xref: /linux/drivers/gpu/drm/i915/i915_gem.c (revision 7056741fd9fc14a65608549a4657cf5178f05f63)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38 
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 						    unsigned alignment,
43 						    bool map_and_fenceable,
44 						    bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46 				struct drm_i915_gem_object *obj,
47 				struct drm_i915_gem_pwrite *args,
48 				struct drm_file *file);
49 
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 				 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 					 struct drm_i915_fence_reg *fence,
54 					 bool enable);
55 
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57 				    struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61 
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64 	if (obj->tiling_mode)
65 		i915_gem_release_mmap(obj);
66 
67 	/* As we do not have an associated fence register, we will force
68 	 * a tiling change if we ever need to acquire one.
69 	 */
70 	obj->fence_dirty = false;
71 	obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73 
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 				  size_t size)
77 {
78 	dev_priv->mm.object_count++;
79 	dev_priv->mm.object_memory += size;
80 }
81 
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 				     size_t size)
84 {
85 	dev_priv->mm.object_count--;
86 	dev_priv->mm.object_memory -= size;
87 }
88 
89 static int
90 i915_gem_wait_for_error(struct drm_device *dev)
91 {
92 	struct drm_i915_private *dev_priv = dev->dev_private;
93 	struct completion *x = &dev_priv->error_completion;
94 	unsigned long flags;
95 	int ret;
96 
97 	if (!atomic_read(&dev_priv->mm.wedged))
98 		return 0;
99 
100 	/*
101 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
102 	 * userspace. If it takes that long something really bad is going on and
103 	 * we should simply try to bail out and fail as gracefully as possible.
104 	 */
105 	ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
106 	if (ret == 0) {
107 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
108 		return -EIO;
109 	} else if (ret < 0) {
110 		return ret;
111 	}
112 
113 	if (atomic_read(&dev_priv->mm.wedged)) {
114 		/* GPU is hung, bump the completion count to account for
115 		 * the token we just consumed so that we never hit zero and
116 		 * end up waiting upon a subsequent completion event that
117 		 * will never happen.
118 		 */
119 		spin_lock_irqsave(&x->wait.lock, flags);
120 		x->done++;
121 		spin_unlock_irqrestore(&x->wait.lock, flags);
122 	}
123 	return 0;
124 }
125 
126 int i915_mutex_lock_interruptible(struct drm_device *dev)
127 {
128 	int ret;
129 
130 	ret = i915_gem_wait_for_error(dev);
131 	if (ret)
132 		return ret;
133 
134 	ret = mutex_lock_interruptible(&dev->struct_mutex);
135 	if (ret)
136 		return ret;
137 
138 	WARN_ON(i915_verify_lists(dev));
139 	return 0;
140 }
141 
142 static inline bool
143 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
144 {
145 	return obj->gtt_space && !obj->active;
146 }
147 
148 int
149 i915_gem_init_ioctl(struct drm_device *dev, void *data,
150 		    struct drm_file *file)
151 {
152 	struct drm_i915_gem_init *args = data;
153 
154 	if (drm_core_check_feature(dev, DRIVER_MODESET))
155 		return -ENODEV;
156 
157 	if (args->gtt_start >= args->gtt_end ||
158 	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
159 		return -EINVAL;
160 
161 	/* GEM with user mode setting was never supported on ilk and later. */
162 	if (INTEL_INFO(dev)->gen >= 5)
163 		return -ENODEV;
164 
165 	mutex_lock(&dev->struct_mutex);
166 	i915_gem_init_global_gtt(dev, args->gtt_start,
167 				 args->gtt_end, args->gtt_end);
168 	mutex_unlock(&dev->struct_mutex);
169 
170 	return 0;
171 }
172 
173 int
174 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
175 			    struct drm_file *file)
176 {
177 	struct drm_i915_private *dev_priv = dev->dev_private;
178 	struct drm_i915_gem_get_aperture *args = data;
179 	struct drm_i915_gem_object *obj;
180 	size_t pinned;
181 
182 	pinned = 0;
183 	mutex_lock(&dev->struct_mutex);
184 	list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
185 		if (obj->pin_count)
186 			pinned += obj->gtt_space->size;
187 	mutex_unlock(&dev->struct_mutex);
188 
189 	args->aper_size = dev_priv->mm.gtt_total;
190 	args->aper_available_size = args->aper_size - pinned;
191 
192 	return 0;
193 }
194 
195 static int
196 i915_gem_create(struct drm_file *file,
197 		struct drm_device *dev,
198 		uint64_t size,
199 		uint32_t *handle_p)
200 {
201 	struct drm_i915_gem_object *obj;
202 	int ret;
203 	u32 handle;
204 
205 	size = roundup(size, PAGE_SIZE);
206 	if (size == 0)
207 		return -EINVAL;
208 
209 	/* Allocate the new object */
210 	obj = i915_gem_alloc_object(dev, size);
211 	if (obj == NULL)
212 		return -ENOMEM;
213 
214 	ret = drm_gem_handle_create(file, &obj->base, &handle);
215 	if (ret) {
216 		drm_gem_object_release(&obj->base);
217 		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
218 		kfree(obj);
219 		return ret;
220 	}
221 
222 	/* drop reference from allocate - handle holds it now */
223 	drm_gem_object_unreference(&obj->base);
224 	trace_i915_gem_object_create(obj);
225 
226 	*handle_p = handle;
227 	return 0;
228 }
229 
230 int
231 i915_gem_dumb_create(struct drm_file *file,
232 		     struct drm_device *dev,
233 		     struct drm_mode_create_dumb *args)
234 {
235 	/* have to work out size/pitch and return them */
236 	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
237 	args->size = args->pitch * args->height;
238 	return i915_gem_create(file, dev,
239 			       args->size, &args->handle);
240 }
241 
242 int i915_gem_dumb_destroy(struct drm_file *file,
243 			  struct drm_device *dev,
244 			  uint32_t handle)
245 {
246 	return drm_gem_handle_delete(file, handle);
247 }
248 
249 /**
250  * Creates a new mm object and returns a handle to it.
251  */
252 int
253 i915_gem_create_ioctl(struct drm_device *dev, void *data,
254 		      struct drm_file *file)
255 {
256 	struct drm_i915_gem_create *args = data;
257 
258 	return i915_gem_create(file, dev,
259 			       args->size, &args->handle);
260 }
261 
262 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
263 {
264 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
265 
266 	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
267 		obj->tiling_mode != I915_TILING_NONE;
268 }
269 
270 static inline int
271 __copy_to_user_swizzled(char __user *cpu_vaddr,
272 			const char *gpu_vaddr, int gpu_offset,
273 			int length)
274 {
275 	int ret, cpu_offset = 0;
276 
277 	while (length > 0) {
278 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
279 		int this_length = min(cacheline_end - gpu_offset, length);
280 		int swizzled_gpu_offset = gpu_offset ^ 64;
281 
282 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
283 				     gpu_vaddr + swizzled_gpu_offset,
284 				     this_length);
285 		if (ret)
286 			return ret + length;
287 
288 		cpu_offset += this_length;
289 		gpu_offset += this_length;
290 		length -= this_length;
291 	}
292 
293 	return 0;
294 }
295 
296 static inline int
297 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
298 			  const char __user *cpu_vaddr,
299 			  int length)
300 {
301 	int ret, cpu_offset = 0;
302 
303 	while (length > 0) {
304 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
305 		int this_length = min(cacheline_end - gpu_offset, length);
306 		int swizzled_gpu_offset = gpu_offset ^ 64;
307 
308 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
309 				       cpu_vaddr + cpu_offset,
310 				       this_length);
311 		if (ret)
312 			return ret + length;
313 
314 		cpu_offset += this_length;
315 		gpu_offset += this_length;
316 		length -= this_length;
317 	}
318 
319 	return 0;
320 }
321 
322 /* Per-page copy function for the shmem pread fastpath.
323  * Flushes invalid cachelines before reading the target if
324  * needs_clflush is set. */
325 static int
326 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
327 		 char __user *user_data,
328 		 bool page_do_bit17_swizzling, bool needs_clflush)
329 {
330 	char *vaddr;
331 	int ret;
332 
333 	if (unlikely(page_do_bit17_swizzling))
334 		return -EINVAL;
335 
336 	vaddr = kmap_atomic(page);
337 	if (needs_clflush)
338 		drm_clflush_virt_range(vaddr + shmem_page_offset,
339 				       page_length);
340 	ret = __copy_to_user_inatomic(user_data,
341 				      vaddr + shmem_page_offset,
342 				      page_length);
343 	kunmap_atomic(vaddr);
344 
345 	return ret ? -EFAULT : 0;
346 }
347 
348 static void
349 shmem_clflush_swizzled_range(char *addr, unsigned long length,
350 			     bool swizzled)
351 {
352 	if (unlikely(swizzled)) {
353 		unsigned long start = (unsigned long) addr;
354 		unsigned long end = (unsigned long) addr + length;
355 
356 		/* For swizzling simply ensure that we always flush both
357 		 * channels. Lame, but simple and it works. Swizzled
358 		 * pwrite/pread is far from a hotpath - current userspace
359 		 * doesn't use it at all. */
360 		start = round_down(start, 128);
361 		end = round_up(end, 128);
362 
363 		drm_clflush_virt_range((void *)start, end - start);
364 	} else {
365 		drm_clflush_virt_range(addr, length);
366 	}
367 
368 }
369 
370 /* Only difference to the fast-path function is that this can handle bit17
371  * and uses non-atomic copy and kmap functions. */
372 static int
373 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
374 		 char __user *user_data,
375 		 bool page_do_bit17_swizzling, bool needs_clflush)
376 {
377 	char *vaddr;
378 	int ret;
379 
380 	vaddr = kmap(page);
381 	if (needs_clflush)
382 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
383 					     page_length,
384 					     page_do_bit17_swizzling);
385 
386 	if (page_do_bit17_swizzling)
387 		ret = __copy_to_user_swizzled(user_data,
388 					      vaddr, shmem_page_offset,
389 					      page_length);
390 	else
391 		ret = __copy_to_user(user_data,
392 				     vaddr + shmem_page_offset,
393 				     page_length);
394 	kunmap(page);
395 
396 	return ret ? - EFAULT : 0;
397 }
398 
399 static int
400 i915_gem_shmem_pread(struct drm_device *dev,
401 		     struct drm_i915_gem_object *obj,
402 		     struct drm_i915_gem_pread *args,
403 		     struct drm_file *file)
404 {
405 	char __user *user_data;
406 	ssize_t remain;
407 	loff_t offset;
408 	int shmem_page_offset, page_length, ret = 0;
409 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
410 	int hit_slowpath = 0;
411 	int prefaulted = 0;
412 	int needs_clflush = 0;
413 	struct scatterlist *sg;
414 	int i;
415 
416 	user_data = (char __user *) (uintptr_t) args->data_ptr;
417 	remain = args->size;
418 
419 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
420 
421 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
422 		/* If we're not in the cpu read domain, set ourself into the gtt
423 		 * read domain and manually flush cachelines (if required). This
424 		 * optimizes for the case when the gpu will dirty the data
425 		 * anyway again before the next pread happens. */
426 		if (obj->cache_level == I915_CACHE_NONE)
427 			needs_clflush = 1;
428 		if (obj->gtt_space) {
429 			ret = i915_gem_object_set_to_gtt_domain(obj, false);
430 			if (ret)
431 				return ret;
432 		}
433 	}
434 
435 	ret = i915_gem_object_get_pages(obj);
436 	if (ret)
437 		return ret;
438 
439 	i915_gem_object_pin_pages(obj);
440 
441 	offset = args->offset;
442 
443 	for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
444 		struct page *page;
445 
446 		if (i < offset >> PAGE_SHIFT)
447 			continue;
448 
449 		if (remain <= 0)
450 			break;
451 
452 		/* Operation in this page
453 		 *
454 		 * shmem_page_offset = offset within page in shmem file
455 		 * page_length = bytes to copy for this page
456 		 */
457 		shmem_page_offset = offset_in_page(offset);
458 		page_length = remain;
459 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
460 			page_length = PAGE_SIZE - shmem_page_offset;
461 
462 		page = sg_page(sg);
463 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
464 			(page_to_phys(page) & (1 << 17)) != 0;
465 
466 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
467 				       user_data, page_do_bit17_swizzling,
468 				       needs_clflush);
469 		if (ret == 0)
470 			goto next_page;
471 
472 		hit_slowpath = 1;
473 		mutex_unlock(&dev->struct_mutex);
474 
475 		if (!prefaulted) {
476 			ret = fault_in_multipages_writeable(user_data, remain);
477 			/* Userspace is tricking us, but we've already clobbered
478 			 * its pages with the prefault and promised to write the
479 			 * data up to the first fault. Hence ignore any errors
480 			 * and just continue. */
481 			(void)ret;
482 			prefaulted = 1;
483 		}
484 
485 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
486 				       user_data, page_do_bit17_swizzling,
487 				       needs_clflush);
488 
489 		mutex_lock(&dev->struct_mutex);
490 
491 next_page:
492 		mark_page_accessed(page);
493 
494 		if (ret)
495 			goto out;
496 
497 		remain -= page_length;
498 		user_data += page_length;
499 		offset += page_length;
500 	}
501 
502 out:
503 	i915_gem_object_unpin_pages(obj);
504 
505 	if (hit_slowpath) {
506 		/* Fixup: Kill any reinstated backing storage pages */
507 		if (obj->madv == __I915_MADV_PURGED)
508 			i915_gem_object_truncate(obj);
509 	}
510 
511 	return ret;
512 }
513 
514 /**
515  * Reads data from the object referenced by handle.
516  *
517  * On error, the contents of *data are undefined.
518  */
519 int
520 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
521 		     struct drm_file *file)
522 {
523 	struct drm_i915_gem_pread *args = data;
524 	struct drm_i915_gem_object *obj;
525 	int ret = 0;
526 
527 	if (args->size == 0)
528 		return 0;
529 
530 	if (!access_ok(VERIFY_WRITE,
531 		       (char __user *)(uintptr_t)args->data_ptr,
532 		       args->size))
533 		return -EFAULT;
534 
535 	ret = i915_mutex_lock_interruptible(dev);
536 	if (ret)
537 		return ret;
538 
539 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
540 	if (&obj->base == NULL) {
541 		ret = -ENOENT;
542 		goto unlock;
543 	}
544 
545 	/* Bounds check source.  */
546 	if (args->offset > obj->base.size ||
547 	    args->size > obj->base.size - args->offset) {
548 		ret = -EINVAL;
549 		goto out;
550 	}
551 
552 	/* prime objects have no backing filp to GEM pread/pwrite
553 	 * pages from.
554 	 */
555 	if (!obj->base.filp) {
556 		ret = -EINVAL;
557 		goto out;
558 	}
559 
560 	trace_i915_gem_object_pread(obj, args->offset, args->size);
561 
562 	ret = i915_gem_shmem_pread(dev, obj, args, file);
563 
564 out:
565 	drm_gem_object_unreference(&obj->base);
566 unlock:
567 	mutex_unlock(&dev->struct_mutex);
568 	return ret;
569 }
570 
571 /* This is the fast write path which cannot handle
572  * page faults in the source data
573  */
574 
575 static inline int
576 fast_user_write(struct io_mapping *mapping,
577 		loff_t page_base, int page_offset,
578 		char __user *user_data,
579 		int length)
580 {
581 	void __iomem *vaddr_atomic;
582 	void *vaddr;
583 	unsigned long unwritten;
584 
585 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
586 	/* We can use the cpu mem copy function because this is X86. */
587 	vaddr = (void __force*)vaddr_atomic + page_offset;
588 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
589 						      user_data, length);
590 	io_mapping_unmap_atomic(vaddr_atomic);
591 	return unwritten;
592 }
593 
594 /**
595  * This is the fast pwrite path, where we copy the data directly from the
596  * user into the GTT, uncached.
597  */
598 static int
599 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
600 			 struct drm_i915_gem_object *obj,
601 			 struct drm_i915_gem_pwrite *args,
602 			 struct drm_file *file)
603 {
604 	drm_i915_private_t *dev_priv = dev->dev_private;
605 	ssize_t remain;
606 	loff_t offset, page_base;
607 	char __user *user_data;
608 	int page_offset, page_length, ret;
609 
610 	ret = i915_gem_object_pin(obj, 0, true, true);
611 	if (ret)
612 		goto out;
613 
614 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
615 	if (ret)
616 		goto out_unpin;
617 
618 	ret = i915_gem_object_put_fence(obj);
619 	if (ret)
620 		goto out_unpin;
621 
622 	user_data = (char __user *) (uintptr_t) args->data_ptr;
623 	remain = args->size;
624 
625 	offset = obj->gtt_offset + args->offset;
626 
627 	while (remain > 0) {
628 		/* Operation in this page
629 		 *
630 		 * page_base = page offset within aperture
631 		 * page_offset = offset within page
632 		 * page_length = bytes to copy for this page
633 		 */
634 		page_base = offset & PAGE_MASK;
635 		page_offset = offset_in_page(offset);
636 		page_length = remain;
637 		if ((page_offset + remain) > PAGE_SIZE)
638 			page_length = PAGE_SIZE - page_offset;
639 
640 		/* If we get a fault while copying data, then (presumably) our
641 		 * source page isn't available.  Return the error and we'll
642 		 * retry in the slow path.
643 		 */
644 		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
645 				    page_offset, user_data, page_length)) {
646 			ret = -EFAULT;
647 			goto out_unpin;
648 		}
649 
650 		remain -= page_length;
651 		user_data += page_length;
652 		offset += page_length;
653 	}
654 
655 out_unpin:
656 	i915_gem_object_unpin(obj);
657 out:
658 	return ret;
659 }
660 
661 /* Per-page copy function for the shmem pwrite fastpath.
662  * Flushes invalid cachelines before writing to the target if
663  * needs_clflush_before is set and flushes out any written cachelines after
664  * writing if needs_clflush is set. */
665 static int
666 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
667 		  char __user *user_data,
668 		  bool page_do_bit17_swizzling,
669 		  bool needs_clflush_before,
670 		  bool needs_clflush_after)
671 {
672 	char *vaddr;
673 	int ret;
674 
675 	if (unlikely(page_do_bit17_swizzling))
676 		return -EINVAL;
677 
678 	vaddr = kmap_atomic(page);
679 	if (needs_clflush_before)
680 		drm_clflush_virt_range(vaddr + shmem_page_offset,
681 				       page_length);
682 	ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
683 						user_data,
684 						page_length);
685 	if (needs_clflush_after)
686 		drm_clflush_virt_range(vaddr + shmem_page_offset,
687 				       page_length);
688 	kunmap_atomic(vaddr);
689 
690 	return ret ? -EFAULT : 0;
691 }
692 
693 /* Only difference to the fast-path function is that this can handle bit17
694  * and uses non-atomic copy and kmap functions. */
695 static int
696 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
697 		  char __user *user_data,
698 		  bool page_do_bit17_swizzling,
699 		  bool needs_clflush_before,
700 		  bool needs_clflush_after)
701 {
702 	char *vaddr;
703 	int ret;
704 
705 	vaddr = kmap(page);
706 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
707 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
708 					     page_length,
709 					     page_do_bit17_swizzling);
710 	if (page_do_bit17_swizzling)
711 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
712 						user_data,
713 						page_length);
714 	else
715 		ret = __copy_from_user(vaddr + shmem_page_offset,
716 				       user_data,
717 				       page_length);
718 	if (needs_clflush_after)
719 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
720 					     page_length,
721 					     page_do_bit17_swizzling);
722 	kunmap(page);
723 
724 	return ret ? -EFAULT : 0;
725 }
726 
727 static int
728 i915_gem_shmem_pwrite(struct drm_device *dev,
729 		      struct drm_i915_gem_object *obj,
730 		      struct drm_i915_gem_pwrite *args,
731 		      struct drm_file *file)
732 {
733 	ssize_t remain;
734 	loff_t offset;
735 	char __user *user_data;
736 	int shmem_page_offset, page_length, ret = 0;
737 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
738 	int hit_slowpath = 0;
739 	int needs_clflush_after = 0;
740 	int needs_clflush_before = 0;
741 	int i;
742 	struct scatterlist *sg;
743 
744 	user_data = (char __user *) (uintptr_t) args->data_ptr;
745 	remain = args->size;
746 
747 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
748 
749 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
750 		/* If we're not in the cpu write domain, set ourself into the gtt
751 		 * write domain and manually flush cachelines (if required). This
752 		 * optimizes for the case when the gpu will use the data
753 		 * right away and we therefore have to clflush anyway. */
754 		if (obj->cache_level == I915_CACHE_NONE)
755 			needs_clflush_after = 1;
756 		if (obj->gtt_space) {
757 			ret = i915_gem_object_set_to_gtt_domain(obj, true);
758 			if (ret)
759 				return ret;
760 		}
761 	}
762 	/* Same trick applies for invalidate partially written cachelines before
763 	 * writing.  */
764 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
765 	    && obj->cache_level == I915_CACHE_NONE)
766 		needs_clflush_before = 1;
767 
768 	ret = i915_gem_object_get_pages(obj);
769 	if (ret)
770 		return ret;
771 
772 	i915_gem_object_pin_pages(obj);
773 
774 	offset = args->offset;
775 	obj->dirty = 1;
776 
777 	for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
778 		struct page *page;
779 		int partial_cacheline_write;
780 
781 		if (i < offset >> PAGE_SHIFT)
782 			continue;
783 
784 		if (remain <= 0)
785 			break;
786 
787 		/* Operation in this page
788 		 *
789 		 * shmem_page_offset = offset within page in shmem file
790 		 * page_length = bytes to copy for this page
791 		 */
792 		shmem_page_offset = offset_in_page(offset);
793 
794 		page_length = remain;
795 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
796 			page_length = PAGE_SIZE - shmem_page_offset;
797 
798 		/* If we don't overwrite a cacheline completely we need to be
799 		 * careful to have up-to-date data by first clflushing. Don't
800 		 * overcomplicate things and flush the entire patch. */
801 		partial_cacheline_write = needs_clflush_before &&
802 			((shmem_page_offset | page_length)
803 				& (boot_cpu_data.x86_clflush_size - 1));
804 
805 		page = sg_page(sg);
806 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
807 			(page_to_phys(page) & (1 << 17)) != 0;
808 
809 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
810 					user_data, page_do_bit17_swizzling,
811 					partial_cacheline_write,
812 					needs_clflush_after);
813 		if (ret == 0)
814 			goto next_page;
815 
816 		hit_slowpath = 1;
817 		mutex_unlock(&dev->struct_mutex);
818 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
819 					user_data, page_do_bit17_swizzling,
820 					partial_cacheline_write,
821 					needs_clflush_after);
822 
823 		mutex_lock(&dev->struct_mutex);
824 
825 next_page:
826 		set_page_dirty(page);
827 		mark_page_accessed(page);
828 
829 		if (ret)
830 			goto out;
831 
832 		remain -= page_length;
833 		user_data += page_length;
834 		offset += page_length;
835 	}
836 
837 out:
838 	i915_gem_object_unpin_pages(obj);
839 
840 	if (hit_slowpath) {
841 		/* Fixup: Kill any reinstated backing storage pages */
842 		if (obj->madv == __I915_MADV_PURGED)
843 			i915_gem_object_truncate(obj);
844 		/* and flush dirty cachelines in case the object isn't in the cpu write
845 		 * domain anymore. */
846 		if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
847 			i915_gem_clflush_object(obj);
848 			intel_gtt_chipset_flush();
849 		}
850 	}
851 
852 	if (needs_clflush_after)
853 		intel_gtt_chipset_flush();
854 
855 	return ret;
856 }
857 
858 /**
859  * Writes data to the object referenced by handle.
860  *
861  * On error, the contents of the buffer that were to be modified are undefined.
862  */
863 int
864 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
865 		      struct drm_file *file)
866 {
867 	struct drm_i915_gem_pwrite *args = data;
868 	struct drm_i915_gem_object *obj;
869 	int ret;
870 
871 	if (args->size == 0)
872 		return 0;
873 
874 	if (!access_ok(VERIFY_READ,
875 		       (char __user *)(uintptr_t)args->data_ptr,
876 		       args->size))
877 		return -EFAULT;
878 
879 	ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
880 					   args->size);
881 	if (ret)
882 		return -EFAULT;
883 
884 	ret = i915_mutex_lock_interruptible(dev);
885 	if (ret)
886 		return ret;
887 
888 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
889 	if (&obj->base == NULL) {
890 		ret = -ENOENT;
891 		goto unlock;
892 	}
893 
894 	/* Bounds check destination. */
895 	if (args->offset > obj->base.size ||
896 	    args->size > obj->base.size - args->offset) {
897 		ret = -EINVAL;
898 		goto out;
899 	}
900 
901 	/* prime objects have no backing filp to GEM pread/pwrite
902 	 * pages from.
903 	 */
904 	if (!obj->base.filp) {
905 		ret = -EINVAL;
906 		goto out;
907 	}
908 
909 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
910 
911 	ret = -EFAULT;
912 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
913 	 * it would end up going through the fenced access, and we'll get
914 	 * different detiling behavior between reading and writing.
915 	 * pread/pwrite currently are reading and writing from the CPU
916 	 * perspective, requiring manual detiling by the client.
917 	 */
918 	if (obj->phys_obj) {
919 		ret = i915_gem_phys_pwrite(dev, obj, args, file);
920 		goto out;
921 	}
922 
923 	if (obj->cache_level == I915_CACHE_NONE &&
924 	    obj->tiling_mode == I915_TILING_NONE &&
925 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
926 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
927 		/* Note that the gtt paths might fail with non-page-backed user
928 		 * pointers (e.g. gtt mappings when moving data between
929 		 * textures). Fallback to the shmem path in that case. */
930 	}
931 
932 	if (ret == -EFAULT || ret == -ENOSPC)
933 		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
934 
935 out:
936 	drm_gem_object_unreference(&obj->base);
937 unlock:
938 	mutex_unlock(&dev->struct_mutex);
939 	return ret;
940 }
941 
942 int
943 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
944 		     bool interruptible)
945 {
946 	if (atomic_read(&dev_priv->mm.wedged)) {
947 		struct completion *x = &dev_priv->error_completion;
948 		bool recovery_complete;
949 		unsigned long flags;
950 
951 		/* Give the error handler a chance to run. */
952 		spin_lock_irqsave(&x->wait.lock, flags);
953 		recovery_complete = x->done > 0;
954 		spin_unlock_irqrestore(&x->wait.lock, flags);
955 
956 		/* Non-interruptible callers can't handle -EAGAIN, hence return
957 		 * -EIO unconditionally for these. */
958 		if (!interruptible)
959 			return -EIO;
960 
961 		/* Recovery complete, but still wedged means reset failure. */
962 		if (recovery_complete)
963 			return -EIO;
964 
965 		return -EAGAIN;
966 	}
967 
968 	return 0;
969 }
970 
971 /*
972  * Compare seqno against outstanding lazy request. Emit a request if they are
973  * equal.
974  */
975 static int
976 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
977 {
978 	int ret;
979 
980 	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
981 
982 	ret = 0;
983 	if (seqno == ring->outstanding_lazy_request)
984 		ret = i915_add_request(ring, NULL, NULL);
985 
986 	return ret;
987 }
988 
989 /**
990  * __wait_seqno - wait until execution of seqno has finished
991  * @ring: the ring expected to report seqno
992  * @seqno: duh!
993  * @interruptible: do an interruptible wait (normally yes)
994  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
995  *
996  * Returns 0 if the seqno was found within the alloted time. Else returns the
997  * errno with remaining time filled in timeout argument.
998  */
999 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1000 			bool interruptible, struct timespec *timeout)
1001 {
1002 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1003 	struct timespec before, now, wait_time={1,0};
1004 	unsigned long timeout_jiffies;
1005 	long end;
1006 	bool wait_forever = true;
1007 	int ret;
1008 
1009 	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1010 		return 0;
1011 
1012 	trace_i915_gem_request_wait_begin(ring, seqno);
1013 
1014 	if (timeout != NULL) {
1015 		wait_time = *timeout;
1016 		wait_forever = false;
1017 	}
1018 
1019 	timeout_jiffies = timespec_to_jiffies(&wait_time);
1020 
1021 	if (WARN_ON(!ring->irq_get(ring)))
1022 		return -ENODEV;
1023 
1024 	/* Record current time in case interrupted by signal, or wedged * */
1025 	getrawmonotonic(&before);
1026 
1027 #define EXIT_COND \
1028 	(i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1029 	atomic_read(&dev_priv->mm.wedged))
1030 	do {
1031 		if (interruptible)
1032 			end = wait_event_interruptible_timeout(ring->irq_queue,
1033 							       EXIT_COND,
1034 							       timeout_jiffies);
1035 		else
1036 			end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1037 						 timeout_jiffies);
1038 
1039 		ret = i915_gem_check_wedge(dev_priv, interruptible);
1040 		if (ret)
1041 			end = ret;
1042 	} while (end == 0 && wait_forever);
1043 
1044 	getrawmonotonic(&now);
1045 
1046 	ring->irq_put(ring);
1047 	trace_i915_gem_request_wait_end(ring, seqno);
1048 #undef EXIT_COND
1049 
1050 	if (timeout) {
1051 		struct timespec sleep_time = timespec_sub(now, before);
1052 		*timeout = timespec_sub(*timeout, sleep_time);
1053 	}
1054 
1055 	switch (end) {
1056 	case -EIO:
1057 	case -EAGAIN: /* Wedged */
1058 	case -ERESTARTSYS: /* Signal */
1059 		return (int)end;
1060 	case 0: /* Timeout */
1061 		if (timeout)
1062 			set_normalized_timespec(timeout, 0, 0);
1063 		return -ETIME;
1064 	default: /* Completed */
1065 		WARN_ON(end < 0); /* We're not aware of other errors */
1066 		return 0;
1067 	}
1068 }
1069 
1070 /**
1071  * Waits for a sequence number to be signaled, and cleans up the
1072  * request and object lists appropriately for that event.
1073  */
1074 int
1075 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1076 {
1077 	struct drm_device *dev = ring->dev;
1078 	struct drm_i915_private *dev_priv = dev->dev_private;
1079 	bool interruptible = dev_priv->mm.interruptible;
1080 	int ret;
1081 
1082 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1083 	BUG_ON(seqno == 0);
1084 
1085 	ret = i915_gem_check_wedge(dev_priv, interruptible);
1086 	if (ret)
1087 		return ret;
1088 
1089 	ret = i915_gem_check_olr(ring, seqno);
1090 	if (ret)
1091 		return ret;
1092 
1093 	return __wait_seqno(ring, seqno, interruptible, NULL);
1094 }
1095 
1096 /**
1097  * Ensures that all rendering to the object has completed and the object is
1098  * safe to unbind from the GTT or access from the CPU.
1099  */
1100 static __must_check int
1101 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1102 			       bool readonly)
1103 {
1104 	struct intel_ring_buffer *ring = obj->ring;
1105 	u32 seqno;
1106 	int ret;
1107 
1108 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1109 	if (seqno == 0)
1110 		return 0;
1111 
1112 	ret = i915_wait_seqno(ring, seqno);
1113 	if (ret)
1114 		return ret;
1115 
1116 	i915_gem_retire_requests_ring(ring);
1117 
1118 	/* Manually manage the write flush as we may have not yet
1119 	 * retired the buffer.
1120 	 */
1121 	if (obj->last_write_seqno &&
1122 	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
1123 		obj->last_write_seqno = 0;
1124 		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1125 	}
1126 
1127 	return 0;
1128 }
1129 
1130 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1131  * as the object state may change during this call.
1132  */
1133 static __must_check int
1134 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1135 					    bool readonly)
1136 {
1137 	struct drm_device *dev = obj->base.dev;
1138 	struct drm_i915_private *dev_priv = dev->dev_private;
1139 	struct intel_ring_buffer *ring = obj->ring;
1140 	u32 seqno;
1141 	int ret;
1142 
1143 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1144 	BUG_ON(!dev_priv->mm.interruptible);
1145 
1146 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1147 	if (seqno == 0)
1148 		return 0;
1149 
1150 	ret = i915_gem_check_wedge(dev_priv, true);
1151 	if (ret)
1152 		return ret;
1153 
1154 	ret = i915_gem_check_olr(ring, seqno);
1155 	if (ret)
1156 		return ret;
1157 
1158 	mutex_unlock(&dev->struct_mutex);
1159 	ret = __wait_seqno(ring, seqno, true, NULL);
1160 	mutex_lock(&dev->struct_mutex);
1161 
1162 	i915_gem_retire_requests_ring(ring);
1163 
1164 	/* Manually manage the write flush as we may have not yet
1165 	 * retired the buffer.
1166 	 */
1167 	if (obj->last_write_seqno &&
1168 	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
1169 		obj->last_write_seqno = 0;
1170 		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1171 	}
1172 
1173 	return ret;
1174 }
1175 
1176 /**
1177  * Called when user space prepares to use an object with the CPU, either
1178  * through the mmap ioctl's mapping or a GTT mapping.
1179  */
1180 int
1181 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1182 			  struct drm_file *file)
1183 {
1184 	struct drm_i915_gem_set_domain *args = data;
1185 	struct drm_i915_gem_object *obj;
1186 	uint32_t read_domains = args->read_domains;
1187 	uint32_t write_domain = args->write_domain;
1188 	int ret;
1189 
1190 	/* Only handle setting domains to types used by the CPU. */
1191 	if (write_domain & I915_GEM_GPU_DOMAINS)
1192 		return -EINVAL;
1193 
1194 	if (read_domains & I915_GEM_GPU_DOMAINS)
1195 		return -EINVAL;
1196 
1197 	/* Having something in the write domain implies it's in the read
1198 	 * domain, and only that read domain.  Enforce that in the request.
1199 	 */
1200 	if (write_domain != 0 && read_domains != write_domain)
1201 		return -EINVAL;
1202 
1203 	ret = i915_mutex_lock_interruptible(dev);
1204 	if (ret)
1205 		return ret;
1206 
1207 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1208 	if (&obj->base == NULL) {
1209 		ret = -ENOENT;
1210 		goto unlock;
1211 	}
1212 
1213 	/* Try to flush the object off the GPU without holding the lock.
1214 	 * We will repeat the flush holding the lock in the normal manner
1215 	 * to catch cases where we are gazumped.
1216 	 */
1217 	ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1218 	if (ret)
1219 		goto unref;
1220 
1221 	if (read_domains & I915_GEM_DOMAIN_GTT) {
1222 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1223 
1224 		/* Silently promote "you're not bound, there was nothing to do"
1225 		 * to success, since the client was just asking us to
1226 		 * make sure everything was done.
1227 		 */
1228 		if (ret == -EINVAL)
1229 			ret = 0;
1230 	} else {
1231 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1232 	}
1233 
1234 unref:
1235 	drm_gem_object_unreference(&obj->base);
1236 unlock:
1237 	mutex_unlock(&dev->struct_mutex);
1238 	return ret;
1239 }
1240 
1241 /**
1242  * Called when user space has done writes to this buffer
1243  */
1244 int
1245 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1246 			 struct drm_file *file)
1247 {
1248 	struct drm_i915_gem_sw_finish *args = data;
1249 	struct drm_i915_gem_object *obj;
1250 	int ret = 0;
1251 
1252 	ret = i915_mutex_lock_interruptible(dev);
1253 	if (ret)
1254 		return ret;
1255 
1256 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1257 	if (&obj->base == NULL) {
1258 		ret = -ENOENT;
1259 		goto unlock;
1260 	}
1261 
1262 	/* Pinned buffers may be scanout, so flush the cache */
1263 	if (obj->pin_count)
1264 		i915_gem_object_flush_cpu_write_domain(obj);
1265 
1266 	drm_gem_object_unreference(&obj->base);
1267 unlock:
1268 	mutex_unlock(&dev->struct_mutex);
1269 	return ret;
1270 }
1271 
1272 /**
1273  * Maps the contents of an object, returning the address it is mapped
1274  * into.
1275  *
1276  * While the mapping holds a reference on the contents of the object, it doesn't
1277  * imply a ref on the object itself.
1278  */
1279 int
1280 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1281 		    struct drm_file *file)
1282 {
1283 	struct drm_i915_gem_mmap *args = data;
1284 	struct drm_gem_object *obj;
1285 	unsigned long addr;
1286 
1287 	obj = drm_gem_object_lookup(dev, file, args->handle);
1288 	if (obj == NULL)
1289 		return -ENOENT;
1290 
1291 	/* prime objects have no backing filp to GEM mmap
1292 	 * pages from.
1293 	 */
1294 	if (!obj->filp) {
1295 		drm_gem_object_unreference_unlocked(obj);
1296 		return -EINVAL;
1297 	}
1298 
1299 	addr = vm_mmap(obj->filp, 0, args->size,
1300 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1301 		       args->offset);
1302 	drm_gem_object_unreference_unlocked(obj);
1303 	if (IS_ERR((void *)addr))
1304 		return addr;
1305 
1306 	args->addr_ptr = (uint64_t) addr;
1307 
1308 	return 0;
1309 }
1310 
1311 /**
1312  * i915_gem_fault - fault a page into the GTT
1313  * vma: VMA in question
1314  * vmf: fault info
1315  *
1316  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1317  * from userspace.  The fault handler takes care of binding the object to
1318  * the GTT (if needed), allocating and programming a fence register (again,
1319  * only if needed based on whether the old reg is still valid or the object
1320  * is tiled) and inserting a new PTE into the faulting process.
1321  *
1322  * Note that the faulting process may involve evicting existing objects
1323  * from the GTT and/or fence registers to make room.  So performance may
1324  * suffer if the GTT working set is large or there are few fence registers
1325  * left.
1326  */
1327 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1328 {
1329 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1330 	struct drm_device *dev = obj->base.dev;
1331 	drm_i915_private_t *dev_priv = dev->dev_private;
1332 	pgoff_t page_offset;
1333 	unsigned long pfn;
1334 	int ret = 0;
1335 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1336 
1337 	/* We don't use vmf->pgoff since that has the fake offset */
1338 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1339 		PAGE_SHIFT;
1340 
1341 	ret = i915_mutex_lock_interruptible(dev);
1342 	if (ret)
1343 		goto out;
1344 
1345 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1346 
1347 	/* Now bind it into the GTT if needed */
1348 	if (!obj->map_and_fenceable) {
1349 		ret = i915_gem_object_unbind(obj);
1350 		if (ret)
1351 			goto unlock;
1352 	}
1353 	if (!obj->gtt_space) {
1354 		ret = i915_gem_object_bind_to_gtt(obj, 0, true, false);
1355 		if (ret)
1356 			goto unlock;
1357 
1358 		ret = i915_gem_object_set_to_gtt_domain(obj, write);
1359 		if (ret)
1360 			goto unlock;
1361 	}
1362 
1363 	if (!obj->has_global_gtt_mapping)
1364 		i915_gem_gtt_bind_object(obj, obj->cache_level);
1365 
1366 	ret = i915_gem_object_get_fence(obj);
1367 	if (ret)
1368 		goto unlock;
1369 
1370 	if (i915_gem_object_is_inactive(obj))
1371 		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1372 
1373 	obj->fault_mappable = true;
1374 
1375 	pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1376 		page_offset;
1377 
1378 	/* Finally, remap it using the new GTT offset */
1379 	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1380 unlock:
1381 	mutex_unlock(&dev->struct_mutex);
1382 out:
1383 	switch (ret) {
1384 	case -EIO:
1385 		/* If this -EIO is due to a gpu hang, give the reset code a
1386 		 * chance to clean up the mess. Otherwise return the proper
1387 		 * SIGBUS. */
1388 		if (!atomic_read(&dev_priv->mm.wedged))
1389 			return VM_FAULT_SIGBUS;
1390 	case -EAGAIN:
1391 		/* Give the error handler a chance to run and move the
1392 		 * objects off the GPU active list. Next time we service the
1393 		 * fault, we should be able to transition the page into the
1394 		 * GTT without touching the GPU (and so avoid further
1395 		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1396 		 * with coherency, just lost writes.
1397 		 */
1398 		set_need_resched();
1399 	case 0:
1400 	case -ERESTARTSYS:
1401 	case -EINTR:
1402 	case -EBUSY:
1403 		/*
1404 		 * EBUSY is ok: this just means that another thread
1405 		 * already did the job.
1406 		 */
1407 		return VM_FAULT_NOPAGE;
1408 	case -ENOMEM:
1409 		return VM_FAULT_OOM;
1410 	default:
1411 		WARN_ON_ONCE(ret);
1412 		return VM_FAULT_SIGBUS;
1413 	}
1414 }
1415 
1416 /**
1417  * i915_gem_release_mmap - remove physical page mappings
1418  * @obj: obj in question
1419  *
1420  * Preserve the reservation of the mmapping with the DRM core code, but
1421  * relinquish ownership of the pages back to the system.
1422  *
1423  * It is vital that we remove the page mapping if we have mapped a tiled
1424  * object through the GTT and then lose the fence register due to
1425  * resource pressure. Similarly if the object has been moved out of the
1426  * aperture, than pages mapped into userspace must be revoked. Removing the
1427  * mapping will then trigger a page fault on the next user access, allowing
1428  * fixup by i915_gem_fault().
1429  */
1430 void
1431 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1432 {
1433 	if (!obj->fault_mappable)
1434 		return;
1435 
1436 	if (obj->base.dev->dev_mapping)
1437 		unmap_mapping_range(obj->base.dev->dev_mapping,
1438 				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1439 				    obj->base.size, 1);
1440 
1441 	obj->fault_mappable = false;
1442 }
1443 
1444 static uint32_t
1445 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1446 {
1447 	uint32_t gtt_size;
1448 
1449 	if (INTEL_INFO(dev)->gen >= 4 ||
1450 	    tiling_mode == I915_TILING_NONE)
1451 		return size;
1452 
1453 	/* Previous chips need a power-of-two fence region when tiling */
1454 	if (INTEL_INFO(dev)->gen == 3)
1455 		gtt_size = 1024*1024;
1456 	else
1457 		gtt_size = 512*1024;
1458 
1459 	while (gtt_size < size)
1460 		gtt_size <<= 1;
1461 
1462 	return gtt_size;
1463 }
1464 
1465 /**
1466  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1467  * @obj: object to check
1468  *
1469  * Return the required GTT alignment for an object, taking into account
1470  * potential fence register mapping.
1471  */
1472 static uint32_t
1473 i915_gem_get_gtt_alignment(struct drm_device *dev,
1474 			   uint32_t size,
1475 			   int tiling_mode)
1476 {
1477 	/*
1478 	 * Minimum alignment is 4k (GTT page size), but might be greater
1479 	 * if a fence register is needed for the object.
1480 	 */
1481 	if (INTEL_INFO(dev)->gen >= 4 ||
1482 	    tiling_mode == I915_TILING_NONE)
1483 		return 4096;
1484 
1485 	/*
1486 	 * Previous chips need to be aligned to the size of the smallest
1487 	 * fence register that can contain the object.
1488 	 */
1489 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1490 }
1491 
1492 /**
1493  * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1494  *					 unfenced object
1495  * @dev: the device
1496  * @size: size of the object
1497  * @tiling_mode: tiling mode of the object
1498  *
1499  * Return the required GTT alignment for an object, only taking into account
1500  * unfenced tiled surface requirements.
1501  */
1502 uint32_t
1503 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1504 				    uint32_t size,
1505 				    int tiling_mode)
1506 {
1507 	/*
1508 	 * Minimum alignment is 4k (GTT page size) for sane hw.
1509 	 */
1510 	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1511 	    tiling_mode == I915_TILING_NONE)
1512 		return 4096;
1513 
1514 	/* Previous hardware however needs to be aligned to a power-of-two
1515 	 * tile height. The simplest method for determining this is to reuse
1516 	 * the power-of-tile object size.
1517 	 */
1518 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1519 }
1520 
1521 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1522 {
1523 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1524 	int ret;
1525 
1526 	if (obj->base.map_list.map)
1527 		return 0;
1528 
1529 	ret = drm_gem_create_mmap_offset(&obj->base);
1530 	if (ret != -ENOSPC)
1531 		return ret;
1532 
1533 	/* Badly fragmented mmap space? The only way we can recover
1534 	 * space is by destroying unwanted objects. We can't randomly release
1535 	 * mmap_offsets as userspace expects them to be persistent for the
1536 	 * lifetime of the objects. The closest we can is to release the
1537 	 * offsets on purgeable objects by truncating it and marking it purged,
1538 	 * which prevents userspace from ever using that object again.
1539 	 */
1540 	i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1541 	ret = drm_gem_create_mmap_offset(&obj->base);
1542 	if (ret != -ENOSPC)
1543 		return ret;
1544 
1545 	i915_gem_shrink_all(dev_priv);
1546 	return drm_gem_create_mmap_offset(&obj->base);
1547 }
1548 
1549 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1550 {
1551 	if (!obj->base.map_list.map)
1552 		return;
1553 
1554 	drm_gem_free_mmap_offset(&obj->base);
1555 }
1556 
1557 int
1558 i915_gem_mmap_gtt(struct drm_file *file,
1559 		  struct drm_device *dev,
1560 		  uint32_t handle,
1561 		  uint64_t *offset)
1562 {
1563 	struct drm_i915_private *dev_priv = dev->dev_private;
1564 	struct drm_i915_gem_object *obj;
1565 	int ret;
1566 
1567 	ret = i915_mutex_lock_interruptible(dev);
1568 	if (ret)
1569 		return ret;
1570 
1571 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1572 	if (&obj->base == NULL) {
1573 		ret = -ENOENT;
1574 		goto unlock;
1575 	}
1576 
1577 	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1578 		ret = -E2BIG;
1579 		goto out;
1580 	}
1581 
1582 	if (obj->madv != I915_MADV_WILLNEED) {
1583 		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1584 		ret = -EINVAL;
1585 		goto out;
1586 	}
1587 
1588 	ret = i915_gem_object_create_mmap_offset(obj);
1589 	if (ret)
1590 		goto out;
1591 
1592 	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1593 
1594 out:
1595 	drm_gem_object_unreference(&obj->base);
1596 unlock:
1597 	mutex_unlock(&dev->struct_mutex);
1598 	return ret;
1599 }
1600 
1601 /**
1602  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1603  * @dev: DRM device
1604  * @data: GTT mapping ioctl data
1605  * @file: GEM object info
1606  *
1607  * Simply returns the fake offset to userspace so it can mmap it.
1608  * The mmap call will end up in drm_gem_mmap(), which will set things
1609  * up so we can get faults in the handler above.
1610  *
1611  * The fault handler will take care of binding the object into the GTT
1612  * (since it may have been evicted to make room for something), allocating
1613  * a fence register, and mapping the appropriate aperture address into
1614  * userspace.
1615  */
1616 int
1617 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1618 			struct drm_file *file)
1619 {
1620 	struct drm_i915_gem_mmap_gtt *args = data;
1621 
1622 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1623 }
1624 
1625 /* Immediately discard the backing storage */
1626 static void
1627 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1628 {
1629 	struct inode *inode;
1630 
1631 	i915_gem_object_free_mmap_offset(obj);
1632 
1633 	if (obj->base.filp == NULL)
1634 		return;
1635 
1636 	/* Our goal here is to return as much of the memory as
1637 	 * is possible back to the system as we are called from OOM.
1638 	 * To do this we must instruct the shmfs to drop all of its
1639 	 * backing pages, *now*.
1640 	 */
1641 	inode = obj->base.filp->f_path.dentry->d_inode;
1642 	shmem_truncate_range(inode, 0, (loff_t)-1);
1643 
1644 	obj->madv = __I915_MADV_PURGED;
1645 }
1646 
1647 static inline int
1648 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1649 {
1650 	return obj->madv == I915_MADV_DONTNEED;
1651 }
1652 
1653 static void
1654 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1655 {
1656 	int page_count = obj->base.size / PAGE_SIZE;
1657 	struct scatterlist *sg;
1658 	int ret, i;
1659 
1660 	BUG_ON(obj->madv == __I915_MADV_PURGED);
1661 
1662 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
1663 	if (ret) {
1664 		/* In the event of a disaster, abandon all caches and
1665 		 * hope for the best.
1666 		 */
1667 		WARN_ON(ret != -EIO);
1668 		i915_gem_clflush_object(obj);
1669 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1670 	}
1671 
1672 	if (i915_gem_object_needs_bit17_swizzle(obj))
1673 		i915_gem_object_save_bit_17_swizzle(obj);
1674 
1675 	if (obj->madv == I915_MADV_DONTNEED)
1676 		obj->dirty = 0;
1677 
1678 	for_each_sg(obj->pages->sgl, sg, page_count, i) {
1679 		struct page *page = sg_page(sg);
1680 
1681 		if (obj->dirty)
1682 			set_page_dirty(page);
1683 
1684 		if (obj->madv == I915_MADV_WILLNEED)
1685 			mark_page_accessed(page);
1686 
1687 		page_cache_release(page);
1688 	}
1689 	obj->dirty = 0;
1690 
1691 	sg_free_table(obj->pages);
1692 	kfree(obj->pages);
1693 }
1694 
1695 static int
1696 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1697 {
1698 	const struct drm_i915_gem_object_ops *ops = obj->ops;
1699 
1700 	if (obj->pages == NULL)
1701 		return 0;
1702 
1703 	BUG_ON(obj->gtt_space);
1704 
1705 	if (obj->pages_pin_count)
1706 		return -EBUSY;
1707 
1708 	ops->put_pages(obj);
1709 	obj->pages = NULL;
1710 
1711 	list_del(&obj->gtt_list);
1712 	if (i915_gem_object_is_purgeable(obj))
1713 		i915_gem_object_truncate(obj);
1714 
1715 	return 0;
1716 }
1717 
1718 static long
1719 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1720 {
1721 	struct drm_i915_gem_object *obj, *next;
1722 	long count = 0;
1723 
1724 	list_for_each_entry_safe(obj, next,
1725 				 &dev_priv->mm.unbound_list,
1726 				 gtt_list) {
1727 		if (i915_gem_object_is_purgeable(obj) &&
1728 		    i915_gem_object_put_pages(obj) == 0) {
1729 			count += obj->base.size >> PAGE_SHIFT;
1730 			if (count >= target)
1731 				return count;
1732 		}
1733 	}
1734 
1735 	list_for_each_entry_safe(obj, next,
1736 				 &dev_priv->mm.inactive_list,
1737 				 mm_list) {
1738 		if (i915_gem_object_is_purgeable(obj) &&
1739 		    i915_gem_object_unbind(obj) == 0 &&
1740 		    i915_gem_object_put_pages(obj) == 0) {
1741 			count += obj->base.size >> PAGE_SHIFT;
1742 			if (count >= target)
1743 				return count;
1744 		}
1745 	}
1746 
1747 	return count;
1748 }
1749 
1750 static void
1751 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1752 {
1753 	struct drm_i915_gem_object *obj, *next;
1754 
1755 	i915_gem_evict_everything(dev_priv->dev);
1756 
1757 	list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1758 		i915_gem_object_put_pages(obj);
1759 }
1760 
1761 static int
1762 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1763 {
1764 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1765 	int page_count, i;
1766 	struct address_space *mapping;
1767 	struct sg_table *st;
1768 	struct scatterlist *sg;
1769 	struct page *page;
1770 	gfp_t gfp;
1771 
1772 	/* Assert that the object is not currently in any GPU domain. As it
1773 	 * wasn't in the GTT, there shouldn't be any way it could have been in
1774 	 * a GPU cache
1775 	 */
1776 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1777 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1778 
1779 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1780 	if (st == NULL)
1781 		return -ENOMEM;
1782 
1783 	page_count = obj->base.size / PAGE_SIZE;
1784 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1785 		sg_free_table(st);
1786 		kfree(st);
1787 		return -ENOMEM;
1788 	}
1789 
1790 	/* Get the list of pages out of our struct file.  They'll be pinned
1791 	 * at this point until we release them.
1792 	 *
1793 	 * Fail silently without starting the shrinker
1794 	 */
1795 	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1796 	gfp = mapping_gfp_mask(mapping);
1797 	gfp |= __GFP_NORETRY | __GFP_NOWARN;
1798 	gfp &= ~(__GFP_IO | __GFP_WAIT);
1799 	for_each_sg(st->sgl, sg, page_count, i) {
1800 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1801 		if (IS_ERR(page)) {
1802 			i915_gem_purge(dev_priv, page_count);
1803 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1804 		}
1805 		if (IS_ERR(page)) {
1806 			/* We've tried hard to allocate the memory by reaping
1807 			 * our own buffer, now let the real VM do its job and
1808 			 * go down in flames if truly OOM.
1809 			 */
1810 			gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
1811 			gfp |= __GFP_IO | __GFP_WAIT;
1812 
1813 			i915_gem_shrink_all(dev_priv);
1814 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1815 			if (IS_ERR(page))
1816 				goto err_pages;
1817 
1818 			gfp |= __GFP_NORETRY | __GFP_NOWARN;
1819 			gfp &= ~(__GFP_IO | __GFP_WAIT);
1820 		}
1821 
1822 		sg_set_page(sg, page, PAGE_SIZE, 0);
1823 	}
1824 
1825 	if (i915_gem_object_needs_bit17_swizzle(obj))
1826 		i915_gem_object_do_bit_17_swizzle(obj);
1827 
1828 	obj->pages = st;
1829 	return 0;
1830 
1831 err_pages:
1832 	for_each_sg(st->sgl, sg, i, page_count)
1833 		page_cache_release(sg_page(sg));
1834 	sg_free_table(st);
1835 	kfree(st);
1836 	return PTR_ERR(page);
1837 }
1838 
1839 /* Ensure that the associated pages are gathered from the backing storage
1840  * and pinned into our object. i915_gem_object_get_pages() may be called
1841  * multiple times before they are released by a single call to
1842  * i915_gem_object_put_pages() - once the pages are no longer referenced
1843  * either as a result of memory pressure (reaping pages under the shrinker)
1844  * or as the object is itself released.
1845  */
1846 int
1847 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1848 {
1849 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1850 	const struct drm_i915_gem_object_ops *ops = obj->ops;
1851 	int ret;
1852 
1853 	if (obj->pages)
1854 		return 0;
1855 
1856 	BUG_ON(obj->pages_pin_count);
1857 
1858 	ret = ops->get_pages(obj);
1859 	if (ret)
1860 		return ret;
1861 
1862 	list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1863 	return 0;
1864 }
1865 
1866 void
1867 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1868 			       struct intel_ring_buffer *ring,
1869 			       u32 seqno)
1870 {
1871 	struct drm_device *dev = obj->base.dev;
1872 	struct drm_i915_private *dev_priv = dev->dev_private;
1873 
1874 	BUG_ON(ring == NULL);
1875 	obj->ring = ring;
1876 
1877 	/* Add a reference if we're newly entering the active list. */
1878 	if (!obj->active) {
1879 		drm_gem_object_reference(&obj->base);
1880 		obj->active = 1;
1881 	}
1882 
1883 	/* Move from whatever list we were on to the tail of execution. */
1884 	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1885 	list_move_tail(&obj->ring_list, &ring->active_list);
1886 
1887 	obj->last_read_seqno = seqno;
1888 
1889 	if (obj->fenced_gpu_access) {
1890 		obj->last_fenced_seqno = seqno;
1891 
1892 		/* Bump MRU to take account of the delayed flush */
1893 		if (obj->fence_reg != I915_FENCE_REG_NONE) {
1894 			struct drm_i915_fence_reg *reg;
1895 
1896 			reg = &dev_priv->fence_regs[obj->fence_reg];
1897 			list_move_tail(&reg->lru_list,
1898 				       &dev_priv->mm.fence_list);
1899 		}
1900 	}
1901 }
1902 
1903 static void
1904 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1905 {
1906 	struct drm_device *dev = obj->base.dev;
1907 	struct drm_i915_private *dev_priv = dev->dev_private;
1908 
1909 	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1910 	BUG_ON(!obj->active);
1911 
1912 	if (obj->pin_count) /* are we a framebuffer? */
1913 		intel_mark_fb_idle(obj);
1914 
1915 	list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1916 
1917 	list_del_init(&obj->ring_list);
1918 	obj->ring = NULL;
1919 
1920 	obj->last_read_seqno = 0;
1921 	obj->last_write_seqno = 0;
1922 	obj->base.write_domain = 0;
1923 
1924 	obj->last_fenced_seqno = 0;
1925 	obj->fenced_gpu_access = false;
1926 
1927 	obj->active = 0;
1928 	drm_gem_object_unreference(&obj->base);
1929 
1930 	WARN_ON(i915_verify_lists(dev));
1931 }
1932 
1933 static u32
1934 i915_gem_get_seqno(struct drm_device *dev)
1935 {
1936 	drm_i915_private_t *dev_priv = dev->dev_private;
1937 	u32 seqno = dev_priv->next_seqno;
1938 
1939 	/* reserve 0 for non-seqno */
1940 	if (++dev_priv->next_seqno == 0)
1941 		dev_priv->next_seqno = 1;
1942 
1943 	return seqno;
1944 }
1945 
1946 u32
1947 i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1948 {
1949 	if (ring->outstanding_lazy_request == 0)
1950 		ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1951 
1952 	return ring->outstanding_lazy_request;
1953 }
1954 
1955 int
1956 i915_add_request(struct intel_ring_buffer *ring,
1957 		 struct drm_file *file,
1958 		 struct drm_i915_gem_request *request)
1959 {
1960 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1961 	uint32_t seqno;
1962 	u32 request_ring_position;
1963 	int was_empty;
1964 	int ret;
1965 
1966 	/*
1967 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
1968 	 * after having emitted the batchbuffer command. Hence we need to fix
1969 	 * things up similar to emitting the lazy request. The difference here
1970 	 * is that the flush _must_ happen before the next request, no matter
1971 	 * what.
1972 	 */
1973 	ret = intel_ring_flush_all_caches(ring);
1974 	if (ret)
1975 		return ret;
1976 
1977 	if (request == NULL) {
1978 		request = kmalloc(sizeof(*request), GFP_KERNEL);
1979 		if (request == NULL)
1980 			return -ENOMEM;
1981 	}
1982 
1983 	seqno = i915_gem_next_request_seqno(ring);
1984 
1985 	/* Record the position of the start of the request so that
1986 	 * should we detect the updated seqno part-way through the
1987 	 * GPU processing the request, we never over-estimate the
1988 	 * position of the head.
1989 	 */
1990 	request_ring_position = intel_ring_get_tail(ring);
1991 
1992 	ret = ring->add_request(ring, &seqno);
1993 	if (ret) {
1994 		kfree(request);
1995 		return ret;
1996 	}
1997 
1998 	trace_i915_gem_request_add(ring, seqno);
1999 
2000 	request->seqno = seqno;
2001 	request->ring = ring;
2002 	request->tail = request_ring_position;
2003 	request->emitted_jiffies = jiffies;
2004 	was_empty = list_empty(&ring->request_list);
2005 	list_add_tail(&request->list, &ring->request_list);
2006 	request->file_priv = NULL;
2007 
2008 	if (file) {
2009 		struct drm_i915_file_private *file_priv = file->driver_priv;
2010 
2011 		spin_lock(&file_priv->mm.lock);
2012 		request->file_priv = file_priv;
2013 		list_add_tail(&request->client_list,
2014 			      &file_priv->mm.request_list);
2015 		spin_unlock(&file_priv->mm.lock);
2016 	}
2017 
2018 	ring->outstanding_lazy_request = 0;
2019 
2020 	if (!dev_priv->mm.suspended) {
2021 		if (i915_enable_hangcheck) {
2022 			mod_timer(&dev_priv->hangcheck_timer,
2023 				  jiffies +
2024 				  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
2025 		}
2026 		if (was_empty) {
2027 			queue_delayed_work(dev_priv->wq,
2028 					   &dev_priv->mm.retire_work, HZ);
2029 			intel_mark_busy(dev_priv->dev);
2030 		}
2031 	}
2032 
2033 	return 0;
2034 }
2035 
2036 static inline void
2037 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2038 {
2039 	struct drm_i915_file_private *file_priv = request->file_priv;
2040 
2041 	if (!file_priv)
2042 		return;
2043 
2044 	spin_lock(&file_priv->mm.lock);
2045 	if (request->file_priv) {
2046 		list_del(&request->client_list);
2047 		request->file_priv = NULL;
2048 	}
2049 	spin_unlock(&file_priv->mm.lock);
2050 }
2051 
2052 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2053 				      struct intel_ring_buffer *ring)
2054 {
2055 	while (!list_empty(&ring->request_list)) {
2056 		struct drm_i915_gem_request *request;
2057 
2058 		request = list_first_entry(&ring->request_list,
2059 					   struct drm_i915_gem_request,
2060 					   list);
2061 
2062 		list_del(&request->list);
2063 		i915_gem_request_remove_from_client(request);
2064 		kfree(request);
2065 	}
2066 
2067 	while (!list_empty(&ring->active_list)) {
2068 		struct drm_i915_gem_object *obj;
2069 
2070 		obj = list_first_entry(&ring->active_list,
2071 				       struct drm_i915_gem_object,
2072 				       ring_list);
2073 
2074 		i915_gem_object_move_to_inactive(obj);
2075 	}
2076 }
2077 
2078 static void i915_gem_reset_fences(struct drm_device *dev)
2079 {
2080 	struct drm_i915_private *dev_priv = dev->dev_private;
2081 	int i;
2082 
2083 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2084 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2085 
2086 		i915_gem_write_fence(dev, i, NULL);
2087 
2088 		if (reg->obj)
2089 			i915_gem_object_fence_lost(reg->obj);
2090 
2091 		reg->pin_count = 0;
2092 		reg->obj = NULL;
2093 		INIT_LIST_HEAD(&reg->lru_list);
2094 	}
2095 
2096 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2097 }
2098 
2099 void i915_gem_reset(struct drm_device *dev)
2100 {
2101 	struct drm_i915_private *dev_priv = dev->dev_private;
2102 	struct drm_i915_gem_object *obj;
2103 	struct intel_ring_buffer *ring;
2104 	int i;
2105 
2106 	for_each_ring(ring, dev_priv, i)
2107 		i915_gem_reset_ring_lists(dev_priv, ring);
2108 
2109 	/* Move everything out of the GPU domains to ensure we do any
2110 	 * necessary invalidation upon reuse.
2111 	 */
2112 	list_for_each_entry(obj,
2113 			    &dev_priv->mm.inactive_list,
2114 			    mm_list)
2115 	{
2116 		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2117 	}
2118 
2119 	/* The fence registers are invalidated so clear them out */
2120 	i915_gem_reset_fences(dev);
2121 }
2122 
2123 /**
2124  * This function clears the request list as sequence numbers are passed.
2125  */
2126 void
2127 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2128 {
2129 	uint32_t seqno;
2130 	int i;
2131 
2132 	if (list_empty(&ring->request_list))
2133 		return;
2134 
2135 	WARN_ON(i915_verify_lists(ring->dev));
2136 
2137 	seqno = ring->get_seqno(ring, true);
2138 
2139 	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
2140 		if (seqno >= ring->sync_seqno[i])
2141 			ring->sync_seqno[i] = 0;
2142 
2143 	while (!list_empty(&ring->request_list)) {
2144 		struct drm_i915_gem_request *request;
2145 
2146 		request = list_first_entry(&ring->request_list,
2147 					   struct drm_i915_gem_request,
2148 					   list);
2149 
2150 		if (!i915_seqno_passed(seqno, request->seqno))
2151 			break;
2152 
2153 		trace_i915_gem_request_retire(ring, request->seqno);
2154 		/* We know the GPU must have read the request to have
2155 		 * sent us the seqno + interrupt, so use the position
2156 		 * of tail of the request to update the last known position
2157 		 * of the GPU head.
2158 		 */
2159 		ring->last_retired_head = request->tail;
2160 
2161 		list_del(&request->list);
2162 		i915_gem_request_remove_from_client(request);
2163 		kfree(request);
2164 	}
2165 
2166 	/* Move any buffers on the active list that are no longer referenced
2167 	 * by the ringbuffer to the flushing/inactive lists as appropriate.
2168 	 */
2169 	while (!list_empty(&ring->active_list)) {
2170 		struct drm_i915_gem_object *obj;
2171 
2172 		obj = list_first_entry(&ring->active_list,
2173 				      struct drm_i915_gem_object,
2174 				      ring_list);
2175 
2176 		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2177 			break;
2178 
2179 		i915_gem_object_move_to_inactive(obj);
2180 	}
2181 
2182 	if (unlikely(ring->trace_irq_seqno &&
2183 		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2184 		ring->irq_put(ring);
2185 		ring->trace_irq_seqno = 0;
2186 	}
2187 
2188 	WARN_ON(i915_verify_lists(ring->dev));
2189 }
2190 
2191 void
2192 i915_gem_retire_requests(struct drm_device *dev)
2193 {
2194 	drm_i915_private_t *dev_priv = dev->dev_private;
2195 	struct intel_ring_buffer *ring;
2196 	int i;
2197 
2198 	for_each_ring(ring, dev_priv, i)
2199 		i915_gem_retire_requests_ring(ring);
2200 }
2201 
2202 static void
2203 i915_gem_retire_work_handler(struct work_struct *work)
2204 {
2205 	drm_i915_private_t *dev_priv;
2206 	struct drm_device *dev;
2207 	struct intel_ring_buffer *ring;
2208 	bool idle;
2209 	int i;
2210 
2211 	dev_priv = container_of(work, drm_i915_private_t,
2212 				mm.retire_work.work);
2213 	dev = dev_priv->dev;
2214 
2215 	/* Come back later if the device is busy... */
2216 	if (!mutex_trylock(&dev->struct_mutex)) {
2217 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2218 		return;
2219 	}
2220 
2221 	i915_gem_retire_requests(dev);
2222 
2223 	/* Send a periodic flush down the ring so we don't hold onto GEM
2224 	 * objects indefinitely.
2225 	 */
2226 	idle = true;
2227 	for_each_ring(ring, dev_priv, i) {
2228 		if (ring->gpu_caches_dirty)
2229 			i915_add_request(ring, NULL, NULL);
2230 
2231 		idle &= list_empty(&ring->request_list);
2232 	}
2233 
2234 	if (!dev_priv->mm.suspended && !idle)
2235 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2236 	if (idle)
2237 		intel_mark_idle(dev);
2238 
2239 	mutex_unlock(&dev->struct_mutex);
2240 }
2241 
2242 /**
2243  * Ensures that an object will eventually get non-busy by flushing any required
2244  * write domains, emitting any outstanding lazy request and retiring and
2245  * completed requests.
2246  */
2247 static int
2248 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2249 {
2250 	int ret;
2251 
2252 	if (obj->active) {
2253 		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2254 		if (ret)
2255 			return ret;
2256 
2257 		i915_gem_retire_requests_ring(obj->ring);
2258 	}
2259 
2260 	return 0;
2261 }
2262 
2263 /**
2264  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2265  * @DRM_IOCTL_ARGS: standard ioctl arguments
2266  *
2267  * Returns 0 if successful, else an error is returned with the remaining time in
2268  * the timeout parameter.
2269  *  -ETIME: object is still busy after timeout
2270  *  -ERESTARTSYS: signal interrupted the wait
2271  *  -ENONENT: object doesn't exist
2272  * Also possible, but rare:
2273  *  -EAGAIN: GPU wedged
2274  *  -ENOMEM: damn
2275  *  -ENODEV: Internal IRQ fail
2276  *  -E?: The add request failed
2277  *
2278  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2279  * non-zero timeout parameter the wait ioctl will wait for the given number of
2280  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2281  * without holding struct_mutex the object may become re-busied before this
2282  * function completes. A similar but shorter * race condition exists in the busy
2283  * ioctl
2284  */
2285 int
2286 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2287 {
2288 	struct drm_i915_gem_wait *args = data;
2289 	struct drm_i915_gem_object *obj;
2290 	struct intel_ring_buffer *ring = NULL;
2291 	struct timespec timeout_stack, *timeout = NULL;
2292 	u32 seqno = 0;
2293 	int ret = 0;
2294 
2295 	if (args->timeout_ns >= 0) {
2296 		timeout_stack = ns_to_timespec(args->timeout_ns);
2297 		timeout = &timeout_stack;
2298 	}
2299 
2300 	ret = i915_mutex_lock_interruptible(dev);
2301 	if (ret)
2302 		return ret;
2303 
2304 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2305 	if (&obj->base == NULL) {
2306 		mutex_unlock(&dev->struct_mutex);
2307 		return -ENOENT;
2308 	}
2309 
2310 	/* Need to make sure the object gets inactive eventually. */
2311 	ret = i915_gem_object_flush_active(obj);
2312 	if (ret)
2313 		goto out;
2314 
2315 	if (obj->active) {
2316 		seqno = obj->last_read_seqno;
2317 		ring = obj->ring;
2318 	}
2319 
2320 	if (seqno == 0)
2321 		 goto out;
2322 
2323 	/* Do this after OLR check to make sure we make forward progress polling
2324 	 * on this IOCTL with a 0 timeout (like busy ioctl)
2325 	 */
2326 	if (!args->timeout_ns) {
2327 		ret = -ETIME;
2328 		goto out;
2329 	}
2330 
2331 	drm_gem_object_unreference(&obj->base);
2332 	mutex_unlock(&dev->struct_mutex);
2333 
2334 	ret = __wait_seqno(ring, seqno, true, timeout);
2335 	if (timeout) {
2336 		WARN_ON(!timespec_valid(timeout));
2337 		args->timeout_ns = timespec_to_ns(timeout);
2338 	}
2339 	return ret;
2340 
2341 out:
2342 	drm_gem_object_unreference(&obj->base);
2343 	mutex_unlock(&dev->struct_mutex);
2344 	return ret;
2345 }
2346 
2347 /**
2348  * i915_gem_object_sync - sync an object to a ring.
2349  *
2350  * @obj: object which may be in use on another ring.
2351  * @to: ring we wish to use the object on. May be NULL.
2352  *
2353  * This code is meant to abstract object synchronization with the GPU.
2354  * Calling with NULL implies synchronizing the object with the CPU
2355  * rather than a particular GPU ring.
2356  *
2357  * Returns 0 if successful, else propagates up the lower layer error.
2358  */
2359 int
2360 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2361 		     struct intel_ring_buffer *to)
2362 {
2363 	struct intel_ring_buffer *from = obj->ring;
2364 	u32 seqno;
2365 	int ret, idx;
2366 
2367 	if (from == NULL || to == from)
2368 		return 0;
2369 
2370 	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2371 		return i915_gem_object_wait_rendering(obj, false);
2372 
2373 	idx = intel_ring_sync_index(from, to);
2374 
2375 	seqno = obj->last_read_seqno;
2376 	if (seqno <= from->sync_seqno[idx])
2377 		return 0;
2378 
2379 	ret = i915_gem_check_olr(obj->ring, seqno);
2380 	if (ret)
2381 		return ret;
2382 
2383 	ret = to->sync_to(to, from, seqno);
2384 	if (!ret)
2385 		from->sync_seqno[idx] = seqno;
2386 
2387 	return ret;
2388 }
2389 
2390 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2391 {
2392 	u32 old_write_domain, old_read_domains;
2393 
2394 	/* Act a barrier for all accesses through the GTT */
2395 	mb();
2396 
2397 	/* Force a pagefault for domain tracking on next user access */
2398 	i915_gem_release_mmap(obj);
2399 
2400 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2401 		return;
2402 
2403 	old_read_domains = obj->base.read_domains;
2404 	old_write_domain = obj->base.write_domain;
2405 
2406 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2407 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2408 
2409 	trace_i915_gem_object_change_domain(obj,
2410 					    old_read_domains,
2411 					    old_write_domain);
2412 }
2413 
2414 /**
2415  * Unbinds an object from the GTT aperture.
2416  */
2417 int
2418 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2419 {
2420 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2421 	int ret = 0;
2422 
2423 	if (obj->gtt_space == NULL)
2424 		return 0;
2425 
2426 	if (obj->pin_count)
2427 		return -EBUSY;
2428 
2429 	BUG_ON(obj->pages == NULL);
2430 
2431 	ret = i915_gem_object_finish_gpu(obj);
2432 	if (ret)
2433 		return ret;
2434 	/* Continue on if we fail due to EIO, the GPU is hung so we
2435 	 * should be safe and we need to cleanup or else we might
2436 	 * cause memory corruption through use-after-free.
2437 	 */
2438 
2439 	i915_gem_object_finish_gtt(obj);
2440 
2441 	/* release the fence reg _after_ flushing */
2442 	ret = i915_gem_object_put_fence(obj);
2443 	if (ret)
2444 		return ret;
2445 
2446 	trace_i915_gem_object_unbind(obj);
2447 
2448 	if (obj->has_global_gtt_mapping)
2449 		i915_gem_gtt_unbind_object(obj);
2450 	if (obj->has_aliasing_ppgtt_mapping) {
2451 		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2452 		obj->has_aliasing_ppgtt_mapping = 0;
2453 	}
2454 	i915_gem_gtt_finish_object(obj);
2455 
2456 	list_del(&obj->mm_list);
2457 	list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2458 	/* Avoid an unnecessary call to unbind on rebind. */
2459 	obj->map_and_fenceable = true;
2460 
2461 	drm_mm_put_block(obj->gtt_space);
2462 	obj->gtt_space = NULL;
2463 	obj->gtt_offset = 0;
2464 
2465 	return 0;
2466 }
2467 
2468 static int i915_ring_idle(struct intel_ring_buffer *ring)
2469 {
2470 	if (list_empty(&ring->active_list))
2471 		return 0;
2472 
2473 	return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
2474 }
2475 
2476 int i915_gpu_idle(struct drm_device *dev)
2477 {
2478 	drm_i915_private_t *dev_priv = dev->dev_private;
2479 	struct intel_ring_buffer *ring;
2480 	int ret, i;
2481 
2482 	/* Flush everything onto the inactive list. */
2483 	for_each_ring(ring, dev_priv, i) {
2484 		ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2485 		if (ret)
2486 			return ret;
2487 
2488 		ret = i915_ring_idle(ring);
2489 		if (ret)
2490 			return ret;
2491 	}
2492 
2493 	return 0;
2494 }
2495 
2496 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2497 					struct drm_i915_gem_object *obj)
2498 {
2499 	drm_i915_private_t *dev_priv = dev->dev_private;
2500 	uint64_t val;
2501 
2502 	if (obj) {
2503 		u32 size = obj->gtt_space->size;
2504 
2505 		val = (uint64_t)((obj->gtt_offset + size - 4096) &
2506 				 0xfffff000) << 32;
2507 		val |= obj->gtt_offset & 0xfffff000;
2508 		val |= (uint64_t)((obj->stride / 128) - 1) <<
2509 			SANDYBRIDGE_FENCE_PITCH_SHIFT;
2510 
2511 		if (obj->tiling_mode == I915_TILING_Y)
2512 			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2513 		val |= I965_FENCE_REG_VALID;
2514 	} else
2515 		val = 0;
2516 
2517 	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2518 	POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2519 }
2520 
2521 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2522 				 struct drm_i915_gem_object *obj)
2523 {
2524 	drm_i915_private_t *dev_priv = dev->dev_private;
2525 	uint64_t val;
2526 
2527 	if (obj) {
2528 		u32 size = obj->gtt_space->size;
2529 
2530 		val = (uint64_t)((obj->gtt_offset + size - 4096) &
2531 				 0xfffff000) << 32;
2532 		val |= obj->gtt_offset & 0xfffff000;
2533 		val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2534 		if (obj->tiling_mode == I915_TILING_Y)
2535 			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2536 		val |= I965_FENCE_REG_VALID;
2537 	} else
2538 		val = 0;
2539 
2540 	I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2541 	POSTING_READ(FENCE_REG_965_0 + reg * 8);
2542 }
2543 
2544 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2545 				 struct drm_i915_gem_object *obj)
2546 {
2547 	drm_i915_private_t *dev_priv = dev->dev_private;
2548 	u32 val;
2549 
2550 	if (obj) {
2551 		u32 size = obj->gtt_space->size;
2552 		int pitch_val;
2553 		int tile_width;
2554 
2555 		WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2556 		     (size & -size) != size ||
2557 		     (obj->gtt_offset & (size - 1)),
2558 		     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2559 		     obj->gtt_offset, obj->map_and_fenceable, size);
2560 
2561 		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2562 			tile_width = 128;
2563 		else
2564 			tile_width = 512;
2565 
2566 		/* Note: pitch better be a power of two tile widths */
2567 		pitch_val = obj->stride / tile_width;
2568 		pitch_val = ffs(pitch_val) - 1;
2569 
2570 		val = obj->gtt_offset;
2571 		if (obj->tiling_mode == I915_TILING_Y)
2572 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2573 		val |= I915_FENCE_SIZE_BITS(size);
2574 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2575 		val |= I830_FENCE_REG_VALID;
2576 	} else
2577 		val = 0;
2578 
2579 	if (reg < 8)
2580 		reg = FENCE_REG_830_0 + reg * 4;
2581 	else
2582 		reg = FENCE_REG_945_8 + (reg - 8) * 4;
2583 
2584 	I915_WRITE(reg, val);
2585 	POSTING_READ(reg);
2586 }
2587 
2588 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2589 				struct drm_i915_gem_object *obj)
2590 {
2591 	drm_i915_private_t *dev_priv = dev->dev_private;
2592 	uint32_t val;
2593 
2594 	if (obj) {
2595 		u32 size = obj->gtt_space->size;
2596 		uint32_t pitch_val;
2597 
2598 		WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2599 		     (size & -size) != size ||
2600 		     (obj->gtt_offset & (size - 1)),
2601 		     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2602 		     obj->gtt_offset, size);
2603 
2604 		pitch_val = obj->stride / 128;
2605 		pitch_val = ffs(pitch_val) - 1;
2606 
2607 		val = obj->gtt_offset;
2608 		if (obj->tiling_mode == I915_TILING_Y)
2609 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2610 		val |= I830_FENCE_SIZE_BITS(size);
2611 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2612 		val |= I830_FENCE_REG_VALID;
2613 	} else
2614 		val = 0;
2615 
2616 	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2617 	POSTING_READ(FENCE_REG_830_0 + reg * 4);
2618 }
2619 
2620 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2621 				 struct drm_i915_gem_object *obj)
2622 {
2623 	switch (INTEL_INFO(dev)->gen) {
2624 	case 7:
2625 	case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2626 	case 5:
2627 	case 4: i965_write_fence_reg(dev, reg, obj); break;
2628 	case 3: i915_write_fence_reg(dev, reg, obj); break;
2629 	case 2: i830_write_fence_reg(dev, reg, obj); break;
2630 	default: break;
2631 	}
2632 }
2633 
2634 static inline int fence_number(struct drm_i915_private *dev_priv,
2635 			       struct drm_i915_fence_reg *fence)
2636 {
2637 	return fence - dev_priv->fence_regs;
2638 }
2639 
2640 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2641 					 struct drm_i915_fence_reg *fence,
2642 					 bool enable)
2643 {
2644 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2645 	int reg = fence_number(dev_priv, fence);
2646 
2647 	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2648 
2649 	if (enable) {
2650 		obj->fence_reg = reg;
2651 		fence->obj = obj;
2652 		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2653 	} else {
2654 		obj->fence_reg = I915_FENCE_REG_NONE;
2655 		fence->obj = NULL;
2656 		list_del_init(&fence->lru_list);
2657 	}
2658 }
2659 
2660 static int
2661 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2662 {
2663 	if (obj->last_fenced_seqno) {
2664 		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2665 		if (ret)
2666 			return ret;
2667 
2668 		obj->last_fenced_seqno = 0;
2669 	}
2670 
2671 	/* Ensure that all CPU reads are completed before installing a fence
2672 	 * and all writes before removing the fence.
2673 	 */
2674 	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2675 		mb();
2676 
2677 	obj->fenced_gpu_access = false;
2678 	return 0;
2679 }
2680 
2681 int
2682 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2683 {
2684 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2685 	int ret;
2686 
2687 	ret = i915_gem_object_flush_fence(obj);
2688 	if (ret)
2689 		return ret;
2690 
2691 	if (obj->fence_reg == I915_FENCE_REG_NONE)
2692 		return 0;
2693 
2694 	i915_gem_object_update_fence(obj,
2695 				     &dev_priv->fence_regs[obj->fence_reg],
2696 				     false);
2697 	i915_gem_object_fence_lost(obj);
2698 
2699 	return 0;
2700 }
2701 
2702 static struct drm_i915_fence_reg *
2703 i915_find_fence_reg(struct drm_device *dev)
2704 {
2705 	struct drm_i915_private *dev_priv = dev->dev_private;
2706 	struct drm_i915_fence_reg *reg, *avail;
2707 	int i;
2708 
2709 	/* First try to find a free reg */
2710 	avail = NULL;
2711 	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2712 		reg = &dev_priv->fence_regs[i];
2713 		if (!reg->obj)
2714 			return reg;
2715 
2716 		if (!reg->pin_count)
2717 			avail = reg;
2718 	}
2719 
2720 	if (avail == NULL)
2721 		return NULL;
2722 
2723 	/* None available, try to steal one or wait for a user to finish */
2724 	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2725 		if (reg->pin_count)
2726 			continue;
2727 
2728 		return reg;
2729 	}
2730 
2731 	return NULL;
2732 }
2733 
2734 /**
2735  * i915_gem_object_get_fence - set up fencing for an object
2736  * @obj: object to map through a fence reg
2737  *
2738  * When mapping objects through the GTT, userspace wants to be able to write
2739  * to them without having to worry about swizzling if the object is tiled.
2740  * This function walks the fence regs looking for a free one for @obj,
2741  * stealing one if it can't find any.
2742  *
2743  * It then sets up the reg based on the object's properties: address, pitch
2744  * and tiling format.
2745  *
2746  * For an untiled surface, this removes any existing fence.
2747  */
2748 int
2749 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2750 {
2751 	struct drm_device *dev = obj->base.dev;
2752 	struct drm_i915_private *dev_priv = dev->dev_private;
2753 	bool enable = obj->tiling_mode != I915_TILING_NONE;
2754 	struct drm_i915_fence_reg *reg;
2755 	int ret;
2756 
2757 	/* Have we updated the tiling parameters upon the object and so
2758 	 * will need to serialise the write to the associated fence register?
2759 	 */
2760 	if (obj->fence_dirty) {
2761 		ret = i915_gem_object_flush_fence(obj);
2762 		if (ret)
2763 			return ret;
2764 	}
2765 
2766 	/* Just update our place in the LRU if our fence is getting reused. */
2767 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
2768 		reg = &dev_priv->fence_regs[obj->fence_reg];
2769 		if (!obj->fence_dirty) {
2770 			list_move_tail(&reg->lru_list,
2771 				       &dev_priv->mm.fence_list);
2772 			return 0;
2773 		}
2774 	} else if (enable) {
2775 		reg = i915_find_fence_reg(dev);
2776 		if (reg == NULL)
2777 			return -EDEADLK;
2778 
2779 		if (reg->obj) {
2780 			struct drm_i915_gem_object *old = reg->obj;
2781 
2782 			ret = i915_gem_object_flush_fence(old);
2783 			if (ret)
2784 				return ret;
2785 
2786 			i915_gem_object_fence_lost(old);
2787 		}
2788 	} else
2789 		return 0;
2790 
2791 	i915_gem_object_update_fence(obj, reg, enable);
2792 	obj->fence_dirty = false;
2793 
2794 	return 0;
2795 }
2796 
2797 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2798 				     struct drm_mm_node *gtt_space,
2799 				     unsigned long cache_level)
2800 {
2801 	struct drm_mm_node *other;
2802 
2803 	/* On non-LLC machines we have to be careful when putting differing
2804 	 * types of snoopable memory together to avoid the prefetcher
2805 	 * crossing memory domains and dieing.
2806 	 */
2807 	if (HAS_LLC(dev))
2808 		return true;
2809 
2810 	if (gtt_space == NULL)
2811 		return true;
2812 
2813 	if (list_empty(&gtt_space->node_list))
2814 		return true;
2815 
2816 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2817 	if (other->allocated && !other->hole_follows && other->color != cache_level)
2818 		return false;
2819 
2820 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2821 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2822 		return false;
2823 
2824 	return true;
2825 }
2826 
2827 static void i915_gem_verify_gtt(struct drm_device *dev)
2828 {
2829 #if WATCH_GTT
2830 	struct drm_i915_private *dev_priv = dev->dev_private;
2831 	struct drm_i915_gem_object *obj;
2832 	int err = 0;
2833 
2834 	list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2835 		if (obj->gtt_space == NULL) {
2836 			printk(KERN_ERR "object found on GTT list with no space reserved\n");
2837 			err++;
2838 			continue;
2839 		}
2840 
2841 		if (obj->cache_level != obj->gtt_space->color) {
2842 			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2843 			       obj->gtt_space->start,
2844 			       obj->gtt_space->start + obj->gtt_space->size,
2845 			       obj->cache_level,
2846 			       obj->gtt_space->color);
2847 			err++;
2848 			continue;
2849 		}
2850 
2851 		if (!i915_gem_valid_gtt_space(dev,
2852 					      obj->gtt_space,
2853 					      obj->cache_level)) {
2854 			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2855 			       obj->gtt_space->start,
2856 			       obj->gtt_space->start + obj->gtt_space->size,
2857 			       obj->cache_level);
2858 			err++;
2859 			continue;
2860 		}
2861 	}
2862 
2863 	WARN_ON(err);
2864 #endif
2865 }
2866 
2867 /**
2868  * Finds free space in the GTT aperture and binds the object there.
2869  */
2870 static int
2871 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2872 			    unsigned alignment,
2873 			    bool map_and_fenceable,
2874 			    bool nonblocking)
2875 {
2876 	struct drm_device *dev = obj->base.dev;
2877 	drm_i915_private_t *dev_priv = dev->dev_private;
2878 	struct drm_mm_node *free_space;
2879 	u32 size, fence_size, fence_alignment, unfenced_alignment;
2880 	bool mappable, fenceable;
2881 	int ret;
2882 
2883 	if (obj->madv != I915_MADV_WILLNEED) {
2884 		DRM_ERROR("Attempting to bind a purgeable object\n");
2885 		return -EINVAL;
2886 	}
2887 
2888 	fence_size = i915_gem_get_gtt_size(dev,
2889 					   obj->base.size,
2890 					   obj->tiling_mode);
2891 	fence_alignment = i915_gem_get_gtt_alignment(dev,
2892 						     obj->base.size,
2893 						     obj->tiling_mode);
2894 	unfenced_alignment =
2895 		i915_gem_get_unfenced_gtt_alignment(dev,
2896 						    obj->base.size,
2897 						    obj->tiling_mode);
2898 
2899 	if (alignment == 0)
2900 		alignment = map_and_fenceable ? fence_alignment :
2901 						unfenced_alignment;
2902 	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2903 		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2904 		return -EINVAL;
2905 	}
2906 
2907 	size = map_and_fenceable ? fence_size : obj->base.size;
2908 
2909 	/* If the object is bigger than the entire aperture, reject it early
2910 	 * before evicting everything in a vain attempt to find space.
2911 	 */
2912 	if (obj->base.size >
2913 	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2914 		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2915 		return -E2BIG;
2916 	}
2917 
2918 	ret = i915_gem_object_get_pages(obj);
2919 	if (ret)
2920 		return ret;
2921 
2922  search_free:
2923 	if (map_and_fenceable)
2924 		free_space =
2925 			drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
2926 							  size, alignment, obj->cache_level,
2927 							  0, dev_priv->mm.gtt_mappable_end,
2928 							  false);
2929 	else
2930 		free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
2931 						      size, alignment, obj->cache_level,
2932 						      false);
2933 
2934 	if (free_space != NULL) {
2935 		if (map_and_fenceable)
2936 			obj->gtt_space =
2937 				drm_mm_get_block_range_generic(free_space,
2938 							       size, alignment, obj->cache_level,
2939 							       0, dev_priv->mm.gtt_mappable_end,
2940 							       false);
2941 		else
2942 			obj->gtt_space =
2943 				drm_mm_get_block_generic(free_space,
2944 							 size, alignment, obj->cache_level,
2945 							 false);
2946 	}
2947 	if (obj->gtt_space == NULL) {
2948 		ret = i915_gem_evict_something(dev, size, alignment,
2949 					       obj->cache_level,
2950 					       map_and_fenceable,
2951 					       nonblocking);
2952 		if (ret)
2953 			return ret;
2954 
2955 		goto search_free;
2956 	}
2957 	if (WARN_ON(!i915_gem_valid_gtt_space(dev,
2958 					      obj->gtt_space,
2959 					      obj->cache_level))) {
2960 		drm_mm_put_block(obj->gtt_space);
2961 		obj->gtt_space = NULL;
2962 		return -EINVAL;
2963 	}
2964 
2965 
2966 	ret = i915_gem_gtt_prepare_object(obj);
2967 	if (ret) {
2968 		drm_mm_put_block(obj->gtt_space);
2969 		obj->gtt_space = NULL;
2970 		return ret;
2971 	}
2972 
2973 	if (!dev_priv->mm.aliasing_ppgtt)
2974 		i915_gem_gtt_bind_object(obj, obj->cache_level);
2975 
2976 	list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2977 	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2978 
2979 	obj->gtt_offset = obj->gtt_space->start;
2980 
2981 	fenceable =
2982 		obj->gtt_space->size == fence_size &&
2983 		(obj->gtt_space->start & (fence_alignment - 1)) == 0;
2984 
2985 	mappable =
2986 		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2987 
2988 	obj->map_and_fenceable = mappable && fenceable;
2989 
2990 	trace_i915_gem_object_bind(obj, map_and_fenceable);
2991 	i915_gem_verify_gtt(dev);
2992 	return 0;
2993 }
2994 
2995 void
2996 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2997 {
2998 	/* If we don't have a page list set up, then we're not pinned
2999 	 * to GPU, and we can ignore the cache flush because it'll happen
3000 	 * again at bind time.
3001 	 */
3002 	if (obj->pages == NULL)
3003 		return;
3004 
3005 	/* If the GPU is snooping the contents of the CPU cache,
3006 	 * we do not need to manually clear the CPU cache lines.  However,
3007 	 * the caches are only snooped when the render cache is
3008 	 * flushed/invalidated.  As we always have to emit invalidations
3009 	 * and flushes when moving into and out of the RENDER domain, correct
3010 	 * snooping behaviour occurs naturally as the result of our domain
3011 	 * tracking.
3012 	 */
3013 	if (obj->cache_level != I915_CACHE_NONE)
3014 		return;
3015 
3016 	trace_i915_gem_object_clflush(obj);
3017 
3018 	drm_clflush_sg(obj->pages);
3019 }
3020 
3021 /** Flushes the GTT write domain for the object if it's dirty. */
3022 static void
3023 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3024 {
3025 	uint32_t old_write_domain;
3026 
3027 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3028 		return;
3029 
3030 	/* No actual flushing is required for the GTT write domain.  Writes
3031 	 * to it immediately go to main memory as far as we know, so there's
3032 	 * no chipset flush.  It also doesn't land in render cache.
3033 	 *
3034 	 * However, we do have to enforce the order so that all writes through
3035 	 * the GTT land before any writes to the device, such as updates to
3036 	 * the GATT itself.
3037 	 */
3038 	wmb();
3039 
3040 	old_write_domain = obj->base.write_domain;
3041 	obj->base.write_domain = 0;
3042 
3043 	trace_i915_gem_object_change_domain(obj,
3044 					    obj->base.read_domains,
3045 					    old_write_domain);
3046 }
3047 
3048 /** Flushes the CPU write domain for the object if it's dirty. */
3049 static void
3050 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3051 {
3052 	uint32_t old_write_domain;
3053 
3054 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3055 		return;
3056 
3057 	i915_gem_clflush_object(obj);
3058 	intel_gtt_chipset_flush();
3059 	old_write_domain = obj->base.write_domain;
3060 	obj->base.write_domain = 0;
3061 
3062 	trace_i915_gem_object_change_domain(obj,
3063 					    obj->base.read_domains,
3064 					    old_write_domain);
3065 }
3066 
3067 /**
3068  * Moves a single object to the GTT read, and possibly write domain.
3069  *
3070  * This function returns when the move is complete, including waiting on
3071  * flushes to occur.
3072  */
3073 int
3074 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3075 {
3076 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3077 	uint32_t old_write_domain, old_read_domains;
3078 	int ret;
3079 
3080 	/* Not valid to be called on unbound objects. */
3081 	if (obj->gtt_space == NULL)
3082 		return -EINVAL;
3083 
3084 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3085 		return 0;
3086 
3087 	ret = i915_gem_object_wait_rendering(obj, !write);
3088 	if (ret)
3089 		return ret;
3090 
3091 	i915_gem_object_flush_cpu_write_domain(obj);
3092 
3093 	old_write_domain = obj->base.write_domain;
3094 	old_read_domains = obj->base.read_domains;
3095 
3096 	/* It should now be out of any other write domains, and we can update
3097 	 * the domain values for our changes.
3098 	 */
3099 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3100 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3101 	if (write) {
3102 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3103 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3104 		obj->dirty = 1;
3105 	}
3106 
3107 	trace_i915_gem_object_change_domain(obj,
3108 					    old_read_domains,
3109 					    old_write_domain);
3110 
3111 	/* And bump the LRU for this access */
3112 	if (i915_gem_object_is_inactive(obj))
3113 		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3114 
3115 	return 0;
3116 }
3117 
3118 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3119 				    enum i915_cache_level cache_level)
3120 {
3121 	struct drm_device *dev = obj->base.dev;
3122 	drm_i915_private_t *dev_priv = dev->dev_private;
3123 	int ret;
3124 
3125 	if (obj->cache_level == cache_level)
3126 		return 0;
3127 
3128 	if (obj->pin_count) {
3129 		DRM_DEBUG("can not change the cache level of pinned objects\n");
3130 		return -EBUSY;
3131 	}
3132 
3133 	if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3134 		ret = i915_gem_object_unbind(obj);
3135 		if (ret)
3136 			return ret;
3137 	}
3138 
3139 	if (obj->gtt_space) {
3140 		ret = i915_gem_object_finish_gpu(obj);
3141 		if (ret)
3142 			return ret;
3143 
3144 		i915_gem_object_finish_gtt(obj);
3145 
3146 		/* Before SandyBridge, you could not use tiling or fence
3147 		 * registers with snooped memory, so relinquish any fences
3148 		 * currently pointing to our region in the aperture.
3149 		 */
3150 		if (INTEL_INFO(dev)->gen < 6) {
3151 			ret = i915_gem_object_put_fence(obj);
3152 			if (ret)
3153 				return ret;
3154 		}
3155 
3156 		if (obj->has_global_gtt_mapping)
3157 			i915_gem_gtt_bind_object(obj, cache_level);
3158 		if (obj->has_aliasing_ppgtt_mapping)
3159 			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3160 					       obj, cache_level);
3161 
3162 		obj->gtt_space->color = cache_level;
3163 	}
3164 
3165 	if (cache_level == I915_CACHE_NONE) {
3166 		u32 old_read_domains, old_write_domain;
3167 
3168 		/* If we're coming from LLC cached, then we haven't
3169 		 * actually been tracking whether the data is in the
3170 		 * CPU cache or not, since we only allow one bit set
3171 		 * in obj->write_domain and have been skipping the clflushes.
3172 		 * Just set it to the CPU cache for now.
3173 		 */
3174 		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3175 		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3176 
3177 		old_read_domains = obj->base.read_domains;
3178 		old_write_domain = obj->base.write_domain;
3179 
3180 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3181 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3182 
3183 		trace_i915_gem_object_change_domain(obj,
3184 						    old_read_domains,
3185 						    old_write_domain);
3186 	}
3187 
3188 	obj->cache_level = cache_level;
3189 	i915_gem_verify_gtt(dev);
3190 	return 0;
3191 }
3192 
3193 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3194 			       struct drm_file *file)
3195 {
3196 	struct drm_i915_gem_caching *args = data;
3197 	struct drm_i915_gem_object *obj;
3198 	int ret;
3199 
3200 	ret = i915_mutex_lock_interruptible(dev);
3201 	if (ret)
3202 		return ret;
3203 
3204 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3205 	if (&obj->base == NULL) {
3206 		ret = -ENOENT;
3207 		goto unlock;
3208 	}
3209 
3210 	args->caching = obj->cache_level != I915_CACHE_NONE;
3211 
3212 	drm_gem_object_unreference(&obj->base);
3213 unlock:
3214 	mutex_unlock(&dev->struct_mutex);
3215 	return ret;
3216 }
3217 
3218 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3219 			       struct drm_file *file)
3220 {
3221 	struct drm_i915_gem_caching *args = data;
3222 	struct drm_i915_gem_object *obj;
3223 	enum i915_cache_level level;
3224 	int ret;
3225 
3226 	switch (args->caching) {
3227 	case I915_CACHING_NONE:
3228 		level = I915_CACHE_NONE;
3229 		break;
3230 	case I915_CACHING_CACHED:
3231 		level = I915_CACHE_LLC;
3232 		break;
3233 	default:
3234 		return -EINVAL;
3235 	}
3236 
3237 	ret = i915_mutex_lock_interruptible(dev);
3238 	if (ret)
3239 		return ret;
3240 
3241 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3242 	if (&obj->base == NULL) {
3243 		ret = -ENOENT;
3244 		goto unlock;
3245 	}
3246 
3247 	ret = i915_gem_object_set_cache_level(obj, level);
3248 
3249 	drm_gem_object_unreference(&obj->base);
3250 unlock:
3251 	mutex_unlock(&dev->struct_mutex);
3252 	return ret;
3253 }
3254 
3255 /*
3256  * Prepare buffer for display plane (scanout, cursors, etc).
3257  * Can be called from an uninterruptible phase (modesetting) and allows
3258  * any flushes to be pipelined (for pageflips).
3259  */
3260 int
3261 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3262 				     u32 alignment,
3263 				     struct intel_ring_buffer *pipelined)
3264 {
3265 	u32 old_read_domains, old_write_domain;
3266 	int ret;
3267 
3268 	if (pipelined != obj->ring) {
3269 		ret = i915_gem_object_sync(obj, pipelined);
3270 		if (ret)
3271 			return ret;
3272 	}
3273 
3274 	/* The display engine is not coherent with the LLC cache on gen6.  As
3275 	 * a result, we make sure that the pinning that is about to occur is
3276 	 * done with uncached PTEs. This is lowest common denominator for all
3277 	 * chipsets.
3278 	 *
3279 	 * However for gen6+, we could do better by using the GFDT bit instead
3280 	 * of uncaching, which would allow us to flush all the LLC-cached data
3281 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3282 	 */
3283 	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3284 	if (ret)
3285 		return ret;
3286 
3287 	/* As the user may map the buffer once pinned in the display plane
3288 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3289 	 * always use map_and_fenceable for all scanout buffers.
3290 	 */
3291 	ret = i915_gem_object_pin(obj, alignment, true, false);
3292 	if (ret)
3293 		return ret;
3294 
3295 	i915_gem_object_flush_cpu_write_domain(obj);
3296 
3297 	old_write_domain = obj->base.write_domain;
3298 	old_read_domains = obj->base.read_domains;
3299 
3300 	/* It should now be out of any other write domains, and we can update
3301 	 * the domain values for our changes.
3302 	 */
3303 	obj->base.write_domain = 0;
3304 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3305 
3306 	trace_i915_gem_object_change_domain(obj,
3307 					    old_read_domains,
3308 					    old_write_domain);
3309 
3310 	return 0;
3311 }
3312 
3313 int
3314 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3315 {
3316 	int ret;
3317 
3318 	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3319 		return 0;
3320 
3321 	ret = i915_gem_object_wait_rendering(obj, false);
3322 	if (ret)
3323 		return ret;
3324 
3325 	/* Ensure that we invalidate the GPU's caches and TLBs. */
3326 	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3327 	return 0;
3328 }
3329 
3330 /**
3331  * Moves a single object to the CPU read, and possibly write domain.
3332  *
3333  * This function returns when the move is complete, including waiting on
3334  * flushes to occur.
3335  */
3336 int
3337 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3338 {
3339 	uint32_t old_write_domain, old_read_domains;
3340 	int ret;
3341 
3342 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3343 		return 0;
3344 
3345 	ret = i915_gem_object_wait_rendering(obj, !write);
3346 	if (ret)
3347 		return ret;
3348 
3349 	i915_gem_object_flush_gtt_write_domain(obj);
3350 
3351 	old_write_domain = obj->base.write_domain;
3352 	old_read_domains = obj->base.read_domains;
3353 
3354 	/* Flush the CPU cache if it's still invalid. */
3355 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3356 		i915_gem_clflush_object(obj);
3357 
3358 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3359 	}
3360 
3361 	/* It should now be out of any other write domains, and we can update
3362 	 * the domain values for our changes.
3363 	 */
3364 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3365 
3366 	/* If we're writing through the CPU, then the GPU read domains will
3367 	 * need to be invalidated at next use.
3368 	 */
3369 	if (write) {
3370 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3371 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3372 	}
3373 
3374 	trace_i915_gem_object_change_domain(obj,
3375 					    old_read_domains,
3376 					    old_write_domain);
3377 
3378 	return 0;
3379 }
3380 
3381 /* Throttle our rendering by waiting until the ring has completed our requests
3382  * emitted over 20 msec ago.
3383  *
3384  * Note that if we were to use the current jiffies each time around the loop,
3385  * we wouldn't escape the function with any frames outstanding if the time to
3386  * render a frame was over 20ms.
3387  *
3388  * This should get us reasonable parallelism between CPU and GPU but also
3389  * relatively low latency when blocking on a particular request to finish.
3390  */
3391 static int
3392 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3393 {
3394 	struct drm_i915_private *dev_priv = dev->dev_private;
3395 	struct drm_i915_file_private *file_priv = file->driver_priv;
3396 	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3397 	struct drm_i915_gem_request *request;
3398 	struct intel_ring_buffer *ring = NULL;
3399 	u32 seqno = 0;
3400 	int ret;
3401 
3402 	if (atomic_read(&dev_priv->mm.wedged))
3403 		return -EIO;
3404 
3405 	spin_lock(&file_priv->mm.lock);
3406 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3407 		if (time_after_eq(request->emitted_jiffies, recent_enough))
3408 			break;
3409 
3410 		ring = request->ring;
3411 		seqno = request->seqno;
3412 	}
3413 	spin_unlock(&file_priv->mm.lock);
3414 
3415 	if (seqno == 0)
3416 		return 0;
3417 
3418 	ret = __wait_seqno(ring, seqno, true, NULL);
3419 	if (ret == 0)
3420 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3421 
3422 	return ret;
3423 }
3424 
3425 int
3426 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3427 		    uint32_t alignment,
3428 		    bool map_and_fenceable,
3429 		    bool nonblocking)
3430 {
3431 	int ret;
3432 
3433 	if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3434 		return -EBUSY;
3435 
3436 	if (obj->gtt_space != NULL) {
3437 		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3438 		    (map_and_fenceable && !obj->map_and_fenceable)) {
3439 			WARN(obj->pin_count,
3440 			     "bo is already pinned with incorrect alignment:"
3441 			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3442 			     " obj->map_and_fenceable=%d\n",
3443 			     obj->gtt_offset, alignment,
3444 			     map_and_fenceable,
3445 			     obj->map_and_fenceable);
3446 			ret = i915_gem_object_unbind(obj);
3447 			if (ret)
3448 				return ret;
3449 		}
3450 	}
3451 
3452 	if (obj->gtt_space == NULL) {
3453 		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3454 						  map_and_fenceable,
3455 						  nonblocking);
3456 		if (ret)
3457 			return ret;
3458 	}
3459 
3460 	if (!obj->has_global_gtt_mapping && map_and_fenceable)
3461 		i915_gem_gtt_bind_object(obj, obj->cache_level);
3462 
3463 	obj->pin_count++;
3464 	obj->pin_mappable |= map_and_fenceable;
3465 
3466 	return 0;
3467 }
3468 
3469 void
3470 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3471 {
3472 	BUG_ON(obj->pin_count == 0);
3473 	BUG_ON(obj->gtt_space == NULL);
3474 
3475 	if (--obj->pin_count == 0)
3476 		obj->pin_mappable = false;
3477 }
3478 
3479 int
3480 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3481 		   struct drm_file *file)
3482 {
3483 	struct drm_i915_gem_pin *args = data;
3484 	struct drm_i915_gem_object *obj;
3485 	int ret;
3486 
3487 	ret = i915_mutex_lock_interruptible(dev);
3488 	if (ret)
3489 		return ret;
3490 
3491 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3492 	if (&obj->base == NULL) {
3493 		ret = -ENOENT;
3494 		goto unlock;
3495 	}
3496 
3497 	if (obj->madv != I915_MADV_WILLNEED) {
3498 		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3499 		ret = -EINVAL;
3500 		goto out;
3501 	}
3502 
3503 	if (obj->pin_filp != NULL && obj->pin_filp != file) {
3504 		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3505 			  args->handle);
3506 		ret = -EINVAL;
3507 		goto out;
3508 	}
3509 
3510 	obj->user_pin_count++;
3511 	obj->pin_filp = file;
3512 	if (obj->user_pin_count == 1) {
3513 		ret = i915_gem_object_pin(obj, args->alignment, true, false);
3514 		if (ret)
3515 			goto out;
3516 	}
3517 
3518 	/* XXX - flush the CPU caches for pinned objects
3519 	 * as the X server doesn't manage domains yet
3520 	 */
3521 	i915_gem_object_flush_cpu_write_domain(obj);
3522 	args->offset = obj->gtt_offset;
3523 out:
3524 	drm_gem_object_unreference(&obj->base);
3525 unlock:
3526 	mutex_unlock(&dev->struct_mutex);
3527 	return ret;
3528 }
3529 
3530 int
3531 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3532 		     struct drm_file *file)
3533 {
3534 	struct drm_i915_gem_pin *args = data;
3535 	struct drm_i915_gem_object *obj;
3536 	int ret;
3537 
3538 	ret = i915_mutex_lock_interruptible(dev);
3539 	if (ret)
3540 		return ret;
3541 
3542 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3543 	if (&obj->base == NULL) {
3544 		ret = -ENOENT;
3545 		goto unlock;
3546 	}
3547 
3548 	if (obj->pin_filp != file) {
3549 		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3550 			  args->handle);
3551 		ret = -EINVAL;
3552 		goto out;
3553 	}
3554 	obj->user_pin_count--;
3555 	if (obj->user_pin_count == 0) {
3556 		obj->pin_filp = NULL;
3557 		i915_gem_object_unpin(obj);
3558 	}
3559 
3560 out:
3561 	drm_gem_object_unreference(&obj->base);
3562 unlock:
3563 	mutex_unlock(&dev->struct_mutex);
3564 	return ret;
3565 }
3566 
3567 int
3568 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3569 		    struct drm_file *file)
3570 {
3571 	struct drm_i915_gem_busy *args = data;
3572 	struct drm_i915_gem_object *obj;
3573 	int ret;
3574 
3575 	ret = i915_mutex_lock_interruptible(dev);
3576 	if (ret)
3577 		return ret;
3578 
3579 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3580 	if (&obj->base == NULL) {
3581 		ret = -ENOENT;
3582 		goto unlock;
3583 	}
3584 
3585 	/* Count all active objects as busy, even if they are currently not used
3586 	 * by the gpu. Users of this interface expect objects to eventually
3587 	 * become non-busy without any further actions, therefore emit any
3588 	 * necessary flushes here.
3589 	 */
3590 	ret = i915_gem_object_flush_active(obj);
3591 
3592 	args->busy = obj->active;
3593 	if (obj->ring) {
3594 		BUILD_BUG_ON(I915_NUM_RINGS > 16);
3595 		args->busy |= intel_ring_flag(obj->ring) << 16;
3596 	}
3597 
3598 	drm_gem_object_unreference(&obj->base);
3599 unlock:
3600 	mutex_unlock(&dev->struct_mutex);
3601 	return ret;
3602 }
3603 
3604 int
3605 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3606 			struct drm_file *file_priv)
3607 {
3608 	return i915_gem_ring_throttle(dev, file_priv);
3609 }
3610 
3611 int
3612 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3613 		       struct drm_file *file_priv)
3614 {
3615 	struct drm_i915_gem_madvise *args = data;
3616 	struct drm_i915_gem_object *obj;
3617 	int ret;
3618 
3619 	switch (args->madv) {
3620 	case I915_MADV_DONTNEED:
3621 	case I915_MADV_WILLNEED:
3622 	    break;
3623 	default:
3624 	    return -EINVAL;
3625 	}
3626 
3627 	ret = i915_mutex_lock_interruptible(dev);
3628 	if (ret)
3629 		return ret;
3630 
3631 	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3632 	if (&obj->base == NULL) {
3633 		ret = -ENOENT;
3634 		goto unlock;
3635 	}
3636 
3637 	if (obj->pin_count) {
3638 		ret = -EINVAL;
3639 		goto out;
3640 	}
3641 
3642 	if (obj->madv != __I915_MADV_PURGED)
3643 		obj->madv = args->madv;
3644 
3645 	/* if the object is no longer attached, discard its backing storage */
3646 	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3647 		i915_gem_object_truncate(obj);
3648 
3649 	args->retained = obj->madv != __I915_MADV_PURGED;
3650 
3651 out:
3652 	drm_gem_object_unreference(&obj->base);
3653 unlock:
3654 	mutex_unlock(&dev->struct_mutex);
3655 	return ret;
3656 }
3657 
3658 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3659 			  const struct drm_i915_gem_object_ops *ops)
3660 {
3661 	INIT_LIST_HEAD(&obj->mm_list);
3662 	INIT_LIST_HEAD(&obj->gtt_list);
3663 	INIT_LIST_HEAD(&obj->ring_list);
3664 	INIT_LIST_HEAD(&obj->exec_list);
3665 
3666 	obj->ops = ops;
3667 
3668 	obj->fence_reg = I915_FENCE_REG_NONE;
3669 	obj->madv = I915_MADV_WILLNEED;
3670 	/* Avoid an unnecessary call to unbind on the first bind. */
3671 	obj->map_and_fenceable = true;
3672 
3673 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3674 }
3675 
3676 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3677 	.get_pages = i915_gem_object_get_pages_gtt,
3678 	.put_pages = i915_gem_object_put_pages_gtt,
3679 };
3680 
3681 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3682 						  size_t size)
3683 {
3684 	struct drm_i915_gem_object *obj;
3685 	struct address_space *mapping;
3686 	u32 mask;
3687 
3688 	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3689 	if (obj == NULL)
3690 		return NULL;
3691 
3692 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3693 		kfree(obj);
3694 		return NULL;
3695 	}
3696 
3697 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3698 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3699 		/* 965gm cannot relocate objects above 4GiB. */
3700 		mask &= ~__GFP_HIGHMEM;
3701 		mask |= __GFP_DMA32;
3702 	}
3703 
3704 	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3705 	mapping_set_gfp_mask(mapping, mask);
3706 
3707 	i915_gem_object_init(obj, &i915_gem_object_ops);
3708 
3709 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3710 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3711 
3712 	if (HAS_LLC(dev)) {
3713 		/* On some devices, we can have the GPU use the LLC (the CPU
3714 		 * cache) for about a 10% performance improvement
3715 		 * compared to uncached.  Graphics requests other than
3716 		 * display scanout are coherent with the CPU in
3717 		 * accessing this cache.  This means in this mode we
3718 		 * don't need to clflush on the CPU side, and on the
3719 		 * GPU side we only need to flush internal caches to
3720 		 * get data visible to the CPU.
3721 		 *
3722 		 * However, we maintain the display planes as UC, and so
3723 		 * need to rebind when first used as such.
3724 		 */
3725 		obj->cache_level = I915_CACHE_LLC;
3726 	} else
3727 		obj->cache_level = I915_CACHE_NONE;
3728 
3729 	return obj;
3730 }
3731 
3732 int i915_gem_init_object(struct drm_gem_object *obj)
3733 {
3734 	BUG();
3735 
3736 	return 0;
3737 }
3738 
3739 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3740 {
3741 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3742 	struct drm_device *dev = obj->base.dev;
3743 	drm_i915_private_t *dev_priv = dev->dev_private;
3744 
3745 	trace_i915_gem_object_destroy(obj);
3746 
3747 	if (obj->phys_obj)
3748 		i915_gem_detach_phys_object(dev, obj);
3749 
3750 	obj->pin_count = 0;
3751 	if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3752 		bool was_interruptible;
3753 
3754 		was_interruptible = dev_priv->mm.interruptible;
3755 		dev_priv->mm.interruptible = false;
3756 
3757 		WARN_ON(i915_gem_object_unbind(obj));
3758 
3759 		dev_priv->mm.interruptible = was_interruptible;
3760 	}
3761 
3762 	obj->pages_pin_count = 0;
3763 	i915_gem_object_put_pages(obj);
3764 	i915_gem_object_free_mmap_offset(obj);
3765 
3766 	BUG_ON(obj->pages);
3767 
3768 	if (obj->base.import_attach)
3769 		drm_prime_gem_destroy(&obj->base, NULL);
3770 
3771 	drm_gem_object_release(&obj->base);
3772 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3773 
3774 	kfree(obj->bit_17);
3775 	kfree(obj);
3776 }
3777 
3778 int
3779 i915_gem_idle(struct drm_device *dev)
3780 {
3781 	drm_i915_private_t *dev_priv = dev->dev_private;
3782 	int ret;
3783 
3784 	mutex_lock(&dev->struct_mutex);
3785 
3786 	if (dev_priv->mm.suspended) {
3787 		mutex_unlock(&dev->struct_mutex);
3788 		return 0;
3789 	}
3790 
3791 	ret = i915_gpu_idle(dev);
3792 	if (ret) {
3793 		mutex_unlock(&dev->struct_mutex);
3794 		return ret;
3795 	}
3796 	i915_gem_retire_requests(dev);
3797 
3798 	/* Under UMS, be paranoid and evict. */
3799 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
3800 		i915_gem_evict_everything(dev);
3801 
3802 	i915_gem_reset_fences(dev);
3803 
3804 	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
3805 	 * We need to replace this with a semaphore, or something.
3806 	 * And not confound mm.suspended!
3807 	 */
3808 	dev_priv->mm.suspended = 1;
3809 	del_timer_sync(&dev_priv->hangcheck_timer);
3810 
3811 	i915_kernel_lost_context(dev);
3812 	i915_gem_cleanup_ringbuffer(dev);
3813 
3814 	mutex_unlock(&dev->struct_mutex);
3815 
3816 	/* Cancel the retire work handler, which should be idle now. */
3817 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3818 
3819 	return 0;
3820 }
3821 
3822 void i915_gem_l3_remap(struct drm_device *dev)
3823 {
3824 	drm_i915_private_t *dev_priv = dev->dev_private;
3825 	u32 misccpctl;
3826 	int i;
3827 
3828 	if (!IS_IVYBRIDGE(dev))
3829 		return;
3830 
3831 	if (!dev_priv->mm.l3_remap_info)
3832 		return;
3833 
3834 	misccpctl = I915_READ(GEN7_MISCCPCTL);
3835 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3836 	POSTING_READ(GEN7_MISCCPCTL);
3837 
3838 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3839 		u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3840 		if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
3841 			DRM_DEBUG("0x%x was already programmed to %x\n",
3842 				  GEN7_L3LOG_BASE + i, remap);
3843 		if (remap && !dev_priv->mm.l3_remap_info[i/4])
3844 			DRM_DEBUG_DRIVER("Clearing remapped register\n");
3845 		I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
3846 	}
3847 
3848 	/* Make sure all the writes land before disabling dop clock gating */
3849 	POSTING_READ(GEN7_L3LOG_BASE);
3850 
3851 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3852 }
3853 
3854 void i915_gem_init_swizzling(struct drm_device *dev)
3855 {
3856 	drm_i915_private_t *dev_priv = dev->dev_private;
3857 
3858 	if (INTEL_INFO(dev)->gen < 5 ||
3859 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3860 		return;
3861 
3862 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3863 				 DISP_TILE_SURFACE_SWIZZLING);
3864 
3865 	if (IS_GEN5(dev))
3866 		return;
3867 
3868 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3869 	if (IS_GEN6(dev))
3870 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3871 	else
3872 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3873 }
3874 
3875 void i915_gem_init_ppgtt(struct drm_device *dev)
3876 {
3877 	drm_i915_private_t *dev_priv = dev->dev_private;
3878 	uint32_t pd_offset;
3879 	struct intel_ring_buffer *ring;
3880 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3881 	uint32_t __iomem *pd_addr;
3882 	uint32_t pd_entry;
3883 	int i;
3884 
3885 	if (!dev_priv->mm.aliasing_ppgtt)
3886 		return;
3887 
3888 
3889 	pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3890 	for (i = 0; i < ppgtt->num_pd_entries; i++) {
3891 		dma_addr_t pt_addr;
3892 
3893 		if (dev_priv->mm.gtt->needs_dmar)
3894 			pt_addr = ppgtt->pt_dma_addr[i];
3895 		else
3896 			pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3897 
3898 		pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3899 		pd_entry |= GEN6_PDE_VALID;
3900 
3901 		writel(pd_entry, pd_addr + i);
3902 	}
3903 	readl(pd_addr);
3904 
3905 	pd_offset = ppgtt->pd_offset;
3906 	pd_offset /= 64; /* in cachelines, */
3907 	pd_offset <<= 16;
3908 
3909 	if (INTEL_INFO(dev)->gen == 6) {
3910 		uint32_t ecochk, gab_ctl, ecobits;
3911 
3912 		ecobits = I915_READ(GAC_ECO_BITS);
3913 		I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3914 
3915 		gab_ctl = I915_READ(GAB_CTL);
3916 		I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3917 
3918 		ecochk = I915_READ(GAM_ECOCHK);
3919 		I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3920 				       ECOCHK_PPGTT_CACHE64B);
3921 		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3922 	} else if (INTEL_INFO(dev)->gen >= 7) {
3923 		I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3924 		/* GFX_MODE is per-ring on gen7+ */
3925 	}
3926 
3927 	for_each_ring(ring, dev_priv, i) {
3928 		if (INTEL_INFO(dev)->gen >= 7)
3929 			I915_WRITE(RING_MODE_GEN7(ring),
3930 				   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3931 
3932 		I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3933 		I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3934 	}
3935 }
3936 
3937 static bool
3938 intel_enable_blt(struct drm_device *dev)
3939 {
3940 	if (!HAS_BLT(dev))
3941 		return false;
3942 
3943 	/* The blitter was dysfunctional on early prototypes */
3944 	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3945 		DRM_INFO("BLT not supported on this pre-production hardware;"
3946 			 " graphics performance will be degraded.\n");
3947 		return false;
3948 	}
3949 
3950 	return true;
3951 }
3952 
3953 int
3954 i915_gem_init_hw(struct drm_device *dev)
3955 {
3956 	drm_i915_private_t *dev_priv = dev->dev_private;
3957 	int ret;
3958 
3959 	if (!intel_enable_gtt())
3960 		return -EIO;
3961 
3962 	i915_gem_l3_remap(dev);
3963 
3964 	i915_gem_init_swizzling(dev);
3965 
3966 	ret = intel_init_render_ring_buffer(dev);
3967 	if (ret)
3968 		return ret;
3969 
3970 	if (HAS_BSD(dev)) {
3971 		ret = intel_init_bsd_ring_buffer(dev);
3972 		if (ret)
3973 			goto cleanup_render_ring;
3974 	}
3975 
3976 	if (intel_enable_blt(dev)) {
3977 		ret = intel_init_blt_ring_buffer(dev);
3978 		if (ret)
3979 			goto cleanup_bsd_ring;
3980 	}
3981 
3982 	dev_priv->next_seqno = 1;
3983 
3984 	/*
3985 	 * XXX: There was some w/a described somewhere suggesting loading
3986 	 * contexts before PPGTT.
3987 	 */
3988 	i915_gem_context_init(dev);
3989 	i915_gem_init_ppgtt(dev);
3990 
3991 	return 0;
3992 
3993 cleanup_bsd_ring:
3994 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3995 cleanup_render_ring:
3996 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3997 	return ret;
3998 }
3999 
4000 static bool
4001 intel_enable_ppgtt(struct drm_device *dev)
4002 {
4003 	if (i915_enable_ppgtt >= 0)
4004 		return i915_enable_ppgtt;
4005 
4006 #ifdef CONFIG_INTEL_IOMMU
4007 	/* Disable ppgtt on SNB if VT-d is on. */
4008 	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
4009 		return false;
4010 #endif
4011 
4012 	return true;
4013 }
4014 
4015 int i915_gem_init(struct drm_device *dev)
4016 {
4017 	struct drm_i915_private *dev_priv = dev->dev_private;
4018 	unsigned long gtt_size, mappable_size;
4019 	int ret;
4020 
4021 	gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
4022 	mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
4023 
4024 	mutex_lock(&dev->struct_mutex);
4025 	if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
4026 		/* PPGTT pdes are stolen from global gtt ptes, so shrink the
4027 		 * aperture accordingly when using aliasing ppgtt. */
4028 		gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
4029 
4030 		i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
4031 
4032 		ret = i915_gem_init_aliasing_ppgtt(dev);
4033 		if (ret) {
4034 			mutex_unlock(&dev->struct_mutex);
4035 			return ret;
4036 		}
4037 	} else {
4038 		/* Let GEM Manage all of the aperture.
4039 		 *
4040 		 * However, leave one page at the end still bound to the scratch
4041 		 * page.  There are a number of places where the hardware
4042 		 * apparently prefetches past the end of the object, and we've
4043 		 * seen multiple hangs with the GPU head pointer stuck in a
4044 		 * batchbuffer bound at the last page of the aperture.  One page
4045 		 * should be enough to keep any prefetching inside of the
4046 		 * aperture.
4047 		 */
4048 		i915_gem_init_global_gtt(dev, 0, mappable_size,
4049 					 gtt_size);
4050 	}
4051 
4052 	ret = i915_gem_init_hw(dev);
4053 	mutex_unlock(&dev->struct_mutex);
4054 	if (ret) {
4055 		i915_gem_cleanup_aliasing_ppgtt(dev);
4056 		return ret;
4057 	}
4058 
4059 	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4060 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4061 		dev_priv->dri1.allow_batchbuffer = 1;
4062 	return 0;
4063 }
4064 
4065 void
4066 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4067 {
4068 	drm_i915_private_t *dev_priv = dev->dev_private;
4069 	struct intel_ring_buffer *ring;
4070 	int i;
4071 
4072 	for_each_ring(ring, dev_priv, i)
4073 		intel_cleanup_ring_buffer(ring);
4074 }
4075 
4076 int
4077 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4078 		       struct drm_file *file_priv)
4079 {
4080 	drm_i915_private_t *dev_priv = dev->dev_private;
4081 	int ret;
4082 
4083 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4084 		return 0;
4085 
4086 	if (atomic_read(&dev_priv->mm.wedged)) {
4087 		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4088 		atomic_set(&dev_priv->mm.wedged, 0);
4089 	}
4090 
4091 	mutex_lock(&dev->struct_mutex);
4092 	dev_priv->mm.suspended = 0;
4093 
4094 	ret = i915_gem_init_hw(dev);
4095 	if (ret != 0) {
4096 		mutex_unlock(&dev->struct_mutex);
4097 		return ret;
4098 	}
4099 
4100 	BUG_ON(!list_empty(&dev_priv->mm.active_list));
4101 	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4102 	mutex_unlock(&dev->struct_mutex);
4103 
4104 	ret = drm_irq_install(dev);
4105 	if (ret)
4106 		goto cleanup_ringbuffer;
4107 
4108 	return 0;
4109 
4110 cleanup_ringbuffer:
4111 	mutex_lock(&dev->struct_mutex);
4112 	i915_gem_cleanup_ringbuffer(dev);
4113 	dev_priv->mm.suspended = 1;
4114 	mutex_unlock(&dev->struct_mutex);
4115 
4116 	return ret;
4117 }
4118 
4119 int
4120 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4121 		       struct drm_file *file_priv)
4122 {
4123 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4124 		return 0;
4125 
4126 	drm_irq_uninstall(dev);
4127 	return i915_gem_idle(dev);
4128 }
4129 
4130 void
4131 i915_gem_lastclose(struct drm_device *dev)
4132 {
4133 	int ret;
4134 
4135 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4136 		return;
4137 
4138 	ret = i915_gem_idle(dev);
4139 	if (ret)
4140 		DRM_ERROR("failed to idle hardware: %d\n", ret);
4141 }
4142 
4143 static void
4144 init_ring_lists(struct intel_ring_buffer *ring)
4145 {
4146 	INIT_LIST_HEAD(&ring->active_list);
4147 	INIT_LIST_HEAD(&ring->request_list);
4148 }
4149 
4150 void
4151 i915_gem_load(struct drm_device *dev)
4152 {
4153 	int i;
4154 	drm_i915_private_t *dev_priv = dev->dev_private;
4155 
4156 	INIT_LIST_HEAD(&dev_priv->mm.active_list);
4157 	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4158 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4159 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4160 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4161 	for (i = 0; i < I915_NUM_RINGS; i++)
4162 		init_ring_lists(&dev_priv->ring[i]);
4163 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4164 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4165 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4166 			  i915_gem_retire_work_handler);
4167 	init_completion(&dev_priv->error_completion);
4168 
4169 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4170 	if (IS_GEN3(dev)) {
4171 		I915_WRITE(MI_ARB_STATE,
4172 			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4173 	}
4174 
4175 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4176 
4177 	/* Old X drivers will take 0-2 for front, back, depth buffers */
4178 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4179 		dev_priv->fence_reg_start = 3;
4180 
4181 	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4182 		dev_priv->num_fence_regs = 16;
4183 	else
4184 		dev_priv->num_fence_regs = 8;
4185 
4186 	/* Initialize fence registers to zero */
4187 	i915_gem_reset_fences(dev);
4188 
4189 	i915_gem_detect_bit_6_swizzle(dev);
4190 	init_waitqueue_head(&dev_priv->pending_flip_queue);
4191 
4192 	dev_priv->mm.interruptible = true;
4193 
4194 	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4195 	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4196 	register_shrinker(&dev_priv->mm.inactive_shrinker);
4197 }
4198 
4199 /*
4200  * Create a physically contiguous memory object for this object
4201  * e.g. for cursor + overlay regs
4202  */
4203 static int i915_gem_init_phys_object(struct drm_device *dev,
4204 				     int id, int size, int align)
4205 {
4206 	drm_i915_private_t *dev_priv = dev->dev_private;
4207 	struct drm_i915_gem_phys_object *phys_obj;
4208 	int ret;
4209 
4210 	if (dev_priv->mm.phys_objs[id - 1] || !size)
4211 		return 0;
4212 
4213 	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4214 	if (!phys_obj)
4215 		return -ENOMEM;
4216 
4217 	phys_obj->id = id;
4218 
4219 	phys_obj->handle = drm_pci_alloc(dev, size, align);
4220 	if (!phys_obj->handle) {
4221 		ret = -ENOMEM;
4222 		goto kfree_obj;
4223 	}
4224 #ifdef CONFIG_X86
4225 	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4226 #endif
4227 
4228 	dev_priv->mm.phys_objs[id - 1] = phys_obj;
4229 
4230 	return 0;
4231 kfree_obj:
4232 	kfree(phys_obj);
4233 	return ret;
4234 }
4235 
4236 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4237 {
4238 	drm_i915_private_t *dev_priv = dev->dev_private;
4239 	struct drm_i915_gem_phys_object *phys_obj;
4240 
4241 	if (!dev_priv->mm.phys_objs[id - 1])
4242 		return;
4243 
4244 	phys_obj = dev_priv->mm.phys_objs[id - 1];
4245 	if (phys_obj->cur_obj) {
4246 		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4247 	}
4248 
4249 #ifdef CONFIG_X86
4250 	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4251 #endif
4252 	drm_pci_free(dev, phys_obj->handle);
4253 	kfree(phys_obj);
4254 	dev_priv->mm.phys_objs[id - 1] = NULL;
4255 }
4256 
4257 void i915_gem_free_all_phys_object(struct drm_device *dev)
4258 {
4259 	int i;
4260 
4261 	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4262 		i915_gem_free_phys_object(dev, i);
4263 }
4264 
4265 void i915_gem_detach_phys_object(struct drm_device *dev,
4266 				 struct drm_i915_gem_object *obj)
4267 {
4268 	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4269 	char *vaddr;
4270 	int i;
4271 	int page_count;
4272 
4273 	if (!obj->phys_obj)
4274 		return;
4275 	vaddr = obj->phys_obj->handle->vaddr;
4276 
4277 	page_count = obj->base.size / PAGE_SIZE;
4278 	for (i = 0; i < page_count; i++) {
4279 		struct page *page = shmem_read_mapping_page(mapping, i);
4280 		if (!IS_ERR(page)) {
4281 			char *dst = kmap_atomic(page);
4282 			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4283 			kunmap_atomic(dst);
4284 
4285 			drm_clflush_pages(&page, 1);
4286 
4287 			set_page_dirty(page);
4288 			mark_page_accessed(page);
4289 			page_cache_release(page);
4290 		}
4291 	}
4292 	intel_gtt_chipset_flush();
4293 
4294 	obj->phys_obj->cur_obj = NULL;
4295 	obj->phys_obj = NULL;
4296 }
4297 
4298 int
4299 i915_gem_attach_phys_object(struct drm_device *dev,
4300 			    struct drm_i915_gem_object *obj,
4301 			    int id,
4302 			    int align)
4303 {
4304 	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4305 	drm_i915_private_t *dev_priv = dev->dev_private;
4306 	int ret = 0;
4307 	int page_count;
4308 	int i;
4309 
4310 	if (id > I915_MAX_PHYS_OBJECT)
4311 		return -EINVAL;
4312 
4313 	if (obj->phys_obj) {
4314 		if (obj->phys_obj->id == id)
4315 			return 0;
4316 		i915_gem_detach_phys_object(dev, obj);
4317 	}
4318 
4319 	/* create a new object */
4320 	if (!dev_priv->mm.phys_objs[id - 1]) {
4321 		ret = i915_gem_init_phys_object(dev, id,
4322 						obj->base.size, align);
4323 		if (ret) {
4324 			DRM_ERROR("failed to init phys object %d size: %zu\n",
4325 				  id, obj->base.size);
4326 			return ret;
4327 		}
4328 	}
4329 
4330 	/* bind to the object */
4331 	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4332 	obj->phys_obj->cur_obj = obj;
4333 
4334 	page_count = obj->base.size / PAGE_SIZE;
4335 
4336 	for (i = 0; i < page_count; i++) {
4337 		struct page *page;
4338 		char *dst, *src;
4339 
4340 		page = shmem_read_mapping_page(mapping, i);
4341 		if (IS_ERR(page))
4342 			return PTR_ERR(page);
4343 
4344 		src = kmap_atomic(page);
4345 		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4346 		memcpy(dst, src, PAGE_SIZE);
4347 		kunmap_atomic(src);
4348 
4349 		mark_page_accessed(page);
4350 		page_cache_release(page);
4351 	}
4352 
4353 	return 0;
4354 }
4355 
4356 static int
4357 i915_gem_phys_pwrite(struct drm_device *dev,
4358 		     struct drm_i915_gem_object *obj,
4359 		     struct drm_i915_gem_pwrite *args,
4360 		     struct drm_file *file_priv)
4361 {
4362 	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4363 	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4364 
4365 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4366 		unsigned long unwritten;
4367 
4368 		/* The physical object once assigned is fixed for the lifetime
4369 		 * of the obj, so we can safely drop the lock and continue
4370 		 * to access vaddr.
4371 		 */
4372 		mutex_unlock(&dev->struct_mutex);
4373 		unwritten = copy_from_user(vaddr, user_data, args->size);
4374 		mutex_lock(&dev->struct_mutex);
4375 		if (unwritten)
4376 			return -EFAULT;
4377 	}
4378 
4379 	intel_gtt_chipset_flush();
4380 	return 0;
4381 }
4382 
4383 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4384 {
4385 	struct drm_i915_file_private *file_priv = file->driver_priv;
4386 
4387 	/* Clean up our request list when the client is going away, so that
4388 	 * later retire_requests won't dereference our soon-to-be-gone
4389 	 * file_priv.
4390 	 */
4391 	spin_lock(&file_priv->mm.lock);
4392 	while (!list_empty(&file_priv->mm.request_list)) {
4393 		struct drm_i915_gem_request *request;
4394 
4395 		request = list_first_entry(&file_priv->mm.request_list,
4396 					   struct drm_i915_gem_request,
4397 					   client_list);
4398 		list_del(&request->client_list);
4399 		request->file_priv = NULL;
4400 	}
4401 	spin_unlock(&file_priv->mm.lock);
4402 }
4403 
4404 static int
4405 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4406 {
4407 	struct drm_i915_private *dev_priv =
4408 		container_of(shrinker,
4409 			     struct drm_i915_private,
4410 			     mm.inactive_shrinker);
4411 	struct drm_device *dev = dev_priv->dev;
4412 	struct drm_i915_gem_object *obj;
4413 	int nr_to_scan = sc->nr_to_scan;
4414 	int cnt;
4415 
4416 	if (!mutex_trylock(&dev->struct_mutex))
4417 		return 0;
4418 
4419 	if (nr_to_scan) {
4420 		nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4421 		if (nr_to_scan > 0)
4422 			i915_gem_shrink_all(dev_priv);
4423 	}
4424 
4425 	cnt = 0;
4426 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4427 		if (obj->pages_pin_count == 0)
4428 			cnt += obj->base.size >> PAGE_SHIFT;
4429 	list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
4430 		if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4431 			cnt += obj->base.size >> PAGE_SHIFT;
4432 
4433 	mutex_unlock(&dev->struct_mutex);
4434 	return cnt;
4435 }
4436