;
1876 		}
1877 
1878 		obj->fault_mappable = true;
1879 	} else {
1880 		if (!obj->fault_mappable) {
1881 			unsigned long size = min_t(unsigned long,
1882 						   vma->vm_end - vma->vm_start,
1883 						   obj->base.size);
1884 			int i;
1885 
1886 			for (i = 0; i < size >> PAGE_SHIFT; i++) {
1887 				ret = vm_insert_pfn(vma,
1888 						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
1889 						    pfn + i);
1890 				if (ret)
1891 					break;
1892 			}
1893 
1894 			obj->fault_mappable = true;
1895 		} else
1896 			ret = vm_insert_pfn(vma,
1897 					    (unsigned long)vmf->virtual_address,
1898 					    pfn + page_offset);
1899 	}
1900 unpin:
1901 	i915_gem_object_ggtt_unpin_view(obj, &view);
1902 unlock:
1903 	mutex_unlock(&dev->struct_mutex);
1904 out:
1905 	switch (ret) {
1906 	case -EIO:
1907 		/*
1908 		 * We eat errors when the gpu is terminally wedged to avoid
1909 		 * userspace unduly crashing (gl has no provisions for mmaps to
1910 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1911 		 * and so needs to be reported.
1912 		 */
1913 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1914 			ret = VM_FAULT_SIGBUS;
1915 			break;
1916 		}
1917 	case -EAGAIN:
1918 		/*
1919 		 * EAGAIN means the gpu is hung and we'll wait for the error
1920 		 * handler to reset everything when re-faulting in
1921 		 * i915_mutex_lock_interruptible.
1922 		 */
1923 	case 0:
1924 	case -ERESTARTSYS:
1925 	case -EINTR:
1926 	case -EBUSY:
1927 		/*
1928 		 * EBUSY is ok: this just means that another thread
1929 		 * already did the job.
1930 		 */
1931 		ret = VM_FAULT_NOPAGE;
1932 		break;
1933 	case -ENOMEM:
1934 		ret = VM_FAULT_OOM;
1935 		break;
1936 	case -ENOSPC:
1937 	case -EFAULT:
1938 		ret = VM_FAULT_SIGBUS;
1939 		break;
1940 	default:
1941 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1942 		ret = VM_FAULT_SIGBUS;
1943 		break;
1944 	}
1945 
1946 	intel_runtime_pm_put(dev_priv);
1947 	return ret;
1948 }
1949 
1950 /**
1951  * i915_gem_release_mmap - remove physical page mappings
1952  * @obj: obj in question
1953  *
1954  * Preserve the reservation of the mmapping with the DRM core code, but
1955  * relinquish ownership of the pages back to the system.
1956  *
1957  * It is vital that we remove the page mapping if we have mapped a tiled
1958  * object through the GTT and then lose the fence register due to
1959  * resource pressure. Similarly if the object has been moved out of the
1960  * aperture, than pages mapped into userspace must be revoked. Removing the
1961  * mapping will then trigger a page fault on the next user access, allowing
1962  * fixup by i915_gem_fault().
1963  */
1964 void
1965 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1966 {
1967 	if (!obj->fault_mappable)
1968 		return;
1969 
1970 	drm_vma_node_unmap(&obj->base.vma_node,
1971 			   obj->base.dev->anon_inode->i_mapping);
1972 	obj->fault_mappable = false;
1973 }
1974 
1975 void
1976 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1977 {
1978 	struct drm_i915_gem_object *obj;
1979 
1980 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1981 		i915_gem_release_mmap(obj);
1982 }
1983 
1984 uint32_t
1985 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1986 {
1987 	uint32_t gtt_size;
1988 
1989 	if (INTEL_INFO(dev)->gen >= 4 ||
1990 	    tiling_mode == I915_TILING_NONE)
1991 		return size;
1992 
1993 	/* Previous chips need a power-of-two fence region when tiling */
1994 	if (INTEL_INFO(dev)->gen == 3)
1995 		gtt_size = 1024*1024;
1996 	else
1997 		gtt_size = 512*1024;
1998 
1999 	while (gtt_size < size)
2000 		gtt_size <<= 1;
2001 
2002 	return gtt_size;
2003 }
2004 
2005 /**
2006  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2007  * @obj: object to check
2008  *
2009  * Return the required GTT alignment for an object, taking into account
2010  * potential fence register mapping.
2011  */
2012 uint32_t
2013 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2014 			   int tiling_mode, bool fenced)
2015 {
2016 	/*
2017 	 * Minimum alignment is 4k (GTT page size), but might be greater
2018 	 * if a fence register is needed for the object.
2019 	 */
2020 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2021 	    tiling_mode == I915_TILING_NONE)
2022 		return 4096;
2023 
2024 	/*
2025 	 * Previous chips need to be aligned to the size of the smallest
2026 	 * fence register that can contain the object.
2027 	 */
2028 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2029 }
2030 
2031 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2032 {
2033 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2034 	int ret;
2035 
2036 	if (drm_vma_node_has_offset(&obj->base.vma_node))
2037 		return 0;
2038 
2039 	dev_priv->mm.shrinker_no_lock_stealing = true;
2040 
2041 	ret = drm_gem_create_mmap_offset(&obj->base);
2042 	if (ret != -ENOSPC)
2043 		goto out;
2044 
2045 	/* Badly fragmented mmap space? The only way we can recover
2046 	 * space is by destroying unwanted objects. We can't randomly release
2047 	 * mmap_offsets as userspace expects them to be persistent for the
2048 	 * lifetime of the objects. The closest we can is to release the
2049 	 * offsets on purgeable objects by truncating it and marking it purged,
2050 	 * which prevents userspace from ever using that object again.
2051 	 */
2052 	i915_gem_shrink(dev_priv,
2053 			obj->base.size >> PAGE_SHIFT,
2054 			I915_SHRINK_BOUND |
2055 			I915_SHRINK_UNBOUND |
2056 			I915_SHRINK_PURGEABLE);
2057 	ret = drm_gem_create_mmap_offset(&obj->base);
2058 	if (ret != -ENOSPC)
2059 		goto out;
2060 
2061 	i915_gem_shrink_all(dev_priv);
2062 	ret = drm_gem_create_mmap_offset(&obj->base);
2063 out:
2064 	dev_priv->mm.shrinker_no_lock_stealing = false;
2065 
2066 	return ret;
2067 }
2068 
2069 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2070 {
2071 	drm_gem_free_mmap_offset(&obj->base);
2072 }
2073 
2074 int
2075 i915_gem_mmap_gtt(struct drm_file *file,
2076 		  struct drm_device *dev,
2077 		  uint32_t handle,
2078 		  uint64_t *offset)
2079 {
2080 	struct drm_i915_gem_object *obj;
2081 	int ret;
2082 
2083 	ret = i915_mutex_lock_interruptible(dev);
2084 	if (ret)
2085 		return ret;
2086 
2087 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2088 	if (&obj->base == NULL) {
2089 		ret = -ENOENT;
2090 		goto unlock;
2091 	}
2092 
2093 	if (obj->madv != I915_MADV_WILLNEED) {
2094 		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2095 		ret = -EFAULT;
2096 		goto out;
2097 	}
2098 
2099 	ret = i915_gem_object_create_mmap_offset(obj);
2100 	if (ret)
2101 		goto out;
2102 
2103 	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2104 
2105 out:
2106 	drm_gem_object_unreference(&obj->base);
2107 unlock:
2108 	mutex_unlock(&dev->struct_mutex);
2109 	return ret;
2110 }
2111 
2112 /**
2113  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2114  * @dev: DRM device
2115  * @data: GTT mapping ioctl data
2116  * @file: GEM object info
2117  *
2118  * Simply returns the fake offset to userspace so it can mmap it.
2119  * The mmap call will end up in drm_gem_mmap(), which will set things
2120  * up so we can get faults in the handler above.
2121  *
2122  * The fault handler will take care of binding the object into the GTT
2123  * (since it may have been evicted to make room for something), allocating
2124  * a fence register, and mapping the appropriate aperture address into
2125  * userspace.
2126  */
2127 int
2128 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2129 			struct drm_file *file)
2130 {
2131 	struct drm_i915_gem_mmap_gtt *args = data;
2132 
2133 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2134 }
2135 
2136 /* Immediately discard the backing storage */
2137 static void
2138 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2139 {
2140 	i915_gem_object_free_mmap_offset(obj);
2141 
2142 	if (obj->base.filp == NULL)
2143 		return;
2144 
2145 	/* Our goal here is to return as much of the memory as
2146 	 * is possible back to the system as we are called from OOM.
2147 	 * To do this we must instruct the shmfs to drop all of its
2148 	 * backing pages, *now*.
2149 	 */
2150 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2151 	obj->madv = __I915_MADV_PURGED;
2152 }
2153 
2154 /* Try to discard unwanted pages */
2155 static void
2156 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2157 {
2158 	struct address_space *mapping;
2159 
2160 	switch (obj->madv) {
2161 	case I915_MADV_DONTNEED:
2162 		i915_gem_object_truncate(obj);
2163 	case __I915_MADV_PURGED:
2164 		return;
2165 	}
2166 
2167 	if (obj->base.filp == NULL)
2168 		return;
2169 
2170 	mapping = file_inode(obj->base.filp)->i_mapping,
2171 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2172 }
2173 
2174 static void
2175 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2176 {
2177 	struct sg_page_iter sg_iter;
2178 	int ret;
2179 
2180 	BUG_ON(obj->madv == __I915_MADV_PURGED);
2181 
2182 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2183 	if (ret) {
2184 		/* In the event of a disaster, abandon all caches and
2185 		 * hope for the best.
2186 		 */
2187 		WARN_ON(ret != -EIO);
2188 		i915_gem_clflush_object(obj, true);
2189 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2190 	}
2191 
2192 	i915_gem_gtt_finish_object(obj);
2193 
2194 	if (i915_gem_object_needs_bit17_swizzle(obj))
2195 		i915_gem_object_save_bit_17_swizzle(obj);
2196 
2197 	if (obj->madv == I915_MADV_DONTNEED)
2198 		obj->dirty = 0;
2199 
2200 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2201 		struct page *page = sg_page_iter_page(&sg_iter);
2202 
2203 		if (obj->dirty)
2204 			set_page_dirty(page);
2205 
2206 		if (obj->madv == I915_MADV_WILLNEED)
2207 			mark_page_accessed(page);
2208 
2209 		page_cache_release(page);
2210 	}
2211 	obj->dirty = 0;
2212 
2213 	sg_free_table(obj->pages);
2214 	kfree(obj->pages);
2215 }
2216 
2217 int
2218 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2219 {
2220 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2221 
2222 	if (obj->pages == NULL)
2223 		return 0;
2224 
2225 	if (obj->pages_pin_count)
2226 		return -EBUSY;
2227 
2228 	BUG_ON(i915_gem_obj_bound_any(obj));
2229 
2230 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2231 	 * array, hence protect them from being reaped by removing them from gtt
2232 	 * lists early. */
2233 	list_del(&obj->global_list);
2234 
2235 	ops->put_pages(obj);
2236 	obj->pages = NULL;
2237 
2238 	i915_gem_object_invalidate(obj);
2239 
2240 	return 0;
2241 }
2242 
2243 static int
2244 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2245 {
2246 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2247 	int page_count, i;
2248 	struct address_space *mapping;
2249 	struct sg_table *st;
2250 	struct scatterlist *sg;
2251 	struct sg_page_iter sg_iter;
2252 	struct page *page;
2253 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2254 	int ret;
2255 	gfp_t gfp;
2256 
2257 	/* Assert that the object is not currently in any GPU domain. As it
2258 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2259 	 * a GPU cache
2260 	 */
2261 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2262 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2263 
2264 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2265 	if (st == NULL)
2266 		return -ENOMEM;
2267 
2268 	page_count = obj->base.size / PAGE_SIZE;
2269 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2270 		kfree(st);
2271 		return -ENOMEM;
2272 	}
2273 
2274 	/* Get the list of pages out of our struct file.  They'll be pinned
2275 	 * at this point until we release them.
2276 	 *
2277 	 * Fail silently without starting the shrinker
2278 	 */
2279 	mapping = file_inode(obj->base.filp)->i_mapping;
2280 	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2281 	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2282 	sg = st->sgl;
2283 	st->nents = 0;
2284 	for (i = 0; i < page_count; i++) {
2285 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2286 		if (IS_ERR(page)) {
2287 			i915_gem_shrink(dev_priv,
2288 					page_count,
2289 					I915_SHRINK_BOUND |
2290 					I915_SHRINK_UNBOUND |
2291 					I915_SHRINK_PURGEABLE);
2292 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2293 		}
2294 		if (IS_ERR(page)) {
2295 			/* We've tried hard to allocate the memory by reaping
2296 			 * our own buffer, now let the real VM do its job and
2297 			 * go down in flames if truly OOM.
2298 			 */
2299 			i915_gem_shrink_all(dev_priv);
2300 			page = shmem_read_mapping_page(mapping, i);
2301 			if (IS_ERR(page)) {
2302 				ret = PTR_ERR(page);
2303 				goto err_pages;
2304 			}
2305 		}
2306 #ifdef CONFIG_SWIOTLB
2307 		if (swiotlb_nr_tbl()) {
2308 			st->nents++;
2309 			sg_set_page(sg, page, PAGE_SIZE, 0);
2310 			sg = sg_next(sg);
2311 			continue;
2312 		}
2313 #endif
2314 		if (!i || page_to_pfn(page) != last_pfn + 1) {
2315 			if (i)
2316 				sg = sg_next(sg);
2317 			st->nents++;
2318 			sg_set_page(sg, page, PAGE_SIZE, 0);
2319 		} else {
2320 			sg->length += PAGE_SIZE;
2321 		}
2322 		last_pfn = page_to_pfn(page);
2323 
2324 		/* Check that the i965g/gm workaround works. */
2325 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2326 	}
2327 #ifdef CONFIG_SWIOTLB
2328 	if (!swiotlb_nr_tbl())
2329 #endif
2330 		sg_mark_end(sg);
2331 	obj->pages = st;
2332 
2333 	ret = i915_gem_gtt_prepare_object(obj);
2334 	if (ret)
2335 		goto err_pages;
2336 
2337 	if (i915_gem_object_needs_bit17_swizzle(obj))
2338 		i915_gem_object_do_bit_17_swizzle(obj);
2339 
2340 	if (obj->tiling_mode != I915_TILING_NONE &&
2341 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2342 		i915_gem_object_pin_pages(obj);
2343 
2344 	return 0;
2345 
2346 err_pages:
2347 	sg_mark_end(sg);
2348 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2349 		page_cache_release(sg_page_iter_page(&sg_iter));
2350 	sg_free_table(st);
2351 	kfree(st);
2352 
2353 	/* shmemfs first checks if there is enough memory to allocate the page
2354 	 * and reports ENOSPC should there be insufficient, along with the usual
2355 	 * ENOMEM for a genuine allocation failure.
2356 	 *
2357 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2358 	 * space and so want to translate the error from shmemfs back to our
2359 	 * usual understanding of ENOMEM.
2360 	 */
2361 	if (ret == -ENOSPC)
2362 		ret = -ENOMEM;
2363 
2364 	return ret;
2365 }
2366 
2367 /* Ensure that the associated pages are gathered from the backing storage
2368  * and pinned into our object. i915_gem_object_get_pages() may be called
2369  * multiple times before they are released by a single call to
2370  * i915_gem_object_put_pages() - once the pages are no longer referenced
2371  * either as a result of memory pressure (reaping pages under the shrinker)
2372  * or as the object is itself released.
2373  */
2374 int
2375 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2376 {
2377 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2378 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2379 	int ret;
2380 
2381 	if (obj->pages)
2382 		return 0;
2383 
2384 	if (obj->madv != I915_MADV_WILLNEED) {
2385 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2386 		return -EFAULT;
2387 	}
2388 
2389 	BUG_ON(obj->pages_pin_count);
2390 
2391 	ret = ops->get_pages(obj);
2392 	if (ret)
2393 		return ret;
2394 
2395 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2396 
2397 	obj->get_page.sg = obj->pages->sgl;
2398 	obj->get_page.last = 0;
2399 
2400 	return 0;
2401 }
2402 
2403 void i915_vma_move_to_active(struct i915_vma *vma,
2404 			     struct drm_i915_gem_request *req)
2405 {
2406 	struct drm_i915_gem_object *obj = vma->obj;
2407 	struct intel_engine_cs *ring;
2408 
2409 	ring = i915_gem_request_get_ring(req);
2410 
2411 	/* Add a reference if we're newly entering the active list. */
2412 	if (obj->active == 0)
2413 		drm_gem_object_reference(&obj->base);
2414 	obj->active |= intel_ring_flag(ring);
2415 
2416 	list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2417 	i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2418 
2419 	list_move_tail(&vma->mm_list, &vma->vm->active_list);
2420 }
2421 
2422 static void
2423 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2424 {
2425 	RQ_BUG_ON(obj->last_write_req == NULL);
2426 	RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2427 
2428 	i915_gem_request_assign(&obj->last_write_req, NULL);
2429 	intel_fb_obj_flush(obj, true, ORIGIN_CS);
2430 }
2431 
2432 static void
2433 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2434 {
2435 	struct i915_vma *vma;
2436 
2437 	RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2438 	RQ_BUG_ON(!(obj->active & (1 << ring)));
2439 
2440 	list_del_init(&obj->ring_list[ring]);
2441 	i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2442 
2443 	if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2444 		i915_gem_object_retire__write(obj);
2445 
2446 	obj->active &= ~(1 << ring);
2447 	if (obj->active)
2448 		return;
2449 
2450 	/* Bump our place on the bound list to keep it roughly in LRU order
2451 	 * so that we don't steal from recently used but inactive objects
2452 	 * (unless we are forced to ofc!)
2453 	 */
2454 	list_move_tail(&obj->global_list,
2455 		       &to_i915(obj->base.dev)->mm.bound_list);
2456 
2457 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
2458 		if (!list_empty(&vma->mm_list))
2459 			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2460 	}
2461 
2462 	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2463 	drm_gem_object_unreference(&obj->base);
2464 }
2465 
2466 static int
2467 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2468 {
2469 	struct drm_i915_private *dev_priv = dev->dev_private;
2470 	struct intel_engine_cs *ring;
2471 	int ret, i, j;
2472 
2473 	/* Carefully retire all requests without writing to the rings */
2474 	for_each_ring(ring, dev_priv, i) {
2475 		ret = intel_ring_idle(ring);
2476 		if (ret)
2477 			return ret;
2478 	}
2479 	i915_gem_retire_requests(dev);
2480 
2481 	/* Finally reset hw state */
2482 	for_each_ring(ring, dev_priv, i) {
2483 		intel_ring_init_seqno(ring, seqno);
2484 
2485 		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2486 			ring->semaphore.sync_seqno[j] = 0;
2487 	}
2488 
2489 	return 0;
2490 }
2491 
2492 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2493 {
2494 	struct drm_i915_private *dev_priv = dev->dev_private;
2495 	int ret;
2496 
2497 	if (seqno == 0)
2498 		return -EINVAL;
2499 
2500 	/* HWS page needs to be set less than what we
2501 	 * will inject to ring
2502 	 */
2503 	ret = i915_gem_init_seqno(dev, seqno - 1);
2504 	if (ret)
2505 		return ret;
2506 
2507 	/* Carefully set the last_seqno value so that wrap
2508 	 * detection still works
2509 	 */
2510 	dev_priv->next_seqno = seqno;
2511 	dev_priv->last_seqno = seqno - 1;
2512 	if (dev_priv->last_seqno == 0)
2513 		dev_priv->last_seqno--;
2514 
2515 	return 0;
2516 }
2517 
2518 int
2519 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2520 {
2521 	struct drm_i915_private *dev_priv = dev->dev_private;
2522 
2523 	/* reserve 0 for non-seqno */
2524 	if (dev_priv->next_seqno == 0) {
2525 		int ret = i915_gem_init_seqno(dev, 0);
2526 		if (ret)
2527 			return ret;
2528 
2529 		dev_priv->next_seqno = 1;
2530 	}
2531 
2532 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2533 	return 0;
2534 }
2535 
2536 /*
2537  * NB: This function is not allowed to fail. Doing so would mean the the
2538  * request is not being tracked for completion but the work itself is
2539  * going to happen on the hardware. This would be a Bad Thing(tm).
2540  */
2541 void __i915_add_request(struct drm_i915_gem_request *request,
2542 			struct drm_i915_gem_object *obj,
2543 			bool flush_caches)
2544 {
2545 	struct intel_engine_cs *ring;
2546 	struct drm_i915_private *dev_priv;
2547 	struct intel_ringbuffer *ringbuf;
2548 	u32 request_start;
2549 	int ret;
2550 
2551 	if (WARN_ON(request == NULL))
2552 		return;
2553 
2554 	ring = request->ring;
2555 	dev_priv = ring->dev->dev_private;
2556 	ringbuf = request->ringbuf;
2557 
2558 	/*
2559 	 * To ensure that this call will not fail, space for its emissions
2560 	 * should already have been reserved in the ring buffer. Let the ring
2561 	 * know that it is time to use that space up.
2562 	 */
2563 	intel_ring_reserved_space_use(ringbuf);
2564 
2565 	request_start = intel_ring_get_tail(ringbuf);
2566 	/*
2567 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
2568 	 * after having emitted the batchbuffer command. Hence we need to fix
2569 	 * things up similar to emitting the lazy request. The difference here
2570 	 * is that the flush _must_ happen before the next request, no matter
2571 	 * what.
2572 	 */
2573 	if (flush_caches) {
2574 		if (i915.enable_execlists)
2575 			ret = logical_ring_flush_all_caches(request);
2576 		else
2577 			ret = intel_ring_flush_all_caches(request);
2578 		/* Not allowed to fail! */
2579 		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2580 	}
2581 
2582 	/* Record the position of the start of the request so that
2583 	 * should we detect the updated seqno part-way through the
2584 	 * GPU processing the request, we never over-estimate the
2585 	 * position of the head.
2586 	 */
2587 	request->postfix = intel_ring_get_tail(ringbuf);
2588 
2589 	if (i915.enable_execlists)
2590 		ret = ring->emit_request(request);
2591 	else {
2592 		ret = ring->add_request(request);
2593 
2594 		request->tail = intel_ring_get_tail(ringbuf);
2595 	}
2596 	/* Not allowed to fail! */
2597 	WARN(ret, "emit|add_request failed: %d!\n", ret);
2598 
2599 	request->head = request_start;
2600 
2601 	/* Whilst this request exists, batch_obj will be on the
2602 	 * active_list, and so will hold the active reference. Only when this
2603 	 * request is retired will the the batch_obj be moved onto the
2604 	 * inactive_list and lose its active reference. Hence we do not need
2605 	 * to explicitly hold another reference here.
2606 	 */
2607 	request->batch_obj = obj;
2608 
2609 	request->emitted_jiffies = jiffies;
2610 	request->previous_seqno = ring->last_submitted_seqno;
2611 	ring->last_submitted_seqno = request->seqno;
2612 	list_add_tail(&request->list, &ring->request_list);
2613 
2614 	trace_i915_gem_request_add(request);
2615 
2616 	i915_queue_hangcheck(ring->dev);
2617 
2618 	queue_delayed_work(dev_priv->wq,
2619 			   &dev_priv->mm.retire_work,
2620 			   round_jiffies_up_relative(HZ));
2621 	intel_mark_busy(dev_priv->dev);
2622 
2623 	/* Sanity check that the reserved size was large enough. */
2624 	intel_ring_reserved_space_end(ringbuf);
2625 }
2626 
2627 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2628 				   const struct intel_context *ctx)
2629 {
2630 	unsigned long elapsed;
2631 
2632 	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2633 
2634 	if (ctx->hang_stats.banned)
2635 		return true;
2636 
2637 	if (ctx->hang_stats.ban_period_seconds &&
2638 	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2639 		if (!i915_gem_context_is_default(ctx)) {
2640 			DRM_DEBUG("context hanging too fast, banning!\n");
2641 			return true;
2642 		} else if (i915_stop_ring_allow_ban(dev_priv)) {
2643 			if (i915_stop_ring_allow_warn(dev_priv))
2644 				DRM_ERROR("gpu hanging too fast, banning!\n");
2645 			return true;
2646 		}
2647 	}
2648 
2649 	return false;
2650 }
2651 
2652 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2653 				  struct intel_context *ctx,
2654 				  const bool guilty)
2655 {
2656 	struct i915_ctx_hang_stats *hs;
2657 
2658 	if (WARN_ON(!ctx))
2659 		return;
2660 
2661 	hs = &ctx->hang_stats;
2662 
2663 	if (guilty) {
2664 		hs->banned = i915_context_is_banned(dev_priv, ctx);
2665 		hs->batch_active++;
2666 		hs->guilty_ts = get_seconds();
2667 	} else {
2668 		hs->batch_pending++;
2669 	}
2670 }
2671 
2672 void i915_gem_request_free(struct kref *req_ref)
2673 {
2674 	struct drm_i915_gem_request *req = container_of(req_ref,
2675 						 typeof(*req), ref);
2676 	struct intel_context *ctx = req->ctx;
2677 
2678 	if (req->file_priv)
2679 		i915_gem_request_remove_from_client(req);
2680 
2681 	if (ctx) {
2682 		if (i915.enable_execlists && ctx != req->i915->kernel_context)
2683 			intel_lr_context_unpin(req);
2684 
2685 		i915_gem_context_unreference(ctx);
2686 	}
2687 
2688 	kmem_cache_free(req->i915->requests, req);
2689 }
2690 
2691 static inline int
2692 __i915_gem_request_alloc(struct intel_engine_cs *ring,
2693 			 struct intel_context *ctx,
2694 			 struct drm_i915_gem_request **req_out)
2695 {
2696 	struct drm_i915_private *dev_priv = to_i915(ring->dev);
2697 	struct drm_i915_gem_request *req;
2698 	int ret;
2699 
2700 	if (!req_out)
2701 		return -EINVAL;
2702 
2703 	*req_out = NULL;
2704 
2705 	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2706 	if (req == NULL)
2707 		return -ENOMEM;
2708 
2709 	ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2710 	if (ret)
2711 		goto err;
2712 
2713 	kref_init(&req->ref);
2714 	req->i915 = dev_priv;
2715 	req->ring = ring;
2716 	req->ctx  = ctx;
2717 	i915_gem_context_reference(req->ctx);
2718 
2719 	if (i915.enable_execlists)
2720 		ret = intel_logical_ring_alloc_request_extras(req);
2721 	else
2722 		ret = intel_ring_alloc_request_extras(req);
2723 	if (ret) {
2724 		i915_gem_context_unreference(req->ctx);
2725 		goto err;
2726 	}
2727 
2728 	/*
2729 	 * Reserve space in the ring buffer for all the commands required to
2730 	 * eventually emit this request. This is to guarantee that the
2731 	 * i915_add_request() call can't fail. Note that the reserve may need
2732 	 * to be redone if the request is not actually submitted straight
2733 	 * away, e.g. because a GPU scheduler has deferred it.
2734 	 */
2735 	if (i915.enable_execlists)
2736 		ret = intel_logical_ring_reserve_space(req);
2737 	else
2738 		ret = intel_ring_reserve_space(req);
2739 	if (ret) {
2740 		/*
2741 		 * At this point, the request is fully allocated even if not
2742 		 * fully prepared. Thus it can be cleaned up using the proper
2743 		 * free code.
2744 		 */
2745 		i915_gem_request_cancel(req);
2746 		return ret;
2747 	}
2748 
2749 	*req_out = req;
2750 	return 0;
2751 
2752 err:
2753 	kmem_cache_free(dev_priv->requests, req);
2754 	return ret;
2755 }
2756 
2757 /**
2758  * i915_gem_request_alloc - allocate a request structure
2759  *
2760  * @engine: engine that we wish to issue the request on.
2761  * @ctx: context that the request will be associated with.
2762  *       This can be NULL if the request is not directly related to
2763  *       any specific user context, in which case this function will
2764  *       choose an appropriate context to use.
2765  *
2766  * Returns a pointer to the allocated request if successful,
2767  * or an error code if not.
2768  */
2769 struct drm_i915_gem_request *
2770 i915_gem_request_alloc(struct intel_engine_cs *engine,
2771 		       struct intel_context *ctx)
2772 {
2773 	struct drm_i915_gem_request *req;
2774 	int err;
2775 
2776 	if (ctx == NULL)
2777 		ctx = to_i915(engine->dev)->kernel_context;
2778 	err = __i915_gem_request_alloc(engine, ctx, &req);
2779 	return err ? ERR_PTR(err) : req;
2780 }
2781 
2782 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2783 {
2784 	intel_ring_reserved_space_cancel(req->ringbuf);
2785 
2786 	i915_gem_request_unreference(req);
2787 }
2788 
2789 struct drm_i915_gem_request *
2790 i915_gem_find_active_request(struct intel_engine_cs *ring)
2791 {
2792 	struct drm_i915_gem_request *request;
2793 
2794 	list_for_each_entry(request, &ring->request_list, list) {
2795 		if (i915_gem_request_completed(request, false))
2796 			continue;
2797 
2798 		return request;
2799 	}
2800 
2801 	return NULL;
2802 }
2803 
2804 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2805 				       struct intel_engine_cs *ring)
2806 {
2807 	struct drm_i915_gem_request *request;
2808 	bool ring_hung;
2809 
2810 	request = i915_gem_find_active_request(ring);
2811 
2812 	if (request == NULL)
2813 		return;
2814 
2815 	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2816 
2817 	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2818 
2819 	list_for_each_entry_continue(request, &ring->request_list, list)
2820 		i915_set_reset_status(dev_priv, request->ctx, false);
2821 }
2822 
2823 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2824 					struct intel_engine_cs *ring)
2825 {
2826 	struct intel_ringbuffer *buffer;
2827 
2828 	while (!list_empty(&ring->active_list)) {
2829 		struct drm_i915_gem_object *obj;
2830 
2831 		obj = list_first_entry(&ring->active_list,
2832 				       struct drm_i915_gem_object,
2833 				       ring_list[ring->id]);
2834 
2835 		i915_gem_object_retire__read(obj, ring->id);
2836 	}
2837 
2838 	/*
2839 	 * Clear the execlists queue up before freeing the requests, as those
2840 	 * are the ones that keep the context and ringbuffer backing objects
2841 	 * pinned in place.
2842 	 */
2843 
2844 	if (i915.enable_execlists) {
2845 		spin_lock_irq(&ring->execlist_lock);
2846 
2847 		/* list_splice_tail_init checks for empty lists */
2848 		list_splice_tail_init(&ring->execlist_queue,
2849 				      &ring->execlist_retired_req_list);
2850 
2851 		spin_unlock_irq(&ring->execlist_lock);
2852 		intel_execlists_retire_requests(ring);
2853 	}
2854 
2855 	/*
2856 	 * We must free the requests after all the corresponding objects have
2857 	 * been moved off active lists. Which is the same order as the normal
2858 	 * retire_requests function does. This is important if object hold
2859 	 * implicit references on things like e.g. ppgtt address spaces through
2860 	 * the request.
2861 	 */
2862 	while (!list_empty(&ring->request_list)) {
2863 		struct drm_i915_gem_request *request;
2864 
2865 		request = list_first_entry(&ring->request_list,
2866 					   struct drm_i915_gem_request,
2867 					   list);
2868 
2869 		i915_gem_request_retire(request);
2870 	}
2871 
2872 	/* Having flushed all requests from all queues, we know that all
2873 	 * ringbuffers must now be empty. However, since we do not reclaim
2874 	 * all space when retiring the request (to prevent HEADs colliding
2875 	 * with rapid ringbuffer wraparound) the amount of available space
2876 	 * upon reset is less than when we start. Do one more pass over
2877 	 * all the ringbuffers to reset last_retired_head.
2878 	 */
2879 	list_for_each_entry(buffer, &ring->buffers, link) {
2880 		buffer->last_retired_head = buffer->tail;
2881 		intel_ring_update_space(buffer);
2882 	}
2883 }
2884 
2885 void i915_gem_reset(struct drm_device *dev)
2886 {
2887 	struct drm_i915_private *dev_priv = dev->dev_private;
2888 	struct intel_engine_cs *ring;
2889 	int i;
2890 
2891 	/*
2892 	 * Before we free the objects from the requests, we need to inspect
2893 	 * them for finding the guilty party. As the requests only borrow
2894 	 * their reference to the objects, the inspection must be done first.
2895 	 */
2896 	for_each_ring(ring, dev_priv, i)
2897 		i915_gem_reset_ring_status(dev_priv, ring);
2898 
2899 	for_each_ring(ring, dev_priv, i)
2900 		i915_gem_reset_ring_cleanup(dev_priv, ring);
2901 
2902 	i915_gem_context_reset(dev);
2903 
2904 	i915_gem_restore_fences(dev);
2905 
2906 	WARN_ON(i915_verify_lists(dev));
2907 }
2908 
2909 /**
2910  * This function clears the request list as sequence numbers are passed.
2911  */
2912 void
2913 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2914 {
2915 	WARN_ON(i915_verify_lists(ring->dev));
2916 
2917 	/* Retire requests first as we use it above for the early return.
2918 	 * If we retire requests last, we may use a later seqno and so clear
2919 	 * the requests lists without clearing the active list, leading to
2920 	 * confusion.
2921 	 */
2922 	while (!list_empty(&ring->request_list)) {
2923 		struct drm_i915_gem_request *request;
2924 
2925 		request = list_first_entry(&ring->request_list,
2926 					   struct drm_i915_gem_request,
2927 					   list);
2928 
2929 		if (!i915_gem_request_completed(request, true))
2930 			break;
2931 
2932 		i915_gem_request_retire(request);
2933 	}
2934 
2935 	/* Move any buffers on the active list that are no longer referenced
2936 	 * by the ringbuffer to the flushing/inactive lists as appropriate,
2937 	 * before we free the context associated with the requests.
2938 	 */
2939 	while (!list_empty(&ring->active_list)) {
2940 		struct drm_i915_gem_object *obj;
2941 
2942 		obj = list_first_entry(&ring->active_list,
2943 				      struct drm_i915_gem_object,
2944 				      ring_list[ring->id]);
2945 
2946 		if (!list_empty(&obj->last_read_req[ring->id]->list))
2947 			break;
2948 
2949 		i915_gem_object_retire__read(obj, ring->id);
2950 	}
2951 
2952 	if (unlikely(ring->trace_irq_req &&
2953 		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2954 		ring->irq_put(ring);
2955 		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2956 	}
2957 
2958 	WARN_ON(i915_verify_lists(ring->dev));
2959 }
2960 
2961 bool
2962 i915_gem_retire_requests(struct drm_device *dev)
2963 {
2964 	struct drm_i915_private *dev_priv = dev->dev_private;
2965 	struct intel_engine_cs *ring;
2966 	bool idle = true;
2967 	int i;
2968 
2969 	for_each_ring(ring, dev_priv, i) {
2970 		i915_gem_retire_requests_ring(ring);
2971 		idle &= list_empty(&ring->request_list);
2972 		if (i915.enable_execlists) {
2973 			unsigned long flags;
2974 
2975 			spin_lock_irqsave(&ring->execlist_lock, flags);
2976 			idle &= list_empty(&ring->execlist_queue);
2977 			spin_unlock_irqrestore(&ring->execlist_lock, flags);
2978 
2979 			intel_execlists_retire_requests(ring);
2980 		}
2981 	}
2982 
2983 	if (idle)
2984 		mod_delayed_work(dev_priv->wq,
2985 				   &dev_priv->mm.idle_work,
2986 				   msecs_to_jiffies(100));
2987 
2988 	return idle;
2989 }
2990 
2991 static void
2992 i915_gem_retire_work_handler(struct work_struct *work)
2993 {
2994 	struct drm_i915_private *dev_priv =
2995 		container_of(work, typeof(*dev_priv), mm.retire_work.work);
2996 	struct drm_device *dev = dev_priv->dev;
2997 	bool idle;
2998 
2999 	/* Come back later if the device is busy... */
3000 	idle = false;
3001 	if (mutex_trylock(&dev->struct_mutex)) {
3002 		idle = i915_gem_retire_requests(dev);
3003 		mutex_unlock(&dev->struct_mutex);
3004 	}
3005 	if (!idle)
3006 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3007 				   round_jiffies_up_relative(HZ));
3008 }
3009 
3010 static void
3011 i915_gem_idle_work_handler(struct work_struct *work)
3012 {
3013 	struct drm_i915_private *dev_priv =
3014 		container_of(work, typeof(*dev_priv), mm.idle_work.work);
3015 	struct drm_device *dev = dev_priv->dev;
3016 	struct intel_engine_cs *ring;
3017 	int i;
3018 
3019 	for_each_ring(ring, dev_priv, i)
3020 		if (!list_empty(&ring->request_list))
3021 			return;
3022 
3023 	/* we probably should sync with hangcheck here, using cancel_work_sync.
3024 	 * Also locking seems to be fubar here, ring->request_list is protected
3025 	 * by dev->struct_mutex. */
3026 
3027 	intel_mark_idle(dev);
3028 
3029 	if (mutex_trylock(&dev->struct_mutex)) {
3030 		struct intel_engine_cs *ring;
3031 		int i;
3032 
3033 		for_each_ring(ring, dev_priv, i)
3034 			i915_gem_batch_pool_fini(&ring->batch_pool);
3035 
3036 		mutex_unlock(&dev->struct_mutex);
3037 	}
3038 }
3039 
3040 /**
3041  * Ensures that an object will eventually get non-busy by flushing any required
3042  * write domains, emitting any outstanding lazy request and retiring and
3043  * completed requests.
3044  */
3045 static int
3046 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3047 {
3048 	int i;
3049 
3050 	if (!obj->active)
3051 		return 0;
3052 
3053 	for (i = 0; i < I915_NUM_RINGS; i++) {
3054 		struct drm_i915_gem_request *req;
3055 
3056 		req = obj->last_read_req[i];
3057 		if (req == NULL)
3058 			continue;
3059 
3060 		if (list_empty(&req->list))
3061 			goto retire;
3062 
3063 		if (i915_gem_request_completed(req, true)) {
3064 			__i915_gem_request_retire__upto(req);
3065 retire:
3066 			i915_gem_object_retire__read(obj, i);
3067 		}
3068 	}
3069 
3070 	return 0;
3071 }
3072 
3073 /**
3074  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3075  * @DRM_IOCTL_ARGS: standard ioctl arguments
3076  *
3077  * Returns 0 if successful, else an error is returned with the remaining time in
3078  * the timeout parameter.
3079  *  -ETIME: object is still busy after timeout
3080  *  -ERESTARTSYS: signal interrupted the wait
3081  *  -ENONENT: object doesn't exist
3082  * Also possible, but rare:
3083  *  -EAGAIN: GPU wedged
3084  *  -ENOMEM: damn
3085  *  -ENODEV: Internal IRQ fail
3086  *  -E?: The add request failed
3087  *
3088  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3089  * non-zero timeout parameter the wait ioctl will wait for the given number of
3090  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3091  * without holding struct_mutex the object may become re-busied before this
3092  * function completes. A similar but shorter * race condition exists in the busy
3093  * ioctl
3094  */
3095 int
3096 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3097 {
3098 	struct drm_i915_private *dev_priv = dev->dev_private;
3099 	struct drm_i915_gem_wait *args = data;
3100 	struct drm_i915_gem_object *obj;
3101 	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3102 	unsigned reset_counter;
3103 	int i, n = 0;
3104 	int ret;
3105 
3106 	if (args->flags != 0)
3107 		return -EINVAL;
3108 
3109 	ret = i915_mutex_lock_interruptible(dev);
3110 	if (ret)
3111 		return ret;
3112 
3113 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3114 	if (&obj->base == NULL) {
3115 		mutex_unlock(&dev->struct_mutex);
3116 		return -ENOENT;
3117 	}
3118 
3119 	/* Need to make sure the object gets inactive eventually. */
3120 	ret = i915_gem_object_flush_active(obj);
3121 	if (ret)
3122 		goto out;
3123 
3124 	if (!obj->active)
3125 		goto out;
3126 
3127 	/* Do this after OLR check to make sure we make forward progress polling
3128 	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3129 	 */
3130 	if (args->timeout_ns == 0) {
3131 		ret = -ETIME;
3132 		goto out;
3133 	}
3134 
3135 	drm_gem_object_unreference(&obj->base);
3136 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3137 
3138 	for (i = 0; i < I915_NUM_RINGS; i++) {
3139 		if (obj->last_read_req[i] == NULL)
3140 			continue;
3141 
3142 		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3143 	}
3144 
3145 	mutex_unlock(&dev->struct_mutex);
3146 
3147 	for (i = 0; i < n; i++) {
3148 		if (ret == 0)
3149 			ret = __i915_wait_request(req[i], reset_counter, true,
3150 						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3151 						  to_rps_client(file));
3152 		i915_gem_request_unreference__unlocked(req[i]);
3153 	}
3154 	return ret;
3155 
3156 out:
3157 	drm_gem_object_unreference(&obj->base);
3158 	mutex_unlock(&dev->struct_mutex);
3159 	return ret;
3160 }
3161 
3162 static int
3163 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3164 		       struct intel_engine_cs *to,
3165 		       struct drm_i915_gem_request *from_req,
3166 		       struct drm_i915_gem_request **to_req)
3167 {
3168 	struct intel_engine_cs *from;
3169 	int ret;
3170 
3171 	from = i915_gem_request_get_ring(from_req);
3172 	if (to == from)
3173 		return 0;
3174 
3175 	if (i915_gem_request_completed(from_req, true))
3176 		return 0;
3177 
3178 	if (!i915_semaphore_is_enabled(obj->base.dev)) {
3179 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3180 		ret = __i915_wait_request(from_req,
3181 					  atomic_read(&i915->gpu_error.reset_counter),
3182 					  i915->mm.interruptible,
3183 					  NULL,
3184 					  &i915->rps.semaphores);
3185 		if (ret)
3186 			return ret;
3187 
3188 		i915_gem_object_retire_request(obj, from_req);
3189 	} else {
3190 		int idx = intel_ring_sync_index(from, to);
3191 		u32 seqno = i915_gem_request_get_seqno(from_req);
3192 
3193 		WARN_ON(!to_req);
3194 
3195 		if (seqno <= from->semaphore.sync_seqno[idx])
3196 			return 0;
3197 
3198 		if (*to_req == NULL) {
3199 			struct drm_i915_gem_request *req;
3200 
3201 			req = i915_gem_request_alloc(to, NULL);
3202 			if (IS_ERR(req))
3203 				return PTR_ERR(req);
3204 
3205 			*to_req = req;
3206 		}
3207 
3208 		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3209 		ret = to->semaphore.sync_to(*to_req, from, seqno);
3210 		if (ret)
3211 			return ret;
3212 
3213 		/* We use last_read_req because sync_to()
3214 		 * might have just caused seqno wrap under
3215 		 * the radar.
3216 		 */
3217 		from->semaphore.sync_seqno[idx] =
3218 			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3219 	}
3220 
3221 	return 0;
3222 }
3223 
3224 /**
3225  * i915_gem_object_sync - sync an object to a ring.
3226  *
3227  * @obj: object which may be in use on another ring.
3228  * @to: ring we wish to use the object on. May be NULL.
3229  * @to_req: request we wish to use the object for. See below.
3230  *          This will be allocated and returned if a request is
3231  *          required but not passed in.
3232  *
3233  * This code is meant to abstract object synchronization with the GPU.
3234  * Calling with NULL implies synchronizing the object with the CPU
3235  * rather than a particular GPU ring. Conceptually we serialise writes
3236  * between engines inside the GPU. We only allow one engine to write
3237  * into a buffer at any time, but multiple readers. To ensure each has
3238  * a coherent view of memory, we must:
3239  *
3240  * - If there is an outstanding write request to the object, the new
3241  *   request must wait for it to complete (either CPU or in hw, requests
3242  *   on the same ring will be naturally ordered).
3243  *
3244  * - If we are a write request (pending_write_domain is set), the new
3245  *   request must wait for outstanding read requests to complete.
3246  *
3247  * For CPU synchronisation (NULL to) no request is required. For syncing with
3248  * rings to_req must be non-NULL. However, a request does not have to be
3249  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3250  * request will be allocated automatically and returned through *to_req. Note
3251  * that it is not guaranteed that commands will be emitted (because the system
3252  * might already be idle). Hence there is no need to create a request that
3253  * might never have any work submitted. Note further that if a request is
3254  * returned in *to_req, it is the responsibility of the caller to submit
3255  * that request (after potentially adding more work to it).
3256  *
3257  * Returns 0 if successful, else propagates up the lower layer error.
3258  */
3259 int
3260 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3261 		     struct intel_engine_cs *to,
3262 		     struct drm_i915_gem_request **to_req)
3263 {
3264 	const bool readonly = obj->base.pending_write_domain == 0;
3265 	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3266 	int ret, i, n;
3267 
3268 	if (!obj->active)
3269 		return 0;
3270 
3271 	if (to == NULL)
3272 		return i915_gem_object_wait_rendering(obj, readonly);
3273 
3274 	n = 0;
3275 	if (readonly) {
3276 		if (obj->last_write_req)
3277 			req[n++] = obj->last_write_req;
3278 	} else {
3279 		for (i = 0; i < I915_NUM_RINGS; i++)
3280 			if (obj->last_read_req[i])
3281 				req[n++] = obj->last_read_req[i];
3282 	}
3283 	for (i = 0; i < n; i++) {
3284 		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3285 		if (ret)
3286 			return ret;
3287 	}
3288 
3289 	return 0;
3290 }
3291 
3292 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3293 {
3294 	u32 old_write_domain, old_read_domains;
3295 
3296 	/* Force a pagefault for domain tracking on next user access */
3297 	i915_gem_release_mmap(obj);
3298 
3299 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3300 		return;
3301 
3302 	/* Wait for any direct GTT access to complete */
3303 	mb();
3304 
3305 	old_read_domains = obj->base.read_domains;
3306 	old_write_domain = obj->base.write_domain;
3307 
3308 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3309 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3310 
3311 	trace_i915_gem_object_change_domain(obj,
3312 					    old_read_domains,
3313 					    old_write_domain);
3314 }
3315 
3316 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3317 {
3318 	struct drm_i915_gem_object *obj = vma->obj;
3319 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3320 	int ret;
3321 
3322 	if (list_empty(&vma->vma_link))
3323 		return 0;
3324 
3325 	if (!drm_mm_node_allocated(&vma->node)) {
3326 		i915_gem_vma_destroy(vma);
3327 		return 0;
3328 	}
3329 
3330 	if (vma->pin_count)
3331 		return -EBUSY;
3332 
3333 	BUG_ON(obj->pages == NULL);
3334 
3335 	if (wait) {
3336 		ret = i915_gem_object_wait_rendering(obj, false);
3337 		if (ret)
3338 			return ret;
3339 	}
3340 
3341 	if (i915_is_ggtt(vma->vm) &&
3342 	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3343 		i915_gem_object_finish_gtt(obj);
3344 
3345 		/* release the fence reg _after_ flushing */
3346 		ret = i915_gem_object_put_fence(obj);
3347 		if (ret)
3348 			return ret;
3349 	}
3350 
3351 	trace_i915_vma_unbind(vma);
3352 
3353 	vma->vm->unbind_vma(vma);
3354 	vma->bound = 0;
3355 
3356 	list_del_init(&vma->mm_list);
3357 	if (i915_is_ggtt(vma->vm)) {
3358 		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3359 			obj->map_and_fenceable = false;
3360 		} else if (vma->ggtt_view.pages) {
3361 			sg_free_table(vma->ggtt_view.pages);
3362 			kfree(vma->ggtt_view.pages);
3363 		}
3364 		vma->ggtt_view.pages = NULL;
3365 	}
3366 
3367 	drm_mm_remove_node(&vma->node);
3368 	i915_gem_vma_destroy(vma);
3369 
3370 	/* Since the unbound list is global, only move to that list if
3371 	 * no more VMAs exist. */
3372 	if (list_empty(&obj->vma_list))
3373 		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3374 
3375 	/* And finally now the object is completely decoupled from this vma,
3376 	 * we can drop its hold on the backing storage and allow it to be
3377 	 * reaped by the shrinker.
3378 	 */
3379 	i915_gem_object_unpin_pages(obj);
3380 
3381 	return 0;
3382 }
3383 
3384 int i915_vma_unbind(struct i915_vma *vma)
3385 {
3386 	return __i915_vma_unbind(vma, true);
3387 }
3388 
3389 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3390 {
3391 	return __i915_vma_unbind(vma, false);
3392 }
3393 
3394 int i915_gpu_idle(struct drm_device *dev)
3395 {
3396 	struct drm_i915_private *dev_priv = dev->dev_private;
3397 	struct intel_engine_cs *ring;
3398 	int ret, i;
3399 
3400 	/* Flush everything onto the inactive list. */
3401 	for_each_ring(ring, dev_priv, i) {
3402 		if (!i915.enable_execlists) {
3403 			struct drm_i915_gem_request *req;
3404 
3405 			req = i915_gem_request_alloc(ring, NULL);
3406 			if (IS_ERR(req))
3407 				return PTR_ERR(req);
3408 
3409 			ret = i915_switch_context(req);
3410 			if (ret) {
3411 				i915_gem_request_cancel(req);
3412 				return ret;
3413 			}
3414 
3415 			i915_add_request_no_flush(req);
3416 		}
3417 
3418 		ret = intel_ring_idle(ring);
3419 		if (ret)
3420 			return ret;
3421 	}
3422 
3423 	WARN_ON(i915_verify_lists(dev));
3424 	return 0;
3425 }
3426 
3427 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3428 				     unsigned long cache_level)
3429 {
3430 	struct drm_mm_node *gtt_space = &vma->node;
3431 	struct drm_mm_node *other;
3432 
3433 	/*
3434 	 * On some machines we have to be careful when putting differing types
3435 	 * of snoopable memory together to avoid the prefetcher crossing memory
3436 	 * domains and dying. During vm initialisation, we decide whether or not
3437 	 * these constraints apply and set the drm_mm.color_adjust
3438 	 * appropriately.
3439 	 */
3440 	if (vma->vm->mm.color_adjust == NULL)
3441 		return true;
3442 
3443 	if (!drm_mm_node_allocated(gtt_space))
3444 		return true;
3445 
3446 	if (list_empty(&gtt_space->node_list))
3447 		return true;
3448 
3449 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3450 	if (other->allocated && !other->hole_follows && other->color != cache_level)
3451 		return false;
3452 
3453 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3454 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3455 		return false;
3456 
3457 	return true;
3458 }
3459 
3460 /**
3461  * Finds free space in the GTT aperture and binds the object or a view of it
3462  * there.
3463  */
3464 static struct i915_vma *
3465 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3466 			   struct i915_address_space *vm,
3467 			   const struct i915_ggtt_view *ggtt_view,
3468 			   unsigned alignment,
3469 			   uint64_t flags)
3470 {
3471 	struct drm_device *dev = obj->base.dev;
3472 	struct drm_i915_private *dev_priv = dev->dev_private;
3473 	u32 fence_alignment, unfenced_alignment;
3474 	u32 search_flag, alloc_flag;
3475 	u64 start, end;
3476 	u64 size, fence_size;
3477 	struct i915_vma *vma;
3478 	int ret;
3479 
3480 	if (i915_is_ggtt(vm)) {
3481 		u32 view_size;
3482 
3483 		if (WARN_ON(!ggtt_view))
3484 			return ERR_PTR(-EINVAL);
3485 
3486 		view_size = i915_ggtt_view_size(obj, ggtt_view);
3487 
3488 		fence_size = i915_gem_get_gtt_size(dev,
3489 						   view_size,
3490 						   obj->tiling_mode);
3491 		fence_alignment = i915_gem_get_gtt_alignment(dev,
3492 							     view_size,
3493 							     obj->tiling_mode,
3494 							     true);
3495 		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3496 								view_size,
3497 								obj->tiling_mode,
3498 								false);
3499 		size = flags & PIN_MAPPABLE ? fence_size : view_size;
3500 	} else {
3501 		fence_size = i915_gem_get_gtt_size(dev,
3502 						   obj->base.size,
3503 						   obj->tiling_mode);
3504 		fence_alignment = i915_gem_get_gtt_alignment(dev,
3505 							     obj->base.size,
3506 							     obj->tiling_mode,
3507 							     true);
3508 		unfenced_alignment =
3509 			i915_gem_get_gtt_alignment(dev,
3510 						   obj->base.size,
3511 						   obj->tiling_mode,
3512 						   false);
3513 		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3514 	}
3515 
3516 	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3517 	end = vm->total;
3518 	if (flags & PIN_MAPPABLE)
3519 		end = min_t(u64, end, dev_priv->gtt.mappable_end);
3520 	if (flags & PIN_ZONE_4G)
3521 		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3522 
3523 	if (alignment == 0)
3524 		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3525 						unfenced_alignment;
3526 	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3527 		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3528 			  ggtt_view ? ggtt_view->type : 0,
3529 			  alignment);
3530 		return ERR_PTR(-EINVAL);
3531 	}
3532 
3533 	/* If binding the object/GGTT view requires more space than the entire
3534 	 * aperture has, reject it early before evicting everything in a vain
3535 	 * attempt to find space.
3536 	 */
3537 	if (size > end) {
3538 		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3539 			  ggtt_view ? ggtt_view->type : 0,
3540 			  size,
3541 			  flags & PIN_MAPPABLE ? "mappable" : "total",
3542 			  end);
3543 		return ERR_PTR(-E2BIG);
3544 	}
3545 
3546 	ret = i915_gem_object_get_pages(obj);
3547 	if (ret)
3548 		return ERR_PTR(ret);
3549 
3550 	i915_gem_object_pin_pages(obj);
3551 
3552 	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3553 			  i915_gem_obj_lookup_or_create_vma(obj, vm);
3554 
3555 	if (IS_ERR(vma))
3556 		goto err_unpin;
3557 
3558 	if (flags & PIN_OFFSET_FIXED) {
3559 		uint64_t offset = flags & PIN_OFFSET_MASK;
3560 
3561 		if (offset & (alignment - 1) || offset + size > end) {
3562 			ret = -EINVAL;
3563 			goto err_free_vma;
3564 		}
3565 		vma->node.start = offset;
3566 		vma->node.size = size;
3567 		vma->node.color = obj->cache_level;
3568 		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3569 		if (ret) {
3570 			ret = i915_gem_evict_for_vma(vma);
3571 			if (ret == 0)
3572 				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3573 		}
3574 		if (ret)
3575 			goto err_free_vma;
3576 	} else {
3577 		if (flags & PIN_HIGH) {
3578 			search_flag = DRM_MM_SEARCH_BELOW;
3579 			alloc_flag = DRM_MM_CREATE_TOP;
3580 		} else {
3581 			search_flag = DRM_MM_SEARCH_DEFAULT;
3582 			alloc_flag = DRM_MM_CREATE_DEFAULT;
3583 		}
3584 
3585 search_free:
3586 		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3587 							  size, alignment,
3588 							  obj->cache_level,
3589 							  start, end,
3590 							  search_flag,
3591 							  alloc_flag);
3592 		if (ret) {
3593 			ret = i915_gem_evict_something(dev, vm, size, alignment,
3594 						       obj->cache_level,
3595 						       start, end,
3596 						       flags);
3597 			if (ret == 0)
3598 				goto search_free;
3599 
3600 			goto err_free_vma;
3601 		}
3602 	}
3603 	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3604 		ret = -EINVAL;
3605 		goto err_remove_node;
3606 	}
3607 
3608 	trace_i915_vma_bind(vma, flags);
3609 	ret = i915_vma_bind(vma, obj->cache_level, flags);
3610 	if (ret)
3611 		goto err_remove_node;
3612 
3613 	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3614 	list_add_tail(&vma->mm_list, &vm->inactive_list);
3615 
3616 	return vma;
3617 
3618 err_remove_node:
3619 	drm_mm_remove_node(&vma->node);
3620 err_free_vma:
3621 	i915_gem_vma_destroy(vma);
3622 	vma = ERR_PTR(ret);
3623 err_unpin:
3624 	i915_gem_object_unpin_pages(obj);
3625 	return vma;
3626 }
3627 
3628 bool
3629 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3630 			bool force)
3631 {
3632 	/* If we don't have a page list set up, then we're not pinned
3633 	 * to GPU, and we can ignore the cache flush because it'll happen
3634 	 * again at bind time.
3635 	 */
3636 	if (obj->pages == NULL)
3637 		return false;
3638 
3639 	/*
3640 	 * Stolen memory is always coherent with the GPU as it is explicitly
3641 	 * marked as wc by the system, or the system is cache-coherent.
3642 	 */
3643 	if (obj->stolen || obj->phys_handle)
3644 		return false;
3645 
3646 	/* If the GPU is snooping the contents of the CPU cache,
3647 	 * we do not need to manually clear the CPU cache lines.  However,
3648 	 * the caches are only snooped when the render cache is
3649 	 * flushed/invalidated.  As we always have to emit invalidations
3650 	 * and flushes when moving into and out of the RENDER domain, correct
3651 	 * snooping behaviour occurs naturally as the result of our domain
3652 	 * tracking.
3653 	 */
3654 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3655 		obj->cache_dirty = true;
3656 		return false;
3657 	}
3658 
3659 	trace_i915_gem_object_clflush(obj);
3660 	drm_clflush_sg(obj->pages);
3661 	obj->cache_dirty = false;
3662 
3663 	return true;
3664 }
3665 
3666 /** Flushes the GTT write domain for the object if it's dirty. */
3667 static void
3668 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3669 {
3670 	uint32_t old_write_domain;
3671 
3672 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3673 		return;
3674 
3675 	/* No actual flushing is required for the GTT write domain.  Writes
3676 	 * to it immediately go to main memory as far as we know, so there's
3677 	 * no chipset flush.  It also doesn't land in render cache.
3678 	 *
3679 	 * However, we do have to enforce the order so that all writes through
3680 	 * the GTT land before any writes to the device, such as updates to
3681 	 * the GATT itself.
3682 	 */
3683 	wmb();
3684 
3685 	old_write_domain = obj->base.write_domain;
3686 	obj->base.write_domain = 0;
3687 
3688 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3689 
3690 	trace_i915_gem_object_change_domain(obj,
3691 					    obj->base.read_domains,
3692 					    old_write_domain);
3693 }
3694 
3695 /** Flushes the CPU write domain for the object if it's dirty. */
3696 static void
3697 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3698 {
3699 	uint32_t old_write_domain;
3700 
3701 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3702 		return;
3703 
3704 	if (i915_gem_clflush_object(obj, obj->pin_display))
3705 		i915_gem_chipset_flush(obj->base.dev);
3706 
3707 	old_write_domain = obj->base.write_domain;
3708 	obj->base.write_domain = 0;
3709 
3710 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3711 
3712 	trace_i915_gem_object_change_domain(obj,
3713 					    obj->base.read_domains,
3714 					    old_write_domain);
3715 }
3716 
3717 /**
3718  * Moves a single object to the GTT read, and possibly write domain.
3719  *
3720  * This function returns when the move is complete, including waiting on
3721  * flushes to occur.
3722  */
3723 int
3724 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3725 {
3726 	uint32_t old_write_domain, old_read_domains;
3727 	struct i915_vma *vma;
3728 	int ret;
3729 
3730 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3731 		return 0;
3732 
3733 	ret = i915_gem_object_wait_rendering(obj, !write);
3734 	if (ret)
3735 		return ret;
3736 
3737 	/* Flush and acquire obj->pages so that we are coherent through
3738 	 * direct access in memory with previous cached writes through
3739 	 * shmemfs and that our cache domain tracking remains valid.
3740 	 * For example, if the obj->filp was moved to swap without us
3741 	 * being notified and releasing the pages, we would mistakenly
3742 	 * continue to assume that the obj remained out of the CPU cached
3743 	 * domain.
3744 	 */
3745 	ret = i915_gem_object_get_pages(obj);
3746 	if (ret)
3747 		return ret;
3748 
3749 	i915_gem_object_flush_cpu_write_domain(obj);
3750 
3751 	/* Serialise direct access to this object with the barriers for
3752 	 * coherent writes from the GPU, by effectively invalidating the
3753 	 * GTT domain upon first access.
3754 	 */
3755 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3756 		mb();
3757 
3758 	old_write_domain = obj->base.write_domain;
3759 	old_read_domains = obj->base.read_domains;
3760 
3761 	/* It should now be out of any other write domains, and we can update
3762 	 * the domain values for our changes.
3763 	 */
3764 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3765 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3766 	if (write) {
3767 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3768 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3769 		obj->dirty = 1;
3770 	}
3771 
3772 	trace_i915_gem_object_change_domain(obj,
3773 					    old_read_domains,
3774 					    old_write_domain);
3775 
3776 	/* And bump the LRU for this access */
3777 	vma = i915_gem_obj_to_ggtt(obj);
3778 	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3779 		list_move_tail(&vma->mm_list,
3780 			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3781 
3782 	return 0;
3783 }
3784 
3785 /**
3786  * Changes the cache-level of an object across all VMA.
3787  *
3788  * After this function returns, the object will be in the new cache-level
3789  * across all GTT and the contents of the backing storage will be coherent,
3790  * with respect to the new cache-level. In order to keep the backing storage
3791  * coherent for all users, we only allow a single cache level to be set
3792  * globally on the object and prevent it from being changed whilst the
3793  * hardware is reading from the object. That is if the object is currently
3794  * on the scanout it will be set to uncached (or equivalent display
3795  * cache coherency) and all non-MOCS GPU access will also be uncached so
3796  * that all direct access to the scanout remains coherent.
3797  */
3798 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3799 				    enum i915_cache_level cache_level)
3800 {
3801 	struct drm_device *dev = obj->base.dev;
3802 	struct i915_vma *vma, *next;
3803 	bool bound = false;
3804 	int ret = 0;
3805 
3806 	if (obj->cache_level == cache_level)
3807 		goto out;
3808 
3809 	/* Inspect the list of currently bound VMA and unbind any that would
3810 	 * be invalid given the new cache-level. This is principally to
3811 	 * catch the issue of the CS prefetch crossing page boundaries and
3812 	 * reading an invalid PTE on older architectures.
3813 	 */
3814 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3815 		if (!drm_mm_node_allocated(&vma->node))
3816 			continue;
3817 
3818 		if (vma->pin_count) {
3819 			DRM_DEBUG("can not change the cache level of pinned objects\n");
3820 			return -EBUSY;
3821 		}
3822 
3823 		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3824 			ret = i915_vma_unbind(vma);
3825 			if (ret)
3826 				return ret;
3827 		} else
3828 			bound = true;
3829 	}
3830 
3831 	/* We can reuse the existing drm_mm nodes but need to change the
3832 	 * cache-level on the PTE. We could simply unbind them all and
3833 	 * rebind with the correct cache-level on next use. However since
3834 	 * we already have a valid slot, dma mapping, pages etc, we may as
3835 	 * rewrite the PTE in the belief that doing so tramples upon less
3836 	 * state and so involves less work.
3837 	 */
3838 	if (bound) {
3839 		/* Before we change the PTE, the GPU must not be accessing it.
3840 		 * If we wait upon the object, we know that all the bound
3841 		 * VMA are no longer active.
3842 		 */
3843 		ret = i915_gem_object_wait_rendering(obj, false);
3844 		if (ret)
3845 			return ret;
3846 
3847 		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3848 			/* Access to snoopable pages through the GTT is
3849 			 * incoherent and on some machines causes a hard
3850 			 * lockup. Relinquish the CPU mmaping to force
3851 			 * userspace to refault in the pages and we can
3852 			 * then double check if the GTT mapping is still
3853 			 * valid for that pointer access.
3854 			 */
3855 			i915_gem_release_mmap(obj);
3856 
3857 			/* As we no longer need a fence for GTT access,
3858 			 * we can relinquish it now (and so prevent having
3859 			 * to steal a fence from someone else on the next
3860 			 * fence request). Note GPU activity would have
3861 			 * dropped the fence as all snoopable access is
3862 			 * supposed to be linear.
3863 			 */
3864 			ret = i915_gem_object_put_fence(obj);
3865 			if (ret)
3866 				return ret;
3867 		} else {
3868 			/* We either have incoherent backing store and
3869 			 * so no GTT access or the architecture is fully
3870 			 * coherent. In such cases, existing GTT mmaps
3871 			 * ignore the cache bit in the PTE and we can
3872 			 * rewrite it without confusing the GPU or having
3873 			 * to force userspace to fault back in its mmaps.
3874 			 */
3875 		}
3876 
3877 		list_for_each_entry(vma, &obj->vma_list, vma_link) {
3878 			if (!drm_mm_node_allocated(&vma->node))
3879 				continue;
3880 
3881 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3882 			if (ret)
3883 				return ret;
3884 		}
3885 	}
3886 
3887 	list_for_each_entry(vma, &obj->vma_list, vma_link)
3888 		vma->node.color = cache_level;
3889 	obj->cache_level = cache_level;
3890 
3891 out:
3892 	/* Flush the dirty CPU caches to the backing storage so that the
3893 	 * object is now coherent at its new cache level (with respect
3894 	 * to the access domain).
3895 	 */
3896 	if (obj->cache_dirty &&
3897 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3898 	    cpu_write_needs_clflush(obj)) {
3899 		if (i915_gem_clflush_object(obj, true))
3900 			i915_gem_chipset_flush(obj->base.dev);
3901 	}
3902 
3903 	return 0;
3904 }
3905 
3906 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3907 			       struct drm_file *file)
3908 {
3909 	struct drm_i915_gem_caching *args = data;
3910 	struct drm_i915_gem_object *obj;
3911 
3912 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3913 	if (&obj->base == NULL)
3914 		return -ENOENT;
3915 
3916 	switch (obj->cache_level) {
3917 	case I915_CACHE_LLC:
3918 	case I915_CACHE_L3_LLC:
3919 		args->caching = I915_CACHING_CACHED;
3920 		break;
3921 
3922 	case I915_CACHE_WT:
3923 		args->caching = I915_CACHING_DISPLAY;
3924 		break;
3925 
3926 	default:
3927 		args->caching = I915_CACHING_NONE;
3928 		break;
3929 	}
3930 
3931 	drm_gem_object_unreference_unlocked(&obj->base);
3932 	return 0;
3933 }
3934 
3935 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3936 			       struct drm_file *file)
3937 {
3938 	struct drm_i915_private *dev_priv = dev->dev_private;
3939 	struct drm_i915_gem_caching *args = data;
3940 	struct drm_i915_gem_object *obj;
3941 	enum i915_cache_level level;
3942 	int ret;
3943 
3944 	switch (args->caching) {
3945 	case I915_CACHING_NONE:
3946 		level = I915_CACHE_NONE;
3947 		break;
3948 	case I915_CACHING_CACHED:
3949 		/*
3950 		 * Due to a HW issue on BXT A stepping, GPU stores via a
3951 		 * snooped mapping may leave stale data in a corresponding CPU
3952 		 * cacheline, whereas normally such cachelines would get
3953 		 * invalidated.
3954 		 */
3955 		if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
3956 			return -ENODEV;
3957 
3958 		level = I915_CACHE_LLC;
3959 		break;
3960 	case I915_CACHING_DISPLAY:
3961 		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3962 		break;
3963 	default:
3964 		return -EINVAL;
3965 	}
3966 
3967 	intel_runtime_pm_get(dev_priv);
3968 
3969 	ret = i915_mutex_lock_interruptible(dev);
3970 	if (ret)
3971 		goto rpm_put;
3972 
3973 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3974 	if (&obj->base == NULL) {
3975 		ret = -ENOENT;
3976 		goto unlock;
3977 	}
3978 
3979 	ret = i915_gem_object_set_cache_level(obj, level);
3980 
3981 	drm_gem_object_unreference(&obj->base);
3982 unlock:
3983 	mutex_unlock(&dev->struct_mutex);
3984 rpm_put:
3985 	intel_runtime_pm_put(dev_priv);
3986 
3987 	return ret;
3988 }
3989 
3990 /*
3991  * Prepare buffer for display plane (scanout, cursors, etc).
3992  * Can be called from an uninterruptible phase (modesetting) and allows
3993  * any flushes to be pipelined (for pageflips).
3994  */
3995 int
3996 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3997 				     u32 alignment,
3998 				     const struct i915_ggtt_view *view)
3999 {
4000 	u32 old_read_domains, old_write_domain;
4001 	int ret;
4002 
4003 	/* Mark the pin_display early so that we account for the
4004 	 * display coherency whilst setting up the cache domains.
4005 	 */
4006 	obj->pin_display++;
4007 
4008 	/* The display engine is not coherent with the LLC cache on gen6.  As
4009 	 * a result, we make sure that the pinning that is about to occur is
4010 	 * done with uncached PTEs. This is lowest common denominator for all
4011 	 * chipsets.
4012 	 *
4013 	 * However for gen6+, we could do better by using the GFDT bit instead
4014 	 * of uncaching, which would allow us to flush all the LLC-cached data
4015 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4016 	 */
4017 	ret = i915_gem_object_set_cache_level(obj,
4018 					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4019 	if (ret)
4020 		goto err_unpin_display;
4021 
4022 	/* As the user may map the buffer once pinned in the display plane
4023 	 * (e.g. libkms for the bootup splash), we have to ensure that we
4024 	 * always use map_and_fenceable for all scanout buffers.
4025 	 */
4026 	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4027 				       view->type == I915_GGTT_VIEW_NORMAL ?
4028 				       PIN_MAPPABLE : 0);
4029 	if (ret)
4030 		goto err_unpin_display;
4031 
4032 	i915_gem_object_flush_cpu_write_domain(obj);
4033 
4034 	old_write_domain = obj->base.write_domain;
4035 	old_read_domains = obj->base.read_domains;
4036 
4037 	/* It should now be out of any other write domains, and we can update
4038 	 * the domain values for our changes.
4039 	 */
4040 	obj->base.write_domain = 0;
4041 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4042 
4043 	trace_i915_gem_object_change_domain(obj,
4044 					    old_read_domains,
4045 					    old_write_domain);
4046 
4047 	return 0;
4048 
4049 err_unpin_display:
4050 	obj->pin_display--;
4051 	return ret;
4052 }
4053 
4054 void
4055 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4056 					 const struct i915_ggtt_view *view)
4057 {
4058 	if (WARN_ON(obj->pin_display == 0))
4059 		return;
4060 
4061 	i915_gem_object_ggtt_unpin_view(obj, view);
4062 
4063 	obj->pin_display--;
4064 }
4065 
4066 /**
4067  * Moves a single object to the CPU read, and possibly write domain.
4068  *
4069  * This function returns when the move is complete, including waiting on
4070  * flushes to occur.
4071  */
4072 int
4073 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4074 {
4075 	uint32_t old_write_domain, old_read_domains;
4076 	int ret;
4077 
4078 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4079 		return 0;
4080 
4081 	ret = i915_gem_object_wait_rendering(obj, !write);
4082 	if (ret)
4083 		return ret;
4084 
4085 	i915_gem_object_flush_gtt_write_domain(obj);
4086 
4087 	old_write_domain = obj->base.write_domain;
4088 	old_read_domains = obj->base.read_domains;
4089 
4090 	/* Flush the CPU cache if it's still invalid. */
4091 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4092 		i915_gem_clflush_object(obj, false);
4093 
4094 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4095 	}
4096 
4097 	/* It should now be out of any other write domains, and we can update
4098 	 * the domain values for our changes.
4099 	 */
4100 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4101 
4102 	/* If we're writing through the CPU, then the GPU read domains will
4103 	 * need to be invalidated at next use.
4104 	 */
4105 	if (write) {
4106 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4107 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4108 	}
4109 
4110 	trace_i915_gem_object_change_domain(obj,
4111 					    old_read_domains,
4112 					    old_write_domain);
4113 
4114 	return 0;
4115 }
4116 
4117 /* Throttle our rendering by waiting until the ring has completed our requests
4118  * emitted over 20 msec ago.
4119  *
4120  * Note that if we were to use the current jiffies each time around the loop,
4121  * we wouldn't escape the function with any frames outstanding if the time to
4122  * render a frame was over 20ms.
4123  *
4124  * This should get us reasonable parallelism between CPU and GPU but also
4125  * relatively low latency when blocking on a particular request to finish.
4126  */
4127 static int
4128 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4129 {
4130 	struct drm_i915_private *dev_priv = dev->dev_private;
4131 	struct drm_i915_file_private *file_priv = file->driver_priv;
4132 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4133 	struct drm_i915_gem_request *request, *target = NULL;
4134 	unsigned reset_counter;
4135 	int ret;
4136 
4137 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4138 	if (ret)
4139 		return ret;
4140 
4141 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4142 	if (ret)
4143 		return ret;
4144 
4145 	spin_lock(&file_priv->mm.lock);
4146 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4147 		if (time_after_eq(request->emitted_jiffies, recent_enough))
4148 			break;
4149 
4150 		/*
4151 		 * Note that the request might not have been submitted yet.
4152 		 * In which case emitted_jiffies will be zero.
4153 		 */
4154 		if (!request->emitted_jiffies)
4155 			continue;
4156 
4157 		target = request;
4158 	}
4159 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4160 	if (target)
4161 		i915_gem_request_reference(target);
4162 	spin_unlock(&file_priv->mm.lock);
4163 
4164 	if (target == NULL)
4165 		return 0;
4166 
4167 	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4168 	if (ret == 0)
4169 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4170 
4171 	i915_gem_request_unreference__unlocked(target);
4172 
4173 	return ret;
4174 }
4175 
4176 static bool
4177 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4178 {
4179 	struct drm_i915_gem_object *obj = vma->obj;
4180 
4181 	if (alignment &&
4182 	    vma->node.start & (alignment - 1))
4183 		return true;
4184 
4185 	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4186 		return true;
4187 
4188 	if (flags & PIN_OFFSET_BIAS &&
4189 	    vma->node.start < (flags & PIN_OFFSET_MASK))
4190 		return true;
4191 
4192 	if (flags & PIN_OFFSET_FIXED &&
4193 	    vma->node.start != (flags & PIN_OFFSET_MASK))
4194 		return true;
4195 
4196 	return false;
4197 }
4198 
4199 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4200 {
4201 	struct drm_i915_gem_object *obj = vma->obj;
4202 	bool mappable, fenceable;
4203 	u32 fence_size, fence_alignment;
4204 
4205 	fence_size = i915_gem_get_gtt_size(obj->base.dev,
4206 					   obj->base.size,
4207 					   obj->tiling_mode);
4208 	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4209 						     obj->base.size,
4210 						     obj->tiling_mode,
4211 						     true);
4212 
4213 	fenceable = (vma->node.size == fence_size &&
4214 		     (vma->node.start & (fence_alignment - 1)) == 0);
4215 
4216 	mappable = (vma->node.start + fence_size <=
4217 		    to_i915(obj->base.dev)->gtt.mappable_end);
4218 
4219 	obj->map_and_fenceable = mappable && fenceable;
4220 }
4221 
4222 static int
4223 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4224 		       struct i915_address_space *vm,
4225 		       const struct i915_ggtt_view *ggtt_view,
4226 		       uint32_t alignment,
4227 		       uint64_t flags)
4228 {
4229 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4230 	struct i915_vma *vma;
4231 	unsigned bound;
4232 	int ret;
4233 
4234 	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4235 		return -ENODEV;
4236 
4237 	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4238 		return -EINVAL;
4239 
4240 	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4241 		return -EINVAL;
4242 
4243 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4244 		return -EINVAL;
4245 
4246 	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4247 			  i915_gem_obj_to_vma(obj, vm);
4248 
4249 	if (IS_ERR(vma))
4250 		return PTR_ERR(vma);
4251 
4252 	if (vma) {
4253 		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4254 			return -EBUSY;
4255 
4256 		if (i915_vma_misplaced(vma, alignment, flags)) {
4257 			WARN(vma->pin_count,
4258 			     "bo is already pinned in %s with incorrect alignment:"
4259 			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4260 			     " obj->map_and_fenceable=%d\n",
4261 			     ggtt_view ? "ggtt" : "ppgtt",
4262 			     upper_32_bits(vma->node.start),
4263 			     lower_32_bits(vma->node.start),
4264 			     alignment,
4265 			     !!(flags & PIN_MAPPABLE),
4266 			     obj->map_and_fenceable);
4267 			ret = i915_vma_unbind(vma);
4268 			if (ret)
4269 				return ret;
4270 
4271 			vma = NULL;
4272 		}
4273 	}
4274 
4275 	bound = vma ? vma->bound : 0;
4276 	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4277 		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4278 						 flags);
4279 		if (IS_ERR(vma))
4280 			return PTR_ERR(vma);
4281 	} else {
4282 		ret = i915_vma_bind(vma, obj->cache_level, flags);
4283 		if (ret)
4284 			return ret;
4285 	}
4286 
4287 	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4288 	    (bound ^ vma->bound) & GLOBAL_BIND) {
4289 		__i915_vma_set_map_and_fenceable(vma);
4290 		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4291 	}
4292 
4293 	vma->pin_count++;
4294 	return 0;
4295 }
4296 
4297 int
4298 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4299 		    struct i915_address_space *vm,
4300 		    uint32_t alignment,
4301 		    uint64_t flags)
4302 {
4303 	return i915_gem_object_do_pin(obj, vm,
4304 				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4305 				      alignment, flags);
4306 }
4307 
4308 int
4309 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4310 			 const struct i915_ggtt_view *view,
4311 			 uint32_t alignment,
4312 			 uint64_t flags)
4313 {
4314 	if (WARN_ONCE(!view, "no view specified"))
4315 		return -EINVAL;
4316 
4317 	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4318 				      alignment, flags | PIN_GLOBAL);
4319 }
4320 
4321 void
4322 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4323 				const struct i915_ggtt_view *view)
4324 {
4325 	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4326 
4327 	BUG_ON(!vma);
4328 	WARN_ON(vma->pin_count == 0);
4329 	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4330 
4331 	--vma->pin_count;
4332 }
4333 
4334 int
4335 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4336 		    struct drm_file *file)
4337 {
4338 	struct drm_i915_gem_busy *args = data;
4339 	struct drm_i915_gem_object *obj;
4340 	int ret;
4341 
4342 	ret = i915_mutex_lock_interruptible(dev);
4343 	if (ret)
4344 		return ret;
4345 
4346 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4347 	if (&obj->base == NULL) {
4348 		ret = -ENOENT;
4349 		goto unlock;
4350 	}
4351 
4352 	/* Count all active objects as busy, even if they are currently not used
4353 	 * by the gpu. Users of this interface expect objects to eventually
4354 	 * become non-busy without any further actions, therefore emit any
4355 	 * necessary flushes here.
4356 	 */
4357 	ret = i915_gem_object_flush_active(obj);
4358 	if (ret)
4359 		goto unref;
4360 
4361 	args->busy = 0;
4362 	if (obj->active) {
4363 		int i;
4364 
4365 		for (i = 0; i < I915_NUM_RINGS; i++) {
4366 			struct drm_i915_gem_request *req;
4367 
4368 			req = obj->last_read_req[i];
4369 			if (req)
4370 				args->busy |= 1 << (16 + req->ring->exec_id);
4371 		}
4372 		if (obj->last_write_req)
4373 			args->busy |= obj->last_write_req->ring->exec_id;
4374 	}
4375 
4376 unref:
4377 	drm_gem_object_unreference(&obj->base);
4378 unlock:
4379 	mutex_unlock(&dev->struct_mutex);
4380 	return ret;
4381 }
4382 
4383 int
4384 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4385 			struct drm_file *file_priv)
4386 {
4387 	return i915_gem_ring_throttle(dev, file_priv);
4388 }
4389 
4390 int
4391 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4392 		       struct drm_file *file_priv)
4393 {
4394 	struct drm_i915_private *dev_priv = dev->dev_private;
4395 	struct drm_i915_gem_madvise *args = data;
4396 	struct drm_i915_gem_object *obj;
4397 	int ret;
4398 
4399 	switch (args->madv) {
4400 	case I915_MADV_DONTNEED:
4401 	case I915_MADV_WILLNEED:
4402 	    break;
4403 	default:
4404 	    return -EINVAL;
4405 	}
4406 
4407 	ret = i915_mutex_lock_interruptible(dev);
4408 	if (ret)
4409 		return ret;
4410 
4411 	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4412 	if (&obj->base == NULL) {
4413 		ret = -ENOENT;
4414 		goto unlock;
4415 	}
4416 
4417 	if (i915_gem_obj_is_pinned(obj)) {
4418 		ret = -EINVAL;
4419 		goto out;
4420 	}
4421 
4422 	if (obj->pages &&
4423 	    obj->tiling_mode != I915_TILING_NONE &&
4424 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4425 		if (obj->madv == I915_MADV_WILLNEED)
4426 			i915_gem_object_unpin_pages(obj);
4427 		if (args->madv == I915_MADV_WILLNEED)
4428 			i915_gem_object_pin_pages(obj);
4429 	}
4430 
4431 	if (obj->madv != __I915_MADV_PURGED)
4432 		obj->madv = args->madv;
4433 
4434 	/* if the object is no longer attached, discard its backing storage */
4435 	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4436 		i915_gem_object_truncate(obj);
4437 
4438 	args->retained = obj->madv != __I915_MADV_PURGED;
4439 
4440 out:
4441 	drm_gem_object_unreference(&obj->base);
4442 unlock:
4443 	mutex_unlock(&dev->struct_mutex);
4444 	return ret;
4445 }
4446 
4447 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4448 			  const struct drm_i915_gem_object_ops *ops)
4449 {
4450 	int i;
4451 
4452 	INIT_LIST_HEAD(&obj->global_list);
4453 	for (i = 0; i < I915_NUM_RINGS; i++)
4454 		INIT_LIST_HEAD(&obj->ring_list[i]);
4455 	INIT_LIST_HEAD(&obj->obj_exec_link);
4456 	INIT_LIST_HEAD(&obj->vma_list);
4457 	INIT_LIST_HEAD(&obj->batch_pool_link);
4458 
4459 	obj->ops = ops;
4460 
4461 	obj->fence_reg = I915_FENCE_REG_NONE;
4462 	obj->madv = I915_MADV_WILLNEED;
4463 
4464 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4465 }
4466 
4467 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4468 	.get_pages = i915_gem_object_get_pages_gtt,
4469 	.put_pages = i915_gem_object_put_pages_gtt,
4470 };
4471 
4472 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4473 						  size_t size)
4474 {
4475 	struct drm_i915_gem_object *obj;
4476 	struct address_space *mapping;
4477 	gfp_t mask;
4478 
4479 	obj = i915_gem_object_alloc(dev);
4480 	if (obj == NULL)
4481 		return NULL;
4482 
4483 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4484 		i915_gem_object_free(obj);
4485 		return NULL;
4486 	}
4487 
4488 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4489 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4490 		/* 965gm cannot relocate objects above 4GiB. */
4491 		mask &= ~__GFP_HIGHMEM;
4492 		mask |= __GFP_DMA32;
4493 	}
4494 
4495 	mapping = file_inode(obj->base.filp)->i_mapping;
4496 	mapping_set_gfp_mask(mapping, mask);
4497 
4498 	i915_gem_object_init(obj, &i915_gem_object_ops);
4499 
4500 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4501 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4502 
4503 	if (HAS_LLC(dev)) {
4504 		/* On some devices, we can have the GPU use the LLC (the CPU
4505 		 * cache) for about a 10% performance improvement
4506 		 * compared to uncached.  Graphics requests other than
4507 		 * display scanout are coherent with the CPU in
4508 		 * accessing this cache.  This means in this mode we
4509 		 * don't need to clflush on the CPU side, and on the
4510 		 * GPU side we only need to flush internal caches to
4511 		 * get data visible to the CPU.
4512 		 *
4513 		 * However, we maintain the display planes as UC, and so
4514 		 * need to rebind when first used as such.
4515 		 */
4516 		obj->cache_level = I915_CACHE_LLC;
4517 	} else
4518 		obj->cache_level = I915_CACHE_NONE;
4519 
4520 	trace_i915_gem_object_create(obj);
4521 
4522 	return obj;
4523 }
4524 
4525 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4526 {
4527 	/* If we are the last user of the backing storage (be it shmemfs
4528 	 * pages or stolen etc), we know that the pages are going to be
4529 	 * immediately released. In this case, we can then skip copying
4530 	 * back the contents from the GPU.
4531 	 */
4532 
4533 	if (obj->madv != I915_MADV_WILLNEED)
4534 		return false;
4535 
4536 	if (obj->base.filp == NULL)
4537 		return true;
4538 
4539 	/* At first glance, this looks racy, but then again so would be
4540 	 * userspace racing mmap against close. However, the first external
4541 	 * reference to the filp can only be obtained through the
4542 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4543 	 * acquiring such a reference whilst we are in the middle of
4544 	 * freeing the object.
4545 	 */
4546 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4547 }
4548 
4549 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4550 {
4551 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4552 	struct drm_device *dev = obj->base.dev;
4553 	struct drm_i915_private *dev_priv = dev->dev_private;
4554 	struct i915_vma *vma, *next;
4555 
4556 	intel_runtime_pm_get(dev_priv);
4557 
4558 	trace_i915_gem_object_destroy(obj);
4559 
4560 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4561 		int ret;
4562 
4563 		vma->pin_count = 0;
4564 		ret = i915_vma_unbind(vma);
4565 		if (WARN_ON(ret == -ERESTARTSYS)) {
4566 			bool was_interruptible;
4567 
4568 			was_interruptible = dev_priv->mm.interruptible;
4569 			dev_priv->mm.interruptible = false;
4570 
4571 			WARN_ON(i915_vma_unbind(vma));
4572 
4573 			dev_priv->mm.interruptible = was_interruptible;
4574 		}
4575 	}
4576 
4577 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4578 	 * before progressing. */
4579 	if (obj->stolen)
4580 		i915_gem_object_unpin_pages(obj);
4581 
4582 	WARN_ON(obj->frontbuffer_bits);
4583 
4584 	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4585 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4586 	    obj->tiling_mode != I915_TILING_NONE)
4587 		i915_gem_object_unpin_pages(obj);
4588 
4589 	if (WARN_ON(obj->pages_pin_count))
4590 		obj->pages_pin_count = 0;
4591 	if (discard_backing_storage(obj))
4592 		obj->madv = I915_MADV_DONTNEED;
4593 	i915_gem_object_put_pages(obj);
4594 	i915_gem_object_free_mmap_offset(obj);
4595 
4596 	BUG_ON(obj->pages);
4597 
4598 	if (obj->base.import_attach)
4599 		drm_prime_gem_destroy(&obj->base, NULL);
4600 
4601 	if (obj->ops->release)
4602 		obj->ops->release(obj);
4603 
4604 	drm_gem_object_release(&obj->base);
4605 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4606 
4607 	kfree(obj->bit_17);
4608 	i915_gem_object_free(obj);
4609 
4610 	intel_runtime_pm_put(dev_priv);
4611 }
4612 
4613 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4614 				     struct i915_address_space *vm)
4615 {
4616 	struct i915_vma *vma;
4617 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
4618 		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4619 		    vma->vm == vm)
4620 			return vma;
4621 	}
4622 	return NULL;
4623 }
4624 
4625 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4626 					   const struct i915_ggtt_view *view)
4627 {
4628 	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4629 	struct i915_vma *vma;
4630 
4631 	if (WARN_ONCE(!view, "no view specified"))
4632 		return ERR_PTR(-EINVAL);
4633 
4634 	list_for_each_entry(vma, &obj->vma_list, vma_link)
4635 		if (vma->vm == ggtt &&
4636 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4637 			return vma;
4638 	return NULL;
4639 }
4640 
4641 void i915_gem_vma_destroy(struct i915_vma *vma)
4642 {
4643 	struct i915_address_space *vm = NULL;
4644 	WARN_ON(vma->node.allocated);
4645 
4646 	/* Keep the vma as a placeholder in the execbuffer reservation lists */
4647 	if (!list_empty(&vma->exec_list))
4648 		return;
4649 
4650 	vm = vma->vm;
4651 
4652 	if (!i915_is_ggtt(vm))
4653 		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4654 
4655 	list_del(&vma->vma_link);
4656 
4657 	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4658 }
4659 
4660 static void
4661 i915_gem_stop_ringbuffers(struct drm_device *dev)
4662 {
4663 	struct drm_i915_private *dev_priv = dev->dev_private;
4664 	struct intel_engine_cs *ring;
4665 	int i;
4666 
4667 	for_each_ring(ring, dev_priv, i)
4668 		dev_priv->gt.stop_ring(ring);
4669 }
4670 
4671 int
4672 i915_gem_suspend(struct drm_device *dev)
4673 {
4674 	struct drm_i915_private *dev_priv = dev->dev_private;
4675 	int ret = 0;
4676 
4677 	mutex_lock(&dev->struct_mutex);
4678 	ret = i915_gpu_idle(dev);
4679 	if (ret)
4680 		goto err;
4681 
4682 	i915_gem_retire_requests(dev);
4683 
4684 	i915_gem_stop_ringbuffers(dev);
4685 	mutex_unlock(&dev->struct_mutex);
4686 
4687 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4688 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4689 	flush_delayed_work(&dev_priv->mm.idle_work);
4690 
4691 	/* Assert that we sucessfully flushed all the work and
4692 	 * reset the GPU back to its idle, low power state.
4693 	 */
4694 	WARN_ON(dev_priv->mm.busy);
4695 
4696 	return 0;
4697 
4698 err:
4699 	mutex_unlock(&dev->struct_mutex);
4700 	return ret;
4701 }
4702 
4703 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4704 {
4705 	struct intel_engine_cs *ring = req->ring;
4706 	struct drm_device *dev = ring->dev;
4707 	struct drm_i915_private *dev_priv = dev->dev_private;
4708 	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4709 	int i, ret;
4710 
4711 	if (!HAS_L3_DPF(dev) || !remap_info)
4712 		return 0;
4713 
4714 	ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4715 	if (ret)
4716 		return ret;
4717 
4718 	/*
4719 	 * Note: We do not worry about the concurrent register cacheline hang
4720 	 * here because no other code should access these registers other than
4721 	 * at initialization time.
4722 	 */
4723 	for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4724 		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4725 		intel_ring_emit_reg(ring, GEN7_L3LOG(slice, i));
4726 		intel_ring_emit(ring, remap_info[i]);
4727 	}
4728 
4729 	intel_ring_advance(ring);
4730 
4731 	return ret;
4732 }
4733 
4734 void i915_gem_init_swizzling(struct drm_device *dev)
4735 {
4736 	struct drm_i915_private *dev_priv = dev->dev_private;
4737 
4738 	if (INTEL_INFO(dev)->gen < 5 ||
4739 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4740 		return;
4741 
4742 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4743 				 DISP_TILE_SURFACE_SWIZZLING);
4744 
4745 	if (IS_GEN5(dev))
4746 		return;
4747 
4748 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4749 	if (IS_GEN6(dev))
4750 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4751 	else if (IS_GEN7(dev))
4752 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4753 	else if (IS_GEN8(dev))
4754 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4755 	else
4756 		BUG();
4757 }
4758 
4759 static void init_unused_ring(struct drm_device *dev, u32 base)
4760 {
4761 	struct drm_i915_private *dev_priv = dev->dev_private;
4762 
4763 	I915_WRITE(RING_CTL(base), 0);
4764 	I915_WRITE(RING_HEAD(base), 0);
4765 	I915_WRITE(RING_TAIL(base), 0);
4766 	I915_WRITE(RING_START(base), 0);
4767 }
4768 
4769 static void init_unused_rings(struct drm_device *dev)
4770 {
4771 	if (IS_I830(dev)) {
4772 		init_unused_ring(dev, PRB1_BASE);
4773 		init_unused_ring(dev, SRB0_BASE);
4774 		init_unused_ring(dev, SRB1_BASE);
4775 		init_unused_ring(dev, SRB2_BASE);
4776 		init_unused_ring(dev, SRB3_BASE);
4777 	} else if (IS_GEN2(dev)) {
4778 		init_unused_ring(dev, SRB0_BASE);
4779 		init_unused_ring(dev, SRB1_BASE);
4780 	} else if (IS_GEN3(dev)) {
4781 		init_unused_ring(dev, PRB1_BASE);
4782 		init_unused_ring(dev, PRB2_BASE);
4783 	}
4784 }
4785 
4786 int i915_gem_init_rings(struct drm_device *dev)
4787 {
4788 	struct drm_i915_private *dev_priv = dev->dev_private;
4789 	int ret;
4790 
4791 	ret = intel_init_render_ring_buffer(dev);
4792 	if (ret)
4793 		return ret;
4794 
4795 	if (HAS_BSD(dev)) {
4796 		ret = intel_init_bsd_ring_buffer(dev);
4797 		if (ret)
4798 			goto cleanup_render_ring;
4799 	}
4800 
4801 	if (HAS_BLT(dev)) {
4802 		ret = intel_init_blt_ring_buffer(dev);
4803 		if (ret)
4804 			goto cleanup_bsd_ring;
4805 	}
4806 
4807 	if (HAS_VEBOX(dev)) {
4808 		ret = intel_init_vebox_ring_buffer(dev);
4809 		if (ret)
4810 			goto cleanup_blt_ring;
4811 	}
4812 
4813 	if (HAS_BSD2(dev)) {
4814 		ret = intel_init_bsd2_ring_buffer(dev);
4815 		if (ret)
4816 			goto cleanup_vebox_ring;
4817 	}
4818 
4819 	return 0;
4820 
4821 cleanup_vebox_ring:
4822 	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4823 cleanup_blt_ring:
4824 	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4825 cleanup_bsd_ring:
4826 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4827 cleanup_render_ring:
4828 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4829 
4830 	return ret;
4831 }
4832 
4833 int
4834 i915_gem_init_hw(struct drm_device *dev)
4835 {
4836 	struct drm_i915_private *dev_priv = dev->dev_private;
4837 	struct intel_engine_cs *ring;
4838 	int ret, i, j;
4839 
4840 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4841 		return -EIO;
4842 
4843 	/* Double layer security blanket, see i915_gem_init() */
4844 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4845 
4846 	if (dev_priv->ellc_size)
4847 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4848 
4849 	if (IS_HASWELL(dev))
4850 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4851 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4852 
4853 	if (HAS_PCH_NOP(dev)) {
4854 		if (IS_IVYBRIDGE(dev)) {
4855 			u32 temp = I915_READ(GEN7_MSG_CTL);
4856 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4857 			I915_WRITE(GEN7_MSG_CTL, temp);
4858 		} else if (INTEL_INFO(dev)->gen >= 7) {
4859 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4860 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4861 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4862 		}
4863 	}
4864 
4865 	i915_gem_init_swizzling(dev);
4866 
4867 	/*
4868 	 * At least 830 can leave some of the unused rings
4869 	 * "active" (ie. head != tail) after resume which
4870 	 * will prevent c3 entry. Makes sure all unused rings
4871 	 * are totally idle.
4872 	 */
4873 	init_unused_rings(dev);
4874 
4875 	BUG_ON(!dev_priv->kernel_context);
4876 
4877 	ret = i915_ppgtt_init_hw(dev);
4878 	if (ret) {
4879 		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4880 		goto out;
4881 	}
4882 
4883 	/* Need to do basic initialisation of all rings first: */
4884 	for_each_ring(ring, dev_priv, i) {
4885 		ret = ring->init_hw(ring);
4886 		if (ret)
4887 			goto out;
4888 	}
4889 
4890 	/* We can't enable contexts until all firmware is loaded */
4891 	if (HAS_GUC_UCODE(dev)) {
4892 		ret = intel_guc_ucode_load(dev);
4893 		if (ret) {
4894 			DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4895 			ret = -EIO;
4896 			goto out;
4897 		}
4898 	}
4899 
4900 	/*
4901 	 * Increment the next seqno by 0x100 so we have a visible break
4902 	 * on re-initialisation
4903 	 */
4904 	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4905 	if (ret)
4906 		goto out;
4907 
4908 	/* Now it is safe to go back round and do everything else: */
4909 	for_each_ring(ring, dev_priv, i) {
4910 		struct drm_i915_gem_request *req;
4911 
4912 		req = i915_gem_request_alloc(ring, NULL);
4913 		if (IS_ERR(req)) {
4914 			ret = PTR_ERR(req);
4915 			i915_gem_cleanup_ringbuffer(dev);
4916 			goto out;
4917 		}
4918 
4919 		if (ring->id == RCS) {
4920 			for (j = 0; j < NUM_L3_SLICES(dev); j++)
4921 				i915_gem_l3_remap(req, j);
4922 		}
4923 
4924 		ret = i915_ppgtt_init_ring(req);
4925 		if (ret && ret != -EIO) {
4926 			DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4927 			i915_gem_request_cancel(req);
4928 			i915_gem_cleanup_ringbuffer(dev);
4929 			goto out;
4930 		}
4931 
4932 		ret = i915_gem_context_enable(req);
4933 		if (ret && ret != -EIO) {
4934 			DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4935 			i915_gem_request_cancel(req);
4936 			i915_gem_cleanup_ringbuffer(dev);
4937 			goto out;
4938 		}
4939 
4940 		i915_add_request_no_flush(req);
4941 	}
4942 
4943 out:
4944 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4945 	return ret;
4946 }
4947 
4948 int i915_gem_init(struct drm_device *dev)
4949 {
4950 	struct drm_i915_private *dev_priv = dev->dev_private;
4951 	int ret;
4952 
4953 	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4954 			i915.enable_execlists);
4955 
4956 	mutex_lock(&dev->struct_mutex);
4957 
4958 	if (!i915.enable_execlists) {
4959 		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4960 		dev_priv->gt.init_rings = i915_gem_init_rings;
4961 		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4962 		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4963 	} else {
4964 		dev_priv->gt.execbuf_submit = intel_execlists_submission;
4965 		dev_priv->gt.init_rings = intel_logical_rings_init;
4966 		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4967 		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4968 	}
4969 
4970 	/* This is just a security blanket to placate dragons.
4971 	 * On some systems, we very sporadically observe that the first TLBs
4972 	 * used by the CS may be stale, despite us poking the TLB reset. If
4973 	 * we hold the forcewake during initialisation these problems
4974 	 * just magically go away.
4975 	 */
4976 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4977 
4978 	ret = i915_gem_init_userptr(dev);
4979 	if (ret)
4980 		goto out_unlock;
4981 
4982 	i915_gem_init_global_gtt(dev);
4983 
4984 	ret = i915_gem_context_init(dev);
4985 	if (ret)
4986 		goto out_unlock;
4987 
4988 	ret = dev_priv->gt.init_rings(dev);
4989 	if (ret)
4990 		goto out_unlock;
4991 
4992 	ret = i915_gem_init_hw(dev);
4993 	if (ret == -EIO) {
4994 		/* Allow ring initialisation to fail by marking the GPU as
4995 		 * wedged. But we only want to do this where the GPU is angry,
4996 		 * for all other failure, such as an allocation failure, bail.
4997 		 */
4998 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4999 		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5000 		ret = 0;
5001 	}
5002 
5003 out_unlock:
5004 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5005 	mutex_unlock(&dev->struct_mutex);
5006 
5007 	return ret;
5008 }
5009 
5010 void
5011 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5012 {
5013 	struct drm_i915_private *dev_priv = dev->dev_private;
5014 	struct intel_engine_cs *ring;
5015 	int i;
5016 
5017 	for_each_ring(ring, dev_priv, i)
5018 		dev_priv->gt.cleanup_ring(ring);
5019 
5020     if (i915.enable_execlists)
5021             /*
5022              * Neither the BIOS, ourselves or any other kernel
5023              * expects the system to be in execlists mode on startup,
5024              * so we need to reset the GPU back to legacy mode.
5025              */
5026             intel_gpu_reset(dev);
5027 }
5028 
5029 static void
5030 init_ring_lists(struct intel_engine_cs *ring)
5031 {
5032 	INIT_LIST_HEAD(&ring->active_list);
5033 	INIT_LIST_HEAD(&ring->request_list);
5034 }
5035 
5036 void
5037 i915_gem_load(struct drm_device *dev)
5038 {
5039 	struct drm_i915_private *dev_priv = dev->dev_private;
5040 	int i;
5041 
5042 	dev_priv->objects =
5043 		kmem_cache_create("i915_gem_object",
5044 				  sizeof(struct drm_i915_gem_object), 0,
5045 				  SLAB_HWCACHE_ALIGN,
5046 				  NULL);
5047 	dev_priv->vmas =
5048 		kmem_cache_create("i915_gem_vma",
5049 				  sizeof(struct i915_vma), 0,
5050 				  SLAB_HWCACHE_ALIGN,
5051 				  NULL);
5052 	dev_priv->requests =
5053 		kmem_cache_create("i915_gem_request",
5054 				  sizeof(struct drm_i915_gem_request), 0,
5055 				  SLAB_HWCACHE_ALIGN,
5056 				  NULL);
5057 
5058 	INIT_LIST_HEAD(&dev_priv->vm_list);
5059 	INIT_LIST_HEAD(&dev_priv->context_list);
5060 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5061 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5062 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5063 	for (i = 0; i < I915_NUM_RINGS; i++)
5064 		init_ring_lists(&dev_priv->ring[i]);
5065 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5066 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5067 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5068 			  i915_gem_retire_work_handler);
5069 	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5070 			  i915_gem_idle_work_handler);
5071 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5072 
5073 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5074 
5075 	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
5076 		dev_priv->num_fence_regs = 32;
5077 	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5078 		dev_priv->num_fence_regs = 16;
5079 	else
5080 		dev_priv->num_fence_regs = 8;
5081 
5082 	if (intel_vgpu_active(dev))
5083 		dev_priv->num_fence_regs =
5084 				I915_READ(vgtif_reg(avail_rs.fence_num));
5085 
5086 	/*
5087 	 * Set initial sequence number for requests.
5088 	 * Using this number allows the wraparound to happen early,
5089 	 * catching any obvious problems.
5090 	 */
5091 	dev_priv->next_seqno = ((u32)~0 - 0x1100);
5092 	dev_priv->last_seqno = ((u32)~0 - 0x1101);
5093 
5094 	/* Initialize fence registers to zero */
5095 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5096 	i915_gem_restore_fences(dev);
5097 
5098 	i915_gem_detect_bit_6_swizzle(dev);
5099 	init_waitqueue_head(&dev_priv->pending_flip_queue);
5100 
5101 	dev_priv->mm.interruptible = true;
5102 
5103 	i915_gem_shrinker_init(dev_priv);
5104 
5105 	mutex_init(&dev_priv->fb_tracking.lock);
5106 }
5107 
5108 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5109 {
5110 	struct drm_i915_file_private *file_priv = file->driver_priv;
5111 
5112 	/* Clean up our request list when the client is going away, so that
5113 	 * later retire_requests won't dereference our soon-to-be-gone
5114 	 * file_priv.
5115 	 */
5116 	spin_lock(&file_priv->mm.lock);
5117 	while (!list_empty(&file_priv->mm.request_list)) {
5118 		struct drm_i915_gem_request *request;
5119 
5120 		request = list_first_entry(&file_priv->mm.request_list,
5121 					   struct drm_i915_gem_request,
5122 					   client_list);
5123 		list_del(&request->client_list);
5124 		request->file_priv = NULL;
5125 	}
5126 	spin_unlock(&file_priv->mm.lock);
5127 
5128 	if (!list_empty(&file_priv->rps.link)) {
5129 		spin_lock(&to_i915(dev)->rps.client_lock);
5130 		list_del(&file_priv->rps.link);
5131 		spin_unlock(&to_i915(dev)->rps.client_lock);
5132 	}
5133 }
5134 
5135 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5136 {
5137 	struct drm_i915_file_private *file_priv;
5138 	int ret;
5139 
5140 	DRM_DEBUG_DRIVER("\n");
5141 
5142 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5143 	if (!file_priv)
5144 		return -ENOMEM;
5145 
5146 	file->driver_priv = file_priv;
5147 	file_priv->dev_priv = dev->dev_private;
5148 	file_priv->file = file;
5149 	INIT_LIST_HEAD(&file_priv->rps.link);
5150 
5151 	spin_lock_init(&file_priv->mm.lock);
5152 	INIT_LIST_HEAD(&file_priv->mm.request_list);
5153 
5154 	file_priv->bsd_ring = -1;
5155 
5156 	ret = i915_gem_context_open(dev, file);
5157 	if (ret)
5158 		kfree(file_priv);
5159 
5160 	return ret;
5161 }
5162 
5163 /**
5164  * i915_gem_track_fb - update frontbuffer tracking
5165  * @old: current GEM buffer for the frontbuffer slots
5166  * @new: new GEM buffer for the frontbuffer slots
5167  * @frontbuffer_bits: bitmask of frontbuffer slots
5168  *
5169  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5170  * from @old and setting them in @new. Both @old and @new can be NULL.
5171  */
5172 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5173 		       struct drm_i915_gem_object *new,
5174 		       unsigned frontbuffer_bits)
5175 {
5176 	if (old) {
5177 		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5178 		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5179 		old->frontbuffer_bits &= ~frontbuffer_bits;
5180 	}
5181 
5182 	if (new) {
5183 		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5184 		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5185 		new->frontbuffer_bits |= frontbuffer_bits;
5186 	}
5187 }
5188 
5189 /* All the new VM stuff */
5190 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5191 			struct i915_address_space *vm)
5192 {
5193 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5194 	struct i915_vma *vma;
5195 
5196 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5197 
5198 	list_for_each_entry(vma, &o->vma_list, vma_link) {
5199 		if (i915_is_ggtt(vma->vm) &&
5200 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5201 			continue;
5202 		if (vma->vm == vm)
5203 			return vma->node.start;
5204 	}
5205 
5206 	WARN(1, "%s vma for this object not found.\n",
5207 	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5208 	return -1;
5209 }
5210 
5211 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5212 				  const struct i915_ggtt_view *view)
5213 {
5214 	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5215 	struct i915_vma *vma;
5216 
5217 	list_for_each_entry(vma, &o->vma_list, vma_link)
5218 		if (vma->vm == ggtt &&
5219 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5220 			return vma->node.start;
5221 
5222 	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5223 	return -1;
5224 }
5225 
5226 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5227 			struct i915_address_space *vm)
5228 {
5229 	struct i915_vma *vma;
5230 
5231 	list_for_each_entry(vma, &o->vma_list, vma_link) {
5232 		if (i915_is_ggtt(vma->vm) &&
5233 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5234 			continue;
5235 		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5236 			return true;
5237 	}
5238 
5239 	return false;
5240 }
5241 
5242 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5243 				  const struct i915_ggtt_view *view)
5244 {
5245 	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5246 	struct i915_vma *vma;
5247 
5248 	list_for_each_entry(vma, &o->vma_list, vma_link)
5249 		if (vma->vm == ggtt &&
5250 		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5251 		    drm_mm_node_allocated(&vma->node))
5252 			return true;
5253 
5254 	return false;
5255 }
5256 
5257 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5258 {
5259 	struct i915_vma *vma;
5260 
5261 	list_for_each_entry(vma, &o->vma_list, vma_link)
5262 		if (drm_mm_node_allocated(&vma->node))
5263 			return true;
5264 
5265 	return false;
5266 }
5267 
5268 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5269 				struct i915_address_space *vm)
5270 {
5271 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5272 	struct i915_vma *vma;
5273 
5274 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5275 
5276 	BUG_ON(list_empty(&o->vma_list));
5277 
5278 	list_for_each_entry(vma, &o->vma_list, vma_link) {
5279 		if (i915_is_ggtt(vma->vm) &&
5280 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5281 			continue;
5282 		if (vma->vm == vm)
5283 			return vma->node.size;
5284 	}
5285 	return 0;
5286 }
5287 
5288 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5289 {
5290 	struct i915_vma *vma;
5291 	list_for_each_entry(vma, &obj->vma_list, vma_link)
5292 		if (vma->pin_count > 0)
5293 			return true;
5294 
5295 	return false;
5296 }
5297 
5298 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5299 struct page *
5300 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5301 {
5302 	struct page *page;
5303 
5304 	/* Only default objects have per-page dirty tracking */
5305 	if (WARN_ON(obj->ops != &i915_gem_object_ops))
5306 		return NULL;
5307 
5308 	page = i915_gem_object_get_page(obj, n);
5309 	set_page_dirty(page);
5310 	return page;
5311 }
5312 
5313 /* Allocate a new GEM object and fill it with the supplied data */
5314 struct drm_i915_gem_object *
5315 i915_gem_object_create_from_data(struct drm_device *dev,
5316 			         const void *data, size_t size)
5317 {
5318 	struct drm_i915_gem_object *obj;
5319 	struct sg_table *sg;
5320 	size_t bytes;
5321 	int ret;
5322 
5323 	obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5324 	if (IS_ERR_OR_NULL(obj))
5325 		return obj;
5326 
5327 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
5328 	if (ret)
5329 		goto fail;
5330 
5331 	ret = i915_gem_object_get_pages(obj);
5332 	if (ret)
5333 		goto fail;
5334 
5335 	i915_gem_object_pin_pages(obj);
5336 	sg = obj->pages;
5337 	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5338 	obj->dirty = 1;		/* Backing store is now out of date */
5339 	i915_gem_object_unpin_pages(obj);
5340 
5341 	if (WARN_ON(bytes != size)) {
5342 		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5343 		ret = -EFAULT;
5344 		goto fail;
5345 	}
5346 
5347 	return obj;
5348 
5349 fail:
5350 	drm_gem_object_unreference(&obj->base);
5351 	return ERR_PTR(ret);
5352 }
5353