xref: /linux/drivers/gpu/drm/i915/i915_gem.c (revision 98838d95075a5295f3478ceba18bcccf472e30f4)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_dmabuf.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include <linux/reservation.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/pci.h>
43 #include <linux/dma-buf.h>
44 
45 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
46 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
47 
48 static bool cpu_cache_is_coherent(struct drm_device *dev,
49 				  enum i915_cache_level level)
50 {
51 	return HAS_LLC(dev) || level != I915_CACHE_NONE;
52 }
53 
54 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
55 {
56 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
57 		return false;
58 
59 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
60 		return true;
61 
62 	return obj->pin_display;
63 }
64 
65 static int
66 insert_mappable_node(struct drm_i915_private *i915,
67                      struct drm_mm_node *node, u32 size)
68 {
69 	memset(node, 0, sizeof(*node));
70 	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
71 						   size, 0, 0, 0,
72 						   i915->ggtt.mappable_end,
73 						   DRM_MM_SEARCH_DEFAULT,
74 						   DRM_MM_CREATE_DEFAULT);
75 }
76 
77 static void
78 remove_mappable_node(struct drm_mm_node *node)
79 {
80 	drm_mm_remove_node(node);
81 }
82 
83 /* some bookkeeping */
84 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
85 				  size_t size)
86 {
87 	spin_lock(&dev_priv->mm.object_stat_lock);
88 	dev_priv->mm.object_count++;
89 	dev_priv->mm.object_memory += size;
90 	spin_unlock(&dev_priv->mm.object_stat_lock);
91 }
92 
93 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
94 				     size_t size)
95 {
96 	spin_lock(&dev_priv->mm.object_stat_lock);
97 	dev_priv->mm.object_count--;
98 	dev_priv->mm.object_memory -= size;
99 	spin_unlock(&dev_priv->mm.object_stat_lock);
100 }
101 
102 static int
103 i915_gem_wait_for_error(struct i915_gpu_error *error)
104 {
105 	int ret;
106 
107 	if (!i915_reset_in_progress(error))
108 		return 0;
109 
110 	/*
111 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 	 * userspace. If it takes that long something really bad is going on and
113 	 * we should simply try to bail out and fail as gracefully as possible.
114 	 */
115 	ret = wait_event_interruptible_timeout(error->reset_queue,
116 					       !i915_reset_in_progress(error),
117 					       10*HZ);
118 	if (ret == 0) {
119 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 		return -EIO;
121 	} else if (ret < 0) {
122 		return ret;
123 	} else {
124 		return 0;
125 	}
126 }
127 
128 int i915_mutex_lock_interruptible(struct drm_device *dev)
129 {
130 	struct drm_i915_private *dev_priv = to_i915(dev);
131 	int ret;
132 
133 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
134 	if (ret)
135 		return ret;
136 
137 	ret = mutex_lock_interruptible(&dev->struct_mutex);
138 	if (ret)
139 		return ret;
140 
141 	return 0;
142 }
143 
144 int
145 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
146 			    struct drm_file *file)
147 {
148 	struct drm_i915_private *dev_priv = to_i915(dev);
149 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
150 	struct drm_i915_gem_get_aperture *args = data;
151 	struct i915_vma *vma;
152 	size_t pinned;
153 
154 	pinned = 0;
155 	mutex_lock(&dev->struct_mutex);
156 	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
157 		if (i915_vma_is_pinned(vma))
158 			pinned += vma->node.size;
159 	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
160 		if (i915_vma_is_pinned(vma))
161 			pinned += vma->node.size;
162 	mutex_unlock(&dev->struct_mutex);
163 
164 	args->aper_size = ggtt->base.total;
165 	args->aper_available_size = args->aper_size - pinned;
166 
167 	return 0;
168 }
169 
170 static int
171 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
172 {
173 	struct address_space *mapping = obj->base.filp->f_mapping;
174 	char *vaddr = obj->phys_handle->vaddr;
175 	struct sg_table *st;
176 	struct scatterlist *sg;
177 	int i;
178 
179 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
180 		return -EINVAL;
181 
182 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
183 		struct page *page;
184 		char *src;
185 
186 		page = shmem_read_mapping_page(mapping, i);
187 		if (IS_ERR(page))
188 			return PTR_ERR(page);
189 
190 		src = kmap_atomic(page);
191 		memcpy(vaddr, src, PAGE_SIZE);
192 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
193 		kunmap_atomic(src);
194 
195 		put_page(page);
196 		vaddr += PAGE_SIZE;
197 	}
198 
199 	i915_gem_chipset_flush(to_i915(obj->base.dev));
200 
201 	st = kmalloc(sizeof(*st), GFP_KERNEL);
202 	if (st == NULL)
203 		return -ENOMEM;
204 
205 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
206 		kfree(st);
207 		return -ENOMEM;
208 	}
209 
210 	sg = st->sgl;
211 	sg->offset = 0;
212 	sg->length = obj->base.size;
213 
214 	sg_dma_address(sg) = obj->phys_handle->busaddr;
215 	sg_dma_len(sg) = obj->base.size;
216 
217 	obj->pages = st;
218 	return 0;
219 }
220 
221 static void
222 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
223 {
224 	int ret;
225 
226 	BUG_ON(obj->madv == __I915_MADV_PURGED);
227 
228 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
229 	if (WARN_ON(ret)) {
230 		/* In the event of a disaster, abandon all caches and
231 		 * hope for the best.
232 		 */
233 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234 	}
235 
236 	if (obj->madv == I915_MADV_DONTNEED)
237 		obj->dirty = 0;
238 
239 	if (obj->dirty) {
240 		struct address_space *mapping = obj->base.filp->f_mapping;
241 		char *vaddr = obj->phys_handle->vaddr;
242 		int i;
243 
244 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 			struct page *page;
246 			char *dst;
247 
248 			page = shmem_read_mapping_page(mapping, i);
249 			if (IS_ERR(page))
250 				continue;
251 
252 			dst = kmap_atomic(page);
253 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
254 			memcpy(dst, vaddr, PAGE_SIZE);
255 			kunmap_atomic(dst);
256 
257 			set_page_dirty(page);
258 			if (obj->madv == I915_MADV_WILLNEED)
259 				mark_page_accessed(page);
260 			put_page(page);
261 			vaddr += PAGE_SIZE;
262 		}
263 		obj->dirty = 0;
264 	}
265 
266 	sg_free_table(obj->pages);
267 	kfree(obj->pages);
268 }
269 
270 static void
271 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
272 {
273 	drm_pci_free(obj->base.dev, obj->phys_handle);
274 }
275 
276 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
277 	.get_pages = i915_gem_object_get_pages_phys,
278 	.put_pages = i915_gem_object_put_pages_phys,
279 	.release = i915_gem_object_release_phys,
280 };
281 
282 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
283 {
284 	struct i915_vma *vma;
285 	LIST_HEAD(still_in_list);
286 	int ret;
287 
288 	lockdep_assert_held(&obj->base.dev->struct_mutex);
289 
290 	/* Closed vma are removed from the obj->vma_list - but they may
291 	 * still have an active binding on the object. To remove those we
292 	 * must wait for all rendering to complete to the object (as unbinding
293 	 * must anyway), and retire the requests.
294 	 */
295 	ret = i915_gem_object_wait_rendering(obj, false);
296 	if (ret)
297 		return ret;
298 
299 	i915_gem_retire_requests(to_i915(obj->base.dev));
300 
301 	while ((vma = list_first_entry_or_null(&obj->vma_list,
302 					       struct i915_vma,
303 					       obj_link))) {
304 		list_move_tail(&vma->obj_link, &still_in_list);
305 		ret = i915_vma_unbind(vma);
306 		if (ret)
307 			break;
308 	}
309 	list_splice(&still_in_list, &obj->vma_list);
310 
311 	return ret;
312 }
313 
314 /**
315  * Ensures that all rendering to the object has completed and the object is
316  * safe to unbind from the GTT or access from the CPU.
317  * @obj: i915 gem object
318  * @readonly: waiting for just read access or read-write access
319  */
320 int
321 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
322 			       bool readonly)
323 {
324 	struct reservation_object *resv;
325 	struct i915_gem_active *active;
326 	unsigned long active_mask;
327 	int idx;
328 
329 	lockdep_assert_held(&obj->base.dev->struct_mutex);
330 
331 	if (!readonly) {
332 		active = obj->last_read;
333 		active_mask = i915_gem_object_get_active(obj);
334 	} else {
335 		active_mask = 1;
336 		active = &obj->last_write;
337 	}
338 
339 	for_each_active(active_mask, idx) {
340 		int ret;
341 
342 		ret = i915_gem_active_wait(&active[idx],
343 					   &obj->base.dev->struct_mutex);
344 		if (ret)
345 			return ret;
346 	}
347 
348 	resv = i915_gem_object_get_dmabuf_resv(obj);
349 	if (resv) {
350 		long err;
351 
352 		err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
353 							  MAX_SCHEDULE_TIMEOUT);
354 		if (err < 0)
355 			return err;
356 	}
357 
358 	return 0;
359 }
360 
361 /* A nonblocking variant of the above wait. Must be called prior to
362  * acquiring the mutex for the object, as the object state may change
363  * during this call. A reference must be held by the caller for the object.
364  */
365 static __must_check int
366 __unsafe_wait_rendering(struct drm_i915_gem_object *obj,
367 			struct intel_rps_client *rps,
368 			bool readonly)
369 {
370 	struct i915_gem_active *active;
371 	unsigned long active_mask;
372 	int idx;
373 
374 	active_mask = __I915_BO_ACTIVE(obj);
375 	if (!active_mask)
376 		return 0;
377 
378 	if (!readonly) {
379 		active = obj->last_read;
380 	} else {
381 		active_mask = 1;
382 		active = &obj->last_write;
383 	}
384 
385 	for_each_active(active_mask, idx) {
386 		int ret;
387 
388 		ret = i915_gem_active_wait_unlocked(&active[idx],
389 						    I915_WAIT_INTERRUPTIBLE,
390 						    NULL, rps);
391 		if (ret)
392 			return ret;
393 	}
394 
395 	return 0;
396 }
397 
398 static struct intel_rps_client *to_rps_client(struct drm_file *file)
399 {
400 	struct drm_i915_file_private *fpriv = file->driver_priv;
401 
402 	return &fpriv->rps;
403 }
404 
405 int
406 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
407 			    int align)
408 {
409 	drm_dma_handle_t *phys;
410 	int ret;
411 
412 	if (obj->phys_handle) {
413 		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
414 			return -EBUSY;
415 
416 		return 0;
417 	}
418 
419 	if (obj->madv != I915_MADV_WILLNEED)
420 		return -EFAULT;
421 
422 	if (obj->base.filp == NULL)
423 		return -EINVAL;
424 
425 	ret = i915_gem_object_unbind(obj);
426 	if (ret)
427 		return ret;
428 
429 	ret = i915_gem_object_put_pages(obj);
430 	if (ret)
431 		return ret;
432 
433 	/* create a new object */
434 	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
435 	if (!phys)
436 		return -ENOMEM;
437 
438 	obj->phys_handle = phys;
439 	obj->ops = &i915_gem_phys_ops;
440 
441 	return i915_gem_object_get_pages(obj);
442 }
443 
444 static int
445 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
446 		     struct drm_i915_gem_pwrite *args,
447 		     struct drm_file *file_priv)
448 {
449 	struct drm_device *dev = obj->base.dev;
450 	void *vaddr = obj->phys_handle->vaddr + args->offset;
451 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
452 	int ret = 0;
453 
454 	/* We manually control the domain here and pretend that it
455 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
456 	 */
457 	ret = i915_gem_object_wait_rendering(obj, false);
458 	if (ret)
459 		return ret;
460 
461 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
462 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
463 		unsigned long unwritten;
464 
465 		/* The physical object once assigned is fixed for the lifetime
466 		 * of the obj, so we can safely drop the lock and continue
467 		 * to access vaddr.
468 		 */
469 		mutex_unlock(&dev->struct_mutex);
470 		unwritten = copy_from_user(vaddr, user_data, args->size);
471 		mutex_lock(&dev->struct_mutex);
472 		if (unwritten) {
473 			ret = -EFAULT;
474 			goto out;
475 		}
476 	}
477 
478 	drm_clflush_virt_range(vaddr, args->size);
479 	i915_gem_chipset_flush(to_i915(dev));
480 
481 out:
482 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
483 	return ret;
484 }
485 
486 void *i915_gem_object_alloc(struct drm_device *dev)
487 {
488 	struct drm_i915_private *dev_priv = to_i915(dev);
489 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
490 }
491 
492 void i915_gem_object_free(struct drm_i915_gem_object *obj)
493 {
494 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
495 	kmem_cache_free(dev_priv->objects, obj);
496 }
497 
498 static int
499 i915_gem_create(struct drm_file *file,
500 		struct drm_device *dev,
501 		uint64_t size,
502 		uint32_t *handle_p)
503 {
504 	struct drm_i915_gem_object *obj;
505 	int ret;
506 	u32 handle;
507 
508 	size = roundup(size, PAGE_SIZE);
509 	if (size == 0)
510 		return -EINVAL;
511 
512 	/* Allocate the new object */
513 	obj = i915_gem_object_create(dev, size);
514 	if (IS_ERR(obj))
515 		return PTR_ERR(obj);
516 
517 	ret = drm_gem_handle_create(file, &obj->base, &handle);
518 	/* drop reference from allocate - handle holds it now */
519 	i915_gem_object_put_unlocked(obj);
520 	if (ret)
521 		return ret;
522 
523 	*handle_p = handle;
524 	return 0;
525 }
526 
527 int
528 i915_gem_dumb_create(struct drm_file *file,
529 		     struct drm_device *dev,
530 		     struct drm_mode_create_dumb *args)
531 {
532 	/* have to work out size/pitch and return them */
533 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
534 	args->size = args->pitch * args->height;
535 	return i915_gem_create(file, dev,
536 			       args->size, &args->handle);
537 }
538 
539 /**
540  * Creates a new mm object and returns a handle to it.
541  * @dev: drm device pointer
542  * @data: ioctl data blob
543  * @file: drm file pointer
544  */
545 int
546 i915_gem_create_ioctl(struct drm_device *dev, void *data,
547 		      struct drm_file *file)
548 {
549 	struct drm_i915_gem_create *args = data;
550 
551 	return i915_gem_create(file, dev,
552 			       args->size, &args->handle);
553 }
554 
555 static inline int
556 __copy_to_user_swizzled(char __user *cpu_vaddr,
557 			const char *gpu_vaddr, int gpu_offset,
558 			int length)
559 {
560 	int ret, cpu_offset = 0;
561 
562 	while (length > 0) {
563 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
564 		int this_length = min(cacheline_end - gpu_offset, length);
565 		int swizzled_gpu_offset = gpu_offset ^ 64;
566 
567 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
568 				     gpu_vaddr + swizzled_gpu_offset,
569 				     this_length);
570 		if (ret)
571 			return ret + length;
572 
573 		cpu_offset += this_length;
574 		gpu_offset += this_length;
575 		length -= this_length;
576 	}
577 
578 	return 0;
579 }
580 
581 static inline int
582 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
583 			  const char __user *cpu_vaddr,
584 			  int length)
585 {
586 	int ret, cpu_offset = 0;
587 
588 	while (length > 0) {
589 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
590 		int this_length = min(cacheline_end - gpu_offset, length);
591 		int swizzled_gpu_offset = gpu_offset ^ 64;
592 
593 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
594 				       cpu_vaddr + cpu_offset,
595 				       this_length);
596 		if (ret)
597 			return ret + length;
598 
599 		cpu_offset += this_length;
600 		gpu_offset += this_length;
601 		length -= this_length;
602 	}
603 
604 	return 0;
605 }
606 
607 /*
608  * Pins the specified object's pages and synchronizes the object with
609  * GPU accesses. Sets needs_clflush to non-zero if the caller should
610  * flush the object from the CPU cache.
611  */
612 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
613 				    unsigned int *needs_clflush)
614 {
615 	int ret;
616 
617 	*needs_clflush = 0;
618 
619 	if (!i915_gem_object_has_struct_page(obj))
620 		return -ENODEV;
621 
622 	ret = i915_gem_object_wait_rendering(obj, true);
623 	if (ret)
624 		return ret;
625 
626 	ret = i915_gem_object_get_pages(obj);
627 	if (ret)
628 		return ret;
629 
630 	i915_gem_object_pin_pages(obj);
631 
632 	i915_gem_object_flush_gtt_write_domain(obj);
633 
634 	/* If we're not in the cpu read domain, set ourself into the gtt
635 	 * read domain and manually flush cachelines (if required). This
636 	 * optimizes for the case when the gpu will dirty the data
637 	 * anyway again before the next pread happens.
638 	 */
639 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
640 		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
641 							obj->cache_level);
642 
643 	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
644 		ret = i915_gem_object_set_to_cpu_domain(obj, false);
645 		if (ret)
646 			goto err_unpin;
647 
648 		*needs_clflush = 0;
649 	}
650 
651 	/* return with the pages pinned */
652 	return 0;
653 
654 err_unpin:
655 	i915_gem_object_unpin_pages(obj);
656 	return ret;
657 }
658 
659 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
660 				     unsigned int *needs_clflush)
661 {
662 	int ret;
663 
664 	*needs_clflush = 0;
665 	if (!i915_gem_object_has_struct_page(obj))
666 		return -ENODEV;
667 
668 	ret = i915_gem_object_wait_rendering(obj, false);
669 	if (ret)
670 		return ret;
671 
672 	ret = i915_gem_object_get_pages(obj);
673 	if (ret)
674 		return ret;
675 
676 	i915_gem_object_pin_pages(obj);
677 
678 	i915_gem_object_flush_gtt_write_domain(obj);
679 
680 	/* If we're not in the cpu write domain, set ourself into the
681 	 * gtt write domain and manually flush cachelines (as required).
682 	 * This optimizes for the case when the gpu will use the data
683 	 * right away and we therefore have to clflush anyway.
684 	 */
685 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
686 		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;
687 
688 	/* Same trick applies to invalidate partially written cachelines read
689 	 * before writing.
690 	 */
691 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
692 		*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
693 							 obj->cache_level);
694 
695 	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
696 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
697 		if (ret)
698 			goto err_unpin;
699 
700 		*needs_clflush = 0;
701 	}
702 
703 	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
704 		obj->cache_dirty = true;
705 
706 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
707 	obj->dirty = 1;
708 	/* return with the pages pinned */
709 	return 0;
710 
711 err_unpin:
712 	i915_gem_object_unpin_pages(obj);
713 	return ret;
714 }
715 
716 /* Per-page copy function for the shmem pread fastpath.
717  * Flushes invalid cachelines before reading the target if
718  * needs_clflush is set. */
719 static int
720 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
721 		 char __user *user_data,
722 		 bool page_do_bit17_swizzling, bool needs_clflush)
723 {
724 	char *vaddr;
725 	int ret;
726 
727 	if (unlikely(page_do_bit17_swizzling))
728 		return -EINVAL;
729 
730 	vaddr = kmap_atomic(page);
731 	if (needs_clflush)
732 		drm_clflush_virt_range(vaddr + shmem_page_offset,
733 				       page_length);
734 	ret = __copy_to_user_inatomic(user_data,
735 				      vaddr + shmem_page_offset,
736 				      page_length);
737 	kunmap_atomic(vaddr);
738 
739 	return ret ? -EFAULT : 0;
740 }
741 
742 static void
743 shmem_clflush_swizzled_range(char *addr, unsigned long length,
744 			     bool swizzled)
745 {
746 	if (unlikely(swizzled)) {
747 		unsigned long start = (unsigned long) addr;
748 		unsigned long end = (unsigned long) addr + length;
749 
750 		/* For swizzling simply ensure that we always flush both
751 		 * channels. Lame, but simple and it works. Swizzled
752 		 * pwrite/pread is far from a hotpath - current userspace
753 		 * doesn't use it at all. */
754 		start = round_down(start, 128);
755 		end = round_up(end, 128);
756 
757 		drm_clflush_virt_range((void *)start, end - start);
758 	} else {
759 		drm_clflush_virt_range(addr, length);
760 	}
761 
762 }
763 
764 /* Only difference to the fast-path function is that this can handle bit17
765  * and uses non-atomic copy and kmap functions. */
766 static int
767 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
768 		 char __user *user_data,
769 		 bool page_do_bit17_swizzling, bool needs_clflush)
770 {
771 	char *vaddr;
772 	int ret;
773 
774 	vaddr = kmap(page);
775 	if (needs_clflush)
776 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
777 					     page_length,
778 					     page_do_bit17_swizzling);
779 
780 	if (page_do_bit17_swizzling)
781 		ret = __copy_to_user_swizzled(user_data,
782 					      vaddr, shmem_page_offset,
783 					      page_length);
784 	else
785 		ret = __copy_to_user(user_data,
786 				     vaddr + shmem_page_offset,
787 				     page_length);
788 	kunmap(page);
789 
790 	return ret ? - EFAULT : 0;
791 }
792 
793 static inline unsigned long
794 slow_user_access(struct io_mapping *mapping,
795 		 uint64_t page_base, int page_offset,
796 		 char __user *user_data,
797 		 unsigned long length, bool pwrite)
798 {
799 	void __iomem *ioaddr;
800 	void *vaddr;
801 	uint64_t unwritten;
802 
803 	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
804 	/* We can use the cpu mem copy function because this is X86. */
805 	vaddr = (void __force *)ioaddr + page_offset;
806 	if (pwrite)
807 		unwritten = __copy_from_user(vaddr, user_data, length);
808 	else
809 		unwritten = __copy_to_user(user_data, vaddr, length);
810 
811 	io_mapping_unmap(ioaddr);
812 	return unwritten;
813 }
814 
815 static int
816 i915_gem_gtt_pread(struct drm_device *dev,
817 		   struct drm_i915_gem_object *obj, uint64_t size,
818 		   uint64_t data_offset, uint64_t data_ptr)
819 {
820 	struct drm_i915_private *dev_priv = to_i915(dev);
821 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
822 	struct i915_vma *vma;
823 	struct drm_mm_node node;
824 	char __user *user_data;
825 	uint64_t remain;
826 	uint64_t offset;
827 	int ret;
828 
829 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
830 	if (!IS_ERR(vma)) {
831 		node.start = i915_ggtt_offset(vma);
832 		node.allocated = false;
833 		ret = i915_vma_put_fence(vma);
834 		if (ret) {
835 			i915_vma_unpin(vma);
836 			vma = ERR_PTR(ret);
837 		}
838 	}
839 	if (IS_ERR(vma)) {
840 		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
841 		if (ret)
842 			goto out;
843 
844 		ret = i915_gem_object_get_pages(obj);
845 		if (ret) {
846 			remove_mappable_node(&node);
847 			goto out;
848 		}
849 
850 		i915_gem_object_pin_pages(obj);
851 	}
852 
853 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
854 	if (ret)
855 		goto out_unpin;
856 
857 	user_data = u64_to_user_ptr(data_ptr);
858 	remain = size;
859 	offset = data_offset;
860 
861 	mutex_unlock(&dev->struct_mutex);
862 	if (likely(!i915.prefault_disable)) {
863 		ret = fault_in_pages_writeable(user_data, remain);
864 		if (ret) {
865 			mutex_lock(&dev->struct_mutex);
866 			goto out_unpin;
867 		}
868 	}
869 
870 	while (remain > 0) {
871 		/* Operation in this page
872 		 *
873 		 * page_base = page offset within aperture
874 		 * page_offset = offset within page
875 		 * page_length = bytes to copy for this page
876 		 */
877 		u32 page_base = node.start;
878 		unsigned page_offset = offset_in_page(offset);
879 		unsigned page_length = PAGE_SIZE - page_offset;
880 		page_length = remain < page_length ? remain : page_length;
881 		if (node.allocated) {
882 			wmb();
883 			ggtt->base.insert_page(&ggtt->base,
884 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
885 					       node.start,
886 					       I915_CACHE_NONE, 0);
887 			wmb();
888 		} else {
889 			page_base += offset & PAGE_MASK;
890 		}
891 		/* This is a slow read/write as it tries to read from
892 		 * and write to user memory which may result into page
893 		 * faults, and so we cannot perform this under struct_mutex.
894 		 */
895 		if (slow_user_access(&ggtt->mappable, page_base,
896 				     page_offset, user_data,
897 				     page_length, false)) {
898 			ret = -EFAULT;
899 			break;
900 		}
901 
902 		remain -= page_length;
903 		user_data += page_length;
904 		offset += page_length;
905 	}
906 
907 	mutex_lock(&dev->struct_mutex);
908 	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
909 		/* The user has modified the object whilst we tried
910 		 * reading from it, and we now have no idea what domain
911 		 * the pages should be in. As we have just been touching
912 		 * them directly, flush everything back to the GTT
913 		 * domain.
914 		 */
915 		ret = i915_gem_object_set_to_gtt_domain(obj, false);
916 	}
917 
918 out_unpin:
919 	if (node.allocated) {
920 		wmb();
921 		ggtt->base.clear_range(&ggtt->base,
922 				       node.start, node.size,
923 				       true);
924 		i915_gem_object_unpin_pages(obj);
925 		remove_mappable_node(&node);
926 	} else {
927 		i915_vma_unpin(vma);
928 	}
929 out:
930 	return ret;
931 }
932 
933 static int
934 i915_gem_shmem_pread(struct drm_device *dev,
935 		     struct drm_i915_gem_object *obj,
936 		     struct drm_i915_gem_pread *args,
937 		     struct drm_file *file)
938 {
939 	char __user *user_data;
940 	ssize_t remain;
941 	loff_t offset;
942 	int shmem_page_offset, page_length, ret = 0;
943 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
944 	int prefaulted = 0;
945 	int needs_clflush = 0;
946 	struct sg_page_iter sg_iter;
947 
948 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
949 	if (ret)
950 		return ret;
951 
952 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
953 	user_data = u64_to_user_ptr(args->data_ptr);
954 	offset = args->offset;
955 	remain = args->size;
956 
957 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
958 			 offset >> PAGE_SHIFT) {
959 		struct page *page = sg_page_iter_page(&sg_iter);
960 
961 		if (remain <= 0)
962 			break;
963 
964 		/* Operation in this page
965 		 *
966 		 * shmem_page_offset = offset within page in shmem file
967 		 * page_length = bytes to copy for this page
968 		 */
969 		shmem_page_offset = offset_in_page(offset);
970 		page_length = remain;
971 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
972 			page_length = PAGE_SIZE - shmem_page_offset;
973 
974 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
975 			(page_to_phys(page) & (1 << 17)) != 0;
976 
977 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
978 				       user_data, page_do_bit17_swizzling,
979 				       needs_clflush);
980 		if (ret == 0)
981 			goto next_page;
982 
983 		mutex_unlock(&dev->struct_mutex);
984 
985 		if (likely(!i915.prefault_disable) && !prefaulted) {
986 			ret = fault_in_pages_writeable(user_data, remain);
987 			/* Userspace is tricking us, but we've already clobbered
988 			 * its pages with the prefault and promised to write the
989 			 * data up to the first fault. Hence ignore any errors
990 			 * and just continue. */
991 			(void)ret;
992 			prefaulted = 1;
993 		}
994 
995 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
996 				       user_data, page_do_bit17_swizzling,
997 				       needs_clflush);
998 
999 		mutex_lock(&dev->struct_mutex);
1000 
1001 		if (ret)
1002 			goto out;
1003 
1004 next_page:
1005 		remain -= page_length;
1006 		user_data += page_length;
1007 		offset += page_length;
1008 	}
1009 
1010 out:
1011 	i915_gem_obj_finish_shmem_access(obj);
1012 
1013 	return ret;
1014 }
1015 
1016 /**
1017  * Reads data from the object referenced by handle.
1018  * @dev: drm device pointer
1019  * @data: ioctl data blob
1020  * @file: drm file pointer
1021  *
1022  * On error, the contents of *data are undefined.
1023  */
1024 int
1025 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1026 		     struct drm_file *file)
1027 {
1028 	struct drm_i915_gem_pread *args = data;
1029 	struct drm_i915_gem_object *obj;
1030 	int ret = 0;
1031 
1032 	if (args->size == 0)
1033 		return 0;
1034 
1035 	if (!access_ok(VERIFY_WRITE,
1036 		       u64_to_user_ptr(args->data_ptr),
1037 		       args->size))
1038 		return -EFAULT;
1039 
1040 	obj = i915_gem_object_lookup(file, args->handle);
1041 	if (!obj)
1042 		return -ENOENT;
1043 
1044 	/* Bounds check source.  */
1045 	if (args->offset > obj->base.size ||
1046 	    args->size > obj->base.size - args->offset) {
1047 		ret = -EINVAL;
1048 		goto err;
1049 	}
1050 
1051 	trace_i915_gem_object_pread(obj, args->offset, args->size);
1052 
1053 	ret = __unsafe_wait_rendering(obj, to_rps_client(file), true);
1054 	if (ret)
1055 		goto err;
1056 
1057 	ret = i915_mutex_lock_interruptible(dev);
1058 	if (ret)
1059 		goto err;
1060 
1061 	ret = i915_gem_shmem_pread(dev, obj, args, file);
1062 
1063 	/* pread for non shmem backed objects */
1064 	if (ret == -EFAULT || ret == -ENODEV) {
1065 		intel_runtime_pm_get(to_i915(dev));
1066 		ret = i915_gem_gtt_pread(dev, obj, args->size,
1067 					args->offset, args->data_ptr);
1068 		intel_runtime_pm_put(to_i915(dev));
1069 	}
1070 
1071 	i915_gem_object_put(obj);
1072 	mutex_unlock(&dev->struct_mutex);
1073 
1074 	return ret;
1075 
1076 err:
1077 	i915_gem_object_put_unlocked(obj);
1078 	return ret;
1079 }
1080 
1081 /* This is the fast write path which cannot handle
1082  * page faults in the source data
1083  */
1084 
1085 static inline int
1086 fast_user_write(struct io_mapping *mapping,
1087 		loff_t page_base, int page_offset,
1088 		char __user *user_data,
1089 		int length)
1090 {
1091 	void __iomem *vaddr_atomic;
1092 	void *vaddr;
1093 	unsigned long unwritten;
1094 
1095 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
1096 	/* We can use the cpu mem copy function because this is X86. */
1097 	vaddr = (void __force*)vaddr_atomic + page_offset;
1098 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
1099 						      user_data, length);
1100 	io_mapping_unmap_atomic(vaddr_atomic);
1101 	return unwritten;
1102 }
1103 
1104 /**
1105  * This is the fast pwrite path, where we copy the data directly from the
1106  * user into the GTT, uncached.
1107  * @i915: i915 device private data
1108  * @obj: i915 gem object
1109  * @args: pwrite arguments structure
1110  * @file: drm file pointer
1111  */
1112 static int
1113 i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
1114 			 struct drm_i915_gem_object *obj,
1115 			 struct drm_i915_gem_pwrite *args,
1116 			 struct drm_file *file)
1117 {
1118 	struct i915_ggtt *ggtt = &i915->ggtt;
1119 	struct drm_device *dev = obj->base.dev;
1120 	struct i915_vma *vma;
1121 	struct drm_mm_node node;
1122 	uint64_t remain, offset;
1123 	char __user *user_data;
1124 	int ret;
1125 	bool hit_slow_path = false;
1126 
1127 	if (i915_gem_object_is_tiled(obj))
1128 		return -EFAULT;
1129 
1130 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1131 				       PIN_MAPPABLE | PIN_NONBLOCK);
1132 	if (!IS_ERR(vma)) {
1133 		node.start = i915_ggtt_offset(vma);
1134 		node.allocated = false;
1135 		ret = i915_vma_put_fence(vma);
1136 		if (ret) {
1137 			i915_vma_unpin(vma);
1138 			vma = ERR_PTR(ret);
1139 		}
1140 	}
1141 	if (IS_ERR(vma)) {
1142 		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
1143 		if (ret)
1144 			goto out;
1145 
1146 		ret = i915_gem_object_get_pages(obj);
1147 		if (ret) {
1148 			remove_mappable_node(&node);
1149 			goto out;
1150 		}
1151 
1152 		i915_gem_object_pin_pages(obj);
1153 	}
1154 
1155 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1156 	if (ret)
1157 		goto out_unpin;
1158 
1159 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1160 	obj->dirty = true;
1161 
1162 	user_data = u64_to_user_ptr(args->data_ptr);
1163 	offset = args->offset;
1164 	remain = args->size;
1165 	while (remain) {
1166 		/* Operation in this page
1167 		 *
1168 		 * page_base = page offset within aperture
1169 		 * page_offset = offset within page
1170 		 * page_length = bytes to copy for this page
1171 		 */
1172 		u32 page_base = node.start;
1173 		unsigned page_offset = offset_in_page(offset);
1174 		unsigned page_length = PAGE_SIZE - page_offset;
1175 		page_length = remain < page_length ? remain : page_length;
1176 		if (node.allocated) {
1177 			wmb(); /* flush the write before we modify the GGTT */
1178 			ggtt->base.insert_page(&ggtt->base,
1179 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1180 					       node.start, I915_CACHE_NONE, 0);
1181 			wmb(); /* flush modifications to the GGTT (insert_page) */
1182 		} else {
1183 			page_base += offset & PAGE_MASK;
1184 		}
1185 		/* If we get a fault while copying data, then (presumably) our
1186 		 * source page isn't available.  Return the error and we'll
1187 		 * retry in the slow path.
1188 		 * If the object is non-shmem backed, we retry again with the
1189 		 * path that handles page fault.
1190 		 */
1191 		if (fast_user_write(&ggtt->mappable, page_base,
1192 				    page_offset, user_data, page_length)) {
1193 			hit_slow_path = true;
1194 			mutex_unlock(&dev->struct_mutex);
1195 			if (slow_user_access(&ggtt->mappable,
1196 					     page_base,
1197 					     page_offset, user_data,
1198 					     page_length, true)) {
1199 				ret = -EFAULT;
1200 				mutex_lock(&dev->struct_mutex);
1201 				goto out_flush;
1202 			}
1203 
1204 			mutex_lock(&dev->struct_mutex);
1205 		}
1206 
1207 		remain -= page_length;
1208 		user_data += page_length;
1209 		offset += page_length;
1210 	}
1211 
1212 out_flush:
1213 	if (hit_slow_path) {
1214 		if (ret == 0 &&
1215 		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
1216 			/* The user has modified the object whilst we tried
1217 			 * reading from it, and we now have no idea what domain
1218 			 * the pages should be in. As we have just been touching
1219 			 * them directly, flush everything back to the GTT
1220 			 * domain.
1221 			 */
1222 			ret = i915_gem_object_set_to_gtt_domain(obj, false);
1223 		}
1224 	}
1225 
1226 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1227 out_unpin:
1228 	if (node.allocated) {
1229 		wmb();
1230 		ggtt->base.clear_range(&ggtt->base,
1231 				       node.start, node.size,
1232 				       true);
1233 		i915_gem_object_unpin_pages(obj);
1234 		remove_mappable_node(&node);
1235 	} else {
1236 		i915_vma_unpin(vma);
1237 	}
1238 out:
1239 	return ret;
1240 }
1241 
1242 /* Per-page copy function for the shmem pwrite fastpath.
1243  * Flushes invalid cachelines before writing to the target if
1244  * needs_clflush_before is set and flushes out any written cachelines after
1245  * writing if needs_clflush is set. */
1246 static int
1247 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
1248 		  char __user *user_data,
1249 		  bool page_do_bit17_swizzling,
1250 		  bool needs_clflush_before,
1251 		  bool needs_clflush_after)
1252 {
1253 	char *vaddr;
1254 	int ret;
1255 
1256 	if (unlikely(page_do_bit17_swizzling))
1257 		return -EINVAL;
1258 
1259 	vaddr = kmap_atomic(page);
1260 	if (needs_clflush_before)
1261 		drm_clflush_virt_range(vaddr + shmem_page_offset,
1262 				       page_length);
1263 	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
1264 					user_data, page_length);
1265 	if (needs_clflush_after)
1266 		drm_clflush_virt_range(vaddr + shmem_page_offset,
1267 				       page_length);
1268 	kunmap_atomic(vaddr);
1269 
1270 	return ret ? -EFAULT : 0;
1271 }
1272 
1273 /* Only difference to the fast-path function is that this can handle bit17
1274  * and uses non-atomic copy and kmap functions. */
1275 static int
1276 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
1277 		  char __user *user_data,
1278 		  bool page_do_bit17_swizzling,
1279 		  bool needs_clflush_before,
1280 		  bool needs_clflush_after)
1281 {
1282 	char *vaddr;
1283 	int ret;
1284 
1285 	vaddr = kmap(page);
1286 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1287 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1288 					     page_length,
1289 					     page_do_bit17_swizzling);
1290 	if (page_do_bit17_swizzling)
1291 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1292 						user_data,
1293 						page_length);
1294 	else
1295 		ret = __copy_from_user(vaddr + shmem_page_offset,
1296 				       user_data,
1297 				       page_length);
1298 	if (needs_clflush_after)
1299 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1300 					     page_length,
1301 					     page_do_bit17_swizzling);
1302 	kunmap(page);
1303 
1304 	return ret ? -EFAULT : 0;
1305 }
1306 
1307 static int
1308 i915_gem_shmem_pwrite(struct drm_device *dev,
1309 		      struct drm_i915_gem_object *obj,
1310 		      struct drm_i915_gem_pwrite *args,
1311 		      struct drm_file *file)
1312 {
1313 	ssize_t remain;
1314 	loff_t offset;
1315 	char __user *user_data;
1316 	int shmem_page_offset, page_length, ret = 0;
1317 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1318 	int hit_slowpath = 0;
1319 	unsigned int needs_clflush;
1320 	struct sg_page_iter sg_iter;
1321 
1322 	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1323 	if (ret)
1324 		return ret;
1325 
1326 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1327 	user_data = u64_to_user_ptr(args->data_ptr);
1328 	offset = args->offset;
1329 	remain = args->size;
1330 
1331 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1332 			 offset >> PAGE_SHIFT) {
1333 		struct page *page = sg_page_iter_page(&sg_iter);
1334 		int partial_cacheline_write;
1335 
1336 		if (remain <= 0)
1337 			break;
1338 
1339 		/* Operation in this page
1340 		 *
1341 		 * shmem_page_offset = offset within page in shmem file
1342 		 * page_length = bytes to copy for this page
1343 		 */
1344 		shmem_page_offset = offset_in_page(offset);
1345 
1346 		page_length = remain;
1347 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
1348 			page_length = PAGE_SIZE - shmem_page_offset;
1349 
1350 		/* If we don't overwrite a cacheline completely we need to be
1351 		 * careful to have up-to-date data by first clflushing. Don't
1352 		 * overcomplicate things and flush the entire patch. */
1353 		partial_cacheline_write = needs_clflush & CLFLUSH_BEFORE &&
1354 			((shmem_page_offset | page_length)
1355 				& (boot_cpu_data.x86_clflush_size - 1));
1356 
1357 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1358 			(page_to_phys(page) & (1 << 17)) != 0;
1359 
1360 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1361 					user_data, page_do_bit17_swizzling,
1362 					partial_cacheline_write,
1363 					needs_clflush & CLFLUSH_AFTER);
1364 		if (ret == 0)
1365 			goto next_page;
1366 
1367 		hit_slowpath = 1;
1368 		mutex_unlock(&dev->struct_mutex);
1369 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1370 					user_data, page_do_bit17_swizzling,
1371 					partial_cacheline_write,
1372 					needs_clflush & CLFLUSH_AFTER);
1373 
1374 		mutex_lock(&dev->struct_mutex);
1375 
1376 		if (ret)
1377 			goto out;
1378 
1379 next_page:
1380 		remain -= page_length;
1381 		user_data += page_length;
1382 		offset += page_length;
1383 	}
1384 
1385 out:
1386 	i915_gem_obj_finish_shmem_access(obj);
1387 
1388 	if (hit_slowpath) {
1389 		/*
1390 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
1391 		 * cachelines in-line while writing and the object moved
1392 		 * out of the cpu write domain while we've dropped the lock.
1393 		 */
1394 		if (!(needs_clflush & CLFLUSH_AFTER) &&
1395 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1396 			if (i915_gem_clflush_object(obj, obj->pin_display))
1397 				needs_clflush |= CLFLUSH_AFTER;
1398 		}
1399 	}
1400 
1401 	if (needs_clflush & CLFLUSH_AFTER)
1402 		i915_gem_chipset_flush(to_i915(dev));
1403 
1404 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1405 	return ret;
1406 }
1407 
1408 /**
1409  * Writes data to the object referenced by handle.
1410  * @dev: drm device
1411  * @data: ioctl data blob
1412  * @file: drm file
1413  *
1414  * On error, the contents of the buffer that were to be modified are undefined.
1415  */
1416 int
1417 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1418 		      struct drm_file *file)
1419 {
1420 	struct drm_i915_private *dev_priv = to_i915(dev);
1421 	struct drm_i915_gem_pwrite *args = data;
1422 	struct drm_i915_gem_object *obj;
1423 	int ret;
1424 
1425 	if (args->size == 0)
1426 		return 0;
1427 
1428 	if (!access_ok(VERIFY_READ,
1429 		       u64_to_user_ptr(args->data_ptr),
1430 		       args->size))
1431 		return -EFAULT;
1432 
1433 	if (likely(!i915.prefault_disable)) {
1434 		ret = fault_in_pages_readable(u64_to_user_ptr(args->data_ptr),
1435 						   args->size);
1436 		if (ret)
1437 			return -EFAULT;
1438 	}
1439 
1440 	obj = i915_gem_object_lookup(file, args->handle);
1441 	if (!obj)
1442 		return -ENOENT;
1443 
1444 	/* Bounds check destination. */
1445 	if (args->offset > obj->base.size ||
1446 	    args->size > obj->base.size - args->offset) {
1447 		ret = -EINVAL;
1448 		goto err;
1449 	}
1450 
1451 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1452 
1453 	ret = __unsafe_wait_rendering(obj, to_rps_client(file), false);
1454 	if (ret)
1455 		goto err;
1456 
1457 	intel_runtime_pm_get(dev_priv);
1458 
1459 	ret = i915_mutex_lock_interruptible(dev);
1460 	if (ret)
1461 		goto err_rpm;
1462 
1463 	ret = -EFAULT;
1464 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1465 	 * it would end up going through the fenced access, and we'll get
1466 	 * different detiling behavior between reading and writing.
1467 	 * pread/pwrite currently are reading and writing from the CPU
1468 	 * perspective, requiring manual detiling by the client.
1469 	 */
1470 	if (!i915_gem_object_has_struct_page(obj) ||
1471 	    cpu_write_needs_clflush(obj)) {
1472 		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
1473 		/* Note that the gtt paths might fail with non-page-backed user
1474 		 * pointers (e.g. gtt mappings when moving data between
1475 		 * textures). Fallback to the shmem path in that case. */
1476 	}
1477 
1478 	if (ret == -EFAULT || ret == -ENOSPC) {
1479 		if (obj->phys_handle)
1480 			ret = i915_gem_phys_pwrite(obj, args, file);
1481 		else
1482 			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1483 	}
1484 
1485 	i915_gem_object_put(obj);
1486 	mutex_unlock(&dev->struct_mutex);
1487 	intel_runtime_pm_put(dev_priv);
1488 
1489 	return ret;
1490 
1491 err_rpm:
1492 	intel_runtime_pm_put(dev_priv);
1493 err:
1494 	i915_gem_object_put_unlocked(obj);
1495 	return ret;
1496 }
1497 
1498 static inline enum fb_op_origin
1499 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1500 {
1501 	return (domain == I915_GEM_DOMAIN_GTT ?
1502 		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1503 }
1504 
1505 /**
1506  * Called when user space prepares to use an object with the CPU, either
1507  * through the mmap ioctl's mapping or a GTT mapping.
1508  * @dev: drm device
1509  * @data: ioctl data blob
1510  * @file: drm file
1511  */
1512 int
1513 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1514 			  struct drm_file *file)
1515 {
1516 	struct drm_i915_gem_set_domain *args = data;
1517 	struct drm_i915_gem_object *obj;
1518 	uint32_t read_domains = args->read_domains;
1519 	uint32_t write_domain = args->write_domain;
1520 	int ret;
1521 
1522 	/* Only handle setting domains to types used by the CPU. */
1523 	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1524 		return -EINVAL;
1525 
1526 	/* Having something in the write domain implies it's in the read
1527 	 * domain, and only that read domain.  Enforce that in the request.
1528 	 */
1529 	if (write_domain != 0 && read_domains != write_domain)
1530 		return -EINVAL;
1531 
1532 	obj = i915_gem_object_lookup(file, args->handle);
1533 	if (!obj)
1534 		return -ENOENT;
1535 
1536 	/* Try to flush the object off the GPU without holding the lock.
1537 	 * We will repeat the flush holding the lock in the normal manner
1538 	 * to catch cases where we are gazumped.
1539 	 */
1540 	ret = __unsafe_wait_rendering(obj, to_rps_client(file), !write_domain);
1541 	if (ret)
1542 		goto err;
1543 
1544 	ret = i915_mutex_lock_interruptible(dev);
1545 	if (ret)
1546 		goto err;
1547 
1548 	if (read_domains & I915_GEM_DOMAIN_GTT)
1549 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1550 	else
1551 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1552 
1553 	if (write_domain != 0)
1554 		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1555 
1556 	i915_gem_object_put(obj);
1557 	mutex_unlock(&dev->struct_mutex);
1558 	return ret;
1559 
1560 err:
1561 	i915_gem_object_put_unlocked(obj);
1562 	return ret;
1563 }
1564 
1565 /**
1566  * Called when user space has done writes to this buffer
1567  * @dev: drm device
1568  * @data: ioctl data blob
1569  * @file: drm file
1570  */
1571 int
1572 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1573 			 struct drm_file *file)
1574 {
1575 	struct drm_i915_gem_sw_finish *args = data;
1576 	struct drm_i915_gem_object *obj;
1577 	int err = 0;
1578 
1579 	obj = i915_gem_object_lookup(file, args->handle);
1580 	if (!obj)
1581 		return -ENOENT;
1582 
1583 	/* Pinned buffers may be scanout, so flush the cache */
1584 	if (READ_ONCE(obj->pin_display)) {
1585 		err = i915_mutex_lock_interruptible(dev);
1586 		if (!err) {
1587 			i915_gem_object_flush_cpu_write_domain(obj);
1588 			mutex_unlock(&dev->struct_mutex);
1589 		}
1590 	}
1591 
1592 	i915_gem_object_put_unlocked(obj);
1593 	return err;
1594 }
1595 
1596 /**
1597  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1598  *			 it is mapped to.
1599  * @dev: drm device
1600  * @data: ioctl data blob
1601  * @file: drm file
1602  *
1603  * While the mapping holds a reference on the contents of the object, it doesn't
1604  * imply a ref on the object itself.
1605  *
1606  * IMPORTANT:
1607  *
1608  * DRM driver writers who look a this function as an example for how to do GEM
1609  * mmap support, please don't implement mmap support like here. The modern way
1610  * to implement DRM mmap support is with an mmap offset ioctl (like
1611  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1612  * That way debug tooling like valgrind will understand what's going on, hiding
1613  * the mmap call in a driver private ioctl will break that. The i915 driver only
1614  * does cpu mmaps this way because we didn't know better.
1615  */
1616 int
1617 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1618 		    struct drm_file *file)
1619 {
1620 	struct drm_i915_gem_mmap *args = data;
1621 	struct drm_i915_gem_object *obj;
1622 	unsigned long addr;
1623 
1624 	if (args->flags & ~(I915_MMAP_WC))
1625 		return -EINVAL;
1626 
1627 	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1628 		return -ENODEV;
1629 
1630 	obj = i915_gem_object_lookup(file, args->handle);
1631 	if (!obj)
1632 		return -ENOENT;
1633 
1634 	/* prime objects have no backing filp to GEM mmap
1635 	 * pages from.
1636 	 */
1637 	if (!obj->base.filp) {
1638 		i915_gem_object_put_unlocked(obj);
1639 		return -EINVAL;
1640 	}
1641 
1642 	addr = vm_mmap(obj->base.filp, 0, args->size,
1643 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1644 		       args->offset);
1645 	if (args->flags & I915_MMAP_WC) {
1646 		struct mm_struct *mm = current->mm;
1647 		struct vm_area_struct *vma;
1648 
1649 		if (down_write_killable(&mm->mmap_sem)) {
1650 			i915_gem_object_put_unlocked(obj);
1651 			return -EINTR;
1652 		}
1653 		vma = find_vma(mm, addr);
1654 		if (vma)
1655 			vma->vm_page_prot =
1656 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1657 		else
1658 			addr = -ENOMEM;
1659 		up_write(&mm->mmap_sem);
1660 
1661 		/* This may race, but that's ok, it only gets set */
1662 		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1663 	}
1664 	i915_gem_object_put_unlocked(obj);
1665 	if (IS_ERR((void *)addr))
1666 		return addr;
1667 
1668 	args->addr_ptr = (uint64_t) addr;
1669 
1670 	return 0;
1671 }
1672 
1673 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1674 {
1675 	u64 size;
1676 
1677 	size = i915_gem_object_get_stride(obj);
1678 	size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;
1679 
1680 	return size >> PAGE_SHIFT;
1681 }
1682 
1683 /**
1684  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1685  *
1686  * A history of the GTT mmap interface:
1687  *
1688  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1689  *     aligned and suitable for fencing, and still fit into the available
1690  *     mappable space left by the pinned display objects. A classic problem
1691  *     we called the page-fault-of-doom where we would ping-pong between
1692  *     two objects that could not fit inside the GTT and so the memcpy
1693  *     would page one object in at the expense of the other between every
1694  *     single byte.
1695  *
1696  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1697  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1698  *     object is too large for the available space (or simply too large
1699  *     for the mappable aperture!), a view is created instead and faulted
1700  *     into userspace. (This view is aligned and sized appropriately for
1701  *     fenced access.)
1702  *
1703  * Restrictions:
1704  *
1705  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1706  *    hangs on some architectures, corruption on others. An attempt to service
1707  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1708  *
1709  *  * the object must be able to fit into RAM (physical memory, though no
1710  *    limited to the mappable aperture).
1711  *
1712  *
1713  * Caveats:
1714  *
1715  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1716  *    all data to system memory. Subsequent access will not be synchronized.
1717  *
1718  *  * all mappings are revoked on runtime device suspend.
1719  *
1720  *  * there are only 8, 16 or 32 fence registers to share between all users
1721  *    (older machines require fence register for display and blitter access
1722  *    as well). Contention of the fence registers will cause the previous users
1723  *    to be unmapped and any new access will generate new page faults.
1724  *
1725  *  * running out of memory while servicing a fault may generate a SIGBUS,
1726  *    rather than the expected SIGSEGV.
1727  */
1728 int i915_gem_mmap_gtt_version(void)
1729 {
1730 	return 1;
1731 }
1732 
1733 /**
1734  * i915_gem_fault - fault a page into the GTT
1735  * @area: CPU VMA in question
1736  * @vmf: fault info
1737  *
1738  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1739  * from userspace.  The fault handler takes care of binding the object to
1740  * the GTT (if needed), allocating and programming a fence register (again,
1741  * only if needed based on whether the old reg is still valid or the object
1742  * is tiled) and inserting a new PTE into the faulting process.
1743  *
1744  * Note that the faulting process may involve evicting existing objects
1745  * from the GTT and/or fence registers to make room.  So performance may
1746  * suffer if the GTT working set is large or there are few fence registers
1747  * left.
1748  *
1749  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1750  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1751  */
1752 int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1753 {
1754 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1755 	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1756 	struct drm_device *dev = obj->base.dev;
1757 	struct drm_i915_private *dev_priv = to_i915(dev);
1758 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1759 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1760 	struct i915_vma *vma;
1761 	pgoff_t page_offset;
1762 	unsigned int flags;
1763 	int ret;
1764 
1765 	/* We don't use vmf->pgoff since that has the fake offset */
1766 	page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
1767 		PAGE_SHIFT;
1768 
1769 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1770 
1771 	/* Try to flush the object off the GPU first without holding the lock.
1772 	 * Upon acquiring the lock, we will perform our sanity checks and then
1773 	 * repeat the flush holding the lock in the normal manner to catch cases
1774 	 * where we are gazumped.
1775 	 */
1776 	ret = __unsafe_wait_rendering(obj, NULL, !write);
1777 	if (ret)
1778 		goto err;
1779 
1780 	intel_runtime_pm_get(dev_priv);
1781 
1782 	ret = i915_mutex_lock_interruptible(dev);
1783 	if (ret)
1784 		goto err_rpm;
1785 
1786 	/* Access to snoopable pages through the GTT is incoherent. */
1787 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1788 		ret = -EFAULT;
1789 		goto err_unlock;
1790 	}
1791 
1792 	/* If the object is smaller than a couple of partial vma, it is
1793 	 * not worth only creating a single partial vma - we may as well
1794 	 * clear enough space for the full object.
1795 	 */
1796 	flags = PIN_MAPPABLE;
1797 	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1798 		flags |= PIN_NONBLOCK | PIN_NONFAULT;
1799 
1800 	/* Now pin it into the GTT as needed */
1801 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1802 	if (IS_ERR(vma)) {
1803 		struct i915_ggtt_view view;
1804 		unsigned int chunk_size;
1805 
1806 		/* Use a partial view if it is bigger than available space */
1807 		chunk_size = MIN_CHUNK_PAGES;
1808 		if (i915_gem_object_is_tiled(obj))
1809 			chunk_size = max(chunk_size, tile_row_pages(obj));
1810 
1811 		memset(&view, 0, sizeof(view));
1812 		view.type = I915_GGTT_VIEW_PARTIAL;
1813 		view.params.partial.offset = rounddown(page_offset, chunk_size);
1814 		view.params.partial.size =
1815 			min_t(unsigned int, chunk_size,
1816 			      (area->vm_end - area->vm_start) / PAGE_SIZE -
1817 			      view.params.partial.offset);
1818 
1819 		/* If the partial covers the entire object, just create a
1820 		 * normal VMA.
1821 		 */
1822 		if (chunk_size >= obj->base.size >> PAGE_SHIFT)
1823 			view.type = I915_GGTT_VIEW_NORMAL;
1824 
1825 		/* Userspace is now writing through an untracked VMA, abandon
1826 		 * all hope that the hardware is able to track future writes.
1827 		 */
1828 		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1829 
1830 		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1831 	}
1832 	if (IS_ERR(vma)) {
1833 		ret = PTR_ERR(vma);
1834 		goto err_unlock;
1835 	}
1836 
1837 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1838 	if (ret)
1839 		goto err_unpin;
1840 
1841 	ret = i915_vma_get_fence(vma);
1842 	if (ret)
1843 		goto err_unpin;
1844 
1845 	/* Finally, remap it using the new GTT offset */
1846 	ret = remap_io_mapping(area,
1847 			       area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
1848 			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1849 			       min_t(u64, vma->size, area->vm_end - area->vm_start),
1850 			       &ggtt->mappable);
1851 	if (ret)
1852 		goto err_unpin;
1853 
1854 	obj->fault_mappable = true;
1855 err_unpin:
1856 	__i915_vma_unpin(vma);
1857 err_unlock:
1858 	mutex_unlock(&dev->struct_mutex);
1859 err_rpm:
1860 	intel_runtime_pm_put(dev_priv);
1861 err:
1862 	switch (ret) {
1863 	case -EIO:
1864 		/*
1865 		 * We eat errors when the gpu is terminally wedged to avoid
1866 		 * userspace unduly crashing (gl has no provisions for mmaps to
1867 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1868 		 * and so needs to be reported.
1869 		 */
1870 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1871 			ret = VM_FAULT_SIGBUS;
1872 			break;
1873 		}
1874 	case -EAGAIN:
1875 		/*
1876 		 * EAGAIN means the gpu is hung and we'll wait for the error
1877 		 * handler to reset everything when re-faulting in
1878 		 * i915_mutex_lock_interruptible.
1879 		 */
1880 	case 0:
1881 	case -ERESTARTSYS:
1882 	case -EINTR:
1883 	case -EBUSY:
1884 		/*
1885 		 * EBUSY is ok: this just means that another thread
1886 		 * already did the job.
1887 		 */
1888 		ret = VM_FAULT_NOPAGE;
1889 		break;
1890 	case -ENOMEM:
1891 		ret = VM_FAULT_OOM;
1892 		break;
1893 	case -ENOSPC:
1894 	case -EFAULT:
1895 		ret = VM_FAULT_SIGBUS;
1896 		break;
1897 	default:
1898 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1899 		ret = VM_FAULT_SIGBUS;
1900 		break;
1901 	}
1902 	return ret;
1903 }
1904 
1905 /**
1906  * i915_gem_release_mmap - remove physical page mappings
1907  * @obj: obj in question
1908  *
1909  * Preserve the reservation of the mmapping with the DRM core code, but
1910  * relinquish ownership of the pages back to the system.
1911  *
1912  * It is vital that we remove the page mapping if we have mapped a tiled
1913  * object through the GTT and then lose the fence register due to
1914  * resource pressure. Similarly if the object has been moved out of the
1915  * aperture, than pages mapped into userspace must be revoked. Removing the
1916  * mapping will then trigger a page fault on the next user access, allowing
1917  * fixup by i915_gem_fault().
1918  */
1919 void
1920 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1921 {
1922 	/* Serialisation between user GTT access and our code depends upon
1923 	 * revoking the CPU's PTE whilst the mutex is held. The next user
1924 	 * pagefault then has to wait until we release the mutex.
1925 	 */
1926 	lockdep_assert_held(&obj->base.dev->struct_mutex);
1927 
1928 	if (!obj->fault_mappable)
1929 		return;
1930 
1931 	drm_vma_node_unmap(&obj->base.vma_node,
1932 			   obj->base.dev->anon_inode->i_mapping);
1933 
1934 	/* Ensure that the CPU's PTE are revoked and there are not outstanding
1935 	 * memory transactions from userspace before we return. The TLB
1936 	 * flushing implied above by changing the PTE above *should* be
1937 	 * sufficient, an extra barrier here just provides us with a bit
1938 	 * of paranoid documentation about our requirement to serialise
1939 	 * memory writes before touching registers / GSM.
1940 	 */
1941 	wmb();
1942 
1943 	obj->fault_mappable = false;
1944 }
1945 
1946 void
1947 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1948 {
1949 	struct drm_i915_gem_object *obj;
1950 
1951 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1952 		i915_gem_release_mmap(obj);
1953 }
1954 
1955 /**
1956  * i915_gem_get_ggtt_size - return required global GTT size for an object
1957  * @dev_priv: i915 device
1958  * @size: object size
1959  * @tiling_mode: tiling mode
1960  *
1961  * Return the required global GTT size for an object, taking into account
1962  * potential fence register mapping.
1963  */
1964 u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
1965 			   u64 size, int tiling_mode)
1966 {
1967 	u64 ggtt_size;
1968 
1969 	GEM_BUG_ON(size == 0);
1970 
1971 	if (INTEL_GEN(dev_priv) >= 4 ||
1972 	    tiling_mode == I915_TILING_NONE)
1973 		return size;
1974 
1975 	/* Previous chips need a power-of-two fence region when tiling */
1976 	if (IS_GEN3(dev_priv))
1977 		ggtt_size = 1024*1024;
1978 	else
1979 		ggtt_size = 512*1024;
1980 
1981 	while (ggtt_size < size)
1982 		ggtt_size <<= 1;
1983 
1984 	return ggtt_size;
1985 }
1986 
1987 /**
1988  * i915_gem_get_ggtt_alignment - return required global GTT alignment
1989  * @dev_priv: i915 device
1990  * @size: object size
1991  * @tiling_mode: tiling mode
1992  * @fenced: is fenced alignment required or not
1993  *
1994  * Return the required global GTT alignment for an object, taking into account
1995  * potential fence register mapping.
1996  */
1997 u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
1998 				int tiling_mode, bool fenced)
1999 {
2000 	GEM_BUG_ON(size == 0);
2001 
2002 	/*
2003 	 * Minimum alignment is 4k (GTT page size), but might be greater
2004 	 * if a fence register is needed for the object.
2005 	 */
2006 	if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
2007 	    tiling_mode == I915_TILING_NONE)
2008 		return 4096;
2009 
2010 	/*
2011 	 * Previous chips need to be aligned to the size of the smallest
2012 	 * fence register that can contain the object.
2013 	 */
2014 	return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
2015 }
2016 
2017 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2018 {
2019 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2020 	int err;
2021 
2022 	err = drm_gem_create_mmap_offset(&obj->base);
2023 	if (!err)
2024 		return 0;
2025 
2026 	/* We can idle the GPU locklessly to flush stale objects, but in order
2027 	 * to claim that space for ourselves, we need to take the big
2028 	 * struct_mutex to free the requests+objects and allocate our slot.
2029 	 */
2030 	err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2031 	if (err)
2032 		return err;
2033 
2034 	err = i915_mutex_lock_interruptible(&dev_priv->drm);
2035 	if (!err) {
2036 		i915_gem_retire_requests(dev_priv);
2037 		err = drm_gem_create_mmap_offset(&obj->base);
2038 		mutex_unlock(&dev_priv->drm.struct_mutex);
2039 	}
2040 
2041 	return err;
2042 }
2043 
2044 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2045 {
2046 	drm_gem_free_mmap_offset(&obj->base);
2047 }
2048 
2049 int
2050 i915_gem_mmap_gtt(struct drm_file *file,
2051 		  struct drm_device *dev,
2052 		  uint32_t handle,
2053 		  uint64_t *offset)
2054 {
2055 	struct drm_i915_gem_object *obj;
2056 	int ret;
2057 
2058 	obj = i915_gem_object_lookup(file, handle);
2059 	if (!obj)
2060 		return -ENOENT;
2061 
2062 	ret = i915_gem_object_create_mmap_offset(obj);
2063 	if (ret == 0)
2064 		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2065 
2066 	i915_gem_object_put_unlocked(obj);
2067 	return ret;
2068 }
2069 
2070 /**
2071  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2072  * @dev: DRM device
2073  * @data: GTT mapping ioctl data
2074  * @file: GEM object info
2075  *
2076  * Simply returns the fake offset to userspace so it can mmap it.
2077  * The mmap call will end up in drm_gem_mmap(), which will set things
2078  * up so we can get faults in the handler above.
2079  *
2080  * The fault handler will take care of binding the object into the GTT
2081  * (since it may have been evicted to make room for something), allocating
2082  * a fence register, and mapping the appropriate aperture address into
2083  * userspace.
2084  */
2085 int
2086 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2087 			struct drm_file *file)
2088 {
2089 	struct drm_i915_gem_mmap_gtt *args = data;
2090 
2091 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2092 }
2093 
2094 /* Immediately discard the backing storage */
2095 static void
2096 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2097 {
2098 	i915_gem_object_free_mmap_offset(obj);
2099 
2100 	if (obj->base.filp == NULL)
2101 		return;
2102 
2103 	/* Our goal here is to return as much of the memory as
2104 	 * is possible back to the system as we are called from OOM.
2105 	 * To do this we must instruct the shmfs to drop all of its
2106 	 * backing pages, *now*.
2107 	 */
2108 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2109 	obj->madv = __I915_MADV_PURGED;
2110 }
2111 
2112 /* Try to discard unwanted pages */
2113 static void
2114 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2115 {
2116 	struct address_space *mapping;
2117 
2118 	switch (obj->madv) {
2119 	case I915_MADV_DONTNEED:
2120 		i915_gem_object_truncate(obj);
2121 	case __I915_MADV_PURGED:
2122 		return;
2123 	}
2124 
2125 	if (obj->base.filp == NULL)
2126 		return;
2127 
2128 	mapping = obj->base.filp->f_mapping,
2129 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2130 }
2131 
2132 static void
2133 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2134 {
2135 	struct sgt_iter sgt_iter;
2136 	struct page *page;
2137 	int ret;
2138 
2139 	BUG_ON(obj->madv == __I915_MADV_PURGED);
2140 
2141 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2142 	if (WARN_ON(ret)) {
2143 		/* In the event of a disaster, abandon all caches and
2144 		 * hope for the best.
2145 		 */
2146 		i915_gem_clflush_object(obj, true);
2147 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2148 	}
2149 
2150 	i915_gem_gtt_finish_object(obj);
2151 
2152 	if (i915_gem_object_needs_bit17_swizzle(obj))
2153 		i915_gem_object_save_bit_17_swizzle(obj);
2154 
2155 	if (obj->madv == I915_MADV_DONTNEED)
2156 		obj->dirty = 0;
2157 
2158 	for_each_sgt_page(page, sgt_iter, obj->pages) {
2159 		if (obj->dirty)
2160 			set_page_dirty(page);
2161 
2162 		if (obj->madv == I915_MADV_WILLNEED)
2163 			mark_page_accessed(page);
2164 
2165 		put_page(page);
2166 	}
2167 	obj->dirty = 0;
2168 
2169 	sg_free_table(obj->pages);
2170 	kfree(obj->pages);
2171 }
2172 
2173 int
2174 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2175 {
2176 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2177 
2178 	if (obj->pages == NULL)
2179 		return 0;
2180 
2181 	if (obj->pages_pin_count)
2182 		return -EBUSY;
2183 
2184 	GEM_BUG_ON(obj->bind_count);
2185 
2186 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2187 	 * array, hence protect them from being reaped by removing them from gtt
2188 	 * lists early. */
2189 	list_del(&obj->global_list);
2190 
2191 	if (obj->mapping) {
2192 		void *ptr;
2193 
2194 		ptr = ptr_mask_bits(obj->mapping);
2195 		if (is_vmalloc_addr(ptr))
2196 			vunmap(ptr);
2197 		else
2198 			kunmap(kmap_to_page(ptr));
2199 
2200 		obj->mapping = NULL;
2201 	}
2202 
2203 	ops->put_pages(obj);
2204 	obj->pages = NULL;
2205 
2206 	i915_gem_object_invalidate(obj);
2207 
2208 	return 0;
2209 }
2210 
2211 static int
2212 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2213 {
2214 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2215 	int page_count, i;
2216 	struct address_space *mapping;
2217 	struct sg_table *st;
2218 	struct scatterlist *sg;
2219 	struct sgt_iter sgt_iter;
2220 	struct page *page;
2221 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2222 	int ret;
2223 	gfp_t gfp;
2224 
2225 	/* Assert that the object is not currently in any GPU domain. As it
2226 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2227 	 * a GPU cache
2228 	 */
2229 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2230 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2231 
2232 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2233 	if (st == NULL)
2234 		return -ENOMEM;
2235 
2236 	page_count = obj->base.size / PAGE_SIZE;
2237 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2238 		kfree(st);
2239 		return -ENOMEM;
2240 	}
2241 
2242 	/* Get the list of pages out of our struct file.  They'll be pinned
2243 	 * at this point until we release them.
2244 	 *
2245 	 * Fail silently without starting the shrinker
2246 	 */
2247 	mapping = obj->base.filp->f_mapping;
2248 	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2249 	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2250 	sg = st->sgl;
2251 	st->nents = 0;
2252 	for (i = 0; i < page_count; i++) {
2253 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2254 		if (IS_ERR(page)) {
2255 			i915_gem_shrink(dev_priv,
2256 					page_count,
2257 					I915_SHRINK_BOUND |
2258 					I915_SHRINK_UNBOUND |
2259 					I915_SHRINK_PURGEABLE);
2260 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2261 		}
2262 		if (IS_ERR(page)) {
2263 			/* We've tried hard to allocate the memory by reaping
2264 			 * our own buffer, now let the real VM do its job and
2265 			 * go down in flames if truly OOM.
2266 			 */
2267 			i915_gem_shrink_all(dev_priv);
2268 			page = shmem_read_mapping_page(mapping, i);
2269 			if (IS_ERR(page)) {
2270 				ret = PTR_ERR(page);
2271 				goto err_pages;
2272 			}
2273 		}
2274 #ifdef CONFIG_SWIOTLB
2275 		if (swiotlb_nr_tbl()) {
2276 			st->nents++;
2277 			sg_set_page(sg, page, PAGE_SIZE, 0);
2278 			sg = sg_next(sg);
2279 			continue;
2280 		}
2281 #endif
2282 		if (!i || page_to_pfn(page) != last_pfn + 1) {
2283 			if (i)
2284 				sg = sg_next(sg);
2285 			st->nents++;
2286 			sg_set_page(sg, page, PAGE_SIZE, 0);
2287 		} else {
2288 			sg->length += PAGE_SIZE;
2289 		}
2290 		last_pfn = page_to_pfn(page);
2291 
2292 		/* Check that the i965g/gm workaround works. */
2293 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2294 	}
2295 #ifdef CONFIG_SWIOTLB
2296 	if (!swiotlb_nr_tbl())
2297 #endif
2298 		sg_mark_end(sg);
2299 	obj->pages = st;
2300 
2301 	ret = i915_gem_gtt_prepare_object(obj);
2302 	if (ret)
2303 		goto err_pages;
2304 
2305 	if (i915_gem_object_needs_bit17_swizzle(obj))
2306 		i915_gem_object_do_bit_17_swizzle(obj);
2307 
2308 	if (i915_gem_object_is_tiled(obj) &&
2309 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2310 		i915_gem_object_pin_pages(obj);
2311 
2312 	return 0;
2313 
2314 err_pages:
2315 	sg_mark_end(sg);
2316 	for_each_sgt_page(page, sgt_iter, st)
2317 		put_page(page);
2318 	sg_free_table(st);
2319 	kfree(st);
2320 
2321 	/* shmemfs first checks if there is enough memory to allocate the page
2322 	 * and reports ENOSPC should there be insufficient, along with the usual
2323 	 * ENOMEM for a genuine allocation failure.
2324 	 *
2325 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2326 	 * space and so want to translate the error from shmemfs back to our
2327 	 * usual understanding of ENOMEM.
2328 	 */
2329 	if (ret == -ENOSPC)
2330 		ret = -ENOMEM;
2331 
2332 	return ret;
2333 }
2334 
2335 /* Ensure that the associated pages are gathered from the backing storage
2336  * and pinned into our object. i915_gem_object_get_pages() may be called
2337  * multiple times before they are released by a single call to
2338  * i915_gem_object_put_pages() - once the pages are no longer referenced
2339  * either as a result of memory pressure (reaping pages under the shrinker)
2340  * or as the object is itself released.
2341  */
2342 int
2343 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2344 {
2345 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2346 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2347 	int ret;
2348 
2349 	if (obj->pages)
2350 		return 0;
2351 
2352 	if (obj->madv != I915_MADV_WILLNEED) {
2353 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2354 		return -EFAULT;
2355 	}
2356 
2357 	BUG_ON(obj->pages_pin_count);
2358 
2359 	ret = ops->get_pages(obj);
2360 	if (ret)
2361 		return ret;
2362 
2363 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2364 
2365 	obj->get_page.sg = obj->pages->sgl;
2366 	obj->get_page.last = 0;
2367 
2368 	return 0;
2369 }
2370 
2371 /* The 'mapping' part of i915_gem_object_pin_map() below */
2372 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2373 				 enum i915_map_type type)
2374 {
2375 	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2376 	struct sg_table *sgt = obj->pages;
2377 	struct sgt_iter sgt_iter;
2378 	struct page *page;
2379 	struct page *stack_pages[32];
2380 	struct page **pages = stack_pages;
2381 	unsigned long i = 0;
2382 	pgprot_t pgprot;
2383 	void *addr;
2384 
2385 	/* A single page can always be kmapped */
2386 	if (n_pages == 1 && type == I915_MAP_WB)
2387 		return kmap(sg_page(sgt->sgl));
2388 
2389 	if (n_pages > ARRAY_SIZE(stack_pages)) {
2390 		/* Too big for stack -- allocate temporary array instead */
2391 		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2392 		if (!pages)
2393 			return NULL;
2394 	}
2395 
2396 	for_each_sgt_page(page, sgt_iter, sgt)
2397 		pages[i++] = page;
2398 
2399 	/* Check that we have the expected number of pages */
2400 	GEM_BUG_ON(i != n_pages);
2401 
2402 	switch (type) {
2403 	case I915_MAP_WB:
2404 		pgprot = PAGE_KERNEL;
2405 		break;
2406 	case I915_MAP_WC:
2407 		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2408 		break;
2409 	}
2410 	addr = vmap(pages, n_pages, 0, pgprot);
2411 
2412 	if (pages != stack_pages)
2413 		drm_free_large(pages);
2414 
2415 	return addr;
2416 }
2417 
2418 /* get, pin, and map the pages of the object into kernel space */
2419 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2420 			      enum i915_map_type type)
2421 {
2422 	enum i915_map_type has_type;
2423 	bool pinned;
2424 	void *ptr;
2425 	int ret;
2426 
2427 	lockdep_assert_held(&obj->base.dev->struct_mutex);
2428 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2429 
2430 	ret = i915_gem_object_get_pages(obj);
2431 	if (ret)
2432 		return ERR_PTR(ret);
2433 
2434 	i915_gem_object_pin_pages(obj);
2435 	pinned = obj->pages_pin_count > 1;
2436 
2437 	ptr = ptr_unpack_bits(obj->mapping, has_type);
2438 	if (ptr && has_type != type) {
2439 		if (pinned) {
2440 			ret = -EBUSY;
2441 			goto err;
2442 		}
2443 
2444 		if (is_vmalloc_addr(ptr))
2445 			vunmap(ptr);
2446 		else
2447 			kunmap(kmap_to_page(ptr));
2448 
2449 		ptr = obj->mapping = NULL;
2450 	}
2451 
2452 	if (!ptr) {
2453 		ptr = i915_gem_object_map(obj, type);
2454 		if (!ptr) {
2455 			ret = -ENOMEM;
2456 			goto err;
2457 		}
2458 
2459 		obj->mapping = ptr_pack_bits(ptr, type);
2460 	}
2461 
2462 	return ptr;
2463 
2464 err:
2465 	i915_gem_object_unpin_pages(obj);
2466 	return ERR_PTR(ret);
2467 }
2468 
2469 static void
2470 i915_gem_object_retire__write(struct i915_gem_active *active,
2471 			      struct drm_i915_gem_request *request)
2472 {
2473 	struct drm_i915_gem_object *obj =
2474 		container_of(active, struct drm_i915_gem_object, last_write);
2475 
2476 	intel_fb_obj_flush(obj, true, ORIGIN_CS);
2477 }
2478 
2479 static void
2480 i915_gem_object_retire__read(struct i915_gem_active *active,
2481 			     struct drm_i915_gem_request *request)
2482 {
2483 	int idx = request->engine->id;
2484 	struct drm_i915_gem_object *obj =
2485 		container_of(active, struct drm_i915_gem_object, last_read[idx]);
2486 
2487 	GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx));
2488 
2489 	i915_gem_object_clear_active(obj, idx);
2490 	if (i915_gem_object_is_active(obj))
2491 		return;
2492 
2493 	/* Bump our place on the bound list to keep it roughly in LRU order
2494 	 * so that we don't steal from recently used but inactive objects
2495 	 * (unless we are forced to ofc!)
2496 	 */
2497 	if (obj->bind_count)
2498 		list_move_tail(&obj->global_list,
2499 			       &request->i915->mm.bound_list);
2500 
2501 	i915_gem_object_put(obj);
2502 }
2503 
2504 static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2505 {
2506 	unsigned long elapsed;
2507 
2508 	if (ctx->hang_stats.banned)
2509 		return true;
2510 
2511 	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2512 	if (ctx->hang_stats.ban_period_seconds &&
2513 	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2514 		DRM_DEBUG("context hanging too fast, banning!\n");
2515 		return true;
2516 	}
2517 
2518 	return false;
2519 }
2520 
2521 static void i915_set_reset_status(struct i915_gem_context *ctx,
2522 				  const bool guilty)
2523 {
2524 	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2525 
2526 	if (guilty) {
2527 		hs->banned = i915_context_is_banned(ctx);
2528 		hs->batch_active++;
2529 		hs->guilty_ts = get_seconds();
2530 	} else {
2531 		hs->batch_pending++;
2532 	}
2533 }
2534 
2535 struct drm_i915_gem_request *
2536 i915_gem_find_active_request(struct intel_engine_cs *engine)
2537 {
2538 	struct drm_i915_gem_request *request;
2539 
2540 	/* We are called by the error capture and reset at a random
2541 	 * point in time. In particular, note that neither is crucially
2542 	 * ordered with an interrupt. After a hang, the GPU is dead and we
2543 	 * assume that no more writes can happen (we waited long enough for
2544 	 * all writes that were in transaction to be flushed) - adding an
2545 	 * extra delay for a recent interrupt is pointless. Hence, we do
2546 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2547 	 */
2548 	list_for_each_entry(request, &engine->request_list, link) {
2549 		if (i915_gem_request_completed(request))
2550 			continue;
2551 
2552 		if (!i915_sw_fence_done(&request->submit))
2553 			break;
2554 
2555 		return request;
2556 	}
2557 
2558 	return NULL;
2559 }
2560 
2561 static void reset_request(struct drm_i915_gem_request *request)
2562 {
2563 	void *vaddr = request->ring->vaddr;
2564 	u32 head;
2565 
2566 	/* As this request likely depends on state from the lost
2567 	 * context, clear out all the user operations leaving the
2568 	 * breadcrumb at the end (so we get the fence notifications).
2569 	 */
2570 	head = request->head;
2571 	if (request->postfix < head) {
2572 		memset(vaddr + head, 0, request->ring->size - head);
2573 		head = 0;
2574 	}
2575 	memset(vaddr + head, 0, request->postfix - head);
2576 }
2577 
2578 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2579 {
2580 	struct drm_i915_gem_request *request;
2581 	struct i915_gem_context *incomplete_ctx;
2582 	bool ring_hung;
2583 
2584 	/* Ensure irq handler finishes, and not run again. */
2585 	tasklet_kill(&engine->irq_tasklet);
2586 	if (engine->irq_seqno_barrier)
2587 		engine->irq_seqno_barrier(engine);
2588 
2589 	request = i915_gem_find_active_request(engine);
2590 	if (!request)
2591 		return;
2592 
2593 	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2594 	i915_set_reset_status(request->ctx, ring_hung);
2595 	if (!ring_hung)
2596 		return;
2597 
2598 	DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2599 			 engine->name, request->fence.seqno);
2600 
2601 	/* Setup the CS to resume from the breadcrumb of the hung request */
2602 	engine->reset_hw(engine, request);
2603 
2604 	/* Users of the default context do not rely on logical state
2605 	 * preserved between batches. They have to emit full state on
2606 	 * every batch and so it is safe to execute queued requests following
2607 	 * the hang.
2608 	 *
2609 	 * Other contexts preserve state, now corrupt. We want to skip all
2610 	 * queued requests that reference the corrupt context.
2611 	 */
2612 	incomplete_ctx = request->ctx;
2613 	if (i915_gem_context_is_default(incomplete_ctx))
2614 		return;
2615 
2616 	list_for_each_entry_continue(request, &engine->request_list, link)
2617 		if (request->ctx == incomplete_ctx)
2618 			reset_request(request);
2619 }
2620 
2621 void i915_gem_reset(struct drm_i915_private *dev_priv)
2622 {
2623 	struct intel_engine_cs *engine;
2624 
2625 	i915_gem_retire_requests(dev_priv);
2626 
2627 	for_each_engine(engine, dev_priv)
2628 		i915_gem_reset_engine(engine);
2629 
2630 	i915_gem_restore_fences(&dev_priv->drm);
2631 
2632 	if (dev_priv->gt.awake) {
2633 		intel_sanitize_gt_powersave(dev_priv);
2634 		intel_enable_gt_powersave(dev_priv);
2635 		if (INTEL_GEN(dev_priv) >= 6)
2636 			gen6_rps_busy(dev_priv);
2637 	}
2638 }
2639 
2640 static void nop_submit_request(struct drm_i915_gem_request *request)
2641 {
2642 }
2643 
2644 static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
2645 {
2646 	engine->submit_request = nop_submit_request;
2647 
2648 	/* Mark all pending requests as complete so that any concurrent
2649 	 * (lockless) lookup doesn't try and wait upon the request as we
2650 	 * reset it.
2651 	 */
2652 	intel_engine_init_seqno(engine, engine->last_submitted_seqno);
2653 
2654 	/*
2655 	 * Clear the execlists queue up before freeing the requests, as those
2656 	 * are the ones that keep the context and ringbuffer backing objects
2657 	 * pinned in place.
2658 	 */
2659 
2660 	if (i915.enable_execlists) {
2661 		spin_lock(&engine->execlist_lock);
2662 		INIT_LIST_HEAD(&engine->execlist_queue);
2663 		i915_gem_request_put(engine->execlist_port[0].request);
2664 		i915_gem_request_put(engine->execlist_port[1].request);
2665 		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2666 		spin_unlock(&engine->execlist_lock);
2667 	}
2668 
2669 	engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2670 }
2671 
2672 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2673 {
2674 	struct intel_engine_cs *engine;
2675 
2676 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2677 	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2678 
2679 	i915_gem_context_lost(dev_priv);
2680 	for_each_engine(engine, dev_priv)
2681 		i915_gem_cleanup_engine(engine);
2682 	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2683 
2684 	i915_gem_retire_requests(dev_priv);
2685 }
2686 
2687 static void
2688 i915_gem_retire_work_handler(struct work_struct *work)
2689 {
2690 	struct drm_i915_private *dev_priv =
2691 		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2692 	struct drm_device *dev = &dev_priv->drm;
2693 
2694 	/* Come back later if the device is busy... */
2695 	if (mutex_trylock(&dev->struct_mutex)) {
2696 		i915_gem_retire_requests(dev_priv);
2697 		mutex_unlock(&dev->struct_mutex);
2698 	}
2699 
2700 	/* Keep the retire handler running until we are finally idle.
2701 	 * We do not need to do this test under locking as in the worst-case
2702 	 * we queue the retire worker once too often.
2703 	 */
2704 	if (READ_ONCE(dev_priv->gt.awake)) {
2705 		i915_queue_hangcheck(dev_priv);
2706 		queue_delayed_work(dev_priv->wq,
2707 				   &dev_priv->gt.retire_work,
2708 				   round_jiffies_up_relative(HZ));
2709 	}
2710 }
2711 
2712 static void
2713 i915_gem_idle_work_handler(struct work_struct *work)
2714 {
2715 	struct drm_i915_private *dev_priv =
2716 		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2717 	struct drm_device *dev = &dev_priv->drm;
2718 	struct intel_engine_cs *engine;
2719 	bool rearm_hangcheck;
2720 
2721 	if (!READ_ONCE(dev_priv->gt.awake))
2722 		return;
2723 
2724 	if (READ_ONCE(dev_priv->gt.active_engines))
2725 		return;
2726 
2727 	rearm_hangcheck =
2728 		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2729 
2730 	if (!mutex_trylock(&dev->struct_mutex)) {
2731 		/* Currently busy, come back later */
2732 		mod_delayed_work(dev_priv->wq,
2733 				 &dev_priv->gt.idle_work,
2734 				 msecs_to_jiffies(50));
2735 		goto out_rearm;
2736 	}
2737 
2738 	if (dev_priv->gt.active_engines)
2739 		goto out_unlock;
2740 
2741 	for_each_engine(engine, dev_priv)
2742 		i915_gem_batch_pool_fini(&engine->batch_pool);
2743 
2744 	GEM_BUG_ON(!dev_priv->gt.awake);
2745 	dev_priv->gt.awake = false;
2746 	rearm_hangcheck = false;
2747 
2748 	if (INTEL_GEN(dev_priv) >= 6)
2749 		gen6_rps_idle(dev_priv);
2750 	intel_runtime_pm_put(dev_priv);
2751 out_unlock:
2752 	mutex_unlock(&dev->struct_mutex);
2753 
2754 out_rearm:
2755 	if (rearm_hangcheck) {
2756 		GEM_BUG_ON(!dev_priv->gt.awake);
2757 		i915_queue_hangcheck(dev_priv);
2758 	}
2759 }
2760 
2761 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2762 {
2763 	struct drm_i915_gem_object *obj = to_intel_bo(gem);
2764 	struct drm_i915_file_private *fpriv = file->driver_priv;
2765 	struct i915_vma *vma, *vn;
2766 
2767 	mutex_lock(&obj->base.dev->struct_mutex);
2768 	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2769 		if (vma->vm->file == fpriv)
2770 			i915_vma_close(vma);
2771 	mutex_unlock(&obj->base.dev->struct_mutex);
2772 }
2773 
2774 /**
2775  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2776  * @dev: drm device pointer
2777  * @data: ioctl data blob
2778  * @file: drm file pointer
2779  *
2780  * Returns 0 if successful, else an error is returned with the remaining time in
2781  * the timeout parameter.
2782  *  -ETIME: object is still busy after timeout
2783  *  -ERESTARTSYS: signal interrupted the wait
2784  *  -ENONENT: object doesn't exist
2785  * Also possible, but rare:
2786  *  -EAGAIN: GPU wedged
2787  *  -ENOMEM: damn
2788  *  -ENODEV: Internal IRQ fail
2789  *  -E?: The add request failed
2790  *
2791  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2792  * non-zero timeout parameter the wait ioctl will wait for the given number of
2793  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2794  * without holding struct_mutex the object may become re-busied before this
2795  * function completes. A similar but shorter * race condition exists in the busy
2796  * ioctl
2797  */
2798 int
2799 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2800 {
2801 	struct drm_i915_gem_wait *args = data;
2802 	struct intel_rps_client *rps = to_rps_client(file);
2803 	struct drm_i915_gem_object *obj;
2804 	unsigned long active;
2805 	int idx, ret = 0;
2806 
2807 	if (args->flags != 0)
2808 		return -EINVAL;
2809 
2810 	obj = i915_gem_object_lookup(file, args->bo_handle);
2811 	if (!obj)
2812 		return -ENOENT;
2813 
2814 	active = __I915_BO_ACTIVE(obj);
2815 	for_each_active(active, idx) {
2816 		s64 *timeout = args->timeout_ns >= 0 ? &args->timeout_ns : NULL;
2817 		ret = i915_gem_active_wait_unlocked(&obj->last_read[idx],
2818 						    I915_WAIT_INTERRUPTIBLE,
2819 						    timeout, rps);
2820 		if (ret)
2821 			break;
2822 	}
2823 
2824 	i915_gem_object_put_unlocked(obj);
2825 	return ret;
2826 }
2827 
2828 static void __i915_vma_iounmap(struct i915_vma *vma)
2829 {
2830 	GEM_BUG_ON(i915_vma_is_pinned(vma));
2831 
2832 	if (vma->iomap == NULL)
2833 		return;
2834 
2835 	io_mapping_unmap(vma->iomap);
2836 	vma->iomap = NULL;
2837 }
2838 
2839 int i915_vma_unbind(struct i915_vma *vma)
2840 {
2841 	struct drm_i915_gem_object *obj = vma->obj;
2842 	unsigned long active;
2843 	int ret;
2844 
2845 	/* First wait upon any activity as retiring the request may
2846 	 * have side-effects such as unpinning or even unbinding this vma.
2847 	 */
2848 	active = i915_vma_get_active(vma);
2849 	if (active) {
2850 		int idx;
2851 
2852 		/* When a closed VMA is retired, it is unbound - eek.
2853 		 * In order to prevent it from being recursively closed,
2854 		 * take a pin on the vma so that the second unbind is
2855 		 * aborted.
2856 		 */
2857 		__i915_vma_pin(vma);
2858 
2859 		for_each_active(active, idx) {
2860 			ret = i915_gem_active_retire(&vma->last_read[idx],
2861 						   &vma->vm->dev->struct_mutex);
2862 			if (ret)
2863 				break;
2864 		}
2865 
2866 		__i915_vma_unpin(vma);
2867 		if (ret)
2868 			return ret;
2869 
2870 		GEM_BUG_ON(i915_vma_is_active(vma));
2871 	}
2872 
2873 	if (i915_vma_is_pinned(vma))
2874 		return -EBUSY;
2875 
2876 	if (!drm_mm_node_allocated(&vma->node))
2877 		goto destroy;
2878 
2879 	GEM_BUG_ON(obj->bind_count == 0);
2880 	GEM_BUG_ON(!obj->pages);
2881 
2882 	if (i915_vma_is_map_and_fenceable(vma)) {
2883 		/* release the fence reg _after_ flushing */
2884 		ret = i915_vma_put_fence(vma);
2885 		if (ret)
2886 			return ret;
2887 
2888 		/* Force a pagefault for domain tracking on next user access */
2889 		i915_gem_release_mmap(obj);
2890 
2891 		__i915_vma_iounmap(vma);
2892 		vma->flags &= ~I915_VMA_CAN_FENCE;
2893 	}
2894 
2895 	if (likely(!vma->vm->closed)) {
2896 		trace_i915_vma_unbind(vma);
2897 		vma->vm->unbind_vma(vma);
2898 	}
2899 	vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
2900 
2901 	drm_mm_remove_node(&vma->node);
2902 	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
2903 
2904 	if (vma->pages != obj->pages) {
2905 		GEM_BUG_ON(!vma->pages);
2906 		sg_free_table(vma->pages);
2907 		kfree(vma->pages);
2908 	}
2909 	vma->pages = NULL;
2910 
2911 	/* Since the unbound list is global, only move to that list if
2912 	 * no more VMAs exist. */
2913 	if (--obj->bind_count == 0)
2914 		list_move_tail(&obj->global_list,
2915 			       &to_i915(obj->base.dev)->mm.unbound_list);
2916 
2917 	/* And finally now the object is completely decoupled from this vma,
2918 	 * we can drop its hold on the backing storage and allow it to be
2919 	 * reaped by the shrinker.
2920 	 */
2921 	i915_gem_object_unpin_pages(obj);
2922 
2923 destroy:
2924 	if (unlikely(i915_vma_is_closed(vma)))
2925 		i915_vma_destroy(vma);
2926 
2927 	return 0;
2928 }
2929 
2930 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
2931 			   unsigned int flags)
2932 {
2933 	struct intel_engine_cs *engine;
2934 	int ret;
2935 
2936 	for_each_engine(engine, dev_priv) {
2937 		if (engine->last_context == NULL)
2938 			continue;
2939 
2940 		ret = intel_engine_idle(engine, flags);
2941 		if (ret)
2942 			return ret;
2943 	}
2944 
2945 	return 0;
2946 }
2947 
2948 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
2949 				     unsigned long cache_level)
2950 {
2951 	struct drm_mm_node *gtt_space = &vma->node;
2952 	struct drm_mm_node *other;
2953 
2954 	/*
2955 	 * On some machines we have to be careful when putting differing types
2956 	 * of snoopable memory together to avoid the prefetcher crossing memory
2957 	 * domains and dying. During vm initialisation, we decide whether or not
2958 	 * these constraints apply and set the drm_mm.color_adjust
2959 	 * appropriately.
2960 	 */
2961 	if (vma->vm->mm.color_adjust == NULL)
2962 		return true;
2963 
2964 	if (!drm_mm_node_allocated(gtt_space))
2965 		return true;
2966 
2967 	if (list_empty(&gtt_space->node_list))
2968 		return true;
2969 
2970 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2971 	if (other->allocated && !other->hole_follows && other->color != cache_level)
2972 		return false;
2973 
2974 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2975 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2976 		return false;
2977 
2978 	return true;
2979 }
2980 
2981 /**
2982  * i915_vma_insert - finds a slot for the vma in its address space
2983  * @vma: the vma
2984  * @size: requested size in bytes (can be larger than the VMA)
2985  * @alignment: required alignment
2986  * @flags: mask of PIN_* flags to use
2987  *
2988  * First we try to allocate some free space that meets the requirements for
2989  * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
2990  * preferrably the oldest idle entry to make room for the new VMA.
2991  *
2992  * Returns:
2993  * 0 on success, negative error code otherwise.
2994  */
2995 static int
2996 i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
2997 {
2998 	struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
2999 	struct drm_i915_gem_object *obj = vma->obj;
3000 	u64 start, end;
3001 	int ret;
3002 
3003 	GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
3004 	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
3005 
3006 	size = max(size, vma->size);
3007 	if (flags & PIN_MAPPABLE)
3008 		size = i915_gem_get_ggtt_size(dev_priv, size,
3009 					      i915_gem_object_get_tiling(obj));
3010 
3011 	alignment = max(max(alignment, vma->display_alignment),
3012 			i915_gem_get_ggtt_alignment(dev_priv, size,
3013 						    i915_gem_object_get_tiling(obj),
3014 						    flags & PIN_MAPPABLE));
3015 
3016 	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3017 
3018 	end = vma->vm->total;
3019 	if (flags & PIN_MAPPABLE)
3020 		end = min_t(u64, end, dev_priv->ggtt.mappable_end);
3021 	if (flags & PIN_ZONE_4G)
3022 		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3023 
3024 	/* If binding the object/GGTT view requires more space than the entire
3025 	 * aperture has, reject it early before evicting everything in a vain
3026 	 * attempt to find space.
3027 	 */
3028 	if (size > end) {
3029 		DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
3030 			  size, obj->base.size,
3031 			  flags & PIN_MAPPABLE ? "mappable" : "total",
3032 			  end);
3033 		return -E2BIG;
3034 	}
3035 
3036 	ret = i915_gem_object_get_pages(obj);
3037 	if (ret)
3038 		return ret;
3039 
3040 	i915_gem_object_pin_pages(obj);
3041 
3042 	if (flags & PIN_OFFSET_FIXED) {
3043 		u64 offset = flags & PIN_OFFSET_MASK;
3044 		if (offset & (alignment - 1) || offset > end - size) {
3045 			ret = -EINVAL;
3046 			goto err_unpin;
3047 		}
3048 
3049 		vma->node.start = offset;
3050 		vma->node.size = size;
3051 		vma->node.color = obj->cache_level;
3052 		ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3053 		if (ret) {
3054 			ret = i915_gem_evict_for_vma(vma);
3055 			if (ret == 0)
3056 				ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3057 			if (ret)
3058 				goto err_unpin;
3059 		}
3060 	} else {
3061 		u32 search_flag, alloc_flag;
3062 
3063 		if (flags & PIN_HIGH) {
3064 			search_flag = DRM_MM_SEARCH_BELOW;
3065 			alloc_flag = DRM_MM_CREATE_TOP;
3066 		} else {
3067 			search_flag = DRM_MM_SEARCH_DEFAULT;
3068 			alloc_flag = DRM_MM_CREATE_DEFAULT;
3069 		}
3070 
3071 		/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3072 		 * so we know that we always have a minimum alignment of 4096.
3073 		 * The drm_mm range manager is optimised to return results
3074 		 * with zero alignment, so where possible use the optimal
3075 		 * path.
3076 		 */
3077 		if (alignment <= 4096)
3078 			alignment = 0;
3079 
3080 search_free:
3081 		ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
3082 							  &vma->node,
3083 							  size, alignment,
3084 							  obj->cache_level,
3085 							  start, end,
3086 							  search_flag,
3087 							  alloc_flag);
3088 		if (ret) {
3089 			ret = i915_gem_evict_something(vma->vm, size, alignment,
3090 						       obj->cache_level,
3091 						       start, end,
3092 						       flags);
3093 			if (ret == 0)
3094 				goto search_free;
3095 
3096 			goto err_unpin;
3097 		}
3098 	}
3099 	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
3100 
3101 	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3102 	list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3103 	obj->bind_count++;
3104 
3105 	return 0;
3106 
3107 err_unpin:
3108 	i915_gem_object_unpin_pages(obj);
3109 	return ret;
3110 }
3111 
3112 bool
3113 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3114 			bool force)
3115 {
3116 	/* If we don't have a page list set up, then we're not pinned
3117 	 * to GPU, and we can ignore the cache flush because it'll happen
3118 	 * again at bind time.
3119 	 */
3120 	if (obj->pages == NULL)
3121 		return false;
3122 
3123 	/*
3124 	 * Stolen memory is always coherent with the GPU as it is explicitly
3125 	 * marked as wc by the system, or the system is cache-coherent.
3126 	 */
3127 	if (obj->stolen || obj->phys_handle)
3128 		return false;
3129 
3130 	/* If the GPU is snooping the contents of the CPU cache,
3131 	 * we do not need to manually clear the CPU cache lines.  However,
3132 	 * the caches are only snooped when the render cache is
3133 	 * flushed/invalidated.  As we always have to emit invalidations
3134 	 * and flushes when moving into and out of the RENDER domain, correct
3135 	 * snooping behaviour occurs naturally as the result of our domain
3136 	 * tracking.
3137 	 */
3138 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3139 		obj->cache_dirty = true;
3140 		return false;
3141 	}
3142 
3143 	trace_i915_gem_object_clflush(obj);
3144 	drm_clflush_sg(obj->pages);
3145 	obj->cache_dirty = false;
3146 
3147 	return true;
3148 }
3149 
3150 /** Flushes the GTT write domain for the object if it's dirty. */
3151 static void
3152 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3153 {
3154 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3155 
3156 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3157 		return;
3158 
3159 	/* No actual flushing is required for the GTT write domain.  Writes
3160 	 * to it "immediately" go to main memory as far as we know, so there's
3161 	 * no chipset flush.  It also doesn't land in render cache.
3162 	 *
3163 	 * However, we do have to enforce the order so that all writes through
3164 	 * the GTT land before any writes to the device, such as updates to
3165 	 * the GATT itself.
3166 	 *
3167 	 * We also have to wait a bit for the writes to land from the GTT.
3168 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3169 	 * timing. This issue has only been observed when switching quickly
3170 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
3171 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
3172 	 * system agents we cannot reproduce this behaviour).
3173 	 */
3174 	wmb();
3175 	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3176 		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS].mmio_base));
3177 
3178 	intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3179 
3180 	obj->base.write_domain = 0;
3181 	trace_i915_gem_object_change_domain(obj,
3182 					    obj->base.read_domains,
3183 					    I915_GEM_DOMAIN_GTT);
3184 }
3185 
3186 /** Flushes the CPU write domain for the object if it's dirty. */
3187 static void
3188 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3189 {
3190 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3191 		return;
3192 
3193 	if (i915_gem_clflush_object(obj, obj->pin_display))
3194 		i915_gem_chipset_flush(to_i915(obj->base.dev));
3195 
3196 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3197 
3198 	obj->base.write_domain = 0;
3199 	trace_i915_gem_object_change_domain(obj,
3200 					    obj->base.read_domains,
3201 					    I915_GEM_DOMAIN_CPU);
3202 }
3203 
3204 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
3205 {
3206 	struct i915_vma *vma;
3207 
3208 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3209 		if (!i915_vma_is_ggtt(vma))
3210 			continue;
3211 
3212 		if (i915_vma_is_active(vma))
3213 			continue;
3214 
3215 		if (!drm_mm_node_allocated(&vma->node))
3216 			continue;
3217 
3218 		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3219 	}
3220 }
3221 
3222 /**
3223  * Moves a single object to the GTT read, and possibly write domain.
3224  * @obj: object to act on
3225  * @write: ask for write access or read only
3226  *
3227  * This function returns when the move is complete, including waiting on
3228  * flushes to occur.
3229  */
3230 int
3231 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3232 {
3233 	uint32_t old_write_domain, old_read_domains;
3234 	int ret;
3235 
3236 	ret = i915_gem_object_wait_rendering(obj, !write);
3237 	if (ret)
3238 		return ret;
3239 
3240 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3241 		return 0;
3242 
3243 	/* Flush and acquire obj->pages so that we are coherent through
3244 	 * direct access in memory with previous cached writes through
3245 	 * shmemfs and that our cache domain tracking remains valid.
3246 	 * For example, if the obj->filp was moved to swap without us
3247 	 * being notified and releasing the pages, we would mistakenly
3248 	 * continue to assume that the obj remained out of the CPU cached
3249 	 * domain.
3250 	 */
3251 	ret = i915_gem_object_get_pages(obj);
3252 	if (ret)
3253 		return ret;
3254 
3255 	i915_gem_object_flush_cpu_write_domain(obj);
3256 
3257 	/* Serialise direct access to this object with the barriers for
3258 	 * coherent writes from the GPU, by effectively invalidating the
3259 	 * GTT domain upon first access.
3260 	 */
3261 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3262 		mb();
3263 
3264 	old_write_domain = obj->base.write_domain;
3265 	old_read_domains = obj->base.read_domains;
3266 
3267 	/* It should now be out of any other write domains, and we can update
3268 	 * the domain values for our changes.
3269 	 */
3270 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3271 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3272 	if (write) {
3273 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3274 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3275 		obj->dirty = 1;
3276 	}
3277 
3278 	trace_i915_gem_object_change_domain(obj,
3279 					    old_read_domains,
3280 					    old_write_domain);
3281 
3282 	/* And bump the LRU for this access */
3283 	i915_gem_object_bump_inactive_ggtt(obj);
3284 
3285 	return 0;
3286 }
3287 
3288 /**
3289  * Changes the cache-level of an object across all VMA.
3290  * @obj: object to act on
3291  * @cache_level: new cache level to set for the object
3292  *
3293  * After this function returns, the object will be in the new cache-level
3294  * across all GTT and the contents of the backing storage will be coherent,
3295  * with respect to the new cache-level. In order to keep the backing storage
3296  * coherent for all users, we only allow a single cache level to be set
3297  * globally on the object and prevent it from being changed whilst the
3298  * hardware is reading from the object. That is if the object is currently
3299  * on the scanout it will be set to uncached (or equivalent display
3300  * cache coherency) and all non-MOCS GPU access will also be uncached so
3301  * that all direct access to the scanout remains coherent.
3302  */
3303 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3304 				    enum i915_cache_level cache_level)
3305 {
3306 	struct i915_vma *vma;
3307 	int ret = 0;
3308 
3309 	if (obj->cache_level == cache_level)
3310 		goto out;
3311 
3312 	/* Inspect the list of currently bound VMA and unbind any that would
3313 	 * be invalid given the new cache-level. This is principally to
3314 	 * catch the issue of the CS prefetch crossing page boundaries and
3315 	 * reading an invalid PTE on older architectures.
3316 	 */
3317 restart:
3318 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3319 		if (!drm_mm_node_allocated(&vma->node))
3320 			continue;
3321 
3322 		if (i915_vma_is_pinned(vma)) {
3323 			DRM_DEBUG("can not change the cache level of pinned objects\n");
3324 			return -EBUSY;
3325 		}
3326 
3327 		if (i915_gem_valid_gtt_space(vma, cache_level))
3328 			continue;
3329 
3330 		ret = i915_vma_unbind(vma);
3331 		if (ret)
3332 			return ret;
3333 
3334 		/* As unbinding may affect other elements in the
3335 		 * obj->vma_list (due to side-effects from retiring
3336 		 * an active vma), play safe and restart the iterator.
3337 		 */
3338 		goto restart;
3339 	}
3340 
3341 	/* We can reuse the existing drm_mm nodes but need to change the
3342 	 * cache-level on the PTE. We could simply unbind them all and
3343 	 * rebind with the correct cache-level on next use. However since
3344 	 * we already have a valid slot, dma mapping, pages etc, we may as
3345 	 * rewrite the PTE in the belief that doing so tramples upon less
3346 	 * state and so involves less work.
3347 	 */
3348 	if (obj->bind_count) {
3349 		/* Before we change the PTE, the GPU must not be accessing it.
3350 		 * If we wait upon the object, we know that all the bound
3351 		 * VMA are no longer active.
3352 		 */
3353 		ret = i915_gem_object_wait_rendering(obj, false);
3354 		if (ret)
3355 			return ret;
3356 
3357 		if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3358 			/* Access to snoopable pages through the GTT is
3359 			 * incoherent and on some machines causes a hard
3360 			 * lockup. Relinquish the CPU mmaping to force
3361 			 * userspace to refault in the pages and we can
3362 			 * then double check if the GTT mapping is still
3363 			 * valid for that pointer access.
3364 			 */
3365 			i915_gem_release_mmap(obj);
3366 
3367 			/* As we no longer need a fence for GTT access,
3368 			 * we can relinquish it now (and so prevent having
3369 			 * to steal a fence from someone else on the next
3370 			 * fence request). Note GPU activity would have
3371 			 * dropped the fence as all snoopable access is
3372 			 * supposed to be linear.
3373 			 */
3374 			list_for_each_entry(vma, &obj->vma_list, obj_link) {
3375 				ret = i915_vma_put_fence(vma);
3376 				if (ret)
3377 					return ret;
3378 			}
3379 		} else {
3380 			/* We either have incoherent backing store and
3381 			 * so no GTT access or the architecture is fully
3382 			 * coherent. In such cases, existing GTT mmaps
3383 			 * ignore the cache bit in the PTE and we can
3384 			 * rewrite it without confusing the GPU or having
3385 			 * to force userspace to fault back in its mmaps.
3386 			 */
3387 		}
3388 
3389 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3390 			if (!drm_mm_node_allocated(&vma->node))
3391 				continue;
3392 
3393 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3394 			if (ret)
3395 				return ret;
3396 		}
3397 	}
3398 
3399 	list_for_each_entry(vma, &obj->vma_list, obj_link)
3400 		vma->node.color = cache_level;
3401 	obj->cache_level = cache_level;
3402 
3403 out:
3404 	/* Flush the dirty CPU caches to the backing storage so that the
3405 	 * object is now coherent at its new cache level (with respect
3406 	 * to the access domain).
3407 	 */
3408 	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3409 		if (i915_gem_clflush_object(obj, true))
3410 			i915_gem_chipset_flush(to_i915(obj->base.dev));
3411 	}
3412 
3413 	return 0;
3414 }
3415 
3416 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3417 			       struct drm_file *file)
3418 {
3419 	struct drm_i915_gem_caching *args = data;
3420 	struct drm_i915_gem_object *obj;
3421 
3422 	obj = i915_gem_object_lookup(file, args->handle);
3423 	if (!obj)
3424 		return -ENOENT;
3425 
3426 	switch (obj->cache_level) {
3427 	case I915_CACHE_LLC:
3428 	case I915_CACHE_L3_LLC:
3429 		args->caching = I915_CACHING_CACHED;
3430 		break;
3431 
3432 	case I915_CACHE_WT:
3433 		args->caching = I915_CACHING_DISPLAY;
3434 		break;
3435 
3436 	default:
3437 		args->caching = I915_CACHING_NONE;
3438 		break;
3439 	}
3440 
3441 	i915_gem_object_put_unlocked(obj);
3442 	return 0;
3443 }
3444 
3445 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3446 			       struct drm_file *file)
3447 {
3448 	struct drm_i915_private *dev_priv = to_i915(dev);
3449 	struct drm_i915_gem_caching *args = data;
3450 	struct drm_i915_gem_object *obj;
3451 	enum i915_cache_level level;
3452 	int ret;
3453 
3454 	switch (args->caching) {
3455 	case I915_CACHING_NONE:
3456 		level = I915_CACHE_NONE;
3457 		break;
3458 	case I915_CACHING_CACHED:
3459 		/*
3460 		 * Due to a HW issue on BXT A stepping, GPU stores via a
3461 		 * snooped mapping may leave stale data in a corresponding CPU
3462 		 * cacheline, whereas normally such cachelines would get
3463 		 * invalidated.
3464 		 */
3465 		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3466 			return -ENODEV;
3467 
3468 		level = I915_CACHE_LLC;
3469 		break;
3470 	case I915_CACHING_DISPLAY:
3471 		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3472 		break;
3473 	default:
3474 		return -EINVAL;
3475 	}
3476 
3477 	intel_runtime_pm_get(dev_priv);
3478 
3479 	ret = i915_mutex_lock_interruptible(dev);
3480 	if (ret)
3481 		goto rpm_put;
3482 
3483 	obj = i915_gem_object_lookup(file, args->handle);
3484 	if (!obj) {
3485 		ret = -ENOENT;
3486 		goto unlock;
3487 	}
3488 
3489 	ret = i915_gem_object_set_cache_level(obj, level);
3490 
3491 	i915_gem_object_put(obj);
3492 unlock:
3493 	mutex_unlock(&dev->struct_mutex);
3494 rpm_put:
3495 	intel_runtime_pm_put(dev_priv);
3496 
3497 	return ret;
3498 }
3499 
3500 /*
3501  * Prepare buffer for display plane (scanout, cursors, etc).
3502  * Can be called from an uninterruptible phase (modesetting) and allows
3503  * any flushes to be pipelined (for pageflips).
3504  */
3505 struct i915_vma *
3506 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3507 				     u32 alignment,
3508 				     const struct i915_ggtt_view *view)
3509 {
3510 	struct i915_vma *vma;
3511 	u32 old_read_domains, old_write_domain;
3512 	int ret;
3513 
3514 	/* Mark the pin_display early so that we account for the
3515 	 * display coherency whilst setting up the cache domains.
3516 	 */
3517 	obj->pin_display++;
3518 
3519 	/* The display engine is not coherent with the LLC cache on gen6.  As
3520 	 * a result, we make sure that the pinning that is about to occur is
3521 	 * done with uncached PTEs. This is lowest common denominator for all
3522 	 * chipsets.
3523 	 *
3524 	 * However for gen6+, we could do better by using the GFDT bit instead
3525 	 * of uncaching, which would allow us to flush all the LLC-cached data
3526 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3527 	 */
3528 	ret = i915_gem_object_set_cache_level(obj,
3529 					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3530 	if (ret) {
3531 		vma = ERR_PTR(ret);
3532 		goto err_unpin_display;
3533 	}
3534 
3535 	/* As the user may map the buffer once pinned in the display plane
3536 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3537 	 * always use map_and_fenceable for all scanout buffers. However,
3538 	 * it may simply be too big to fit into mappable, in which case
3539 	 * put it anyway and hope that userspace can cope (but always first
3540 	 * try to preserve the existing ABI).
3541 	 */
3542 	vma = ERR_PTR(-ENOSPC);
3543 	if (view->type == I915_GGTT_VIEW_NORMAL)
3544 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3545 					       PIN_MAPPABLE | PIN_NONBLOCK);
3546 	if (IS_ERR(vma))
3547 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, 0);
3548 	if (IS_ERR(vma))
3549 		goto err_unpin_display;
3550 
3551 	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3552 
3553 	WARN_ON(obj->pin_display > i915_vma_pin_count(vma));
3554 
3555 	i915_gem_object_flush_cpu_write_domain(obj);
3556 
3557 	old_write_domain = obj->base.write_domain;
3558 	old_read_domains = obj->base.read_domains;
3559 
3560 	/* It should now be out of any other write domains, and we can update
3561 	 * the domain values for our changes.
3562 	 */
3563 	obj->base.write_domain = 0;
3564 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3565 
3566 	trace_i915_gem_object_change_domain(obj,
3567 					    old_read_domains,
3568 					    old_write_domain);
3569 
3570 	return vma;
3571 
3572 err_unpin_display:
3573 	obj->pin_display--;
3574 	return vma;
3575 }
3576 
3577 void
3578 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3579 {
3580 	if (WARN_ON(vma->obj->pin_display == 0))
3581 		return;
3582 
3583 	if (--vma->obj->pin_display == 0)
3584 		vma->display_alignment = 0;
3585 
3586 	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3587 	if (!i915_vma_is_active(vma))
3588 		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3589 
3590 	i915_vma_unpin(vma);
3591 	WARN_ON(vma->obj->pin_display > i915_vma_pin_count(vma));
3592 }
3593 
3594 /**
3595  * Moves a single object to the CPU read, and possibly write domain.
3596  * @obj: object to act on
3597  * @write: requesting write or read-only access
3598  *
3599  * This function returns when the move is complete, including waiting on
3600  * flushes to occur.
3601  */
3602 int
3603 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3604 {
3605 	uint32_t old_write_domain, old_read_domains;
3606 	int ret;
3607 
3608 	ret = i915_gem_object_wait_rendering(obj, !write);
3609 	if (ret)
3610 		return ret;
3611 
3612 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3613 		return 0;
3614 
3615 	i915_gem_object_flush_gtt_write_domain(obj);
3616 
3617 	old_write_domain = obj->base.write_domain;
3618 	old_read_domains = obj->base.read_domains;
3619 
3620 	/* Flush the CPU cache if it's still invalid. */
3621 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3622 		i915_gem_clflush_object(obj, false);
3623 
3624 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3625 	}
3626 
3627 	/* It should now be out of any other write domains, and we can update
3628 	 * the domain values for our changes.
3629 	 */
3630 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3631 
3632 	/* If we're writing through the CPU, then the GPU read domains will
3633 	 * need to be invalidated at next use.
3634 	 */
3635 	if (write) {
3636 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3637 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3638 	}
3639 
3640 	trace_i915_gem_object_change_domain(obj,
3641 					    old_read_domains,
3642 					    old_write_domain);
3643 
3644 	return 0;
3645 }
3646 
3647 /* Throttle our rendering by waiting until the ring has completed our requests
3648  * emitted over 20 msec ago.
3649  *
3650  * Note that if we were to use the current jiffies each time around the loop,
3651  * we wouldn't escape the function with any frames outstanding if the time to
3652  * render a frame was over 20ms.
3653  *
3654  * This should get us reasonable parallelism between CPU and GPU but also
3655  * relatively low latency when blocking on a particular request to finish.
3656  */
3657 static int
3658 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3659 {
3660 	struct drm_i915_private *dev_priv = to_i915(dev);
3661 	struct drm_i915_file_private *file_priv = file->driver_priv;
3662 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3663 	struct drm_i915_gem_request *request, *target = NULL;
3664 	int ret;
3665 
3666 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3667 	if (ret)
3668 		return ret;
3669 
3670 	/* ABI: return -EIO if already wedged */
3671 	if (i915_terminally_wedged(&dev_priv->gpu_error))
3672 		return -EIO;
3673 
3674 	spin_lock(&file_priv->mm.lock);
3675 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3676 		if (time_after_eq(request->emitted_jiffies, recent_enough))
3677 			break;
3678 
3679 		/*
3680 		 * Note that the request might not have been submitted yet.
3681 		 * In which case emitted_jiffies will be zero.
3682 		 */
3683 		if (!request->emitted_jiffies)
3684 			continue;
3685 
3686 		target = request;
3687 	}
3688 	if (target)
3689 		i915_gem_request_get(target);
3690 	spin_unlock(&file_priv->mm.lock);
3691 
3692 	if (target == NULL)
3693 		return 0;
3694 
3695 	ret = i915_wait_request(target, I915_WAIT_INTERRUPTIBLE, NULL, NULL);
3696 	i915_gem_request_put(target);
3697 
3698 	return ret;
3699 }
3700 
3701 static bool
3702 i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3703 {
3704 	if (!drm_mm_node_allocated(&vma->node))
3705 		return false;
3706 
3707 	if (vma->node.size < size)
3708 		return true;
3709 
3710 	if (alignment && vma->node.start & (alignment - 1))
3711 		return true;
3712 
3713 	if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
3714 		return true;
3715 
3716 	if (flags & PIN_OFFSET_BIAS &&
3717 	    vma->node.start < (flags & PIN_OFFSET_MASK))
3718 		return true;
3719 
3720 	if (flags & PIN_OFFSET_FIXED &&
3721 	    vma->node.start != (flags & PIN_OFFSET_MASK))
3722 		return true;
3723 
3724 	return false;
3725 }
3726 
3727 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
3728 {
3729 	struct drm_i915_gem_object *obj = vma->obj;
3730 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3731 	bool mappable, fenceable;
3732 	u32 fence_size, fence_alignment;
3733 
3734 	fence_size = i915_gem_get_ggtt_size(dev_priv,
3735 					    vma->size,
3736 					    i915_gem_object_get_tiling(obj));
3737 	fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
3738 						      vma->size,
3739 						      i915_gem_object_get_tiling(obj),
3740 						      true);
3741 
3742 	fenceable = (vma->node.size == fence_size &&
3743 		     (vma->node.start & (fence_alignment - 1)) == 0);
3744 
3745 	mappable = (vma->node.start + fence_size <=
3746 		    dev_priv->ggtt.mappable_end);
3747 
3748 	if (mappable && fenceable)
3749 		vma->flags |= I915_VMA_CAN_FENCE;
3750 	else
3751 		vma->flags &= ~I915_VMA_CAN_FENCE;
3752 }
3753 
3754 int __i915_vma_do_pin(struct i915_vma *vma,
3755 		      u64 size, u64 alignment, u64 flags)
3756 {
3757 	unsigned int bound = vma->flags;
3758 	int ret;
3759 
3760 	GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3761 	GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
3762 
3763 	if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
3764 		ret = -EBUSY;
3765 		goto err;
3766 	}
3767 
3768 	if ((bound & I915_VMA_BIND_MASK) == 0) {
3769 		ret = i915_vma_insert(vma, size, alignment, flags);
3770 		if (ret)
3771 			goto err;
3772 	}
3773 
3774 	ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3775 	if (ret)
3776 		goto err;
3777 
3778 	if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
3779 		__i915_vma_set_map_and_fenceable(vma);
3780 
3781 	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
3782 	return 0;
3783 
3784 err:
3785 	__i915_vma_unpin(vma);
3786 	return ret;
3787 }
3788 
3789 struct i915_vma *
3790 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3791 			 const struct i915_ggtt_view *view,
3792 			 u64 size,
3793 			 u64 alignment,
3794 			 u64 flags)
3795 {
3796 	struct i915_address_space *vm = &to_i915(obj->base.dev)->ggtt.base;
3797 	struct i915_vma *vma;
3798 	int ret;
3799 
3800 	vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3801 	if (IS_ERR(vma))
3802 		return vma;
3803 
3804 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
3805 		if (flags & PIN_NONBLOCK &&
3806 		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3807 			return ERR_PTR(-ENOSPC);
3808 
3809 		WARN(i915_vma_is_pinned(vma),
3810 		     "bo is already pinned in ggtt with incorrect alignment:"
3811 		     " offset=%08x, req.alignment=%llx,"
3812 		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3813 		     i915_ggtt_offset(vma), alignment,
3814 		     !!(flags & PIN_MAPPABLE),
3815 		     i915_vma_is_map_and_fenceable(vma));
3816 		ret = i915_vma_unbind(vma);
3817 		if (ret)
3818 			return ERR_PTR(ret);
3819 	}
3820 
3821 	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3822 	if (ret)
3823 		return ERR_PTR(ret);
3824 
3825 	return vma;
3826 }
3827 
3828 static __always_inline unsigned int __busy_read_flag(unsigned int id)
3829 {
3830 	/* Note that we could alias engines in the execbuf API, but
3831 	 * that would be very unwise as it prevents userspace from
3832 	 * fine control over engine selection. Ahem.
3833 	 *
3834 	 * This should be something like EXEC_MAX_ENGINE instead of
3835 	 * I915_NUM_ENGINES.
3836 	 */
3837 	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3838 	return 0x10000 << id;
3839 }
3840 
3841 static __always_inline unsigned int __busy_write_id(unsigned int id)
3842 {
3843 	/* The uABI guarantees an active writer is also amongst the read
3844 	 * engines. This would be true if we accessed the activity tracking
3845 	 * under the lock, but as we perform the lookup of the object and
3846 	 * its activity locklessly we can not guarantee that the last_write
3847 	 * being active implies that we have set the same engine flag from
3848 	 * last_read - hence we always set both read and write busy for
3849 	 * last_write.
3850 	 */
3851 	return id | __busy_read_flag(id);
3852 }
3853 
3854 static __always_inline unsigned int
3855 __busy_set_if_active(const struct i915_gem_active *active,
3856 		     unsigned int (*flag)(unsigned int id))
3857 {
3858 	struct drm_i915_gem_request *request;
3859 
3860 	request = rcu_dereference(active->request);
3861 	if (!request || i915_gem_request_completed(request))
3862 		return 0;
3863 
3864 	/* This is racy. See __i915_gem_active_get_rcu() for an in detail
3865 	 * discussion of how to handle the race correctly, but for reporting
3866 	 * the busy state we err on the side of potentially reporting the
3867 	 * wrong engine as being busy (but we guarantee that the result
3868 	 * is at least self-consistent).
3869 	 *
3870 	 * As we use SLAB_DESTROY_BY_RCU, the request may be reallocated
3871 	 * whilst we are inspecting it, even under the RCU read lock as we are.
3872 	 * This means that there is a small window for the engine and/or the
3873 	 * seqno to have been overwritten. The seqno will always be in the
3874 	 * future compared to the intended, and so we know that if that
3875 	 * seqno is idle (on whatever engine) our request is idle and the
3876 	 * return 0 above is correct.
3877 	 *
3878 	 * The issue is that if the engine is switched, it is just as likely
3879 	 * to report that it is busy (but since the switch happened, we know
3880 	 * the request should be idle). So there is a small chance that a busy
3881 	 * result is actually the wrong engine.
3882 	 *
3883 	 * So why don't we care?
3884 	 *
3885 	 * For starters, the busy ioctl is a heuristic that is by definition
3886 	 * racy. Even with perfect serialisation in the driver, the hardware
3887 	 * state is constantly advancing - the state we report to the user
3888 	 * is stale.
3889 	 *
3890 	 * The critical information for the busy-ioctl is whether the object
3891 	 * is idle as userspace relies on that to detect whether its next
3892 	 * access will stall, or if it has missed submitting commands to
3893 	 * the hardware allowing the GPU to stall. We never generate a
3894 	 * false-positive for idleness, thus busy-ioctl is reliable at the
3895 	 * most fundamental level, and we maintain the guarantee that a
3896 	 * busy object left to itself will eventually become idle (and stay
3897 	 * idle!).
3898 	 *
3899 	 * We allow ourselves the leeway of potentially misreporting the busy
3900 	 * state because that is an optimisation heuristic that is constantly
3901 	 * in flux. Being quickly able to detect the busy/idle state is much
3902 	 * more important than accurate logging of exactly which engines were
3903 	 * busy.
3904 	 *
3905 	 * For accuracy in reporting the engine, we could use
3906 	 *
3907 	 *	result = 0;
3908 	 *	request = __i915_gem_active_get_rcu(active);
3909 	 *	if (request) {
3910 	 *		if (!i915_gem_request_completed(request))
3911 	 *			result = flag(request->engine->exec_id);
3912 	 *		i915_gem_request_put(request);
3913 	 *	}
3914 	 *
3915 	 * but that still remains susceptible to both hardware and userspace
3916 	 * races. So we accept making the result of that race slightly worse,
3917 	 * given the rarity of the race and its low impact on the result.
3918 	 */
3919 	return flag(READ_ONCE(request->engine->exec_id));
3920 }
3921 
3922 static __always_inline unsigned int
3923 busy_check_reader(const struct i915_gem_active *active)
3924 {
3925 	return __busy_set_if_active(active, __busy_read_flag);
3926 }
3927 
3928 static __always_inline unsigned int
3929 busy_check_writer(const struct i915_gem_active *active)
3930 {
3931 	return __busy_set_if_active(active, __busy_write_id);
3932 }
3933 
3934 int
3935 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3936 		    struct drm_file *file)
3937 {
3938 	struct drm_i915_gem_busy *args = data;
3939 	struct drm_i915_gem_object *obj;
3940 	unsigned long active;
3941 
3942 	obj = i915_gem_object_lookup(file, args->handle);
3943 	if (!obj)
3944 		return -ENOENT;
3945 
3946 	args->busy = 0;
3947 	active = __I915_BO_ACTIVE(obj);
3948 	if (active) {
3949 		int idx;
3950 
3951 		/* Yes, the lookups are intentionally racy.
3952 		 *
3953 		 * First, we cannot simply rely on __I915_BO_ACTIVE. We have
3954 		 * to regard the value as stale and as our ABI guarantees
3955 		 * forward progress, we confirm the status of each active
3956 		 * request with the hardware.
3957 		 *
3958 		 * Even though we guard the pointer lookup by RCU, that only
3959 		 * guarantees that the pointer and its contents remain
3960 		 * dereferencable and does *not* mean that the request we
3961 		 * have is the same as the one being tracked by the object.
3962 		 *
3963 		 * Consider that we lookup the request just as it is being
3964 		 * retired and freed. We take a local copy of the pointer,
3965 		 * but before we add its engine into the busy set, the other
3966 		 * thread reallocates it and assigns it to a task on another
3967 		 * engine with a fresh and incomplete seqno. Guarding against
3968 		 * that requires careful serialisation and reference counting,
3969 		 * i.e. using __i915_gem_active_get_request_rcu(). We don't,
3970 		 * instead we expect that if the result is busy, which engines
3971 		 * are busy is not completely reliable - we only guarantee
3972 		 * that the object was busy.
3973 		 */
3974 		rcu_read_lock();
3975 
3976 		for_each_active(active, idx)
3977 			args->busy |= busy_check_reader(&obj->last_read[idx]);
3978 
3979 		/* For ABI sanity, we only care that the write engine is in
3980 		 * the set of read engines. This should be ensured by the
3981 		 * ordering of setting last_read/last_write in
3982 		 * i915_vma_move_to_active(), and then in reverse in retire.
3983 		 * However, for good measure, we always report the last_write
3984 		 * request as a busy read as well as being a busy write.
3985 		 *
3986 		 * We don't care that the set of active read/write engines
3987 		 * may change during construction of the result, as it is
3988 		 * equally liable to change before userspace can inspect
3989 		 * the result.
3990 		 */
3991 		args->busy |= busy_check_writer(&obj->last_write);
3992 
3993 		rcu_read_unlock();
3994 	}
3995 
3996 	i915_gem_object_put_unlocked(obj);
3997 	return 0;
3998 }
3999 
4000 int
4001 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4002 			struct drm_file *file_priv)
4003 {
4004 	return i915_gem_ring_throttle(dev, file_priv);
4005 }
4006 
4007 int
4008 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4009 		       struct drm_file *file_priv)
4010 {
4011 	struct drm_i915_private *dev_priv = to_i915(dev);
4012 	struct drm_i915_gem_madvise *args = data;
4013 	struct drm_i915_gem_object *obj;
4014 	int ret;
4015 
4016 	switch (args->madv) {
4017 	case I915_MADV_DONTNEED:
4018 	case I915_MADV_WILLNEED:
4019 	    break;
4020 	default:
4021 	    return -EINVAL;
4022 	}
4023 
4024 	ret = i915_mutex_lock_interruptible(dev);
4025 	if (ret)
4026 		return ret;
4027 
4028 	obj = i915_gem_object_lookup(file_priv, args->handle);
4029 	if (!obj) {
4030 		ret = -ENOENT;
4031 		goto unlock;
4032 	}
4033 
4034 	if (obj->pages &&
4035 	    i915_gem_object_is_tiled(obj) &&
4036 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4037 		if (obj->madv == I915_MADV_WILLNEED)
4038 			i915_gem_object_unpin_pages(obj);
4039 		if (args->madv == I915_MADV_WILLNEED)
4040 			i915_gem_object_pin_pages(obj);
4041 	}
4042 
4043 	if (obj->madv != __I915_MADV_PURGED)
4044 		obj->madv = args->madv;
4045 
4046 	/* if the object is no longer attached, discard its backing storage */
4047 	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4048 		i915_gem_object_truncate(obj);
4049 
4050 	args->retained = obj->madv != __I915_MADV_PURGED;
4051 
4052 	i915_gem_object_put(obj);
4053 unlock:
4054 	mutex_unlock(&dev->struct_mutex);
4055 	return ret;
4056 }
4057 
4058 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4059 			  const struct drm_i915_gem_object_ops *ops)
4060 {
4061 	int i;
4062 
4063 	INIT_LIST_HEAD(&obj->global_list);
4064 	for (i = 0; i < I915_NUM_ENGINES; i++)
4065 		init_request_active(&obj->last_read[i],
4066 				    i915_gem_object_retire__read);
4067 	init_request_active(&obj->last_write,
4068 			    i915_gem_object_retire__write);
4069 	INIT_LIST_HEAD(&obj->obj_exec_link);
4070 	INIT_LIST_HEAD(&obj->vma_list);
4071 	INIT_LIST_HEAD(&obj->batch_pool_link);
4072 
4073 	obj->ops = ops;
4074 
4075 	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4076 	obj->madv = I915_MADV_WILLNEED;
4077 
4078 	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4079 }
4080 
4081 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4082 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4083 	.get_pages = i915_gem_object_get_pages_gtt,
4084 	.put_pages = i915_gem_object_put_pages_gtt,
4085 };
4086 
4087 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4088 						  size_t size)
4089 {
4090 	struct drm_i915_gem_object *obj;
4091 	struct address_space *mapping;
4092 	gfp_t mask;
4093 	int ret;
4094 
4095 	obj = i915_gem_object_alloc(dev);
4096 	if (obj == NULL)
4097 		return ERR_PTR(-ENOMEM);
4098 
4099 	ret = drm_gem_object_init(dev, &obj->base, size);
4100 	if (ret)
4101 		goto fail;
4102 
4103 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4104 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4105 		/* 965gm cannot relocate objects above 4GiB. */
4106 		mask &= ~__GFP_HIGHMEM;
4107 		mask |= __GFP_DMA32;
4108 	}
4109 
4110 	mapping = obj->base.filp->f_mapping;
4111 	mapping_set_gfp_mask(mapping, mask);
4112 
4113 	i915_gem_object_init(obj, &i915_gem_object_ops);
4114 
4115 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4116 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4117 
4118 	if (HAS_LLC(dev)) {
4119 		/* On some devices, we can have the GPU use the LLC (the CPU
4120 		 * cache) for about a 10% performance improvement
4121 		 * compared to uncached.  Graphics requests other than
4122 		 * display scanout are coherent with the CPU in
4123 		 * accessing this cache.  This means in this mode we
4124 		 * don't need to clflush on the CPU side, and on the
4125 		 * GPU side we only need to flush internal caches to
4126 		 * get data visible to the CPU.
4127 		 *
4128 		 * However, we maintain the display planes as UC, and so
4129 		 * need to rebind when first used as such.
4130 		 */
4131 		obj->cache_level = I915_CACHE_LLC;
4132 	} else
4133 		obj->cache_level = I915_CACHE_NONE;
4134 
4135 	trace_i915_gem_object_create(obj);
4136 
4137 	return obj;
4138 
4139 fail:
4140 	i915_gem_object_free(obj);
4141 
4142 	return ERR_PTR(ret);
4143 }
4144 
4145 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4146 {
4147 	/* If we are the last user of the backing storage (be it shmemfs
4148 	 * pages or stolen etc), we know that the pages are going to be
4149 	 * immediately released. In this case, we can then skip copying
4150 	 * back the contents from the GPU.
4151 	 */
4152 
4153 	if (obj->madv != I915_MADV_WILLNEED)
4154 		return false;
4155 
4156 	if (obj->base.filp == NULL)
4157 		return true;
4158 
4159 	/* At first glance, this looks racy, but then again so would be
4160 	 * userspace racing mmap against close. However, the first external
4161 	 * reference to the filp can only be obtained through the
4162 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4163 	 * acquiring such a reference whilst we are in the middle of
4164 	 * freeing the object.
4165 	 */
4166 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4167 }
4168 
4169 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4170 {
4171 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4172 	struct drm_device *dev = obj->base.dev;
4173 	struct drm_i915_private *dev_priv = to_i915(dev);
4174 	struct i915_vma *vma, *next;
4175 
4176 	intel_runtime_pm_get(dev_priv);
4177 
4178 	trace_i915_gem_object_destroy(obj);
4179 
4180 	/* All file-owned VMA should have been released by this point through
4181 	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4182 	 * However, the object may also be bound into the global GTT (e.g.
4183 	 * older GPUs without per-process support, or for direct access through
4184 	 * the GTT either for the user or for scanout). Those VMA still need to
4185 	 * unbound now.
4186 	 */
4187 	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4188 		GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4189 		GEM_BUG_ON(i915_vma_is_active(vma));
4190 		vma->flags &= ~I915_VMA_PIN_MASK;
4191 		i915_vma_close(vma);
4192 	}
4193 	GEM_BUG_ON(obj->bind_count);
4194 
4195 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4196 	 * before progressing. */
4197 	if (obj->stolen)
4198 		i915_gem_object_unpin_pages(obj);
4199 
4200 	WARN_ON(atomic_read(&obj->frontbuffer_bits));
4201 
4202 	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4203 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4204 	    i915_gem_object_is_tiled(obj))
4205 		i915_gem_object_unpin_pages(obj);
4206 
4207 	if (WARN_ON(obj->pages_pin_count))
4208 		obj->pages_pin_count = 0;
4209 	if (discard_backing_storage(obj))
4210 		obj->madv = I915_MADV_DONTNEED;
4211 	i915_gem_object_put_pages(obj);
4212 
4213 	BUG_ON(obj->pages);
4214 
4215 	if (obj->base.import_attach)
4216 		drm_prime_gem_destroy(&obj->base, NULL);
4217 
4218 	if (obj->ops->release)
4219 		obj->ops->release(obj);
4220 
4221 	drm_gem_object_release(&obj->base);
4222 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4223 
4224 	kfree(obj->bit_17);
4225 	i915_gem_object_free(obj);
4226 
4227 	intel_runtime_pm_put(dev_priv);
4228 }
4229 
4230 int i915_gem_suspend(struct drm_device *dev)
4231 {
4232 	struct drm_i915_private *dev_priv = to_i915(dev);
4233 	int ret;
4234 
4235 	intel_suspend_gt_powersave(dev_priv);
4236 
4237 	mutex_lock(&dev->struct_mutex);
4238 
4239 	/* We have to flush all the executing contexts to main memory so
4240 	 * that they can saved in the hibernation image. To ensure the last
4241 	 * context image is coherent, we have to switch away from it. That
4242 	 * leaves the dev_priv->kernel_context still active when
4243 	 * we actually suspend, and its image in memory may not match the GPU
4244 	 * state. Fortunately, the kernel_context is disposable and we do
4245 	 * not rely on its state.
4246 	 */
4247 	ret = i915_gem_switch_to_kernel_context(dev_priv);
4248 	if (ret)
4249 		goto err;
4250 
4251 	ret = i915_gem_wait_for_idle(dev_priv,
4252 				     I915_WAIT_INTERRUPTIBLE |
4253 				     I915_WAIT_LOCKED);
4254 	if (ret)
4255 		goto err;
4256 
4257 	i915_gem_retire_requests(dev_priv);
4258 
4259 	i915_gem_context_lost(dev_priv);
4260 	mutex_unlock(&dev->struct_mutex);
4261 
4262 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4263 	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4264 	flush_delayed_work(&dev_priv->gt.idle_work);
4265 
4266 	/* Assert that we sucessfully flushed all the work and
4267 	 * reset the GPU back to its idle, low power state.
4268 	 */
4269 	WARN_ON(dev_priv->gt.awake);
4270 
4271 	return 0;
4272 
4273 err:
4274 	mutex_unlock(&dev->struct_mutex);
4275 	return ret;
4276 }
4277 
4278 void i915_gem_resume(struct drm_device *dev)
4279 {
4280 	struct drm_i915_private *dev_priv = to_i915(dev);
4281 
4282 	mutex_lock(&dev->struct_mutex);
4283 	i915_gem_restore_gtt_mappings(dev);
4284 
4285 	/* As we didn't flush the kernel context before suspend, we cannot
4286 	 * guarantee that the context image is complete. So let's just reset
4287 	 * it and start again.
4288 	 */
4289 	dev_priv->gt.resume(dev_priv);
4290 
4291 	mutex_unlock(&dev->struct_mutex);
4292 }
4293 
4294 void i915_gem_init_swizzling(struct drm_device *dev)
4295 {
4296 	struct drm_i915_private *dev_priv = to_i915(dev);
4297 
4298 	if (INTEL_INFO(dev)->gen < 5 ||
4299 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4300 		return;
4301 
4302 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4303 				 DISP_TILE_SURFACE_SWIZZLING);
4304 
4305 	if (IS_GEN5(dev))
4306 		return;
4307 
4308 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4309 	if (IS_GEN6(dev))
4310 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4311 	else if (IS_GEN7(dev))
4312 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4313 	else if (IS_GEN8(dev))
4314 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4315 	else
4316 		BUG();
4317 }
4318 
4319 static void init_unused_ring(struct drm_device *dev, u32 base)
4320 {
4321 	struct drm_i915_private *dev_priv = to_i915(dev);
4322 
4323 	I915_WRITE(RING_CTL(base), 0);
4324 	I915_WRITE(RING_HEAD(base), 0);
4325 	I915_WRITE(RING_TAIL(base), 0);
4326 	I915_WRITE(RING_START(base), 0);
4327 }
4328 
4329 static void init_unused_rings(struct drm_device *dev)
4330 {
4331 	if (IS_I830(dev)) {
4332 		init_unused_ring(dev, PRB1_BASE);
4333 		init_unused_ring(dev, SRB0_BASE);
4334 		init_unused_ring(dev, SRB1_BASE);
4335 		init_unused_ring(dev, SRB2_BASE);
4336 		init_unused_ring(dev, SRB3_BASE);
4337 	} else if (IS_GEN2(dev)) {
4338 		init_unused_ring(dev, SRB0_BASE);
4339 		init_unused_ring(dev, SRB1_BASE);
4340 	} else if (IS_GEN3(dev)) {
4341 		init_unused_ring(dev, PRB1_BASE);
4342 		init_unused_ring(dev, PRB2_BASE);
4343 	}
4344 }
4345 
4346 int
4347 i915_gem_init_hw(struct drm_device *dev)
4348 {
4349 	struct drm_i915_private *dev_priv = to_i915(dev);
4350 	struct intel_engine_cs *engine;
4351 	int ret;
4352 
4353 	/* Double layer security blanket, see i915_gem_init() */
4354 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4355 
4356 	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4357 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4358 
4359 	if (IS_HASWELL(dev))
4360 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4361 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4362 
4363 	if (HAS_PCH_NOP(dev)) {
4364 		if (IS_IVYBRIDGE(dev)) {
4365 			u32 temp = I915_READ(GEN7_MSG_CTL);
4366 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4367 			I915_WRITE(GEN7_MSG_CTL, temp);
4368 		} else if (INTEL_INFO(dev)->gen >= 7) {
4369 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4370 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4371 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4372 		}
4373 	}
4374 
4375 	i915_gem_init_swizzling(dev);
4376 
4377 	/*
4378 	 * At least 830 can leave some of the unused rings
4379 	 * "active" (ie. head != tail) after resume which
4380 	 * will prevent c3 entry. Makes sure all unused rings
4381 	 * are totally idle.
4382 	 */
4383 	init_unused_rings(dev);
4384 
4385 	BUG_ON(!dev_priv->kernel_context);
4386 
4387 	ret = i915_ppgtt_init_hw(dev);
4388 	if (ret) {
4389 		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4390 		goto out;
4391 	}
4392 
4393 	/* Need to do basic initialisation of all rings first: */
4394 	for_each_engine(engine, dev_priv) {
4395 		ret = engine->init_hw(engine);
4396 		if (ret)
4397 			goto out;
4398 	}
4399 
4400 	intel_mocs_init_l3cc_table(dev);
4401 
4402 	/* We can't enable contexts until all firmware is loaded */
4403 	ret = intel_guc_setup(dev);
4404 	if (ret)
4405 		goto out;
4406 
4407 out:
4408 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4409 	return ret;
4410 }
4411 
4412 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4413 {
4414 	if (INTEL_INFO(dev_priv)->gen < 6)
4415 		return false;
4416 
4417 	/* TODO: make semaphores and Execlists play nicely together */
4418 	if (i915.enable_execlists)
4419 		return false;
4420 
4421 	if (value >= 0)
4422 		return value;
4423 
4424 #ifdef CONFIG_INTEL_IOMMU
4425 	/* Enable semaphores on SNB when IO remapping is off */
4426 	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4427 		return false;
4428 #endif
4429 
4430 	return true;
4431 }
4432 
4433 int i915_gem_init(struct drm_device *dev)
4434 {
4435 	struct drm_i915_private *dev_priv = to_i915(dev);
4436 	int ret;
4437 
4438 	mutex_lock(&dev->struct_mutex);
4439 
4440 	if (!i915.enable_execlists) {
4441 		dev_priv->gt.resume = intel_legacy_submission_resume;
4442 		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4443 	} else {
4444 		dev_priv->gt.resume = intel_lr_context_resume;
4445 		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4446 	}
4447 
4448 	/* This is just a security blanket to placate dragons.
4449 	 * On some systems, we very sporadically observe that the first TLBs
4450 	 * used by the CS may be stale, despite us poking the TLB reset. If
4451 	 * we hold the forcewake during initialisation these problems
4452 	 * just magically go away.
4453 	 */
4454 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4455 
4456 	i915_gem_init_userptr(dev_priv);
4457 
4458 	ret = i915_gem_init_ggtt(dev_priv);
4459 	if (ret)
4460 		goto out_unlock;
4461 
4462 	ret = i915_gem_context_init(dev);
4463 	if (ret)
4464 		goto out_unlock;
4465 
4466 	ret = intel_engines_init(dev);
4467 	if (ret)
4468 		goto out_unlock;
4469 
4470 	ret = i915_gem_init_hw(dev);
4471 	if (ret == -EIO) {
4472 		/* Allow engine initialisation to fail by marking the GPU as
4473 		 * wedged. But we only want to do this where the GPU is angry,
4474 		 * for all other failure, such as an allocation failure, bail.
4475 		 */
4476 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4477 		i915_gem_set_wedged(dev_priv);
4478 		ret = 0;
4479 	}
4480 
4481 out_unlock:
4482 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4483 	mutex_unlock(&dev->struct_mutex);
4484 
4485 	return ret;
4486 }
4487 
4488 void
4489 i915_gem_cleanup_engines(struct drm_device *dev)
4490 {
4491 	struct drm_i915_private *dev_priv = to_i915(dev);
4492 	struct intel_engine_cs *engine;
4493 
4494 	for_each_engine(engine, dev_priv)
4495 		dev_priv->gt.cleanup_engine(engine);
4496 }
4497 
4498 static void
4499 init_engine_lists(struct intel_engine_cs *engine)
4500 {
4501 	INIT_LIST_HEAD(&engine->request_list);
4502 }
4503 
4504 void
4505 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4506 {
4507 	struct drm_device *dev = &dev_priv->drm;
4508 	int i;
4509 
4510 	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4511 	    !IS_CHERRYVIEW(dev_priv))
4512 		dev_priv->num_fence_regs = 32;
4513 	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4514 		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
4515 		dev_priv->num_fence_regs = 16;
4516 	else
4517 		dev_priv->num_fence_regs = 8;
4518 
4519 	if (intel_vgpu_active(dev_priv))
4520 		dev_priv->num_fence_regs =
4521 				I915_READ(vgtif_reg(avail_rs.fence_num));
4522 
4523 	/* Initialize fence registers to zero */
4524 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
4525 		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4526 
4527 		fence->i915 = dev_priv;
4528 		fence->id = i;
4529 		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4530 	}
4531 	i915_gem_restore_fences(dev);
4532 
4533 	i915_gem_detect_bit_6_swizzle(dev);
4534 }
4535 
4536 void
4537 i915_gem_load_init(struct drm_device *dev)
4538 {
4539 	struct drm_i915_private *dev_priv = to_i915(dev);
4540 	int i;
4541 
4542 	dev_priv->objects =
4543 		kmem_cache_create("i915_gem_object",
4544 				  sizeof(struct drm_i915_gem_object), 0,
4545 				  SLAB_HWCACHE_ALIGN,
4546 				  NULL);
4547 	dev_priv->vmas =
4548 		kmem_cache_create("i915_gem_vma",
4549 				  sizeof(struct i915_vma), 0,
4550 				  SLAB_HWCACHE_ALIGN,
4551 				  NULL);
4552 	dev_priv->requests =
4553 		kmem_cache_create("i915_gem_request",
4554 				  sizeof(struct drm_i915_gem_request), 0,
4555 				  SLAB_HWCACHE_ALIGN |
4556 				  SLAB_RECLAIM_ACCOUNT |
4557 				  SLAB_DESTROY_BY_RCU,
4558 				  NULL);
4559 
4560 	INIT_LIST_HEAD(&dev_priv->context_list);
4561 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4562 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4563 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4564 	for (i = 0; i < I915_NUM_ENGINES; i++)
4565 		init_engine_lists(&dev_priv->engine[i]);
4566 	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4567 			  i915_gem_retire_work_handler);
4568 	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4569 			  i915_gem_idle_work_handler);
4570 	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4571 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4572 
4573 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4574 
4575 	init_waitqueue_head(&dev_priv->pending_flip_queue);
4576 
4577 	dev_priv->mm.interruptible = true;
4578 
4579 	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4580 
4581 	spin_lock_init(&dev_priv->fb_tracking.lock);
4582 }
4583 
4584 void i915_gem_load_cleanup(struct drm_device *dev)
4585 {
4586 	struct drm_i915_private *dev_priv = to_i915(dev);
4587 
4588 	kmem_cache_destroy(dev_priv->requests);
4589 	kmem_cache_destroy(dev_priv->vmas);
4590 	kmem_cache_destroy(dev_priv->objects);
4591 
4592 	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4593 	rcu_barrier();
4594 }
4595 
4596 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4597 {
4598 	intel_runtime_pm_get(dev_priv);
4599 
4600 	mutex_lock(&dev_priv->drm.struct_mutex);
4601 	i915_gem_shrink_all(dev_priv);
4602 	mutex_unlock(&dev_priv->drm.struct_mutex);
4603 
4604 	intel_runtime_pm_put(dev_priv);
4605 
4606 	return 0;
4607 }
4608 
4609 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4610 {
4611 	struct drm_i915_gem_object *obj;
4612 	struct list_head *phases[] = {
4613 		&dev_priv->mm.unbound_list,
4614 		&dev_priv->mm.bound_list,
4615 		NULL
4616 	}, **p;
4617 
4618 	/* Called just before we write the hibernation image.
4619 	 *
4620 	 * We need to update the domain tracking to reflect that the CPU
4621 	 * will be accessing all the pages to create and restore from the
4622 	 * hibernation, and so upon restoration those pages will be in the
4623 	 * CPU domain.
4624 	 *
4625 	 * To make sure the hibernation image contains the latest state,
4626 	 * we update that state just before writing out the image.
4627 	 *
4628 	 * To try and reduce the hibernation image, we manually shrink
4629 	 * the objects as well.
4630 	 */
4631 
4632 	mutex_lock(&dev_priv->drm.struct_mutex);
4633 	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4634 
4635 	for (p = phases; *p; p++) {
4636 		list_for_each_entry(obj, *p, global_list) {
4637 			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4638 			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4639 		}
4640 	}
4641 	mutex_unlock(&dev_priv->drm.struct_mutex);
4642 
4643 	return 0;
4644 }
4645 
4646 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4647 {
4648 	struct drm_i915_file_private *file_priv = file->driver_priv;
4649 	struct drm_i915_gem_request *request;
4650 
4651 	/* Clean up our request list when the client is going away, so that
4652 	 * later retire_requests won't dereference our soon-to-be-gone
4653 	 * file_priv.
4654 	 */
4655 	spin_lock(&file_priv->mm.lock);
4656 	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4657 		request->file_priv = NULL;
4658 	spin_unlock(&file_priv->mm.lock);
4659 
4660 	if (!list_empty(&file_priv->rps.link)) {
4661 		spin_lock(&to_i915(dev)->rps.client_lock);
4662 		list_del(&file_priv->rps.link);
4663 		spin_unlock(&to_i915(dev)->rps.client_lock);
4664 	}
4665 }
4666 
4667 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4668 {
4669 	struct drm_i915_file_private *file_priv;
4670 	int ret;
4671 
4672 	DRM_DEBUG_DRIVER("\n");
4673 
4674 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4675 	if (!file_priv)
4676 		return -ENOMEM;
4677 
4678 	file->driver_priv = file_priv;
4679 	file_priv->dev_priv = to_i915(dev);
4680 	file_priv->file = file;
4681 	INIT_LIST_HEAD(&file_priv->rps.link);
4682 
4683 	spin_lock_init(&file_priv->mm.lock);
4684 	INIT_LIST_HEAD(&file_priv->mm.request_list);
4685 
4686 	file_priv->bsd_engine = -1;
4687 
4688 	ret = i915_gem_context_open(dev, file);
4689 	if (ret)
4690 		kfree(file_priv);
4691 
4692 	return ret;
4693 }
4694 
4695 /**
4696  * i915_gem_track_fb - update frontbuffer tracking
4697  * @old: current GEM buffer for the frontbuffer slots
4698  * @new: new GEM buffer for the frontbuffer slots
4699  * @frontbuffer_bits: bitmask of frontbuffer slots
4700  *
4701  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4702  * from @old and setting them in @new. Both @old and @new can be NULL.
4703  */
4704 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4705 		       struct drm_i915_gem_object *new,
4706 		       unsigned frontbuffer_bits)
4707 {
4708 	/* Control of individual bits within the mask are guarded by
4709 	 * the owning plane->mutex, i.e. we can never see concurrent
4710 	 * manipulation of individual bits. But since the bitfield as a whole
4711 	 * is updated using RMW, we need to use atomics in order to update
4712 	 * the bits.
4713 	 */
4714 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4715 		     sizeof(atomic_t) * BITS_PER_BYTE);
4716 
4717 	if (old) {
4718 		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4719 		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4720 	}
4721 
4722 	if (new) {
4723 		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4724 		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4725 	}
4726 }
4727 
4728 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
4729 struct page *
4730 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
4731 {
4732 	struct page *page;
4733 
4734 	/* Only default objects have per-page dirty tracking */
4735 	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4736 		return NULL;
4737 
4738 	page = i915_gem_object_get_page(obj, n);
4739 	set_page_dirty(page);
4740 	return page;
4741 }
4742 
4743 /* Allocate a new GEM object and fill it with the supplied data */
4744 struct drm_i915_gem_object *
4745 i915_gem_object_create_from_data(struct drm_device *dev,
4746 			         const void *data, size_t size)
4747 {
4748 	struct drm_i915_gem_object *obj;
4749 	struct sg_table *sg;
4750 	size_t bytes;
4751 	int ret;
4752 
4753 	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4754 	if (IS_ERR(obj))
4755 		return obj;
4756 
4757 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
4758 	if (ret)
4759 		goto fail;
4760 
4761 	ret = i915_gem_object_get_pages(obj);
4762 	if (ret)
4763 		goto fail;
4764 
4765 	i915_gem_object_pin_pages(obj);
4766 	sg = obj->pages;
4767 	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4768 	obj->dirty = 1;		/* Backing store is now out of date */
4769 	i915_gem_object_unpin_pages(obj);
4770 
4771 	if (WARN_ON(bytes != size)) {
4772 		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4773 		ret = -EFAULT;
4774 		goto fail;
4775 	}
4776 
4777 	return obj;
4778 
4779 fail:
4780 	i915_gem_object_put(obj);
4781 	return ERR_PTR(ret);
4782 }
4783