xref: /linux/drivers/gpu/drm/i915/i915_gem.c (revision 815e260a18a3af4dab59025ee99a7156c0e8b5e0)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <linux/dma-fence-array.h>
29 #include <linux/kthread.h>
30 #include <linux/dma-resv.h>
31 #include <linux/shmem_fs.h>
32 #include <linux/slab.h>
33 #include <linux/stop_machine.h>
34 #include <linux/swap.h>
35 #include <linux/pci.h>
36 #include <linux/dma-buf.h>
37 #include <linux/mman.h>
38 
39 #include <drm/drm_cache.h>
40 #include <drm/drm_print.h>
41 #include <drm/drm_vma_manager.h>
42 
43 #include "gem/i915_gem_clflush.h"
44 #include "gem/i915_gem_context.h"
45 #include "gem/i915_gem_ioctls.h"
46 #include "gem/i915_gem_mman.h"
47 #include "gem/i915_gem_object_frontbuffer.h"
48 #include "gem/i915_gem_pm.h"
49 #include "gem/i915_gem_region.h"
50 #include "gt/intel_engine_user.h"
51 #include "gt/intel_gt.h"
52 #include "gt/intel_gt_pm.h"
53 #include "gt/intel_workarounds.h"
54 
55 #include "i915_drv.h"
56 #include "i915_file_private.h"
57 #include "i915_trace.h"
58 #include "i915_vgpu.h"
59 #include "intel_clock_gating.h"
60 
61 static int
62 insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
63 {
64 	int err;
65 
66 	err = mutex_lock_interruptible(&ggtt->vm.mutex);
67 	if (err)
68 		return err;
69 
70 	memset(node, 0, sizeof(*node));
71 	err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
72 					  size, 0, I915_COLOR_UNEVICTABLE,
73 					  0, ggtt->mappable_end,
74 					  DRM_MM_INSERT_LOW);
75 
76 	mutex_unlock(&ggtt->vm.mutex);
77 
78 	return err;
79 }
80 
81 static void
82 remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
83 {
84 	mutex_lock(&ggtt->vm.mutex);
85 	drm_mm_remove_node(node);
86 	mutex_unlock(&ggtt->vm.mutex);
87 }
88 
89 int
90 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
91 			    struct drm_file *file)
92 {
93 	struct drm_i915_private *i915 = to_i915(dev);
94 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
95 	struct drm_i915_gem_get_aperture *args = data;
96 	struct i915_vma *vma;
97 	u64 pinned;
98 
99 	if (mutex_lock_interruptible(&ggtt->vm.mutex))
100 		return -EINTR;
101 
102 	pinned = ggtt->vm.reserved;
103 	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
104 		if (i915_vma_is_pinned(vma))
105 			pinned += vma->node.size;
106 
107 	mutex_unlock(&ggtt->vm.mutex);
108 
109 	args->aper_size = ggtt->vm.total;
110 	args->aper_available_size = args->aper_size - pinned;
111 
112 	return 0;
113 }
114 
115 int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
116 			   unsigned long flags)
117 {
118 	struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
119 	bool vm_trylock = !!(flags & I915_GEM_OBJECT_UNBIND_VM_TRYLOCK);
120 	LIST_HEAD(still_in_list);
121 	intel_wakeref_t wakeref;
122 	struct i915_vma *vma;
123 	int ret;
124 
125 	assert_object_held(obj);
126 
127 	if (list_empty(&obj->vma.list))
128 		return 0;
129 
130 	/*
131 	 * As some machines use ACPI to handle runtime-resume callbacks, and
132 	 * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
133 	 * as they are required by the shrinker. Ergo, we wake the device up
134 	 * first just in case.
135 	 */
136 	wakeref = intel_runtime_pm_get(rpm);
137 
138 try_again:
139 	ret = 0;
140 	spin_lock(&obj->vma.lock);
141 	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
142 						       struct i915_vma,
143 						       obj_link))) {
144 		list_move_tail(&vma->obj_link, &still_in_list);
145 		if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
146 			continue;
147 
148 		if (flags & I915_GEM_OBJECT_UNBIND_TEST) {
149 			ret = -EBUSY;
150 			break;
151 		}
152 
153 		/*
154 		 * Requiring the vm destructor to take the object lock
155 		 * before destroying a vma would help us eliminate the
156 		 * i915_vm_tryget() here, AND thus also the barrier stuff
157 		 * at the end. That's an easy fix, but sleeping locks in
158 		 * a kthread should generally be avoided.
159 		 */
160 		ret = -EAGAIN;
161 		if (!i915_vm_tryget(vma->vm))
162 			break;
163 
164 		spin_unlock(&obj->vma.lock);
165 
166 		/*
167 		 * Since i915_vma_parked() takes the object lock
168 		 * before vma destruction, it won't race us here,
169 		 * and destroy the vma from under us.
170 		 */
171 
172 		ret = -EBUSY;
173 		if (flags & I915_GEM_OBJECT_UNBIND_ASYNC) {
174 			assert_object_held(vma->obj);
175 			ret = i915_vma_unbind_async(vma, vm_trylock);
176 		}
177 
178 		if (ret == -EBUSY && (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
179 				      !i915_vma_is_active(vma))) {
180 			if (vm_trylock) {
181 				if (mutex_trylock(&vma->vm->mutex)) {
182 					ret = __i915_vma_unbind(vma);
183 					mutex_unlock(&vma->vm->mutex);
184 				}
185 			} else {
186 				ret = i915_vma_unbind(vma);
187 			}
188 		}
189 
190 		i915_vm_put(vma->vm);
191 		spin_lock(&obj->vma.lock);
192 	}
193 	list_splice_init(&still_in_list, &obj->vma.list);
194 	spin_unlock(&obj->vma.lock);
195 
196 	if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
197 		rcu_barrier(); /* flush the i915_vm_release() */
198 		goto try_again;
199 	}
200 
201 	intel_runtime_pm_put(rpm, wakeref);
202 
203 	return ret;
204 }
205 
206 static int
207 shmem_pread(struct page *page, int offset, int len, char __user *user_data,
208 	    bool needs_clflush)
209 {
210 	char *vaddr;
211 	int ret;
212 
213 	vaddr = kmap(page);
214 
215 	if (needs_clflush)
216 		drm_clflush_virt_range(vaddr + offset, len);
217 
218 	ret = __copy_to_user(user_data, vaddr + offset, len);
219 
220 	kunmap(page);
221 
222 	return ret ? -EFAULT : 0;
223 }
224 
225 static int
226 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
227 		     struct drm_i915_gem_pread *args)
228 {
229 	unsigned int needs_clflush;
230 	char __user *user_data;
231 	unsigned long offset;
232 	pgoff_t idx;
233 	u64 remain;
234 	int ret;
235 
236 	ret = i915_gem_object_lock_interruptible(obj, NULL);
237 	if (ret)
238 		return ret;
239 
240 	ret = i915_gem_object_pin_pages(obj);
241 	if (ret)
242 		goto err_unlock;
243 
244 	ret = i915_gem_object_prepare_read(obj, &needs_clflush);
245 	if (ret)
246 		goto err_unpin;
247 
248 	i915_gem_object_finish_access(obj);
249 	i915_gem_object_unlock(obj);
250 
251 	remain = args->size;
252 	user_data = u64_to_user_ptr(args->data_ptr);
253 	offset = offset_in_page(args->offset);
254 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
255 		struct page *page = i915_gem_object_get_page(obj, idx);
256 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
257 
258 		ret = shmem_pread(page, offset, length, user_data,
259 				  needs_clflush);
260 		if (ret)
261 			break;
262 
263 		remain -= length;
264 		user_data += length;
265 		offset = 0;
266 	}
267 
268 	i915_gem_object_unpin_pages(obj);
269 	return ret;
270 
271 err_unpin:
272 	i915_gem_object_unpin_pages(obj);
273 err_unlock:
274 	i915_gem_object_unlock(obj);
275 	return ret;
276 }
277 
278 static inline bool
279 gtt_user_read(struct io_mapping *mapping,
280 	      loff_t base, int offset,
281 	      char __user *user_data, int length)
282 {
283 	void __iomem *vaddr;
284 	unsigned long unwritten;
285 
286 	/* We can use the cpu mem copy function because this is X86. */
287 	vaddr = io_mapping_map_atomic_wc(mapping, base);
288 	unwritten = __copy_to_user_inatomic(user_data,
289 					    (void __force *)vaddr + offset,
290 					    length);
291 	io_mapping_unmap_atomic(vaddr);
292 	if (unwritten) {
293 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
294 		unwritten = copy_to_user(user_data,
295 					 (void __force *)vaddr + offset,
296 					 length);
297 		io_mapping_unmap(vaddr);
298 	}
299 	return unwritten;
300 }
301 
302 static struct i915_vma *i915_gem_gtt_prepare(struct drm_i915_gem_object *obj,
303 					     struct drm_mm_node *node,
304 					     bool write)
305 {
306 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
307 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
308 	struct i915_vma *vma;
309 	struct i915_gem_ww_ctx ww;
310 	int ret;
311 
312 	i915_gem_ww_ctx_init(&ww, true);
313 retry:
314 	vma = ERR_PTR(-ENODEV);
315 	ret = i915_gem_object_lock(obj, &ww);
316 	if (ret)
317 		goto err_ww;
318 
319 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
320 	if (ret)
321 		goto err_ww;
322 
323 	if (!i915_gem_object_is_tiled(obj))
324 		vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0,
325 						  PIN_MAPPABLE |
326 						  PIN_NONBLOCK /* NOWARN */ |
327 						  PIN_NOEVICT);
328 	if (vma == ERR_PTR(-EDEADLK)) {
329 		ret = -EDEADLK;
330 		goto err_ww;
331 	} else if (!IS_ERR(vma)) {
332 		node->start = i915_ggtt_offset(vma);
333 		node->flags = 0;
334 	} else {
335 		ret = insert_mappable_node(ggtt, node, PAGE_SIZE);
336 		if (ret)
337 			goto err_ww;
338 		GEM_BUG_ON(!drm_mm_node_allocated(node));
339 		vma = NULL;
340 	}
341 
342 	ret = i915_gem_object_pin_pages(obj);
343 	if (ret) {
344 		if (drm_mm_node_allocated(node)) {
345 			ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
346 			remove_mappable_node(ggtt, node);
347 		} else {
348 			i915_vma_unpin(vma);
349 		}
350 	}
351 
352 err_ww:
353 	if (ret == -EDEADLK) {
354 		ret = i915_gem_ww_ctx_backoff(&ww);
355 		if (!ret)
356 			goto retry;
357 	}
358 	i915_gem_ww_ctx_fini(&ww);
359 
360 	return ret ? ERR_PTR(ret) : vma;
361 }
362 
363 static void i915_gem_gtt_cleanup(struct drm_i915_gem_object *obj,
364 				 struct drm_mm_node *node,
365 				 struct i915_vma *vma)
366 {
367 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
368 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
369 
370 	i915_gem_object_unpin_pages(obj);
371 	if (drm_mm_node_allocated(node)) {
372 		ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
373 		remove_mappable_node(ggtt, node);
374 	} else {
375 		i915_vma_unpin(vma);
376 	}
377 }
378 
379 static int
380 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
381 		   const struct drm_i915_gem_pread *args)
382 {
383 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
384 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
385 	unsigned long remain, offset;
386 	intel_wakeref_t wakeref;
387 	struct drm_mm_node node;
388 	void __user *user_data;
389 	struct i915_vma *vma;
390 	int ret = 0;
391 
392 	if (overflows_type(args->size, remain) ||
393 	    overflows_type(args->offset, offset))
394 		return -EINVAL;
395 
396 	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
397 
398 	vma = i915_gem_gtt_prepare(obj, &node, false);
399 	if (IS_ERR(vma)) {
400 		ret = PTR_ERR(vma);
401 		goto out_rpm;
402 	}
403 
404 	user_data = u64_to_user_ptr(args->data_ptr);
405 	remain = args->size;
406 	offset = args->offset;
407 
408 	while (remain > 0) {
409 		/* Operation in this page
410 		 *
411 		 * page_base = page offset within aperture
412 		 * page_offset = offset within page
413 		 * page_length = bytes to copy for this page
414 		 */
415 		u32 page_base = node.start;
416 		unsigned page_offset = offset_in_page(offset);
417 		unsigned page_length = PAGE_SIZE - page_offset;
418 		page_length = remain < page_length ? remain : page_length;
419 		if (drm_mm_node_allocated(&node)) {
420 			ggtt->vm.insert_page(&ggtt->vm,
421 					     i915_gem_object_get_dma_address(obj,
422 									     offset >> PAGE_SHIFT),
423 					     node.start,
424 					     i915_gem_get_pat_index(i915,
425 								    I915_CACHE_NONE), 0);
426 		} else {
427 			page_base += offset & PAGE_MASK;
428 		}
429 
430 		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
431 				  user_data, page_length)) {
432 			ret = -EFAULT;
433 			break;
434 		}
435 
436 		remain -= page_length;
437 		user_data += page_length;
438 		offset += page_length;
439 	}
440 
441 	i915_gem_gtt_cleanup(obj, &node, vma);
442 out_rpm:
443 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
444 	return ret;
445 }
446 
447 /**
448  * i915_gem_pread_ioctl - Reads data from the object referenced by handle.
449  * @dev: drm device pointer
450  * @data: ioctl data blob
451  * @file: drm file pointer
452  *
453  * On error, the contents of *data are undefined.
454  */
455 int
456 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
457 		     struct drm_file *file)
458 {
459 	struct drm_i915_private *i915 = to_i915(dev);
460 	struct drm_i915_gem_pread *args = data;
461 	struct drm_i915_gem_object *obj;
462 	int ret;
463 
464 	/* PREAD is disallowed for all platforms after TGL-LP.  This also
465 	 * covers all platforms with local memory.
466 	 */
467 	if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
468 		return -EOPNOTSUPP;
469 
470 	if (args->size == 0)
471 		return 0;
472 
473 	if (!access_ok(u64_to_user_ptr(args->data_ptr),
474 		       args->size))
475 		return -EFAULT;
476 
477 	obj = i915_gem_object_lookup(file, args->handle);
478 	if (!obj)
479 		return -ENOENT;
480 
481 	/* Bounds check source.  */
482 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
483 		ret = -EINVAL;
484 		goto out;
485 	}
486 
487 	trace_i915_gem_object_pread(obj, args->offset, args->size);
488 	ret = -ENODEV;
489 	if (obj->ops->pread)
490 		ret = obj->ops->pread(obj, args);
491 	if (ret != -ENODEV)
492 		goto out;
493 
494 	ret = i915_gem_object_wait(obj,
495 				   I915_WAIT_INTERRUPTIBLE,
496 				   MAX_SCHEDULE_TIMEOUT);
497 	if (ret)
498 		goto out;
499 
500 	ret = i915_gem_shmem_pread(obj, args);
501 	if (ret == -EFAULT || ret == -ENODEV)
502 		ret = i915_gem_gtt_pread(obj, args);
503 
504 out:
505 	i915_gem_object_put(obj);
506 	return ret;
507 }
508 
509 /* This is the fast write path which cannot handle
510  * page faults in the source data
511  */
512 
513 static inline bool
514 ggtt_write(struct io_mapping *mapping,
515 	   loff_t base, int offset,
516 	   char __user *user_data, int length)
517 {
518 	void __iomem *vaddr;
519 	unsigned long unwritten;
520 
521 	/* We can use the cpu mem copy function because this is X86. */
522 	vaddr = io_mapping_map_atomic_wc(mapping, base);
523 	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
524 						      user_data, length);
525 	io_mapping_unmap_atomic(vaddr);
526 	if (unwritten) {
527 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
528 		unwritten = copy_from_user((void __force *)vaddr + offset,
529 					   user_data, length);
530 		io_mapping_unmap(vaddr);
531 	}
532 
533 	return unwritten;
534 }
535 
536 /**
537  * i915_gem_gtt_pwrite_fast - This is the fast pwrite path, where we copy the data directly from the
538  * user into the GTT, uncached.
539  * @obj: i915 GEM object
540  * @args: pwrite arguments structure
541  */
542 static int
543 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
544 			 const struct drm_i915_gem_pwrite *args)
545 {
546 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
547 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
548 	struct intel_runtime_pm *rpm = &i915->runtime_pm;
549 	unsigned long remain, offset;
550 	intel_wakeref_t wakeref;
551 	struct drm_mm_node node;
552 	struct i915_vma *vma;
553 	void __user *user_data;
554 	int ret = 0;
555 
556 	if (overflows_type(args->size, remain) ||
557 	    overflows_type(args->offset, offset))
558 		return -EINVAL;
559 
560 	if (i915_gem_object_has_struct_page(obj)) {
561 		/*
562 		 * Avoid waking the device up if we can fallback, as
563 		 * waking/resuming is very slow (worst-case 10-100 ms
564 		 * depending on PCI sleeps and our own resume time).
565 		 * This easily dwarfs any performance advantage from
566 		 * using the cache bypass of indirect GGTT access.
567 		 */
568 		wakeref = intel_runtime_pm_get_if_in_use(rpm);
569 		if (!wakeref)
570 			return -EFAULT;
571 	} else {
572 		/* No backing pages, no fallback, we must force GGTT access */
573 		wakeref = intel_runtime_pm_get(rpm);
574 	}
575 
576 	vma = i915_gem_gtt_prepare(obj, &node, true);
577 	if (IS_ERR(vma)) {
578 		ret = PTR_ERR(vma);
579 		goto out_rpm;
580 	}
581 
582 	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
583 
584 	user_data = u64_to_user_ptr(args->data_ptr);
585 	offset = args->offset;
586 	remain = args->size;
587 	while (remain) {
588 		/* Operation in this page
589 		 *
590 		 * page_base = page offset within aperture
591 		 * page_offset = offset within page
592 		 * page_length = bytes to copy for this page
593 		 */
594 		u32 page_base = node.start;
595 		unsigned int page_offset = offset_in_page(offset);
596 		unsigned int page_length = PAGE_SIZE - page_offset;
597 		page_length = remain < page_length ? remain : page_length;
598 		if (drm_mm_node_allocated(&node)) {
599 			/* flush the write before we modify the GGTT */
600 			intel_gt_flush_ggtt_writes(ggtt->vm.gt);
601 			ggtt->vm.insert_page(&ggtt->vm,
602 					     i915_gem_object_get_dma_address(obj,
603 									     offset >> PAGE_SHIFT),
604 					     node.start,
605 					     i915_gem_get_pat_index(i915,
606 								    I915_CACHE_NONE), 0);
607 			wmb(); /* flush modifications to the GGTT (insert_page) */
608 		} else {
609 			page_base += offset & PAGE_MASK;
610 		}
611 		/* If we get a fault while copying data, then (presumably) our
612 		 * source page isn't available.  Return the error and we'll
613 		 * retry in the slow path.
614 		 * If the object is non-shmem backed, we retry again with the
615 		 * path that handles page fault.
616 		 */
617 		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
618 			       user_data, page_length)) {
619 			ret = -EFAULT;
620 			break;
621 		}
622 
623 		remain -= page_length;
624 		user_data += page_length;
625 		offset += page_length;
626 	}
627 
628 	intel_gt_flush_ggtt_writes(ggtt->vm.gt);
629 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
630 
631 	i915_gem_gtt_cleanup(obj, &node, vma);
632 out_rpm:
633 	intel_runtime_pm_put(rpm, wakeref);
634 	return ret;
635 }
636 
637 /* Per-page copy function for the shmem pwrite fastpath.
638  * Flushes invalid cachelines before writing to the target if
639  * needs_clflush_before is set and flushes out any written cachelines after
640  * writing if needs_clflush is set.
641  */
642 static int
643 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
644 	     bool needs_clflush_before,
645 	     bool needs_clflush_after)
646 {
647 	char *vaddr;
648 	int ret;
649 
650 	vaddr = kmap(page);
651 
652 	if (needs_clflush_before)
653 		drm_clflush_virt_range(vaddr + offset, len);
654 
655 	ret = __copy_from_user(vaddr + offset, user_data, len);
656 	if (!ret && needs_clflush_after)
657 		drm_clflush_virt_range(vaddr + offset, len);
658 
659 	kunmap(page);
660 
661 	return ret ? -EFAULT : 0;
662 }
663 
664 static int
665 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
666 		      const struct drm_i915_gem_pwrite *args)
667 {
668 	unsigned int partial_cacheline_write;
669 	unsigned int needs_clflush;
670 	void __user *user_data;
671 	unsigned long offset;
672 	pgoff_t idx;
673 	u64 remain;
674 	int ret;
675 
676 	ret = i915_gem_object_lock_interruptible(obj, NULL);
677 	if (ret)
678 		return ret;
679 
680 	ret = i915_gem_object_pin_pages(obj);
681 	if (ret)
682 		goto err_unlock;
683 
684 	ret = i915_gem_object_prepare_write(obj, &needs_clflush);
685 	if (ret)
686 		goto err_unpin;
687 
688 	i915_gem_object_finish_access(obj);
689 	i915_gem_object_unlock(obj);
690 
691 	/* If we don't overwrite a cacheline completely we need to be
692 	 * careful to have up-to-date data by first clflushing. Don't
693 	 * overcomplicate things and flush the entire patch.
694 	 */
695 	partial_cacheline_write = 0;
696 	if (needs_clflush & CLFLUSH_BEFORE)
697 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
698 
699 	user_data = u64_to_user_ptr(args->data_ptr);
700 	remain = args->size;
701 	offset = offset_in_page(args->offset);
702 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
703 		struct page *page = i915_gem_object_get_page(obj, idx);
704 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
705 
706 		ret = shmem_pwrite(page, offset, length, user_data,
707 				   (offset | length) & partial_cacheline_write,
708 				   needs_clflush & CLFLUSH_AFTER);
709 		if (ret)
710 			break;
711 
712 		remain -= length;
713 		user_data += length;
714 		offset = 0;
715 	}
716 
717 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
718 
719 	i915_gem_object_unpin_pages(obj);
720 	return ret;
721 
722 err_unpin:
723 	i915_gem_object_unpin_pages(obj);
724 err_unlock:
725 	i915_gem_object_unlock(obj);
726 	return ret;
727 }
728 
729 /**
730  * i915_gem_pwrite_ioctl - Writes data to the object referenced by handle.
731  * @dev: drm device
732  * @data: ioctl data blob
733  * @file: drm file
734  *
735  * On error, the contents of the buffer that were to be modified are undefined.
736  */
737 int
738 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
739 		      struct drm_file *file)
740 {
741 	struct drm_i915_private *i915 = to_i915(dev);
742 	struct drm_i915_gem_pwrite *args = data;
743 	struct drm_i915_gem_object *obj;
744 	int ret;
745 
746 	/* PWRITE is disallowed for all platforms after TGL-LP.  This also
747 	 * covers all platforms with local memory.
748 	 */
749 	if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
750 		return -EOPNOTSUPP;
751 
752 	if (args->size == 0)
753 		return 0;
754 
755 	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
756 		return -EFAULT;
757 
758 	obj = i915_gem_object_lookup(file, args->handle);
759 	if (!obj)
760 		return -ENOENT;
761 
762 	/* Bounds check destination. */
763 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
764 		ret = -EINVAL;
765 		goto err;
766 	}
767 
768 	/* Writes not allowed into this read-only object */
769 	if (i915_gem_object_is_readonly(obj)) {
770 		ret = -EINVAL;
771 		goto err;
772 	}
773 
774 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
775 
776 	ret = -ENODEV;
777 	if (obj->ops->pwrite)
778 		ret = obj->ops->pwrite(obj, args);
779 	if (ret != -ENODEV)
780 		goto err;
781 
782 	ret = i915_gem_object_wait(obj,
783 				   I915_WAIT_INTERRUPTIBLE |
784 				   I915_WAIT_ALL,
785 				   MAX_SCHEDULE_TIMEOUT);
786 	if (ret)
787 		goto err;
788 
789 	ret = -EFAULT;
790 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
791 	 * it would end up going through the fenced access, and we'll get
792 	 * different detiling behavior between reading and writing.
793 	 * pread/pwrite currently are reading and writing from the CPU
794 	 * perspective, requiring manual detiling by the client.
795 	 */
796 	if (!i915_gem_object_has_struct_page(obj) ||
797 	    i915_gem_cpu_write_needs_clflush(obj))
798 		/* Note that the gtt paths might fail with non-page-backed user
799 		 * pointers (e.g. gtt mappings when moving data between
800 		 * textures). Fallback to the shmem path in that case.
801 		 */
802 		ret = i915_gem_gtt_pwrite_fast(obj, args);
803 
804 	if (ret == -EFAULT || ret == -ENOSPC) {
805 		if (i915_gem_object_has_struct_page(obj))
806 			ret = i915_gem_shmem_pwrite(obj, args);
807 	}
808 
809 err:
810 	i915_gem_object_put(obj);
811 	return ret;
812 }
813 
814 /**
815  * i915_gem_sw_finish_ioctl - Called when user space has done writes to this buffer
816  * @dev: drm device
817  * @data: ioctl data blob
818  * @file: drm file
819  */
820 int
821 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
822 			 struct drm_file *file)
823 {
824 	struct drm_i915_gem_sw_finish *args = data;
825 	struct drm_i915_gem_object *obj;
826 
827 	obj = i915_gem_object_lookup(file, args->handle);
828 	if (!obj)
829 		return -ENOENT;
830 
831 	/*
832 	 * Proxy objects are barred from CPU access, so there is no
833 	 * need to ban sw_finish as it is a nop.
834 	 */
835 
836 	/* Pinned buffers may be scanout, so flush the cache */
837 	i915_gem_object_flush_if_display(obj);
838 	i915_gem_object_put(obj);
839 
840 	return 0;
841 }
842 
843 void i915_gem_runtime_suspend(struct drm_i915_private *i915)
844 {
845 	struct drm_i915_gem_object *obj, *on;
846 	int i;
847 
848 	/*
849 	 * Only called during RPM suspend. All users of the userfault_list
850 	 * must be holding an RPM wakeref to ensure that this can not
851 	 * run concurrently with themselves.
852 	 */
853 
854 	list_for_each_entry_safe(obj, on,
855 				 &to_gt(i915)->ggtt->userfault_list, userfault_link)
856 		__i915_gem_object_release_mmap_gtt(obj);
857 
858 	list_for_each_entry_safe(obj, on,
859 				 &i915->runtime_pm.lmem_userfault_list, userfault_link)
860 		i915_gem_object_runtime_pm_release_mmap_offset(obj);
861 
862 	/*
863 	 * The fence will be lost when the device powers down. If any were
864 	 * in use by hardware (i.e. they are pinned), we should not be powering
865 	 * down! All other fences will be reacquired by the user upon waking.
866 	 */
867 	for (i = 0; i < to_gt(i915)->ggtt->num_fences; i++) {
868 		struct i915_fence_reg *reg = &to_gt(i915)->ggtt->fence_regs[i];
869 
870 		/*
871 		 * Ideally we want to assert that the fence register is not
872 		 * live at this point (i.e. that no piece of code will be
873 		 * trying to write through fence + GTT, as that both violates
874 		 * our tracking of activity and associated locking/barriers,
875 		 * but also is illegal given that the hw is powered down).
876 		 *
877 		 * Previously we used reg->pin_count as a "liveness" indicator.
878 		 * That is not sufficient, and we need a more fine-grained
879 		 * tool if we want to have a sanity check here.
880 		 */
881 
882 		if (!reg->vma)
883 			continue;
884 
885 		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
886 		reg->dirty = true;
887 	}
888 }
889 
890 static void discard_ggtt_vma(struct i915_vma *vma)
891 {
892 	struct drm_i915_gem_object *obj = vma->obj;
893 
894 	spin_lock(&obj->vma.lock);
895 	if (!RB_EMPTY_NODE(&vma->obj_node)) {
896 		rb_erase(&vma->obj_node, &obj->vma.tree);
897 		RB_CLEAR_NODE(&vma->obj_node);
898 	}
899 	spin_unlock(&obj->vma.lock);
900 }
901 
902 struct i915_vma *
903 i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj,
904 			    struct i915_gem_ww_ctx *ww,
905 			    const struct i915_gtt_view *view,
906 			    u64 size, u64 alignment, u64 flags)
907 {
908 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
909 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
910 	struct i915_vma *vma;
911 	int ret;
912 
913 	GEM_WARN_ON(!ww);
914 
915 	if (flags & PIN_MAPPABLE &&
916 	    (!view || view->type == I915_GTT_VIEW_NORMAL)) {
917 		/*
918 		 * If the required space is larger than the available
919 		 * aperture, we will not able to find a slot for the
920 		 * object and unbinding the object now will be in
921 		 * vain. Worse, doing so may cause us to ping-pong
922 		 * the object in and out of the Global GTT and
923 		 * waste a lot of cycles under the mutex.
924 		 */
925 		if (obj->base.size > ggtt->mappable_end)
926 			return ERR_PTR(-E2BIG);
927 
928 		/*
929 		 * If NONBLOCK is set the caller is optimistically
930 		 * trying to cache the full object within the mappable
931 		 * aperture, and *must* have a fallback in place for
932 		 * situations where we cannot bind the object. We
933 		 * can be a little more lax here and use the fallback
934 		 * more often to avoid costly migrations of ourselves
935 		 * and other objects within the aperture.
936 		 *
937 		 * Half-the-aperture is used as a simple heuristic.
938 		 * More interesting would to do search for a free
939 		 * block prior to making the commitment to unbind.
940 		 * That caters for the self-harm case, and with a
941 		 * little more heuristics (e.g. NOFAULT, NOEVICT)
942 		 * we could try to minimise harm to others.
943 		 */
944 		if (flags & PIN_NONBLOCK &&
945 		    obj->base.size > ggtt->mappable_end / 2)
946 			return ERR_PTR(-ENOSPC);
947 	}
948 
949 new_vma:
950 	vma = i915_vma_instance(obj, &ggtt->vm, view);
951 	if (IS_ERR(vma))
952 		return vma;
953 
954 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
955 		if (flags & PIN_NONBLOCK) {
956 			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
957 				return ERR_PTR(-ENOSPC);
958 
959 			/*
960 			 * If this misplaced vma is too big (i.e, at-least
961 			 * half the size of aperture) or hasn't been pinned
962 			 * mappable before, we ignore the misplacement when
963 			 * PIN_NONBLOCK is set in order to avoid the ping-pong
964 			 * issue described above. In other words, we try to
965 			 * avoid the costly operation of unbinding this vma
966 			 * from the GGTT and rebinding it back because there
967 			 * may not be enough space for this vma in the aperture.
968 			 */
969 			if (flags & PIN_MAPPABLE &&
970 			    (vma->fence_size > ggtt->mappable_end / 2 ||
971 			    !i915_vma_is_map_and_fenceable(vma)))
972 				return ERR_PTR(-ENOSPC);
973 		}
974 
975 		if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) {
976 			discard_ggtt_vma(vma);
977 			goto new_vma;
978 		}
979 
980 		ret = i915_vma_unbind(vma);
981 		if (ret)
982 			return ERR_PTR(ret);
983 	}
984 
985 	ret = i915_vma_pin_ww(vma, ww, size, alignment, flags | PIN_GLOBAL);
986 
987 	if (ret)
988 		return ERR_PTR(ret);
989 
990 	if (vma->fence && !i915_gem_object_is_tiled(obj)) {
991 		mutex_lock(&ggtt->vm.mutex);
992 		i915_vma_revoke_fence(vma);
993 		mutex_unlock(&ggtt->vm.mutex);
994 	}
995 
996 	ret = i915_vma_wait_for_bind(vma);
997 	if (ret) {
998 		i915_vma_unpin(vma);
999 		return ERR_PTR(ret);
1000 	}
1001 
1002 	return vma;
1003 }
1004 
1005 struct i915_vma * __must_check
1006 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
1007 			 const struct i915_gtt_view *view,
1008 			 u64 size, u64 alignment, u64 flags)
1009 {
1010 	struct i915_gem_ww_ctx ww;
1011 	struct i915_vma *ret;
1012 	int err;
1013 
1014 	for_i915_gem_ww(&ww, err, true) {
1015 		err = i915_gem_object_lock(obj, &ww);
1016 		if (err)
1017 			continue;
1018 
1019 		ret = i915_gem_object_ggtt_pin_ww(obj, &ww, view, size,
1020 						  alignment, flags);
1021 		if (IS_ERR(ret))
1022 			err = PTR_ERR(ret);
1023 	}
1024 
1025 	return err ? ERR_PTR(err) : ret;
1026 }
1027 
1028 int
1029 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
1030 		       struct drm_file *file_priv)
1031 {
1032 	struct drm_i915_private *i915 = to_i915(dev);
1033 	struct drm_i915_gem_madvise *args = data;
1034 	struct drm_i915_gem_object *obj;
1035 	int err;
1036 
1037 	switch (args->madv) {
1038 	case I915_MADV_DONTNEED:
1039 	case I915_MADV_WILLNEED:
1040 	    break;
1041 	default:
1042 	    return -EINVAL;
1043 	}
1044 
1045 	obj = i915_gem_object_lookup(file_priv, args->handle);
1046 	if (!obj)
1047 		return -ENOENT;
1048 
1049 	err = i915_gem_object_lock_interruptible(obj, NULL);
1050 	if (err)
1051 		goto out;
1052 
1053 	if (i915_gem_object_has_pages(obj) &&
1054 	    i915_gem_object_is_tiled(obj) &&
1055 	    i915->gem_quirks & GEM_QUIRK_PIN_SWIZZLED_PAGES) {
1056 		if (obj->mm.madv == I915_MADV_WILLNEED) {
1057 			GEM_BUG_ON(!i915_gem_object_has_tiling_quirk(obj));
1058 			i915_gem_object_clear_tiling_quirk(obj);
1059 			i915_gem_object_make_shrinkable(obj);
1060 		}
1061 		if (args->madv == I915_MADV_WILLNEED) {
1062 			GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
1063 			i915_gem_object_make_unshrinkable(obj);
1064 			i915_gem_object_set_tiling_quirk(obj);
1065 		}
1066 	}
1067 
1068 	if (obj->mm.madv != __I915_MADV_PURGED) {
1069 		obj->mm.madv = args->madv;
1070 		if (obj->ops->adjust_lru)
1071 			obj->ops->adjust_lru(obj);
1072 	}
1073 
1074 	if (i915_gem_object_has_pages(obj) ||
1075 	    i915_gem_object_has_self_managed_shrink_list(obj)) {
1076 		unsigned long flags;
1077 
1078 		spin_lock_irqsave(&i915->mm.obj_lock, flags);
1079 		if (!list_empty(&obj->mm.link)) {
1080 			struct list_head *list;
1081 
1082 			if (obj->mm.madv != I915_MADV_WILLNEED)
1083 				list = &i915->mm.purge_list;
1084 			else
1085 				list = &i915->mm.shrink_list;
1086 			list_move_tail(&obj->mm.link, list);
1087 
1088 		}
1089 		spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1090 	}
1091 
1092 	/* if the object is no longer attached, discard its backing storage */
1093 	if (obj->mm.madv == I915_MADV_DONTNEED &&
1094 	    !i915_gem_object_has_pages(obj))
1095 		i915_gem_object_truncate(obj);
1096 
1097 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
1098 
1099 	i915_gem_object_unlock(obj);
1100 out:
1101 	i915_gem_object_put(obj);
1102 	return err;
1103 }
1104 
1105 /*
1106  * A single pass should suffice to release all the freed objects (along most
1107  * call paths), but be a little more paranoid in that freeing the objects does
1108  * take a little amount of time, during which the rcu callbacks could have added
1109  * new objects into the freed list, and armed the work again.
1110  */
1111 void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
1112 {
1113 	while (atomic_read(&i915->mm.free_count)) {
1114 		flush_work(&i915->mm.free_work);
1115 		drain_workqueue(i915->bdev.wq);
1116 		rcu_barrier();
1117 	}
1118 }
1119 
1120 /*
1121  * Similar to objects above (see i915_gem_drain_freed-objects), in general we
1122  * have workers that are armed by RCU and then rearm themselves in their
1123  * callbacks. To be paranoid, we need to drain the workqueue a second time after
1124  * waiting for the RCU grace period so that we catch work queued via RCU from
1125  * the first pass. As neither drain_workqueue() nor flush_workqueue() report a
1126  * result, we make an assumption that we only don't require more than 3 passes
1127  * to catch all _recursive_ RCU delayed work.
1128  */
1129 void i915_gem_drain_workqueue(struct drm_i915_private *i915)
1130 {
1131 	int i;
1132 
1133 	for (i = 0; i < 3; i++) {
1134 		flush_workqueue(i915->wq);
1135 		rcu_barrier();
1136 		i915_gem_drain_freed_objects(i915);
1137 	}
1138 
1139 	drain_workqueue(i915->wq);
1140 }
1141 
1142 int i915_gem_init(struct drm_i915_private *dev_priv)
1143 {
1144 	struct intel_gt *gt;
1145 	unsigned int i;
1146 	int ret;
1147 
1148 	/*
1149 	 * In the process of replacing cache_level with pat_index a tricky
1150 	 * dependency is created on the definition of the enum i915_cache_level.
1151 	 * In case this enum is changed, PTE encode would be broken.
1152 	 * Add a WARNING here. And remove when we completely quit using this
1153 	 * enum.
1154 	 */
1155 	BUILD_BUG_ON(I915_CACHE_NONE != 0 ||
1156 		     I915_CACHE_LLC != 1 ||
1157 		     I915_CACHE_L3_LLC != 2 ||
1158 		     I915_CACHE_WT != 3 ||
1159 		     I915_MAX_CACHE_LEVEL != 4);
1160 
1161 	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
1162 	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1163 		RUNTIME_INFO(dev_priv)->page_sizes = I915_GTT_PAGE_SIZE_4K;
1164 
1165 	for_each_gt(gt, dev_priv, i) {
1166 		intel_uc_fetch_firmwares(&gt->uc);
1167 		intel_wopcm_init(&gt->wopcm);
1168 		if (GRAPHICS_VER(dev_priv) >= 8)
1169 			setup_private_pat(gt);
1170 	}
1171 
1172 	ret = i915_init_ggtt(dev_priv);
1173 	if (ret) {
1174 		GEM_BUG_ON(ret == -EIO);
1175 		goto err_unlock;
1176 	}
1177 
1178 	/*
1179 	 * Despite its name intel_clock_gating_init applies both display
1180 	 * clock gating workarounds; GT mmio workarounds and the occasional
1181 	 * GT power context workaround. Worse, sometimes it includes a context
1182 	 * register workaround which we need to apply before we record the
1183 	 * default HW state for all contexts.
1184 	 *
1185 	 * FIXME: break up the workarounds and apply them at the right time!
1186 	 */
1187 	intel_clock_gating_init(dev_priv);
1188 
1189 	for_each_gt(gt, dev_priv, i) {
1190 		ret = intel_gt_init(gt);
1191 		if (ret)
1192 			goto err_unlock;
1193 	}
1194 
1195 	/*
1196 	 * Register engines early to ensure the engine list is in its final
1197 	 * rb-tree form, lowering the amount of code that has to deal with
1198 	 * the intermediate llist state.
1199 	 */
1200 	intel_engines_driver_register(dev_priv);
1201 
1202 	return 0;
1203 
1204 	/*
1205 	 * Unwinding is complicated by that we want to handle -EIO to mean
1206 	 * disable GPU submission but keep KMS alive. We want to mark the
1207 	 * HW as irrevisibly wedged, but keep enough state around that the
1208 	 * driver doesn't explode during runtime.
1209 	 */
1210 err_unlock:
1211 	i915_gem_drain_workqueue(dev_priv);
1212 
1213 	if (ret != -EIO) {
1214 		for_each_gt(gt, dev_priv, i) {
1215 			intel_gt_driver_remove(gt);
1216 			intel_gt_driver_release(gt);
1217 			intel_uc_cleanup_firmwares(&gt->uc);
1218 		}
1219 	}
1220 
1221 	if (ret == -EIO) {
1222 		/*
1223 		 * Allow engines or uC initialisation to fail by marking the GPU
1224 		 * as wedged. But we only want to do this when the GPU is angry,
1225 		 * for all other failure, such as an allocation failure, bail.
1226 		 */
1227 		for_each_gt(gt, dev_priv, i) {
1228 			if (!intel_gt_is_wedged(gt)) {
1229 				i915_probe_error(dev_priv,
1230 						 "Failed to initialize GPU, declaring it wedged!\n");
1231 				intel_gt_set_wedged(gt);
1232 			}
1233 		}
1234 
1235 		/* Minimal basic recovery for KMS */
1236 		ret = i915_ggtt_enable_hw(dev_priv);
1237 		i915_ggtt_resume(to_gt(dev_priv)->ggtt);
1238 		intel_clock_gating_init(dev_priv);
1239 	}
1240 
1241 	i915_gem_drain_freed_objects(dev_priv);
1242 
1243 	return ret;
1244 }
1245 
1246 void i915_gem_driver_register(struct drm_i915_private *i915)
1247 {
1248 	i915_gem_driver_register__shrinker(i915);
1249 }
1250 
1251 void i915_gem_driver_unregister(struct drm_i915_private *i915)
1252 {
1253 	i915_gem_driver_unregister__shrinker(i915);
1254 }
1255 
1256 void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1257 {
1258 	struct intel_gt *gt;
1259 	unsigned int i;
1260 
1261 	i915_gem_suspend_late(dev_priv);
1262 	for_each_gt(gt, dev_priv, i)
1263 		intel_gt_driver_remove(gt);
1264 	dev_priv->uabi_engines = RB_ROOT;
1265 
1266 	/* Flush any outstanding unpin_work. */
1267 	i915_gem_drain_workqueue(dev_priv);
1268 }
1269 
1270 void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1271 {
1272 	struct intel_gt *gt;
1273 	unsigned int i;
1274 
1275 	for_each_gt(gt, dev_priv, i) {
1276 		intel_gt_driver_release(gt);
1277 		intel_uc_cleanup_firmwares(&gt->uc);
1278 	}
1279 
1280 	/* Flush any outstanding work, including i915_gem_context.release_work. */
1281 	i915_gem_drain_workqueue(dev_priv);
1282 
1283 	drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list));
1284 }
1285 
1286 static void i915_gem_init__mm(struct drm_i915_private *i915)
1287 {
1288 	spin_lock_init(&i915->mm.obj_lock);
1289 
1290 	init_llist_head(&i915->mm.free_list);
1291 
1292 	INIT_LIST_HEAD(&i915->mm.purge_list);
1293 	INIT_LIST_HEAD(&i915->mm.shrink_list);
1294 
1295 	i915_gem_init__objects(i915);
1296 }
1297 
1298 void i915_gem_init_early(struct drm_i915_private *dev_priv)
1299 {
1300 	i915_gem_init__mm(dev_priv);
1301 	i915_gem_init__contexts(dev_priv);
1302 }
1303 
1304 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1305 {
1306 	i915_gem_drain_workqueue(dev_priv);
1307 	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1308 	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1309 	drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count);
1310 }
1311 
1312 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1313 {
1314 	struct drm_i915_file_private *file_priv;
1315 	struct i915_drm_client *client;
1316 	int ret = -ENOMEM;
1317 
1318 	drm_dbg(&i915->drm, "\n");
1319 
1320 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1321 	if (!file_priv)
1322 		goto err_alloc;
1323 
1324 	client = i915_drm_client_alloc();
1325 	if (!client)
1326 		goto err_client;
1327 
1328 	file->driver_priv = file_priv;
1329 	file_priv->i915 = i915;
1330 	file_priv->file = file;
1331 	file_priv->client = client;
1332 
1333 	file_priv->bsd_engine = -1;
1334 	file_priv->hang_timestamp = jiffies;
1335 
1336 	ret = i915_gem_context_open(i915, file);
1337 	if (ret)
1338 		goto err_context;
1339 
1340 	return 0;
1341 
1342 err_context:
1343 	i915_drm_client_put(client);
1344 err_client:
1345 	kfree(file_priv);
1346 err_alloc:
1347 	return ret;
1348 }
1349 
1350 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1351 #include "selftests/mock_gem_device.c"
1352 #include "selftests/i915_gem.c"
1353 #endif
1354