1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <drm/drmP.h> 29 #include <drm/drm_vma_manager.h> 30 #include <drm/i915_drm.h> 31 #include "i915_drv.h" 32 #include "i915_gem_dmabuf.h" 33 #include "i915_vgpu.h" 34 #include "i915_trace.h" 35 #include "intel_drv.h" 36 #include "intel_frontbuffer.h" 37 #include "intel_mocs.h" 38 #include <linux/reservation.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/slab.h> 41 #include <linux/swap.h> 42 #include <linux/pci.h> 43 #include <linux/dma-buf.h> 44 45 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj); 46 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj); 47 48 static bool cpu_cache_is_coherent(struct drm_device *dev, 49 enum i915_cache_level level) 50 { 51 return HAS_LLC(dev) || level != I915_CACHE_NONE; 52 } 53 54 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj) 55 { 56 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) 57 return false; 58 59 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) 60 return true; 61 62 return obj->pin_display; 63 } 64 65 static int 66 insert_mappable_node(struct drm_i915_private *i915, 67 struct drm_mm_node *node, u32 size) 68 { 69 memset(node, 0, sizeof(*node)); 70 return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node, 71 size, 0, 0, 0, 72 i915->ggtt.mappable_end, 73 DRM_MM_SEARCH_DEFAULT, 74 DRM_MM_CREATE_DEFAULT); 75 } 76 77 static void 78 remove_mappable_node(struct drm_mm_node *node) 79 { 80 drm_mm_remove_node(node); 81 } 82 83 /* some bookkeeping */ 84 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv, 85 size_t size) 86 { 87 spin_lock(&dev_priv->mm.object_stat_lock); 88 dev_priv->mm.object_count++; 89 dev_priv->mm.object_memory += size; 90 spin_unlock(&dev_priv->mm.object_stat_lock); 91 } 92 93 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, 94 size_t size) 95 { 96 spin_lock(&dev_priv->mm.object_stat_lock); 97 dev_priv->mm.object_count--; 98 dev_priv->mm.object_memory -= size; 99 spin_unlock(&dev_priv->mm.object_stat_lock); 100 } 101 102 static int 103 i915_gem_wait_for_error(struct i915_gpu_error *error) 104 { 105 int ret; 106 107 if (!i915_reset_in_progress(error)) 108 return 0; 109 110 /* 111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging 112 * userspace. If it takes that long something really bad is going on and 113 * we should simply try to bail out and fail as gracefully as possible. 114 */ 115 ret = wait_event_interruptible_timeout(error->reset_queue, 116 !i915_reset_in_progress(error), 117 10*HZ); 118 if (ret == 0) { 119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n"); 120 return -EIO; 121 } else if (ret < 0) { 122 return ret; 123 } else { 124 return 0; 125 } 126 } 127 128 int i915_mutex_lock_interruptible(struct drm_device *dev) 129 { 130 struct drm_i915_private *dev_priv = to_i915(dev); 131 int ret; 132 133 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 134 if (ret) 135 return ret; 136 137 ret = mutex_lock_interruptible(&dev->struct_mutex); 138 if (ret) 139 return ret; 140 141 return 0; 142 } 143 144 int 145 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 146 struct drm_file *file) 147 { 148 struct drm_i915_private *dev_priv = to_i915(dev); 149 struct i915_ggtt *ggtt = &dev_priv->ggtt; 150 struct drm_i915_gem_get_aperture *args = data; 151 struct i915_vma *vma; 152 size_t pinned; 153 154 pinned = 0; 155 mutex_lock(&dev->struct_mutex); 156 list_for_each_entry(vma, &ggtt->base.active_list, vm_link) 157 if (i915_vma_is_pinned(vma)) 158 pinned += vma->node.size; 159 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link) 160 if (i915_vma_is_pinned(vma)) 161 pinned += vma->node.size; 162 mutex_unlock(&dev->struct_mutex); 163 164 args->aper_size = ggtt->base.total; 165 args->aper_available_size = args->aper_size - pinned; 166 167 return 0; 168 } 169 170 static int 171 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj) 172 { 173 struct address_space *mapping = obj->base.filp->f_mapping; 174 char *vaddr = obj->phys_handle->vaddr; 175 struct sg_table *st; 176 struct scatterlist *sg; 177 int i; 178 179 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj))) 180 return -EINVAL; 181 182 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { 183 struct page *page; 184 char *src; 185 186 page = shmem_read_mapping_page(mapping, i); 187 if (IS_ERR(page)) 188 return PTR_ERR(page); 189 190 src = kmap_atomic(page); 191 memcpy(vaddr, src, PAGE_SIZE); 192 drm_clflush_virt_range(vaddr, PAGE_SIZE); 193 kunmap_atomic(src); 194 195 put_page(page); 196 vaddr += PAGE_SIZE; 197 } 198 199 i915_gem_chipset_flush(to_i915(obj->base.dev)); 200 201 st = kmalloc(sizeof(*st), GFP_KERNEL); 202 if (st == NULL) 203 return -ENOMEM; 204 205 if (sg_alloc_table(st, 1, GFP_KERNEL)) { 206 kfree(st); 207 return -ENOMEM; 208 } 209 210 sg = st->sgl; 211 sg->offset = 0; 212 sg->length = obj->base.size; 213 214 sg_dma_address(sg) = obj->phys_handle->busaddr; 215 sg_dma_len(sg) = obj->base.size; 216 217 obj->pages = st; 218 return 0; 219 } 220 221 static void 222 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj) 223 { 224 int ret; 225 226 BUG_ON(obj->madv == __I915_MADV_PURGED); 227 228 ret = i915_gem_object_set_to_cpu_domain(obj, true); 229 if (WARN_ON(ret)) { 230 /* In the event of a disaster, abandon all caches and 231 * hope for the best. 232 */ 233 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU; 234 } 235 236 if (obj->madv == I915_MADV_DONTNEED) 237 obj->dirty = 0; 238 239 if (obj->dirty) { 240 struct address_space *mapping = obj->base.filp->f_mapping; 241 char *vaddr = obj->phys_handle->vaddr; 242 int i; 243 244 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { 245 struct page *page; 246 char *dst; 247 248 page = shmem_read_mapping_page(mapping, i); 249 if (IS_ERR(page)) 250 continue; 251 252 dst = kmap_atomic(page); 253 drm_clflush_virt_range(vaddr, PAGE_SIZE); 254 memcpy(dst, vaddr, PAGE_SIZE); 255 kunmap_atomic(dst); 256 257 set_page_dirty(page); 258 if (obj->madv == I915_MADV_WILLNEED) 259 mark_page_accessed(page); 260 put_page(page); 261 vaddr += PAGE_SIZE; 262 } 263 obj->dirty = 0; 264 } 265 266 sg_free_table(obj->pages); 267 kfree(obj->pages); 268 } 269 270 static void 271 i915_gem_object_release_phys(struct drm_i915_gem_object *obj) 272 { 273 drm_pci_free(obj->base.dev, obj->phys_handle); 274 } 275 276 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = { 277 .get_pages = i915_gem_object_get_pages_phys, 278 .put_pages = i915_gem_object_put_pages_phys, 279 .release = i915_gem_object_release_phys, 280 }; 281 282 int i915_gem_object_unbind(struct drm_i915_gem_object *obj) 283 { 284 struct i915_vma *vma; 285 LIST_HEAD(still_in_list); 286 int ret; 287 288 lockdep_assert_held(&obj->base.dev->struct_mutex); 289 290 /* Closed vma are removed from the obj->vma_list - but they may 291 * still have an active binding on the object. To remove those we 292 * must wait for all rendering to complete to the object (as unbinding 293 * must anyway), and retire the requests. 294 */ 295 ret = i915_gem_object_wait_rendering(obj, false); 296 if (ret) 297 return ret; 298 299 i915_gem_retire_requests(to_i915(obj->base.dev)); 300 301 while ((vma = list_first_entry_or_null(&obj->vma_list, 302 struct i915_vma, 303 obj_link))) { 304 list_move_tail(&vma->obj_link, &still_in_list); 305 ret = i915_vma_unbind(vma); 306 if (ret) 307 break; 308 } 309 list_splice(&still_in_list, &obj->vma_list); 310 311 return ret; 312 } 313 314 /** 315 * Ensures that all rendering to the object has completed and the object is 316 * safe to unbind from the GTT or access from the CPU. 317 * @obj: i915 gem object 318 * @readonly: waiting for just read access or read-write access 319 */ 320 int 321 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, 322 bool readonly) 323 { 324 struct reservation_object *resv; 325 struct i915_gem_active *active; 326 unsigned long active_mask; 327 int idx; 328 329 lockdep_assert_held(&obj->base.dev->struct_mutex); 330 331 if (!readonly) { 332 active = obj->last_read; 333 active_mask = i915_gem_object_get_active(obj); 334 } else { 335 active_mask = 1; 336 active = &obj->last_write; 337 } 338 339 for_each_active(active_mask, idx) { 340 int ret; 341 342 ret = i915_gem_active_wait(&active[idx], 343 &obj->base.dev->struct_mutex); 344 if (ret) 345 return ret; 346 } 347 348 resv = i915_gem_object_get_dmabuf_resv(obj); 349 if (resv) { 350 long err; 351 352 err = reservation_object_wait_timeout_rcu(resv, !readonly, true, 353 MAX_SCHEDULE_TIMEOUT); 354 if (err < 0) 355 return err; 356 } 357 358 return 0; 359 } 360 361 /* A nonblocking variant of the above wait. Must be called prior to 362 * acquiring the mutex for the object, as the object state may change 363 * during this call. A reference must be held by the caller for the object. 364 */ 365 static __must_check int 366 __unsafe_wait_rendering(struct drm_i915_gem_object *obj, 367 struct intel_rps_client *rps, 368 bool readonly) 369 { 370 struct i915_gem_active *active; 371 unsigned long active_mask; 372 int idx; 373 374 active_mask = __I915_BO_ACTIVE(obj); 375 if (!active_mask) 376 return 0; 377 378 if (!readonly) { 379 active = obj->last_read; 380 } else { 381 active_mask = 1; 382 active = &obj->last_write; 383 } 384 385 for_each_active(active_mask, idx) { 386 int ret; 387 388 ret = i915_gem_active_wait_unlocked(&active[idx], 389 I915_WAIT_INTERRUPTIBLE, 390 NULL, rps); 391 if (ret) 392 return ret; 393 } 394 395 return 0; 396 } 397 398 static struct intel_rps_client *to_rps_client(struct drm_file *file) 399 { 400 struct drm_i915_file_private *fpriv = file->driver_priv; 401 402 return &fpriv->rps; 403 } 404 405 int 406 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, 407 int align) 408 { 409 drm_dma_handle_t *phys; 410 int ret; 411 412 if (obj->phys_handle) { 413 if ((unsigned long)obj->phys_handle->vaddr & (align -1)) 414 return -EBUSY; 415 416 return 0; 417 } 418 419 if (obj->madv != I915_MADV_WILLNEED) 420 return -EFAULT; 421 422 if (obj->base.filp == NULL) 423 return -EINVAL; 424 425 ret = i915_gem_object_unbind(obj); 426 if (ret) 427 return ret; 428 429 ret = i915_gem_object_put_pages(obj); 430 if (ret) 431 return ret; 432 433 /* create a new object */ 434 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align); 435 if (!phys) 436 return -ENOMEM; 437 438 obj->phys_handle = phys; 439 obj->ops = &i915_gem_phys_ops; 440 441 return i915_gem_object_get_pages(obj); 442 } 443 444 static int 445 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj, 446 struct drm_i915_gem_pwrite *args, 447 struct drm_file *file_priv) 448 { 449 struct drm_device *dev = obj->base.dev; 450 void *vaddr = obj->phys_handle->vaddr + args->offset; 451 char __user *user_data = u64_to_user_ptr(args->data_ptr); 452 int ret = 0; 453 454 /* We manually control the domain here and pretend that it 455 * remains coherent i.e. in the GTT domain, like shmem_pwrite. 456 */ 457 ret = i915_gem_object_wait_rendering(obj, false); 458 if (ret) 459 return ret; 460 461 intel_fb_obj_invalidate(obj, ORIGIN_CPU); 462 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) { 463 unsigned long unwritten; 464 465 /* The physical object once assigned is fixed for the lifetime 466 * of the obj, so we can safely drop the lock and continue 467 * to access vaddr. 468 */ 469 mutex_unlock(&dev->struct_mutex); 470 unwritten = copy_from_user(vaddr, user_data, args->size); 471 mutex_lock(&dev->struct_mutex); 472 if (unwritten) { 473 ret = -EFAULT; 474 goto out; 475 } 476 } 477 478 drm_clflush_virt_range(vaddr, args->size); 479 i915_gem_chipset_flush(to_i915(dev)); 480 481 out: 482 intel_fb_obj_flush(obj, false, ORIGIN_CPU); 483 return ret; 484 } 485 486 void *i915_gem_object_alloc(struct drm_device *dev) 487 { 488 struct drm_i915_private *dev_priv = to_i915(dev); 489 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL); 490 } 491 492 void i915_gem_object_free(struct drm_i915_gem_object *obj) 493 { 494 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 495 kmem_cache_free(dev_priv->objects, obj); 496 } 497 498 static int 499 i915_gem_create(struct drm_file *file, 500 struct drm_device *dev, 501 uint64_t size, 502 uint32_t *handle_p) 503 { 504 struct drm_i915_gem_object *obj; 505 int ret; 506 u32 handle; 507 508 size = roundup(size, PAGE_SIZE); 509 if (size == 0) 510 return -EINVAL; 511 512 /* Allocate the new object */ 513 obj = i915_gem_object_create(dev, size); 514 if (IS_ERR(obj)) 515 return PTR_ERR(obj); 516 517 ret = drm_gem_handle_create(file, &obj->base, &handle); 518 /* drop reference from allocate - handle holds it now */ 519 i915_gem_object_put_unlocked(obj); 520 if (ret) 521 return ret; 522 523 *handle_p = handle; 524 return 0; 525 } 526 527 int 528 i915_gem_dumb_create(struct drm_file *file, 529 struct drm_device *dev, 530 struct drm_mode_create_dumb *args) 531 { 532 /* have to work out size/pitch and return them */ 533 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64); 534 args->size = args->pitch * args->height; 535 return i915_gem_create(file, dev, 536 args->size, &args->handle); 537 } 538 539 /** 540 * Creates a new mm object and returns a handle to it. 541 * @dev: drm device pointer 542 * @data: ioctl data blob 543 * @file: drm file pointer 544 */ 545 int 546 i915_gem_create_ioctl(struct drm_device *dev, void *data, 547 struct drm_file *file) 548 { 549 struct drm_i915_gem_create *args = data; 550 551 return i915_gem_create(file, dev, 552 args->size, &args->handle); 553 } 554 555 static inline int 556 __copy_to_user_swizzled(char __user *cpu_vaddr, 557 const char *gpu_vaddr, int gpu_offset, 558 int length) 559 { 560 int ret, cpu_offset = 0; 561 562 while (length > 0) { 563 int cacheline_end = ALIGN(gpu_offset + 1, 64); 564 int this_length = min(cacheline_end - gpu_offset, length); 565 int swizzled_gpu_offset = gpu_offset ^ 64; 566 567 ret = __copy_to_user(cpu_vaddr + cpu_offset, 568 gpu_vaddr + swizzled_gpu_offset, 569 this_length); 570 if (ret) 571 return ret + length; 572 573 cpu_offset += this_length; 574 gpu_offset += this_length; 575 length -= this_length; 576 } 577 578 return 0; 579 } 580 581 static inline int 582 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset, 583 const char __user *cpu_vaddr, 584 int length) 585 { 586 int ret, cpu_offset = 0; 587 588 while (length > 0) { 589 int cacheline_end = ALIGN(gpu_offset + 1, 64); 590 int this_length = min(cacheline_end - gpu_offset, length); 591 int swizzled_gpu_offset = gpu_offset ^ 64; 592 593 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset, 594 cpu_vaddr + cpu_offset, 595 this_length); 596 if (ret) 597 return ret + length; 598 599 cpu_offset += this_length; 600 gpu_offset += this_length; 601 length -= this_length; 602 } 603 604 return 0; 605 } 606 607 /* 608 * Pins the specified object's pages and synchronizes the object with 609 * GPU accesses. Sets needs_clflush to non-zero if the caller should 610 * flush the object from the CPU cache. 611 */ 612 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, 613 unsigned int *needs_clflush) 614 { 615 int ret; 616 617 *needs_clflush = 0; 618 619 if (!i915_gem_object_has_struct_page(obj)) 620 return -ENODEV; 621 622 ret = i915_gem_object_wait_rendering(obj, true); 623 if (ret) 624 return ret; 625 626 ret = i915_gem_object_get_pages(obj); 627 if (ret) 628 return ret; 629 630 i915_gem_object_pin_pages(obj); 631 632 i915_gem_object_flush_gtt_write_domain(obj); 633 634 /* If we're not in the cpu read domain, set ourself into the gtt 635 * read domain and manually flush cachelines (if required). This 636 * optimizes for the case when the gpu will dirty the data 637 * anyway again before the next pread happens. 638 */ 639 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) 640 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev, 641 obj->cache_level); 642 643 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) { 644 ret = i915_gem_object_set_to_cpu_domain(obj, false); 645 if (ret) 646 goto err_unpin; 647 648 *needs_clflush = 0; 649 } 650 651 /* return with the pages pinned */ 652 return 0; 653 654 err_unpin: 655 i915_gem_object_unpin_pages(obj); 656 return ret; 657 } 658 659 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj, 660 unsigned int *needs_clflush) 661 { 662 int ret; 663 664 *needs_clflush = 0; 665 if (!i915_gem_object_has_struct_page(obj)) 666 return -ENODEV; 667 668 ret = i915_gem_object_wait_rendering(obj, false); 669 if (ret) 670 return ret; 671 672 ret = i915_gem_object_get_pages(obj); 673 if (ret) 674 return ret; 675 676 i915_gem_object_pin_pages(obj); 677 678 i915_gem_object_flush_gtt_write_domain(obj); 679 680 /* If we're not in the cpu write domain, set ourself into the 681 * gtt write domain and manually flush cachelines (as required). 682 * This optimizes for the case when the gpu will use the data 683 * right away and we therefore have to clflush anyway. 684 */ 685 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) 686 *needs_clflush |= cpu_write_needs_clflush(obj) << 1; 687 688 /* Same trick applies to invalidate partially written cachelines read 689 * before writing. 690 */ 691 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) 692 *needs_clflush |= !cpu_cache_is_coherent(obj->base.dev, 693 obj->cache_level); 694 695 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) { 696 ret = i915_gem_object_set_to_cpu_domain(obj, true); 697 if (ret) 698 goto err_unpin; 699 700 *needs_clflush = 0; 701 } 702 703 if ((*needs_clflush & CLFLUSH_AFTER) == 0) 704 obj->cache_dirty = true; 705 706 intel_fb_obj_invalidate(obj, ORIGIN_CPU); 707 obj->dirty = 1; 708 /* return with the pages pinned */ 709 return 0; 710 711 err_unpin: 712 i915_gem_object_unpin_pages(obj); 713 return ret; 714 } 715 716 /* Per-page copy function for the shmem pread fastpath. 717 * Flushes invalid cachelines before reading the target if 718 * needs_clflush is set. */ 719 static int 720 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length, 721 char __user *user_data, 722 bool page_do_bit17_swizzling, bool needs_clflush) 723 { 724 char *vaddr; 725 int ret; 726 727 if (unlikely(page_do_bit17_swizzling)) 728 return -EINVAL; 729 730 vaddr = kmap_atomic(page); 731 if (needs_clflush) 732 drm_clflush_virt_range(vaddr + shmem_page_offset, 733 page_length); 734 ret = __copy_to_user_inatomic(user_data, 735 vaddr + shmem_page_offset, 736 page_length); 737 kunmap_atomic(vaddr); 738 739 return ret ? -EFAULT : 0; 740 } 741 742 static void 743 shmem_clflush_swizzled_range(char *addr, unsigned long length, 744 bool swizzled) 745 { 746 if (unlikely(swizzled)) { 747 unsigned long start = (unsigned long) addr; 748 unsigned long end = (unsigned long) addr + length; 749 750 /* For swizzling simply ensure that we always flush both 751 * channels. Lame, but simple and it works. Swizzled 752 * pwrite/pread is far from a hotpath - current userspace 753 * doesn't use it at all. */ 754 start = round_down(start, 128); 755 end = round_up(end, 128); 756 757 drm_clflush_virt_range((void *)start, end - start); 758 } else { 759 drm_clflush_virt_range(addr, length); 760 } 761 762 } 763 764 /* Only difference to the fast-path function is that this can handle bit17 765 * and uses non-atomic copy and kmap functions. */ 766 static int 767 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length, 768 char __user *user_data, 769 bool page_do_bit17_swizzling, bool needs_clflush) 770 { 771 char *vaddr; 772 int ret; 773 774 vaddr = kmap(page); 775 if (needs_clflush) 776 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 777 page_length, 778 page_do_bit17_swizzling); 779 780 if (page_do_bit17_swizzling) 781 ret = __copy_to_user_swizzled(user_data, 782 vaddr, shmem_page_offset, 783 page_length); 784 else 785 ret = __copy_to_user(user_data, 786 vaddr + shmem_page_offset, 787 page_length); 788 kunmap(page); 789 790 return ret ? - EFAULT : 0; 791 } 792 793 static inline unsigned long 794 slow_user_access(struct io_mapping *mapping, 795 uint64_t page_base, int page_offset, 796 char __user *user_data, 797 unsigned long length, bool pwrite) 798 { 799 void __iomem *ioaddr; 800 void *vaddr; 801 uint64_t unwritten; 802 803 ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE); 804 /* We can use the cpu mem copy function because this is X86. */ 805 vaddr = (void __force *)ioaddr + page_offset; 806 if (pwrite) 807 unwritten = __copy_from_user(vaddr, user_data, length); 808 else 809 unwritten = __copy_to_user(user_data, vaddr, length); 810 811 io_mapping_unmap(ioaddr); 812 return unwritten; 813 } 814 815 static int 816 i915_gem_gtt_pread(struct drm_device *dev, 817 struct drm_i915_gem_object *obj, uint64_t size, 818 uint64_t data_offset, uint64_t data_ptr) 819 { 820 struct drm_i915_private *dev_priv = to_i915(dev); 821 struct i915_ggtt *ggtt = &dev_priv->ggtt; 822 struct i915_vma *vma; 823 struct drm_mm_node node; 824 char __user *user_data; 825 uint64_t remain; 826 uint64_t offset; 827 int ret; 828 829 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE); 830 if (!IS_ERR(vma)) { 831 node.start = i915_ggtt_offset(vma); 832 node.allocated = false; 833 ret = i915_vma_put_fence(vma); 834 if (ret) { 835 i915_vma_unpin(vma); 836 vma = ERR_PTR(ret); 837 } 838 } 839 if (IS_ERR(vma)) { 840 ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE); 841 if (ret) 842 goto out; 843 844 ret = i915_gem_object_get_pages(obj); 845 if (ret) { 846 remove_mappable_node(&node); 847 goto out; 848 } 849 850 i915_gem_object_pin_pages(obj); 851 } 852 853 ret = i915_gem_object_set_to_gtt_domain(obj, false); 854 if (ret) 855 goto out_unpin; 856 857 user_data = u64_to_user_ptr(data_ptr); 858 remain = size; 859 offset = data_offset; 860 861 mutex_unlock(&dev->struct_mutex); 862 if (likely(!i915.prefault_disable)) { 863 ret = fault_in_pages_writeable(user_data, remain); 864 if (ret) { 865 mutex_lock(&dev->struct_mutex); 866 goto out_unpin; 867 } 868 } 869 870 while (remain > 0) { 871 /* Operation in this page 872 * 873 * page_base = page offset within aperture 874 * page_offset = offset within page 875 * page_length = bytes to copy for this page 876 */ 877 u32 page_base = node.start; 878 unsigned page_offset = offset_in_page(offset); 879 unsigned page_length = PAGE_SIZE - page_offset; 880 page_length = remain < page_length ? remain : page_length; 881 if (node.allocated) { 882 wmb(); 883 ggtt->base.insert_page(&ggtt->base, 884 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), 885 node.start, 886 I915_CACHE_NONE, 0); 887 wmb(); 888 } else { 889 page_base += offset & PAGE_MASK; 890 } 891 /* This is a slow read/write as it tries to read from 892 * and write to user memory which may result into page 893 * faults, and so we cannot perform this under struct_mutex. 894 */ 895 if (slow_user_access(&ggtt->mappable, page_base, 896 page_offset, user_data, 897 page_length, false)) { 898 ret = -EFAULT; 899 break; 900 } 901 902 remain -= page_length; 903 user_data += page_length; 904 offset += page_length; 905 } 906 907 mutex_lock(&dev->struct_mutex); 908 if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) { 909 /* The user has modified the object whilst we tried 910 * reading from it, and we now have no idea what domain 911 * the pages should be in. As we have just been touching 912 * them directly, flush everything back to the GTT 913 * domain. 914 */ 915 ret = i915_gem_object_set_to_gtt_domain(obj, false); 916 } 917 918 out_unpin: 919 if (node.allocated) { 920 wmb(); 921 ggtt->base.clear_range(&ggtt->base, 922 node.start, node.size, 923 true); 924 i915_gem_object_unpin_pages(obj); 925 remove_mappable_node(&node); 926 } else { 927 i915_vma_unpin(vma); 928 } 929 out: 930 return ret; 931 } 932 933 static int 934 i915_gem_shmem_pread(struct drm_device *dev, 935 struct drm_i915_gem_object *obj, 936 struct drm_i915_gem_pread *args, 937 struct drm_file *file) 938 { 939 char __user *user_data; 940 ssize_t remain; 941 loff_t offset; 942 int shmem_page_offset, page_length, ret = 0; 943 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 944 int prefaulted = 0; 945 int needs_clflush = 0; 946 struct sg_page_iter sg_iter; 947 948 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush); 949 if (ret) 950 return ret; 951 952 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 953 user_data = u64_to_user_ptr(args->data_ptr); 954 offset = args->offset; 955 remain = args->size; 956 957 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 958 offset >> PAGE_SHIFT) { 959 struct page *page = sg_page_iter_page(&sg_iter); 960 961 if (remain <= 0) 962 break; 963 964 /* Operation in this page 965 * 966 * shmem_page_offset = offset within page in shmem file 967 * page_length = bytes to copy for this page 968 */ 969 shmem_page_offset = offset_in_page(offset); 970 page_length = remain; 971 if ((shmem_page_offset + page_length) > PAGE_SIZE) 972 page_length = PAGE_SIZE - shmem_page_offset; 973 974 page_do_bit17_swizzling = obj_do_bit17_swizzling && 975 (page_to_phys(page) & (1 << 17)) != 0; 976 977 ret = shmem_pread_fast(page, shmem_page_offset, page_length, 978 user_data, page_do_bit17_swizzling, 979 needs_clflush); 980 if (ret == 0) 981 goto next_page; 982 983 mutex_unlock(&dev->struct_mutex); 984 985 if (likely(!i915.prefault_disable) && !prefaulted) { 986 ret = fault_in_pages_writeable(user_data, remain); 987 /* Userspace is tricking us, but we've already clobbered 988 * its pages with the prefault and promised to write the 989 * data up to the first fault. Hence ignore any errors 990 * and just continue. */ 991 (void)ret; 992 prefaulted = 1; 993 } 994 995 ret = shmem_pread_slow(page, shmem_page_offset, page_length, 996 user_data, page_do_bit17_swizzling, 997 needs_clflush); 998 999 mutex_lock(&dev->struct_mutex); 1000 1001 if (ret) 1002 goto out; 1003 1004 next_page: 1005 remain -= page_length; 1006 user_data += page_length; 1007 offset += page_length; 1008 } 1009 1010 out: 1011 i915_gem_obj_finish_shmem_access(obj); 1012 1013 return ret; 1014 } 1015 1016 /** 1017 * Reads data from the object referenced by handle. 1018 * @dev: drm device pointer 1019 * @data: ioctl data blob 1020 * @file: drm file pointer 1021 * 1022 * On error, the contents of *data are undefined. 1023 */ 1024 int 1025 i915_gem_pread_ioctl(struct drm_device *dev, void *data, 1026 struct drm_file *file) 1027 { 1028 struct drm_i915_gem_pread *args = data; 1029 struct drm_i915_gem_object *obj; 1030 int ret = 0; 1031 1032 if (args->size == 0) 1033 return 0; 1034 1035 if (!access_ok(VERIFY_WRITE, 1036 u64_to_user_ptr(args->data_ptr), 1037 args->size)) 1038 return -EFAULT; 1039 1040 obj = i915_gem_object_lookup(file, args->handle); 1041 if (!obj) 1042 return -ENOENT; 1043 1044 /* Bounds check source. */ 1045 if (args->offset > obj->base.size || 1046 args->size > obj->base.size - args->offset) { 1047 ret = -EINVAL; 1048 goto err; 1049 } 1050 1051 trace_i915_gem_object_pread(obj, args->offset, args->size); 1052 1053 ret = __unsafe_wait_rendering(obj, to_rps_client(file), true); 1054 if (ret) 1055 goto err; 1056 1057 ret = i915_mutex_lock_interruptible(dev); 1058 if (ret) 1059 goto err; 1060 1061 ret = i915_gem_shmem_pread(dev, obj, args, file); 1062 1063 /* pread for non shmem backed objects */ 1064 if (ret == -EFAULT || ret == -ENODEV) { 1065 intel_runtime_pm_get(to_i915(dev)); 1066 ret = i915_gem_gtt_pread(dev, obj, args->size, 1067 args->offset, args->data_ptr); 1068 intel_runtime_pm_put(to_i915(dev)); 1069 } 1070 1071 i915_gem_object_put(obj); 1072 mutex_unlock(&dev->struct_mutex); 1073 1074 return ret; 1075 1076 err: 1077 i915_gem_object_put_unlocked(obj); 1078 return ret; 1079 } 1080 1081 /* This is the fast write path which cannot handle 1082 * page faults in the source data 1083 */ 1084 1085 static inline int 1086 fast_user_write(struct io_mapping *mapping, 1087 loff_t page_base, int page_offset, 1088 char __user *user_data, 1089 int length) 1090 { 1091 void __iomem *vaddr_atomic; 1092 void *vaddr; 1093 unsigned long unwritten; 1094 1095 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base); 1096 /* We can use the cpu mem copy function because this is X86. */ 1097 vaddr = (void __force*)vaddr_atomic + page_offset; 1098 unwritten = __copy_from_user_inatomic_nocache(vaddr, 1099 user_data, length); 1100 io_mapping_unmap_atomic(vaddr_atomic); 1101 return unwritten; 1102 } 1103 1104 /** 1105 * This is the fast pwrite path, where we copy the data directly from the 1106 * user into the GTT, uncached. 1107 * @i915: i915 device private data 1108 * @obj: i915 gem object 1109 * @args: pwrite arguments structure 1110 * @file: drm file pointer 1111 */ 1112 static int 1113 i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915, 1114 struct drm_i915_gem_object *obj, 1115 struct drm_i915_gem_pwrite *args, 1116 struct drm_file *file) 1117 { 1118 struct i915_ggtt *ggtt = &i915->ggtt; 1119 struct drm_device *dev = obj->base.dev; 1120 struct i915_vma *vma; 1121 struct drm_mm_node node; 1122 uint64_t remain, offset; 1123 char __user *user_data; 1124 int ret; 1125 bool hit_slow_path = false; 1126 1127 if (i915_gem_object_is_tiled(obj)) 1128 return -EFAULT; 1129 1130 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 1131 PIN_MAPPABLE | PIN_NONBLOCK); 1132 if (!IS_ERR(vma)) { 1133 node.start = i915_ggtt_offset(vma); 1134 node.allocated = false; 1135 ret = i915_vma_put_fence(vma); 1136 if (ret) { 1137 i915_vma_unpin(vma); 1138 vma = ERR_PTR(ret); 1139 } 1140 } 1141 if (IS_ERR(vma)) { 1142 ret = insert_mappable_node(i915, &node, PAGE_SIZE); 1143 if (ret) 1144 goto out; 1145 1146 ret = i915_gem_object_get_pages(obj); 1147 if (ret) { 1148 remove_mappable_node(&node); 1149 goto out; 1150 } 1151 1152 i915_gem_object_pin_pages(obj); 1153 } 1154 1155 ret = i915_gem_object_set_to_gtt_domain(obj, true); 1156 if (ret) 1157 goto out_unpin; 1158 1159 intel_fb_obj_invalidate(obj, ORIGIN_CPU); 1160 obj->dirty = true; 1161 1162 user_data = u64_to_user_ptr(args->data_ptr); 1163 offset = args->offset; 1164 remain = args->size; 1165 while (remain) { 1166 /* Operation in this page 1167 * 1168 * page_base = page offset within aperture 1169 * page_offset = offset within page 1170 * page_length = bytes to copy for this page 1171 */ 1172 u32 page_base = node.start; 1173 unsigned page_offset = offset_in_page(offset); 1174 unsigned page_length = PAGE_SIZE - page_offset; 1175 page_length = remain < page_length ? remain : page_length; 1176 if (node.allocated) { 1177 wmb(); /* flush the write before we modify the GGTT */ 1178 ggtt->base.insert_page(&ggtt->base, 1179 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), 1180 node.start, I915_CACHE_NONE, 0); 1181 wmb(); /* flush modifications to the GGTT (insert_page) */ 1182 } else { 1183 page_base += offset & PAGE_MASK; 1184 } 1185 /* If we get a fault while copying data, then (presumably) our 1186 * source page isn't available. Return the error and we'll 1187 * retry in the slow path. 1188 * If the object is non-shmem backed, we retry again with the 1189 * path that handles page fault. 1190 */ 1191 if (fast_user_write(&ggtt->mappable, page_base, 1192 page_offset, user_data, page_length)) { 1193 hit_slow_path = true; 1194 mutex_unlock(&dev->struct_mutex); 1195 if (slow_user_access(&ggtt->mappable, 1196 page_base, 1197 page_offset, user_data, 1198 page_length, true)) { 1199 ret = -EFAULT; 1200 mutex_lock(&dev->struct_mutex); 1201 goto out_flush; 1202 } 1203 1204 mutex_lock(&dev->struct_mutex); 1205 } 1206 1207 remain -= page_length; 1208 user_data += page_length; 1209 offset += page_length; 1210 } 1211 1212 out_flush: 1213 if (hit_slow_path) { 1214 if (ret == 0 && 1215 (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) { 1216 /* The user has modified the object whilst we tried 1217 * reading from it, and we now have no idea what domain 1218 * the pages should be in. As we have just been touching 1219 * them directly, flush everything back to the GTT 1220 * domain. 1221 */ 1222 ret = i915_gem_object_set_to_gtt_domain(obj, false); 1223 } 1224 } 1225 1226 intel_fb_obj_flush(obj, false, ORIGIN_CPU); 1227 out_unpin: 1228 if (node.allocated) { 1229 wmb(); 1230 ggtt->base.clear_range(&ggtt->base, 1231 node.start, node.size, 1232 true); 1233 i915_gem_object_unpin_pages(obj); 1234 remove_mappable_node(&node); 1235 } else { 1236 i915_vma_unpin(vma); 1237 } 1238 out: 1239 return ret; 1240 } 1241 1242 /* Per-page copy function for the shmem pwrite fastpath. 1243 * Flushes invalid cachelines before writing to the target if 1244 * needs_clflush_before is set and flushes out any written cachelines after 1245 * writing if needs_clflush is set. */ 1246 static int 1247 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length, 1248 char __user *user_data, 1249 bool page_do_bit17_swizzling, 1250 bool needs_clflush_before, 1251 bool needs_clflush_after) 1252 { 1253 char *vaddr; 1254 int ret; 1255 1256 if (unlikely(page_do_bit17_swizzling)) 1257 return -EINVAL; 1258 1259 vaddr = kmap_atomic(page); 1260 if (needs_clflush_before) 1261 drm_clflush_virt_range(vaddr + shmem_page_offset, 1262 page_length); 1263 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset, 1264 user_data, page_length); 1265 if (needs_clflush_after) 1266 drm_clflush_virt_range(vaddr + shmem_page_offset, 1267 page_length); 1268 kunmap_atomic(vaddr); 1269 1270 return ret ? -EFAULT : 0; 1271 } 1272 1273 /* Only difference to the fast-path function is that this can handle bit17 1274 * and uses non-atomic copy and kmap functions. */ 1275 static int 1276 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length, 1277 char __user *user_data, 1278 bool page_do_bit17_swizzling, 1279 bool needs_clflush_before, 1280 bool needs_clflush_after) 1281 { 1282 char *vaddr; 1283 int ret; 1284 1285 vaddr = kmap(page); 1286 if (unlikely(needs_clflush_before || page_do_bit17_swizzling)) 1287 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 1288 page_length, 1289 page_do_bit17_swizzling); 1290 if (page_do_bit17_swizzling) 1291 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset, 1292 user_data, 1293 page_length); 1294 else 1295 ret = __copy_from_user(vaddr + shmem_page_offset, 1296 user_data, 1297 page_length); 1298 if (needs_clflush_after) 1299 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 1300 page_length, 1301 page_do_bit17_swizzling); 1302 kunmap(page); 1303 1304 return ret ? -EFAULT : 0; 1305 } 1306 1307 static int 1308 i915_gem_shmem_pwrite(struct drm_device *dev, 1309 struct drm_i915_gem_object *obj, 1310 struct drm_i915_gem_pwrite *args, 1311 struct drm_file *file) 1312 { 1313 ssize_t remain; 1314 loff_t offset; 1315 char __user *user_data; 1316 int shmem_page_offset, page_length, ret = 0; 1317 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 1318 int hit_slowpath = 0; 1319 unsigned int needs_clflush; 1320 struct sg_page_iter sg_iter; 1321 1322 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush); 1323 if (ret) 1324 return ret; 1325 1326 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 1327 user_data = u64_to_user_ptr(args->data_ptr); 1328 offset = args->offset; 1329 remain = args->size; 1330 1331 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 1332 offset >> PAGE_SHIFT) { 1333 struct page *page = sg_page_iter_page(&sg_iter); 1334 int partial_cacheline_write; 1335 1336 if (remain <= 0) 1337 break; 1338 1339 /* Operation in this page 1340 * 1341 * shmem_page_offset = offset within page in shmem file 1342 * page_length = bytes to copy for this page 1343 */ 1344 shmem_page_offset = offset_in_page(offset); 1345 1346 page_length = remain; 1347 if ((shmem_page_offset + page_length) > PAGE_SIZE) 1348 page_length = PAGE_SIZE - shmem_page_offset; 1349 1350 /* If we don't overwrite a cacheline completely we need to be 1351 * careful to have up-to-date data by first clflushing. Don't 1352 * overcomplicate things and flush the entire patch. */ 1353 partial_cacheline_write = needs_clflush & CLFLUSH_BEFORE && 1354 ((shmem_page_offset | page_length) 1355 & (boot_cpu_data.x86_clflush_size - 1)); 1356 1357 page_do_bit17_swizzling = obj_do_bit17_swizzling && 1358 (page_to_phys(page) & (1 << 17)) != 0; 1359 1360 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length, 1361 user_data, page_do_bit17_swizzling, 1362 partial_cacheline_write, 1363 needs_clflush & CLFLUSH_AFTER); 1364 if (ret == 0) 1365 goto next_page; 1366 1367 hit_slowpath = 1; 1368 mutex_unlock(&dev->struct_mutex); 1369 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length, 1370 user_data, page_do_bit17_swizzling, 1371 partial_cacheline_write, 1372 needs_clflush & CLFLUSH_AFTER); 1373 1374 mutex_lock(&dev->struct_mutex); 1375 1376 if (ret) 1377 goto out; 1378 1379 next_page: 1380 remain -= page_length; 1381 user_data += page_length; 1382 offset += page_length; 1383 } 1384 1385 out: 1386 i915_gem_obj_finish_shmem_access(obj); 1387 1388 if (hit_slowpath) { 1389 /* 1390 * Fixup: Flush cpu caches in case we didn't flush the dirty 1391 * cachelines in-line while writing and the object moved 1392 * out of the cpu write domain while we've dropped the lock. 1393 */ 1394 if (!(needs_clflush & CLFLUSH_AFTER) && 1395 obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 1396 if (i915_gem_clflush_object(obj, obj->pin_display)) 1397 needs_clflush |= CLFLUSH_AFTER; 1398 } 1399 } 1400 1401 if (needs_clflush & CLFLUSH_AFTER) 1402 i915_gem_chipset_flush(to_i915(dev)); 1403 1404 intel_fb_obj_flush(obj, false, ORIGIN_CPU); 1405 return ret; 1406 } 1407 1408 /** 1409 * Writes data to the object referenced by handle. 1410 * @dev: drm device 1411 * @data: ioctl data blob 1412 * @file: drm file 1413 * 1414 * On error, the contents of the buffer that were to be modified are undefined. 1415 */ 1416 int 1417 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 1418 struct drm_file *file) 1419 { 1420 struct drm_i915_private *dev_priv = to_i915(dev); 1421 struct drm_i915_gem_pwrite *args = data; 1422 struct drm_i915_gem_object *obj; 1423 int ret; 1424 1425 if (args->size == 0) 1426 return 0; 1427 1428 if (!access_ok(VERIFY_READ, 1429 u64_to_user_ptr(args->data_ptr), 1430 args->size)) 1431 return -EFAULT; 1432 1433 if (likely(!i915.prefault_disable)) { 1434 ret = fault_in_pages_readable(u64_to_user_ptr(args->data_ptr), 1435 args->size); 1436 if (ret) 1437 return -EFAULT; 1438 } 1439 1440 obj = i915_gem_object_lookup(file, args->handle); 1441 if (!obj) 1442 return -ENOENT; 1443 1444 /* Bounds check destination. */ 1445 if (args->offset > obj->base.size || 1446 args->size > obj->base.size - args->offset) { 1447 ret = -EINVAL; 1448 goto err; 1449 } 1450 1451 trace_i915_gem_object_pwrite(obj, args->offset, args->size); 1452 1453 ret = __unsafe_wait_rendering(obj, to_rps_client(file), false); 1454 if (ret) 1455 goto err; 1456 1457 intel_runtime_pm_get(dev_priv); 1458 1459 ret = i915_mutex_lock_interruptible(dev); 1460 if (ret) 1461 goto err_rpm; 1462 1463 ret = -EFAULT; 1464 /* We can only do the GTT pwrite on untiled buffers, as otherwise 1465 * it would end up going through the fenced access, and we'll get 1466 * different detiling behavior between reading and writing. 1467 * pread/pwrite currently are reading and writing from the CPU 1468 * perspective, requiring manual detiling by the client. 1469 */ 1470 if (!i915_gem_object_has_struct_page(obj) || 1471 cpu_write_needs_clflush(obj)) { 1472 ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file); 1473 /* Note that the gtt paths might fail with non-page-backed user 1474 * pointers (e.g. gtt mappings when moving data between 1475 * textures). Fallback to the shmem path in that case. */ 1476 } 1477 1478 if (ret == -EFAULT || ret == -ENOSPC) { 1479 if (obj->phys_handle) 1480 ret = i915_gem_phys_pwrite(obj, args, file); 1481 else 1482 ret = i915_gem_shmem_pwrite(dev, obj, args, file); 1483 } 1484 1485 i915_gem_object_put(obj); 1486 mutex_unlock(&dev->struct_mutex); 1487 intel_runtime_pm_put(dev_priv); 1488 1489 return ret; 1490 1491 err_rpm: 1492 intel_runtime_pm_put(dev_priv); 1493 err: 1494 i915_gem_object_put_unlocked(obj); 1495 return ret; 1496 } 1497 1498 static inline enum fb_op_origin 1499 write_origin(struct drm_i915_gem_object *obj, unsigned domain) 1500 { 1501 return (domain == I915_GEM_DOMAIN_GTT ? 1502 obj->frontbuffer_ggtt_origin : ORIGIN_CPU); 1503 } 1504 1505 /** 1506 * Called when user space prepares to use an object with the CPU, either 1507 * through the mmap ioctl's mapping or a GTT mapping. 1508 * @dev: drm device 1509 * @data: ioctl data blob 1510 * @file: drm file 1511 */ 1512 int 1513 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 1514 struct drm_file *file) 1515 { 1516 struct drm_i915_gem_set_domain *args = data; 1517 struct drm_i915_gem_object *obj; 1518 uint32_t read_domains = args->read_domains; 1519 uint32_t write_domain = args->write_domain; 1520 int ret; 1521 1522 /* Only handle setting domains to types used by the CPU. */ 1523 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS) 1524 return -EINVAL; 1525 1526 /* Having something in the write domain implies it's in the read 1527 * domain, and only that read domain. Enforce that in the request. 1528 */ 1529 if (write_domain != 0 && read_domains != write_domain) 1530 return -EINVAL; 1531 1532 obj = i915_gem_object_lookup(file, args->handle); 1533 if (!obj) 1534 return -ENOENT; 1535 1536 /* Try to flush the object off the GPU without holding the lock. 1537 * We will repeat the flush holding the lock in the normal manner 1538 * to catch cases where we are gazumped. 1539 */ 1540 ret = __unsafe_wait_rendering(obj, to_rps_client(file), !write_domain); 1541 if (ret) 1542 goto err; 1543 1544 ret = i915_mutex_lock_interruptible(dev); 1545 if (ret) 1546 goto err; 1547 1548 if (read_domains & I915_GEM_DOMAIN_GTT) 1549 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0); 1550 else 1551 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0); 1552 1553 if (write_domain != 0) 1554 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain)); 1555 1556 i915_gem_object_put(obj); 1557 mutex_unlock(&dev->struct_mutex); 1558 return ret; 1559 1560 err: 1561 i915_gem_object_put_unlocked(obj); 1562 return ret; 1563 } 1564 1565 /** 1566 * Called when user space has done writes to this buffer 1567 * @dev: drm device 1568 * @data: ioctl data blob 1569 * @file: drm file 1570 */ 1571 int 1572 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 1573 struct drm_file *file) 1574 { 1575 struct drm_i915_gem_sw_finish *args = data; 1576 struct drm_i915_gem_object *obj; 1577 int err = 0; 1578 1579 obj = i915_gem_object_lookup(file, args->handle); 1580 if (!obj) 1581 return -ENOENT; 1582 1583 /* Pinned buffers may be scanout, so flush the cache */ 1584 if (READ_ONCE(obj->pin_display)) { 1585 err = i915_mutex_lock_interruptible(dev); 1586 if (!err) { 1587 i915_gem_object_flush_cpu_write_domain(obj); 1588 mutex_unlock(&dev->struct_mutex); 1589 } 1590 } 1591 1592 i915_gem_object_put_unlocked(obj); 1593 return err; 1594 } 1595 1596 /** 1597 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address 1598 * it is mapped to. 1599 * @dev: drm device 1600 * @data: ioctl data blob 1601 * @file: drm file 1602 * 1603 * While the mapping holds a reference on the contents of the object, it doesn't 1604 * imply a ref on the object itself. 1605 * 1606 * IMPORTANT: 1607 * 1608 * DRM driver writers who look a this function as an example for how to do GEM 1609 * mmap support, please don't implement mmap support like here. The modern way 1610 * to implement DRM mmap support is with an mmap offset ioctl (like 1611 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly. 1612 * That way debug tooling like valgrind will understand what's going on, hiding 1613 * the mmap call in a driver private ioctl will break that. The i915 driver only 1614 * does cpu mmaps this way because we didn't know better. 1615 */ 1616 int 1617 i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 1618 struct drm_file *file) 1619 { 1620 struct drm_i915_gem_mmap *args = data; 1621 struct drm_i915_gem_object *obj; 1622 unsigned long addr; 1623 1624 if (args->flags & ~(I915_MMAP_WC)) 1625 return -EINVAL; 1626 1627 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT)) 1628 return -ENODEV; 1629 1630 obj = i915_gem_object_lookup(file, args->handle); 1631 if (!obj) 1632 return -ENOENT; 1633 1634 /* prime objects have no backing filp to GEM mmap 1635 * pages from. 1636 */ 1637 if (!obj->base.filp) { 1638 i915_gem_object_put_unlocked(obj); 1639 return -EINVAL; 1640 } 1641 1642 addr = vm_mmap(obj->base.filp, 0, args->size, 1643 PROT_READ | PROT_WRITE, MAP_SHARED, 1644 args->offset); 1645 if (args->flags & I915_MMAP_WC) { 1646 struct mm_struct *mm = current->mm; 1647 struct vm_area_struct *vma; 1648 1649 if (down_write_killable(&mm->mmap_sem)) { 1650 i915_gem_object_put_unlocked(obj); 1651 return -EINTR; 1652 } 1653 vma = find_vma(mm, addr); 1654 if (vma) 1655 vma->vm_page_prot = 1656 pgprot_writecombine(vm_get_page_prot(vma->vm_flags)); 1657 else 1658 addr = -ENOMEM; 1659 up_write(&mm->mmap_sem); 1660 1661 /* This may race, but that's ok, it only gets set */ 1662 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU); 1663 } 1664 i915_gem_object_put_unlocked(obj); 1665 if (IS_ERR((void *)addr)) 1666 return addr; 1667 1668 args->addr_ptr = (uint64_t) addr; 1669 1670 return 0; 1671 } 1672 1673 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj) 1674 { 1675 u64 size; 1676 1677 size = i915_gem_object_get_stride(obj); 1678 size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8; 1679 1680 return size >> PAGE_SHIFT; 1681 } 1682 1683 /** 1684 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps 1685 * 1686 * A history of the GTT mmap interface: 1687 * 1688 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to 1689 * aligned and suitable for fencing, and still fit into the available 1690 * mappable space left by the pinned display objects. A classic problem 1691 * we called the page-fault-of-doom where we would ping-pong between 1692 * two objects that could not fit inside the GTT and so the memcpy 1693 * would page one object in at the expense of the other between every 1694 * single byte. 1695 * 1696 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none 1697 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the 1698 * object is too large for the available space (or simply too large 1699 * for the mappable aperture!), a view is created instead and faulted 1700 * into userspace. (This view is aligned and sized appropriately for 1701 * fenced access.) 1702 * 1703 * Restrictions: 1704 * 1705 * * snoopable objects cannot be accessed via the GTT. It can cause machine 1706 * hangs on some architectures, corruption on others. An attempt to service 1707 * a GTT page fault from a snoopable object will generate a SIGBUS. 1708 * 1709 * * the object must be able to fit into RAM (physical memory, though no 1710 * limited to the mappable aperture). 1711 * 1712 * 1713 * Caveats: 1714 * 1715 * * a new GTT page fault will synchronize rendering from the GPU and flush 1716 * all data to system memory. Subsequent access will not be synchronized. 1717 * 1718 * * all mappings are revoked on runtime device suspend. 1719 * 1720 * * there are only 8, 16 or 32 fence registers to share between all users 1721 * (older machines require fence register for display and blitter access 1722 * as well). Contention of the fence registers will cause the previous users 1723 * to be unmapped and any new access will generate new page faults. 1724 * 1725 * * running out of memory while servicing a fault may generate a SIGBUS, 1726 * rather than the expected SIGSEGV. 1727 */ 1728 int i915_gem_mmap_gtt_version(void) 1729 { 1730 return 1; 1731 } 1732 1733 /** 1734 * i915_gem_fault - fault a page into the GTT 1735 * @area: CPU VMA in question 1736 * @vmf: fault info 1737 * 1738 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped 1739 * from userspace. The fault handler takes care of binding the object to 1740 * the GTT (if needed), allocating and programming a fence register (again, 1741 * only if needed based on whether the old reg is still valid or the object 1742 * is tiled) and inserting a new PTE into the faulting process. 1743 * 1744 * Note that the faulting process may involve evicting existing objects 1745 * from the GTT and/or fence registers to make room. So performance may 1746 * suffer if the GTT working set is large or there are few fence registers 1747 * left. 1748 * 1749 * The current feature set supported by i915_gem_fault() and thus GTT mmaps 1750 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version). 1751 */ 1752 int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf) 1753 { 1754 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */ 1755 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data); 1756 struct drm_device *dev = obj->base.dev; 1757 struct drm_i915_private *dev_priv = to_i915(dev); 1758 struct i915_ggtt *ggtt = &dev_priv->ggtt; 1759 bool write = !!(vmf->flags & FAULT_FLAG_WRITE); 1760 struct i915_vma *vma; 1761 pgoff_t page_offset; 1762 unsigned int flags; 1763 int ret; 1764 1765 /* We don't use vmf->pgoff since that has the fake offset */ 1766 page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >> 1767 PAGE_SHIFT; 1768 1769 trace_i915_gem_object_fault(obj, page_offset, true, write); 1770 1771 /* Try to flush the object off the GPU first without holding the lock. 1772 * Upon acquiring the lock, we will perform our sanity checks and then 1773 * repeat the flush holding the lock in the normal manner to catch cases 1774 * where we are gazumped. 1775 */ 1776 ret = __unsafe_wait_rendering(obj, NULL, !write); 1777 if (ret) 1778 goto err; 1779 1780 intel_runtime_pm_get(dev_priv); 1781 1782 ret = i915_mutex_lock_interruptible(dev); 1783 if (ret) 1784 goto err_rpm; 1785 1786 /* Access to snoopable pages through the GTT is incoherent. */ 1787 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) { 1788 ret = -EFAULT; 1789 goto err_unlock; 1790 } 1791 1792 /* If the object is smaller than a couple of partial vma, it is 1793 * not worth only creating a single partial vma - we may as well 1794 * clear enough space for the full object. 1795 */ 1796 flags = PIN_MAPPABLE; 1797 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT) 1798 flags |= PIN_NONBLOCK | PIN_NONFAULT; 1799 1800 /* Now pin it into the GTT as needed */ 1801 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags); 1802 if (IS_ERR(vma)) { 1803 struct i915_ggtt_view view; 1804 unsigned int chunk_size; 1805 1806 /* Use a partial view if it is bigger than available space */ 1807 chunk_size = MIN_CHUNK_PAGES; 1808 if (i915_gem_object_is_tiled(obj)) 1809 chunk_size = max(chunk_size, tile_row_pages(obj)); 1810 1811 memset(&view, 0, sizeof(view)); 1812 view.type = I915_GGTT_VIEW_PARTIAL; 1813 view.params.partial.offset = rounddown(page_offset, chunk_size); 1814 view.params.partial.size = 1815 min_t(unsigned int, chunk_size, 1816 (area->vm_end - area->vm_start) / PAGE_SIZE - 1817 view.params.partial.offset); 1818 1819 /* If the partial covers the entire object, just create a 1820 * normal VMA. 1821 */ 1822 if (chunk_size >= obj->base.size >> PAGE_SHIFT) 1823 view.type = I915_GGTT_VIEW_NORMAL; 1824 1825 /* Userspace is now writing through an untracked VMA, abandon 1826 * all hope that the hardware is able to track future writes. 1827 */ 1828 obj->frontbuffer_ggtt_origin = ORIGIN_CPU; 1829 1830 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE); 1831 } 1832 if (IS_ERR(vma)) { 1833 ret = PTR_ERR(vma); 1834 goto err_unlock; 1835 } 1836 1837 ret = i915_gem_object_set_to_gtt_domain(obj, write); 1838 if (ret) 1839 goto err_unpin; 1840 1841 ret = i915_vma_get_fence(vma); 1842 if (ret) 1843 goto err_unpin; 1844 1845 /* Finally, remap it using the new GTT offset */ 1846 ret = remap_io_mapping(area, 1847 area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT), 1848 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT, 1849 min_t(u64, vma->size, area->vm_end - area->vm_start), 1850 &ggtt->mappable); 1851 if (ret) 1852 goto err_unpin; 1853 1854 obj->fault_mappable = true; 1855 err_unpin: 1856 __i915_vma_unpin(vma); 1857 err_unlock: 1858 mutex_unlock(&dev->struct_mutex); 1859 err_rpm: 1860 intel_runtime_pm_put(dev_priv); 1861 err: 1862 switch (ret) { 1863 case -EIO: 1864 /* 1865 * We eat errors when the gpu is terminally wedged to avoid 1866 * userspace unduly crashing (gl has no provisions for mmaps to 1867 * fail). But any other -EIO isn't ours (e.g. swap in failure) 1868 * and so needs to be reported. 1869 */ 1870 if (!i915_terminally_wedged(&dev_priv->gpu_error)) { 1871 ret = VM_FAULT_SIGBUS; 1872 break; 1873 } 1874 case -EAGAIN: 1875 /* 1876 * EAGAIN means the gpu is hung and we'll wait for the error 1877 * handler to reset everything when re-faulting in 1878 * i915_mutex_lock_interruptible. 1879 */ 1880 case 0: 1881 case -ERESTARTSYS: 1882 case -EINTR: 1883 case -EBUSY: 1884 /* 1885 * EBUSY is ok: this just means that another thread 1886 * already did the job. 1887 */ 1888 ret = VM_FAULT_NOPAGE; 1889 break; 1890 case -ENOMEM: 1891 ret = VM_FAULT_OOM; 1892 break; 1893 case -ENOSPC: 1894 case -EFAULT: 1895 ret = VM_FAULT_SIGBUS; 1896 break; 1897 default: 1898 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret); 1899 ret = VM_FAULT_SIGBUS; 1900 break; 1901 } 1902 return ret; 1903 } 1904 1905 /** 1906 * i915_gem_release_mmap - remove physical page mappings 1907 * @obj: obj in question 1908 * 1909 * Preserve the reservation of the mmapping with the DRM core code, but 1910 * relinquish ownership of the pages back to the system. 1911 * 1912 * It is vital that we remove the page mapping if we have mapped a tiled 1913 * object through the GTT and then lose the fence register due to 1914 * resource pressure. Similarly if the object has been moved out of the 1915 * aperture, than pages mapped into userspace must be revoked. Removing the 1916 * mapping will then trigger a page fault on the next user access, allowing 1917 * fixup by i915_gem_fault(). 1918 */ 1919 void 1920 i915_gem_release_mmap(struct drm_i915_gem_object *obj) 1921 { 1922 /* Serialisation between user GTT access and our code depends upon 1923 * revoking the CPU's PTE whilst the mutex is held. The next user 1924 * pagefault then has to wait until we release the mutex. 1925 */ 1926 lockdep_assert_held(&obj->base.dev->struct_mutex); 1927 1928 if (!obj->fault_mappable) 1929 return; 1930 1931 drm_vma_node_unmap(&obj->base.vma_node, 1932 obj->base.dev->anon_inode->i_mapping); 1933 1934 /* Ensure that the CPU's PTE are revoked and there are not outstanding 1935 * memory transactions from userspace before we return. The TLB 1936 * flushing implied above by changing the PTE above *should* be 1937 * sufficient, an extra barrier here just provides us with a bit 1938 * of paranoid documentation about our requirement to serialise 1939 * memory writes before touching registers / GSM. 1940 */ 1941 wmb(); 1942 1943 obj->fault_mappable = false; 1944 } 1945 1946 void 1947 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv) 1948 { 1949 struct drm_i915_gem_object *obj; 1950 1951 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) 1952 i915_gem_release_mmap(obj); 1953 } 1954 1955 /** 1956 * i915_gem_get_ggtt_size - return required global GTT size for an object 1957 * @dev_priv: i915 device 1958 * @size: object size 1959 * @tiling_mode: tiling mode 1960 * 1961 * Return the required global GTT size for an object, taking into account 1962 * potential fence register mapping. 1963 */ 1964 u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv, 1965 u64 size, int tiling_mode) 1966 { 1967 u64 ggtt_size; 1968 1969 GEM_BUG_ON(size == 0); 1970 1971 if (INTEL_GEN(dev_priv) >= 4 || 1972 tiling_mode == I915_TILING_NONE) 1973 return size; 1974 1975 /* Previous chips need a power-of-two fence region when tiling */ 1976 if (IS_GEN3(dev_priv)) 1977 ggtt_size = 1024*1024; 1978 else 1979 ggtt_size = 512*1024; 1980 1981 while (ggtt_size < size) 1982 ggtt_size <<= 1; 1983 1984 return ggtt_size; 1985 } 1986 1987 /** 1988 * i915_gem_get_ggtt_alignment - return required global GTT alignment 1989 * @dev_priv: i915 device 1990 * @size: object size 1991 * @tiling_mode: tiling mode 1992 * @fenced: is fenced alignment required or not 1993 * 1994 * Return the required global GTT alignment for an object, taking into account 1995 * potential fence register mapping. 1996 */ 1997 u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size, 1998 int tiling_mode, bool fenced) 1999 { 2000 GEM_BUG_ON(size == 0); 2001 2002 /* 2003 * Minimum alignment is 4k (GTT page size), but might be greater 2004 * if a fence register is needed for the object. 2005 */ 2006 if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) || 2007 tiling_mode == I915_TILING_NONE) 2008 return 4096; 2009 2010 /* 2011 * Previous chips need to be aligned to the size of the smallest 2012 * fence register that can contain the object. 2013 */ 2014 return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode); 2015 } 2016 2017 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj) 2018 { 2019 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 2020 int err; 2021 2022 err = drm_gem_create_mmap_offset(&obj->base); 2023 if (!err) 2024 return 0; 2025 2026 /* We can idle the GPU locklessly to flush stale objects, but in order 2027 * to claim that space for ourselves, we need to take the big 2028 * struct_mutex to free the requests+objects and allocate our slot. 2029 */ 2030 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE); 2031 if (err) 2032 return err; 2033 2034 err = i915_mutex_lock_interruptible(&dev_priv->drm); 2035 if (!err) { 2036 i915_gem_retire_requests(dev_priv); 2037 err = drm_gem_create_mmap_offset(&obj->base); 2038 mutex_unlock(&dev_priv->drm.struct_mutex); 2039 } 2040 2041 return err; 2042 } 2043 2044 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj) 2045 { 2046 drm_gem_free_mmap_offset(&obj->base); 2047 } 2048 2049 int 2050 i915_gem_mmap_gtt(struct drm_file *file, 2051 struct drm_device *dev, 2052 uint32_t handle, 2053 uint64_t *offset) 2054 { 2055 struct drm_i915_gem_object *obj; 2056 int ret; 2057 2058 obj = i915_gem_object_lookup(file, handle); 2059 if (!obj) 2060 return -ENOENT; 2061 2062 ret = i915_gem_object_create_mmap_offset(obj); 2063 if (ret == 0) 2064 *offset = drm_vma_node_offset_addr(&obj->base.vma_node); 2065 2066 i915_gem_object_put_unlocked(obj); 2067 return ret; 2068 } 2069 2070 /** 2071 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing 2072 * @dev: DRM device 2073 * @data: GTT mapping ioctl data 2074 * @file: GEM object info 2075 * 2076 * Simply returns the fake offset to userspace so it can mmap it. 2077 * The mmap call will end up in drm_gem_mmap(), which will set things 2078 * up so we can get faults in the handler above. 2079 * 2080 * The fault handler will take care of binding the object into the GTT 2081 * (since it may have been evicted to make room for something), allocating 2082 * a fence register, and mapping the appropriate aperture address into 2083 * userspace. 2084 */ 2085 int 2086 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 2087 struct drm_file *file) 2088 { 2089 struct drm_i915_gem_mmap_gtt *args = data; 2090 2091 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset); 2092 } 2093 2094 /* Immediately discard the backing storage */ 2095 static void 2096 i915_gem_object_truncate(struct drm_i915_gem_object *obj) 2097 { 2098 i915_gem_object_free_mmap_offset(obj); 2099 2100 if (obj->base.filp == NULL) 2101 return; 2102 2103 /* Our goal here is to return as much of the memory as 2104 * is possible back to the system as we are called from OOM. 2105 * To do this we must instruct the shmfs to drop all of its 2106 * backing pages, *now*. 2107 */ 2108 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1); 2109 obj->madv = __I915_MADV_PURGED; 2110 } 2111 2112 /* Try to discard unwanted pages */ 2113 static void 2114 i915_gem_object_invalidate(struct drm_i915_gem_object *obj) 2115 { 2116 struct address_space *mapping; 2117 2118 switch (obj->madv) { 2119 case I915_MADV_DONTNEED: 2120 i915_gem_object_truncate(obj); 2121 case __I915_MADV_PURGED: 2122 return; 2123 } 2124 2125 if (obj->base.filp == NULL) 2126 return; 2127 2128 mapping = obj->base.filp->f_mapping, 2129 invalidate_mapping_pages(mapping, 0, (loff_t)-1); 2130 } 2131 2132 static void 2133 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj) 2134 { 2135 struct sgt_iter sgt_iter; 2136 struct page *page; 2137 int ret; 2138 2139 BUG_ON(obj->madv == __I915_MADV_PURGED); 2140 2141 ret = i915_gem_object_set_to_cpu_domain(obj, true); 2142 if (WARN_ON(ret)) { 2143 /* In the event of a disaster, abandon all caches and 2144 * hope for the best. 2145 */ 2146 i915_gem_clflush_object(obj, true); 2147 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU; 2148 } 2149 2150 i915_gem_gtt_finish_object(obj); 2151 2152 if (i915_gem_object_needs_bit17_swizzle(obj)) 2153 i915_gem_object_save_bit_17_swizzle(obj); 2154 2155 if (obj->madv == I915_MADV_DONTNEED) 2156 obj->dirty = 0; 2157 2158 for_each_sgt_page(page, sgt_iter, obj->pages) { 2159 if (obj->dirty) 2160 set_page_dirty(page); 2161 2162 if (obj->madv == I915_MADV_WILLNEED) 2163 mark_page_accessed(page); 2164 2165 put_page(page); 2166 } 2167 obj->dirty = 0; 2168 2169 sg_free_table(obj->pages); 2170 kfree(obj->pages); 2171 } 2172 2173 int 2174 i915_gem_object_put_pages(struct drm_i915_gem_object *obj) 2175 { 2176 const struct drm_i915_gem_object_ops *ops = obj->ops; 2177 2178 if (obj->pages == NULL) 2179 return 0; 2180 2181 if (obj->pages_pin_count) 2182 return -EBUSY; 2183 2184 GEM_BUG_ON(obj->bind_count); 2185 2186 /* ->put_pages might need to allocate memory for the bit17 swizzle 2187 * array, hence protect them from being reaped by removing them from gtt 2188 * lists early. */ 2189 list_del(&obj->global_list); 2190 2191 if (obj->mapping) { 2192 void *ptr; 2193 2194 ptr = ptr_mask_bits(obj->mapping); 2195 if (is_vmalloc_addr(ptr)) 2196 vunmap(ptr); 2197 else 2198 kunmap(kmap_to_page(ptr)); 2199 2200 obj->mapping = NULL; 2201 } 2202 2203 ops->put_pages(obj); 2204 obj->pages = NULL; 2205 2206 i915_gem_object_invalidate(obj); 2207 2208 return 0; 2209 } 2210 2211 static int 2212 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj) 2213 { 2214 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 2215 int page_count, i; 2216 struct address_space *mapping; 2217 struct sg_table *st; 2218 struct scatterlist *sg; 2219 struct sgt_iter sgt_iter; 2220 struct page *page; 2221 unsigned long last_pfn = 0; /* suppress gcc warning */ 2222 int ret; 2223 gfp_t gfp; 2224 2225 /* Assert that the object is not currently in any GPU domain. As it 2226 * wasn't in the GTT, there shouldn't be any way it could have been in 2227 * a GPU cache 2228 */ 2229 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS); 2230 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS); 2231 2232 st = kmalloc(sizeof(*st), GFP_KERNEL); 2233 if (st == NULL) 2234 return -ENOMEM; 2235 2236 page_count = obj->base.size / PAGE_SIZE; 2237 if (sg_alloc_table(st, page_count, GFP_KERNEL)) { 2238 kfree(st); 2239 return -ENOMEM; 2240 } 2241 2242 /* Get the list of pages out of our struct file. They'll be pinned 2243 * at this point until we release them. 2244 * 2245 * Fail silently without starting the shrinker 2246 */ 2247 mapping = obj->base.filp->f_mapping; 2248 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM)); 2249 gfp |= __GFP_NORETRY | __GFP_NOWARN; 2250 sg = st->sgl; 2251 st->nents = 0; 2252 for (i = 0; i < page_count; i++) { 2253 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 2254 if (IS_ERR(page)) { 2255 i915_gem_shrink(dev_priv, 2256 page_count, 2257 I915_SHRINK_BOUND | 2258 I915_SHRINK_UNBOUND | 2259 I915_SHRINK_PURGEABLE); 2260 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 2261 } 2262 if (IS_ERR(page)) { 2263 /* We've tried hard to allocate the memory by reaping 2264 * our own buffer, now let the real VM do its job and 2265 * go down in flames if truly OOM. 2266 */ 2267 i915_gem_shrink_all(dev_priv); 2268 page = shmem_read_mapping_page(mapping, i); 2269 if (IS_ERR(page)) { 2270 ret = PTR_ERR(page); 2271 goto err_pages; 2272 } 2273 } 2274 #ifdef CONFIG_SWIOTLB 2275 if (swiotlb_nr_tbl()) { 2276 st->nents++; 2277 sg_set_page(sg, page, PAGE_SIZE, 0); 2278 sg = sg_next(sg); 2279 continue; 2280 } 2281 #endif 2282 if (!i || page_to_pfn(page) != last_pfn + 1) { 2283 if (i) 2284 sg = sg_next(sg); 2285 st->nents++; 2286 sg_set_page(sg, page, PAGE_SIZE, 0); 2287 } else { 2288 sg->length += PAGE_SIZE; 2289 } 2290 last_pfn = page_to_pfn(page); 2291 2292 /* Check that the i965g/gm workaround works. */ 2293 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL)); 2294 } 2295 #ifdef CONFIG_SWIOTLB 2296 if (!swiotlb_nr_tbl()) 2297 #endif 2298 sg_mark_end(sg); 2299 obj->pages = st; 2300 2301 ret = i915_gem_gtt_prepare_object(obj); 2302 if (ret) 2303 goto err_pages; 2304 2305 if (i915_gem_object_needs_bit17_swizzle(obj)) 2306 i915_gem_object_do_bit_17_swizzle(obj); 2307 2308 if (i915_gem_object_is_tiled(obj) && 2309 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) 2310 i915_gem_object_pin_pages(obj); 2311 2312 return 0; 2313 2314 err_pages: 2315 sg_mark_end(sg); 2316 for_each_sgt_page(page, sgt_iter, st) 2317 put_page(page); 2318 sg_free_table(st); 2319 kfree(st); 2320 2321 /* shmemfs first checks if there is enough memory to allocate the page 2322 * and reports ENOSPC should there be insufficient, along with the usual 2323 * ENOMEM for a genuine allocation failure. 2324 * 2325 * We use ENOSPC in our driver to mean that we have run out of aperture 2326 * space and so want to translate the error from shmemfs back to our 2327 * usual understanding of ENOMEM. 2328 */ 2329 if (ret == -ENOSPC) 2330 ret = -ENOMEM; 2331 2332 return ret; 2333 } 2334 2335 /* Ensure that the associated pages are gathered from the backing storage 2336 * and pinned into our object. i915_gem_object_get_pages() may be called 2337 * multiple times before they are released by a single call to 2338 * i915_gem_object_put_pages() - once the pages are no longer referenced 2339 * either as a result of memory pressure (reaping pages under the shrinker) 2340 * or as the object is itself released. 2341 */ 2342 int 2343 i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 2344 { 2345 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 2346 const struct drm_i915_gem_object_ops *ops = obj->ops; 2347 int ret; 2348 2349 if (obj->pages) 2350 return 0; 2351 2352 if (obj->madv != I915_MADV_WILLNEED) { 2353 DRM_DEBUG("Attempting to obtain a purgeable object\n"); 2354 return -EFAULT; 2355 } 2356 2357 BUG_ON(obj->pages_pin_count); 2358 2359 ret = ops->get_pages(obj); 2360 if (ret) 2361 return ret; 2362 2363 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list); 2364 2365 obj->get_page.sg = obj->pages->sgl; 2366 obj->get_page.last = 0; 2367 2368 return 0; 2369 } 2370 2371 /* The 'mapping' part of i915_gem_object_pin_map() below */ 2372 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj, 2373 enum i915_map_type type) 2374 { 2375 unsigned long n_pages = obj->base.size >> PAGE_SHIFT; 2376 struct sg_table *sgt = obj->pages; 2377 struct sgt_iter sgt_iter; 2378 struct page *page; 2379 struct page *stack_pages[32]; 2380 struct page **pages = stack_pages; 2381 unsigned long i = 0; 2382 pgprot_t pgprot; 2383 void *addr; 2384 2385 /* A single page can always be kmapped */ 2386 if (n_pages == 1 && type == I915_MAP_WB) 2387 return kmap(sg_page(sgt->sgl)); 2388 2389 if (n_pages > ARRAY_SIZE(stack_pages)) { 2390 /* Too big for stack -- allocate temporary array instead */ 2391 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY); 2392 if (!pages) 2393 return NULL; 2394 } 2395 2396 for_each_sgt_page(page, sgt_iter, sgt) 2397 pages[i++] = page; 2398 2399 /* Check that we have the expected number of pages */ 2400 GEM_BUG_ON(i != n_pages); 2401 2402 switch (type) { 2403 case I915_MAP_WB: 2404 pgprot = PAGE_KERNEL; 2405 break; 2406 case I915_MAP_WC: 2407 pgprot = pgprot_writecombine(PAGE_KERNEL_IO); 2408 break; 2409 } 2410 addr = vmap(pages, n_pages, 0, pgprot); 2411 2412 if (pages != stack_pages) 2413 drm_free_large(pages); 2414 2415 return addr; 2416 } 2417 2418 /* get, pin, and map the pages of the object into kernel space */ 2419 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj, 2420 enum i915_map_type type) 2421 { 2422 enum i915_map_type has_type; 2423 bool pinned; 2424 void *ptr; 2425 int ret; 2426 2427 lockdep_assert_held(&obj->base.dev->struct_mutex); 2428 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj)); 2429 2430 ret = i915_gem_object_get_pages(obj); 2431 if (ret) 2432 return ERR_PTR(ret); 2433 2434 i915_gem_object_pin_pages(obj); 2435 pinned = obj->pages_pin_count > 1; 2436 2437 ptr = ptr_unpack_bits(obj->mapping, has_type); 2438 if (ptr && has_type != type) { 2439 if (pinned) { 2440 ret = -EBUSY; 2441 goto err; 2442 } 2443 2444 if (is_vmalloc_addr(ptr)) 2445 vunmap(ptr); 2446 else 2447 kunmap(kmap_to_page(ptr)); 2448 2449 ptr = obj->mapping = NULL; 2450 } 2451 2452 if (!ptr) { 2453 ptr = i915_gem_object_map(obj, type); 2454 if (!ptr) { 2455 ret = -ENOMEM; 2456 goto err; 2457 } 2458 2459 obj->mapping = ptr_pack_bits(ptr, type); 2460 } 2461 2462 return ptr; 2463 2464 err: 2465 i915_gem_object_unpin_pages(obj); 2466 return ERR_PTR(ret); 2467 } 2468 2469 static void 2470 i915_gem_object_retire__write(struct i915_gem_active *active, 2471 struct drm_i915_gem_request *request) 2472 { 2473 struct drm_i915_gem_object *obj = 2474 container_of(active, struct drm_i915_gem_object, last_write); 2475 2476 intel_fb_obj_flush(obj, true, ORIGIN_CS); 2477 } 2478 2479 static void 2480 i915_gem_object_retire__read(struct i915_gem_active *active, 2481 struct drm_i915_gem_request *request) 2482 { 2483 int idx = request->engine->id; 2484 struct drm_i915_gem_object *obj = 2485 container_of(active, struct drm_i915_gem_object, last_read[idx]); 2486 2487 GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx)); 2488 2489 i915_gem_object_clear_active(obj, idx); 2490 if (i915_gem_object_is_active(obj)) 2491 return; 2492 2493 /* Bump our place on the bound list to keep it roughly in LRU order 2494 * so that we don't steal from recently used but inactive objects 2495 * (unless we are forced to ofc!) 2496 */ 2497 if (obj->bind_count) 2498 list_move_tail(&obj->global_list, 2499 &request->i915->mm.bound_list); 2500 2501 i915_gem_object_put(obj); 2502 } 2503 2504 static bool i915_context_is_banned(const struct i915_gem_context *ctx) 2505 { 2506 unsigned long elapsed; 2507 2508 if (ctx->hang_stats.banned) 2509 return true; 2510 2511 elapsed = get_seconds() - ctx->hang_stats.guilty_ts; 2512 if (ctx->hang_stats.ban_period_seconds && 2513 elapsed <= ctx->hang_stats.ban_period_seconds) { 2514 DRM_DEBUG("context hanging too fast, banning!\n"); 2515 return true; 2516 } 2517 2518 return false; 2519 } 2520 2521 static void i915_set_reset_status(struct i915_gem_context *ctx, 2522 const bool guilty) 2523 { 2524 struct i915_ctx_hang_stats *hs = &ctx->hang_stats; 2525 2526 if (guilty) { 2527 hs->banned = i915_context_is_banned(ctx); 2528 hs->batch_active++; 2529 hs->guilty_ts = get_seconds(); 2530 } else { 2531 hs->batch_pending++; 2532 } 2533 } 2534 2535 struct drm_i915_gem_request * 2536 i915_gem_find_active_request(struct intel_engine_cs *engine) 2537 { 2538 struct drm_i915_gem_request *request; 2539 2540 /* We are called by the error capture and reset at a random 2541 * point in time. In particular, note that neither is crucially 2542 * ordered with an interrupt. After a hang, the GPU is dead and we 2543 * assume that no more writes can happen (we waited long enough for 2544 * all writes that were in transaction to be flushed) - adding an 2545 * extra delay for a recent interrupt is pointless. Hence, we do 2546 * not need an engine->irq_seqno_barrier() before the seqno reads. 2547 */ 2548 list_for_each_entry(request, &engine->request_list, link) { 2549 if (i915_gem_request_completed(request)) 2550 continue; 2551 2552 if (!i915_sw_fence_done(&request->submit)) 2553 break; 2554 2555 return request; 2556 } 2557 2558 return NULL; 2559 } 2560 2561 static void reset_request(struct drm_i915_gem_request *request) 2562 { 2563 void *vaddr = request->ring->vaddr; 2564 u32 head; 2565 2566 /* As this request likely depends on state from the lost 2567 * context, clear out all the user operations leaving the 2568 * breadcrumb at the end (so we get the fence notifications). 2569 */ 2570 head = request->head; 2571 if (request->postfix < head) { 2572 memset(vaddr + head, 0, request->ring->size - head); 2573 head = 0; 2574 } 2575 memset(vaddr + head, 0, request->postfix - head); 2576 } 2577 2578 static void i915_gem_reset_engine(struct intel_engine_cs *engine) 2579 { 2580 struct drm_i915_gem_request *request; 2581 struct i915_gem_context *incomplete_ctx; 2582 bool ring_hung; 2583 2584 /* Ensure irq handler finishes, and not run again. */ 2585 tasklet_kill(&engine->irq_tasklet); 2586 if (engine->irq_seqno_barrier) 2587 engine->irq_seqno_barrier(engine); 2588 2589 request = i915_gem_find_active_request(engine); 2590 if (!request) 2591 return; 2592 2593 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG; 2594 i915_set_reset_status(request->ctx, ring_hung); 2595 if (!ring_hung) 2596 return; 2597 2598 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n", 2599 engine->name, request->fence.seqno); 2600 2601 /* Setup the CS to resume from the breadcrumb of the hung request */ 2602 engine->reset_hw(engine, request); 2603 2604 /* Users of the default context do not rely on logical state 2605 * preserved between batches. They have to emit full state on 2606 * every batch and so it is safe to execute queued requests following 2607 * the hang. 2608 * 2609 * Other contexts preserve state, now corrupt. We want to skip all 2610 * queued requests that reference the corrupt context. 2611 */ 2612 incomplete_ctx = request->ctx; 2613 if (i915_gem_context_is_default(incomplete_ctx)) 2614 return; 2615 2616 list_for_each_entry_continue(request, &engine->request_list, link) 2617 if (request->ctx == incomplete_ctx) 2618 reset_request(request); 2619 } 2620 2621 void i915_gem_reset(struct drm_i915_private *dev_priv) 2622 { 2623 struct intel_engine_cs *engine; 2624 2625 i915_gem_retire_requests(dev_priv); 2626 2627 for_each_engine(engine, dev_priv) 2628 i915_gem_reset_engine(engine); 2629 2630 i915_gem_restore_fences(&dev_priv->drm); 2631 2632 if (dev_priv->gt.awake) { 2633 intel_sanitize_gt_powersave(dev_priv); 2634 intel_enable_gt_powersave(dev_priv); 2635 if (INTEL_GEN(dev_priv) >= 6) 2636 gen6_rps_busy(dev_priv); 2637 } 2638 } 2639 2640 static void nop_submit_request(struct drm_i915_gem_request *request) 2641 { 2642 } 2643 2644 static void i915_gem_cleanup_engine(struct intel_engine_cs *engine) 2645 { 2646 engine->submit_request = nop_submit_request; 2647 2648 /* Mark all pending requests as complete so that any concurrent 2649 * (lockless) lookup doesn't try and wait upon the request as we 2650 * reset it. 2651 */ 2652 intel_engine_init_seqno(engine, engine->last_submitted_seqno); 2653 2654 /* 2655 * Clear the execlists queue up before freeing the requests, as those 2656 * are the ones that keep the context and ringbuffer backing objects 2657 * pinned in place. 2658 */ 2659 2660 if (i915.enable_execlists) { 2661 spin_lock(&engine->execlist_lock); 2662 INIT_LIST_HEAD(&engine->execlist_queue); 2663 i915_gem_request_put(engine->execlist_port[0].request); 2664 i915_gem_request_put(engine->execlist_port[1].request); 2665 memset(engine->execlist_port, 0, sizeof(engine->execlist_port)); 2666 spin_unlock(&engine->execlist_lock); 2667 } 2668 2669 engine->i915->gt.active_engines &= ~intel_engine_flag(engine); 2670 } 2671 2672 void i915_gem_set_wedged(struct drm_i915_private *dev_priv) 2673 { 2674 struct intel_engine_cs *engine; 2675 2676 lockdep_assert_held(&dev_priv->drm.struct_mutex); 2677 set_bit(I915_WEDGED, &dev_priv->gpu_error.flags); 2678 2679 i915_gem_context_lost(dev_priv); 2680 for_each_engine(engine, dev_priv) 2681 i915_gem_cleanup_engine(engine); 2682 mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0); 2683 2684 i915_gem_retire_requests(dev_priv); 2685 } 2686 2687 static void 2688 i915_gem_retire_work_handler(struct work_struct *work) 2689 { 2690 struct drm_i915_private *dev_priv = 2691 container_of(work, typeof(*dev_priv), gt.retire_work.work); 2692 struct drm_device *dev = &dev_priv->drm; 2693 2694 /* Come back later if the device is busy... */ 2695 if (mutex_trylock(&dev->struct_mutex)) { 2696 i915_gem_retire_requests(dev_priv); 2697 mutex_unlock(&dev->struct_mutex); 2698 } 2699 2700 /* Keep the retire handler running until we are finally idle. 2701 * We do not need to do this test under locking as in the worst-case 2702 * we queue the retire worker once too often. 2703 */ 2704 if (READ_ONCE(dev_priv->gt.awake)) { 2705 i915_queue_hangcheck(dev_priv); 2706 queue_delayed_work(dev_priv->wq, 2707 &dev_priv->gt.retire_work, 2708 round_jiffies_up_relative(HZ)); 2709 } 2710 } 2711 2712 static void 2713 i915_gem_idle_work_handler(struct work_struct *work) 2714 { 2715 struct drm_i915_private *dev_priv = 2716 container_of(work, typeof(*dev_priv), gt.idle_work.work); 2717 struct drm_device *dev = &dev_priv->drm; 2718 struct intel_engine_cs *engine; 2719 bool rearm_hangcheck; 2720 2721 if (!READ_ONCE(dev_priv->gt.awake)) 2722 return; 2723 2724 if (READ_ONCE(dev_priv->gt.active_engines)) 2725 return; 2726 2727 rearm_hangcheck = 2728 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work); 2729 2730 if (!mutex_trylock(&dev->struct_mutex)) { 2731 /* Currently busy, come back later */ 2732 mod_delayed_work(dev_priv->wq, 2733 &dev_priv->gt.idle_work, 2734 msecs_to_jiffies(50)); 2735 goto out_rearm; 2736 } 2737 2738 if (dev_priv->gt.active_engines) 2739 goto out_unlock; 2740 2741 for_each_engine(engine, dev_priv) 2742 i915_gem_batch_pool_fini(&engine->batch_pool); 2743 2744 GEM_BUG_ON(!dev_priv->gt.awake); 2745 dev_priv->gt.awake = false; 2746 rearm_hangcheck = false; 2747 2748 if (INTEL_GEN(dev_priv) >= 6) 2749 gen6_rps_idle(dev_priv); 2750 intel_runtime_pm_put(dev_priv); 2751 out_unlock: 2752 mutex_unlock(&dev->struct_mutex); 2753 2754 out_rearm: 2755 if (rearm_hangcheck) { 2756 GEM_BUG_ON(!dev_priv->gt.awake); 2757 i915_queue_hangcheck(dev_priv); 2758 } 2759 } 2760 2761 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file) 2762 { 2763 struct drm_i915_gem_object *obj = to_intel_bo(gem); 2764 struct drm_i915_file_private *fpriv = file->driver_priv; 2765 struct i915_vma *vma, *vn; 2766 2767 mutex_lock(&obj->base.dev->struct_mutex); 2768 list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link) 2769 if (vma->vm->file == fpriv) 2770 i915_vma_close(vma); 2771 mutex_unlock(&obj->base.dev->struct_mutex); 2772 } 2773 2774 /** 2775 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT 2776 * @dev: drm device pointer 2777 * @data: ioctl data blob 2778 * @file: drm file pointer 2779 * 2780 * Returns 0 if successful, else an error is returned with the remaining time in 2781 * the timeout parameter. 2782 * -ETIME: object is still busy after timeout 2783 * -ERESTARTSYS: signal interrupted the wait 2784 * -ENONENT: object doesn't exist 2785 * Also possible, but rare: 2786 * -EAGAIN: GPU wedged 2787 * -ENOMEM: damn 2788 * -ENODEV: Internal IRQ fail 2789 * -E?: The add request failed 2790 * 2791 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any 2792 * non-zero timeout parameter the wait ioctl will wait for the given number of 2793 * nanoseconds on an object becoming unbusy. Since the wait itself does so 2794 * without holding struct_mutex the object may become re-busied before this 2795 * function completes. A similar but shorter * race condition exists in the busy 2796 * ioctl 2797 */ 2798 int 2799 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file) 2800 { 2801 struct drm_i915_gem_wait *args = data; 2802 struct intel_rps_client *rps = to_rps_client(file); 2803 struct drm_i915_gem_object *obj; 2804 unsigned long active; 2805 int idx, ret = 0; 2806 2807 if (args->flags != 0) 2808 return -EINVAL; 2809 2810 obj = i915_gem_object_lookup(file, args->bo_handle); 2811 if (!obj) 2812 return -ENOENT; 2813 2814 active = __I915_BO_ACTIVE(obj); 2815 for_each_active(active, idx) { 2816 s64 *timeout = args->timeout_ns >= 0 ? &args->timeout_ns : NULL; 2817 ret = i915_gem_active_wait_unlocked(&obj->last_read[idx], 2818 I915_WAIT_INTERRUPTIBLE, 2819 timeout, rps); 2820 if (ret) 2821 break; 2822 } 2823 2824 i915_gem_object_put_unlocked(obj); 2825 return ret; 2826 } 2827 2828 static void __i915_vma_iounmap(struct i915_vma *vma) 2829 { 2830 GEM_BUG_ON(i915_vma_is_pinned(vma)); 2831 2832 if (vma->iomap == NULL) 2833 return; 2834 2835 io_mapping_unmap(vma->iomap); 2836 vma->iomap = NULL; 2837 } 2838 2839 int i915_vma_unbind(struct i915_vma *vma) 2840 { 2841 struct drm_i915_gem_object *obj = vma->obj; 2842 unsigned long active; 2843 int ret; 2844 2845 /* First wait upon any activity as retiring the request may 2846 * have side-effects such as unpinning or even unbinding this vma. 2847 */ 2848 active = i915_vma_get_active(vma); 2849 if (active) { 2850 int idx; 2851 2852 /* When a closed VMA is retired, it is unbound - eek. 2853 * In order to prevent it from being recursively closed, 2854 * take a pin on the vma so that the second unbind is 2855 * aborted. 2856 */ 2857 __i915_vma_pin(vma); 2858 2859 for_each_active(active, idx) { 2860 ret = i915_gem_active_retire(&vma->last_read[idx], 2861 &vma->vm->dev->struct_mutex); 2862 if (ret) 2863 break; 2864 } 2865 2866 __i915_vma_unpin(vma); 2867 if (ret) 2868 return ret; 2869 2870 GEM_BUG_ON(i915_vma_is_active(vma)); 2871 } 2872 2873 if (i915_vma_is_pinned(vma)) 2874 return -EBUSY; 2875 2876 if (!drm_mm_node_allocated(&vma->node)) 2877 goto destroy; 2878 2879 GEM_BUG_ON(obj->bind_count == 0); 2880 GEM_BUG_ON(!obj->pages); 2881 2882 if (i915_vma_is_map_and_fenceable(vma)) { 2883 /* release the fence reg _after_ flushing */ 2884 ret = i915_vma_put_fence(vma); 2885 if (ret) 2886 return ret; 2887 2888 /* Force a pagefault for domain tracking on next user access */ 2889 i915_gem_release_mmap(obj); 2890 2891 __i915_vma_iounmap(vma); 2892 vma->flags &= ~I915_VMA_CAN_FENCE; 2893 } 2894 2895 if (likely(!vma->vm->closed)) { 2896 trace_i915_vma_unbind(vma); 2897 vma->vm->unbind_vma(vma); 2898 } 2899 vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND); 2900 2901 drm_mm_remove_node(&vma->node); 2902 list_move_tail(&vma->vm_link, &vma->vm->unbound_list); 2903 2904 if (vma->pages != obj->pages) { 2905 GEM_BUG_ON(!vma->pages); 2906 sg_free_table(vma->pages); 2907 kfree(vma->pages); 2908 } 2909 vma->pages = NULL; 2910 2911 /* Since the unbound list is global, only move to that list if 2912 * no more VMAs exist. */ 2913 if (--obj->bind_count == 0) 2914 list_move_tail(&obj->global_list, 2915 &to_i915(obj->base.dev)->mm.unbound_list); 2916 2917 /* And finally now the object is completely decoupled from this vma, 2918 * we can drop its hold on the backing storage and allow it to be 2919 * reaped by the shrinker. 2920 */ 2921 i915_gem_object_unpin_pages(obj); 2922 2923 destroy: 2924 if (unlikely(i915_vma_is_closed(vma))) 2925 i915_vma_destroy(vma); 2926 2927 return 0; 2928 } 2929 2930 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv, 2931 unsigned int flags) 2932 { 2933 struct intel_engine_cs *engine; 2934 int ret; 2935 2936 for_each_engine(engine, dev_priv) { 2937 if (engine->last_context == NULL) 2938 continue; 2939 2940 ret = intel_engine_idle(engine, flags); 2941 if (ret) 2942 return ret; 2943 } 2944 2945 return 0; 2946 } 2947 2948 static bool i915_gem_valid_gtt_space(struct i915_vma *vma, 2949 unsigned long cache_level) 2950 { 2951 struct drm_mm_node *gtt_space = &vma->node; 2952 struct drm_mm_node *other; 2953 2954 /* 2955 * On some machines we have to be careful when putting differing types 2956 * of snoopable memory together to avoid the prefetcher crossing memory 2957 * domains and dying. During vm initialisation, we decide whether or not 2958 * these constraints apply and set the drm_mm.color_adjust 2959 * appropriately. 2960 */ 2961 if (vma->vm->mm.color_adjust == NULL) 2962 return true; 2963 2964 if (!drm_mm_node_allocated(gtt_space)) 2965 return true; 2966 2967 if (list_empty(>t_space->node_list)) 2968 return true; 2969 2970 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list); 2971 if (other->allocated && !other->hole_follows && other->color != cache_level) 2972 return false; 2973 2974 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list); 2975 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level) 2976 return false; 2977 2978 return true; 2979 } 2980 2981 /** 2982 * i915_vma_insert - finds a slot for the vma in its address space 2983 * @vma: the vma 2984 * @size: requested size in bytes (can be larger than the VMA) 2985 * @alignment: required alignment 2986 * @flags: mask of PIN_* flags to use 2987 * 2988 * First we try to allocate some free space that meets the requirements for 2989 * the VMA. Failiing that, if the flags permit, it will evict an old VMA, 2990 * preferrably the oldest idle entry to make room for the new VMA. 2991 * 2992 * Returns: 2993 * 0 on success, negative error code otherwise. 2994 */ 2995 static int 2996 i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags) 2997 { 2998 struct drm_i915_private *dev_priv = to_i915(vma->vm->dev); 2999 struct drm_i915_gem_object *obj = vma->obj; 3000 u64 start, end; 3001 int ret; 3002 3003 GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND)); 3004 GEM_BUG_ON(drm_mm_node_allocated(&vma->node)); 3005 3006 size = max(size, vma->size); 3007 if (flags & PIN_MAPPABLE) 3008 size = i915_gem_get_ggtt_size(dev_priv, size, 3009 i915_gem_object_get_tiling(obj)); 3010 3011 alignment = max(max(alignment, vma->display_alignment), 3012 i915_gem_get_ggtt_alignment(dev_priv, size, 3013 i915_gem_object_get_tiling(obj), 3014 flags & PIN_MAPPABLE)); 3015 3016 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0; 3017 3018 end = vma->vm->total; 3019 if (flags & PIN_MAPPABLE) 3020 end = min_t(u64, end, dev_priv->ggtt.mappable_end); 3021 if (flags & PIN_ZONE_4G) 3022 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE); 3023 3024 /* If binding the object/GGTT view requires more space than the entire 3025 * aperture has, reject it early before evicting everything in a vain 3026 * attempt to find space. 3027 */ 3028 if (size > end) { 3029 DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n", 3030 size, obj->base.size, 3031 flags & PIN_MAPPABLE ? "mappable" : "total", 3032 end); 3033 return -E2BIG; 3034 } 3035 3036 ret = i915_gem_object_get_pages(obj); 3037 if (ret) 3038 return ret; 3039 3040 i915_gem_object_pin_pages(obj); 3041 3042 if (flags & PIN_OFFSET_FIXED) { 3043 u64 offset = flags & PIN_OFFSET_MASK; 3044 if (offset & (alignment - 1) || offset > end - size) { 3045 ret = -EINVAL; 3046 goto err_unpin; 3047 } 3048 3049 vma->node.start = offset; 3050 vma->node.size = size; 3051 vma->node.color = obj->cache_level; 3052 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node); 3053 if (ret) { 3054 ret = i915_gem_evict_for_vma(vma); 3055 if (ret == 0) 3056 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node); 3057 if (ret) 3058 goto err_unpin; 3059 } 3060 } else { 3061 u32 search_flag, alloc_flag; 3062 3063 if (flags & PIN_HIGH) { 3064 search_flag = DRM_MM_SEARCH_BELOW; 3065 alloc_flag = DRM_MM_CREATE_TOP; 3066 } else { 3067 search_flag = DRM_MM_SEARCH_DEFAULT; 3068 alloc_flag = DRM_MM_CREATE_DEFAULT; 3069 } 3070 3071 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks, 3072 * so we know that we always have a minimum alignment of 4096. 3073 * The drm_mm range manager is optimised to return results 3074 * with zero alignment, so where possible use the optimal 3075 * path. 3076 */ 3077 if (alignment <= 4096) 3078 alignment = 0; 3079 3080 search_free: 3081 ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm, 3082 &vma->node, 3083 size, alignment, 3084 obj->cache_level, 3085 start, end, 3086 search_flag, 3087 alloc_flag); 3088 if (ret) { 3089 ret = i915_gem_evict_something(vma->vm, size, alignment, 3090 obj->cache_level, 3091 start, end, 3092 flags); 3093 if (ret == 0) 3094 goto search_free; 3095 3096 goto err_unpin; 3097 } 3098 } 3099 GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level)); 3100 3101 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list); 3102 list_move_tail(&vma->vm_link, &vma->vm->inactive_list); 3103 obj->bind_count++; 3104 3105 return 0; 3106 3107 err_unpin: 3108 i915_gem_object_unpin_pages(obj); 3109 return ret; 3110 } 3111 3112 bool 3113 i915_gem_clflush_object(struct drm_i915_gem_object *obj, 3114 bool force) 3115 { 3116 /* If we don't have a page list set up, then we're not pinned 3117 * to GPU, and we can ignore the cache flush because it'll happen 3118 * again at bind time. 3119 */ 3120 if (obj->pages == NULL) 3121 return false; 3122 3123 /* 3124 * Stolen memory is always coherent with the GPU as it is explicitly 3125 * marked as wc by the system, or the system is cache-coherent. 3126 */ 3127 if (obj->stolen || obj->phys_handle) 3128 return false; 3129 3130 /* If the GPU is snooping the contents of the CPU cache, 3131 * we do not need to manually clear the CPU cache lines. However, 3132 * the caches are only snooped when the render cache is 3133 * flushed/invalidated. As we always have to emit invalidations 3134 * and flushes when moving into and out of the RENDER domain, correct 3135 * snooping behaviour occurs naturally as the result of our domain 3136 * tracking. 3137 */ 3138 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) { 3139 obj->cache_dirty = true; 3140 return false; 3141 } 3142 3143 trace_i915_gem_object_clflush(obj); 3144 drm_clflush_sg(obj->pages); 3145 obj->cache_dirty = false; 3146 3147 return true; 3148 } 3149 3150 /** Flushes the GTT write domain for the object if it's dirty. */ 3151 static void 3152 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj) 3153 { 3154 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 3155 3156 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT) 3157 return; 3158 3159 /* No actual flushing is required for the GTT write domain. Writes 3160 * to it "immediately" go to main memory as far as we know, so there's 3161 * no chipset flush. It also doesn't land in render cache. 3162 * 3163 * However, we do have to enforce the order so that all writes through 3164 * the GTT land before any writes to the device, such as updates to 3165 * the GATT itself. 3166 * 3167 * We also have to wait a bit for the writes to land from the GTT. 3168 * An uncached read (i.e. mmio) seems to be ideal for the round-trip 3169 * timing. This issue has only been observed when switching quickly 3170 * between GTT writes and CPU reads from inside the kernel on recent hw, 3171 * and it appears to only affect discrete GTT blocks (i.e. on LLC 3172 * system agents we cannot reproduce this behaviour). 3173 */ 3174 wmb(); 3175 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) 3176 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS].mmio_base)); 3177 3178 intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT)); 3179 3180 obj->base.write_domain = 0; 3181 trace_i915_gem_object_change_domain(obj, 3182 obj->base.read_domains, 3183 I915_GEM_DOMAIN_GTT); 3184 } 3185 3186 /** Flushes the CPU write domain for the object if it's dirty. */ 3187 static void 3188 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj) 3189 { 3190 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) 3191 return; 3192 3193 if (i915_gem_clflush_object(obj, obj->pin_display)) 3194 i915_gem_chipset_flush(to_i915(obj->base.dev)); 3195 3196 intel_fb_obj_flush(obj, false, ORIGIN_CPU); 3197 3198 obj->base.write_domain = 0; 3199 trace_i915_gem_object_change_domain(obj, 3200 obj->base.read_domains, 3201 I915_GEM_DOMAIN_CPU); 3202 } 3203 3204 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj) 3205 { 3206 struct i915_vma *vma; 3207 3208 list_for_each_entry(vma, &obj->vma_list, obj_link) { 3209 if (!i915_vma_is_ggtt(vma)) 3210 continue; 3211 3212 if (i915_vma_is_active(vma)) 3213 continue; 3214 3215 if (!drm_mm_node_allocated(&vma->node)) 3216 continue; 3217 3218 list_move_tail(&vma->vm_link, &vma->vm->inactive_list); 3219 } 3220 } 3221 3222 /** 3223 * Moves a single object to the GTT read, and possibly write domain. 3224 * @obj: object to act on 3225 * @write: ask for write access or read only 3226 * 3227 * This function returns when the move is complete, including waiting on 3228 * flushes to occur. 3229 */ 3230 int 3231 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write) 3232 { 3233 uint32_t old_write_domain, old_read_domains; 3234 int ret; 3235 3236 ret = i915_gem_object_wait_rendering(obj, !write); 3237 if (ret) 3238 return ret; 3239 3240 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT) 3241 return 0; 3242 3243 /* Flush and acquire obj->pages so that we are coherent through 3244 * direct access in memory with previous cached writes through 3245 * shmemfs and that our cache domain tracking remains valid. 3246 * For example, if the obj->filp was moved to swap without us 3247 * being notified and releasing the pages, we would mistakenly 3248 * continue to assume that the obj remained out of the CPU cached 3249 * domain. 3250 */ 3251 ret = i915_gem_object_get_pages(obj); 3252 if (ret) 3253 return ret; 3254 3255 i915_gem_object_flush_cpu_write_domain(obj); 3256 3257 /* Serialise direct access to this object with the barriers for 3258 * coherent writes from the GPU, by effectively invalidating the 3259 * GTT domain upon first access. 3260 */ 3261 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 3262 mb(); 3263 3264 old_write_domain = obj->base.write_domain; 3265 old_read_domains = obj->base.read_domains; 3266 3267 /* It should now be out of any other write domains, and we can update 3268 * the domain values for our changes. 3269 */ 3270 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0); 3271 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3272 if (write) { 3273 obj->base.read_domains = I915_GEM_DOMAIN_GTT; 3274 obj->base.write_domain = I915_GEM_DOMAIN_GTT; 3275 obj->dirty = 1; 3276 } 3277 3278 trace_i915_gem_object_change_domain(obj, 3279 old_read_domains, 3280 old_write_domain); 3281 3282 /* And bump the LRU for this access */ 3283 i915_gem_object_bump_inactive_ggtt(obj); 3284 3285 return 0; 3286 } 3287 3288 /** 3289 * Changes the cache-level of an object across all VMA. 3290 * @obj: object to act on 3291 * @cache_level: new cache level to set for the object 3292 * 3293 * After this function returns, the object will be in the new cache-level 3294 * across all GTT and the contents of the backing storage will be coherent, 3295 * with respect to the new cache-level. In order to keep the backing storage 3296 * coherent for all users, we only allow a single cache level to be set 3297 * globally on the object and prevent it from being changed whilst the 3298 * hardware is reading from the object. That is if the object is currently 3299 * on the scanout it will be set to uncached (or equivalent display 3300 * cache coherency) and all non-MOCS GPU access will also be uncached so 3301 * that all direct access to the scanout remains coherent. 3302 */ 3303 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3304 enum i915_cache_level cache_level) 3305 { 3306 struct i915_vma *vma; 3307 int ret = 0; 3308 3309 if (obj->cache_level == cache_level) 3310 goto out; 3311 3312 /* Inspect the list of currently bound VMA and unbind any that would 3313 * be invalid given the new cache-level. This is principally to 3314 * catch the issue of the CS prefetch crossing page boundaries and 3315 * reading an invalid PTE on older architectures. 3316 */ 3317 restart: 3318 list_for_each_entry(vma, &obj->vma_list, obj_link) { 3319 if (!drm_mm_node_allocated(&vma->node)) 3320 continue; 3321 3322 if (i915_vma_is_pinned(vma)) { 3323 DRM_DEBUG("can not change the cache level of pinned objects\n"); 3324 return -EBUSY; 3325 } 3326 3327 if (i915_gem_valid_gtt_space(vma, cache_level)) 3328 continue; 3329 3330 ret = i915_vma_unbind(vma); 3331 if (ret) 3332 return ret; 3333 3334 /* As unbinding may affect other elements in the 3335 * obj->vma_list (due to side-effects from retiring 3336 * an active vma), play safe and restart the iterator. 3337 */ 3338 goto restart; 3339 } 3340 3341 /* We can reuse the existing drm_mm nodes but need to change the 3342 * cache-level on the PTE. We could simply unbind them all and 3343 * rebind with the correct cache-level on next use. However since 3344 * we already have a valid slot, dma mapping, pages etc, we may as 3345 * rewrite the PTE in the belief that doing so tramples upon less 3346 * state and so involves less work. 3347 */ 3348 if (obj->bind_count) { 3349 /* Before we change the PTE, the GPU must not be accessing it. 3350 * If we wait upon the object, we know that all the bound 3351 * VMA are no longer active. 3352 */ 3353 ret = i915_gem_object_wait_rendering(obj, false); 3354 if (ret) 3355 return ret; 3356 3357 if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) { 3358 /* Access to snoopable pages through the GTT is 3359 * incoherent and on some machines causes a hard 3360 * lockup. Relinquish the CPU mmaping to force 3361 * userspace to refault in the pages and we can 3362 * then double check if the GTT mapping is still 3363 * valid for that pointer access. 3364 */ 3365 i915_gem_release_mmap(obj); 3366 3367 /* As we no longer need a fence for GTT access, 3368 * we can relinquish it now (and so prevent having 3369 * to steal a fence from someone else on the next 3370 * fence request). Note GPU activity would have 3371 * dropped the fence as all snoopable access is 3372 * supposed to be linear. 3373 */ 3374 list_for_each_entry(vma, &obj->vma_list, obj_link) { 3375 ret = i915_vma_put_fence(vma); 3376 if (ret) 3377 return ret; 3378 } 3379 } else { 3380 /* We either have incoherent backing store and 3381 * so no GTT access or the architecture is fully 3382 * coherent. In such cases, existing GTT mmaps 3383 * ignore the cache bit in the PTE and we can 3384 * rewrite it without confusing the GPU or having 3385 * to force userspace to fault back in its mmaps. 3386 */ 3387 } 3388 3389 list_for_each_entry(vma, &obj->vma_list, obj_link) { 3390 if (!drm_mm_node_allocated(&vma->node)) 3391 continue; 3392 3393 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE); 3394 if (ret) 3395 return ret; 3396 } 3397 } 3398 3399 list_for_each_entry(vma, &obj->vma_list, obj_link) 3400 vma->node.color = cache_level; 3401 obj->cache_level = cache_level; 3402 3403 out: 3404 /* Flush the dirty CPU caches to the backing storage so that the 3405 * object is now coherent at its new cache level (with respect 3406 * to the access domain). 3407 */ 3408 if (obj->cache_dirty && cpu_write_needs_clflush(obj)) { 3409 if (i915_gem_clflush_object(obj, true)) 3410 i915_gem_chipset_flush(to_i915(obj->base.dev)); 3411 } 3412 3413 return 0; 3414 } 3415 3416 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 3417 struct drm_file *file) 3418 { 3419 struct drm_i915_gem_caching *args = data; 3420 struct drm_i915_gem_object *obj; 3421 3422 obj = i915_gem_object_lookup(file, args->handle); 3423 if (!obj) 3424 return -ENOENT; 3425 3426 switch (obj->cache_level) { 3427 case I915_CACHE_LLC: 3428 case I915_CACHE_L3_LLC: 3429 args->caching = I915_CACHING_CACHED; 3430 break; 3431 3432 case I915_CACHE_WT: 3433 args->caching = I915_CACHING_DISPLAY; 3434 break; 3435 3436 default: 3437 args->caching = I915_CACHING_NONE; 3438 break; 3439 } 3440 3441 i915_gem_object_put_unlocked(obj); 3442 return 0; 3443 } 3444 3445 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 3446 struct drm_file *file) 3447 { 3448 struct drm_i915_private *dev_priv = to_i915(dev); 3449 struct drm_i915_gem_caching *args = data; 3450 struct drm_i915_gem_object *obj; 3451 enum i915_cache_level level; 3452 int ret; 3453 3454 switch (args->caching) { 3455 case I915_CACHING_NONE: 3456 level = I915_CACHE_NONE; 3457 break; 3458 case I915_CACHING_CACHED: 3459 /* 3460 * Due to a HW issue on BXT A stepping, GPU stores via a 3461 * snooped mapping may leave stale data in a corresponding CPU 3462 * cacheline, whereas normally such cachelines would get 3463 * invalidated. 3464 */ 3465 if (!HAS_LLC(dev) && !HAS_SNOOP(dev)) 3466 return -ENODEV; 3467 3468 level = I915_CACHE_LLC; 3469 break; 3470 case I915_CACHING_DISPLAY: 3471 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE; 3472 break; 3473 default: 3474 return -EINVAL; 3475 } 3476 3477 intel_runtime_pm_get(dev_priv); 3478 3479 ret = i915_mutex_lock_interruptible(dev); 3480 if (ret) 3481 goto rpm_put; 3482 3483 obj = i915_gem_object_lookup(file, args->handle); 3484 if (!obj) { 3485 ret = -ENOENT; 3486 goto unlock; 3487 } 3488 3489 ret = i915_gem_object_set_cache_level(obj, level); 3490 3491 i915_gem_object_put(obj); 3492 unlock: 3493 mutex_unlock(&dev->struct_mutex); 3494 rpm_put: 3495 intel_runtime_pm_put(dev_priv); 3496 3497 return ret; 3498 } 3499 3500 /* 3501 * Prepare buffer for display plane (scanout, cursors, etc). 3502 * Can be called from an uninterruptible phase (modesetting) and allows 3503 * any flushes to be pipelined (for pageflips). 3504 */ 3505 struct i915_vma * 3506 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3507 u32 alignment, 3508 const struct i915_ggtt_view *view) 3509 { 3510 struct i915_vma *vma; 3511 u32 old_read_domains, old_write_domain; 3512 int ret; 3513 3514 /* Mark the pin_display early so that we account for the 3515 * display coherency whilst setting up the cache domains. 3516 */ 3517 obj->pin_display++; 3518 3519 /* The display engine is not coherent with the LLC cache on gen6. As 3520 * a result, we make sure that the pinning that is about to occur is 3521 * done with uncached PTEs. This is lowest common denominator for all 3522 * chipsets. 3523 * 3524 * However for gen6+, we could do better by using the GFDT bit instead 3525 * of uncaching, which would allow us to flush all the LLC-cached data 3526 * with that bit in the PTE to main memory with just one PIPE_CONTROL. 3527 */ 3528 ret = i915_gem_object_set_cache_level(obj, 3529 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE); 3530 if (ret) { 3531 vma = ERR_PTR(ret); 3532 goto err_unpin_display; 3533 } 3534 3535 /* As the user may map the buffer once pinned in the display plane 3536 * (e.g. libkms for the bootup splash), we have to ensure that we 3537 * always use map_and_fenceable for all scanout buffers. However, 3538 * it may simply be too big to fit into mappable, in which case 3539 * put it anyway and hope that userspace can cope (but always first 3540 * try to preserve the existing ABI). 3541 */ 3542 vma = ERR_PTR(-ENOSPC); 3543 if (view->type == I915_GGTT_VIEW_NORMAL) 3544 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, 3545 PIN_MAPPABLE | PIN_NONBLOCK); 3546 if (IS_ERR(vma)) 3547 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, 0); 3548 if (IS_ERR(vma)) 3549 goto err_unpin_display; 3550 3551 vma->display_alignment = max_t(u64, vma->display_alignment, alignment); 3552 3553 WARN_ON(obj->pin_display > i915_vma_pin_count(vma)); 3554 3555 i915_gem_object_flush_cpu_write_domain(obj); 3556 3557 old_write_domain = obj->base.write_domain; 3558 old_read_domains = obj->base.read_domains; 3559 3560 /* It should now be out of any other write domains, and we can update 3561 * the domain values for our changes. 3562 */ 3563 obj->base.write_domain = 0; 3564 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3565 3566 trace_i915_gem_object_change_domain(obj, 3567 old_read_domains, 3568 old_write_domain); 3569 3570 return vma; 3571 3572 err_unpin_display: 3573 obj->pin_display--; 3574 return vma; 3575 } 3576 3577 void 3578 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma) 3579 { 3580 if (WARN_ON(vma->obj->pin_display == 0)) 3581 return; 3582 3583 if (--vma->obj->pin_display == 0) 3584 vma->display_alignment = 0; 3585 3586 /* Bump the LRU to try and avoid premature eviction whilst flipping */ 3587 if (!i915_vma_is_active(vma)) 3588 list_move_tail(&vma->vm_link, &vma->vm->inactive_list); 3589 3590 i915_vma_unpin(vma); 3591 WARN_ON(vma->obj->pin_display > i915_vma_pin_count(vma)); 3592 } 3593 3594 /** 3595 * Moves a single object to the CPU read, and possibly write domain. 3596 * @obj: object to act on 3597 * @write: requesting write or read-only access 3598 * 3599 * This function returns when the move is complete, including waiting on 3600 * flushes to occur. 3601 */ 3602 int 3603 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write) 3604 { 3605 uint32_t old_write_domain, old_read_domains; 3606 int ret; 3607 3608 ret = i915_gem_object_wait_rendering(obj, !write); 3609 if (ret) 3610 return ret; 3611 3612 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) 3613 return 0; 3614 3615 i915_gem_object_flush_gtt_write_domain(obj); 3616 3617 old_write_domain = obj->base.write_domain; 3618 old_read_domains = obj->base.read_domains; 3619 3620 /* Flush the CPU cache if it's still invalid. */ 3621 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) { 3622 i915_gem_clflush_object(obj, false); 3623 3624 obj->base.read_domains |= I915_GEM_DOMAIN_CPU; 3625 } 3626 3627 /* It should now be out of any other write domains, and we can update 3628 * the domain values for our changes. 3629 */ 3630 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0); 3631 3632 /* If we're writing through the CPU, then the GPU read domains will 3633 * need to be invalidated at next use. 3634 */ 3635 if (write) { 3636 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3637 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3638 } 3639 3640 trace_i915_gem_object_change_domain(obj, 3641 old_read_domains, 3642 old_write_domain); 3643 3644 return 0; 3645 } 3646 3647 /* Throttle our rendering by waiting until the ring has completed our requests 3648 * emitted over 20 msec ago. 3649 * 3650 * Note that if we were to use the current jiffies each time around the loop, 3651 * we wouldn't escape the function with any frames outstanding if the time to 3652 * render a frame was over 20ms. 3653 * 3654 * This should get us reasonable parallelism between CPU and GPU but also 3655 * relatively low latency when blocking on a particular request to finish. 3656 */ 3657 static int 3658 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file) 3659 { 3660 struct drm_i915_private *dev_priv = to_i915(dev); 3661 struct drm_i915_file_private *file_priv = file->driver_priv; 3662 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES; 3663 struct drm_i915_gem_request *request, *target = NULL; 3664 int ret; 3665 3666 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 3667 if (ret) 3668 return ret; 3669 3670 /* ABI: return -EIO if already wedged */ 3671 if (i915_terminally_wedged(&dev_priv->gpu_error)) 3672 return -EIO; 3673 3674 spin_lock(&file_priv->mm.lock); 3675 list_for_each_entry(request, &file_priv->mm.request_list, client_list) { 3676 if (time_after_eq(request->emitted_jiffies, recent_enough)) 3677 break; 3678 3679 /* 3680 * Note that the request might not have been submitted yet. 3681 * In which case emitted_jiffies will be zero. 3682 */ 3683 if (!request->emitted_jiffies) 3684 continue; 3685 3686 target = request; 3687 } 3688 if (target) 3689 i915_gem_request_get(target); 3690 spin_unlock(&file_priv->mm.lock); 3691 3692 if (target == NULL) 3693 return 0; 3694 3695 ret = i915_wait_request(target, I915_WAIT_INTERRUPTIBLE, NULL, NULL); 3696 i915_gem_request_put(target); 3697 3698 return ret; 3699 } 3700 3701 static bool 3702 i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags) 3703 { 3704 if (!drm_mm_node_allocated(&vma->node)) 3705 return false; 3706 3707 if (vma->node.size < size) 3708 return true; 3709 3710 if (alignment && vma->node.start & (alignment - 1)) 3711 return true; 3712 3713 if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma)) 3714 return true; 3715 3716 if (flags & PIN_OFFSET_BIAS && 3717 vma->node.start < (flags & PIN_OFFSET_MASK)) 3718 return true; 3719 3720 if (flags & PIN_OFFSET_FIXED && 3721 vma->node.start != (flags & PIN_OFFSET_MASK)) 3722 return true; 3723 3724 return false; 3725 } 3726 3727 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma) 3728 { 3729 struct drm_i915_gem_object *obj = vma->obj; 3730 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 3731 bool mappable, fenceable; 3732 u32 fence_size, fence_alignment; 3733 3734 fence_size = i915_gem_get_ggtt_size(dev_priv, 3735 vma->size, 3736 i915_gem_object_get_tiling(obj)); 3737 fence_alignment = i915_gem_get_ggtt_alignment(dev_priv, 3738 vma->size, 3739 i915_gem_object_get_tiling(obj), 3740 true); 3741 3742 fenceable = (vma->node.size == fence_size && 3743 (vma->node.start & (fence_alignment - 1)) == 0); 3744 3745 mappable = (vma->node.start + fence_size <= 3746 dev_priv->ggtt.mappable_end); 3747 3748 if (mappable && fenceable) 3749 vma->flags |= I915_VMA_CAN_FENCE; 3750 else 3751 vma->flags &= ~I915_VMA_CAN_FENCE; 3752 } 3753 3754 int __i915_vma_do_pin(struct i915_vma *vma, 3755 u64 size, u64 alignment, u64 flags) 3756 { 3757 unsigned int bound = vma->flags; 3758 int ret; 3759 3760 GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0); 3761 GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma)); 3762 3763 if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) { 3764 ret = -EBUSY; 3765 goto err; 3766 } 3767 3768 if ((bound & I915_VMA_BIND_MASK) == 0) { 3769 ret = i915_vma_insert(vma, size, alignment, flags); 3770 if (ret) 3771 goto err; 3772 } 3773 3774 ret = i915_vma_bind(vma, vma->obj->cache_level, flags); 3775 if (ret) 3776 goto err; 3777 3778 if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND) 3779 __i915_vma_set_map_and_fenceable(vma); 3780 3781 GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags)); 3782 return 0; 3783 3784 err: 3785 __i915_vma_unpin(vma); 3786 return ret; 3787 } 3788 3789 struct i915_vma * 3790 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, 3791 const struct i915_ggtt_view *view, 3792 u64 size, 3793 u64 alignment, 3794 u64 flags) 3795 { 3796 struct i915_address_space *vm = &to_i915(obj->base.dev)->ggtt.base; 3797 struct i915_vma *vma; 3798 int ret; 3799 3800 vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view); 3801 if (IS_ERR(vma)) 3802 return vma; 3803 3804 if (i915_vma_misplaced(vma, size, alignment, flags)) { 3805 if (flags & PIN_NONBLOCK && 3806 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))) 3807 return ERR_PTR(-ENOSPC); 3808 3809 WARN(i915_vma_is_pinned(vma), 3810 "bo is already pinned in ggtt with incorrect alignment:" 3811 " offset=%08x, req.alignment=%llx," 3812 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n", 3813 i915_ggtt_offset(vma), alignment, 3814 !!(flags & PIN_MAPPABLE), 3815 i915_vma_is_map_and_fenceable(vma)); 3816 ret = i915_vma_unbind(vma); 3817 if (ret) 3818 return ERR_PTR(ret); 3819 } 3820 3821 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL); 3822 if (ret) 3823 return ERR_PTR(ret); 3824 3825 return vma; 3826 } 3827 3828 static __always_inline unsigned int __busy_read_flag(unsigned int id) 3829 { 3830 /* Note that we could alias engines in the execbuf API, but 3831 * that would be very unwise as it prevents userspace from 3832 * fine control over engine selection. Ahem. 3833 * 3834 * This should be something like EXEC_MAX_ENGINE instead of 3835 * I915_NUM_ENGINES. 3836 */ 3837 BUILD_BUG_ON(I915_NUM_ENGINES > 16); 3838 return 0x10000 << id; 3839 } 3840 3841 static __always_inline unsigned int __busy_write_id(unsigned int id) 3842 { 3843 /* The uABI guarantees an active writer is also amongst the read 3844 * engines. This would be true if we accessed the activity tracking 3845 * under the lock, but as we perform the lookup of the object and 3846 * its activity locklessly we can not guarantee that the last_write 3847 * being active implies that we have set the same engine flag from 3848 * last_read - hence we always set both read and write busy for 3849 * last_write. 3850 */ 3851 return id | __busy_read_flag(id); 3852 } 3853 3854 static __always_inline unsigned int 3855 __busy_set_if_active(const struct i915_gem_active *active, 3856 unsigned int (*flag)(unsigned int id)) 3857 { 3858 struct drm_i915_gem_request *request; 3859 3860 request = rcu_dereference(active->request); 3861 if (!request || i915_gem_request_completed(request)) 3862 return 0; 3863 3864 /* This is racy. See __i915_gem_active_get_rcu() for an in detail 3865 * discussion of how to handle the race correctly, but for reporting 3866 * the busy state we err on the side of potentially reporting the 3867 * wrong engine as being busy (but we guarantee that the result 3868 * is at least self-consistent). 3869 * 3870 * As we use SLAB_DESTROY_BY_RCU, the request may be reallocated 3871 * whilst we are inspecting it, even under the RCU read lock as we are. 3872 * This means that there is a small window for the engine and/or the 3873 * seqno to have been overwritten. The seqno will always be in the 3874 * future compared to the intended, and so we know that if that 3875 * seqno is idle (on whatever engine) our request is idle and the 3876 * return 0 above is correct. 3877 * 3878 * The issue is that if the engine is switched, it is just as likely 3879 * to report that it is busy (but since the switch happened, we know 3880 * the request should be idle). So there is a small chance that a busy 3881 * result is actually the wrong engine. 3882 * 3883 * So why don't we care? 3884 * 3885 * For starters, the busy ioctl is a heuristic that is by definition 3886 * racy. Even with perfect serialisation in the driver, the hardware 3887 * state is constantly advancing - the state we report to the user 3888 * is stale. 3889 * 3890 * The critical information for the busy-ioctl is whether the object 3891 * is idle as userspace relies on that to detect whether its next 3892 * access will stall, or if it has missed submitting commands to 3893 * the hardware allowing the GPU to stall. We never generate a 3894 * false-positive for idleness, thus busy-ioctl is reliable at the 3895 * most fundamental level, and we maintain the guarantee that a 3896 * busy object left to itself will eventually become idle (and stay 3897 * idle!). 3898 * 3899 * We allow ourselves the leeway of potentially misreporting the busy 3900 * state because that is an optimisation heuristic that is constantly 3901 * in flux. Being quickly able to detect the busy/idle state is much 3902 * more important than accurate logging of exactly which engines were 3903 * busy. 3904 * 3905 * For accuracy in reporting the engine, we could use 3906 * 3907 * result = 0; 3908 * request = __i915_gem_active_get_rcu(active); 3909 * if (request) { 3910 * if (!i915_gem_request_completed(request)) 3911 * result = flag(request->engine->exec_id); 3912 * i915_gem_request_put(request); 3913 * } 3914 * 3915 * but that still remains susceptible to both hardware and userspace 3916 * races. So we accept making the result of that race slightly worse, 3917 * given the rarity of the race and its low impact on the result. 3918 */ 3919 return flag(READ_ONCE(request->engine->exec_id)); 3920 } 3921 3922 static __always_inline unsigned int 3923 busy_check_reader(const struct i915_gem_active *active) 3924 { 3925 return __busy_set_if_active(active, __busy_read_flag); 3926 } 3927 3928 static __always_inline unsigned int 3929 busy_check_writer(const struct i915_gem_active *active) 3930 { 3931 return __busy_set_if_active(active, __busy_write_id); 3932 } 3933 3934 int 3935 i915_gem_busy_ioctl(struct drm_device *dev, void *data, 3936 struct drm_file *file) 3937 { 3938 struct drm_i915_gem_busy *args = data; 3939 struct drm_i915_gem_object *obj; 3940 unsigned long active; 3941 3942 obj = i915_gem_object_lookup(file, args->handle); 3943 if (!obj) 3944 return -ENOENT; 3945 3946 args->busy = 0; 3947 active = __I915_BO_ACTIVE(obj); 3948 if (active) { 3949 int idx; 3950 3951 /* Yes, the lookups are intentionally racy. 3952 * 3953 * First, we cannot simply rely on __I915_BO_ACTIVE. We have 3954 * to regard the value as stale and as our ABI guarantees 3955 * forward progress, we confirm the status of each active 3956 * request with the hardware. 3957 * 3958 * Even though we guard the pointer lookup by RCU, that only 3959 * guarantees that the pointer and its contents remain 3960 * dereferencable and does *not* mean that the request we 3961 * have is the same as the one being tracked by the object. 3962 * 3963 * Consider that we lookup the request just as it is being 3964 * retired and freed. We take a local copy of the pointer, 3965 * but before we add its engine into the busy set, the other 3966 * thread reallocates it and assigns it to a task on another 3967 * engine with a fresh and incomplete seqno. Guarding against 3968 * that requires careful serialisation and reference counting, 3969 * i.e. using __i915_gem_active_get_request_rcu(). We don't, 3970 * instead we expect that if the result is busy, which engines 3971 * are busy is not completely reliable - we only guarantee 3972 * that the object was busy. 3973 */ 3974 rcu_read_lock(); 3975 3976 for_each_active(active, idx) 3977 args->busy |= busy_check_reader(&obj->last_read[idx]); 3978 3979 /* For ABI sanity, we only care that the write engine is in 3980 * the set of read engines. This should be ensured by the 3981 * ordering of setting last_read/last_write in 3982 * i915_vma_move_to_active(), and then in reverse in retire. 3983 * However, for good measure, we always report the last_write 3984 * request as a busy read as well as being a busy write. 3985 * 3986 * We don't care that the set of active read/write engines 3987 * may change during construction of the result, as it is 3988 * equally liable to change before userspace can inspect 3989 * the result. 3990 */ 3991 args->busy |= busy_check_writer(&obj->last_write); 3992 3993 rcu_read_unlock(); 3994 } 3995 3996 i915_gem_object_put_unlocked(obj); 3997 return 0; 3998 } 3999 4000 int 4001 i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 4002 struct drm_file *file_priv) 4003 { 4004 return i915_gem_ring_throttle(dev, file_priv); 4005 } 4006 4007 int 4008 i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 4009 struct drm_file *file_priv) 4010 { 4011 struct drm_i915_private *dev_priv = to_i915(dev); 4012 struct drm_i915_gem_madvise *args = data; 4013 struct drm_i915_gem_object *obj; 4014 int ret; 4015 4016 switch (args->madv) { 4017 case I915_MADV_DONTNEED: 4018 case I915_MADV_WILLNEED: 4019 break; 4020 default: 4021 return -EINVAL; 4022 } 4023 4024 ret = i915_mutex_lock_interruptible(dev); 4025 if (ret) 4026 return ret; 4027 4028 obj = i915_gem_object_lookup(file_priv, args->handle); 4029 if (!obj) { 4030 ret = -ENOENT; 4031 goto unlock; 4032 } 4033 4034 if (obj->pages && 4035 i915_gem_object_is_tiled(obj) && 4036 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) { 4037 if (obj->madv == I915_MADV_WILLNEED) 4038 i915_gem_object_unpin_pages(obj); 4039 if (args->madv == I915_MADV_WILLNEED) 4040 i915_gem_object_pin_pages(obj); 4041 } 4042 4043 if (obj->madv != __I915_MADV_PURGED) 4044 obj->madv = args->madv; 4045 4046 /* if the object is no longer attached, discard its backing storage */ 4047 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL) 4048 i915_gem_object_truncate(obj); 4049 4050 args->retained = obj->madv != __I915_MADV_PURGED; 4051 4052 i915_gem_object_put(obj); 4053 unlock: 4054 mutex_unlock(&dev->struct_mutex); 4055 return ret; 4056 } 4057 4058 void i915_gem_object_init(struct drm_i915_gem_object *obj, 4059 const struct drm_i915_gem_object_ops *ops) 4060 { 4061 int i; 4062 4063 INIT_LIST_HEAD(&obj->global_list); 4064 for (i = 0; i < I915_NUM_ENGINES; i++) 4065 init_request_active(&obj->last_read[i], 4066 i915_gem_object_retire__read); 4067 init_request_active(&obj->last_write, 4068 i915_gem_object_retire__write); 4069 INIT_LIST_HEAD(&obj->obj_exec_link); 4070 INIT_LIST_HEAD(&obj->vma_list); 4071 INIT_LIST_HEAD(&obj->batch_pool_link); 4072 4073 obj->ops = ops; 4074 4075 obj->frontbuffer_ggtt_origin = ORIGIN_GTT; 4076 obj->madv = I915_MADV_WILLNEED; 4077 4078 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size); 4079 } 4080 4081 static const struct drm_i915_gem_object_ops i915_gem_object_ops = { 4082 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE, 4083 .get_pages = i915_gem_object_get_pages_gtt, 4084 .put_pages = i915_gem_object_put_pages_gtt, 4085 }; 4086 4087 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev, 4088 size_t size) 4089 { 4090 struct drm_i915_gem_object *obj; 4091 struct address_space *mapping; 4092 gfp_t mask; 4093 int ret; 4094 4095 obj = i915_gem_object_alloc(dev); 4096 if (obj == NULL) 4097 return ERR_PTR(-ENOMEM); 4098 4099 ret = drm_gem_object_init(dev, &obj->base, size); 4100 if (ret) 4101 goto fail; 4102 4103 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; 4104 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) { 4105 /* 965gm cannot relocate objects above 4GiB. */ 4106 mask &= ~__GFP_HIGHMEM; 4107 mask |= __GFP_DMA32; 4108 } 4109 4110 mapping = obj->base.filp->f_mapping; 4111 mapping_set_gfp_mask(mapping, mask); 4112 4113 i915_gem_object_init(obj, &i915_gem_object_ops); 4114 4115 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 4116 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 4117 4118 if (HAS_LLC(dev)) { 4119 /* On some devices, we can have the GPU use the LLC (the CPU 4120 * cache) for about a 10% performance improvement 4121 * compared to uncached. Graphics requests other than 4122 * display scanout are coherent with the CPU in 4123 * accessing this cache. This means in this mode we 4124 * don't need to clflush on the CPU side, and on the 4125 * GPU side we only need to flush internal caches to 4126 * get data visible to the CPU. 4127 * 4128 * However, we maintain the display planes as UC, and so 4129 * need to rebind when first used as such. 4130 */ 4131 obj->cache_level = I915_CACHE_LLC; 4132 } else 4133 obj->cache_level = I915_CACHE_NONE; 4134 4135 trace_i915_gem_object_create(obj); 4136 4137 return obj; 4138 4139 fail: 4140 i915_gem_object_free(obj); 4141 4142 return ERR_PTR(ret); 4143 } 4144 4145 static bool discard_backing_storage(struct drm_i915_gem_object *obj) 4146 { 4147 /* If we are the last user of the backing storage (be it shmemfs 4148 * pages or stolen etc), we know that the pages are going to be 4149 * immediately released. In this case, we can then skip copying 4150 * back the contents from the GPU. 4151 */ 4152 4153 if (obj->madv != I915_MADV_WILLNEED) 4154 return false; 4155 4156 if (obj->base.filp == NULL) 4157 return true; 4158 4159 /* At first glance, this looks racy, but then again so would be 4160 * userspace racing mmap against close. However, the first external 4161 * reference to the filp can only be obtained through the 4162 * i915_gem_mmap_ioctl() which safeguards us against the user 4163 * acquiring such a reference whilst we are in the middle of 4164 * freeing the object. 4165 */ 4166 return atomic_long_read(&obj->base.filp->f_count) == 1; 4167 } 4168 4169 void i915_gem_free_object(struct drm_gem_object *gem_obj) 4170 { 4171 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); 4172 struct drm_device *dev = obj->base.dev; 4173 struct drm_i915_private *dev_priv = to_i915(dev); 4174 struct i915_vma *vma, *next; 4175 4176 intel_runtime_pm_get(dev_priv); 4177 4178 trace_i915_gem_object_destroy(obj); 4179 4180 /* All file-owned VMA should have been released by this point through 4181 * i915_gem_close_object(), or earlier by i915_gem_context_close(). 4182 * However, the object may also be bound into the global GTT (e.g. 4183 * older GPUs without per-process support, or for direct access through 4184 * the GTT either for the user or for scanout). Those VMA still need to 4185 * unbound now. 4186 */ 4187 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) { 4188 GEM_BUG_ON(!i915_vma_is_ggtt(vma)); 4189 GEM_BUG_ON(i915_vma_is_active(vma)); 4190 vma->flags &= ~I915_VMA_PIN_MASK; 4191 i915_vma_close(vma); 4192 } 4193 GEM_BUG_ON(obj->bind_count); 4194 4195 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up 4196 * before progressing. */ 4197 if (obj->stolen) 4198 i915_gem_object_unpin_pages(obj); 4199 4200 WARN_ON(atomic_read(&obj->frontbuffer_bits)); 4201 4202 if (obj->pages && obj->madv == I915_MADV_WILLNEED && 4203 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES && 4204 i915_gem_object_is_tiled(obj)) 4205 i915_gem_object_unpin_pages(obj); 4206 4207 if (WARN_ON(obj->pages_pin_count)) 4208 obj->pages_pin_count = 0; 4209 if (discard_backing_storage(obj)) 4210 obj->madv = I915_MADV_DONTNEED; 4211 i915_gem_object_put_pages(obj); 4212 4213 BUG_ON(obj->pages); 4214 4215 if (obj->base.import_attach) 4216 drm_prime_gem_destroy(&obj->base, NULL); 4217 4218 if (obj->ops->release) 4219 obj->ops->release(obj); 4220 4221 drm_gem_object_release(&obj->base); 4222 i915_gem_info_remove_obj(dev_priv, obj->base.size); 4223 4224 kfree(obj->bit_17); 4225 i915_gem_object_free(obj); 4226 4227 intel_runtime_pm_put(dev_priv); 4228 } 4229 4230 int i915_gem_suspend(struct drm_device *dev) 4231 { 4232 struct drm_i915_private *dev_priv = to_i915(dev); 4233 int ret; 4234 4235 intel_suspend_gt_powersave(dev_priv); 4236 4237 mutex_lock(&dev->struct_mutex); 4238 4239 /* We have to flush all the executing contexts to main memory so 4240 * that they can saved in the hibernation image. To ensure the last 4241 * context image is coherent, we have to switch away from it. That 4242 * leaves the dev_priv->kernel_context still active when 4243 * we actually suspend, and its image in memory may not match the GPU 4244 * state. Fortunately, the kernel_context is disposable and we do 4245 * not rely on its state. 4246 */ 4247 ret = i915_gem_switch_to_kernel_context(dev_priv); 4248 if (ret) 4249 goto err; 4250 4251 ret = i915_gem_wait_for_idle(dev_priv, 4252 I915_WAIT_INTERRUPTIBLE | 4253 I915_WAIT_LOCKED); 4254 if (ret) 4255 goto err; 4256 4257 i915_gem_retire_requests(dev_priv); 4258 4259 i915_gem_context_lost(dev_priv); 4260 mutex_unlock(&dev->struct_mutex); 4261 4262 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work); 4263 cancel_delayed_work_sync(&dev_priv->gt.retire_work); 4264 flush_delayed_work(&dev_priv->gt.idle_work); 4265 4266 /* Assert that we sucessfully flushed all the work and 4267 * reset the GPU back to its idle, low power state. 4268 */ 4269 WARN_ON(dev_priv->gt.awake); 4270 4271 return 0; 4272 4273 err: 4274 mutex_unlock(&dev->struct_mutex); 4275 return ret; 4276 } 4277 4278 void i915_gem_resume(struct drm_device *dev) 4279 { 4280 struct drm_i915_private *dev_priv = to_i915(dev); 4281 4282 mutex_lock(&dev->struct_mutex); 4283 i915_gem_restore_gtt_mappings(dev); 4284 4285 /* As we didn't flush the kernel context before suspend, we cannot 4286 * guarantee that the context image is complete. So let's just reset 4287 * it and start again. 4288 */ 4289 dev_priv->gt.resume(dev_priv); 4290 4291 mutex_unlock(&dev->struct_mutex); 4292 } 4293 4294 void i915_gem_init_swizzling(struct drm_device *dev) 4295 { 4296 struct drm_i915_private *dev_priv = to_i915(dev); 4297 4298 if (INTEL_INFO(dev)->gen < 5 || 4299 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) 4300 return; 4301 4302 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | 4303 DISP_TILE_SURFACE_SWIZZLING); 4304 4305 if (IS_GEN5(dev)) 4306 return; 4307 4308 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL); 4309 if (IS_GEN6(dev)) 4310 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); 4311 else if (IS_GEN7(dev)) 4312 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); 4313 else if (IS_GEN8(dev)) 4314 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW)); 4315 else 4316 BUG(); 4317 } 4318 4319 static void init_unused_ring(struct drm_device *dev, u32 base) 4320 { 4321 struct drm_i915_private *dev_priv = to_i915(dev); 4322 4323 I915_WRITE(RING_CTL(base), 0); 4324 I915_WRITE(RING_HEAD(base), 0); 4325 I915_WRITE(RING_TAIL(base), 0); 4326 I915_WRITE(RING_START(base), 0); 4327 } 4328 4329 static void init_unused_rings(struct drm_device *dev) 4330 { 4331 if (IS_I830(dev)) { 4332 init_unused_ring(dev, PRB1_BASE); 4333 init_unused_ring(dev, SRB0_BASE); 4334 init_unused_ring(dev, SRB1_BASE); 4335 init_unused_ring(dev, SRB2_BASE); 4336 init_unused_ring(dev, SRB3_BASE); 4337 } else if (IS_GEN2(dev)) { 4338 init_unused_ring(dev, SRB0_BASE); 4339 init_unused_ring(dev, SRB1_BASE); 4340 } else if (IS_GEN3(dev)) { 4341 init_unused_ring(dev, PRB1_BASE); 4342 init_unused_ring(dev, PRB2_BASE); 4343 } 4344 } 4345 4346 int 4347 i915_gem_init_hw(struct drm_device *dev) 4348 { 4349 struct drm_i915_private *dev_priv = to_i915(dev); 4350 struct intel_engine_cs *engine; 4351 int ret; 4352 4353 /* Double layer security blanket, see i915_gem_init() */ 4354 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); 4355 4356 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9) 4357 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf)); 4358 4359 if (IS_HASWELL(dev)) 4360 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ? 4361 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); 4362 4363 if (HAS_PCH_NOP(dev)) { 4364 if (IS_IVYBRIDGE(dev)) { 4365 u32 temp = I915_READ(GEN7_MSG_CTL); 4366 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK); 4367 I915_WRITE(GEN7_MSG_CTL, temp); 4368 } else if (INTEL_INFO(dev)->gen >= 7) { 4369 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT); 4370 temp &= ~RESET_PCH_HANDSHAKE_ENABLE; 4371 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp); 4372 } 4373 } 4374 4375 i915_gem_init_swizzling(dev); 4376 4377 /* 4378 * At least 830 can leave some of the unused rings 4379 * "active" (ie. head != tail) after resume which 4380 * will prevent c3 entry. Makes sure all unused rings 4381 * are totally idle. 4382 */ 4383 init_unused_rings(dev); 4384 4385 BUG_ON(!dev_priv->kernel_context); 4386 4387 ret = i915_ppgtt_init_hw(dev); 4388 if (ret) { 4389 DRM_ERROR("PPGTT enable HW failed %d\n", ret); 4390 goto out; 4391 } 4392 4393 /* Need to do basic initialisation of all rings first: */ 4394 for_each_engine(engine, dev_priv) { 4395 ret = engine->init_hw(engine); 4396 if (ret) 4397 goto out; 4398 } 4399 4400 intel_mocs_init_l3cc_table(dev); 4401 4402 /* We can't enable contexts until all firmware is loaded */ 4403 ret = intel_guc_setup(dev); 4404 if (ret) 4405 goto out; 4406 4407 out: 4408 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 4409 return ret; 4410 } 4411 4412 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value) 4413 { 4414 if (INTEL_INFO(dev_priv)->gen < 6) 4415 return false; 4416 4417 /* TODO: make semaphores and Execlists play nicely together */ 4418 if (i915.enable_execlists) 4419 return false; 4420 4421 if (value >= 0) 4422 return value; 4423 4424 #ifdef CONFIG_INTEL_IOMMU 4425 /* Enable semaphores on SNB when IO remapping is off */ 4426 if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped) 4427 return false; 4428 #endif 4429 4430 return true; 4431 } 4432 4433 int i915_gem_init(struct drm_device *dev) 4434 { 4435 struct drm_i915_private *dev_priv = to_i915(dev); 4436 int ret; 4437 4438 mutex_lock(&dev->struct_mutex); 4439 4440 if (!i915.enable_execlists) { 4441 dev_priv->gt.resume = intel_legacy_submission_resume; 4442 dev_priv->gt.cleanup_engine = intel_engine_cleanup; 4443 } else { 4444 dev_priv->gt.resume = intel_lr_context_resume; 4445 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup; 4446 } 4447 4448 /* This is just a security blanket to placate dragons. 4449 * On some systems, we very sporadically observe that the first TLBs 4450 * used by the CS may be stale, despite us poking the TLB reset. If 4451 * we hold the forcewake during initialisation these problems 4452 * just magically go away. 4453 */ 4454 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); 4455 4456 i915_gem_init_userptr(dev_priv); 4457 4458 ret = i915_gem_init_ggtt(dev_priv); 4459 if (ret) 4460 goto out_unlock; 4461 4462 ret = i915_gem_context_init(dev); 4463 if (ret) 4464 goto out_unlock; 4465 4466 ret = intel_engines_init(dev); 4467 if (ret) 4468 goto out_unlock; 4469 4470 ret = i915_gem_init_hw(dev); 4471 if (ret == -EIO) { 4472 /* Allow engine initialisation to fail by marking the GPU as 4473 * wedged. But we only want to do this where the GPU is angry, 4474 * for all other failure, such as an allocation failure, bail. 4475 */ 4476 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n"); 4477 i915_gem_set_wedged(dev_priv); 4478 ret = 0; 4479 } 4480 4481 out_unlock: 4482 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 4483 mutex_unlock(&dev->struct_mutex); 4484 4485 return ret; 4486 } 4487 4488 void 4489 i915_gem_cleanup_engines(struct drm_device *dev) 4490 { 4491 struct drm_i915_private *dev_priv = to_i915(dev); 4492 struct intel_engine_cs *engine; 4493 4494 for_each_engine(engine, dev_priv) 4495 dev_priv->gt.cleanup_engine(engine); 4496 } 4497 4498 static void 4499 init_engine_lists(struct intel_engine_cs *engine) 4500 { 4501 INIT_LIST_HEAD(&engine->request_list); 4502 } 4503 4504 void 4505 i915_gem_load_init_fences(struct drm_i915_private *dev_priv) 4506 { 4507 struct drm_device *dev = &dev_priv->drm; 4508 int i; 4509 4510 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) && 4511 !IS_CHERRYVIEW(dev_priv)) 4512 dev_priv->num_fence_regs = 32; 4513 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) || 4514 IS_I945GM(dev_priv) || IS_G33(dev_priv)) 4515 dev_priv->num_fence_regs = 16; 4516 else 4517 dev_priv->num_fence_regs = 8; 4518 4519 if (intel_vgpu_active(dev_priv)) 4520 dev_priv->num_fence_regs = 4521 I915_READ(vgtif_reg(avail_rs.fence_num)); 4522 4523 /* Initialize fence registers to zero */ 4524 for (i = 0; i < dev_priv->num_fence_regs; i++) { 4525 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i]; 4526 4527 fence->i915 = dev_priv; 4528 fence->id = i; 4529 list_add_tail(&fence->link, &dev_priv->mm.fence_list); 4530 } 4531 i915_gem_restore_fences(dev); 4532 4533 i915_gem_detect_bit_6_swizzle(dev); 4534 } 4535 4536 void 4537 i915_gem_load_init(struct drm_device *dev) 4538 { 4539 struct drm_i915_private *dev_priv = to_i915(dev); 4540 int i; 4541 4542 dev_priv->objects = 4543 kmem_cache_create("i915_gem_object", 4544 sizeof(struct drm_i915_gem_object), 0, 4545 SLAB_HWCACHE_ALIGN, 4546 NULL); 4547 dev_priv->vmas = 4548 kmem_cache_create("i915_gem_vma", 4549 sizeof(struct i915_vma), 0, 4550 SLAB_HWCACHE_ALIGN, 4551 NULL); 4552 dev_priv->requests = 4553 kmem_cache_create("i915_gem_request", 4554 sizeof(struct drm_i915_gem_request), 0, 4555 SLAB_HWCACHE_ALIGN | 4556 SLAB_RECLAIM_ACCOUNT | 4557 SLAB_DESTROY_BY_RCU, 4558 NULL); 4559 4560 INIT_LIST_HEAD(&dev_priv->context_list); 4561 INIT_LIST_HEAD(&dev_priv->mm.unbound_list); 4562 INIT_LIST_HEAD(&dev_priv->mm.bound_list); 4563 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 4564 for (i = 0; i < I915_NUM_ENGINES; i++) 4565 init_engine_lists(&dev_priv->engine[i]); 4566 INIT_DELAYED_WORK(&dev_priv->gt.retire_work, 4567 i915_gem_retire_work_handler); 4568 INIT_DELAYED_WORK(&dev_priv->gt.idle_work, 4569 i915_gem_idle_work_handler); 4570 init_waitqueue_head(&dev_priv->gpu_error.wait_queue); 4571 init_waitqueue_head(&dev_priv->gpu_error.reset_queue); 4572 4573 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL; 4574 4575 init_waitqueue_head(&dev_priv->pending_flip_queue); 4576 4577 dev_priv->mm.interruptible = true; 4578 4579 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0); 4580 4581 spin_lock_init(&dev_priv->fb_tracking.lock); 4582 } 4583 4584 void i915_gem_load_cleanup(struct drm_device *dev) 4585 { 4586 struct drm_i915_private *dev_priv = to_i915(dev); 4587 4588 kmem_cache_destroy(dev_priv->requests); 4589 kmem_cache_destroy(dev_priv->vmas); 4590 kmem_cache_destroy(dev_priv->objects); 4591 4592 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */ 4593 rcu_barrier(); 4594 } 4595 4596 int i915_gem_freeze(struct drm_i915_private *dev_priv) 4597 { 4598 intel_runtime_pm_get(dev_priv); 4599 4600 mutex_lock(&dev_priv->drm.struct_mutex); 4601 i915_gem_shrink_all(dev_priv); 4602 mutex_unlock(&dev_priv->drm.struct_mutex); 4603 4604 intel_runtime_pm_put(dev_priv); 4605 4606 return 0; 4607 } 4608 4609 int i915_gem_freeze_late(struct drm_i915_private *dev_priv) 4610 { 4611 struct drm_i915_gem_object *obj; 4612 struct list_head *phases[] = { 4613 &dev_priv->mm.unbound_list, 4614 &dev_priv->mm.bound_list, 4615 NULL 4616 }, **p; 4617 4618 /* Called just before we write the hibernation image. 4619 * 4620 * We need to update the domain tracking to reflect that the CPU 4621 * will be accessing all the pages to create and restore from the 4622 * hibernation, and so upon restoration those pages will be in the 4623 * CPU domain. 4624 * 4625 * To make sure the hibernation image contains the latest state, 4626 * we update that state just before writing out the image. 4627 * 4628 * To try and reduce the hibernation image, we manually shrink 4629 * the objects as well. 4630 */ 4631 4632 mutex_lock(&dev_priv->drm.struct_mutex); 4633 i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND); 4634 4635 for (p = phases; *p; p++) { 4636 list_for_each_entry(obj, *p, global_list) { 4637 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 4638 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 4639 } 4640 } 4641 mutex_unlock(&dev_priv->drm.struct_mutex); 4642 4643 return 0; 4644 } 4645 4646 void i915_gem_release(struct drm_device *dev, struct drm_file *file) 4647 { 4648 struct drm_i915_file_private *file_priv = file->driver_priv; 4649 struct drm_i915_gem_request *request; 4650 4651 /* Clean up our request list when the client is going away, so that 4652 * later retire_requests won't dereference our soon-to-be-gone 4653 * file_priv. 4654 */ 4655 spin_lock(&file_priv->mm.lock); 4656 list_for_each_entry(request, &file_priv->mm.request_list, client_list) 4657 request->file_priv = NULL; 4658 spin_unlock(&file_priv->mm.lock); 4659 4660 if (!list_empty(&file_priv->rps.link)) { 4661 spin_lock(&to_i915(dev)->rps.client_lock); 4662 list_del(&file_priv->rps.link); 4663 spin_unlock(&to_i915(dev)->rps.client_lock); 4664 } 4665 } 4666 4667 int i915_gem_open(struct drm_device *dev, struct drm_file *file) 4668 { 4669 struct drm_i915_file_private *file_priv; 4670 int ret; 4671 4672 DRM_DEBUG_DRIVER("\n"); 4673 4674 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL); 4675 if (!file_priv) 4676 return -ENOMEM; 4677 4678 file->driver_priv = file_priv; 4679 file_priv->dev_priv = to_i915(dev); 4680 file_priv->file = file; 4681 INIT_LIST_HEAD(&file_priv->rps.link); 4682 4683 spin_lock_init(&file_priv->mm.lock); 4684 INIT_LIST_HEAD(&file_priv->mm.request_list); 4685 4686 file_priv->bsd_engine = -1; 4687 4688 ret = i915_gem_context_open(dev, file); 4689 if (ret) 4690 kfree(file_priv); 4691 4692 return ret; 4693 } 4694 4695 /** 4696 * i915_gem_track_fb - update frontbuffer tracking 4697 * @old: current GEM buffer for the frontbuffer slots 4698 * @new: new GEM buffer for the frontbuffer slots 4699 * @frontbuffer_bits: bitmask of frontbuffer slots 4700 * 4701 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them 4702 * from @old and setting them in @new. Both @old and @new can be NULL. 4703 */ 4704 void i915_gem_track_fb(struct drm_i915_gem_object *old, 4705 struct drm_i915_gem_object *new, 4706 unsigned frontbuffer_bits) 4707 { 4708 /* Control of individual bits within the mask are guarded by 4709 * the owning plane->mutex, i.e. we can never see concurrent 4710 * manipulation of individual bits. But since the bitfield as a whole 4711 * is updated using RMW, we need to use atomics in order to update 4712 * the bits. 4713 */ 4714 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 4715 sizeof(atomic_t) * BITS_PER_BYTE); 4716 4717 if (old) { 4718 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits)); 4719 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits); 4720 } 4721 4722 if (new) { 4723 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits); 4724 atomic_or(frontbuffer_bits, &new->frontbuffer_bits); 4725 } 4726 } 4727 4728 /* Like i915_gem_object_get_page(), but mark the returned page dirty */ 4729 struct page * 4730 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n) 4731 { 4732 struct page *page; 4733 4734 /* Only default objects have per-page dirty tracking */ 4735 if (WARN_ON(!i915_gem_object_has_struct_page(obj))) 4736 return NULL; 4737 4738 page = i915_gem_object_get_page(obj, n); 4739 set_page_dirty(page); 4740 return page; 4741 } 4742 4743 /* Allocate a new GEM object and fill it with the supplied data */ 4744 struct drm_i915_gem_object * 4745 i915_gem_object_create_from_data(struct drm_device *dev, 4746 const void *data, size_t size) 4747 { 4748 struct drm_i915_gem_object *obj; 4749 struct sg_table *sg; 4750 size_t bytes; 4751 int ret; 4752 4753 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE)); 4754 if (IS_ERR(obj)) 4755 return obj; 4756 4757 ret = i915_gem_object_set_to_cpu_domain(obj, true); 4758 if (ret) 4759 goto fail; 4760 4761 ret = i915_gem_object_get_pages(obj); 4762 if (ret) 4763 goto fail; 4764 4765 i915_gem_object_pin_pages(obj); 4766 sg = obj->pages; 4767 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size); 4768 obj->dirty = 1; /* Backing store is now out of date */ 4769 i915_gem_object_unpin_pages(obj); 4770 4771 if (WARN_ON(bytes != size)) { 4772 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size); 4773 ret = -EFAULT; 4774 goto fail; 4775 } 4776 4777 return obj; 4778 4779 fail: 4780 i915_gem_object_put(obj); 4781 return ERR_PTR(ret); 4782 } 4783