xref: /linux/drivers/gpu/drm/i915/i915_gem.c (revision a4cc96d1f0170b779c32c6b2cc58764f5d2cdef0)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_mocs.h"
36 #include <linux/shmem_fs.h>
37 #include <linux/slab.h>
38 #include <linux/swap.h>
39 #include <linux/pci.h>
40 #include <linux/dma-buf.h>
41 
42 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44 static void
45 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
46 static void
47 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48 
49 static bool cpu_cache_is_coherent(struct drm_device *dev,
50 				  enum i915_cache_level level)
51 {
52 	return HAS_LLC(dev) || level != I915_CACHE_NONE;
53 }
54 
55 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56 {
57 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
58 		return false;
59 
60 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
61 		return true;
62 
63 	return obj->pin_display;
64 }
65 
66 static int
67 insert_mappable_node(struct drm_i915_private *i915,
68                      struct drm_mm_node *node, u32 size)
69 {
70 	memset(node, 0, sizeof(*node));
71 	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
72 						   size, 0, 0, 0,
73 						   i915->ggtt.mappable_end,
74 						   DRM_MM_SEARCH_DEFAULT,
75 						   DRM_MM_CREATE_DEFAULT);
76 }
77 
78 static void
79 remove_mappable_node(struct drm_mm_node *node)
80 {
81 	drm_mm_remove_node(node);
82 }
83 
84 /* some bookkeeping */
85 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
86 				  size_t size)
87 {
88 	spin_lock(&dev_priv->mm.object_stat_lock);
89 	dev_priv->mm.object_count++;
90 	dev_priv->mm.object_memory += size;
91 	spin_unlock(&dev_priv->mm.object_stat_lock);
92 }
93 
94 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
95 				     size_t size)
96 {
97 	spin_lock(&dev_priv->mm.object_stat_lock);
98 	dev_priv->mm.object_count--;
99 	dev_priv->mm.object_memory -= size;
100 	spin_unlock(&dev_priv->mm.object_stat_lock);
101 }
102 
103 static int
104 i915_gem_wait_for_error(struct i915_gpu_error *error)
105 {
106 	int ret;
107 
108 	if (!i915_reset_in_progress(error))
109 		return 0;
110 
111 	/*
112 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
113 	 * userspace. If it takes that long something really bad is going on and
114 	 * we should simply try to bail out and fail as gracefully as possible.
115 	 */
116 	ret = wait_event_interruptible_timeout(error->reset_queue,
117 					       !i915_reset_in_progress(error),
118 					       10*HZ);
119 	if (ret == 0) {
120 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
121 		return -EIO;
122 	} else if (ret < 0) {
123 		return ret;
124 	} else {
125 		return 0;
126 	}
127 }
128 
129 int i915_mutex_lock_interruptible(struct drm_device *dev)
130 {
131 	struct drm_i915_private *dev_priv = to_i915(dev);
132 	int ret;
133 
134 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 	if (ret)
136 		return ret;
137 
138 	ret = mutex_lock_interruptible(&dev->struct_mutex);
139 	if (ret)
140 		return ret;
141 
142 	WARN_ON(i915_verify_lists(dev));
143 	return 0;
144 }
145 
146 int
147 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148 			    struct drm_file *file)
149 {
150 	struct drm_i915_private *dev_priv = to_i915(dev);
151 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
152 	struct drm_i915_gem_get_aperture *args = data;
153 	struct i915_vma *vma;
154 	size_t pinned;
155 
156 	pinned = 0;
157 	mutex_lock(&dev->struct_mutex);
158 	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
159 		if (vma->pin_count)
160 			pinned += vma->node.size;
161 	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
162 		if (vma->pin_count)
163 			pinned += vma->node.size;
164 	mutex_unlock(&dev->struct_mutex);
165 
166 	args->aper_size = ggtt->base.total;
167 	args->aper_available_size = args->aper_size - pinned;
168 
169 	return 0;
170 }
171 
172 static int
173 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
174 {
175 	struct address_space *mapping = obj->base.filp->f_mapping;
176 	char *vaddr = obj->phys_handle->vaddr;
177 	struct sg_table *st;
178 	struct scatterlist *sg;
179 	int i;
180 
181 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
182 		return -EINVAL;
183 
184 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
185 		struct page *page;
186 		char *src;
187 
188 		page = shmem_read_mapping_page(mapping, i);
189 		if (IS_ERR(page))
190 			return PTR_ERR(page);
191 
192 		src = kmap_atomic(page);
193 		memcpy(vaddr, src, PAGE_SIZE);
194 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
195 		kunmap_atomic(src);
196 
197 		put_page(page);
198 		vaddr += PAGE_SIZE;
199 	}
200 
201 	i915_gem_chipset_flush(to_i915(obj->base.dev));
202 
203 	st = kmalloc(sizeof(*st), GFP_KERNEL);
204 	if (st == NULL)
205 		return -ENOMEM;
206 
207 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
208 		kfree(st);
209 		return -ENOMEM;
210 	}
211 
212 	sg = st->sgl;
213 	sg->offset = 0;
214 	sg->length = obj->base.size;
215 
216 	sg_dma_address(sg) = obj->phys_handle->busaddr;
217 	sg_dma_len(sg) = obj->base.size;
218 
219 	obj->pages = st;
220 	return 0;
221 }
222 
223 static void
224 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
225 {
226 	int ret;
227 
228 	BUG_ON(obj->madv == __I915_MADV_PURGED);
229 
230 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
231 	if (WARN_ON(ret)) {
232 		/* In the event of a disaster, abandon all caches and
233 		 * hope for the best.
234 		 */
235 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
236 	}
237 
238 	if (obj->madv == I915_MADV_DONTNEED)
239 		obj->dirty = 0;
240 
241 	if (obj->dirty) {
242 		struct address_space *mapping = obj->base.filp->f_mapping;
243 		char *vaddr = obj->phys_handle->vaddr;
244 		int i;
245 
246 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
247 			struct page *page;
248 			char *dst;
249 
250 			page = shmem_read_mapping_page(mapping, i);
251 			if (IS_ERR(page))
252 				continue;
253 
254 			dst = kmap_atomic(page);
255 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
256 			memcpy(dst, vaddr, PAGE_SIZE);
257 			kunmap_atomic(dst);
258 
259 			set_page_dirty(page);
260 			if (obj->madv == I915_MADV_WILLNEED)
261 				mark_page_accessed(page);
262 			put_page(page);
263 			vaddr += PAGE_SIZE;
264 		}
265 		obj->dirty = 0;
266 	}
267 
268 	sg_free_table(obj->pages);
269 	kfree(obj->pages);
270 }
271 
272 static void
273 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274 {
275 	drm_pci_free(obj->base.dev, obj->phys_handle);
276 }
277 
278 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279 	.get_pages = i915_gem_object_get_pages_phys,
280 	.put_pages = i915_gem_object_put_pages_phys,
281 	.release = i915_gem_object_release_phys,
282 };
283 
284 static int
285 drop_pages(struct drm_i915_gem_object *obj)
286 {
287 	struct i915_vma *vma, *next;
288 	int ret;
289 
290 	drm_gem_object_reference(&obj->base);
291 	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
292 		if (i915_vma_unbind(vma))
293 			break;
294 
295 	ret = i915_gem_object_put_pages(obj);
296 	drm_gem_object_unreference(&obj->base);
297 
298 	return ret;
299 }
300 
301 int
302 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303 			    int align)
304 {
305 	drm_dma_handle_t *phys;
306 	int ret;
307 
308 	if (obj->phys_handle) {
309 		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310 			return -EBUSY;
311 
312 		return 0;
313 	}
314 
315 	if (obj->madv != I915_MADV_WILLNEED)
316 		return -EFAULT;
317 
318 	if (obj->base.filp == NULL)
319 		return -EINVAL;
320 
321 	ret = drop_pages(obj);
322 	if (ret)
323 		return ret;
324 
325 	/* create a new object */
326 	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327 	if (!phys)
328 		return -ENOMEM;
329 
330 	obj->phys_handle = phys;
331 	obj->ops = &i915_gem_phys_ops;
332 
333 	return i915_gem_object_get_pages(obj);
334 }
335 
336 static int
337 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338 		     struct drm_i915_gem_pwrite *args,
339 		     struct drm_file *file_priv)
340 {
341 	struct drm_device *dev = obj->base.dev;
342 	void *vaddr = obj->phys_handle->vaddr + args->offset;
343 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
344 	int ret = 0;
345 
346 	/* We manually control the domain here and pretend that it
347 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348 	 */
349 	ret = i915_gem_object_wait_rendering(obj, false);
350 	if (ret)
351 		return ret;
352 
353 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
354 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355 		unsigned long unwritten;
356 
357 		/* The physical object once assigned is fixed for the lifetime
358 		 * of the obj, so we can safely drop the lock and continue
359 		 * to access vaddr.
360 		 */
361 		mutex_unlock(&dev->struct_mutex);
362 		unwritten = copy_from_user(vaddr, user_data, args->size);
363 		mutex_lock(&dev->struct_mutex);
364 		if (unwritten) {
365 			ret = -EFAULT;
366 			goto out;
367 		}
368 	}
369 
370 	drm_clflush_virt_range(vaddr, args->size);
371 	i915_gem_chipset_flush(to_i915(dev));
372 
373 out:
374 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
375 	return ret;
376 }
377 
378 void *i915_gem_object_alloc(struct drm_device *dev)
379 {
380 	struct drm_i915_private *dev_priv = to_i915(dev);
381 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 }
383 
384 void i915_gem_object_free(struct drm_i915_gem_object *obj)
385 {
386 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
387 	kmem_cache_free(dev_priv->objects, obj);
388 }
389 
390 static int
391 i915_gem_create(struct drm_file *file,
392 		struct drm_device *dev,
393 		uint64_t size,
394 		uint32_t *handle_p)
395 {
396 	struct drm_i915_gem_object *obj;
397 	int ret;
398 	u32 handle;
399 
400 	size = roundup(size, PAGE_SIZE);
401 	if (size == 0)
402 		return -EINVAL;
403 
404 	/* Allocate the new object */
405 	obj = i915_gem_object_create(dev, size);
406 	if (IS_ERR(obj))
407 		return PTR_ERR(obj);
408 
409 	ret = drm_gem_handle_create(file, &obj->base, &handle);
410 	/* drop reference from allocate - handle holds it now */
411 	drm_gem_object_unreference_unlocked(&obj->base);
412 	if (ret)
413 		return ret;
414 
415 	*handle_p = handle;
416 	return 0;
417 }
418 
419 int
420 i915_gem_dumb_create(struct drm_file *file,
421 		     struct drm_device *dev,
422 		     struct drm_mode_create_dumb *args)
423 {
424 	/* have to work out size/pitch and return them */
425 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 	args->size = args->pitch * args->height;
427 	return i915_gem_create(file, dev,
428 			       args->size, &args->handle);
429 }
430 
431 /**
432  * Creates a new mm object and returns a handle to it.
433  * @dev: drm device pointer
434  * @data: ioctl data blob
435  * @file: drm file pointer
436  */
437 int
438 i915_gem_create_ioctl(struct drm_device *dev, void *data,
439 		      struct drm_file *file)
440 {
441 	struct drm_i915_gem_create *args = data;
442 
443 	return i915_gem_create(file, dev,
444 			       args->size, &args->handle);
445 }
446 
447 static inline int
448 __copy_to_user_swizzled(char __user *cpu_vaddr,
449 			const char *gpu_vaddr, int gpu_offset,
450 			int length)
451 {
452 	int ret, cpu_offset = 0;
453 
454 	while (length > 0) {
455 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
456 		int this_length = min(cacheline_end - gpu_offset, length);
457 		int swizzled_gpu_offset = gpu_offset ^ 64;
458 
459 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
460 				     gpu_vaddr + swizzled_gpu_offset,
461 				     this_length);
462 		if (ret)
463 			return ret + length;
464 
465 		cpu_offset += this_length;
466 		gpu_offset += this_length;
467 		length -= this_length;
468 	}
469 
470 	return 0;
471 }
472 
473 static inline int
474 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
475 			  const char __user *cpu_vaddr,
476 			  int length)
477 {
478 	int ret, cpu_offset = 0;
479 
480 	while (length > 0) {
481 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
482 		int this_length = min(cacheline_end - gpu_offset, length);
483 		int swizzled_gpu_offset = gpu_offset ^ 64;
484 
485 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
486 				       cpu_vaddr + cpu_offset,
487 				       this_length);
488 		if (ret)
489 			return ret + length;
490 
491 		cpu_offset += this_length;
492 		gpu_offset += this_length;
493 		length -= this_length;
494 	}
495 
496 	return 0;
497 }
498 
499 /*
500  * Pins the specified object's pages and synchronizes the object with
501  * GPU accesses. Sets needs_clflush to non-zero if the caller should
502  * flush the object from the CPU cache.
503  */
504 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
505 				    int *needs_clflush)
506 {
507 	int ret;
508 
509 	*needs_clflush = 0;
510 
511 	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
512 		return -EINVAL;
513 
514 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
515 		/* If we're not in the cpu read domain, set ourself into the gtt
516 		 * read domain and manually flush cachelines (if required). This
517 		 * optimizes for the case when the gpu will dirty the data
518 		 * anyway again before the next pread happens. */
519 		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
520 							obj->cache_level);
521 		ret = i915_gem_object_wait_rendering(obj, true);
522 		if (ret)
523 			return ret;
524 	}
525 
526 	ret = i915_gem_object_get_pages(obj);
527 	if (ret)
528 		return ret;
529 
530 	i915_gem_object_pin_pages(obj);
531 
532 	return ret;
533 }
534 
535 /* Per-page copy function for the shmem pread fastpath.
536  * Flushes invalid cachelines before reading the target if
537  * needs_clflush is set. */
538 static int
539 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
540 		 char __user *user_data,
541 		 bool page_do_bit17_swizzling, bool needs_clflush)
542 {
543 	char *vaddr;
544 	int ret;
545 
546 	if (unlikely(page_do_bit17_swizzling))
547 		return -EINVAL;
548 
549 	vaddr = kmap_atomic(page);
550 	if (needs_clflush)
551 		drm_clflush_virt_range(vaddr + shmem_page_offset,
552 				       page_length);
553 	ret = __copy_to_user_inatomic(user_data,
554 				      vaddr + shmem_page_offset,
555 				      page_length);
556 	kunmap_atomic(vaddr);
557 
558 	return ret ? -EFAULT : 0;
559 }
560 
561 static void
562 shmem_clflush_swizzled_range(char *addr, unsigned long length,
563 			     bool swizzled)
564 {
565 	if (unlikely(swizzled)) {
566 		unsigned long start = (unsigned long) addr;
567 		unsigned long end = (unsigned long) addr + length;
568 
569 		/* For swizzling simply ensure that we always flush both
570 		 * channels. Lame, but simple and it works. Swizzled
571 		 * pwrite/pread is far from a hotpath - current userspace
572 		 * doesn't use it at all. */
573 		start = round_down(start, 128);
574 		end = round_up(end, 128);
575 
576 		drm_clflush_virt_range((void *)start, end - start);
577 	} else {
578 		drm_clflush_virt_range(addr, length);
579 	}
580 
581 }
582 
583 /* Only difference to the fast-path function is that this can handle bit17
584  * and uses non-atomic copy and kmap functions. */
585 static int
586 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
587 		 char __user *user_data,
588 		 bool page_do_bit17_swizzling, bool needs_clflush)
589 {
590 	char *vaddr;
591 	int ret;
592 
593 	vaddr = kmap(page);
594 	if (needs_clflush)
595 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
596 					     page_length,
597 					     page_do_bit17_swizzling);
598 
599 	if (page_do_bit17_swizzling)
600 		ret = __copy_to_user_swizzled(user_data,
601 					      vaddr, shmem_page_offset,
602 					      page_length);
603 	else
604 		ret = __copy_to_user(user_data,
605 				     vaddr + shmem_page_offset,
606 				     page_length);
607 	kunmap(page);
608 
609 	return ret ? - EFAULT : 0;
610 }
611 
612 static inline unsigned long
613 slow_user_access(struct io_mapping *mapping,
614 		 uint64_t page_base, int page_offset,
615 		 char __user *user_data,
616 		 unsigned long length, bool pwrite)
617 {
618 	void __iomem *ioaddr;
619 	void *vaddr;
620 	uint64_t unwritten;
621 
622 	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
623 	/* We can use the cpu mem copy function because this is X86. */
624 	vaddr = (void __force *)ioaddr + page_offset;
625 	if (pwrite)
626 		unwritten = __copy_from_user(vaddr, user_data, length);
627 	else
628 		unwritten = __copy_to_user(user_data, vaddr, length);
629 
630 	io_mapping_unmap(ioaddr);
631 	return unwritten;
632 }
633 
634 static int
635 i915_gem_gtt_pread(struct drm_device *dev,
636 		   struct drm_i915_gem_object *obj, uint64_t size,
637 		   uint64_t data_offset, uint64_t data_ptr)
638 {
639 	struct drm_i915_private *dev_priv = to_i915(dev);
640 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
641 	struct drm_mm_node node;
642 	char __user *user_data;
643 	uint64_t remain;
644 	uint64_t offset;
645 	int ret;
646 
647 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
648 	if (ret) {
649 		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
650 		if (ret)
651 			goto out;
652 
653 		ret = i915_gem_object_get_pages(obj);
654 		if (ret) {
655 			remove_mappable_node(&node);
656 			goto out;
657 		}
658 
659 		i915_gem_object_pin_pages(obj);
660 	} else {
661 		node.start = i915_gem_obj_ggtt_offset(obj);
662 		node.allocated = false;
663 		ret = i915_gem_object_put_fence(obj);
664 		if (ret)
665 			goto out_unpin;
666 	}
667 
668 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
669 	if (ret)
670 		goto out_unpin;
671 
672 	user_data = u64_to_user_ptr(data_ptr);
673 	remain = size;
674 	offset = data_offset;
675 
676 	mutex_unlock(&dev->struct_mutex);
677 	if (likely(!i915.prefault_disable)) {
678 		ret = fault_in_multipages_writeable(user_data, remain);
679 		if (ret) {
680 			mutex_lock(&dev->struct_mutex);
681 			goto out_unpin;
682 		}
683 	}
684 
685 	while (remain > 0) {
686 		/* Operation in this page
687 		 *
688 		 * page_base = page offset within aperture
689 		 * page_offset = offset within page
690 		 * page_length = bytes to copy for this page
691 		 */
692 		u32 page_base = node.start;
693 		unsigned page_offset = offset_in_page(offset);
694 		unsigned page_length = PAGE_SIZE - page_offset;
695 		page_length = remain < page_length ? remain : page_length;
696 		if (node.allocated) {
697 			wmb();
698 			ggtt->base.insert_page(&ggtt->base,
699 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
700 					       node.start,
701 					       I915_CACHE_NONE, 0);
702 			wmb();
703 		} else {
704 			page_base += offset & PAGE_MASK;
705 		}
706 		/* This is a slow read/write as it tries to read from
707 		 * and write to user memory which may result into page
708 		 * faults, and so we cannot perform this under struct_mutex.
709 		 */
710 		if (slow_user_access(ggtt->mappable, page_base,
711 				     page_offset, user_data,
712 				     page_length, false)) {
713 			ret = -EFAULT;
714 			break;
715 		}
716 
717 		remain -= page_length;
718 		user_data += page_length;
719 		offset += page_length;
720 	}
721 
722 	mutex_lock(&dev->struct_mutex);
723 	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
724 		/* The user has modified the object whilst we tried
725 		 * reading from it, and we now have no idea what domain
726 		 * the pages should be in. As we have just been touching
727 		 * them directly, flush everything back to the GTT
728 		 * domain.
729 		 */
730 		ret = i915_gem_object_set_to_gtt_domain(obj, false);
731 	}
732 
733 out_unpin:
734 	if (node.allocated) {
735 		wmb();
736 		ggtt->base.clear_range(&ggtt->base,
737 				       node.start, node.size,
738 				       true);
739 		i915_gem_object_unpin_pages(obj);
740 		remove_mappable_node(&node);
741 	} else {
742 		i915_gem_object_ggtt_unpin(obj);
743 	}
744 out:
745 	return ret;
746 }
747 
748 static int
749 i915_gem_shmem_pread(struct drm_device *dev,
750 		     struct drm_i915_gem_object *obj,
751 		     struct drm_i915_gem_pread *args,
752 		     struct drm_file *file)
753 {
754 	char __user *user_data;
755 	ssize_t remain;
756 	loff_t offset;
757 	int shmem_page_offset, page_length, ret = 0;
758 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
759 	int prefaulted = 0;
760 	int needs_clflush = 0;
761 	struct sg_page_iter sg_iter;
762 
763 	if (!i915_gem_object_has_struct_page(obj))
764 		return -ENODEV;
765 
766 	user_data = u64_to_user_ptr(args->data_ptr);
767 	remain = args->size;
768 
769 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
770 
771 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
772 	if (ret)
773 		return ret;
774 
775 	offset = args->offset;
776 
777 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
778 			 offset >> PAGE_SHIFT) {
779 		struct page *page = sg_page_iter_page(&sg_iter);
780 
781 		if (remain <= 0)
782 			break;
783 
784 		/* Operation in this page
785 		 *
786 		 * shmem_page_offset = offset within page in shmem file
787 		 * page_length = bytes to copy for this page
788 		 */
789 		shmem_page_offset = offset_in_page(offset);
790 		page_length = remain;
791 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
792 			page_length = PAGE_SIZE - shmem_page_offset;
793 
794 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
795 			(page_to_phys(page) & (1 << 17)) != 0;
796 
797 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
798 				       user_data, page_do_bit17_swizzling,
799 				       needs_clflush);
800 		if (ret == 0)
801 			goto next_page;
802 
803 		mutex_unlock(&dev->struct_mutex);
804 
805 		if (likely(!i915.prefault_disable) && !prefaulted) {
806 			ret = fault_in_multipages_writeable(user_data, remain);
807 			/* Userspace is tricking us, but we've already clobbered
808 			 * its pages with the prefault and promised to write the
809 			 * data up to the first fault. Hence ignore any errors
810 			 * and just continue. */
811 			(void)ret;
812 			prefaulted = 1;
813 		}
814 
815 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
816 				       user_data, page_do_bit17_swizzling,
817 				       needs_clflush);
818 
819 		mutex_lock(&dev->struct_mutex);
820 
821 		if (ret)
822 			goto out;
823 
824 next_page:
825 		remain -= page_length;
826 		user_data += page_length;
827 		offset += page_length;
828 	}
829 
830 out:
831 	i915_gem_object_unpin_pages(obj);
832 
833 	return ret;
834 }
835 
836 /**
837  * Reads data from the object referenced by handle.
838  * @dev: drm device pointer
839  * @data: ioctl data blob
840  * @file: drm file pointer
841  *
842  * On error, the contents of *data are undefined.
843  */
844 int
845 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
846 		     struct drm_file *file)
847 {
848 	struct drm_i915_gem_pread *args = data;
849 	struct drm_i915_gem_object *obj;
850 	int ret = 0;
851 
852 	if (args->size == 0)
853 		return 0;
854 
855 	if (!access_ok(VERIFY_WRITE,
856 		       u64_to_user_ptr(args->data_ptr),
857 		       args->size))
858 		return -EFAULT;
859 
860 	ret = i915_mutex_lock_interruptible(dev);
861 	if (ret)
862 		return ret;
863 
864 	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
865 	if (&obj->base == NULL) {
866 		ret = -ENOENT;
867 		goto unlock;
868 	}
869 
870 	/* Bounds check source.  */
871 	if (args->offset > obj->base.size ||
872 	    args->size > obj->base.size - args->offset) {
873 		ret = -EINVAL;
874 		goto out;
875 	}
876 
877 	trace_i915_gem_object_pread(obj, args->offset, args->size);
878 
879 	ret = i915_gem_shmem_pread(dev, obj, args, file);
880 
881 	/* pread for non shmem backed objects */
882 	if (ret == -EFAULT || ret == -ENODEV) {
883 		intel_runtime_pm_get(to_i915(dev));
884 		ret = i915_gem_gtt_pread(dev, obj, args->size,
885 					args->offset, args->data_ptr);
886 		intel_runtime_pm_put(to_i915(dev));
887 	}
888 
889 out:
890 	drm_gem_object_unreference(&obj->base);
891 unlock:
892 	mutex_unlock(&dev->struct_mutex);
893 	return ret;
894 }
895 
896 /* This is the fast write path which cannot handle
897  * page faults in the source data
898  */
899 
900 static inline int
901 fast_user_write(struct io_mapping *mapping,
902 		loff_t page_base, int page_offset,
903 		char __user *user_data,
904 		int length)
905 {
906 	void __iomem *vaddr_atomic;
907 	void *vaddr;
908 	unsigned long unwritten;
909 
910 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
911 	/* We can use the cpu mem copy function because this is X86. */
912 	vaddr = (void __force*)vaddr_atomic + page_offset;
913 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
914 						      user_data, length);
915 	io_mapping_unmap_atomic(vaddr_atomic);
916 	return unwritten;
917 }
918 
919 /**
920  * This is the fast pwrite path, where we copy the data directly from the
921  * user into the GTT, uncached.
922  * @dev: drm device pointer
923  * @obj: i915 gem object
924  * @args: pwrite arguments structure
925  * @file: drm file pointer
926  */
927 static int
928 i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
929 			 struct drm_i915_gem_object *obj,
930 			 struct drm_i915_gem_pwrite *args,
931 			 struct drm_file *file)
932 {
933 	struct i915_ggtt *ggtt = &i915->ggtt;
934 	struct drm_device *dev = obj->base.dev;
935 	struct drm_mm_node node;
936 	uint64_t remain, offset;
937 	char __user *user_data;
938 	int ret;
939 	bool hit_slow_path = false;
940 
941 	if (obj->tiling_mode != I915_TILING_NONE)
942 		return -EFAULT;
943 
944 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
945 	if (ret) {
946 		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
947 		if (ret)
948 			goto out;
949 
950 		ret = i915_gem_object_get_pages(obj);
951 		if (ret) {
952 			remove_mappable_node(&node);
953 			goto out;
954 		}
955 
956 		i915_gem_object_pin_pages(obj);
957 	} else {
958 		node.start = i915_gem_obj_ggtt_offset(obj);
959 		node.allocated = false;
960 		ret = i915_gem_object_put_fence(obj);
961 		if (ret)
962 			goto out_unpin;
963 	}
964 
965 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
966 	if (ret)
967 		goto out_unpin;
968 
969 	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
970 	obj->dirty = true;
971 
972 	user_data = u64_to_user_ptr(args->data_ptr);
973 	offset = args->offset;
974 	remain = args->size;
975 	while (remain) {
976 		/* Operation in this page
977 		 *
978 		 * page_base = page offset within aperture
979 		 * page_offset = offset within page
980 		 * page_length = bytes to copy for this page
981 		 */
982 		u32 page_base = node.start;
983 		unsigned page_offset = offset_in_page(offset);
984 		unsigned page_length = PAGE_SIZE - page_offset;
985 		page_length = remain < page_length ? remain : page_length;
986 		if (node.allocated) {
987 			wmb(); /* flush the write before we modify the GGTT */
988 			ggtt->base.insert_page(&ggtt->base,
989 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
990 					       node.start, I915_CACHE_NONE, 0);
991 			wmb(); /* flush modifications to the GGTT (insert_page) */
992 		} else {
993 			page_base += offset & PAGE_MASK;
994 		}
995 		/* If we get a fault while copying data, then (presumably) our
996 		 * source page isn't available.  Return the error and we'll
997 		 * retry in the slow path.
998 		 * If the object is non-shmem backed, we retry again with the
999 		 * path that handles page fault.
1000 		 */
1001 		if (fast_user_write(ggtt->mappable, page_base,
1002 				    page_offset, user_data, page_length)) {
1003 			hit_slow_path = true;
1004 			mutex_unlock(&dev->struct_mutex);
1005 			if (slow_user_access(ggtt->mappable,
1006 					     page_base,
1007 					     page_offset, user_data,
1008 					     page_length, true)) {
1009 				ret = -EFAULT;
1010 				mutex_lock(&dev->struct_mutex);
1011 				goto out_flush;
1012 			}
1013 
1014 			mutex_lock(&dev->struct_mutex);
1015 		}
1016 
1017 		remain -= page_length;
1018 		user_data += page_length;
1019 		offset += page_length;
1020 	}
1021 
1022 out_flush:
1023 	if (hit_slow_path) {
1024 		if (ret == 0 &&
1025 		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
1026 			/* The user has modified the object whilst we tried
1027 			 * reading from it, and we now have no idea what domain
1028 			 * the pages should be in. As we have just been touching
1029 			 * them directly, flush everything back to the GTT
1030 			 * domain.
1031 			 */
1032 			ret = i915_gem_object_set_to_gtt_domain(obj, false);
1033 		}
1034 	}
1035 
1036 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
1037 out_unpin:
1038 	if (node.allocated) {
1039 		wmb();
1040 		ggtt->base.clear_range(&ggtt->base,
1041 				       node.start, node.size,
1042 				       true);
1043 		i915_gem_object_unpin_pages(obj);
1044 		remove_mappable_node(&node);
1045 	} else {
1046 		i915_gem_object_ggtt_unpin(obj);
1047 	}
1048 out:
1049 	return ret;
1050 }
1051 
1052 /* Per-page copy function for the shmem pwrite fastpath.
1053  * Flushes invalid cachelines before writing to the target if
1054  * needs_clflush_before is set and flushes out any written cachelines after
1055  * writing if needs_clflush is set. */
1056 static int
1057 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
1058 		  char __user *user_data,
1059 		  bool page_do_bit17_swizzling,
1060 		  bool needs_clflush_before,
1061 		  bool needs_clflush_after)
1062 {
1063 	char *vaddr;
1064 	int ret;
1065 
1066 	if (unlikely(page_do_bit17_swizzling))
1067 		return -EINVAL;
1068 
1069 	vaddr = kmap_atomic(page);
1070 	if (needs_clflush_before)
1071 		drm_clflush_virt_range(vaddr + shmem_page_offset,
1072 				       page_length);
1073 	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
1074 					user_data, page_length);
1075 	if (needs_clflush_after)
1076 		drm_clflush_virt_range(vaddr + shmem_page_offset,
1077 				       page_length);
1078 	kunmap_atomic(vaddr);
1079 
1080 	return ret ? -EFAULT : 0;
1081 }
1082 
1083 /* Only difference to the fast-path function is that this can handle bit17
1084  * and uses non-atomic copy and kmap functions. */
1085 static int
1086 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
1087 		  char __user *user_data,
1088 		  bool page_do_bit17_swizzling,
1089 		  bool needs_clflush_before,
1090 		  bool needs_clflush_after)
1091 {
1092 	char *vaddr;
1093 	int ret;
1094 
1095 	vaddr = kmap(page);
1096 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1097 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1098 					     page_length,
1099 					     page_do_bit17_swizzling);
1100 	if (page_do_bit17_swizzling)
1101 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1102 						user_data,
1103 						page_length);
1104 	else
1105 		ret = __copy_from_user(vaddr + shmem_page_offset,
1106 				       user_data,
1107 				       page_length);
1108 	if (needs_clflush_after)
1109 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1110 					     page_length,
1111 					     page_do_bit17_swizzling);
1112 	kunmap(page);
1113 
1114 	return ret ? -EFAULT : 0;
1115 }
1116 
1117 static int
1118 i915_gem_shmem_pwrite(struct drm_device *dev,
1119 		      struct drm_i915_gem_object *obj,
1120 		      struct drm_i915_gem_pwrite *args,
1121 		      struct drm_file *file)
1122 {
1123 	ssize_t remain;
1124 	loff_t offset;
1125 	char __user *user_data;
1126 	int shmem_page_offset, page_length, ret = 0;
1127 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1128 	int hit_slowpath = 0;
1129 	int needs_clflush_after = 0;
1130 	int needs_clflush_before = 0;
1131 	struct sg_page_iter sg_iter;
1132 
1133 	user_data = u64_to_user_ptr(args->data_ptr);
1134 	remain = args->size;
1135 
1136 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1137 
1138 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1139 		/* If we're not in the cpu write domain, set ourself into the gtt
1140 		 * write domain and manually flush cachelines (if required). This
1141 		 * optimizes for the case when the gpu will use the data
1142 		 * right away and we therefore have to clflush anyway. */
1143 		needs_clflush_after = cpu_write_needs_clflush(obj);
1144 		ret = i915_gem_object_wait_rendering(obj, false);
1145 		if (ret)
1146 			return ret;
1147 	}
1148 	/* Same trick applies to invalidate partially written cachelines read
1149 	 * before writing. */
1150 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
1151 		needs_clflush_before =
1152 			!cpu_cache_is_coherent(dev, obj->cache_level);
1153 
1154 	ret = i915_gem_object_get_pages(obj);
1155 	if (ret)
1156 		return ret;
1157 
1158 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1159 
1160 	i915_gem_object_pin_pages(obj);
1161 
1162 	offset = args->offset;
1163 	obj->dirty = 1;
1164 
1165 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1166 			 offset >> PAGE_SHIFT) {
1167 		struct page *page = sg_page_iter_page(&sg_iter);
1168 		int partial_cacheline_write;
1169 
1170 		if (remain <= 0)
1171 			break;
1172 
1173 		/* Operation in this page
1174 		 *
1175 		 * shmem_page_offset = offset within page in shmem file
1176 		 * page_length = bytes to copy for this page
1177 		 */
1178 		shmem_page_offset = offset_in_page(offset);
1179 
1180 		page_length = remain;
1181 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
1182 			page_length = PAGE_SIZE - shmem_page_offset;
1183 
1184 		/* If we don't overwrite a cacheline completely we need to be
1185 		 * careful to have up-to-date data by first clflushing. Don't
1186 		 * overcomplicate things and flush the entire patch. */
1187 		partial_cacheline_write = needs_clflush_before &&
1188 			((shmem_page_offset | page_length)
1189 				& (boot_cpu_data.x86_clflush_size - 1));
1190 
1191 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1192 			(page_to_phys(page) & (1 << 17)) != 0;
1193 
1194 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1195 					user_data, page_do_bit17_swizzling,
1196 					partial_cacheline_write,
1197 					needs_clflush_after);
1198 		if (ret == 0)
1199 			goto next_page;
1200 
1201 		hit_slowpath = 1;
1202 		mutex_unlock(&dev->struct_mutex);
1203 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1204 					user_data, page_do_bit17_swizzling,
1205 					partial_cacheline_write,
1206 					needs_clflush_after);
1207 
1208 		mutex_lock(&dev->struct_mutex);
1209 
1210 		if (ret)
1211 			goto out;
1212 
1213 next_page:
1214 		remain -= page_length;
1215 		user_data += page_length;
1216 		offset += page_length;
1217 	}
1218 
1219 out:
1220 	i915_gem_object_unpin_pages(obj);
1221 
1222 	if (hit_slowpath) {
1223 		/*
1224 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
1225 		 * cachelines in-line while writing and the object moved
1226 		 * out of the cpu write domain while we've dropped the lock.
1227 		 */
1228 		if (!needs_clflush_after &&
1229 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1230 			if (i915_gem_clflush_object(obj, obj->pin_display))
1231 				needs_clflush_after = true;
1232 		}
1233 	}
1234 
1235 	if (needs_clflush_after)
1236 		i915_gem_chipset_flush(to_i915(dev));
1237 	else
1238 		obj->cache_dirty = true;
1239 
1240 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1241 	return ret;
1242 }
1243 
1244 /**
1245  * Writes data to the object referenced by handle.
1246  * @dev: drm device
1247  * @data: ioctl data blob
1248  * @file: drm file
1249  *
1250  * On error, the contents of the buffer that were to be modified are undefined.
1251  */
1252 int
1253 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1254 		      struct drm_file *file)
1255 {
1256 	struct drm_i915_private *dev_priv = to_i915(dev);
1257 	struct drm_i915_gem_pwrite *args = data;
1258 	struct drm_i915_gem_object *obj;
1259 	int ret;
1260 
1261 	if (args->size == 0)
1262 		return 0;
1263 
1264 	if (!access_ok(VERIFY_READ,
1265 		       u64_to_user_ptr(args->data_ptr),
1266 		       args->size))
1267 		return -EFAULT;
1268 
1269 	if (likely(!i915.prefault_disable)) {
1270 		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1271 						   args->size);
1272 		if (ret)
1273 			return -EFAULT;
1274 	}
1275 
1276 	intel_runtime_pm_get(dev_priv);
1277 
1278 	ret = i915_mutex_lock_interruptible(dev);
1279 	if (ret)
1280 		goto put_rpm;
1281 
1282 	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1283 	if (&obj->base == NULL) {
1284 		ret = -ENOENT;
1285 		goto unlock;
1286 	}
1287 
1288 	/* Bounds check destination. */
1289 	if (args->offset > obj->base.size ||
1290 	    args->size > obj->base.size - args->offset) {
1291 		ret = -EINVAL;
1292 		goto out;
1293 	}
1294 
1295 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1296 
1297 	ret = -EFAULT;
1298 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1299 	 * it would end up going through the fenced access, and we'll get
1300 	 * different detiling behavior between reading and writing.
1301 	 * pread/pwrite currently are reading and writing from the CPU
1302 	 * perspective, requiring manual detiling by the client.
1303 	 */
1304 	if (!i915_gem_object_has_struct_page(obj) ||
1305 	    cpu_write_needs_clflush(obj)) {
1306 		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
1307 		/* Note that the gtt paths might fail with non-page-backed user
1308 		 * pointers (e.g. gtt mappings when moving data between
1309 		 * textures). Fallback to the shmem path in that case. */
1310 	}
1311 
1312 	if (ret == -EFAULT || ret == -ENOSPC) {
1313 		if (obj->phys_handle)
1314 			ret = i915_gem_phys_pwrite(obj, args, file);
1315 		else if (i915_gem_object_has_struct_page(obj))
1316 			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1317 		else
1318 			ret = -ENODEV;
1319 	}
1320 
1321 out:
1322 	drm_gem_object_unreference(&obj->base);
1323 unlock:
1324 	mutex_unlock(&dev->struct_mutex);
1325 put_rpm:
1326 	intel_runtime_pm_put(dev_priv);
1327 
1328 	return ret;
1329 }
1330 
1331 static int
1332 i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1333 {
1334 	if (__i915_terminally_wedged(reset_counter))
1335 		return -EIO;
1336 
1337 	if (__i915_reset_in_progress(reset_counter)) {
1338 		/* Non-interruptible callers can't handle -EAGAIN, hence return
1339 		 * -EIO unconditionally for these. */
1340 		if (!interruptible)
1341 			return -EIO;
1342 
1343 		return -EAGAIN;
1344 	}
1345 
1346 	return 0;
1347 }
1348 
1349 static unsigned long local_clock_us(unsigned *cpu)
1350 {
1351 	unsigned long t;
1352 
1353 	/* Cheaply and approximately convert from nanoseconds to microseconds.
1354 	 * The result and subsequent calculations are also defined in the same
1355 	 * approximate microseconds units. The principal source of timing
1356 	 * error here is from the simple truncation.
1357 	 *
1358 	 * Note that local_clock() is only defined wrt to the current CPU;
1359 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1360 	 * blocking preemption for the entire busywait, we can detect the CPU
1361 	 * switch and use that as indicator of system load and a reason to
1362 	 * stop busywaiting, see busywait_stop().
1363 	 */
1364 	*cpu = get_cpu();
1365 	t = local_clock() >> 10;
1366 	put_cpu();
1367 
1368 	return t;
1369 }
1370 
1371 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1372 {
1373 	unsigned this_cpu;
1374 
1375 	if (time_after(local_clock_us(&this_cpu), timeout))
1376 		return true;
1377 
1378 	return this_cpu != cpu;
1379 }
1380 
1381 bool __i915_spin_request(const struct drm_i915_gem_request *req,
1382 			 int state, unsigned long timeout_us)
1383 {
1384 	unsigned cpu;
1385 
1386 	/* When waiting for high frequency requests, e.g. during synchronous
1387 	 * rendering split between the CPU and GPU, the finite amount of time
1388 	 * required to set up the irq and wait upon it limits the response
1389 	 * rate. By busywaiting on the request completion for a short while we
1390 	 * can service the high frequency waits as quick as possible. However,
1391 	 * if it is a slow request, we want to sleep as quickly as possible.
1392 	 * The tradeoff between waiting and sleeping is roughly the time it
1393 	 * takes to sleep on a request, on the order of a microsecond.
1394 	 */
1395 
1396 	timeout_us += local_clock_us(&cpu);
1397 	do {
1398 		if (i915_gem_request_completed(req))
1399 			return true;
1400 
1401 		if (signal_pending_state(state, current))
1402 			break;
1403 
1404 		if (busywait_stop(timeout_us, cpu))
1405 			break;
1406 
1407 		cpu_relax_lowlatency();
1408 	} while (!need_resched());
1409 
1410 	return false;
1411 }
1412 
1413 /**
1414  * __i915_wait_request - wait until execution of request has finished
1415  * @req: duh!
1416  * @interruptible: do an interruptible wait (normally yes)
1417  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1418  * @rps: RPS client
1419  *
1420  * Note: It is of utmost importance that the passed in seqno and reset_counter
1421  * values have been read by the caller in an smp safe manner. Where read-side
1422  * locks are involved, it is sufficient to read the reset_counter before
1423  * unlocking the lock that protects the seqno. For lockless tricks, the
1424  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1425  * inserted.
1426  *
1427  * Returns 0 if the request was found within the alloted time. Else returns the
1428  * errno with remaining time filled in timeout argument.
1429  */
1430 int __i915_wait_request(struct drm_i915_gem_request *req,
1431 			bool interruptible,
1432 			s64 *timeout,
1433 			struct intel_rps_client *rps)
1434 {
1435 	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1436 	DEFINE_WAIT(reset);
1437 	struct intel_wait wait;
1438 	unsigned long timeout_remain;
1439 	s64 before = 0; /* Only to silence a compiler warning. */
1440 	int ret = 0;
1441 
1442 	might_sleep();
1443 
1444 	if (list_empty(&req->list))
1445 		return 0;
1446 
1447 	if (i915_gem_request_completed(req))
1448 		return 0;
1449 
1450 	timeout_remain = MAX_SCHEDULE_TIMEOUT;
1451 	if (timeout) {
1452 		if (WARN_ON(*timeout < 0))
1453 			return -EINVAL;
1454 
1455 		if (*timeout == 0)
1456 			return -ETIME;
1457 
1458 		timeout_remain = nsecs_to_jiffies_timeout(*timeout);
1459 
1460 		/*
1461 		 * Record current time in case interrupted by signal, or wedged.
1462 		 */
1463 		before = ktime_get_raw_ns();
1464 	}
1465 
1466 	trace_i915_gem_request_wait_begin(req);
1467 
1468 	/* This client is about to stall waiting for the GPU. In many cases
1469 	 * this is undesirable and limits the throughput of the system, as
1470 	 * many clients cannot continue processing user input/output whilst
1471 	 * blocked. RPS autotuning may take tens of milliseconds to respond
1472 	 * to the GPU load and thus incurs additional latency for the client.
1473 	 * We can circumvent that by promoting the GPU frequency to maximum
1474 	 * before we wait. This makes the GPU throttle up much more quickly
1475 	 * (good for benchmarks and user experience, e.g. window animations),
1476 	 * but at a cost of spending more power processing the workload
1477 	 * (bad for battery). Not all clients even want their results
1478 	 * immediately and for them we should just let the GPU select its own
1479 	 * frequency to maximise efficiency. To prevent a single client from
1480 	 * forcing the clocks too high for the whole system, we only allow
1481 	 * each client to waitboost once in a busy period.
1482 	 */
1483 	if (INTEL_INFO(req->i915)->gen >= 6)
1484 		gen6_rps_boost(req->i915, rps, req->emitted_jiffies);
1485 
1486 	/* Optimistic spin for the next ~jiffie before touching IRQs */
1487 	if (i915_spin_request(req, state, 5))
1488 		goto complete;
1489 
1490 	set_current_state(state);
1491 	add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1492 
1493 	intel_wait_init(&wait, req->seqno);
1494 	if (intel_engine_add_wait(req->engine, &wait))
1495 		/* In order to check that we haven't missed the interrupt
1496 		 * as we enabled it, we need to kick ourselves to do a
1497 		 * coherent check on the seqno before we sleep.
1498 		 */
1499 		goto wakeup;
1500 
1501 	for (;;) {
1502 		if (signal_pending_state(state, current)) {
1503 			ret = -ERESTARTSYS;
1504 			break;
1505 		}
1506 
1507 		timeout_remain = io_schedule_timeout(timeout_remain);
1508 		if (timeout_remain == 0) {
1509 			ret = -ETIME;
1510 			break;
1511 		}
1512 
1513 		if (intel_wait_complete(&wait))
1514 			break;
1515 
1516 		set_current_state(state);
1517 
1518 wakeup:
1519 		/* Carefully check if the request is complete, giving time
1520 		 * for the seqno to be visible following the interrupt.
1521 		 * We also have to check in case we are kicked by the GPU
1522 		 * reset in order to drop the struct_mutex.
1523 		 */
1524 		if (__i915_request_irq_complete(req))
1525 			break;
1526 
1527 		/* Only spin if we know the GPU is processing this request */
1528 		if (i915_spin_request(req, state, 2))
1529 			break;
1530 	}
1531 	remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1532 
1533 	intel_engine_remove_wait(req->engine, &wait);
1534 	__set_current_state(TASK_RUNNING);
1535 complete:
1536 	trace_i915_gem_request_wait_end(req);
1537 
1538 	if (timeout) {
1539 		s64 tres = *timeout - (ktime_get_raw_ns() - before);
1540 
1541 		*timeout = tres < 0 ? 0 : tres;
1542 
1543 		/*
1544 		 * Apparently ktime isn't accurate enough and occasionally has a
1545 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1546 		 * things up to make the test happy. We allow up to 1 jiffy.
1547 		 *
1548 		 * This is a regrssion from the timespec->ktime conversion.
1549 		 */
1550 		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1551 			*timeout = 0;
1552 	}
1553 
1554 	if (rps && req->seqno == req->engine->last_submitted_seqno) {
1555 		/* The GPU is now idle and this client has stalled.
1556 		 * Since no other client has submitted a request in the
1557 		 * meantime, assume that this client is the only one
1558 		 * supplying work to the GPU but is unable to keep that
1559 		 * work supplied because it is waiting. Since the GPU is
1560 		 * then never kept fully busy, RPS autoclocking will
1561 		 * keep the clocks relatively low, causing further delays.
1562 		 * Compensate by giving the synchronous client credit for
1563 		 * a waitboost next time.
1564 		 */
1565 		spin_lock(&req->i915->rps.client_lock);
1566 		list_del_init(&rps->link);
1567 		spin_unlock(&req->i915->rps.client_lock);
1568 	}
1569 
1570 	return ret;
1571 }
1572 
1573 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1574 				   struct drm_file *file)
1575 {
1576 	struct drm_i915_file_private *file_priv;
1577 
1578 	WARN_ON(!req || !file || req->file_priv);
1579 
1580 	if (!req || !file)
1581 		return -EINVAL;
1582 
1583 	if (req->file_priv)
1584 		return -EINVAL;
1585 
1586 	file_priv = file->driver_priv;
1587 
1588 	spin_lock(&file_priv->mm.lock);
1589 	req->file_priv = file_priv;
1590 	list_add_tail(&req->client_list, &file_priv->mm.request_list);
1591 	spin_unlock(&file_priv->mm.lock);
1592 
1593 	req->pid = get_pid(task_pid(current));
1594 
1595 	return 0;
1596 }
1597 
1598 static inline void
1599 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1600 {
1601 	struct drm_i915_file_private *file_priv = request->file_priv;
1602 
1603 	if (!file_priv)
1604 		return;
1605 
1606 	spin_lock(&file_priv->mm.lock);
1607 	list_del(&request->client_list);
1608 	request->file_priv = NULL;
1609 	spin_unlock(&file_priv->mm.lock);
1610 
1611 	put_pid(request->pid);
1612 	request->pid = NULL;
1613 }
1614 
1615 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1616 {
1617 	trace_i915_gem_request_retire(request);
1618 
1619 	/* We know the GPU must have read the request to have
1620 	 * sent us the seqno + interrupt, so use the position
1621 	 * of tail of the request to update the last known position
1622 	 * of the GPU head.
1623 	 *
1624 	 * Note this requires that we are always called in request
1625 	 * completion order.
1626 	 */
1627 	request->ringbuf->last_retired_head = request->postfix;
1628 
1629 	list_del_init(&request->list);
1630 	i915_gem_request_remove_from_client(request);
1631 
1632 	if (request->previous_context) {
1633 		if (i915.enable_execlists)
1634 			intel_lr_context_unpin(request->previous_context,
1635 					       request->engine);
1636 	}
1637 
1638 	i915_gem_context_unreference(request->ctx);
1639 	i915_gem_request_unreference(request);
1640 }
1641 
1642 static void
1643 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1644 {
1645 	struct intel_engine_cs *engine = req->engine;
1646 	struct drm_i915_gem_request *tmp;
1647 
1648 	lockdep_assert_held(&engine->i915->drm.struct_mutex);
1649 
1650 	if (list_empty(&req->list))
1651 		return;
1652 
1653 	do {
1654 		tmp = list_first_entry(&engine->request_list,
1655 				       typeof(*tmp), list);
1656 
1657 		i915_gem_request_retire(tmp);
1658 	} while (tmp != req);
1659 
1660 	WARN_ON(i915_verify_lists(engine->dev));
1661 }
1662 
1663 /**
1664  * Waits for a request to be signaled, and cleans up the
1665  * request and object lists appropriately for that event.
1666  * @req: request to wait on
1667  */
1668 int
1669 i915_wait_request(struct drm_i915_gem_request *req)
1670 {
1671 	struct drm_i915_private *dev_priv = req->i915;
1672 	bool interruptible;
1673 	int ret;
1674 
1675 	interruptible = dev_priv->mm.interruptible;
1676 
1677 	BUG_ON(!mutex_is_locked(&dev_priv->drm.struct_mutex));
1678 
1679 	ret = __i915_wait_request(req, interruptible, NULL, NULL);
1680 	if (ret)
1681 		return ret;
1682 
1683 	/* If the GPU hung, we want to keep the requests to find the guilty. */
1684 	if (!i915_reset_in_progress(&dev_priv->gpu_error))
1685 		__i915_gem_request_retire__upto(req);
1686 
1687 	return 0;
1688 }
1689 
1690 /**
1691  * Ensures that all rendering to the object has completed and the object is
1692  * safe to unbind from the GTT or access from the CPU.
1693  * @obj: i915 gem object
1694  * @readonly: waiting for read access or write
1695  */
1696 int
1697 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1698 			       bool readonly)
1699 {
1700 	int ret, i;
1701 
1702 	if (!obj->active)
1703 		return 0;
1704 
1705 	if (readonly) {
1706 		if (obj->last_write_req != NULL) {
1707 			ret = i915_wait_request(obj->last_write_req);
1708 			if (ret)
1709 				return ret;
1710 
1711 			i = obj->last_write_req->engine->id;
1712 			if (obj->last_read_req[i] == obj->last_write_req)
1713 				i915_gem_object_retire__read(obj, i);
1714 			else
1715 				i915_gem_object_retire__write(obj);
1716 		}
1717 	} else {
1718 		for (i = 0; i < I915_NUM_ENGINES; i++) {
1719 			if (obj->last_read_req[i] == NULL)
1720 				continue;
1721 
1722 			ret = i915_wait_request(obj->last_read_req[i]);
1723 			if (ret)
1724 				return ret;
1725 
1726 			i915_gem_object_retire__read(obj, i);
1727 		}
1728 		GEM_BUG_ON(obj->active);
1729 	}
1730 
1731 	return 0;
1732 }
1733 
1734 static void
1735 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1736 			       struct drm_i915_gem_request *req)
1737 {
1738 	int ring = req->engine->id;
1739 
1740 	if (obj->last_read_req[ring] == req)
1741 		i915_gem_object_retire__read(obj, ring);
1742 	else if (obj->last_write_req == req)
1743 		i915_gem_object_retire__write(obj);
1744 
1745 	if (!i915_reset_in_progress(&req->i915->gpu_error))
1746 		__i915_gem_request_retire__upto(req);
1747 }
1748 
1749 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1750  * as the object state may change during this call.
1751  */
1752 static __must_check int
1753 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1754 					    struct intel_rps_client *rps,
1755 					    bool readonly)
1756 {
1757 	struct drm_device *dev = obj->base.dev;
1758 	struct drm_i915_private *dev_priv = to_i915(dev);
1759 	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1760 	int ret, i, n = 0;
1761 
1762 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1763 	BUG_ON(!dev_priv->mm.interruptible);
1764 
1765 	if (!obj->active)
1766 		return 0;
1767 
1768 	if (readonly) {
1769 		struct drm_i915_gem_request *req;
1770 
1771 		req = obj->last_write_req;
1772 		if (req == NULL)
1773 			return 0;
1774 
1775 		requests[n++] = i915_gem_request_reference(req);
1776 	} else {
1777 		for (i = 0; i < I915_NUM_ENGINES; i++) {
1778 			struct drm_i915_gem_request *req;
1779 
1780 			req = obj->last_read_req[i];
1781 			if (req == NULL)
1782 				continue;
1783 
1784 			requests[n++] = i915_gem_request_reference(req);
1785 		}
1786 	}
1787 
1788 	mutex_unlock(&dev->struct_mutex);
1789 	ret = 0;
1790 	for (i = 0; ret == 0 && i < n; i++)
1791 		ret = __i915_wait_request(requests[i], true, NULL, rps);
1792 	mutex_lock(&dev->struct_mutex);
1793 
1794 	for (i = 0; i < n; i++) {
1795 		if (ret == 0)
1796 			i915_gem_object_retire_request(obj, requests[i]);
1797 		i915_gem_request_unreference(requests[i]);
1798 	}
1799 
1800 	return ret;
1801 }
1802 
1803 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1804 {
1805 	struct drm_i915_file_private *fpriv = file->driver_priv;
1806 	return &fpriv->rps;
1807 }
1808 
1809 static enum fb_op_origin
1810 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1811 {
1812 	return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
1813 	       ORIGIN_GTT : ORIGIN_CPU;
1814 }
1815 
1816 /**
1817  * Called when user space prepares to use an object with the CPU, either
1818  * through the mmap ioctl's mapping or a GTT mapping.
1819  * @dev: drm device
1820  * @data: ioctl data blob
1821  * @file: drm file
1822  */
1823 int
1824 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1825 			  struct drm_file *file)
1826 {
1827 	struct drm_i915_gem_set_domain *args = data;
1828 	struct drm_i915_gem_object *obj;
1829 	uint32_t read_domains = args->read_domains;
1830 	uint32_t write_domain = args->write_domain;
1831 	int ret;
1832 
1833 	/* Only handle setting domains to types used by the CPU. */
1834 	if (write_domain & I915_GEM_GPU_DOMAINS)
1835 		return -EINVAL;
1836 
1837 	if (read_domains & I915_GEM_GPU_DOMAINS)
1838 		return -EINVAL;
1839 
1840 	/* Having something in the write domain implies it's in the read
1841 	 * domain, and only that read domain.  Enforce that in the request.
1842 	 */
1843 	if (write_domain != 0 && read_domains != write_domain)
1844 		return -EINVAL;
1845 
1846 	ret = i915_mutex_lock_interruptible(dev);
1847 	if (ret)
1848 		return ret;
1849 
1850 	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1851 	if (&obj->base == NULL) {
1852 		ret = -ENOENT;
1853 		goto unlock;
1854 	}
1855 
1856 	/* Try to flush the object off the GPU without holding the lock.
1857 	 * We will repeat the flush holding the lock in the normal manner
1858 	 * to catch cases where we are gazumped.
1859 	 */
1860 	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1861 							  to_rps_client(file),
1862 							  !write_domain);
1863 	if (ret)
1864 		goto unref;
1865 
1866 	if (read_domains & I915_GEM_DOMAIN_GTT)
1867 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1868 	else
1869 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1870 
1871 	if (write_domain != 0)
1872 		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1873 
1874 unref:
1875 	drm_gem_object_unreference(&obj->base);
1876 unlock:
1877 	mutex_unlock(&dev->struct_mutex);
1878 	return ret;
1879 }
1880 
1881 /**
1882  * Called when user space has done writes to this buffer
1883  * @dev: drm device
1884  * @data: ioctl data blob
1885  * @file: drm file
1886  */
1887 int
1888 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1889 			 struct drm_file *file)
1890 {
1891 	struct drm_i915_gem_sw_finish *args = data;
1892 	struct drm_i915_gem_object *obj;
1893 	int ret = 0;
1894 
1895 	ret = i915_mutex_lock_interruptible(dev);
1896 	if (ret)
1897 		return ret;
1898 
1899 	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1900 	if (&obj->base == NULL) {
1901 		ret = -ENOENT;
1902 		goto unlock;
1903 	}
1904 
1905 	/* Pinned buffers may be scanout, so flush the cache */
1906 	if (obj->pin_display)
1907 		i915_gem_object_flush_cpu_write_domain(obj);
1908 
1909 	drm_gem_object_unreference(&obj->base);
1910 unlock:
1911 	mutex_unlock(&dev->struct_mutex);
1912 	return ret;
1913 }
1914 
1915 /**
1916  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1917  *			 it is mapped to.
1918  * @dev: drm device
1919  * @data: ioctl data blob
1920  * @file: drm file
1921  *
1922  * While the mapping holds a reference on the contents of the object, it doesn't
1923  * imply a ref on the object itself.
1924  *
1925  * IMPORTANT:
1926  *
1927  * DRM driver writers who look a this function as an example for how to do GEM
1928  * mmap support, please don't implement mmap support like here. The modern way
1929  * to implement DRM mmap support is with an mmap offset ioctl (like
1930  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1931  * That way debug tooling like valgrind will understand what's going on, hiding
1932  * the mmap call in a driver private ioctl will break that. The i915 driver only
1933  * does cpu mmaps this way because we didn't know better.
1934  */
1935 int
1936 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1937 		    struct drm_file *file)
1938 {
1939 	struct drm_i915_gem_mmap *args = data;
1940 	struct drm_gem_object *obj;
1941 	unsigned long addr;
1942 
1943 	if (args->flags & ~(I915_MMAP_WC))
1944 		return -EINVAL;
1945 
1946 	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1947 		return -ENODEV;
1948 
1949 	obj = drm_gem_object_lookup(file, args->handle);
1950 	if (obj == NULL)
1951 		return -ENOENT;
1952 
1953 	/* prime objects have no backing filp to GEM mmap
1954 	 * pages from.
1955 	 */
1956 	if (!obj->filp) {
1957 		drm_gem_object_unreference_unlocked(obj);
1958 		return -EINVAL;
1959 	}
1960 
1961 	addr = vm_mmap(obj->filp, 0, args->size,
1962 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1963 		       args->offset);
1964 	if (args->flags & I915_MMAP_WC) {
1965 		struct mm_struct *mm = current->mm;
1966 		struct vm_area_struct *vma;
1967 
1968 		if (down_write_killable(&mm->mmap_sem)) {
1969 			drm_gem_object_unreference_unlocked(obj);
1970 			return -EINTR;
1971 		}
1972 		vma = find_vma(mm, addr);
1973 		if (vma)
1974 			vma->vm_page_prot =
1975 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1976 		else
1977 			addr = -ENOMEM;
1978 		up_write(&mm->mmap_sem);
1979 
1980 		/* This may race, but that's ok, it only gets set */
1981 		WRITE_ONCE(to_intel_bo(obj)->has_wc_mmap, true);
1982 	}
1983 	drm_gem_object_unreference_unlocked(obj);
1984 	if (IS_ERR((void *)addr))
1985 		return addr;
1986 
1987 	args->addr_ptr = (uint64_t) addr;
1988 
1989 	return 0;
1990 }
1991 
1992 /**
1993  * i915_gem_fault - fault a page into the GTT
1994  * @vma: VMA in question
1995  * @vmf: fault info
1996  *
1997  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1998  * from userspace.  The fault handler takes care of binding the object to
1999  * the GTT (if needed), allocating and programming a fence register (again,
2000  * only if needed based on whether the old reg is still valid or the object
2001  * is tiled) and inserting a new PTE into the faulting process.
2002  *
2003  * Note that the faulting process may involve evicting existing objects
2004  * from the GTT and/or fence registers to make room.  So performance may
2005  * suffer if the GTT working set is large or there are few fence registers
2006  * left.
2007  */
2008 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2009 {
2010 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
2011 	struct drm_device *dev = obj->base.dev;
2012 	struct drm_i915_private *dev_priv = to_i915(dev);
2013 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2014 	struct i915_ggtt_view view = i915_ggtt_view_normal;
2015 	pgoff_t page_offset;
2016 	unsigned long pfn;
2017 	int ret = 0;
2018 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
2019 
2020 	intel_runtime_pm_get(dev_priv);
2021 
2022 	/* We don't use vmf->pgoff since that has the fake offset */
2023 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
2024 		PAGE_SHIFT;
2025 
2026 	ret = i915_mutex_lock_interruptible(dev);
2027 	if (ret)
2028 		goto out;
2029 
2030 	trace_i915_gem_object_fault(obj, page_offset, true, write);
2031 
2032 	/* Try to flush the object off the GPU first without holding the lock.
2033 	 * Upon reacquiring the lock, we will perform our sanity checks and then
2034 	 * repeat the flush holding the lock in the normal manner to catch cases
2035 	 * where we are gazumped.
2036 	 */
2037 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
2038 	if (ret)
2039 		goto unlock;
2040 
2041 	/* Access to snoopable pages through the GTT is incoherent. */
2042 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
2043 		ret = -EFAULT;
2044 		goto unlock;
2045 	}
2046 
2047 	/* Use a partial view if the object is bigger than the aperture. */
2048 	if (obj->base.size >= ggtt->mappable_end &&
2049 	    obj->tiling_mode == I915_TILING_NONE) {
2050 		static const unsigned int chunk_size = 256; // 1 MiB
2051 
2052 		memset(&view, 0, sizeof(view));
2053 		view.type = I915_GGTT_VIEW_PARTIAL;
2054 		view.params.partial.offset = rounddown(page_offset, chunk_size);
2055 		view.params.partial.size =
2056 			min_t(unsigned int,
2057 			      chunk_size,
2058 			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
2059 			      view.params.partial.offset);
2060 	}
2061 
2062 	/* Now pin it into the GTT if needed */
2063 	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
2064 	if (ret)
2065 		goto unlock;
2066 
2067 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
2068 	if (ret)
2069 		goto unpin;
2070 
2071 	ret = i915_gem_object_get_fence(obj);
2072 	if (ret)
2073 		goto unpin;
2074 
2075 	/* Finally, remap it using the new GTT offset */
2076 	pfn = ggtt->mappable_base +
2077 		i915_gem_obj_ggtt_offset_view(obj, &view);
2078 	pfn >>= PAGE_SHIFT;
2079 
2080 	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
2081 		/* Overriding existing pages in partial view does not cause
2082 		 * us any trouble as TLBs are still valid because the fault
2083 		 * is due to userspace losing part of the mapping or never
2084 		 * having accessed it before (at this partials' range).
2085 		 */
2086 		unsigned long base = vma->vm_start +
2087 				     (view.params.partial.offset << PAGE_SHIFT);
2088 		unsigned int i;
2089 
2090 		for (i = 0; i < view.params.partial.size; i++) {
2091 			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
2092 			if (ret)
2093 				break;
2094 		}
2095 
2096 		obj->fault_mappable = true;
2097 	} else {
2098 		if (!obj->fault_mappable) {
2099 			unsigned long size = min_t(unsigned long,
2100 						   vma->vm_end - vma->vm_start,
2101 						   obj->base.size);
2102 			int i;
2103 
2104 			for (i = 0; i < size >> PAGE_SHIFT; i++) {
2105 				ret = vm_insert_pfn(vma,
2106 						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
2107 						    pfn + i);
2108 				if (ret)
2109 					break;
2110 			}
2111 
2112 			obj->fault_mappable = true;
2113 		} else
2114 			ret = vm_insert_pfn(vma,
2115 					    (unsigned long)vmf->virtual_address,
2116 					    pfn + page_offset);
2117 	}
2118 unpin:
2119 	i915_gem_object_ggtt_unpin_view(obj, &view);
2120 unlock:
2121 	mutex_unlock(&dev->struct_mutex);
2122 out:
2123 	switch (ret) {
2124 	case -EIO:
2125 		/*
2126 		 * We eat errors when the gpu is terminally wedged to avoid
2127 		 * userspace unduly crashing (gl has no provisions for mmaps to
2128 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2129 		 * and so needs to be reported.
2130 		 */
2131 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2132 			ret = VM_FAULT_SIGBUS;
2133 			break;
2134 		}
2135 	case -EAGAIN:
2136 		/*
2137 		 * EAGAIN means the gpu is hung and we'll wait for the error
2138 		 * handler to reset everything when re-faulting in
2139 		 * i915_mutex_lock_interruptible.
2140 		 */
2141 	case 0:
2142 	case -ERESTARTSYS:
2143 	case -EINTR:
2144 	case -EBUSY:
2145 		/*
2146 		 * EBUSY is ok: this just means that another thread
2147 		 * already did the job.
2148 		 */
2149 		ret = VM_FAULT_NOPAGE;
2150 		break;
2151 	case -ENOMEM:
2152 		ret = VM_FAULT_OOM;
2153 		break;
2154 	case -ENOSPC:
2155 	case -EFAULT:
2156 		ret = VM_FAULT_SIGBUS;
2157 		break;
2158 	default:
2159 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2160 		ret = VM_FAULT_SIGBUS;
2161 		break;
2162 	}
2163 
2164 	intel_runtime_pm_put(dev_priv);
2165 	return ret;
2166 }
2167 
2168 /**
2169  * i915_gem_release_mmap - remove physical page mappings
2170  * @obj: obj in question
2171  *
2172  * Preserve the reservation of the mmapping with the DRM core code, but
2173  * relinquish ownership of the pages back to the system.
2174  *
2175  * It is vital that we remove the page mapping if we have mapped a tiled
2176  * object through the GTT and then lose the fence register due to
2177  * resource pressure. Similarly if the object has been moved out of the
2178  * aperture, than pages mapped into userspace must be revoked. Removing the
2179  * mapping will then trigger a page fault on the next user access, allowing
2180  * fixup by i915_gem_fault().
2181  */
2182 void
2183 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2184 {
2185 	/* Serialisation between user GTT access and our code depends upon
2186 	 * revoking the CPU's PTE whilst the mutex is held. The next user
2187 	 * pagefault then has to wait until we release the mutex.
2188 	 */
2189 	lockdep_assert_held(&obj->base.dev->struct_mutex);
2190 
2191 	if (!obj->fault_mappable)
2192 		return;
2193 
2194 	drm_vma_node_unmap(&obj->base.vma_node,
2195 			   obj->base.dev->anon_inode->i_mapping);
2196 
2197 	/* Ensure that the CPU's PTE are revoked and there are not outstanding
2198 	 * memory transactions from userspace before we return. The TLB
2199 	 * flushing implied above by changing the PTE above *should* be
2200 	 * sufficient, an extra barrier here just provides us with a bit
2201 	 * of paranoid documentation about our requirement to serialise
2202 	 * memory writes before touching registers / GSM.
2203 	 */
2204 	wmb();
2205 
2206 	obj->fault_mappable = false;
2207 }
2208 
2209 void
2210 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
2211 {
2212 	struct drm_i915_gem_object *obj;
2213 
2214 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
2215 		i915_gem_release_mmap(obj);
2216 }
2217 
2218 uint32_t
2219 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
2220 {
2221 	uint32_t gtt_size;
2222 
2223 	if (INTEL_INFO(dev)->gen >= 4 ||
2224 	    tiling_mode == I915_TILING_NONE)
2225 		return size;
2226 
2227 	/* Previous chips need a power-of-two fence region when tiling */
2228 	if (IS_GEN3(dev))
2229 		gtt_size = 1024*1024;
2230 	else
2231 		gtt_size = 512*1024;
2232 
2233 	while (gtt_size < size)
2234 		gtt_size <<= 1;
2235 
2236 	return gtt_size;
2237 }
2238 
2239 /**
2240  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2241  * @dev: drm device
2242  * @size: object size
2243  * @tiling_mode: tiling mode
2244  * @fenced: is fenced alignemned required or not
2245  *
2246  * Return the required GTT alignment for an object, taking into account
2247  * potential fence register mapping.
2248  */
2249 uint32_t
2250 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2251 			   int tiling_mode, bool fenced)
2252 {
2253 	/*
2254 	 * Minimum alignment is 4k (GTT page size), but might be greater
2255 	 * if a fence register is needed for the object.
2256 	 */
2257 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2258 	    tiling_mode == I915_TILING_NONE)
2259 		return 4096;
2260 
2261 	/*
2262 	 * Previous chips need to be aligned to the size of the smallest
2263 	 * fence register that can contain the object.
2264 	 */
2265 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2266 }
2267 
2268 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2269 {
2270 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2271 	int ret;
2272 
2273 	dev_priv->mm.shrinker_no_lock_stealing = true;
2274 
2275 	ret = drm_gem_create_mmap_offset(&obj->base);
2276 	if (ret != -ENOSPC)
2277 		goto out;
2278 
2279 	/* Badly fragmented mmap space? The only way we can recover
2280 	 * space is by destroying unwanted objects. We can't randomly release
2281 	 * mmap_offsets as userspace expects them to be persistent for the
2282 	 * lifetime of the objects. The closest we can is to release the
2283 	 * offsets on purgeable objects by truncating it and marking it purged,
2284 	 * which prevents userspace from ever using that object again.
2285 	 */
2286 	i915_gem_shrink(dev_priv,
2287 			obj->base.size >> PAGE_SHIFT,
2288 			I915_SHRINK_BOUND |
2289 			I915_SHRINK_UNBOUND |
2290 			I915_SHRINK_PURGEABLE);
2291 	ret = drm_gem_create_mmap_offset(&obj->base);
2292 	if (ret != -ENOSPC)
2293 		goto out;
2294 
2295 	i915_gem_shrink_all(dev_priv);
2296 	ret = drm_gem_create_mmap_offset(&obj->base);
2297 out:
2298 	dev_priv->mm.shrinker_no_lock_stealing = false;
2299 
2300 	return ret;
2301 }
2302 
2303 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2304 {
2305 	drm_gem_free_mmap_offset(&obj->base);
2306 }
2307 
2308 int
2309 i915_gem_mmap_gtt(struct drm_file *file,
2310 		  struct drm_device *dev,
2311 		  uint32_t handle,
2312 		  uint64_t *offset)
2313 {
2314 	struct drm_i915_gem_object *obj;
2315 	int ret;
2316 
2317 	ret = i915_mutex_lock_interruptible(dev);
2318 	if (ret)
2319 		return ret;
2320 
2321 	obj = to_intel_bo(drm_gem_object_lookup(file, handle));
2322 	if (&obj->base == NULL) {
2323 		ret = -ENOENT;
2324 		goto unlock;
2325 	}
2326 
2327 	if (obj->madv != I915_MADV_WILLNEED) {
2328 		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2329 		ret = -EFAULT;
2330 		goto out;
2331 	}
2332 
2333 	ret = i915_gem_object_create_mmap_offset(obj);
2334 	if (ret)
2335 		goto out;
2336 
2337 	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2338 
2339 out:
2340 	drm_gem_object_unreference(&obj->base);
2341 unlock:
2342 	mutex_unlock(&dev->struct_mutex);
2343 	return ret;
2344 }
2345 
2346 /**
2347  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2348  * @dev: DRM device
2349  * @data: GTT mapping ioctl data
2350  * @file: GEM object info
2351  *
2352  * Simply returns the fake offset to userspace so it can mmap it.
2353  * The mmap call will end up in drm_gem_mmap(), which will set things
2354  * up so we can get faults in the handler above.
2355  *
2356  * The fault handler will take care of binding the object into the GTT
2357  * (since it may have been evicted to make room for something), allocating
2358  * a fence register, and mapping the appropriate aperture address into
2359  * userspace.
2360  */
2361 int
2362 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2363 			struct drm_file *file)
2364 {
2365 	struct drm_i915_gem_mmap_gtt *args = data;
2366 
2367 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2368 }
2369 
2370 /* Immediately discard the backing storage */
2371 static void
2372 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2373 {
2374 	i915_gem_object_free_mmap_offset(obj);
2375 
2376 	if (obj->base.filp == NULL)
2377 		return;
2378 
2379 	/* Our goal here is to return as much of the memory as
2380 	 * is possible back to the system as we are called from OOM.
2381 	 * To do this we must instruct the shmfs to drop all of its
2382 	 * backing pages, *now*.
2383 	 */
2384 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2385 	obj->madv = __I915_MADV_PURGED;
2386 }
2387 
2388 /* Try to discard unwanted pages */
2389 static void
2390 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2391 {
2392 	struct address_space *mapping;
2393 
2394 	switch (obj->madv) {
2395 	case I915_MADV_DONTNEED:
2396 		i915_gem_object_truncate(obj);
2397 	case __I915_MADV_PURGED:
2398 		return;
2399 	}
2400 
2401 	if (obj->base.filp == NULL)
2402 		return;
2403 
2404 	mapping = obj->base.filp->f_mapping,
2405 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2406 }
2407 
2408 static void
2409 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2410 {
2411 	struct sgt_iter sgt_iter;
2412 	struct page *page;
2413 	int ret;
2414 
2415 	BUG_ON(obj->madv == __I915_MADV_PURGED);
2416 
2417 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2418 	if (WARN_ON(ret)) {
2419 		/* In the event of a disaster, abandon all caches and
2420 		 * hope for the best.
2421 		 */
2422 		i915_gem_clflush_object(obj, true);
2423 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2424 	}
2425 
2426 	i915_gem_gtt_finish_object(obj);
2427 
2428 	if (i915_gem_object_needs_bit17_swizzle(obj))
2429 		i915_gem_object_save_bit_17_swizzle(obj);
2430 
2431 	if (obj->madv == I915_MADV_DONTNEED)
2432 		obj->dirty = 0;
2433 
2434 	for_each_sgt_page(page, sgt_iter, obj->pages) {
2435 		if (obj->dirty)
2436 			set_page_dirty(page);
2437 
2438 		if (obj->madv == I915_MADV_WILLNEED)
2439 			mark_page_accessed(page);
2440 
2441 		put_page(page);
2442 	}
2443 	obj->dirty = 0;
2444 
2445 	sg_free_table(obj->pages);
2446 	kfree(obj->pages);
2447 }
2448 
2449 int
2450 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2451 {
2452 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2453 
2454 	if (obj->pages == NULL)
2455 		return 0;
2456 
2457 	if (obj->pages_pin_count)
2458 		return -EBUSY;
2459 
2460 	BUG_ON(i915_gem_obj_bound_any(obj));
2461 
2462 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2463 	 * array, hence protect them from being reaped by removing them from gtt
2464 	 * lists early. */
2465 	list_del(&obj->global_list);
2466 
2467 	if (obj->mapping) {
2468 		if (is_vmalloc_addr(obj->mapping))
2469 			vunmap(obj->mapping);
2470 		else
2471 			kunmap(kmap_to_page(obj->mapping));
2472 		obj->mapping = NULL;
2473 	}
2474 
2475 	ops->put_pages(obj);
2476 	obj->pages = NULL;
2477 
2478 	i915_gem_object_invalidate(obj);
2479 
2480 	return 0;
2481 }
2482 
2483 static int
2484 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2485 {
2486 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2487 	int page_count, i;
2488 	struct address_space *mapping;
2489 	struct sg_table *st;
2490 	struct scatterlist *sg;
2491 	struct sgt_iter sgt_iter;
2492 	struct page *page;
2493 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2494 	int ret;
2495 	gfp_t gfp;
2496 
2497 	/* Assert that the object is not currently in any GPU domain. As it
2498 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2499 	 * a GPU cache
2500 	 */
2501 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2502 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2503 
2504 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2505 	if (st == NULL)
2506 		return -ENOMEM;
2507 
2508 	page_count = obj->base.size / PAGE_SIZE;
2509 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2510 		kfree(st);
2511 		return -ENOMEM;
2512 	}
2513 
2514 	/* Get the list of pages out of our struct file.  They'll be pinned
2515 	 * at this point until we release them.
2516 	 *
2517 	 * Fail silently without starting the shrinker
2518 	 */
2519 	mapping = obj->base.filp->f_mapping;
2520 	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2521 	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2522 	sg = st->sgl;
2523 	st->nents = 0;
2524 	for (i = 0; i < page_count; i++) {
2525 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2526 		if (IS_ERR(page)) {
2527 			i915_gem_shrink(dev_priv,
2528 					page_count,
2529 					I915_SHRINK_BOUND |
2530 					I915_SHRINK_UNBOUND |
2531 					I915_SHRINK_PURGEABLE);
2532 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2533 		}
2534 		if (IS_ERR(page)) {
2535 			/* We've tried hard to allocate the memory by reaping
2536 			 * our own buffer, now let the real VM do its job and
2537 			 * go down in flames if truly OOM.
2538 			 */
2539 			i915_gem_shrink_all(dev_priv);
2540 			page = shmem_read_mapping_page(mapping, i);
2541 			if (IS_ERR(page)) {
2542 				ret = PTR_ERR(page);
2543 				goto err_pages;
2544 			}
2545 		}
2546 #ifdef CONFIG_SWIOTLB
2547 		if (swiotlb_nr_tbl()) {
2548 			st->nents++;
2549 			sg_set_page(sg, page, PAGE_SIZE, 0);
2550 			sg = sg_next(sg);
2551 			continue;
2552 		}
2553 #endif
2554 		if (!i || page_to_pfn(page) != last_pfn + 1) {
2555 			if (i)
2556 				sg = sg_next(sg);
2557 			st->nents++;
2558 			sg_set_page(sg, page, PAGE_SIZE, 0);
2559 		} else {
2560 			sg->length += PAGE_SIZE;
2561 		}
2562 		last_pfn = page_to_pfn(page);
2563 
2564 		/* Check that the i965g/gm workaround works. */
2565 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2566 	}
2567 #ifdef CONFIG_SWIOTLB
2568 	if (!swiotlb_nr_tbl())
2569 #endif
2570 		sg_mark_end(sg);
2571 	obj->pages = st;
2572 
2573 	ret = i915_gem_gtt_prepare_object(obj);
2574 	if (ret)
2575 		goto err_pages;
2576 
2577 	if (i915_gem_object_needs_bit17_swizzle(obj))
2578 		i915_gem_object_do_bit_17_swizzle(obj);
2579 
2580 	if (obj->tiling_mode != I915_TILING_NONE &&
2581 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2582 		i915_gem_object_pin_pages(obj);
2583 
2584 	return 0;
2585 
2586 err_pages:
2587 	sg_mark_end(sg);
2588 	for_each_sgt_page(page, sgt_iter, st)
2589 		put_page(page);
2590 	sg_free_table(st);
2591 	kfree(st);
2592 
2593 	/* shmemfs first checks if there is enough memory to allocate the page
2594 	 * and reports ENOSPC should there be insufficient, along with the usual
2595 	 * ENOMEM for a genuine allocation failure.
2596 	 *
2597 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2598 	 * space and so want to translate the error from shmemfs back to our
2599 	 * usual understanding of ENOMEM.
2600 	 */
2601 	if (ret == -ENOSPC)
2602 		ret = -ENOMEM;
2603 
2604 	return ret;
2605 }
2606 
2607 /* Ensure that the associated pages are gathered from the backing storage
2608  * and pinned into our object. i915_gem_object_get_pages() may be called
2609  * multiple times before they are released by a single call to
2610  * i915_gem_object_put_pages() - once the pages are no longer referenced
2611  * either as a result of memory pressure (reaping pages under the shrinker)
2612  * or as the object is itself released.
2613  */
2614 int
2615 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2616 {
2617 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2618 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2619 	int ret;
2620 
2621 	if (obj->pages)
2622 		return 0;
2623 
2624 	if (obj->madv != I915_MADV_WILLNEED) {
2625 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2626 		return -EFAULT;
2627 	}
2628 
2629 	BUG_ON(obj->pages_pin_count);
2630 
2631 	ret = ops->get_pages(obj);
2632 	if (ret)
2633 		return ret;
2634 
2635 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2636 
2637 	obj->get_page.sg = obj->pages->sgl;
2638 	obj->get_page.last = 0;
2639 
2640 	return 0;
2641 }
2642 
2643 /* The 'mapping' part of i915_gem_object_pin_map() below */
2644 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
2645 {
2646 	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2647 	struct sg_table *sgt = obj->pages;
2648 	struct sgt_iter sgt_iter;
2649 	struct page *page;
2650 	struct page *stack_pages[32];
2651 	struct page **pages = stack_pages;
2652 	unsigned long i = 0;
2653 	void *addr;
2654 
2655 	/* A single page can always be kmapped */
2656 	if (n_pages == 1)
2657 		return kmap(sg_page(sgt->sgl));
2658 
2659 	if (n_pages > ARRAY_SIZE(stack_pages)) {
2660 		/* Too big for stack -- allocate temporary array instead */
2661 		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2662 		if (!pages)
2663 			return NULL;
2664 	}
2665 
2666 	for_each_sgt_page(page, sgt_iter, sgt)
2667 		pages[i++] = page;
2668 
2669 	/* Check that we have the expected number of pages */
2670 	GEM_BUG_ON(i != n_pages);
2671 
2672 	addr = vmap(pages, n_pages, 0, PAGE_KERNEL);
2673 
2674 	if (pages != stack_pages)
2675 		drm_free_large(pages);
2676 
2677 	return addr;
2678 }
2679 
2680 /* get, pin, and map the pages of the object into kernel space */
2681 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2682 {
2683 	int ret;
2684 
2685 	lockdep_assert_held(&obj->base.dev->struct_mutex);
2686 
2687 	ret = i915_gem_object_get_pages(obj);
2688 	if (ret)
2689 		return ERR_PTR(ret);
2690 
2691 	i915_gem_object_pin_pages(obj);
2692 
2693 	if (!obj->mapping) {
2694 		obj->mapping = i915_gem_object_map(obj);
2695 		if (!obj->mapping) {
2696 			i915_gem_object_unpin_pages(obj);
2697 			return ERR_PTR(-ENOMEM);
2698 		}
2699 	}
2700 
2701 	return obj->mapping;
2702 }
2703 
2704 void i915_vma_move_to_active(struct i915_vma *vma,
2705 			     struct drm_i915_gem_request *req)
2706 {
2707 	struct drm_i915_gem_object *obj = vma->obj;
2708 	struct intel_engine_cs *engine;
2709 
2710 	engine = i915_gem_request_get_engine(req);
2711 
2712 	/* Add a reference if we're newly entering the active list. */
2713 	if (obj->active == 0)
2714 		drm_gem_object_reference(&obj->base);
2715 	obj->active |= intel_engine_flag(engine);
2716 
2717 	list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2718 	i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2719 
2720 	list_move_tail(&vma->vm_link, &vma->vm->active_list);
2721 }
2722 
2723 static void
2724 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2725 {
2726 	GEM_BUG_ON(obj->last_write_req == NULL);
2727 	GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2728 
2729 	i915_gem_request_assign(&obj->last_write_req, NULL);
2730 	intel_fb_obj_flush(obj, true, ORIGIN_CS);
2731 }
2732 
2733 static void
2734 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2735 {
2736 	struct i915_vma *vma;
2737 
2738 	GEM_BUG_ON(obj->last_read_req[ring] == NULL);
2739 	GEM_BUG_ON(!(obj->active & (1 << ring)));
2740 
2741 	list_del_init(&obj->engine_list[ring]);
2742 	i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2743 
2744 	if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2745 		i915_gem_object_retire__write(obj);
2746 
2747 	obj->active &= ~(1 << ring);
2748 	if (obj->active)
2749 		return;
2750 
2751 	/* Bump our place on the bound list to keep it roughly in LRU order
2752 	 * so that we don't steal from recently used but inactive objects
2753 	 * (unless we are forced to ofc!)
2754 	 */
2755 	list_move_tail(&obj->global_list,
2756 		       &to_i915(obj->base.dev)->mm.bound_list);
2757 
2758 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
2759 		if (!list_empty(&vma->vm_link))
2760 			list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2761 	}
2762 
2763 	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2764 	drm_gem_object_unreference(&obj->base);
2765 }
2766 
2767 static int
2768 i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
2769 {
2770 	struct intel_engine_cs *engine;
2771 	int ret;
2772 
2773 	/* Carefully retire all requests without writing to the rings */
2774 	for_each_engine(engine, dev_priv) {
2775 		ret = intel_engine_idle(engine);
2776 		if (ret)
2777 			return ret;
2778 	}
2779 	i915_gem_retire_requests(dev_priv);
2780 
2781 	/* If the seqno wraps around, we need to clear the breadcrumb rbtree */
2782 	if (!i915_seqno_passed(seqno, dev_priv->next_seqno)) {
2783 		while (intel_kick_waiters(dev_priv) ||
2784 		       intel_kick_signalers(dev_priv))
2785 			yield();
2786 	}
2787 
2788 	/* Finally reset hw state */
2789 	for_each_engine(engine, dev_priv)
2790 		intel_ring_init_seqno(engine, seqno);
2791 
2792 	return 0;
2793 }
2794 
2795 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2796 {
2797 	struct drm_i915_private *dev_priv = to_i915(dev);
2798 	int ret;
2799 
2800 	if (seqno == 0)
2801 		return -EINVAL;
2802 
2803 	/* HWS page needs to be set less than what we
2804 	 * will inject to ring
2805 	 */
2806 	ret = i915_gem_init_seqno(dev_priv, seqno - 1);
2807 	if (ret)
2808 		return ret;
2809 
2810 	/* Carefully set the last_seqno value so that wrap
2811 	 * detection still works
2812 	 */
2813 	dev_priv->next_seqno = seqno;
2814 	dev_priv->last_seqno = seqno - 1;
2815 	if (dev_priv->last_seqno == 0)
2816 		dev_priv->last_seqno--;
2817 
2818 	return 0;
2819 }
2820 
2821 int
2822 i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
2823 {
2824 	/* reserve 0 for non-seqno */
2825 	if (dev_priv->next_seqno == 0) {
2826 		int ret = i915_gem_init_seqno(dev_priv, 0);
2827 		if (ret)
2828 			return ret;
2829 
2830 		dev_priv->next_seqno = 1;
2831 	}
2832 
2833 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2834 	return 0;
2835 }
2836 
2837 static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
2838 {
2839 	struct drm_i915_private *dev_priv = engine->i915;
2840 
2841 	dev_priv->gt.active_engines |= intel_engine_flag(engine);
2842 	if (dev_priv->gt.awake)
2843 		return;
2844 
2845 	intel_runtime_pm_get_noresume(dev_priv);
2846 	dev_priv->gt.awake = true;
2847 
2848 	i915_update_gfx_val(dev_priv);
2849 	if (INTEL_GEN(dev_priv) >= 6)
2850 		gen6_rps_busy(dev_priv);
2851 
2852 	queue_delayed_work(dev_priv->wq,
2853 			   &dev_priv->gt.retire_work,
2854 			   round_jiffies_up_relative(HZ));
2855 }
2856 
2857 /*
2858  * NB: This function is not allowed to fail. Doing so would mean the the
2859  * request is not being tracked for completion but the work itself is
2860  * going to happen on the hardware. This would be a Bad Thing(tm).
2861  */
2862 void __i915_add_request(struct drm_i915_gem_request *request,
2863 			struct drm_i915_gem_object *obj,
2864 			bool flush_caches)
2865 {
2866 	struct intel_engine_cs *engine;
2867 	struct intel_ringbuffer *ringbuf;
2868 	u32 request_start;
2869 	u32 reserved_tail;
2870 	int ret;
2871 
2872 	if (WARN_ON(request == NULL))
2873 		return;
2874 
2875 	engine = request->engine;
2876 	ringbuf = request->ringbuf;
2877 
2878 	/*
2879 	 * To ensure that this call will not fail, space for its emissions
2880 	 * should already have been reserved in the ring buffer. Let the ring
2881 	 * know that it is time to use that space up.
2882 	 */
2883 	request_start = intel_ring_get_tail(ringbuf);
2884 	reserved_tail = request->reserved_space;
2885 	request->reserved_space = 0;
2886 
2887 	/*
2888 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
2889 	 * after having emitted the batchbuffer command. Hence we need to fix
2890 	 * things up similar to emitting the lazy request. The difference here
2891 	 * is that the flush _must_ happen before the next request, no matter
2892 	 * what.
2893 	 */
2894 	if (flush_caches) {
2895 		if (i915.enable_execlists)
2896 			ret = logical_ring_flush_all_caches(request);
2897 		else
2898 			ret = intel_ring_flush_all_caches(request);
2899 		/* Not allowed to fail! */
2900 		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2901 	}
2902 
2903 	trace_i915_gem_request_add(request);
2904 
2905 	request->head = request_start;
2906 
2907 	/* Whilst this request exists, batch_obj will be on the
2908 	 * active_list, and so will hold the active reference. Only when this
2909 	 * request is retired will the the batch_obj be moved onto the
2910 	 * inactive_list and lose its active reference. Hence we do not need
2911 	 * to explicitly hold another reference here.
2912 	 */
2913 	request->batch_obj = obj;
2914 
2915 	/* Seal the request and mark it as pending execution. Note that
2916 	 * we may inspect this state, without holding any locks, during
2917 	 * hangcheck. Hence we apply the barrier to ensure that we do not
2918 	 * see a more recent value in the hws than we are tracking.
2919 	 */
2920 	request->emitted_jiffies = jiffies;
2921 	request->previous_seqno = engine->last_submitted_seqno;
2922 	smp_store_mb(engine->last_submitted_seqno, request->seqno);
2923 	list_add_tail(&request->list, &engine->request_list);
2924 
2925 	/* Record the position of the start of the request so that
2926 	 * should we detect the updated seqno part-way through the
2927 	 * GPU processing the request, we never over-estimate the
2928 	 * position of the head.
2929 	 */
2930 	request->postfix = intel_ring_get_tail(ringbuf);
2931 
2932 	if (i915.enable_execlists)
2933 		ret = engine->emit_request(request);
2934 	else {
2935 		ret = engine->add_request(request);
2936 
2937 		request->tail = intel_ring_get_tail(ringbuf);
2938 	}
2939 	/* Not allowed to fail! */
2940 	WARN(ret, "emit|add_request failed: %d!\n", ret);
2941 	/* Sanity check that the reserved size was large enough. */
2942 	ret = intel_ring_get_tail(ringbuf) - request_start;
2943 	if (ret < 0)
2944 		ret += ringbuf->size;
2945 	WARN_ONCE(ret > reserved_tail,
2946 		  "Not enough space reserved (%d bytes) "
2947 		  "for adding the request (%d bytes)\n",
2948 		  reserved_tail, ret);
2949 
2950 	i915_gem_mark_busy(engine);
2951 }
2952 
2953 static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2954 {
2955 	unsigned long elapsed;
2956 
2957 	if (ctx->hang_stats.banned)
2958 		return true;
2959 
2960 	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2961 	if (ctx->hang_stats.ban_period_seconds &&
2962 	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2963 		DRM_DEBUG("context hanging too fast, banning!\n");
2964 		return true;
2965 	}
2966 
2967 	return false;
2968 }
2969 
2970 static void i915_set_reset_status(struct i915_gem_context *ctx,
2971 				  const bool guilty)
2972 {
2973 	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2974 
2975 	if (guilty) {
2976 		hs->banned = i915_context_is_banned(ctx);
2977 		hs->batch_active++;
2978 		hs->guilty_ts = get_seconds();
2979 	} else {
2980 		hs->batch_pending++;
2981 	}
2982 }
2983 
2984 void i915_gem_request_free(struct kref *req_ref)
2985 {
2986 	struct drm_i915_gem_request *req = container_of(req_ref,
2987 						 typeof(*req), ref);
2988 	kmem_cache_free(req->i915->requests, req);
2989 }
2990 
2991 static inline int
2992 __i915_gem_request_alloc(struct intel_engine_cs *engine,
2993 			 struct i915_gem_context *ctx,
2994 			 struct drm_i915_gem_request **req_out)
2995 {
2996 	struct drm_i915_private *dev_priv = engine->i915;
2997 	unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
2998 	struct drm_i915_gem_request *req;
2999 	int ret;
3000 
3001 	if (!req_out)
3002 		return -EINVAL;
3003 
3004 	*req_out = NULL;
3005 
3006 	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
3007 	 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
3008 	 * and restart.
3009 	 */
3010 	ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
3011 	if (ret)
3012 		return ret;
3013 
3014 	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
3015 	if (req == NULL)
3016 		return -ENOMEM;
3017 
3018 	ret = i915_gem_get_seqno(engine->i915, &req->seqno);
3019 	if (ret)
3020 		goto err;
3021 
3022 	kref_init(&req->ref);
3023 	req->i915 = dev_priv;
3024 	req->engine = engine;
3025 	req->ctx  = ctx;
3026 	i915_gem_context_reference(req->ctx);
3027 
3028 	/*
3029 	 * Reserve space in the ring buffer for all the commands required to
3030 	 * eventually emit this request. This is to guarantee that the
3031 	 * i915_add_request() call can't fail. Note that the reserve may need
3032 	 * to be redone if the request is not actually submitted straight
3033 	 * away, e.g. because a GPU scheduler has deferred it.
3034 	 */
3035 	req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
3036 
3037 	if (i915.enable_execlists)
3038 		ret = intel_logical_ring_alloc_request_extras(req);
3039 	else
3040 		ret = intel_ring_alloc_request_extras(req);
3041 	if (ret)
3042 		goto err_ctx;
3043 
3044 	*req_out = req;
3045 	return 0;
3046 
3047 err_ctx:
3048 	i915_gem_context_unreference(ctx);
3049 err:
3050 	kmem_cache_free(dev_priv->requests, req);
3051 	return ret;
3052 }
3053 
3054 /**
3055  * i915_gem_request_alloc - allocate a request structure
3056  *
3057  * @engine: engine that we wish to issue the request on.
3058  * @ctx: context that the request will be associated with.
3059  *       This can be NULL if the request is not directly related to
3060  *       any specific user context, in which case this function will
3061  *       choose an appropriate context to use.
3062  *
3063  * Returns a pointer to the allocated request if successful,
3064  * or an error code if not.
3065  */
3066 struct drm_i915_gem_request *
3067 i915_gem_request_alloc(struct intel_engine_cs *engine,
3068 		       struct i915_gem_context *ctx)
3069 {
3070 	struct drm_i915_gem_request *req;
3071 	int err;
3072 
3073 	if (ctx == NULL)
3074 		ctx = engine->i915->kernel_context;
3075 	err = __i915_gem_request_alloc(engine, ctx, &req);
3076 	return err ? ERR_PTR(err) : req;
3077 }
3078 
3079 struct drm_i915_gem_request *
3080 i915_gem_find_active_request(struct intel_engine_cs *engine)
3081 {
3082 	struct drm_i915_gem_request *request;
3083 
3084 	/* We are called by the error capture and reset at a random
3085 	 * point in time. In particular, note that neither is crucially
3086 	 * ordered with an interrupt. After a hang, the GPU is dead and we
3087 	 * assume that no more writes can happen (we waited long enough for
3088 	 * all writes that were in transaction to be flushed) - adding an
3089 	 * extra delay for a recent interrupt is pointless. Hence, we do
3090 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
3091 	 */
3092 	list_for_each_entry(request, &engine->request_list, list) {
3093 		if (i915_gem_request_completed(request))
3094 			continue;
3095 
3096 		return request;
3097 	}
3098 
3099 	return NULL;
3100 }
3101 
3102 static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
3103 {
3104 	struct drm_i915_gem_request *request;
3105 	bool ring_hung;
3106 
3107 	request = i915_gem_find_active_request(engine);
3108 	if (request == NULL)
3109 		return;
3110 
3111 	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
3112 
3113 	i915_set_reset_status(request->ctx, ring_hung);
3114 	list_for_each_entry_continue(request, &engine->request_list, list)
3115 		i915_set_reset_status(request->ctx, false);
3116 }
3117 
3118 static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
3119 {
3120 	struct intel_ringbuffer *buffer;
3121 
3122 	while (!list_empty(&engine->active_list)) {
3123 		struct drm_i915_gem_object *obj;
3124 
3125 		obj = list_first_entry(&engine->active_list,
3126 				       struct drm_i915_gem_object,
3127 				       engine_list[engine->id]);
3128 
3129 		i915_gem_object_retire__read(obj, engine->id);
3130 	}
3131 
3132 	/*
3133 	 * Clear the execlists queue up before freeing the requests, as those
3134 	 * are the ones that keep the context and ringbuffer backing objects
3135 	 * pinned in place.
3136 	 */
3137 
3138 	if (i915.enable_execlists) {
3139 		/* Ensure irq handler finishes or is cancelled. */
3140 		tasklet_kill(&engine->irq_tasklet);
3141 
3142 		intel_execlists_cancel_requests(engine);
3143 	}
3144 
3145 	/*
3146 	 * We must free the requests after all the corresponding objects have
3147 	 * been moved off active lists. Which is the same order as the normal
3148 	 * retire_requests function does. This is important if object hold
3149 	 * implicit references on things like e.g. ppgtt address spaces through
3150 	 * the request.
3151 	 */
3152 	while (!list_empty(&engine->request_list)) {
3153 		struct drm_i915_gem_request *request;
3154 
3155 		request = list_first_entry(&engine->request_list,
3156 					   struct drm_i915_gem_request,
3157 					   list);
3158 
3159 		i915_gem_request_retire(request);
3160 	}
3161 
3162 	/* Having flushed all requests from all queues, we know that all
3163 	 * ringbuffers must now be empty. However, since we do not reclaim
3164 	 * all space when retiring the request (to prevent HEADs colliding
3165 	 * with rapid ringbuffer wraparound) the amount of available space
3166 	 * upon reset is less than when we start. Do one more pass over
3167 	 * all the ringbuffers to reset last_retired_head.
3168 	 */
3169 	list_for_each_entry(buffer, &engine->buffers, link) {
3170 		buffer->last_retired_head = buffer->tail;
3171 		intel_ring_update_space(buffer);
3172 	}
3173 
3174 	intel_ring_init_seqno(engine, engine->last_submitted_seqno);
3175 
3176 	engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
3177 }
3178 
3179 void i915_gem_reset(struct drm_device *dev)
3180 {
3181 	struct drm_i915_private *dev_priv = to_i915(dev);
3182 	struct intel_engine_cs *engine;
3183 
3184 	/*
3185 	 * Before we free the objects from the requests, we need to inspect
3186 	 * them for finding the guilty party. As the requests only borrow
3187 	 * their reference to the objects, the inspection must be done first.
3188 	 */
3189 	for_each_engine(engine, dev_priv)
3190 		i915_gem_reset_engine_status(engine);
3191 
3192 	for_each_engine(engine, dev_priv)
3193 		i915_gem_reset_engine_cleanup(engine);
3194 	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
3195 
3196 	i915_gem_context_reset(dev);
3197 
3198 	i915_gem_restore_fences(dev);
3199 
3200 	WARN_ON(i915_verify_lists(dev));
3201 }
3202 
3203 /**
3204  * This function clears the request list as sequence numbers are passed.
3205  * @engine: engine to retire requests on
3206  */
3207 void
3208 i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
3209 {
3210 	WARN_ON(i915_verify_lists(engine->dev));
3211 
3212 	/* Retire requests first as we use it above for the early return.
3213 	 * If we retire requests last, we may use a later seqno and so clear
3214 	 * the requests lists without clearing the active list, leading to
3215 	 * confusion.
3216 	 */
3217 	while (!list_empty(&engine->request_list)) {
3218 		struct drm_i915_gem_request *request;
3219 
3220 		request = list_first_entry(&engine->request_list,
3221 					   struct drm_i915_gem_request,
3222 					   list);
3223 
3224 		if (!i915_gem_request_completed(request))
3225 			break;
3226 
3227 		i915_gem_request_retire(request);
3228 	}
3229 
3230 	/* Move any buffers on the active list that are no longer referenced
3231 	 * by the ringbuffer to the flushing/inactive lists as appropriate,
3232 	 * before we free the context associated with the requests.
3233 	 */
3234 	while (!list_empty(&engine->active_list)) {
3235 		struct drm_i915_gem_object *obj;
3236 
3237 		obj = list_first_entry(&engine->active_list,
3238 				       struct drm_i915_gem_object,
3239 				       engine_list[engine->id]);
3240 
3241 		if (!list_empty(&obj->last_read_req[engine->id]->list))
3242 			break;
3243 
3244 		i915_gem_object_retire__read(obj, engine->id);
3245 	}
3246 
3247 	WARN_ON(i915_verify_lists(engine->dev));
3248 }
3249 
3250 void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
3251 {
3252 	struct intel_engine_cs *engine;
3253 
3254 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3255 
3256 	if (dev_priv->gt.active_engines == 0)
3257 		return;
3258 
3259 	GEM_BUG_ON(!dev_priv->gt.awake);
3260 
3261 	for_each_engine(engine, dev_priv) {
3262 		i915_gem_retire_requests_ring(engine);
3263 		if (list_empty(&engine->request_list))
3264 			dev_priv->gt.active_engines &= ~intel_engine_flag(engine);
3265 	}
3266 
3267 	if (dev_priv->gt.active_engines == 0)
3268 		queue_delayed_work(dev_priv->wq,
3269 				   &dev_priv->gt.idle_work,
3270 				   msecs_to_jiffies(100));
3271 }
3272 
3273 static void
3274 i915_gem_retire_work_handler(struct work_struct *work)
3275 {
3276 	struct drm_i915_private *dev_priv =
3277 		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3278 	struct drm_device *dev = &dev_priv->drm;
3279 
3280 	/* Come back later if the device is busy... */
3281 	if (mutex_trylock(&dev->struct_mutex)) {
3282 		i915_gem_retire_requests(dev_priv);
3283 		mutex_unlock(&dev->struct_mutex);
3284 	}
3285 
3286 	/* Keep the retire handler running until we are finally idle.
3287 	 * We do not need to do this test under locking as in the worst-case
3288 	 * we queue the retire worker once too often.
3289 	 */
3290 	if (READ_ONCE(dev_priv->gt.awake))
3291 		queue_delayed_work(dev_priv->wq,
3292 				   &dev_priv->gt.retire_work,
3293 				   round_jiffies_up_relative(HZ));
3294 }
3295 
3296 static void
3297 i915_gem_idle_work_handler(struct work_struct *work)
3298 {
3299 	struct drm_i915_private *dev_priv =
3300 		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3301 	struct drm_device *dev = &dev_priv->drm;
3302 	struct intel_engine_cs *engine;
3303 	unsigned int stuck_engines;
3304 	bool rearm_hangcheck;
3305 
3306 	if (!READ_ONCE(dev_priv->gt.awake))
3307 		return;
3308 
3309 	if (READ_ONCE(dev_priv->gt.active_engines))
3310 		return;
3311 
3312 	rearm_hangcheck =
3313 		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3314 
3315 	if (!mutex_trylock(&dev->struct_mutex)) {
3316 		/* Currently busy, come back later */
3317 		mod_delayed_work(dev_priv->wq,
3318 				 &dev_priv->gt.idle_work,
3319 				 msecs_to_jiffies(50));
3320 		goto out_rearm;
3321 	}
3322 
3323 	if (dev_priv->gt.active_engines)
3324 		goto out_unlock;
3325 
3326 	for_each_engine(engine, dev_priv)
3327 		i915_gem_batch_pool_fini(&engine->batch_pool);
3328 
3329 	GEM_BUG_ON(!dev_priv->gt.awake);
3330 	dev_priv->gt.awake = false;
3331 	rearm_hangcheck = false;
3332 
3333 	stuck_engines = intel_kick_waiters(dev_priv);
3334 	if (unlikely(stuck_engines)) {
3335 		DRM_DEBUG_DRIVER("kicked stuck waiters...missed irq\n");
3336 		dev_priv->gpu_error.missed_irq_rings |= stuck_engines;
3337 	}
3338 
3339 	if (INTEL_GEN(dev_priv) >= 6)
3340 		gen6_rps_idle(dev_priv);
3341 	intel_runtime_pm_put(dev_priv);
3342 out_unlock:
3343 	mutex_unlock(&dev->struct_mutex);
3344 
3345 out_rearm:
3346 	if (rearm_hangcheck) {
3347 		GEM_BUG_ON(!dev_priv->gt.awake);
3348 		i915_queue_hangcheck(dev_priv);
3349 	}
3350 }
3351 
3352 /**
3353  * Ensures that an object will eventually get non-busy by flushing any required
3354  * write domains, emitting any outstanding lazy request and retiring and
3355  * completed requests.
3356  * @obj: object to flush
3357  */
3358 static int
3359 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3360 {
3361 	int i;
3362 
3363 	if (!obj->active)
3364 		return 0;
3365 
3366 	for (i = 0; i < I915_NUM_ENGINES; i++) {
3367 		struct drm_i915_gem_request *req;
3368 
3369 		req = obj->last_read_req[i];
3370 		if (req == NULL)
3371 			continue;
3372 
3373 		if (i915_gem_request_completed(req))
3374 			i915_gem_object_retire__read(obj, i);
3375 	}
3376 
3377 	return 0;
3378 }
3379 
3380 /**
3381  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3382  * @dev: drm device pointer
3383  * @data: ioctl data blob
3384  * @file: drm file pointer
3385  *
3386  * Returns 0 if successful, else an error is returned with the remaining time in
3387  * the timeout parameter.
3388  *  -ETIME: object is still busy after timeout
3389  *  -ERESTARTSYS: signal interrupted the wait
3390  *  -ENONENT: object doesn't exist
3391  * Also possible, but rare:
3392  *  -EAGAIN: GPU wedged
3393  *  -ENOMEM: damn
3394  *  -ENODEV: Internal IRQ fail
3395  *  -E?: The add request failed
3396  *
3397  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3398  * non-zero timeout parameter the wait ioctl will wait for the given number of
3399  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3400  * without holding struct_mutex the object may become re-busied before this
3401  * function completes. A similar but shorter * race condition exists in the busy
3402  * ioctl
3403  */
3404 int
3405 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3406 {
3407 	struct drm_i915_gem_wait *args = data;
3408 	struct drm_i915_gem_object *obj;
3409 	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3410 	int i, n = 0;
3411 	int ret;
3412 
3413 	if (args->flags != 0)
3414 		return -EINVAL;
3415 
3416 	ret = i915_mutex_lock_interruptible(dev);
3417 	if (ret)
3418 		return ret;
3419 
3420 	obj = to_intel_bo(drm_gem_object_lookup(file, args->bo_handle));
3421 	if (&obj->base == NULL) {
3422 		mutex_unlock(&dev->struct_mutex);
3423 		return -ENOENT;
3424 	}
3425 
3426 	/* Need to make sure the object gets inactive eventually. */
3427 	ret = i915_gem_object_flush_active(obj);
3428 	if (ret)
3429 		goto out;
3430 
3431 	if (!obj->active)
3432 		goto out;
3433 
3434 	/* Do this after OLR check to make sure we make forward progress polling
3435 	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3436 	 */
3437 	if (args->timeout_ns == 0) {
3438 		ret = -ETIME;
3439 		goto out;
3440 	}
3441 
3442 	drm_gem_object_unreference(&obj->base);
3443 
3444 	for (i = 0; i < I915_NUM_ENGINES; i++) {
3445 		if (obj->last_read_req[i] == NULL)
3446 			continue;
3447 
3448 		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3449 	}
3450 
3451 	mutex_unlock(&dev->struct_mutex);
3452 
3453 	for (i = 0; i < n; i++) {
3454 		if (ret == 0)
3455 			ret = __i915_wait_request(req[i], true,
3456 						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3457 						  to_rps_client(file));
3458 		i915_gem_request_unreference(req[i]);
3459 	}
3460 	return ret;
3461 
3462 out:
3463 	drm_gem_object_unreference(&obj->base);
3464 	mutex_unlock(&dev->struct_mutex);
3465 	return ret;
3466 }
3467 
3468 static int
3469 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3470 		       struct intel_engine_cs *to,
3471 		       struct drm_i915_gem_request *from_req,
3472 		       struct drm_i915_gem_request **to_req)
3473 {
3474 	struct intel_engine_cs *from;
3475 	int ret;
3476 
3477 	from = i915_gem_request_get_engine(from_req);
3478 	if (to == from)
3479 		return 0;
3480 
3481 	if (i915_gem_request_completed(from_req))
3482 		return 0;
3483 
3484 	if (!i915_semaphore_is_enabled(to_i915(obj->base.dev))) {
3485 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3486 		ret = __i915_wait_request(from_req,
3487 					  i915->mm.interruptible,
3488 					  NULL,
3489 					  &i915->rps.semaphores);
3490 		if (ret)
3491 			return ret;
3492 
3493 		i915_gem_object_retire_request(obj, from_req);
3494 	} else {
3495 		int idx = intel_ring_sync_index(from, to);
3496 		u32 seqno = i915_gem_request_get_seqno(from_req);
3497 
3498 		WARN_ON(!to_req);
3499 
3500 		if (seqno <= from->semaphore.sync_seqno[idx])
3501 			return 0;
3502 
3503 		if (*to_req == NULL) {
3504 			struct drm_i915_gem_request *req;
3505 
3506 			req = i915_gem_request_alloc(to, NULL);
3507 			if (IS_ERR(req))
3508 				return PTR_ERR(req);
3509 
3510 			*to_req = req;
3511 		}
3512 
3513 		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3514 		ret = to->semaphore.sync_to(*to_req, from, seqno);
3515 		if (ret)
3516 			return ret;
3517 
3518 		/* We use last_read_req because sync_to()
3519 		 * might have just caused seqno wrap under
3520 		 * the radar.
3521 		 */
3522 		from->semaphore.sync_seqno[idx] =
3523 			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3524 	}
3525 
3526 	return 0;
3527 }
3528 
3529 /**
3530  * i915_gem_object_sync - sync an object to a ring.
3531  *
3532  * @obj: object which may be in use on another ring.
3533  * @to: ring we wish to use the object on. May be NULL.
3534  * @to_req: request we wish to use the object for. See below.
3535  *          This will be allocated and returned if a request is
3536  *          required but not passed in.
3537  *
3538  * This code is meant to abstract object synchronization with the GPU.
3539  * Calling with NULL implies synchronizing the object with the CPU
3540  * rather than a particular GPU ring. Conceptually we serialise writes
3541  * between engines inside the GPU. We only allow one engine to write
3542  * into a buffer at any time, but multiple readers. To ensure each has
3543  * a coherent view of memory, we must:
3544  *
3545  * - If there is an outstanding write request to the object, the new
3546  *   request must wait for it to complete (either CPU or in hw, requests
3547  *   on the same ring will be naturally ordered).
3548  *
3549  * - If we are a write request (pending_write_domain is set), the new
3550  *   request must wait for outstanding read requests to complete.
3551  *
3552  * For CPU synchronisation (NULL to) no request is required. For syncing with
3553  * rings to_req must be non-NULL. However, a request does not have to be
3554  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3555  * request will be allocated automatically and returned through *to_req. Note
3556  * that it is not guaranteed that commands will be emitted (because the system
3557  * might already be idle). Hence there is no need to create a request that
3558  * might never have any work submitted. Note further that if a request is
3559  * returned in *to_req, it is the responsibility of the caller to submit
3560  * that request (after potentially adding more work to it).
3561  *
3562  * Returns 0 if successful, else propagates up the lower layer error.
3563  */
3564 int
3565 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3566 		     struct intel_engine_cs *to,
3567 		     struct drm_i915_gem_request **to_req)
3568 {
3569 	const bool readonly = obj->base.pending_write_domain == 0;
3570 	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3571 	int ret, i, n;
3572 
3573 	if (!obj->active)
3574 		return 0;
3575 
3576 	if (to == NULL)
3577 		return i915_gem_object_wait_rendering(obj, readonly);
3578 
3579 	n = 0;
3580 	if (readonly) {
3581 		if (obj->last_write_req)
3582 			req[n++] = obj->last_write_req;
3583 	} else {
3584 		for (i = 0; i < I915_NUM_ENGINES; i++)
3585 			if (obj->last_read_req[i])
3586 				req[n++] = obj->last_read_req[i];
3587 	}
3588 	for (i = 0; i < n; i++) {
3589 		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3590 		if (ret)
3591 			return ret;
3592 	}
3593 
3594 	return 0;
3595 }
3596 
3597 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3598 {
3599 	u32 old_write_domain, old_read_domains;
3600 
3601 	/* Force a pagefault for domain tracking on next user access */
3602 	i915_gem_release_mmap(obj);
3603 
3604 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3605 		return;
3606 
3607 	old_read_domains = obj->base.read_domains;
3608 	old_write_domain = obj->base.write_domain;
3609 
3610 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3611 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3612 
3613 	trace_i915_gem_object_change_domain(obj,
3614 					    old_read_domains,
3615 					    old_write_domain);
3616 }
3617 
3618 static void __i915_vma_iounmap(struct i915_vma *vma)
3619 {
3620 	GEM_BUG_ON(vma->pin_count);
3621 
3622 	if (vma->iomap == NULL)
3623 		return;
3624 
3625 	io_mapping_unmap(vma->iomap);
3626 	vma->iomap = NULL;
3627 }
3628 
3629 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3630 {
3631 	struct drm_i915_gem_object *obj = vma->obj;
3632 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3633 	int ret;
3634 
3635 	if (list_empty(&vma->obj_link))
3636 		return 0;
3637 
3638 	if (!drm_mm_node_allocated(&vma->node)) {
3639 		i915_gem_vma_destroy(vma);
3640 		return 0;
3641 	}
3642 
3643 	if (vma->pin_count)
3644 		return -EBUSY;
3645 
3646 	BUG_ON(obj->pages == NULL);
3647 
3648 	if (wait) {
3649 		ret = i915_gem_object_wait_rendering(obj, false);
3650 		if (ret)
3651 			return ret;
3652 	}
3653 
3654 	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3655 		i915_gem_object_finish_gtt(obj);
3656 
3657 		/* release the fence reg _after_ flushing */
3658 		ret = i915_gem_object_put_fence(obj);
3659 		if (ret)
3660 			return ret;
3661 
3662 		__i915_vma_iounmap(vma);
3663 	}
3664 
3665 	trace_i915_vma_unbind(vma);
3666 
3667 	vma->vm->unbind_vma(vma);
3668 	vma->bound = 0;
3669 
3670 	list_del_init(&vma->vm_link);
3671 	if (vma->is_ggtt) {
3672 		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3673 			obj->map_and_fenceable = false;
3674 		} else if (vma->ggtt_view.pages) {
3675 			sg_free_table(vma->ggtt_view.pages);
3676 			kfree(vma->ggtt_view.pages);
3677 		}
3678 		vma->ggtt_view.pages = NULL;
3679 	}
3680 
3681 	drm_mm_remove_node(&vma->node);
3682 	i915_gem_vma_destroy(vma);
3683 
3684 	/* Since the unbound list is global, only move to that list if
3685 	 * no more VMAs exist. */
3686 	if (list_empty(&obj->vma_list))
3687 		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3688 
3689 	/* And finally now the object is completely decoupled from this vma,
3690 	 * we can drop its hold on the backing storage and allow it to be
3691 	 * reaped by the shrinker.
3692 	 */
3693 	i915_gem_object_unpin_pages(obj);
3694 
3695 	return 0;
3696 }
3697 
3698 int i915_vma_unbind(struct i915_vma *vma)
3699 {
3700 	return __i915_vma_unbind(vma, true);
3701 }
3702 
3703 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3704 {
3705 	return __i915_vma_unbind(vma, false);
3706 }
3707 
3708 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv)
3709 {
3710 	struct intel_engine_cs *engine;
3711 	int ret;
3712 
3713 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3714 
3715 	for_each_engine(engine, dev_priv) {
3716 		if (engine->last_context == NULL)
3717 			continue;
3718 
3719 		ret = intel_engine_idle(engine);
3720 		if (ret)
3721 			return ret;
3722 	}
3723 
3724 	WARN_ON(i915_verify_lists(dev));
3725 	return 0;
3726 }
3727 
3728 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3729 				     unsigned long cache_level)
3730 {
3731 	struct drm_mm_node *gtt_space = &vma->node;
3732 	struct drm_mm_node *other;
3733 
3734 	/*
3735 	 * On some machines we have to be careful when putting differing types
3736 	 * of snoopable memory together to avoid the prefetcher crossing memory
3737 	 * domains and dying. During vm initialisation, we decide whether or not
3738 	 * these constraints apply and set the drm_mm.color_adjust
3739 	 * appropriately.
3740 	 */
3741 	if (vma->vm->mm.color_adjust == NULL)
3742 		return true;
3743 
3744 	if (!drm_mm_node_allocated(gtt_space))
3745 		return true;
3746 
3747 	if (list_empty(&gtt_space->node_list))
3748 		return true;
3749 
3750 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3751 	if (other->allocated && !other->hole_follows && other->color != cache_level)
3752 		return false;
3753 
3754 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3755 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3756 		return false;
3757 
3758 	return true;
3759 }
3760 
3761 /**
3762  * Finds free space in the GTT aperture and binds the object or a view of it
3763  * there.
3764  * @obj: object to bind
3765  * @vm: address space to bind into
3766  * @ggtt_view: global gtt view if applicable
3767  * @alignment: requested alignment
3768  * @flags: mask of PIN_* flags to use
3769  */
3770 static struct i915_vma *
3771 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3772 			   struct i915_address_space *vm,
3773 			   const struct i915_ggtt_view *ggtt_view,
3774 			   unsigned alignment,
3775 			   uint64_t flags)
3776 {
3777 	struct drm_device *dev = obj->base.dev;
3778 	struct drm_i915_private *dev_priv = to_i915(dev);
3779 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3780 	u32 fence_alignment, unfenced_alignment;
3781 	u32 search_flag, alloc_flag;
3782 	u64 start, end;
3783 	u64 size, fence_size;
3784 	struct i915_vma *vma;
3785 	int ret;
3786 
3787 	if (i915_is_ggtt(vm)) {
3788 		u32 view_size;
3789 
3790 		if (WARN_ON(!ggtt_view))
3791 			return ERR_PTR(-EINVAL);
3792 
3793 		view_size = i915_ggtt_view_size(obj, ggtt_view);
3794 
3795 		fence_size = i915_gem_get_gtt_size(dev,
3796 						   view_size,
3797 						   obj->tiling_mode);
3798 		fence_alignment = i915_gem_get_gtt_alignment(dev,
3799 							     view_size,
3800 							     obj->tiling_mode,
3801 							     true);
3802 		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3803 								view_size,
3804 								obj->tiling_mode,
3805 								false);
3806 		size = flags & PIN_MAPPABLE ? fence_size : view_size;
3807 	} else {
3808 		fence_size = i915_gem_get_gtt_size(dev,
3809 						   obj->base.size,
3810 						   obj->tiling_mode);
3811 		fence_alignment = i915_gem_get_gtt_alignment(dev,
3812 							     obj->base.size,
3813 							     obj->tiling_mode,
3814 							     true);
3815 		unfenced_alignment =
3816 			i915_gem_get_gtt_alignment(dev,
3817 						   obj->base.size,
3818 						   obj->tiling_mode,
3819 						   false);
3820 		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3821 	}
3822 
3823 	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3824 	end = vm->total;
3825 	if (flags & PIN_MAPPABLE)
3826 		end = min_t(u64, end, ggtt->mappable_end);
3827 	if (flags & PIN_ZONE_4G)
3828 		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3829 
3830 	if (alignment == 0)
3831 		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3832 						unfenced_alignment;
3833 	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3834 		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3835 			  ggtt_view ? ggtt_view->type : 0,
3836 			  alignment);
3837 		return ERR_PTR(-EINVAL);
3838 	}
3839 
3840 	/* If binding the object/GGTT view requires more space than the entire
3841 	 * aperture has, reject it early before evicting everything in a vain
3842 	 * attempt to find space.
3843 	 */
3844 	if (size > end) {
3845 		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3846 			  ggtt_view ? ggtt_view->type : 0,
3847 			  size,
3848 			  flags & PIN_MAPPABLE ? "mappable" : "total",
3849 			  end);
3850 		return ERR_PTR(-E2BIG);
3851 	}
3852 
3853 	ret = i915_gem_object_get_pages(obj);
3854 	if (ret)
3855 		return ERR_PTR(ret);
3856 
3857 	i915_gem_object_pin_pages(obj);
3858 
3859 	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3860 			  i915_gem_obj_lookup_or_create_vma(obj, vm);
3861 
3862 	if (IS_ERR(vma))
3863 		goto err_unpin;
3864 
3865 	if (flags & PIN_OFFSET_FIXED) {
3866 		uint64_t offset = flags & PIN_OFFSET_MASK;
3867 
3868 		if (offset & (alignment - 1) || offset + size > end) {
3869 			ret = -EINVAL;
3870 			goto err_free_vma;
3871 		}
3872 		vma->node.start = offset;
3873 		vma->node.size = size;
3874 		vma->node.color = obj->cache_level;
3875 		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3876 		if (ret) {
3877 			ret = i915_gem_evict_for_vma(vma);
3878 			if (ret == 0)
3879 				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3880 		}
3881 		if (ret)
3882 			goto err_free_vma;
3883 	} else {
3884 		if (flags & PIN_HIGH) {
3885 			search_flag = DRM_MM_SEARCH_BELOW;
3886 			alloc_flag = DRM_MM_CREATE_TOP;
3887 		} else {
3888 			search_flag = DRM_MM_SEARCH_DEFAULT;
3889 			alloc_flag = DRM_MM_CREATE_DEFAULT;
3890 		}
3891 
3892 search_free:
3893 		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3894 							  size, alignment,
3895 							  obj->cache_level,
3896 							  start, end,
3897 							  search_flag,
3898 							  alloc_flag);
3899 		if (ret) {
3900 			ret = i915_gem_evict_something(dev, vm, size, alignment,
3901 						       obj->cache_level,
3902 						       start, end,
3903 						       flags);
3904 			if (ret == 0)
3905 				goto search_free;
3906 
3907 			goto err_free_vma;
3908 		}
3909 	}
3910 	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3911 		ret = -EINVAL;
3912 		goto err_remove_node;
3913 	}
3914 
3915 	trace_i915_vma_bind(vma, flags);
3916 	ret = i915_vma_bind(vma, obj->cache_level, flags);
3917 	if (ret)
3918 		goto err_remove_node;
3919 
3920 	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3921 	list_add_tail(&vma->vm_link, &vm->inactive_list);
3922 
3923 	return vma;
3924 
3925 err_remove_node:
3926 	drm_mm_remove_node(&vma->node);
3927 err_free_vma:
3928 	i915_gem_vma_destroy(vma);
3929 	vma = ERR_PTR(ret);
3930 err_unpin:
3931 	i915_gem_object_unpin_pages(obj);
3932 	return vma;
3933 }
3934 
3935 bool
3936 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3937 			bool force)
3938 {
3939 	/* If we don't have a page list set up, then we're not pinned
3940 	 * to GPU, and we can ignore the cache flush because it'll happen
3941 	 * again at bind time.
3942 	 */
3943 	if (obj->pages == NULL)
3944 		return false;
3945 
3946 	/*
3947 	 * Stolen memory is always coherent with the GPU as it is explicitly
3948 	 * marked as wc by the system, or the system is cache-coherent.
3949 	 */
3950 	if (obj->stolen || obj->phys_handle)
3951 		return false;
3952 
3953 	/* If the GPU is snooping the contents of the CPU cache,
3954 	 * we do not need to manually clear the CPU cache lines.  However,
3955 	 * the caches are only snooped when the render cache is
3956 	 * flushed/invalidated.  As we always have to emit invalidations
3957 	 * and flushes when moving into and out of the RENDER domain, correct
3958 	 * snooping behaviour occurs naturally as the result of our domain
3959 	 * tracking.
3960 	 */
3961 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3962 		obj->cache_dirty = true;
3963 		return false;
3964 	}
3965 
3966 	trace_i915_gem_object_clflush(obj);
3967 	drm_clflush_sg(obj->pages);
3968 	obj->cache_dirty = false;
3969 
3970 	return true;
3971 }
3972 
3973 /** Flushes the GTT write domain for the object if it's dirty. */
3974 static void
3975 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3976 {
3977 	uint32_t old_write_domain;
3978 
3979 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3980 		return;
3981 
3982 	/* No actual flushing is required for the GTT write domain.  Writes
3983 	 * to it immediately go to main memory as far as we know, so there's
3984 	 * no chipset flush.  It also doesn't land in render cache.
3985 	 *
3986 	 * However, we do have to enforce the order so that all writes through
3987 	 * the GTT land before any writes to the device, such as updates to
3988 	 * the GATT itself.
3989 	 */
3990 	wmb();
3991 
3992 	old_write_domain = obj->base.write_domain;
3993 	obj->base.write_domain = 0;
3994 
3995 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3996 
3997 	trace_i915_gem_object_change_domain(obj,
3998 					    obj->base.read_domains,
3999 					    old_write_domain);
4000 }
4001 
4002 /** Flushes the CPU write domain for the object if it's dirty. */
4003 static void
4004 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
4005 {
4006 	uint32_t old_write_domain;
4007 
4008 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
4009 		return;
4010 
4011 	if (i915_gem_clflush_object(obj, obj->pin_display))
4012 		i915_gem_chipset_flush(to_i915(obj->base.dev));
4013 
4014 	old_write_domain = obj->base.write_domain;
4015 	obj->base.write_domain = 0;
4016 
4017 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
4018 
4019 	trace_i915_gem_object_change_domain(obj,
4020 					    obj->base.read_domains,
4021 					    old_write_domain);
4022 }
4023 
4024 /**
4025  * Moves a single object to the GTT read, and possibly write domain.
4026  * @obj: object to act on
4027  * @write: ask for write access or read only
4028  *
4029  * This function returns when the move is complete, including waiting on
4030  * flushes to occur.
4031  */
4032 int
4033 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
4034 {
4035 	struct drm_device *dev = obj->base.dev;
4036 	struct drm_i915_private *dev_priv = to_i915(dev);
4037 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
4038 	uint32_t old_write_domain, old_read_domains;
4039 	struct i915_vma *vma;
4040 	int ret;
4041 
4042 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
4043 		return 0;
4044 
4045 	ret = i915_gem_object_wait_rendering(obj, !write);
4046 	if (ret)
4047 		return ret;
4048 
4049 	/* Flush and acquire obj->pages so that we are coherent through
4050 	 * direct access in memory with previous cached writes through
4051 	 * shmemfs and that our cache domain tracking remains valid.
4052 	 * For example, if the obj->filp was moved to swap without us
4053 	 * being notified and releasing the pages, we would mistakenly
4054 	 * continue to assume that the obj remained out of the CPU cached
4055 	 * domain.
4056 	 */
4057 	ret = i915_gem_object_get_pages(obj);
4058 	if (ret)
4059 		return ret;
4060 
4061 	i915_gem_object_flush_cpu_write_domain(obj);
4062 
4063 	/* Serialise direct access to this object with the barriers for
4064 	 * coherent writes from the GPU, by effectively invalidating the
4065 	 * GTT domain upon first access.
4066 	 */
4067 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
4068 		mb();
4069 
4070 	old_write_domain = obj->base.write_domain;
4071 	old_read_domains = obj->base.read_domains;
4072 
4073 	/* It should now be out of any other write domains, and we can update
4074 	 * the domain values for our changes.
4075 	 */
4076 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4077 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4078 	if (write) {
4079 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
4080 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
4081 		obj->dirty = 1;
4082 	}
4083 
4084 	trace_i915_gem_object_change_domain(obj,
4085 					    old_read_domains,
4086 					    old_write_domain);
4087 
4088 	/* And bump the LRU for this access */
4089 	vma = i915_gem_obj_to_ggtt(obj);
4090 	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
4091 		list_move_tail(&vma->vm_link,
4092 			       &ggtt->base.inactive_list);
4093 
4094 	return 0;
4095 }
4096 
4097 /**
4098  * Changes the cache-level of an object across all VMA.
4099  * @obj: object to act on
4100  * @cache_level: new cache level to set for the object
4101  *
4102  * After this function returns, the object will be in the new cache-level
4103  * across all GTT and the contents of the backing storage will be coherent,
4104  * with respect to the new cache-level. In order to keep the backing storage
4105  * coherent for all users, we only allow a single cache level to be set
4106  * globally on the object and prevent it from being changed whilst the
4107  * hardware is reading from the object. That is if the object is currently
4108  * on the scanout it will be set to uncached (or equivalent display
4109  * cache coherency) and all non-MOCS GPU access will also be uncached so
4110  * that all direct access to the scanout remains coherent.
4111  */
4112 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4113 				    enum i915_cache_level cache_level)
4114 {
4115 	struct drm_device *dev = obj->base.dev;
4116 	struct i915_vma *vma, *next;
4117 	bool bound = false;
4118 	int ret = 0;
4119 
4120 	if (obj->cache_level == cache_level)
4121 		goto out;
4122 
4123 	/* Inspect the list of currently bound VMA and unbind any that would
4124 	 * be invalid given the new cache-level. This is principally to
4125 	 * catch the issue of the CS prefetch crossing page boundaries and
4126 	 * reading an invalid PTE on older architectures.
4127 	 */
4128 	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4129 		if (!drm_mm_node_allocated(&vma->node))
4130 			continue;
4131 
4132 		if (vma->pin_count) {
4133 			DRM_DEBUG("can not change the cache level of pinned objects\n");
4134 			return -EBUSY;
4135 		}
4136 
4137 		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4138 			ret = i915_vma_unbind(vma);
4139 			if (ret)
4140 				return ret;
4141 		} else
4142 			bound = true;
4143 	}
4144 
4145 	/* We can reuse the existing drm_mm nodes but need to change the
4146 	 * cache-level on the PTE. We could simply unbind them all and
4147 	 * rebind with the correct cache-level on next use. However since
4148 	 * we already have a valid slot, dma mapping, pages etc, we may as
4149 	 * rewrite the PTE in the belief that doing so tramples upon less
4150 	 * state and so involves less work.
4151 	 */
4152 	if (bound) {
4153 		/* Before we change the PTE, the GPU must not be accessing it.
4154 		 * If we wait upon the object, we know that all the bound
4155 		 * VMA are no longer active.
4156 		 */
4157 		ret = i915_gem_object_wait_rendering(obj, false);
4158 		if (ret)
4159 			return ret;
4160 
4161 		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
4162 			/* Access to snoopable pages through the GTT is
4163 			 * incoherent and on some machines causes a hard
4164 			 * lockup. Relinquish the CPU mmaping to force
4165 			 * userspace to refault in the pages and we can
4166 			 * then double check if the GTT mapping is still
4167 			 * valid for that pointer access.
4168 			 */
4169 			i915_gem_release_mmap(obj);
4170 
4171 			/* As we no longer need a fence for GTT access,
4172 			 * we can relinquish it now (and so prevent having
4173 			 * to steal a fence from someone else on the next
4174 			 * fence request). Note GPU activity would have
4175 			 * dropped the fence as all snoopable access is
4176 			 * supposed to be linear.
4177 			 */
4178 			ret = i915_gem_object_put_fence(obj);
4179 			if (ret)
4180 				return ret;
4181 		} else {
4182 			/* We either have incoherent backing store and
4183 			 * so no GTT access or the architecture is fully
4184 			 * coherent. In such cases, existing GTT mmaps
4185 			 * ignore the cache bit in the PTE and we can
4186 			 * rewrite it without confusing the GPU or having
4187 			 * to force userspace to fault back in its mmaps.
4188 			 */
4189 		}
4190 
4191 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
4192 			if (!drm_mm_node_allocated(&vma->node))
4193 				continue;
4194 
4195 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4196 			if (ret)
4197 				return ret;
4198 		}
4199 	}
4200 
4201 	list_for_each_entry(vma, &obj->vma_list, obj_link)
4202 		vma->node.color = cache_level;
4203 	obj->cache_level = cache_level;
4204 
4205 out:
4206 	/* Flush the dirty CPU caches to the backing storage so that the
4207 	 * object is now coherent at its new cache level (with respect
4208 	 * to the access domain).
4209 	 */
4210 	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
4211 		if (i915_gem_clflush_object(obj, true))
4212 			i915_gem_chipset_flush(to_i915(obj->base.dev));
4213 	}
4214 
4215 	return 0;
4216 }
4217 
4218 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4219 			       struct drm_file *file)
4220 {
4221 	struct drm_i915_gem_caching *args = data;
4222 	struct drm_i915_gem_object *obj;
4223 
4224 	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4225 	if (&obj->base == NULL)
4226 		return -ENOENT;
4227 
4228 	switch (obj->cache_level) {
4229 	case I915_CACHE_LLC:
4230 	case I915_CACHE_L3_LLC:
4231 		args->caching = I915_CACHING_CACHED;
4232 		break;
4233 
4234 	case I915_CACHE_WT:
4235 		args->caching = I915_CACHING_DISPLAY;
4236 		break;
4237 
4238 	default:
4239 		args->caching = I915_CACHING_NONE;
4240 		break;
4241 	}
4242 
4243 	drm_gem_object_unreference_unlocked(&obj->base);
4244 	return 0;
4245 }
4246 
4247 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4248 			       struct drm_file *file)
4249 {
4250 	struct drm_i915_private *dev_priv = to_i915(dev);
4251 	struct drm_i915_gem_caching *args = data;
4252 	struct drm_i915_gem_object *obj;
4253 	enum i915_cache_level level;
4254 	int ret;
4255 
4256 	switch (args->caching) {
4257 	case I915_CACHING_NONE:
4258 		level = I915_CACHE_NONE;
4259 		break;
4260 	case I915_CACHING_CACHED:
4261 		/*
4262 		 * Due to a HW issue on BXT A stepping, GPU stores via a
4263 		 * snooped mapping may leave stale data in a corresponding CPU
4264 		 * cacheline, whereas normally such cachelines would get
4265 		 * invalidated.
4266 		 */
4267 		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
4268 			return -ENODEV;
4269 
4270 		level = I915_CACHE_LLC;
4271 		break;
4272 	case I915_CACHING_DISPLAY:
4273 		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4274 		break;
4275 	default:
4276 		return -EINVAL;
4277 	}
4278 
4279 	intel_runtime_pm_get(dev_priv);
4280 
4281 	ret = i915_mutex_lock_interruptible(dev);
4282 	if (ret)
4283 		goto rpm_put;
4284 
4285 	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4286 	if (&obj->base == NULL) {
4287 		ret = -ENOENT;
4288 		goto unlock;
4289 	}
4290 
4291 	ret = i915_gem_object_set_cache_level(obj, level);
4292 
4293 	drm_gem_object_unreference(&obj->base);
4294 unlock:
4295 	mutex_unlock(&dev->struct_mutex);
4296 rpm_put:
4297 	intel_runtime_pm_put(dev_priv);
4298 
4299 	return ret;
4300 }
4301 
4302 /*
4303  * Prepare buffer for display plane (scanout, cursors, etc).
4304  * Can be called from an uninterruptible phase (modesetting) and allows
4305  * any flushes to be pipelined (for pageflips).
4306  */
4307 int
4308 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4309 				     u32 alignment,
4310 				     const struct i915_ggtt_view *view)
4311 {
4312 	u32 old_read_domains, old_write_domain;
4313 	int ret;
4314 
4315 	/* Mark the pin_display early so that we account for the
4316 	 * display coherency whilst setting up the cache domains.
4317 	 */
4318 	obj->pin_display++;
4319 
4320 	/* The display engine is not coherent with the LLC cache on gen6.  As
4321 	 * a result, we make sure that the pinning that is about to occur is
4322 	 * done with uncached PTEs. This is lowest common denominator for all
4323 	 * chipsets.
4324 	 *
4325 	 * However for gen6+, we could do better by using the GFDT bit instead
4326 	 * of uncaching, which would allow us to flush all the LLC-cached data
4327 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4328 	 */
4329 	ret = i915_gem_object_set_cache_level(obj,
4330 					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4331 	if (ret)
4332 		goto err_unpin_display;
4333 
4334 	/* As the user may map the buffer once pinned in the display plane
4335 	 * (e.g. libkms for the bootup splash), we have to ensure that we
4336 	 * always use map_and_fenceable for all scanout buffers.
4337 	 */
4338 	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4339 				       view->type == I915_GGTT_VIEW_NORMAL ?
4340 				       PIN_MAPPABLE : 0);
4341 	if (ret)
4342 		goto err_unpin_display;
4343 
4344 	i915_gem_object_flush_cpu_write_domain(obj);
4345 
4346 	old_write_domain = obj->base.write_domain;
4347 	old_read_domains = obj->base.read_domains;
4348 
4349 	/* It should now be out of any other write domains, and we can update
4350 	 * the domain values for our changes.
4351 	 */
4352 	obj->base.write_domain = 0;
4353 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4354 
4355 	trace_i915_gem_object_change_domain(obj,
4356 					    old_read_domains,
4357 					    old_write_domain);
4358 
4359 	return 0;
4360 
4361 err_unpin_display:
4362 	obj->pin_display--;
4363 	return ret;
4364 }
4365 
4366 void
4367 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4368 					 const struct i915_ggtt_view *view)
4369 {
4370 	if (WARN_ON(obj->pin_display == 0))
4371 		return;
4372 
4373 	i915_gem_object_ggtt_unpin_view(obj, view);
4374 
4375 	obj->pin_display--;
4376 }
4377 
4378 /**
4379  * Moves a single object to the CPU read, and possibly write domain.
4380  * @obj: object to act on
4381  * @write: requesting write or read-only access
4382  *
4383  * This function returns when the move is complete, including waiting on
4384  * flushes to occur.
4385  */
4386 int
4387 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4388 {
4389 	uint32_t old_write_domain, old_read_domains;
4390 	int ret;
4391 
4392 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4393 		return 0;
4394 
4395 	ret = i915_gem_object_wait_rendering(obj, !write);
4396 	if (ret)
4397 		return ret;
4398 
4399 	i915_gem_object_flush_gtt_write_domain(obj);
4400 
4401 	old_write_domain = obj->base.write_domain;
4402 	old_read_domains = obj->base.read_domains;
4403 
4404 	/* Flush the CPU cache if it's still invalid. */
4405 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4406 		i915_gem_clflush_object(obj, false);
4407 
4408 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4409 	}
4410 
4411 	/* It should now be out of any other write domains, and we can update
4412 	 * the domain values for our changes.
4413 	 */
4414 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4415 
4416 	/* If we're writing through the CPU, then the GPU read domains will
4417 	 * need to be invalidated at next use.
4418 	 */
4419 	if (write) {
4420 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4421 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4422 	}
4423 
4424 	trace_i915_gem_object_change_domain(obj,
4425 					    old_read_domains,
4426 					    old_write_domain);
4427 
4428 	return 0;
4429 }
4430 
4431 /* Throttle our rendering by waiting until the ring has completed our requests
4432  * emitted over 20 msec ago.
4433  *
4434  * Note that if we were to use the current jiffies each time around the loop,
4435  * we wouldn't escape the function with any frames outstanding if the time to
4436  * render a frame was over 20ms.
4437  *
4438  * This should get us reasonable parallelism between CPU and GPU but also
4439  * relatively low latency when blocking on a particular request to finish.
4440  */
4441 static int
4442 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4443 {
4444 	struct drm_i915_private *dev_priv = to_i915(dev);
4445 	struct drm_i915_file_private *file_priv = file->driver_priv;
4446 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4447 	struct drm_i915_gem_request *request, *target = NULL;
4448 	int ret;
4449 
4450 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4451 	if (ret)
4452 		return ret;
4453 
4454 	/* ABI: return -EIO if already wedged */
4455 	if (i915_terminally_wedged(&dev_priv->gpu_error))
4456 		return -EIO;
4457 
4458 	spin_lock(&file_priv->mm.lock);
4459 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4460 		if (time_after_eq(request->emitted_jiffies, recent_enough))
4461 			break;
4462 
4463 		/*
4464 		 * Note that the request might not have been submitted yet.
4465 		 * In which case emitted_jiffies will be zero.
4466 		 */
4467 		if (!request->emitted_jiffies)
4468 			continue;
4469 
4470 		target = request;
4471 	}
4472 	if (target)
4473 		i915_gem_request_reference(target);
4474 	spin_unlock(&file_priv->mm.lock);
4475 
4476 	if (target == NULL)
4477 		return 0;
4478 
4479 	ret = __i915_wait_request(target, true, NULL, NULL);
4480 	i915_gem_request_unreference(target);
4481 
4482 	return ret;
4483 }
4484 
4485 static bool
4486 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4487 {
4488 	struct drm_i915_gem_object *obj = vma->obj;
4489 
4490 	if (alignment &&
4491 	    vma->node.start & (alignment - 1))
4492 		return true;
4493 
4494 	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4495 		return true;
4496 
4497 	if (flags & PIN_OFFSET_BIAS &&
4498 	    vma->node.start < (flags & PIN_OFFSET_MASK))
4499 		return true;
4500 
4501 	if (flags & PIN_OFFSET_FIXED &&
4502 	    vma->node.start != (flags & PIN_OFFSET_MASK))
4503 		return true;
4504 
4505 	return false;
4506 }
4507 
4508 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4509 {
4510 	struct drm_i915_gem_object *obj = vma->obj;
4511 	bool mappable, fenceable;
4512 	u32 fence_size, fence_alignment;
4513 
4514 	fence_size = i915_gem_get_gtt_size(obj->base.dev,
4515 					   obj->base.size,
4516 					   obj->tiling_mode);
4517 	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4518 						     obj->base.size,
4519 						     obj->tiling_mode,
4520 						     true);
4521 
4522 	fenceable = (vma->node.size == fence_size &&
4523 		     (vma->node.start & (fence_alignment - 1)) == 0);
4524 
4525 	mappable = (vma->node.start + fence_size <=
4526 		    to_i915(obj->base.dev)->ggtt.mappable_end);
4527 
4528 	obj->map_and_fenceable = mappable && fenceable;
4529 }
4530 
4531 static int
4532 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4533 		       struct i915_address_space *vm,
4534 		       const struct i915_ggtt_view *ggtt_view,
4535 		       uint32_t alignment,
4536 		       uint64_t flags)
4537 {
4538 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4539 	struct i915_vma *vma;
4540 	unsigned bound;
4541 	int ret;
4542 
4543 	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4544 		return -ENODEV;
4545 
4546 	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4547 		return -EINVAL;
4548 
4549 	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4550 		return -EINVAL;
4551 
4552 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4553 		return -EINVAL;
4554 
4555 	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4556 			  i915_gem_obj_to_vma(obj, vm);
4557 
4558 	if (vma) {
4559 		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4560 			return -EBUSY;
4561 
4562 		if (i915_vma_misplaced(vma, alignment, flags)) {
4563 			WARN(vma->pin_count,
4564 			     "bo is already pinned in %s with incorrect alignment:"
4565 			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4566 			     " obj->map_and_fenceable=%d\n",
4567 			     ggtt_view ? "ggtt" : "ppgtt",
4568 			     upper_32_bits(vma->node.start),
4569 			     lower_32_bits(vma->node.start),
4570 			     alignment,
4571 			     !!(flags & PIN_MAPPABLE),
4572 			     obj->map_and_fenceable);
4573 			ret = i915_vma_unbind(vma);
4574 			if (ret)
4575 				return ret;
4576 
4577 			vma = NULL;
4578 		}
4579 	}
4580 
4581 	bound = vma ? vma->bound : 0;
4582 	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4583 		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4584 						 flags);
4585 		if (IS_ERR(vma))
4586 			return PTR_ERR(vma);
4587 	} else {
4588 		ret = i915_vma_bind(vma, obj->cache_level, flags);
4589 		if (ret)
4590 			return ret;
4591 	}
4592 
4593 	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4594 	    (bound ^ vma->bound) & GLOBAL_BIND) {
4595 		__i915_vma_set_map_and_fenceable(vma);
4596 		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4597 	}
4598 
4599 	vma->pin_count++;
4600 	return 0;
4601 }
4602 
4603 int
4604 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4605 		    struct i915_address_space *vm,
4606 		    uint32_t alignment,
4607 		    uint64_t flags)
4608 {
4609 	return i915_gem_object_do_pin(obj, vm,
4610 				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4611 				      alignment, flags);
4612 }
4613 
4614 int
4615 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4616 			 const struct i915_ggtt_view *view,
4617 			 uint32_t alignment,
4618 			 uint64_t flags)
4619 {
4620 	struct drm_device *dev = obj->base.dev;
4621 	struct drm_i915_private *dev_priv = to_i915(dev);
4622 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
4623 
4624 	BUG_ON(!view);
4625 
4626 	return i915_gem_object_do_pin(obj, &ggtt->base, view,
4627 				      alignment, flags | PIN_GLOBAL);
4628 }
4629 
4630 void
4631 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4632 				const struct i915_ggtt_view *view)
4633 {
4634 	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4635 
4636 	WARN_ON(vma->pin_count == 0);
4637 	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4638 
4639 	--vma->pin_count;
4640 }
4641 
4642 int
4643 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4644 		    struct drm_file *file)
4645 {
4646 	struct drm_i915_gem_busy *args = data;
4647 	struct drm_i915_gem_object *obj;
4648 	int ret;
4649 
4650 	ret = i915_mutex_lock_interruptible(dev);
4651 	if (ret)
4652 		return ret;
4653 
4654 	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4655 	if (&obj->base == NULL) {
4656 		ret = -ENOENT;
4657 		goto unlock;
4658 	}
4659 
4660 	/* Count all active objects as busy, even if they are currently not used
4661 	 * by the gpu. Users of this interface expect objects to eventually
4662 	 * become non-busy without any further actions, therefore emit any
4663 	 * necessary flushes here.
4664 	 */
4665 	ret = i915_gem_object_flush_active(obj);
4666 	if (ret)
4667 		goto unref;
4668 
4669 	args->busy = 0;
4670 	if (obj->active) {
4671 		int i;
4672 
4673 		for (i = 0; i < I915_NUM_ENGINES; i++) {
4674 			struct drm_i915_gem_request *req;
4675 
4676 			req = obj->last_read_req[i];
4677 			if (req)
4678 				args->busy |= 1 << (16 + req->engine->exec_id);
4679 		}
4680 		if (obj->last_write_req)
4681 			args->busy |= obj->last_write_req->engine->exec_id;
4682 	}
4683 
4684 unref:
4685 	drm_gem_object_unreference(&obj->base);
4686 unlock:
4687 	mutex_unlock(&dev->struct_mutex);
4688 	return ret;
4689 }
4690 
4691 int
4692 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4693 			struct drm_file *file_priv)
4694 {
4695 	return i915_gem_ring_throttle(dev, file_priv);
4696 }
4697 
4698 int
4699 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4700 		       struct drm_file *file_priv)
4701 {
4702 	struct drm_i915_private *dev_priv = to_i915(dev);
4703 	struct drm_i915_gem_madvise *args = data;
4704 	struct drm_i915_gem_object *obj;
4705 	int ret;
4706 
4707 	switch (args->madv) {
4708 	case I915_MADV_DONTNEED:
4709 	case I915_MADV_WILLNEED:
4710 	    break;
4711 	default:
4712 	    return -EINVAL;
4713 	}
4714 
4715 	ret = i915_mutex_lock_interruptible(dev);
4716 	if (ret)
4717 		return ret;
4718 
4719 	obj = to_intel_bo(drm_gem_object_lookup(file_priv, args->handle));
4720 	if (&obj->base == NULL) {
4721 		ret = -ENOENT;
4722 		goto unlock;
4723 	}
4724 
4725 	if (i915_gem_obj_is_pinned(obj)) {
4726 		ret = -EINVAL;
4727 		goto out;
4728 	}
4729 
4730 	if (obj->pages &&
4731 	    obj->tiling_mode != I915_TILING_NONE &&
4732 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4733 		if (obj->madv == I915_MADV_WILLNEED)
4734 			i915_gem_object_unpin_pages(obj);
4735 		if (args->madv == I915_MADV_WILLNEED)
4736 			i915_gem_object_pin_pages(obj);
4737 	}
4738 
4739 	if (obj->madv != __I915_MADV_PURGED)
4740 		obj->madv = args->madv;
4741 
4742 	/* if the object is no longer attached, discard its backing storage */
4743 	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4744 		i915_gem_object_truncate(obj);
4745 
4746 	args->retained = obj->madv != __I915_MADV_PURGED;
4747 
4748 out:
4749 	drm_gem_object_unreference(&obj->base);
4750 unlock:
4751 	mutex_unlock(&dev->struct_mutex);
4752 	return ret;
4753 }
4754 
4755 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4756 			  const struct drm_i915_gem_object_ops *ops)
4757 {
4758 	int i;
4759 
4760 	INIT_LIST_HEAD(&obj->global_list);
4761 	for (i = 0; i < I915_NUM_ENGINES; i++)
4762 		INIT_LIST_HEAD(&obj->engine_list[i]);
4763 	INIT_LIST_HEAD(&obj->obj_exec_link);
4764 	INIT_LIST_HEAD(&obj->vma_list);
4765 	INIT_LIST_HEAD(&obj->batch_pool_link);
4766 
4767 	obj->ops = ops;
4768 
4769 	obj->fence_reg = I915_FENCE_REG_NONE;
4770 	obj->madv = I915_MADV_WILLNEED;
4771 
4772 	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4773 }
4774 
4775 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4776 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4777 	.get_pages = i915_gem_object_get_pages_gtt,
4778 	.put_pages = i915_gem_object_put_pages_gtt,
4779 };
4780 
4781 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4782 						  size_t size)
4783 {
4784 	struct drm_i915_gem_object *obj;
4785 	struct address_space *mapping;
4786 	gfp_t mask;
4787 	int ret;
4788 
4789 	obj = i915_gem_object_alloc(dev);
4790 	if (obj == NULL)
4791 		return ERR_PTR(-ENOMEM);
4792 
4793 	ret = drm_gem_object_init(dev, &obj->base, size);
4794 	if (ret)
4795 		goto fail;
4796 
4797 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4798 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4799 		/* 965gm cannot relocate objects above 4GiB. */
4800 		mask &= ~__GFP_HIGHMEM;
4801 		mask |= __GFP_DMA32;
4802 	}
4803 
4804 	mapping = obj->base.filp->f_mapping;
4805 	mapping_set_gfp_mask(mapping, mask);
4806 
4807 	i915_gem_object_init(obj, &i915_gem_object_ops);
4808 
4809 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4810 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4811 
4812 	if (HAS_LLC(dev)) {
4813 		/* On some devices, we can have the GPU use the LLC (the CPU
4814 		 * cache) for about a 10% performance improvement
4815 		 * compared to uncached.  Graphics requests other than
4816 		 * display scanout are coherent with the CPU in
4817 		 * accessing this cache.  This means in this mode we
4818 		 * don't need to clflush on the CPU side, and on the
4819 		 * GPU side we only need to flush internal caches to
4820 		 * get data visible to the CPU.
4821 		 *
4822 		 * However, we maintain the display planes as UC, and so
4823 		 * need to rebind when first used as such.
4824 		 */
4825 		obj->cache_level = I915_CACHE_LLC;
4826 	} else
4827 		obj->cache_level = I915_CACHE_NONE;
4828 
4829 	trace_i915_gem_object_create(obj);
4830 
4831 	return obj;
4832 
4833 fail:
4834 	i915_gem_object_free(obj);
4835 
4836 	return ERR_PTR(ret);
4837 }
4838 
4839 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4840 {
4841 	/* If we are the last user of the backing storage (be it shmemfs
4842 	 * pages or stolen etc), we know that the pages are going to be
4843 	 * immediately released. In this case, we can then skip copying
4844 	 * back the contents from the GPU.
4845 	 */
4846 
4847 	if (obj->madv != I915_MADV_WILLNEED)
4848 		return false;
4849 
4850 	if (obj->base.filp == NULL)
4851 		return true;
4852 
4853 	/* At first glance, this looks racy, but then again so would be
4854 	 * userspace racing mmap against close. However, the first external
4855 	 * reference to the filp can only be obtained through the
4856 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4857 	 * acquiring such a reference whilst we are in the middle of
4858 	 * freeing the object.
4859 	 */
4860 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4861 }
4862 
4863 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4864 {
4865 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4866 	struct drm_device *dev = obj->base.dev;
4867 	struct drm_i915_private *dev_priv = to_i915(dev);
4868 	struct i915_vma *vma, *next;
4869 
4870 	intel_runtime_pm_get(dev_priv);
4871 
4872 	trace_i915_gem_object_destroy(obj);
4873 
4874 	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4875 		int ret;
4876 
4877 		vma->pin_count = 0;
4878 		ret = i915_vma_unbind(vma);
4879 		if (WARN_ON(ret == -ERESTARTSYS)) {
4880 			bool was_interruptible;
4881 
4882 			was_interruptible = dev_priv->mm.interruptible;
4883 			dev_priv->mm.interruptible = false;
4884 
4885 			WARN_ON(i915_vma_unbind(vma));
4886 
4887 			dev_priv->mm.interruptible = was_interruptible;
4888 		}
4889 	}
4890 
4891 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4892 	 * before progressing. */
4893 	if (obj->stolen)
4894 		i915_gem_object_unpin_pages(obj);
4895 
4896 	WARN_ON(obj->frontbuffer_bits);
4897 
4898 	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4899 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4900 	    obj->tiling_mode != I915_TILING_NONE)
4901 		i915_gem_object_unpin_pages(obj);
4902 
4903 	if (WARN_ON(obj->pages_pin_count))
4904 		obj->pages_pin_count = 0;
4905 	if (discard_backing_storage(obj))
4906 		obj->madv = I915_MADV_DONTNEED;
4907 	i915_gem_object_put_pages(obj);
4908 	i915_gem_object_free_mmap_offset(obj);
4909 
4910 	BUG_ON(obj->pages);
4911 
4912 	if (obj->base.import_attach)
4913 		drm_prime_gem_destroy(&obj->base, NULL);
4914 
4915 	if (obj->ops->release)
4916 		obj->ops->release(obj);
4917 
4918 	drm_gem_object_release(&obj->base);
4919 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4920 
4921 	kfree(obj->bit_17);
4922 	i915_gem_object_free(obj);
4923 
4924 	intel_runtime_pm_put(dev_priv);
4925 }
4926 
4927 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4928 				     struct i915_address_space *vm)
4929 {
4930 	struct i915_vma *vma;
4931 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4932 		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4933 		    vma->vm == vm)
4934 			return vma;
4935 	}
4936 	return NULL;
4937 }
4938 
4939 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4940 					   const struct i915_ggtt_view *view)
4941 {
4942 	struct i915_vma *vma;
4943 
4944 	GEM_BUG_ON(!view);
4945 
4946 	list_for_each_entry(vma, &obj->vma_list, obj_link)
4947 		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4948 			return vma;
4949 	return NULL;
4950 }
4951 
4952 void i915_gem_vma_destroy(struct i915_vma *vma)
4953 {
4954 	WARN_ON(vma->node.allocated);
4955 
4956 	/* Keep the vma as a placeholder in the execbuffer reservation lists */
4957 	if (!list_empty(&vma->exec_list))
4958 		return;
4959 
4960 	if (!vma->is_ggtt)
4961 		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4962 
4963 	list_del(&vma->obj_link);
4964 
4965 	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4966 }
4967 
4968 static void
4969 i915_gem_stop_engines(struct drm_device *dev)
4970 {
4971 	struct drm_i915_private *dev_priv = to_i915(dev);
4972 	struct intel_engine_cs *engine;
4973 
4974 	for_each_engine(engine, dev_priv)
4975 		dev_priv->gt.stop_engine(engine);
4976 }
4977 
4978 int
4979 i915_gem_suspend(struct drm_device *dev)
4980 {
4981 	struct drm_i915_private *dev_priv = to_i915(dev);
4982 	int ret = 0;
4983 
4984 	mutex_lock(&dev->struct_mutex);
4985 	ret = i915_gem_wait_for_idle(dev_priv);
4986 	if (ret)
4987 		goto err;
4988 
4989 	i915_gem_retire_requests(dev_priv);
4990 
4991 	i915_gem_stop_engines(dev);
4992 	i915_gem_context_lost(dev_priv);
4993 	mutex_unlock(&dev->struct_mutex);
4994 
4995 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4996 	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4997 	flush_delayed_work(&dev_priv->gt.idle_work);
4998 
4999 	/* Assert that we sucessfully flushed all the work and
5000 	 * reset the GPU back to its idle, low power state.
5001 	 */
5002 	WARN_ON(dev_priv->gt.awake);
5003 
5004 	return 0;
5005 
5006 err:
5007 	mutex_unlock(&dev->struct_mutex);
5008 	return ret;
5009 }
5010 
5011 void i915_gem_init_swizzling(struct drm_device *dev)
5012 {
5013 	struct drm_i915_private *dev_priv = to_i915(dev);
5014 
5015 	if (INTEL_INFO(dev)->gen < 5 ||
5016 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5017 		return;
5018 
5019 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5020 				 DISP_TILE_SURFACE_SWIZZLING);
5021 
5022 	if (IS_GEN5(dev))
5023 		return;
5024 
5025 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5026 	if (IS_GEN6(dev))
5027 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5028 	else if (IS_GEN7(dev))
5029 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5030 	else if (IS_GEN8(dev))
5031 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5032 	else
5033 		BUG();
5034 }
5035 
5036 static void init_unused_ring(struct drm_device *dev, u32 base)
5037 {
5038 	struct drm_i915_private *dev_priv = to_i915(dev);
5039 
5040 	I915_WRITE(RING_CTL(base), 0);
5041 	I915_WRITE(RING_HEAD(base), 0);
5042 	I915_WRITE(RING_TAIL(base), 0);
5043 	I915_WRITE(RING_START(base), 0);
5044 }
5045 
5046 static void init_unused_rings(struct drm_device *dev)
5047 {
5048 	if (IS_I830(dev)) {
5049 		init_unused_ring(dev, PRB1_BASE);
5050 		init_unused_ring(dev, SRB0_BASE);
5051 		init_unused_ring(dev, SRB1_BASE);
5052 		init_unused_ring(dev, SRB2_BASE);
5053 		init_unused_ring(dev, SRB3_BASE);
5054 	} else if (IS_GEN2(dev)) {
5055 		init_unused_ring(dev, SRB0_BASE);
5056 		init_unused_ring(dev, SRB1_BASE);
5057 	} else if (IS_GEN3(dev)) {
5058 		init_unused_ring(dev, PRB1_BASE);
5059 		init_unused_ring(dev, PRB2_BASE);
5060 	}
5061 }
5062 
5063 int i915_gem_init_engines(struct drm_device *dev)
5064 {
5065 	struct drm_i915_private *dev_priv = to_i915(dev);
5066 	int ret;
5067 
5068 	ret = intel_init_render_ring_buffer(dev);
5069 	if (ret)
5070 		return ret;
5071 
5072 	if (HAS_BSD(dev)) {
5073 		ret = intel_init_bsd_ring_buffer(dev);
5074 		if (ret)
5075 			goto cleanup_render_ring;
5076 	}
5077 
5078 	if (HAS_BLT(dev)) {
5079 		ret = intel_init_blt_ring_buffer(dev);
5080 		if (ret)
5081 			goto cleanup_bsd_ring;
5082 	}
5083 
5084 	if (HAS_VEBOX(dev)) {
5085 		ret = intel_init_vebox_ring_buffer(dev);
5086 		if (ret)
5087 			goto cleanup_blt_ring;
5088 	}
5089 
5090 	if (HAS_BSD2(dev)) {
5091 		ret = intel_init_bsd2_ring_buffer(dev);
5092 		if (ret)
5093 			goto cleanup_vebox_ring;
5094 	}
5095 
5096 	return 0;
5097 
5098 cleanup_vebox_ring:
5099 	intel_cleanup_engine(&dev_priv->engine[VECS]);
5100 cleanup_blt_ring:
5101 	intel_cleanup_engine(&dev_priv->engine[BCS]);
5102 cleanup_bsd_ring:
5103 	intel_cleanup_engine(&dev_priv->engine[VCS]);
5104 cleanup_render_ring:
5105 	intel_cleanup_engine(&dev_priv->engine[RCS]);
5106 
5107 	return ret;
5108 }
5109 
5110 int
5111 i915_gem_init_hw(struct drm_device *dev)
5112 {
5113 	struct drm_i915_private *dev_priv = to_i915(dev);
5114 	struct intel_engine_cs *engine;
5115 	int ret;
5116 
5117 	/* Double layer security blanket, see i915_gem_init() */
5118 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5119 
5120 	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
5121 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5122 
5123 	if (IS_HASWELL(dev))
5124 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
5125 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5126 
5127 	if (HAS_PCH_NOP(dev)) {
5128 		if (IS_IVYBRIDGE(dev)) {
5129 			u32 temp = I915_READ(GEN7_MSG_CTL);
5130 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5131 			I915_WRITE(GEN7_MSG_CTL, temp);
5132 		} else if (INTEL_INFO(dev)->gen >= 7) {
5133 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5134 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5135 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5136 		}
5137 	}
5138 
5139 	i915_gem_init_swizzling(dev);
5140 
5141 	/*
5142 	 * At least 830 can leave some of the unused rings
5143 	 * "active" (ie. head != tail) after resume which
5144 	 * will prevent c3 entry. Makes sure all unused rings
5145 	 * are totally idle.
5146 	 */
5147 	init_unused_rings(dev);
5148 
5149 	BUG_ON(!dev_priv->kernel_context);
5150 
5151 	ret = i915_ppgtt_init_hw(dev);
5152 	if (ret) {
5153 		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
5154 		goto out;
5155 	}
5156 
5157 	/* Need to do basic initialisation of all rings first: */
5158 	for_each_engine(engine, dev_priv) {
5159 		ret = engine->init_hw(engine);
5160 		if (ret)
5161 			goto out;
5162 	}
5163 
5164 	intel_mocs_init_l3cc_table(dev);
5165 
5166 	/* We can't enable contexts until all firmware is loaded */
5167 	ret = intel_guc_setup(dev);
5168 	if (ret)
5169 		goto out;
5170 
5171 out:
5172 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5173 	return ret;
5174 }
5175 
5176 int i915_gem_init(struct drm_device *dev)
5177 {
5178 	struct drm_i915_private *dev_priv = to_i915(dev);
5179 	int ret;
5180 
5181 	mutex_lock(&dev->struct_mutex);
5182 
5183 	if (!i915.enable_execlists) {
5184 		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5185 		dev_priv->gt.init_engines = i915_gem_init_engines;
5186 		dev_priv->gt.cleanup_engine = intel_cleanup_engine;
5187 		dev_priv->gt.stop_engine = intel_stop_engine;
5188 	} else {
5189 		dev_priv->gt.execbuf_submit = intel_execlists_submission;
5190 		dev_priv->gt.init_engines = intel_logical_rings_init;
5191 		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5192 		dev_priv->gt.stop_engine = intel_logical_ring_stop;
5193 	}
5194 
5195 	/* This is just a security blanket to placate dragons.
5196 	 * On some systems, we very sporadically observe that the first TLBs
5197 	 * used by the CS may be stale, despite us poking the TLB reset. If
5198 	 * we hold the forcewake during initialisation these problems
5199 	 * just magically go away.
5200 	 */
5201 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5202 
5203 	i915_gem_init_userptr(dev_priv);
5204 	i915_gem_init_ggtt(dev);
5205 
5206 	ret = i915_gem_context_init(dev);
5207 	if (ret)
5208 		goto out_unlock;
5209 
5210 	ret = dev_priv->gt.init_engines(dev);
5211 	if (ret)
5212 		goto out_unlock;
5213 
5214 	ret = i915_gem_init_hw(dev);
5215 	if (ret == -EIO) {
5216 		/* Allow ring initialisation to fail by marking the GPU as
5217 		 * wedged. But we only want to do this where the GPU is angry,
5218 		 * for all other failure, such as an allocation failure, bail.
5219 		 */
5220 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5221 		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5222 		ret = 0;
5223 	}
5224 
5225 out_unlock:
5226 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5227 	mutex_unlock(&dev->struct_mutex);
5228 
5229 	return ret;
5230 }
5231 
5232 void
5233 i915_gem_cleanup_engines(struct drm_device *dev)
5234 {
5235 	struct drm_i915_private *dev_priv = to_i915(dev);
5236 	struct intel_engine_cs *engine;
5237 
5238 	for_each_engine(engine, dev_priv)
5239 		dev_priv->gt.cleanup_engine(engine);
5240 }
5241 
5242 static void
5243 init_engine_lists(struct intel_engine_cs *engine)
5244 {
5245 	INIT_LIST_HEAD(&engine->active_list);
5246 	INIT_LIST_HEAD(&engine->request_list);
5247 }
5248 
5249 void
5250 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5251 {
5252 	struct drm_device *dev = &dev_priv->drm;
5253 
5254 	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5255 	    !IS_CHERRYVIEW(dev_priv))
5256 		dev_priv->num_fence_regs = 32;
5257 	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
5258 		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
5259 		dev_priv->num_fence_regs = 16;
5260 	else
5261 		dev_priv->num_fence_regs = 8;
5262 
5263 	if (intel_vgpu_active(dev_priv))
5264 		dev_priv->num_fence_regs =
5265 				I915_READ(vgtif_reg(avail_rs.fence_num));
5266 
5267 	/* Initialize fence registers to zero */
5268 	i915_gem_restore_fences(dev);
5269 
5270 	i915_gem_detect_bit_6_swizzle(dev);
5271 }
5272 
5273 void
5274 i915_gem_load_init(struct drm_device *dev)
5275 {
5276 	struct drm_i915_private *dev_priv = to_i915(dev);
5277 	int i;
5278 
5279 	dev_priv->objects =
5280 		kmem_cache_create("i915_gem_object",
5281 				  sizeof(struct drm_i915_gem_object), 0,
5282 				  SLAB_HWCACHE_ALIGN,
5283 				  NULL);
5284 	dev_priv->vmas =
5285 		kmem_cache_create("i915_gem_vma",
5286 				  sizeof(struct i915_vma), 0,
5287 				  SLAB_HWCACHE_ALIGN,
5288 				  NULL);
5289 	dev_priv->requests =
5290 		kmem_cache_create("i915_gem_request",
5291 				  sizeof(struct drm_i915_gem_request), 0,
5292 				  SLAB_HWCACHE_ALIGN,
5293 				  NULL);
5294 
5295 	INIT_LIST_HEAD(&dev_priv->vm_list);
5296 	INIT_LIST_HEAD(&dev_priv->context_list);
5297 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5298 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5299 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5300 	for (i = 0; i < I915_NUM_ENGINES; i++)
5301 		init_engine_lists(&dev_priv->engine[i]);
5302 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5303 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5304 	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5305 			  i915_gem_retire_work_handler);
5306 	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5307 			  i915_gem_idle_work_handler);
5308 	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5309 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5310 
5311 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5312 
5313 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5314 
5315 	init_waitqueue_head(&dev_priv->pending_flip_queue);
5316 
5317 	dev_priv->mm.interruptible = true;
5318 
5319 	mutex_init(&dev_priv->fb_tracking.lock);
5320 }
5321 
5322 void i915_gem_load_cleanup(struct drm_device *dev)
5323 {
5324 	struct drm_i915_private *dev_priv = to_i915(dev);
5325 
5326 	kmem_cache_destroy(dev_priv->requests);
5327 	kmem_cache_destroy(dev_priv->vmas);
5328 	kmem_cache_destroy(dev_priv->objects);
5329 }
5330 
5331 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5332 {
5333 	struct drm_i915_gem_object *obj;
5334 
5335 	/* Called just before we write the hibernation image.
5336 	 *
5337 	 * We need to update the domain tracking to reflect that the CPU
5338 	 * will be accessing all the pages to create and restore from the
5339 	 * hibernation, and so upon restoration those pages will be in the
5340 	 * CPU domain.
5341 	 *
5342 	 * To make sure the hibernation image contains the latest state,
5343 	 * we update that state just before writing out the image.
5344 	 */
5345 
5346 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5347 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5348 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5349 	}
5350 
5351 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5352 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5353 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5354 	}
5355 
5356 	return 0;
5357 }
5358 
5359 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5360 {
5361 	struct drm_i915_file_private *file_priv = file->driver_priv;
5362 
5363 	/* Clean up our request list when the client is going away, so that
5364 	 * later retire_requests won't dereference our soon-to-be-gone
5365 	 * file_priv.
5366 	 */
5367 	spin_lock(&file_priv->mm.lock);
5368 	while (!list_empty(&file_priv->mm.request_list)) {
5369 		struct drm_i915_gem_request *request;
5370 
5371 		request = list_first_entry(&file_priv->mm.request_list,
5372 					   struct drm_i915_gem_request,
5373 					   client_list);
5374 		list_del(&request->client_list);
5375 		request->file_priv = NULL;
5376 	}
5377 	spin_unlock(&file_priv->mm.lock);
5378 
5379 	if (!list_empty(&file_priv->rps.link)) {
5380 		spin_lock(&to_i915(dev)->rps.client_lock);
5381 		list_del(&file_priv->rps.link);
5382 		spin_unlock(&to_i915(dev)->rps.client_lock);
5383 	}
5384 }
5385 
5386 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5387 {
5388 	struct drm_i915_file_private *file_priv;
5389 	int ret;
5390 
5391 	DRM_DEBUG_DRIVER("\n");
5392 
5393 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5394 	if (!file_priv)
5395 		return -ENOMEM;
5396 
5397 	file->driver_priv = file_priv;
5398 	file_priv->dev_priv = to_i915(dev);
5399 	file_priv->file = file;
5400 	INIT_LIST_HEAD(&file_priv->rps.link);
5401 
5402 	spin_lock_init(&file_priv->mm.lock);
5403 	INIT_LIST_HEAD(&file_priv->mm.request_list);
5404 
5405 	file_priv->bsd_ring = -1;
5406 
5407 	ret = i915_gem_context_open(dev, file);
5408 	if (ret)
5409 		kfree(file_priv);
5410 
5411 	return ret;
5412 }
5413 
5414 /**
5415  * i915_gem_track_fb - update frontbuffer tracking
5416  * @old: current GEM buffer for the frontbuffer slots
5417  * @new: new GEM buffer for the frontbuffer slots
5418  * @frontbuffer_bits: bitmask of frontbuffer slots
5419  *
5420  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5421  * from @old and setting them in @new. Both @old and @new can be NULL.
5422  */
5423 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5424 		       struct drm_i915_gem_object *new,
5425 		       unsigned frontbuffer_bits)
5426 {
5427 	if (old) {
5428 		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5429 		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5430 		old->frontbuffer_bits &= ~frontbuffer_bits;
5431 	}
5432 
5433 	if (new) {
5434 		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5435 		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5436 		new->frontbuffer_bits |= frontbuffer_bits;
5437 	}
5438 }
5439 
5440 /* All the new VM stuff */
5441 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5442 			struct i915_address_space *vm)
5443 {
5444 	struct drm_i915_private *dev_priv = to_i915(o->base.dev);
5445 	struct i915_vma *vma;
5446 
5447 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5448 
5449 	list_for_each_entry(vma, &o->vma_list, obj_link) {
5450 		if (vma->is_ggtt &&
5451 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5452 			continue;
5453 		if (vma->vm == vm)
5454 			return vma->node.start;
5455 	}
5456 
5457 	WARN(1, "%s vma for this object not found.\n",
5458 	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5459 	return -1;
5460 }
5461 
5462 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5463 				  const struct i915_ggtt_view *view)
5464 {
5465 	struct i915_vma *vma;
5466 
5467 	list_for_each_entry(vma, &o->vma_list, obj_link)
5468 		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
5469 			return vma->node.start;
5470 
5471 	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5472 	return -1;
5473 }
5474 
5475 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5476 			struct i915_address_space *vm)
5477 {
5478 	struct i915_vma *vma;
5479 
5480 	list_for_each_entry(vma, &o->vma_list, obj_link) {
5481 		if (vma->is_ggtt &&
5482 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5483 			continue;
5484 		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5485 			return true;
5486 	}
5487 
5488 	return false;
5489 }
5490 
5491 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5492 				  const struct i915_ggtt_view *view)
5493 {
5494 	struct i915_vma *vma;
5495 
5496 	list_for_each_entry(vma, &o->vma_list, obj_link)
5497 		if (vma->is_ggtt &&
5498 		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5499 		    drm_mm_node_allocated(&vma->node))
5500 			return true;
5501 
5502 	return false;
5503 }
5504 
5505 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5506 {
5507 	struct i915_vma *vma;
5508 
5509 	list_for_each_entry(vma, &o->vma_list, obj_link)
5510 		if (drm_mm_node_allocated(&vma->node))
5511 			return true;
5512 
5513 	return false;
5514 }
5515 
5516 unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
5517 {
5518 	struct i915_vma *vma;
5519 
5520 	GEM_BUG_ON(list_empty(&o->vma_list));
5521 
5522 	list_for_each_entry(vma, &o->vma_list, obj_link) {
5523 		if (vma->is_ggtt &&
5524 		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5525 			return vma->node.size;
5526 	}
5527 
5528 	return 0;
5529 }
5530 
5531 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5532 {
5533 	struct i915_vma *vma;
5534 	list_for_each_entry(vma, &obj->vma_list, obj_link)
5535 		if (vma->pin_count > 0)
5536 			return true;
5537 
5538 	return false;
5539 }
5540 
5541 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5542 struct page *
5543 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5544 {
5545 	struct page *page;
5546 
5547 	/* Only default objects have per-page dirty tracking */
5548 	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
5549 		return NULL;
5550 
5551 	page = i915_gem_object_get_page(obj, n);
5552 	set_page_dirty(page);
5553 	return page;
5554 }
5555 
5556 /* Allocate a new GEM object and fill it with the supplied data */
5557 struct drm_i915_gem_object *
5558 i915_gem_object_create_from_data(struct drm_device *dev,
5559 			         const void *data, size_t size)
5560 {
5561 	struct drm_i915_gem_object *obj;
5562 	struct sg_table *sg;
5563 	size_t bytes;
5564 	int ret;
5565 
5566 	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
5567 	if (IS_ERR(obj))
5568 		return obj;
5569 
5570 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
5571 	if (ret)
5572 		goto fail;
5573 
5574 	ret = i915_gem_object_get_pages(obj);
5575 	if (ret)
5576 		goto fail;
5577 
5578 	i915_gem_object_pin_pages(obj);
5579 	sg = obj->pages;
5580 	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5581 	obj->dirty = 1;		/* Backing store is now out of date */
5582 	i915_gem_object_unpin_pages(obj);
5583 
5584 	if (WARN_ON(bytes != size)) {
5585 		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5586 		ret = -EFAULT;
5587 		goto fail;
5588 	}
5589 
5590 	return obj;
5591 
5592 fail:
5593 	drm_gem_object_unreference(&obj->base);
5594 	return ERR_PTR(ret);
5595 }
5596