xref: /linux/drivers/gpu/drm/i915/i915_gem.c (revision 9dbbc3b9d09d6deba9f3b9e1d5b355032ed46a75)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drm_vma_manager.h>
29 #include <linux/dma-fence-array.h>
30 #include <linux/kthread.h>
31 #include <linux/dma-resv.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/slab.h>
34 #include <linux/stop_machine.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38 #include <linux/mman.h>
39 
40 #include "display/intel_display.h"
41 #include "display/intel_frontbuffer.h"
42 
43 #include "gem/i915_gem_clflush.h"
44 #include "gem/i915_gem_context.h"
45 #include "gem/i915_gem_ioctls.h"
46 #include "gem/i915_gem_mman.h"
47 #include "gem/i915_gem_region.h"
48 #include "gt/intel_engine_user.h"
49 #include "gt/intel_gt.h"
50 #include "gt/intel_gt_pm.h"
51 #include "gt/intel_workarounds.h"
52 
53 #include "i915_drv.h"
54 #include "i915_trace.h"
55 #include "i915_vgpu.h"
56 
57 #include "intel_pm.h"
58 
59 static int
60 insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
61 {
62 	int err;
63 
64 	err = mutex_lock_interruptible(&ggtt->vm.mutex);
65 	if (err)
66 		return err;
67 
68 	memset(node, 0, sizeof(*node));
69 	err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
70 					  size, 0, I915_COLOR_UNEVICTABLE,
71 					  0, ggtt->mappable_end,
72 					  DRM_MM_INSERT_LOW);
73 
74 	mutex_unlock(&ggtt->vm.mutex);
75 
76 	return err;
77 }
78 
79 static void
80 remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
81 {
82 	mutex_lock(&ggtt->vm.mutex);
83 	drm_mm_remove_node(node);
84 	mutex_unlock(&ggtt->vm.mutex);
85 }
86 
87 int
88 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
89 			    struct drm_file *file)
90 {
91 	struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
92 	struct drm_i915_gem_get_aperture *args = data;
93 	struct i915_vma *vma;
94 	u64 pinned;
95 
96 	if (mutex_lock_interruptible(&ggtt->vm.mutex))
97 		return -EINTR;
98 
99 	pinned = ggtt->vm.reserved;
100 	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
101 		if (i915_vma_is_pinned(vma))
102 			pinned += vma->node.size;
103 
104 	mutex_unlock(&ggtt->vm.mutex);
105 
106 	args->aper_size = ggtt->vm.total;
107 	args->aper_available_size = args->aper_size - pinned;
108 
109 	return 0;
110 }
111 
112 int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
113 			   unsigned long flags)
114 {
115 	struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
116 	LIST_HEAD(still_in_list);
117 	intel_wakeref_t wakeref;
118 	struct i915_vma *vma;
119 	int ret;
120 
121 	if (list_empty(&obj->vma.list))
122 		return 0;
123 
124 	/*
125 	 * As some machines use ACPI to handle runtime-resume callbacks, and
126 	 * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
127 	 * as they are required by the shrinker. Ergo, we wake the device up
128 	 * first just in case.
129 	 */
130 	wakeref = intel_runtime_pm_get(rpm);
131 
132 try_again:
133 	ret = 0;
134 	spin_lock(&obj->vma.lock);
135 	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
136 						       struct i915_vma,
137 						       obj_link))) {
138 		struct i915_address_space *vm = vma->vm;
139 
140 		list_move_tail(&vma->obj_link, &still_in_list);
141 		if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
142 			continue;
143 
144 		if (flags & I915_GEM_OBJECT_UNBIND_TEST) {
145 			ret = -EBUSY;
146 			break;
147 		}
148 
149 		ret = -EAGAIN;
150 		if (!i915_vm_tryopen(vm))
151 			break;
152 
153 		/* Prevent vma being freed by i915_vma_parked as we unbind */
154 		vma = __i915_vma_get(vma);
155 		spin_unlock(&obj->vma.lock);
156 
157 		if (vma) {
158 			ret = -EBUSY;
159 			if (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
160 			    !i915_vma_is_active(vma)) {
161 				if (flags & I915_GEM_OBJECT_UNBIND_VM_TRYLOCK) {
162 					if (mutex_trylock(&vma->vm->mutex)) {
163 						ret = __i915_vma_unbind(vma);
164 						mutex_unlock(&vma->vm->mutex);
165 					} else {
166 						ret = -EBUSY;
167 					}
168 				} else {
169 					ret = i915_vma_unbind(vma);
170 				}
171 			}
172 
173 			__i915_vma_put(vma);
174 		}
175 
176 		i915_vm_close(vm);
177 		spin_lock(&obj->vma.lock);
178 	}
179 	list_splice_init(&still_in_list, &obj->vma.list);
180 	spin_unlock(&obj->vma.lock);
181 
182 	if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
183 		rcu_barrier(); /* flush the i915_vm_release() */
184 		goto try_again;
185 	}
186 
187 	intel_runtime_pm_put(rpm, wakeref);
188 
189 	return ret;
190 }
191 
192 static int
193 shmem_pread(struct page *page, int offset, int len, char __user *user_data,
194 	    bool needs_clflush)
195 {
196 	char *vaddr;
197 	int ret;
198 
199 	vaddr = kmap(page);
200 
201 	if (needs_clflush)
202 		drm_clflush_virt_range(vaddr + offset, len);
203 
204 	ret = __copy_to_user(user_data, vaddr + offset, len);
205 
206 	kunmap(page);
207 
208 	return ret ? -EFAULT : 0;
209 }
210 
211 static int
212 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
213 		     struct drm_i915_gem_pread *args)
214 {
215 	unsigned int needs_clflush;
216 	unsigned int idx, offset;
217 	char __user *user_data;
218 	u64 remain;
219 	int ret;
220 
221 	ret = i915_gem_object_lock_interruptible(obj, NULL);
222 	if (ret)
223 		return ret;
224 
225 	ret = i915_gem_object_pin_pages(obj);
226 	if (ret)
227 		goto err_unlock;
228 
229 	ret = i915_gem_object_prepare_read(obj, &needs_clflush);
230 	if (ret)
231 		goto err_unpin;
232 
233 	i915_gem_object_finish_access(obj);
234 	i915_gem_object_unlock(obj);
235 
236 	remain = args->size;
237 	user_data = u64_to_user_ptr(args->data_ptr);
238 	offset = offset_in_page(args->offset);
239 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
240 		struct page *page = i915_gem_object_get_page(obj, idx);
241 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
242 
243 		ret = shmem_pread(page, offset, length, user_data,
244 				  needs_clflush);
245 		if (ret)
246 			break;
247 
248 		remain -= length;
249 		user_data += length;
250 		offset = 0;
251 	}
252 
253 	i915_gem_object_unpin_pages(obj);
254 	return ret;
255 
256 err_unpin:
257 	i915_gem_object_unpin_pages(obj);
258 err_unlock:
259 	i915_gem_object_unlock(obj);
260 	return ret;
261 }
262 
263 static inline bool
264 gtt_user_read(struct io_mapping *mapping,
265 	      loff_t base, int offset,
266 	      char __user *user_data, int length)
267 {
268 	void __iomem *vaddr;
269 	unsigned long unwritten;
270 
271 	/* We can use the cpu mem copy function because this is X86. */
272 	vaddr = io_mapping_map_atomic_wc(mapping, base);
273 	unwritten = __copy_to_user_inatomic(user_data,
274 					    (void __force *)vaddr + offset,
275 					    length);
276 	io_mapping_unmap_atomic(vaddr);
277 	if (unwritten) {
278 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
279 		unwritten = copy_to_user(user_data,
280 					 (void __force *)vaddr + offset,
281 					 length);
282 		io_mapping_unmap(vaddr);
283 	}
284 	return unwritten;
285 }
286 
287 static struct i915_vma *i915_gem_gtt_prepare(struct drm_i915_gem_object *obj,
288 					     struct drm_mm_node *node,
289 					     bool write)
290 {
291 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
292 	struct i915_ggtt *ggtt = &i915->ggtt;
293 	struct i915_vma *vma;
294 	struct i915_gem_ww_ctx ww;
295 	int ret;
296 
297 	i915_gem_ww_ctx_init(&ww, true);
298 retry:
299 	vma = ERR_PTR(-ENODEV);
300 	ret = i915_gem_object_lock(obj, &ww);
301 	if (ret)
302 		goto err_ww;
303 
304 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
305 	if (ret)
306 		goto err_ww;
307 
308 	if (!i915_gem_object_is_tiled(obj))
309 		vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0,
310 						  PIN_MAPPABLE |
311 						  PIN_NONBLOCK /* NOWARN */ |
312 						  PIN_NOEVICT);
313 	if (vma == ERR_PTR(-EDEADLK)) {
314 		ret = -EDEADLK;
315 		goto err_ww;
316 	} else if (!IS_ERR(vma)) {
317 		node->start = i915_ggtt_offset(vma);
318 		node->flags = 0;
319 	} else {
320 		ret = insert_mappable_node(ggtt, node, PAGE_SIZE);
321 		if (ret)
322 			goto err_ww;
323 		GEM_BUG_ON(!drm_mm_node_allocated(node));
324 		vma = NULL;
325 	}
326 
327 	ret = i915_gem_object_pin_pages(obj);
328 	if (ret) {
329 		if (drm_mm_node_allocated(node)) {
330 			ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
331 			remove_mappable_node(ggtt, node);
332 		} else {
333 			i915_vma_unpin(vma);
334 		}
335 	}
336 
337 err_ww:
338 	if (ret == -EDEADLK) {
339 		ret = i915_gem_ww_ctx_backoff(&ww);
340 		if (!ret)
341 			goto retry;
342 	}
343 	i915_gem_ww_ctx_fini(&ww);
344 
345 	return ret ? ERR_PTR(ret) : vma;
346 }
347 
348 static void i915_gem_gtt_cleanup(struct drm_i915_gem_object *obj,
349 				 struct drm_mm_node *node,
350 				 struct i915_vma *vma)
351 {
352 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
353 	struct i915_ggtt *ggtt = &i915->ggtt;
354 
355 	i915_gem_object_unpin_pages(obj);
356 	if (drm_mm_node_allocated(node)) {
357 		ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
358 		remove_mappable_node(ggtt, node);
359 	} else {
360 		i915_vma_unpin(vma);
361 	}
362 }
363 
364 static int
365 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
366 		   const struct drm_i915_gem_pread *args)
367 {
368 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
369 	struct i915_ggtt *ggtt = &i915->ggtt;
370 	intel_wakeref_t wakeref;
371 	struct drm_mm_node node;
372 	void __user *user_data;
373 	struct i915_vma *vma;
374 	u64 remain, offset;
375 	int ret = 0;
376 
377 	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
378 
379 	vma = i915_gem_gtt_prepare(obj, &node, false);
380 	if (IS_ERR(vma)) {
381 		ret = PTR_ERR(vma);
382 		goto out_rpm;
383 	}
384 
385 	user_data = u64_to_user_ptr(args->data_ptr);
386 	remain = args->size;
387 	offset = args->offset;
388 
389 	while (remain > 0) {
390 		/* Operation in this page
391 		 *
392 		 * page_base = page offset within aperture
393 		 * page_offset = offset within page
394 		 * page_length = bytes to copy for this page
395 		 */
396 		u32 page_base = node.start;
397 		unsigned page_offset = offset_in_page(offset);
398 		unsigned page_length = PAGE_SIZE - page_offset;
399 		page_length = remain < page_length ? remain : page_length;
400 		if (drm_mm_node_allocated(&node)) {
401 			ggtt->vm.insert_page(&ggtt->vm,
402 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
403 					     node.start, I915_CACHE_NONE, 0);
404 		} else {
405 			page_base += offset & PAGE_MASK;
406 		}
407 
408 		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
409 				  user_data, page_length)) {
410 			ret = -EFAULT;
411 			break;
412 		}
413 
414 		remain -= page_length;
415 		user_data += page_length;
416 		offset += page_length;
417 	}
418 
419 	i915_gem_gtt_cleanup(obj, &node, vma);
420 out_rpm:
421 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
422 	return ret;
423 }
424 
425 /**
426  * Reads data from the object referenced by handle.
427  * @dev: drm device pointer
428  * @data: ioctl data blob
429  * @file: drm file pointer
430  *
431  * On error, the contents of *data are undefined.
432  */
433 int
434 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
435 		     struct drm_file *file)
436 {
437 	struct drm_i915_private *i915 = to_i915(dev);
438 	struct drm_i915_gem_pread *args = data;
439 	struct drm_i915_gem_object *obj;
440 	int ret;
441 
442 	/* PREAD is disallowed for all platforms after TGL-LP.  This also
443 	 * covers all platforms with local memory.
444 	 */
445 	if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
446 		return -EOPNOTSUPP;
447 
448 	if (args->size == 0)
449 		return 0;
450 
451 	if (!access_ok(u64_to_user_ptr(args->data_ptr),
452 		       args->size))
453 		return -EFAULT;
454 
455 	obj = i915_gem_object_lookup(file, args->handle);
456 	if (!obj)
457 		return -ENOENT;
458 
459 	/* Bounds check source.  */
460 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
461 		ret = -EINVAL;
462 		goto out;
463 	}
464 
465 	trace_i915_gem_object_pread(obj, args->offset, args->size);
466 	ret = -ENODEV;
467 	if (obj->ops->pread)
468 		ret = obj->ops->pread(obj, args);
469 	if (ret != -ENODEV)
470 		goto out;
471 
472 	ret = -ENODEV;
473 	if (obj->ops->pread)
474 		ret = obj->ops->pread(obj, args);
475 	if (ret != -ENODEV)
476 		goto out;
477 
478 	ret = i915_gem_object_wait(obj,
479 				   I915_WAIT_INTERRUPTIBLE,
480 				   MAX_SCHEDULE_TIMEOUT);
481 	if (ret)
482 		goto out;
483 
484 	ret = i915_gem_shmem_pread(obj, args);
485 	if (ret == -EFAULT || ret == -ENODEV)
486 		ret = i915_gem_gtt_pread(obj, args);
487 
488 out:
489 	i915_gem_object_put(obj);
490 	return ret;
491 }
492 
493 /* This is the fast write path which cannot handle
494  * page faults in the source data
495  */
496 
497 static inline bool
498 ggtt_write(struct io_mapping *mapping,
499 	   loff_t base, int offset,
500 	   char __user *user_data, int length)
501 {
502 	void __iomem *vaddr;
503 	unsigned long unwritten;
504 
505 	/* We can use the cpu mem copy function because this is X86. */
506 	vaddr = io_mapping_map_atomic_wc(mapping, base);
507 	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
508 						      user_data, length);
509 	io_mapping_unmap_atomic(vaddr);
510 	if (unwritten) {
511 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
512 		unwritten = copy_from_user((void __force *)vaddr + offset,
513 					   user_data, length);
514 		io_mapping_unmap(vaddr);
515 	}
516 
517 	return unwritten;
518 }
519 
520 /**
521  * This is the fast pwrite path, where we copy the data directly from the
522  * user into the GTT, uncached.
523  * @obj: i915 GEM object
524  * @args: pwrite arguments structure
525  */
526 static int
527 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
528 			 const struct drm_i915_gem_pwrite *args)
529 {
530 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
531 	struct i915_ggtt *ggtt = &i915->ggtt;
532 	struct intel_runtime_pm *rpm = &i915->runtime_pm;
533 	intel_wakeref_t wakeref;
534 	struct drm_mm_node node;
535 	struct i915_vma *vma;
536 	u64 remain, offset;
537 	void __user *user_data;
538 	int ret = 0;
539 
540 	if (i915_gem_object_has_struct_page(obj)) {
541 		/*
542 		 * Avoid waking the device up if we can fallback, as
543 		 * waking/resuming is very slow (worst-case 10-100 ms
544 		 * depending on PCI sleeps and our own resume time).
545 		 * This easily dwarfs any performance advantage from
546 		 * using the cache bypass of indirect GGTT access.
547 		 */
548 		wakeref = intel_runtime_pm_get_if_in_use(rpm);
549 		if (!wakeref)
550 			return -EFAULT;
551 	} else {
552 		/* No backing pages, no fallback, we must force GGTT access */
553 		wakeref = intel_runtime_pm_get(rpm);
554 	}
555 
556 	vma = i915_gem_gtt_prepare(obj, &node, true);
557 	if (IS_ERR(vma)) {
558 		ret = PTR_ERR(vma);
559 		goto out_rpm;
560 	}
561 
562 	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
563 
564 	user_data = u64_to_user_ptr(args->data_ptr);
565 	offset = args->offset;
566 	remain = args->size;
567 	while (remain) {
568 		/* Operation in this page
569 		 *
570 		 * page_base = page offset within aperture
571 		 * page_offset = offset within page
572 		 * page_length = bytes to copy for this page
573 		 */
574 		u32 page_base = node.start;
575 		unsigned int page_offset = offset_in_page(offset);
576 		unsigned int page_length = PAGE_SIZE - page_offset;
577 		page_length = remain < page_length ? remain : page_length;
578 		if (drm_mm_node_allocated(&node)) {
579 			/* flush the write before we modify the GGTT */
580 			intel_gt_flush_ggtt_writes(ggtt->vm.gt);
581 			ggtt->vm.insert_page(&ggtt->vm,
582 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
583 					     node.start, I915_CACHE_NONE, 0);
584 			wmb(); /* flush modifications to the GGTT (insert_page) */
585 		} else {
586 			page_base += offset & PAGE_MASK;
587 		}
588 		/* If we get a fault while copying data, then (presumably) our
589 		 * source page isn't available.  Return the error and we'll
590 		 * retry in the slow path.
591 		 * If the object is non-shmem backed, we retry again with the
592 		 * path that handles page fault.
593 		 */
594 		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
595 			       user_data, page_length)) {
596 			ret = -EFAULT;
597 			break;
598 		}
599 
600 		remain -= page_length;
601 		user_data += page_length;
602 		offset += page_length;
603 	}
604 
605 	intel_gt_flush_ggtt_writes(ggtt->vm.gt);
606 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
607 
608 	i915_gem_gtt_cleanup(obj, &node, vma);
609 out_rpm:
610 	intel_runtime_pm_put(rpm, wakeref);
611 	return ret;
612 }
613 
614 /* Per-page copy function for the shmem pwrite fastpath.
615  * Flushes invalid cachelines before writing to the target if
616  * needs_clflush_before is set and flushes out any written cachelines after
617  * writing if needs_clflush is set.
618  */
619 static int
620 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
621 	     bool needs_clflush_before,
622 	     bool needs_clflush_after)
623 {
624 	char *vaddr;
625 	int ret;
626 
627 	vaddr = kmap(page);
628 
629 	if (needs_clflush_before)
630 		drm_clflush_virt_range(vaddr + offset, len);
631 
632 	ret = __copy_from_user(vaddr + offset, user_data, len);
633 	if (!ret && needs_clflush_after)
634 		drm_clflush_virt_range(vaddr + offset, len);
635 
636 	kunmap(page);
637 
638 	return ret ? -EFAULT : 0;
639 }
640 
641 static int
642 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
643 		      const struct drm_i915_gem_pwrite *args)
644 {
645 	unsigned int partial_cacheline_write;
646 	unsigned int needs_clflush;
647 	unsigned int offset, idx;
648 	void __user *user_data;
649 	u64 remain;
650 	int ret;
651 
652 	ret = i915_gem_object_lock_interruptible(obj, NULL);
653 	if (ret)
654 		return ret;
655 
656 	ret = i915_gem_object_pin_pages(obj);
657 	if (ret)
658 		goto err_unlock;
659 
660 	ret = i915_gem_object_prepare_write(obj, &needs_clflush);
661 	if (ret)
662 		goto err_unpin;
663 
664 	i915_gem_object_finish_access(obj);
665 	i915_gem_object_unlock(obj);
666 
667 	/* If we don't overwrite a cacheline completely we need to be
668 	 * careful to have up-to-date data by first clflushing. Don't
669 	 * overcomplicate things and flush the entire patch.
670 	 */
671 	partial_cacheline_write = 0;
672 	if (needs_clflush & CLFLUSH_BEFORE)
673 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
674 
675 	user_data = u64_to_user_ptr(args->data_ptr);
676 	remain = args->size;
677 	offset = offset_in_page(args->offset);
678 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
679 		struct page *page = i915_gem_object_get_page(obj, idx);
680 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
681 
682 		ret = shmem_pwrite(page, offset, length, user_data,
683 				   (offset | length) & partial_cacheline_write,
684 				   needs_clflush & CLFLUSH_AFTER);
685 		if (ret)
686 			break;
687 
688 		remain -= length;
689 		user_data += length;
690 		offset = 0;
691 	}
692 
693 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
694 
695 	i915_gem_object_unpin_pages(obj);
696 	return ret;
697 
698 err_unpin:
699 	i915_gem_object_unpin_pages(obj);
700 err_unlock:
701 	i915_gem_object_unlock(obj);
702 	return ret;
703 }
704 
705 /**
706  * Writes data to the object referenced by handle.
707  * @dev: drm device
708  * @data: ioctl data blob
709  * @file: drm file
710  *
711  * On error, the contents of the buffer that were to be modified are undefined.
712  */
713 int
714 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
715 		      struct drm_file *file)
716 {
717 	struct drm_i915_private *i915 = to_i915(dev);
718 	struct drm_i915_gem_pwrite *args = data;
719 	struct drm_i915_gem_object *obj;
720 	int ret;
721 
722 	/* PWRITE is disallowed for all platforms after TGL-LP.  This also
723 	 * covers all platforms with local memory.
724 	 */
725 	if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
726 		return -EOPNOTSUPP;
727 
728 	if (args->size == 0)
729 		return 0;
730 
731 	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
732 		return -EFAULT;
733 
734 	obj = i915_gem_object_lookup(file, args->handle);
735 	if (!obj)
736 		return -ENOENT;
737 
738 	/* Bounds check destination. */
739 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
740 		ret = -EINVAL;
741 		goto err;
742 	}
743 
744 	/* Writes not allowed into this read-only object */
745 	if (i915_gem_object_is_readonly(obj)) {
746 		ret = -EINVAL;
747 		goto err;
748 	}
749 
750 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
751 
752 	ret = -ENODEV;
753 	if (obj->ops->pwrite)
754 		ret = obj->ops->pwrite(obj, args);
755 	if (ret != -ENODEV)
756 		goto err;
757 
758 	ret = i915_gem_object_wait(obj,
759 				   I915_WAIT_INTERRUPTIBLE |
760 				   I915_WAIT_ALL,
761 				   MAX_SCHEDULE_TIMEOUT);
762 	if (ret)
763 		goto err;
764 
765 	ret = -EFAULT;
766 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
767 	 * it would end up going through the fenced access, and we'll get
768 	 * different detiling behavior between reading and writing.
769 	 * pread/pwrite currently are reading and writing from the CPU
770 	 * perspective, requiring manual detiling by the client.
771 	 */
772 	if (!i915_gem_object_has_struct_page(obj) ||
773 	    cpu_write_needs_clflush(obj))
774 		/* Note that the gtt paths might fail with non-page-backed user
775 		 * pointers (e.g. gtt mappings when moving data between
776 		 * textures). Fallback to the shmem path in that case.
777 		 */
778 		ret = i915_gem_gtt_pwrite_fast(obj, args);
779 
780 	if (ret == -EFAULT || ret == -ENOSPC) {
781 		if (i915_gem_object_has_struct_page(obj))
782 			ret = i915_gem_shmem_pwrite(obj, args);
783 	}
784 
785 err:
786 	i915_gem_object_put(obj);
787 	return ret;
788 }
789 
790 /**
791  * Called when user space has done writes to this buffer
792  * @dev: drm device
793  * @data: ioctl data blob
794  * @file: drm file
795  */
796 int
797 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
798 			 struct drm_file *file)
799 {
800 	struct drm_i915_gem_sw_finish *args = data;
801 	struct drm_i915_gem_object *obj;
802 
803 	obj = i915_gem_object_lookup(file, args->handle);
804 	if (!obj)
805 		return -ENOENT;
806 
807 	/*
808 	 * Proxy objects are barred from CPU access, so there is no
809 	 * need to ban sw_finish as it is a nop.
810 	 */
811 
812 	/* Pinned buffers may be scanout, so flush the cache */
813 	i915_gem_object_flush_if_display(obj);
814 	i915_gem_object_put(obj);
815 
816 	return 0;
817 }
818 
819 void i915_gem_runtime_suspend(struct drm_i915_private *i915)
820 {
821 	struct drm_i915_gem_object *obj, *on;
822 	int i;
823 
824 	/*
825 	 * Only called during RPM suspend. All users of the userfault_list
826 	 * must be holding an RPM wakeref to ensure that this can not
827 	 * run concurrently with themselves (and use the struct_mutex for
828 	 * protection between themselves).
829 	 */
830 
831 	list_for_each_entry_safe(obj, on,
832 				 &i915->ggtt.userfault_list, userfault_link)
833 		__i915_gem_object_release_mmap_gtt(obj);
834 
835 	/*
836 	 * The fence will be lost when the device powers down. If any were
837 	 * in use by hardware (i.e. they are pinned), we should not be powering
838 	 * down! All other fences will be reacquired by the user upon waking.
839 	 */
840 	for (i = 0; i < i915->ggtt.num_fences; i++) {
841 		struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
842 
843 		/*
844 		 * Ideally we want to assert that the fence register is not
845 		 * live at this point (i.e. that no piece of code will be
846 		 * trying to write through fence + GTT, as that both violates
847 		 * our tracking of activity and associated locking/barriers,
848 		 * but also is illegal given that the hw is powered down).
849 		 *
850 		 * Previously we used reg->pin_count as a "liveness" indicator.
851 		 * That is not sufficient, and we need a more fine-grained
852 		 * tool if we want to have a sanity check here.
853 		 */
854 
855 		if (!reg->vma)
856 			continue;
857 
858 		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
859 		reg->dirty = true;
860 	}
861 }
862 
863 static void discard_ggtt_vma(struct i915_vma *vma)
864 {
865 	struct drm_i915_gem_object *obj = vma->obj;
866 
867 	spin_lock(&obj->vma.lock);
868 	if (!RB_EMPTY_NODE(&vma->obj_node)) {
869 		rb_erase(&vma->obj_node, &obj->vma.tree);
870 		RB_CLEAR_NODE(&vma->obj_node);
871 	}
872 	spin_unlock(&obj->vma.lock);
873 }
874 
875 struct i915_vma *
876 i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj,
877 			    struct i915_gem_ww_ctx *ww,
878 			    const struct i915_ggtt_view *view,
879 			    u64 size, u64 alignment, u64 flags)
880 {
881 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
882 	struct i915_ggtt *ggtt = &i915->ggtt;
883 	struct i915_vma *vma;
884 	int ret;
885 
886 	if (flags & PIN_MAPPABLE &&
887 	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
888 		/*
889 		 * If the required space is larger than the available
890 		 * aperture, we will not able to find a slot for the
891 		 * object and unbinding the object now will be in
892 		 * vain. Worse, doing so may cause us to ping-pong
893 		 * the object in and out of the Global GTT and
894 		 * waste a lot of cycles under the mutex.
895 		 */
896 		if (obj->base.size > ggtt->mappable_end)
897 			return ERR_PTR(-E2BIG);
898 
899 		/*
900 		 * If NONBLOCK is set the caller is optimistically
901 		 * trying to cache the full object within the mappable
902 		 * aperture, and *must* have a fallback in place for
903 		 * situations where we cannot bind the object. We
904 		 * can be a little more lax here and use the fallback
905 		 * more often to avoid costly migrations of ourselves
906 		 * and other objects within the aperture.
907 		 *
908 		 * Half-the-aperture is used as a simple heuristic.
909 		 * More interesting would to do search for a free
910 		 * block prior to making the commitment to unbind.
911 		 * That caters for the self-harm case, and with a
912 		 * little more heuristics (e.g. NOFAULT, NOEVICT)
913 		 * we could try to minimise harm to others.
914 		 */
915 		if (flags & PIN_NONBLOCK &&
916 		    obj->base.size > ggtt->mappable_end / 2)
917 			return ERR_PTR(-ENOSPC);
918 	}
919 
920 new_vma:
921 	vma = i915_vma_instance(obj, &ggtt->vm, view);
922 	if (IS_ERR(vma))
923 		return vma;
924 
925 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
926 		if (flags & PIN_NONBLOCK) {
927 			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
928 				return ERR_PTR(-ENOSPC);
929 
930 			if (flags & PIN_MAPPABLE &&
931 			    vma->fence_size > ggtt->mappable_end / 2)
932 				return ERR_PTR(-ENOSPC);
933 		}
934 
935 		if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) {
936 			discard_ggtt_vma(vma);
937 			goto new_vma;
938 		}
939 
940 		ret = i915_vma_unbind(vma);
941 		if (ret)
942 			return ERR_PTR(ret);
943 	}
944 
945 	if (ww)
946 		ret = i915_vma_pin_ww(vma, ww, size, alignment, flags | PIN_GLOBAL);
947 	else
948 		ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
949 
950 	if (ret)
951 		return ERR_PTR(ret);
952 
953 	if (vma->fence && !i915_gem_object_is_tiled(obj)) {
954 		mutex_lock(&ggtt->vm.mutex);
955 		i915_vma_revoke_fence(vma);
956 		mutex_unlock(&ggtt->vm.mutex);
957 	}
958 
959 	ret = i915_vma_wait_for_bind(vma);
960 	if (ret) {
961 		i915_vma_unpin(vma);
962 		return ERR_PTR(ret);
963 	}
964 
965 	return vma;
966 }
967 
968 int
969 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
970 		       struct drm_file *file_priv)
971 {
972 	struct drm_i915_private *i915 = to_i915(dev);
973 	struct drm_i915_gem_madvise *args = data;
974 	struct drm_i915_gem_object *obj;
975 	int err;
976 
977 	switch (args->madv) {
978 	case I915_MADV_DONTNEED:
979 	case I915_MADV_WILLNEED:
980 	    break;
981 	default:
982 	    return -EINVAL;
983 	}
984 
985 	obj = i915_gem_object_lookup(file_priv, args->handle);
986 	if (!obj)
987 		return -ENOENT;
988 
989 	err = i915_gem_object_lock_interruptible(obj, NULL);
990 	if (err)
991 		goto out;
992 
993 	if (i915_gem_object_has_pages(obj) &&
994 	    i915_gem_object_is_tiled(obj) &&
995 	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
996 		if (obj->mm.madv == I915_MADV_WILLNEED) {
997 			GEM_BUG_ON(!i915_gem_object_has_tiling_quirk(obj));
998 			i915_gem_object_clear_tiling_quirk(obj);
999 			i915_gem_object_make_shrinkable(obj);
1000 		}
1001 		if (args->madv == I915_MADV_WILLNEED) {
1002 			GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
1003 			i915_gem_object_make_unshrinkable(obj);
1004 			i915_gem_object_set_tiling_quirk(obj);
1005 		}
1006 	}
1007 
1008 	if (obj->mm.madv != __I915_MADV_PURGED)
1009 		obj->mm.madv = args->madv;
1010 
1011 	if (i915_gem_object_has_pages(obj)) {
1012 		unsigned long flags;
1013 
1014 		spin_lock_irqsave(&i915->mm.obj_lock, flags);
1015 		if (!list_empty(&obj->mm.link)) {
1016 			struct list_head *list;
1017 
1018 			if (obj->mm.madv != I915_MADV_WILLNEED)
1019 				list = &i915->mm.purge_list;
1020 			else
1021 				list = &i915->mm.shrink_list;
1022 			list_move_tail(&obj->mm.link, list);
1023 
1024 		}
1025 		spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1026 	}
1027 
1028 	/* if the object is no longer attached, discard its backing storage */
1029 	if (obj->mm.madv == I915_MADV_DONTNEED &&
1030 	    !i915_gem_object_has_pages(obj))
1031 		i915_gem_object_truncate(obj);
1032 
1033 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
1034 
1035 	i915_gem_object_unlock(obj);
1036 out:
1037 	i915_gem_object_put(obj);
1038 	return err;
1039 }
1040 
1041 int i915_gem_init(struct drm_i915_private *dev_priv)
1042 {
1043 	int ret;
1044 
1045 	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
1046 	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1047 		mkwrite_device_info(dev_priv)->page_sizes =
1048 			I915_GTT_PAGE_SIZE_4K;
1049 
1050 	ret = i915_gem_init_userptr(dev_priv);
1051 	if (ret)
1052 		return ret;
1053 
1054 	intel_uc_fetch_firmwares(&dev_priv->gt.uc);
1055 	intel_wopcm_init(&dev_priv->wopcm);
1056 
1057 	ret = i915_init_ggtt(dev_priv);
1058 	if (ret) {
1059 		GEM_BUG_ON(ret == -EIO);
1060 		goto err_unlock;
1061 	}
1062 
1063 	/*
1064 	 * Despite its name intel_init_clock_gating applies both display
1065 	 * clock gating workarounds; GT mmio workarounds and the occasional
1066 	 * GT power context workaround. Worse, sometimes it includes a context
1067 	 * register workaround which we need to apply before we record the
1068 	 * default HW state for all contexts.
1069 	 *
1070 	 * FIXME: break up the workarounds and apply them at the right time!
1071 	 */
1072 	intel_init_clock_gating(dev_priv);
1073 
1074 	ret = intel_gt_init(&dev_priv->gt);
1075 	if (ret)
1076 		goto err_unlock;
1077 
1078 	return 0;
1079 
1080 	/*
1081 	 * Unwinding is complicated by that we want to handle -EIO to mean
1082 	 * disable GPU submission but keep KMS alive. We want to mark the
1083 	 * HW as irrevisibly wedged, but keep enough state around that the
1084 	 * driver doesn't explode during runtime.
1085 	 */
1086 err_unlock:
1087 	i915_gem_drain_workqueue(dev_priv);
1088 
1089 	if (ret != -EIO)
1090 		intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1091 
1092 	if (ret == -EIO) {
1093 		/*
1094 		 * Allow engines or uC initialisation to fail by marking the GPU
1095 		 * as wedged. But we only want to do this when the GPU is angry,
1096 		 * for all other failure, such as an allocation failure, bail.
1097 		 */
1098 		if (!intel_gt_is_wedged(&dev_priv->gt)) {
1099 			i915_probe_error(dev_priv,
1100 					 "Failed to initialize GPU, declaring it wedged!\n");
1101 			intel_gt_set_wedged(&dev_priv->gt);
1102 		}
1103 
1104 		/* Minimal basic recovery for KMS */
1105 		ret = i915_ggtt_enable_hw(dev_priv);
1106 		i915_ggtt_resume(&dev_priv->ggtt);
1107 		intel_init_clock_gating(dev_priv);
1108 	}
1109 
1110 	i915_gem_drain_freed_objects(dev_priv);
1111 
1112 	return ret;
1113 }
1114 
1115 void i915_gem_driver_register(struct drm_i915_private *i915)
1116 {
1117 	i915_gem_driver_register__shrinker(i915);
1118 
1119 	intel_engines_driver_register(i915);
1120 }
1121 
1122 void i915_gem_driver_unregister(struct drm_i915_private *i915)
1123 {
1124 	i915_gem_driver_unregister__shrinker(i915);
1125 }
1126 
1127 void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1128 {
1129 	intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref);
1130 
1131 	i915_gem_suspend_late(dev_priv);
1132 	intel_gt_driver_remove(&dev_priv->gt);
1133 	dev_priv->uabi_engines = RB_ROOT;
1134 
1135 	/* Flush any outstanding unpin_work. */
1136 	i915_gem_drain_workqueue(dev_priv);
1137 
1138 	i915_gem_drain_freed_objects(dev_priv);
1139 }
1140 
1141 void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1142 {
1143 	intel_gt_driver_release(&dev_priv->gt);
1144 
1145 	intel_wa_list_free(&dev_priv->gt_wa_list);
1146 
1147 	intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1148 
1149 	i915_gem_drain_freed_objects(dev_priv);
1150 
1151 	drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list));
1152 }
1153 
1154 static void i915_gem_init__mm(struct drm_i915_private *i915)
1155 {
1156 	spin_lock_init(&i915->mm.obj_lock);
1157 
1158 	init_llist_head(&i915->mm.free_list);
1159 
1160 	INIT_LIST_HEAD(&i915->mm.purge_list);
1161 	INIT_LIST_HEAD(&i915->mm.shrink_list);
1162 
1163 	i915_gem_init__objects(i915);
1164 }
1165 
1166 void i915_gem_init_early(struct drm_i915_private *dev_priv)
1167 {
1168 	i915_gem_init__mm(dev_priv);
1169 	i915_gem_init__contexts(dev_priv);
1170 
1171 	spin_lock_init(&dev_priv->fb_tracking.lock);
1172 }
1173 
1174 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1175 {
1176 	i915_gem_drain_freed_objects(dev_priv);
1177 	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1178 	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1179 	drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count);
1180 }
1181 
1182 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1183 {
1184 	struct drm_i915_file_private *file_priv;
1185 	int ret;
1186 
1187 	DRM_DEBUG("\n");
1188 
1189 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1190 	if (!file_priv)
1191 		return -ENOMEM;
1192 
1193 	file->driver_priv = file_priv;
1194 	file_priv->dev_priv = i915;
1195 	file_priv->file = file;
1196 
1197 	file_priv->bsd_engine = -1;
1198 	file_priv->hang_timestamp = jiffies;
1199 
1200 	ret = i915_gem_context_open(i915, file);
1201 	if (ret)
1202 		kfree(file_priv);
1203 
1204 	return ret;
1205 }
1206 
1207 void i915_gem_ww_ctx_init(struct i915_gem_ww_ctx *ww, bool intr)
1208 {
1209 	ww_acquire_init(&ww->ctx, &reservation_ww_class);
1210 	INIT_LIST_HEAD(&ww->obj_list);
1211 	ww->intr = intr;
1212 	ww->contended = NULL;
1213 }
1214 
1215 static void i915_gem_ww_ctx_unlock_all(struct i915_gem_ww_ctx *ww)
1216 {
1217 	struct drm_i915_gem_object *obj;
1218 
1219 	while ((obj = list_first_entry_or_null(&ww->obj_list, struct drm_i915_gem_object, obj_link))) {
1220 		list_del(&obj->obj_link);
1221 		i915_gem_object_unlock(obj);
1222 	}
1223 }
1224 
1225 void i915_gem_ww_unlock_single(struct drm_i915_gem_object *obj)
1226 {
1227 	list_del(&obj->obj_link);
1228 	i915_gem_object_unlock(obj);
1229 }
1230 
1231 void i915_gem_ww_ctx_fini(struct i915_gem_ww_ctx *ww)
1232 {
1233 	i915_gem_ww_ctx_unlock_all(ww);
1234 	WARN_ON(ww->contended);
1235 	ww_acquire_fini(&ww->ctx);
1236 }
1237 
1238 int __must_check i915_gem_ww_ctx_backoff(struct i915_gem_ww_ctx *ww)
1239 {
1240 	int ret = 0;
1241 
1242 	if (WARN_ON(!ww->contended))
1243 		return -EINVAL;
1244 
1245 	i915_gem_ww_ctx_unlock_all(ww);
1246 	if (ww->intr)
1247 		ret = dma_resv_lock_slow_interruptible(ww->contended->base.resv, &ww->ctx);
1248 	else
1249 		dma_resv_lock_slow(ww->contended->base.resv, &ww->ctx);
1250 
1251 	if (!ret)
1252 		list_add_tail(&ww->contended->obj_link, &ww->obj_list);
1253 
1254 	ww->contended = NULL;
1255 
1256 	return ret;
1257 }
1258 
1259 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1260 #include "selftests/mock_gem_device.c"
1261 #include "selftests/i915_gem.c"
1262 #endif
1263