1 /* 2 * Copyright © 2008 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <drm/drmP.h> 29 #include <drm/i915_drm.h> 30 #include "i915_drv.h" 31 #include "i915_trace.h" 32 #include "intel_drv.h" 33 #include <linux/shmem_fs.h> 34 #include <linux/slab.h> 35 #include <linux/swap.h> 36 #include <linux/pci.h> 37 #include <linux/dma-buf.h> 38 39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj); 40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj); 41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj, 42 unsigned alignment, 43 bool map_and_fenceable, 44 bool nonblocking); 45 static int i915_gem_phys_pwrite(struct drm_device *dev, 46 struct drm_i915_gem_object *obj, 47 struct drm_i915_gem_pwrite *args, 48 struct drm_file *file); 49 50 static void i915_gem_write_fence(struct drm_device *dev, int reg, 51 struct drm_i915_gem_object *obj); 52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, 53 struct drm_i915_fence_reg *fence, 54 bool enable); 55 56 static int i915_gem_inactive_shrink(struct shrinker *shrinker, 57 struct shrink_control *sc); 58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target); 59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv); 60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj); 61 62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj) 63 { 64 if (obj->tiling_mode) 65 i915_gem_release_mmap(obj); 66 67 /* As we do not have an associated fence register, we will force 68 * a tiling change if we ever need to acquire one. 69 */ 70 obj->fence_dirty = false; 71 obj->fence_reg = I915_FENCE_REG_NONE; 72 } 73 74 /* some bookkeeping */ 75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv, 76 size_t size) 77 { 78 dev_priv->mm.object_count++; 79 dev_priv->mm.object_memory += size; 80 } 81 82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, 83 size_t size) 84 { 85 dev_priv->mm.object_count--; 86 dev_priv->mm.object_memory -= size; 87 } 88 89 static int 90 i915_gem_wait_for_error(struct drm_device *dev) 91 { 92 struct drm_i915_private *dev_priv = dev->dev_private; 93 struct completion *x = &dev_priv->error_completion; 94 unsigned long flags; 95 int ret; 96 97 if (!atomic_read(&dev_priv->mm.wedged)) 98 return 0; 99 100 /* 101 * Only wait 10 seconds for the gpu reset to complete to avoid hanging 102 * userspace. If it takes that long something really bad is going on and 103 * we should simply try to bail out and fail as gracefully as possible. 104 */ 105 ret = wait_for_completion_interruptible_timeout(x, 10*HZ); 106 if (ret == 0) { 107 DRM_ERROR("Timed out waiting for the gpu reset to complete\n"); 108 return -EIO; 109 } else if (ret < 0) { 110 return ret; 111 } 112 113 if (atomic_read(&dev_priv->mm.wedged)) { 114 /* GPU is hung, bump the completion count to account for 115 * the token we just consumed so that we never hit zero and 116 * end up waiting upon a subsequent completion event that 117 * will never happen. 118 */ 119 spin_lock_irqsave(&x->wait.lock, flags); 120 x->done++; 121 spin_unlock_irqrestore(&x->wait.lock, flags); 122 } 123 return 0; 124 } 125 126 int i915_mutex_lock_interruptible(struct drm_device *dev) 127 { 128 int ret; 129 130 ret = i915_gem_wait_for_error(dev); 131 if (ret) 132 return ret; 133 134 ret = mutex_lock_interruptible(&dev->struct_mutex); 135 if (ret) 136 return ret; 137 138 WARN_ON(i915_verify_lists(dev)); 139 return 0; 140 } 141 142 static inline bool 143 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj) 144 { 145 return obj->gtt_space && !obj->active; 146 } 147 148 int 149 i915_gem_init_ioctl(struct drm_device *dev, void *data, 150 struct drm_file *file) 151 { 152 struct drm_i915_gem_init *args = data; 153 154 if (drm_core_check_feature(dev, DRIVER_MODESET)) 155 return -ENODEV; 156 157 if (args->gtt_start >= args->gtt_end || 158 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1)) 159 return -EINVAL; 160 161 /* GEM with user mode setting was never supported on ilk and later. */ 162 if (INTEL_INFO(dev)->gen >= 5) 163 return -ENODEV; 164 165 mutex_lock(&dev->struct_mutex); 166 i915_gem_init_global_gtt(dev, args->gtt_start, 167 args->gtt_end, args->gtt_end); 168 mutex_unlock(&dev->struct_mutex); 169 170 return 0; 171 } 172 173 int 174 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 175 struct drm_file *file) 176 { 177 struct drm_i915_private *dev_priv = dev->dev_private; 178 struct drm_i915_gem_get_aperture *args = data; 179 struct drm_i915_gem_object *obj; 180 size_t pinned; 181 182 pinned = 0; 183 mutex_lock(&dev->struct_mutex); 184 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list) 185 if (obj->pin_count) 186 pinned += obj->gtt_space->size; 187 mutex_unlock(&dev->struct_mutex); 188 189 args->aper_size = dev_priv->mm.gtt_total; 190 args->aper_available_size = args->aper_size - pinned; 191 192 return 0; 193 } 194 195 static int 196 i915_gem_create(struct drm_file *file, 197 struct drm_device *dev, 198 uint64_t size, 199 uint32_t *handle_p) 200 { 201 struct drm_i915_gem_object *obj; 202 int ret; 203 u32 handle; 204 205 size = roundup(size, PAGE_SIZE); 206 if (size == 0) 207 return -EINVAL; 208 209 /* Allocate the new object */ 210 obj = i915_gem_alloc_object(dev, size); 211 if (obj == NULL) 212 return -ENOMEM; 213 214 ret = drm_gem_handle_create(file, &obj->base, &handle); 215 if (ret) { 216 drm_gem_object_release(&obj->base); 217 i915_gem_info_remove_obj(dev->dev_private, obj->base.size); 218 kfree(obj); 219 return ret; 220 } 221 222 /* drop reference from allocate - handle holds it now */ 223 drm_gem_object_unreference(&obj->base); 224 trace_i915_gem_object_create(obj); 225 226 *handle_p = handle; 227 return 0; 228 } 229 230 int 231 i915_gem_dumb_create(struct drm_file *file, 232 struct drm_device *dev, 233 struct drm_mode_create_dumb *args) 234 { 235 /* have to work out size/pitch and return them */ 236 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64); 237 args->size = args->pitch * args->height; 238 return i915_gem_create(file, dev, 239 args->size, &args->handle); 240 } 241 242 int i915_gem_dumb_destroy(struct drm_file *file, 243 struct drm_device *dev, 244 uint32_t handle) 245 { 246 return drm_gem_handle_delete(file, handle); 247 } 248 249 /** 250 * Creates a new mm object and returns a handle to it. 251 */ 252 int 253 i915_gem_create_ioctl(struct drm_device *dev, void *data, 254 struct drm_file *file) 255 { 256 struct drm_i915_gem_create *args = data; 257 258 return i915_gem_create(file, dev, 259 args->size, &args->handle); 260 } 261 262 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj) 263 { 264 drm_i915_private_t *dev_priv = obj->base.dev->dev_private; 265 266 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 && 267 obj->tiling_mode != I915_TILING_NONE; 268 } 269 270 static inline int 271 __copy_to_user_swizzled(char __user *cpu_vaddr, 272 const char *gpu_vaddr, int gpu_offset, 273 int length) 274 { 275 int ret, cpu_offset = 0; 276 277 while (length > 0) { 278 int cacheline_end = ALIGN(gpu_offset + 1, 64); 279 int this_length = min(cacheline_end - gpu_offset, length); 280 int swizzled_gpu_offset = gpu_offset ^ 64; 281 282 ret = __copy_to_user(cpu_vaddr + cpu_offset, 283 gpu_vaddr + swizzled_gpu_offset, 284 this_length); 285 if (ret) 286 return ret + length; 287 288 cpu_offset += this_length; 289 gpu_offset += this_length; 290 length -= this_length; 291 } 292 293 return 0; 294 } 295 296 static inline int 297 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset, 298 const char __user *cpu_vaddr, 299 int length) 300 { 301 int ret, cpu_offset = 0; 302 303 while (length > 0) { 304 int cacheline_end = ALIGN(gpu_offset + 1, 64); 305 int this_length = min(cacheline_end - gpu_offset, length); 306 int swizzled_gpu_offset = gpu_offset ^ 64; 307 308 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset, 309 cpu_vaddr + cpu_offset, 310 this_length); 311 if (ret) 312 return ret + length; 313 314 cpu_offset += this_length; 315 gpu_offset += this_length; 316 length -= this_length; 317 } 318 319 return 0; 320 } 321 322 /* Per-page copy function for the shmem pread fastpath. 323 * Flushes invalid cachelines before reading the target if 324 * needs_clflush is set. */ 325 static int 326 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length, 327 char __user *user_data, 328 bool page_do_bit17_swizzling, bool needs_clflush) 329 { 330 char *vaddr; 331 int ret; 332 333 if (unlikely(page_do_bit17_swizzling)) 334 return -EINVAL; 335 336 vaddr = kmap_atomic(page); 337 if (needs_clflush) 338 drm_clflush_virt_range(vaddr + shmem_page_offset, 339 page_length); 340 ret = __copy_to_user_inatomic(user_data, 341 vaddr + shmem_page_offset, 342 page_length); 343 kunmap_atomic(vaddr); 344 345 return ret ? -EFAULT : 0; 346 } 347 348 static void 349 shmem_clflush_swizzled_range(char *addr, unsigned long length, 350 bool swizzled) 351 { 352 if (unlikely(swizzled)) { 353 unsigned long start = (unsigned long) addr; 354 unsigned long end = (unsigned long) addr + length; 355 356 /* For swizzling simply ensure that we always flush both 357 * channels. Lame, but simple and it works. Swizzled 358 * pwrite/pread is far from a hotpath - current userspace 359 * doesn't use it at all. */ 360 start = round_down(start, 128); 361 end = round_up(end, 128); 362 363 drm_clflush_virt_range((void *)start, end - start); 364 } else { 365 drm_clflush_virt_range(addr, length); 366 } 367 368 } 369 370 /* Only difference to the fast-path function is that this can handle bit17 371 * and uses non-atomic copy and kmap functions. */ 372 static int 373 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length, 374 char __user *user_data, 375 bool page_do_bit17_swizzling, bool needs_clflush) 376 { 377 char *vaddr; 378 int ret; 379 380 vaddr = kmap(page); 381 if (needs_clflush) 382 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 383 page_length, 384 page_do_bit17_swizzling); 385 386 if (page_do_bit17_swizzling) 387 ret = __copy_to_user_swizzled(user_data, 388 vaddr, shmem_page_offset, 389 page_length); 390 else 391 ret = __copy_to_user(user_data, 392 vaddr + shmem_page_offset, 393 page_length); 394 kunmap(page); 395 396 return ret ? - EFAULT : 0; 397 } 398 399 static int 400 i915_gem_shmem_pread(struct drm_device *dev, 401 struct drm_i915_gem_object *obj, 402 struct drm_i915_gem_pread *args, 403 struct drm_file *file) 404 { 405 char __user *user_data; 406 ssize_t remain; 407 loff_t offset; 408 int shmem_page_offset, page_length, ret = 0; 409 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 410 int hit_slowpath = 0; 411 int prefaulted = 0; 412 int needs_clflush = 0; 413 struct scatterlist *sg; 414 int i; 415 416 user_data = (char __user *) (uintptr_t) args->data_ptr; 417 remain = args->size; 418 419 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 420 421 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) { 422 /* If we're not in the cpu read domain, set ourself into the gtt 423 * read domain and manually flush cachelines (if required). This 424 * optimizes for the case when the gpu will dirty the data 425 * anyway again before the next pread happens. */ 426 if (obj->cache_level == I915_CACHE_NONE) 427 needs_clflush = 1; 428 if (obj->gtt_space) { 429 ret = i915_gem_object_set_to_gtt_domain(obj, false); 430 if (ret) 431 return ret; 432 } 433 } 434 435 ret = i915_gem_object_get_pages(obj); 436 if (ret) 437 return ret; 438 439 i915_gem_object_pin_pages(obj); 440 441 offset = args->offset; 442 443 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) { 444 struct page *page; 445 446 if (i < offset >> PAGE_SHIFT) 447 continue; 448 449 if (remain <= 0) 450 break; 451 452 /* Operation in this page 453 * 454 * shmem_page_offset = offset within page in shmem file 455 * page_length = bytes to copy for this page 456 */ 457 shmem_page_offset = offset_in_page(offset); 458 page_length = remain; 459 if ((shmem_page_offset + page_length) > PAGE_SIZE) 460 page_length = PAGE_SIZE - shmem_page_offset; 461 462 page = sg_page(sg); 463 page_do_bit17_swizzling = obj_do_bit17_swizzling && 464 (page_to_phys(page) & (1 << 17)) != 0; 465 466 ret = shmem_pread_fast(page, shmem_page_offset, page_length, 467 user_data, page_do_bit17_swizzling, 468 needs_clflush); 469 if (ret == 0) 470 goto next_page; 471 472 hit_slowpath = 1; 473 mutex_unlock(&dev->struct_mutex); 474 475 if (!prefaulted) { 476 ret = fault_in_multipages_writeable(user_data, remain); 477 /* Userspace is tricking us, but we've already clobbered 478 * its pages with the prefault and promised to write the 479 * data up to the first fault. Hence ignore any errors 480 * and just continue. */ 481 (void)ret; 482 prefaulted = 1; 483 } 484 485 ret = shmem_pread_slow(page, shmem_page_offset, page_length, 486 user_data, page_do_bit17_swizzling, 487 needs_clflush); 488 489 mutex_lock(&dev->struct_mutex); 490 491 next_page: 492 mark_page_accessed(page); 493 494 if (ret) 495 goto out; 496 497 remain -= page_length; 498 user_data += page_length; 499 offset += page_length; 500 } 501 502 out: 503 i915_gem_object_unpin_pages(obj); 504 505 if (hit_slowpath) { 506 /* Fixup: Kill any reinstated backing storage pages */ 507 if (obj->madv == __I915_MADV_PURGED) 508 i915_gem_object_truncate(obj); 509 } 510 511 return ret; 512 } 513 514 /** 515 * Reads data from the object referenced by handle. 516 * 517 * On error, the contents of *data are undefined. 518 */ 519 int 520 i915_gem_pread_ioctl(struct drm_device *dev, void *data, 521 struct drm_file *file) 522 { 523 struct drm_i915_gem_pread *args = data; 524 struct drm_i915_gem_object *obj; 525 int ret = 0; 526 527 if (args->size == 0) 528 return 0; 529 530 if (!access_ok(VERIFY_WRITE, 531 (char __user *)(uintptr_t)args->data_ptr, 532 args->size)) 533 return -EFAULT; 534 535 ret = i915_mutex_lock_interruptible(dev); 536 if (ret) 537 return ret; 538 539 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 540 if (&obj->base == NULL) { 541 ret = -ENOENT; 542 goto unlock; 543 } 544 545 /* Bounds check source. */ 546 if (args->offset > obj->base.size || 547 args->size > obj->base.size - args->offset) { 548 ret = -EINVAL; 549 goto out; 550 } 551 552 /* prime objects have no backing filp to GEM pread/pwrite 553 * pages from. 554 */ 555 if (!obj->base.filp) { 556 ret = -EINVAL; 557 goto out; 558 } 559 560 trace_i915_gem_object_pread(obj, args->offset, args->size); 561 562 ret = i915_gem_shmem_pread(dev, obj, args, file); 563 564 out: 565 drm_gem_object_unreference(&obj->base); 566 unlock: 567 mutex_unlock(&dev->struct_mutex); 568 return ret; 569 } 570 571 /* This is the fast write path which cannot handle 572 * page faults in the source data 573 */ 574 575 static inline int 576 fast_user_write(struct io_mapping *mapping, 577 loff_t page_base, int page_offset, 578 char __user *user_data, 579 int length) 580 { 581 void __iomem *vaddr_atomic; 582 void *vaddr; 583 unsigned long unwritten; 584 585 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base); 586 /* We can use the cpu mem copy function because this is X86. */ 587 vaddr = (void __force*)vaddr_atomic + page_offset; 588 unwritten = __copy_from_user_inatomic_nocache(vaddr, 589 user_data, length); 590 io_mapping_unmap_atomic(vaddr_atomic); 591 return unwritten; 592 } 593 594 /** 595 * This is the fast pwrite path, where we copy the data directly from the 596 * user into the GTT, uncached. 597 */ 598 static int 599 i915_gem_gtt_pwrite_fast(struct drm_device *dev, 600 struct drm_i915_gem_object *obj, 601 struct drm_i915_gem_pwrite *args, 602 struct drm_file *file) 603 { 604 drm_i915_private_t *dev_priv = dev->dev_private; 605 ssize_t remain; 606 loff_t offset, page_base; 607 char __user *user_data; 608 int page_offset, page_length, ret; 609 610 ret = i915_gem_object_pin(obj, 0, true, true); 611 if (ret) 612 goto out; 613 614 ret = i915_gem_object_set_to_gtt_domain(obj, true); 615 if (ret) 616 goto out_unpin; 617 618 ret = i915_gem_object_put_fence(obj); 619 if (ret) 620 goto out_unpin; 621 622 user_data = (char __user *) (uintptr_t) args->data_ptr; 623 remain = args->size; 624 625 offset = obj->gtt_offset + args->offset; 626 627 while (remain > 0) { 628 /* Operation in this page 629 * 630 * page_base = page offset within aperture 631 * page_offset = offset within page 632 * page_length = bytes to copy for this page 633 */ 634 page_base = offset & PAGE_MASK; 635 page_offset = offset_in_page(offset); 636 page_length = remain; 637 if ((page_offset + remain) > PAGE_SIZE) 638 page_length = PAGE_SIZE - page_offset; 639 640 /* If we get a fault while copying data, then (presumably) our 641 * source page isn't available. Return the error and we'll 642 * retry in the slow path. 643 */ 644 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base, 645 page_offset, user_data, page_length)) { 646 ret = -EFAULT; 647 goto out_unpin; 648 } 649 650 remain -= page_length; 651 user_data += page_length; 652 offset += page_length; 653 } 654 655 out_unpin: 656 i915_gem_object_unpin(obj); 657 out: 658 return ret; 659 } 660 661 /* Per-page copy function for the shmem pwrite fastpath. 662 * Flushes invalid cachelines before writing to the target if 663 * needs_clflush_before is set and flushes out any written cachelines after 664 * writing if needs_clflush is set. */ 665 static int 666 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length, 667 char __user *user_data, 668 bool page_do_bit17_swizzling, 669 bool needs_clflush_before, 670 bool needs_clflush_after) 671 { 672 char *vaddr; 673 int ret; 674 675 if (unlikely(page_do_bit17_swizzling)) 676 return -EINVAL; 677 678 vaddr = kmap_atomic(page); 679 if (needs_clflush_before) 680 drm_clflush_virt_range(vaddr + shmem_page_offset, 681 page_length); 682 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset, 683 user_data, 684 page_length); 685 if (needs_clflush_after) 686 drm_clflush_virt_range(vaddr + shmem_page_offset, 687 page_length); 688 kunmap_atomic(vaddr); 689 690 return ret ? -EFAULT : 0; 691 } 692 693 /* Only difference to the fast-path function is that this can handle bit17 694 * and uses non-atomic copy and kmap functions. */ 695 static int 696 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length, 697 char __user *user_data, 698 bool page_do_bit17_swizzling, 699 bool needs_clflush_before, 700 bool needs_clflush_after) 701 { 702 char *vaddr; 703 int ret; 704 705 vaddr = kmap(page); 706 if (unlikely(needs_clflush_before || page_do_bit17_swizzling)) 707 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 708 page_length, 709 page_do_bit17_swizzling); 710 if (page_do_bit17_swizzling) 711 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset, 712 user_data, 713 page_length); 714 else 715 ret = __copy_from_user(vaddr + shmem_page_offset, 716 user_data, 717 page_length); 718 if (needs_clflush_after) 719 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 720 page_length, 721 page_do_bit17_swizzling); 722 kunmap(page); 723 724 return ret ? -EFAULT : 0; 725 } 726 727 static int 728 i915_gem_shmem_pwrite(struct drm_device *dev, 729 struct drm_i915_gem_object *obj, 730 struct drm_i915_gem_pwrite *args, 731 struct drm_file *file) 732 { 733 ssize_t remain; 734 loff_t offset; 735 char __user *user_data; 736 int shmem_page_offset, page_length, ret = 0; 737 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 738 int hit_slowpath = 0; 739 int needs_clflush_after = 0; 740 int needs_clflush_before = 0; 741 int i; 742 struct scatterlist *sg; 743 744 user_data = (char __user *) (uintptr_t) args->data_ptr; 745 remain = args->size; 746 747 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 748 749 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 750 /* If we're not in the cpu write domain, set ourself into the gtt 751 * write domain and manually flush cachelines (if required). This 752 * optimizes for the case when the gpu will use the data 753 * right away and we therefore have to clflush anyway. */ 754 if (obj->cache_level == I915_CACHE_NONE) 755 needs_clflush_after = 1; 756 if (obj->gtt_space) { 757 ret = i915_gem_object_set_to_gtt_domain(obj, true); 758 if (ret) 759 return ret; 760 } 761 } 762 /* Same trick applies for invalidate partially written cachelines before 763 * writing. */ 764 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU) 765 && obj->cache_level == I915_CACHE_NONE) 766 needs_clflush_before = 1; 767 768 ret = i915_gem_object_get_pages(obj); 769 if (ret) 770 return ret; 771 772 i915_gem_object_pin_pages(obj); 773 774 offset = args->offset; 775 obj->dirty = 1; 776 777 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) { 778 struct page *page; 779 int partial_cacheline_write; 780 781 if (i < offset >> PAGE_SHIFT) 782 continue; 783 784 if (remain <= 0) 785 break; 786 787 /* Operation in this page 788 * 789 * shmem_page_offset = offset within page in shmem file 790 * page_length = bytes to copy for this page 791 */ 792 shmem_page_offset = offset_in_page(offset); 793 794 page_length = remain; 795 if ((shmem_page_offset + page_length) > PAGE_SIZE) 796 page_length = PAGE_SIZE - shmem_page_offset; 797 798 /* If we don't overwrite a cacheline completely we need to be 799 * careful to have up-to-date data by first clflushing. Don't 800 * overcomplicate things and flush the entire patch. */ 801 partial_cacheline_write = needs_clflush_before && 802 ((shmem_page_offset | page_length) 803 & (boot_cpu_data.x86_clflush_size - 1)); 804 805 page = sg_page(sg); 806 page_do_bit17_swizzling = obj_do_bit17_swizzling && 807 (page_to_phys(page) & (1 << 17)) != 0; 808 809 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length, 810 user_data, page_do_bit17_swizzling, 811 partial_cacheline_write, 812 needs_clflush_after); 813 if (ret == 0) 814 goto next_page; 815 816 hit_slowpath = 1; 817 mutex_unlock(&dev->struct_mutex); 818 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length, 819 user_data, page_do_bit17_swizzling, 820 partial_cacheline_write, 821 needs_clflush_after); 822 823 mutex_lock(&dev->struct_mutex); 824 825 next_page: 826 set_page_dirty(page); 827 mark_page_accessed(page); 828 829 if (ret) 830 goto out; 831 832 remain -= page_length; 833 user_data += page_length; 834 offset += page_length; 835 } 836 837 out: 838 i915_gem_object_unpin_pages(obj); 839 840 if (hit_slowpath) { 841 /* Fixup: Kill any reinstated backing storage pages */ 842 if (obj->madv == __I915_MADV_PURGED) 843 i915_gem_object_truncate(obj); 844 /* and flush dirty cachelines in case the object isn't in the cpu write 845 * domain anymore. */ 846 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 847 i915_gem_clflush_object(obj); 848 intel_gtt_chipset_flush(); 849 } 850 } 851 852 if (needs_clflush_after) 853 intel_gtt_chipset_flush(); 854 855 return ret; 856 } 857 858 /** 859 * Writes data to the object referenced by handle. 860 * 861 * On error, the contents of the buffer that were to be modified are undefined. 862 */ 863 int 864 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 865 struct drm_file *file) 866 { 867 struct drm_i915_gem_pwrite *args = data; 868 struct drm_i915_gem_object *obj; 869 int ret; 870 871 if (args->size == 0) 872 return 0; 873 874 if (!access_ok(VERIFY_READ, 875 (char __user *)(uintptr_t)args->data_ptr, 876 args->size)) 877 return -EFAULT; 878 879 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr, 880 args->size); 881 if (ret) 882 return -EFAULT; 883 884 ret = i915_mutex_lock_interruptible(dev); 885 if (ret) 886 return ret; 887 888 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 889 if (&obj->base == NULL) { 890 ret = -ENOENT; 891 goto unlock; 892 } 893 894 /* Bounds check destination. */ 895 if (args->offset > obj->base.size || 896 args->size > obj->base.size - args->offset) { 897 ret = -EINVAL; 898 goto out; 899 } 900 901 /* prime objects have no backing filp to GEM pread/pwrite 902 * pages from. 903 */ 904 if (!obj->base.filp) { 905 ret = -EINVAL; 906 goto out; 907 } 908 909 trace_i915_gem_object_pwrite(obj, args->offset, args->size); 910 911 ret = -EFAULT; 912 /* We can only do the GTT pwrite on untiled buffers, as otherwise 913 * it would end up going through the fenced access, and we'll get 914 * different detiling behavior between reading and writing. 915 * pread/pwrite currently are reading and writing from the CPU 916 * perspective, requiring manual detiling by the client. 917 */ 918 if (obj->phys_obj) { 919 ret = i915_gem_phys_pwrite(dev, obj, args, file); 920 goto out; 921 } 922 923 if (obj->cache_level == I915_CACHE_NONE && 924 obj->tiling_mode == I915_TILING_NONE && 925 obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 926 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file); 927 /* Note that the gtt paths might fail with non-page-backed user 928 * pointers (e.g. gtt mappings when moving data between 929 * textures). Fallback to the shmem path in that case. */ 930 } 931 932 if (ret == -EFAULT || ret == -ENOSPC) 933 ret = i915_gem_shmem_pwrite(dev, obj, args, file); 934 935 out: 936 drm_gem_object_unreference(&obj->base); 937 unlock: 938 mutex_unlock(&dev->struct_mutex); 939 return ret; 940 } 941 942 int 943 i915_gem_check_wedge(struct drm_i915_private *dev_priv, 944 bool interruptible) 945 { 946 if (atomic_read(&dev_priv->mm.wedged)) { 947 struct completion *x = &dev_priv->error_completion; 948 bool recovery_complete; 949 unsigned long flags; 950 951 /* Give the error handler a chance to run. */ 952 spin_lock_irqsave(&x->wait.lock, flags); 953 recovery_complete = x->done > 0; 954 spin_unlock_irqrestore(&x->wait.lock, flags); 955 956 /* Non-interruptible callers can't handle -EAGAIN, hence return 957 * -EIO unconditionally for these. */ 958 if (!interruptible) 959 return -EIO; 960 961 /* Recovery complete, but still wedged means reset failure. */ 962 if (recovery_complete) 963 return -EIO; 964 965 return -EAGAIN; 966 } 967 968 return 0; 969 } 970 971 /* 972 * Compare seqno against outstanding lazy request. Emit a request if they are 973 * equal. 974 */ 975 static int 976 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno) 977 { 978 int ret; 979 980 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex)); 981 982 ret = 0; 983 if (seqno == ring->outstanding_lazy_request) 984 ret = i915_add_request(ring, NULL, NULL); 985 986 return ret; 987 } 988 989 /** 990 * __wait_seqno - wait until execution of seqno has finished 991 * @ring: the ring expected to report seqno 992 * @seqno: duh! 993 * @interruptible: do an interruptible wait (normally yes) 994 * @timeout: in - how long to wait (NULL forever); out - how much time remaining 995 * 996 * Returns 0 if the seqno was found within the alloted time. Else returns the 997 * errno with remaining time filled in timeout argument. 998 */ 999 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno, 1000 bool interruptible, struct timespec *timeout) 1001 { 1002 drm_i915_private_t *dev_priv = ring->dev->dev_private; 1003 struct timespec before, now, wait_time={1,0}; 1004 unsigned long timeout_jiffies; 1005 long end; 1006 bool wait_forever = true; 1007 int ret; 1008 1009 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno)) 1010 return 0; 1011 1012 trace_i915_gem_request_wait_begin(ring, seqno); 1013 1014 if (timeout != NULL) { 1015 wait_time = *timeout; 1016 wait_forever = false; 1017 } 1018 1019 timeout_jiffies = timespec_to_jiffies(&wait_time); 1020 1021 if (WARN_ON(!ring->irq_get(ring))) 1022 return -ENODEV; 1023 1024 /* Record current time in case interrupted by signal, or wedged * */ 1025 getrawmonotonic(&before); 1026 1027 #define EXIT_COND \ 1028 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \ 1029 atomic_read(&dev_priv->mm.wedged)) 1030 do { 1031 if (interruptible) 1032 end = wait_event_interruptible_timeout(ring->irq_queue, 1033 EXIT_COND, 1034 timeout_jiffies); 1035 else 1036 end = wait_event_timeout(ring->irq_queue, EXIT_COND, 1037 timeout_jiffies); 1038 1039 ret = i915_gem_check_wedge(dev_priv, interruptible); 1040 if (ret) 1041 end = ret; 1042 } while (end == 0 && wait_forever); 1043 1044 getrawmonotonic(&now); 1045 1046 ring->irq_put(ring); 1047 trace_i915_gem_request_wait_end(ring, seqno); 1048 #undef EXIT_COND 1049 1050 if (timeout) { 1051 struct timespec sleep_time = timespec_sub(now, before); 1052 *timeout = timespec_sub(*timeout, sleep_time); 1053 } 1054 1055 switch (end) { 1056 case -EIO: 1057 case -EAGAIN: /* Wedged */ 1058 case -ERESTARTSYS: /* Signal */ 1059 return (int)end; 1060 case 0: /* Timeout */ 1061 if (timeout) 1062 set_normalized_timespec(timeout, 0, 0); 1063 return -ETIME; 1064 default: /* Completed */ 1065 WARN_ON(end < 0); /* We're not aware of other errors */ 1066 return 0; 1067 } 1068 } 1069 1070 /** 1071 * Waits for a sequence number to be signaled, and cleans up the 1072 * request and object lists appropriately for that event. 1073 */ 1074 int 1075 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno) 1076 { 1077 struct drm_device *dev = ring->dev; 1078 struct drm_i915_private *dev_priv = dev->dev_private; 1079 bool interruptible = dev_priv->mm.interruptible; 1080 int ret; 1081 1082 BUG_ON(!mutex_is_locked(&dev->struct_mutex)); 1083 BUG_ON(seqno == 0); 1084 1085 ret = i915_gem_check_wedge(dev_priv, interruptible); 1086 if (ret) 1087 return ret; 1088 1089 ret = i915_gem_check_olr(ring, seqno); 1090 if (ret) 1091 return ret; 1092 1093 return __wait_seqno(ring, seqno, interruptible, NULL); 1094 } 1095 1096 /** 1097 * Ensures that all rendering to the object has completed and the object is 1098 * safe to unbind from the GTT or access from the CPU. 1099 */ 1100 static __must_check int 1101 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, 1102 bool readonly) 1103 { 1104 struct intel_ring_buffer *ring = obj->ring; 1105 u32 seqno; 1106 int ret; 1107 1108 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno; 1109 if (seqno == 0) 1110 return 0; 1111 1112 ret = i915_wait_seqno(ring, seqno); 1113 if (ret) 1114 return ret; 1115 1116 i915_gem_retire_requests_ring(ring); 1117 1118 /* Manually manage the write flush as we may have not yet 1119 * retired the buffer. 1120 */ 1121 if (obj->last_write_seqno && 1122 i915_seqno_passed(seqno, obj->last_write_seqno)) { 1123 obj->last_write_seqno = 0; 1124 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS; 1125 } 1126 1127 return 0; 1128 } 1129 1130 /* A nonblocking variant of the above wait. This is a highly dangerous routine 1131 * as the object state may change during this call. 1132 */ 1133 static __must_check int 1134 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj, 1135 bool readonly) 1136 { 1137 struct drm_device *dev = obj->base.dev; 1138 struct drm_i915_private *dev_priv = dev->dev_private; 1139 struct intel_ring_buffer *ring = obj->ring; 1140 u32 seqno; 1141 int ret; 1142 1143 BUG_ON(!mutex_is_locked(&dev->struct_mutex)); 1144 BUG_ON(!dev_priv->mm.interruptible); 1145 1146 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno; 1147 if (seqno == 0) 1148 return 0; 1149 1150 ret = i915_gem_check_wedge(dev_priv, true); 1151 if (ret) 1152 return ret; 1153 1154 ret = i915_gem_check_olr(ring, seqno); 1155 if (ret) 1156 return ret; 1157 1158 mutex_unlock(&dev->struct_mutex); 1159 ret = __wait_seqno(ring, seqno, true, NULL); 1160 mutex_lock(&dev->struct_mutex); 1161 1162 i915_gem_retire_requests_ring(ring); 1163 1164 /* Manually manage the write flush as we may have not yet 1165 * retired the buffer. 1166 */ 1167 if (obj->last_write_seqno && 1168 i915_seqno_passed(seqno, obj->last_write_seqno)) { 1169 obj->last_write_seqno = 0; 1170 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS; 1171 } 1172 1173 return ret; 1174 } 1175 1176 /** 1177 * Called when user space prepares to use an object with the CPU, either 1178 * through the mmap ioctl's mapping or a GTT mapping. 1179 */ 1180 int 1181 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 1182 struct drm_file *file) 1183 { 1184 struct drm_i915_gem_set_domain *args = data; 1185 struct drm_i915_gem_object *obj; 1186 uint32_t read_domains = args->read_domains; 1187 uint32_t write_domain = args->write_domain; 1188 int ret; 1189 1190 /* Only handle setting domains to types used by the CPU. */ 1191 if (write_domain & I915_GEM_GPU_DOMAINS) 1192 return -EINVAL; 1193 1194 if (read_domains & I915_GEM_GPU_DOMAINS) 1195 return -EINVAL; 1196 1197 /* Having something in the write domain implies it's in the read 1198 * domain, and only that read domain. Enforce that in the request. 1199 */ 1200 if (write_domain != 0 && read_domains != write_domain) 1201 return -EINVAL; 1202 1203 ret = i915_mutex_lock_interruptible(dev); 1204 if (ret) 1205 return ret; 1206 1207 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1208 if (&obj->base == NULL) { 1209 ret = -ENOENT; 1210 goto unlock; 1211 } 1212 1213 /* Try to flush the object off the GPU without holding the lock. 1214 * We will repeat the flush holding the lock in the normal manner 1215 * to catch cases where we are gazumped. 1216 */ 1217 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain); 1218 if (ret) 1219 goto unref; 1220 1221 if (read_domains & I915_GEM_DOMAIN_GTT) { 1222 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0); 1223 1224 /* Silently promote "you're not bound, there was nothing to do" 1225 * to success, since the client was just asking us to 1226 * make sure everything was done. 1227 */ 1228 if (ret == -EINVAL) 1229 ret = 0; 1230 } else { 1231 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0); 1232 } 1233 1234 unref: 1235 drm_gem_object_unreference(&obj->base); 1236 unlock: 1237 mutex_unlock(&dev->struct_mutex); 1238 return ret; 1239 } 1240 1241 /** 1242 * Called when user space has done writes to this buffer 1243 */ 1244 int 1245 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 1246 struct drm_file *file) 1247 { 1248 struct drm_i915_gem_sw_finish *args = data; 1249 struct drm_i915_gem_object *obj; 1250 int ret = 0; 1251 1252 ret = i915_mutex_lock_interruptible(dev); 1253 if (ret) 1254 return ret; 1255 1256 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1257 if (&obj->base == NULL) { 1258 ret = -ENOENT; 1259 goto unlock; 1260 } 1261 1262 /* Pinned buffers may be scanout, so flush the cache */ 1263 if (obj->pin_count) 1264 i915_gem_object_flush_cpu_write_domain(obj); 1265 1266 drm_gem_object_unreference(&obj->base); 1267 unlock: 1268 mutex_unlock(&dev->struct_mutex); 1269 return ret; 1270 } 1271 1272 /** 1273 * Maps the contents of an object, returning the address it is mapped 1274 * into. 1275 * 1276 * While the mapping holds a reference on the contents of the object, it doesn't 1277 * imply a ref on the object itself. 1278 */ 1279 int 1280 i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 1281 struct drm_file *file) 1282 { 1283 struct drm_i915_gem_mmap *args = data; 1284 struct drm_gem_object *obj; 1285 unsigned long addr; 1286 1287 obj = drm_gem_object_lookup(dev, file, args->handle); 1288 if (obj == NULL) 1289 return -ENOENT; 1290 1291 /* prime objects have no backing filp to GEM mmap 1292 * pages from. 1293 */ 1294 if (!obj->filp) { 1295 drm_gem_object_unreference_unlocked(obj); 1296 return -EINVAL; 1297 } 1298 1299 addr = vm_mmap(obj->filp, 0, args->size, 1300 PROT_READ | PROT_WRITE, MAP_SHARED, 1301 args->offset); 1302 drm_gem_object_unreference_unlocked(obj); 1303 if (IS_ERR((void *)addr)) 1304 return addr; 1305 1306 args->addr_ptr = (uint64_t) addr; 1307 1308 return 0; 1309 } 1310 1311 /** 1312 * i915_gem_fault - fault a page into the GTT 1313 * vma: VMA in question 1314 * vmf: fault info 1315 * 1316 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped 1317 * from userspace. The fault handler takes care of binding the object to 1318 * the GTT (if needed), allocating and programming a fence register (again, 1319 * only if needed based on whether the old reg is still valid or the object 1320 * is tiled) and inserting a new PTE into the faulting process. 1321 * 1322 * Note that the faulting process may involve evicting existing objects 1323 * from the GTT and/or fence registers to make room. So performance may 1324 * suffer if the GTT working set is large or there are few fence registers 1325 * left. 1326 */ 1327 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1328 { 1329 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data); 1330 struct drm_device *dev = obj->base.dev; 1331 drm_i915_private_t *dev_priv = dev->dev_private; 1332 pgoff_t page_offset; 1333 unsigned long pfn; 1334 int ret = 0; 1335 bool write = !!(vmf->flags & FAULT_FLAG_WRITE); 1336 1337 /* We don't use vmf->pgoff since that has the fake offset */ 1338 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >> 1339 PAGE_SHIFT; 1340 1341 ret = i915_mutex_lock_interruptible(dev); 1342 if (ret) 1343 goto out; 1344 1345 trace_i915_gem_object_fault(obj, page_offset, true, write); 1346 1347 /* Now bind it into the GTT if needed */ 1348 if (!obj->map_and_fenceable) { 1349 ret = i915_gem_object_unbind(obj); 1350 if (ret) 1351 goto unlock; 1352 } 1353 if (!obj->gtt_space) { 1354 ret = i915_gem_object_bind_to_gtt(obj, 0, true, false); 1355 if (ret) 1356 goto unlock; 1357 1358 ret = i915_gem_object_set_to_gtt_domain(obj, write); 1359 if (ret) 1360 goto unlock; 1361 } 1362 1363 if (!obj->has_global_gtt_mapping) 1364 i915_gem_gtt_bind_object(obj, obj->cache_level); 1365 1366 ret = i915_gem_object_get_fence(obj); 1367 if (ret) 1368 goto unlock; 1369 1370 if (i915_gem_object_is_inactive(obj)) 1371 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list); 1372 1373 obj->fault_mappable = true; 1374 1375 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) + 1376 page_offset; 1377 1378 /* Finally, remap it using the new GTT offset */ 1379 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn); 1380 unlock: 1381 mutex_unlock(&dev->struct_mutex); 1382 out: 1383 switch (ret) { 1384 case -EIO: 1385 /* If this -EIO is due to a gpu hang, give the reset code a 1386 * chance to clean up the mess. Otherwise return the proper 1387 * SIGBUS. */ 1388 if (!atomic_read(&dev_priv->mm.wedged)) 1389 return VM_FAULT_SIGBUS; 1390 case -EAGAIN: 1391 /* Give the error handler a chance to run and move the 1392 * objects off the GPU active list. Next time we service the 1393 * fault, we should be able to transition the page into the 1394 * GTT without touching the GPU (and so avoid further 1395 * EIO/EGAIN). If the GPU is wedged, then there is no issue 1396 * with coherency, just lost writes. 1397 */ 1398 set_need_resched(); 1399 case 0: 1400 case -ERESTARTSYS: 1401 case -EINTR: 1402 case -EBUSY: 1403 /* 1404 * EBUSY is ok: this just means that another thread 1405 * already did the job. 1406 */ 1407 return VM_FAULT_NOPAGE; 1408 case -ENOMEM: 1409 return VM_FAULT_OOM; 1410 default: 1411 WARN_ON_ONCE(ret); 1412 return VM_FAULT_SIGBUS; 1413 } 1414 } 1415 1416 /** 1417 * i915_gem_release_mmap - remove physical page mappings 1418 * @obj: obj in question 1419 * 1420 * Preserve the reservation of the mmapping with the DRM core code, but 1421 * relinquish ownership of the pages back to the system. 1422 * 1423 * It is vital that we remove the page mapping if we have mapped a tiled 1424 * object through the GTT and then lose the fence register due to 1425 * resource pressure. Similarly if the object has been moved out of the 1426 * aperture, than pages mapped into userspace must be revoked. Removing the 1427 * mapping will then trigger a page fault on the next user access, allowing 1428 * fixup by i915_gem_fault(). 1429 */ 1430 void 1431 i915_gem_release_mmap(struct drm_i915_gem_object *obj) 1432 { 1433 if (!obj->fault_mappable) 1434 return; 1435 1436 if (obj->base.dev->dev_mapping) 1437 unmap_mapping_range(obj->base.dev->dev_mapping, 1438 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT, 1439 obj->base.size, 1); 1440 1441 obj->fault_mappable = false; 1442 } 1443 1444 static uint32_t 1445 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode) 1446 { 1447 uint32_t gtt_size; 1448 1449 if (INTEL_INFO(dev)->gen >= 4 || 1450 tiling_mode == I915_TILING_NONE) 1451 return size; 1452 1453 /* Previous chips need a power-of-two fence region when tiling */ 1454 if (INTEL_INFO(dev)->gen == 3) 1455 gtt_size = 1024*1024; 1456 else 1457 gtt_size = 512*1024; 1458 1459 while (gtt_size < size) 1460 gtt_size <<= 1; 1461 1462 return gtt_size; 1463 } 1464 1465 /** 1466 * i915_gem_get_gtt_alignment - return required GTT alignment for an object 1467 * @obj: object to check 1468 * 1469 * Return the required GTT alignment for an object, taking into account 1470 * potential fence register mapping. 1471 */ 1472 static uint32_t 1473 i915_gem_get_gtt_alignment(struct drm_device *dev, 1474 uint32_t size, 1475 int tiling_mode) 1476 { 1477 /* 1478 * Minimum alignment is 4k (GTT page size), but might be greater 1479 * if a fence register is needed for the object. 1480 */ 1481 if (INTEL_INFO(dev)->gen >= 4 || 1482 tiling_mode == I915_TILING_NONE) 1483 return 4096; 1484 1485 /* 1486 * Previous chips need to be aligned to the size of the smallest 1487 * fence register that can contain the object. 1488 */ 1489 return i915_gem_get_gtt_size(dev, size, tiling_mode); 1490 } 1491 1492 /** 1493 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an 1494 * unfenced object 1495 * @dev: the device 1496 * @size: size of the object 1497 * @tiling_mode: tiling mode of the object 1498 * 1499 * Return the required GTT alignment for an object, only taking into account 1500 * unfenced tiled surface requirements. 1501 */ 1502 uint32_t 1503 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev, 1504 uint32_t size, 1505 int tiling_mode) 1506 { 1507 /* 1508 * Minimum alignment is 4k (GTT page size) for sane hw. 1509 */ 1510 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) || 1511 tiling_mode == I915_TILING_NONE) 1512 return 4096; 1513 1514 /* Previous hardware however needs to be aligned to a power-of-two 1515 * tile height. The simplest method for determining this is to reuse 1516 * the power-of-tile object size. 1517 */ 1518 return i915_gem_get_gtt_size(dev, size, tiling_mode); 1519 } 1520 1521 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj) 1522 { 1523 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1524 int ret; 1525 1526 if (obj->base.map_list.map) 1527 return 0; 1528 1529 ret = drm_gem_create_mmap_offset(&obj->base); 1530 if (ret != -ENOSPC) 1531 return ret; 1532 1533 /* Badly fragmented mmap space? The only way we can recover 1534 * space is by destroying unwanted objects. We can't randomly release 1535 * mmap_offsets as userspace expects them to be persistent for the 1536 * lifetime of the objects. The closest we can is to release the 1537 * offsets on purgeable objects by truncating it and marking it purged, 1538 * which prevents userspace from ever using that object again. 1539 */ 1540 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT); 1541 ret = drm_gem_create_mmap_offset(&obj->base); 1542 if (ret != -ENOSPC) 1543 return ret; 1544 1545 i915_gem_shrink_all(dev_priv); 1546 return drm_gem_create_mmap_offset(&obj->base); 1547 } 1548 1549 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj) 1550 { 1551 if (!obj->base.map_list.map) 1552 return; 1553 1554 drm_gem_free_mmap_offset(&obj->base); 1555 } 1556 1557 int 1558 i915_gem_mmap_gtt(struct drm_file *file, 1559 struct drm_device *dev, 1560 uint32_t handle, 1561 uint64_t *offset) 1562 { 1563 struct drm_i915_private *dev_priv = dev->dev_private; 1564 struct drm_i915_gem_object *obj; 1565 int ret; 1566 1567 ret = i915_mutex_lock_interruptible(dev); 1568 if (ret) 1569 return ret; 1570 1571 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle)); 1572 if (&obj->base == NULL) { 1573 ret = -ENOENT; 1574 goto unlock; 1575 } 1576 1577 if (obj->base.size > dev_priv->mm.gtt_mappable_end) { 1578 ret = -E2BIG; 1579 goto out; 1580 } 1581 1582 if (obj->madv != I915_MADV_WILLNEED) { 1583 DRM_ERROR("Attempting to mmap a purgeable buffer\n"); 1584 ret = -EINVAL; 1585 goto out; 1586 } 1587 1588 ret = i915_gem_object_create_mmap_offset(obj); 1589 if (ret) 1590 goto out; 1591 1592 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT; 1593 1594 out: 1595 drm_gem_object_unreference(&obj->base); 1596 unlock: 1597 mutex_unlock(&dev->struct_mutex); 1598 return ret; 1599 } 1600 1601 /** 1602 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing 1603 * @dev: DRM device 1604 * @data: GTT mapping ioctl data 1605 * @file: GEM object info 1606 * 1607 * Simply returns the fake offset to userspace so it can mmap it. 1608 * The mmap call will end up in drm_gem_mmap(), which will set things 1609 * up so we can get faults in the handler above. 1610 * 1611 * The fault handler will take care of binding the object into the GTT 1612 * (since it may have been evicted to make room for something), allocating 1613 * a fence register, and mapping the appropriate aperture address into 1614 * userspace. 1615 */ 1616 int 1617 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 1618 struct drm_file *file) 1619 { 1620 struct drm_i915_gem_mmap_gtt *args = data; 1621 1622 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset); 1623 } 1624 1625 /* Immediately discard the backing storage */ 1626 static void 1627 i915_gem_object_truncate(struct drm_i915_gem_object *obj) 1628 { 1629 struct inode *inode; 1630 1631 i915_gem_object_free_mmap_offset(obj); 1632 1633 if (obj->base.filp == NULL) 1634 return; 1635 1636 /* Our goal here is to return as much of the memory as 1637 * is possible back to the system as we are called from OOM. 1638 * To do this we must instruct the shmfs to drop all of its 1639 * backing pages, *now*. 1640 */ 1641 inode = obj->base.filp->f_path.dentry->d_inode; 1642 shmem_truncate_range(inode, 0, (loff_t)-1); 1643 1644 obj->madv = __I915_MADV_PURGED; 1645 } 1646 1647 static inline int 1648 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj) 1649 { 1650 return obj->madv == I915_MADV_DONTNEED; 1651 } 1652 1653 static void 1654 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj) 1655 { 1656 int page_count = obj->base.size / PAGE_SIZE; 1657 struct scatterlist *sg; 1658 int ret, i; 1659 1660 BUG_ON(obj->madv == __I915_MADV_PURGED); 1661 1662 ret = i915_gem_object_set_to_cpu_domain(obj, true); 1663 if (ret) { 1664 /* In the event of a disaster, abandon all caches and 1665 * hope for the best. 1666 */ 1667 WARN_ON(ret != -EIO); 1668 i915_gem_clflush_object(obj); 1669 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU; 1670 } 1671 1672 if (i915_gem_object_needs_bit17_swizzle(obj)) 1673 i915_gem_object_save_bit_17_swizzle(obj); 1674 1675 if (obj->madv == I915_MADV_DONTNEED) 1676 obj->dirty = 0; 1677 1678 for_each_sg(obj->pages->sgl, sg, page_count, i) { 1679 struct page *page = sg_page(sg); 1680 1681 if (obj->dirty) 1682 set_page_dirty(page); 1683 1684 if (obj->madv == I915_MADV_WILLNEED) 1685 mark_page_accessed(page); 1686 1687 page_cache_release(page); 1688 } 1689 obj->dirty = 0; 1690 1691 sg_free_table(obj->pages); 1692 kfree(obj->pages); 1693 } 1694 1695 static int 1696 i915_gem_object_put_pages(struct drm_i915_gem_object *obj) 1697 { 1698 const struct drm_i915_gem_object_ops *ops = obj->ops; 1699 1700 if (obj->pages == NULL) 1701 return 0; 1702 1703 BUG_ON(obj->gtt_space); 1704 1705 if (obj->pages_pin_count) 1706 return -EBUSY; 1707 1708 ops->put_pages(obj); 1709 obj->pages = NULL; 1710 1711 list_del(&obj->gtt_list); 1712 if (i915_gem_object_is_purgeable(obj)) 1713 i915_gem_object_truncate(obj); 1714 1715 return 0; 1716 } 1717 1718 static long 1719 i915_gem_purge(struct drm_i915_private *dev_priv, long target) 1720 { 1721 struct drm_i915_gem_object *obj, *next; 1722 long count = 0; 1723 1724 list_for_each_entry_safe(obj, next, 1725 &dev_priv->mm.unbound_list, 1726 gtt_list) { 1727 if (i915_gem_object_is_purgeable(obj) && 1728 i915_gem_object_put_pages(obj) == 0) { 1729 count += obj->base.size >> PAGE_SHIFT; 1730 if (count >= target) 1731 return count; 1732 } 1733 } 1734 1735 list_for_each_entry_safe(obj, next, 1736 &dev_priv->mm.inactive_list, 1737 mm_list) { 1738 if (i915_gem_object_is_purgeable(obj) && 1739 i915_gem_object_unbind(obj) == 0 && 1740 i915_gem_object_put_pages(obj) == 0) { 1741 count += obj->base.size >> PAGE_SHIFT; 1742 if (count >= target) 1743 return count; 1744 } 1745 } 1746 1747 return count; 1748 } 1749 1750 static void 1751 i915_gem_shrink_all(struct drm_i915_private *dev_priv) 1752 { 1753 struct drm_i915_gem_object *obj, *next; 1754 1755 i915_gem_evict_everything(dev_priv->dev); 1756 1757 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list) 1758 i915_gem_object_put_pages(obj); 1759 } 1760 1761 static int 1762 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj) 1763 { 1764 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1765 int page_count, i; 1766 struct address_space *mapping; 1767 struct sg_table *st; 1768 struct scatterlist *sg; 1769 struct page *page; 1770 gfp_t gfp; 1771 1772 /* Assert that the object is not currently in any GPU domain. As it 1773 * wasn't in the GTT, there shouldn't be any way it could have been in 1774 * a GPU cache 1775 */ 1776 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS); 1777 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS); 1778 1779 st = kmalloc(sizeof(*st), GFP_KERNEL); 1780 if (st == NULL) 1781 return -ENOMEM; 1782 1783 page_count = obj->base.size / PAGE_SIZE; 1784 if (sg_alloc_table(st, page_count, GFP_KERNEL)) { 1785 sg_free_table(st); 1786 kfree(st); 1787 return -ENOMEM; 1788 } 1789 1790 /* Get the list of pages out of our struct file. They'll be pinned 1791 * at this point until we release them. 1792 * 1793 * Fail silently without starting the shrinker 1794 */ 1795 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping; 1796 gfp = mapping_gfp_mask(mapping); 1797 gfp |= __GFP_NORETRY | __GFP_NOWARN; 1798 gfp &= ~(__GFP_IO | __GFP_WAIT); 1799 for_each_sg(st->sgl, sg, page_count, i) { 1800 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 1801 if (IS_ERR(page)) { 1802 i915_gem_purge(dev_priv, page_count); 1803 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 1804 } 1805 if (IS_ERR(page)) { 1806 /* We've tried hard to allocate the memory by reaping 1807 * our own buffer, now let the real VM do its job and 1808 * go down in flames if truly OOM. 1809 */ 1810 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN); 1811 gfp |= __GFP_IO | __GFP_WAIT; 1812 1813 i915_gem_shrink_all(dev_priv); 1814 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 1815 if (IS_ERR(page)) 1816 goto err_pages; 1817 1818 gfp |= __GFP_NORETRY | __GFP_NOWARN; 1819 gfp &= ~(__GFP_IO | __GFP_WAIT); 1820 } 1821 1822 sg_set_page(sg, page, PAGE_SIZE, 0); 1823 } 1824 1825 if (i915_gem_object_needs_bit17_swizzle(obj)) 1826 i915_gem_object_do_bit_17_swizzle(obj); 1827 1828 obj->pages = st; 1829 return 0; 1830 1831 err_pages: 1832 for_each_sg(st->sgl, sg, i, page_count) 1833 page_cache_release(sg_page(sg)); 1834 sg_free_table(st); 1835 kfree(st); 1836 return PTR_ERR(page); 1837 } 1838 1839 /* Ensure that the associated pages are gathered from the backing storage 1840 * and pinned into our object. i915_gem_object_get_pages() may be called 1841 * multiple times before they are released by a single call to 1842 * i915_gem_object_put_pages() - once the pages are no longer referenced 1843 * either as a result of memory pressure (reaping pages under the shrinker) 1844 * or as the object is itself released. 1845 */ 1846 int 1847 i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 1848 { 1849 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1850 const struct drm_i915_gem_object_ops *ops = obj->ops; 1851 int ret; 1852 1853 if (obj->pages) 1854 return 0; 1855 1856 BUG_ON(obj->pages_pin_count); 1857 1858 ret = ops->get_pages(obj); 1859 if (ret) 1860 return ret; 1861 1862 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list); 1863 return 0; 1864 } 1865 1866 void 1867 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj, 1868 struct intel_ring_buffer *ring, 1869 u32 seqno) 1870 { 1871 struct drm_device *dev = obj->base.dev; 1872 struct drm_i915_private *dev_priv = dev->dev_private; 1873 1874 BUG_ON(ring == NULL); 1875 obj->ring = ring; 1876 1877 /* Add a reference if we're newly entering the active list. */ 1878 if (!obj->active) { 1879 drm_gem_object_reference(&obj->base); 1880 obj->active = 1; 1881 } 1882 1883 /* Move from whatever list we were on to the tail of execution. */ 1884 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list); 1885 list_move_tail(&obj->ring_list, &ring->active_list); 1886 1887 obj->last_read_seqno = seqno; 1888 1889 if (obj->fenced_gpu_access) { 1890 obj->last_fenced_seqno = seqno; 1891 1892 /* Bump MRU to take account of the delayed flush */ 1893 if (obj->fence_reg != I915_FENCE_REG_NONE) { 1894 struct drm_i915_fence_reg *reg; 1895 1896 reg = &dev_priv->fence_regs[obj->fence_reg]; 1897 list_move_tail(®->lru_list, 1898 &dev_priv->mm.fence_list); 1899 } 1900 } 1901 } 1902 1903 static void 1904 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj) 1905 { 1906 struct drm_device *dev = obj->base.dev; 1907 struct drm_i915_private *dev_priv = dev->dev_private; 1908 1909 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS); 1910 BUG_ON(!obj->active); 1911 1912 if (obj->pin_count) /* are we a framebuffer? */ 1913 intel_mark_fb_idle(obj); 1914 1915 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list); 1916 1917 list_del_init(&obj->ring_list); 1918 obj->ring = NULL; 1919 1920 obj->last_read_seqno = 0; 1921 obj->last_write_seqno = 0; 1922 obj->base.write_domain = 0; 1923 1924 obj->last_fenced_seqno = 0; 1925 obj->fenced_gpu_access = false; 1926 1927 obj->active = 0; 1928 drm_gem_object_unreference(&obj->base); 1929 1930 WARN_ON(i915_verify_lists(dev)); 1931 } 1932 1933 static u32 1934 i915_gem_get_seqno(struct drm_device *dev) 1935 { 1936 drm_i915_private_t *dev_priv = dev->dev_private; 1937 u32 seqno = dev_priv->next_seqno; 1938 1939 /* reserve 0 for non-seqno */ 1940 if (++dev_priv->next_seqno == 0) 1941 dev_priv->next_seqno = 1; 1942 1943 return seqno; 1944 } 1945 1946 u32 1947 i915_gem_next_request_seqno(struct intel_ring_buffer *ring) 1948 { 1949 if (ring->outstanding_lazy_request == 0) 1950 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev); 1951 1952 return ring->outstanding_lazy_request; 1953 } 1954 1955 int 1956 i915_add_request(struct intel_ring_buffer *ring, 1957 struct drm_file *file, 1958 struct drm_i915_gem_request *request) 1959 { 1960 drm_i915_private_t *dev_priv = ring->dev->dev_private; 1961 uint32_t seqno; 1962 u32 request_ring_position; 1963 int was_empty; 1964 int ret; 1965 1966 /* 1967 * Emit any outstanding flushes - execbuf can fail to emit the flush 1968 * after having emitted the batchbuffer command. Hence we need to fix 1969 * things up similar to emitting the lazy request. The difference here 1970 * is that the flush _must_ happen before the next request, no matter 1971 * what. 1972 */ 1973 ret = intel_ring_flush_all_caches(ring); 1974 if (ret) 1975 return ret; 1976 1977 if (request == NULL) { 1978 request = kmalloc(sizeof(*request), GFP_KERNEL); 1979 if (request == NULL) 1980 return -ENOMEM; 1981 } 1982 1983 seqno = i915_gem_next_request_seqno(ring); 1984 1985 /* Record the position of the start of the request so that 1986 * should we detect the updated seqno part-way through the 1987 * GPU processing the request, we never over-estimate the 1988 * position of the head. 1989 */ 1990 request_ring_position = intel_ring_get_tail(ring); 1991 1992 ret = ring->add_request(ring, &seqno); 1993 if (ret) { 1994 kfree(request); 1995 return ret; 1996 } 1997 1998 trace_i915_gem_request_add(ring, seqno); 1999 2000 request->seqno = seqno; 2001 request->ring = ring; 2002 request->tail = request_ring_position; 2003 request->emitted_jiffies = jiffies; 2004 was_empty = list_empty(&ring->request_list); 2005 list_add_tail(&request->list, &ring->request_list); 2006 request->file_priv = NULL; 2007 2008 if (file) { 2009 struct drm_i915_file_private *file_priv = file->driver_priv; 2010 2011 spin_lock(&file_priv->mm.lock); 2012 request->file_priv = file_priv; 2013 list_add_tail(&request->client_list, 2014 &file_priv->mm.request_list); 2015 spin_unlock(&file_priv->mm.lock); 2016 } 2017 2018 ring->outstanding_lazy_request = 0; 2019 2020 if (!dev_priv->mm.suspended) { 2021 if (i915_enable_hangcheck) { 2022 mod_timer(&dev_priv->hangcheck_timer, 2023 jiffies + 2024 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)); 2025 } 2026 if (was_empty) { 2027 queue_delayed_work(dev_priv->wq, 2028 &dev_priv->mm.retire_work, HZ); 2029 intel_mark_busy(dev_priv->dev); 2030 } 2031 } 2032 2033 return 0; 2034 } 2035 2036 static inline void 2037 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request) 2038 { 2039 struct drm_i915_file_private *file_priv = request->file_priv; 2040 2041 if (!file_priv) 2042 return; 2043 2044 spin_lock(&file_priv->mm.lock); 2045 if (request->file_priv) { 2046 list_del(&request->client_list); 2047 request->file_priv = NULL; 2048 } 2049 spin_unlock(&file_priv->mm.lock); 2050 } 2051 2052 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv, 2053 struct intel_ring_buffer *ring) 2054 { 2055 while (!list_empty(&ring->request_list)) { 2056 struct drm_i915_gem_request *request; 2057 2058 request = list_first_entry(&ring->request_list, 2059 struct drm_i915_gem_request, 2060 list); 2061 2062 list_del(&request->list); 2063 i915_gem_request_remove_from_client(request); 2064 kfree(request); 2065 } 2066 2067 while (!list_empty(&ring->active_list)) { 2068 struct drm_i915_gem_object *obj; 2069 2070 obj = list_first_entry(&ring->active_list, 2071 struct drm_i915_gem_object, 2072 ring_list); 2073 2074 i915_gem_object_move_to_inactive(obj); 2075 } 2076 } 2077 2078 static void i915_gem_reset_fences(struct drm_device *dev) 2079 { 2080 struct drm_i915_private *dev_priv = dev->dev_private; 2081 int i; 2082 2083 for (i = 0; i < dev_priv->num_fence_regs; i++) { 2084 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i]; 2085 2086 i915_gem_write_fence(dev, i, NULL); 2087 2088 if (reg->obj) 2089 i915_gem_object_fence_lost(reg->obj); 2090 2091 reg->pin_count = 0; 2092 reg->obj = NULL; 2093 INIT_LIST_HEAD(®->lru_list); 2094 } 2095 2096 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 2097 } 2098 2099 void i915_gem_reset(struct drm_device *dev) 2100 { 2101 struct drm_i915_private *dev_priv = dev->dev_private; 2102 struct drm_i915_gem_object *obj; 2103 struct intel_ring_buffer *ring; 2104 int i; 2105 2106 for_each_ring(ring, dev_priv, i) 2107 i915_gem_reset_ring_lists(dev_priv, ring); 2108 2109 /* Move everything out of the GPU domains to ensure we do any 2110 * necessary invalidation upon reuse. 2111 */ 2112 list_for_each_entry(obj, 2113 &dev_priv->mm.inactive_list, 2114 mm_list) 2115 { 2116 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS; 2117 } 2118 2119 /* The fence registers are invalidated so clear them out */ 2120 i915_gem_reset_fences(dev); 2121 } 2122 2123 /** 2124 * This function clears the request list as sequence numbers are passed. 2125 */ 2126 void 2127 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring) 2128 { 2129 uint32_t seqno; 2130 int i; 2131 2132 if (list_empty(&ring->request_list)) 2133 return; 2134 2135 WARN_ON(i915_verify_lists(ring->dev)); 2136 2137 seqno = ring->get_seqno(ring, true); 2138 2139 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++) 2140 if (seqno >= ring->sync_seqno[i]) 2141 ring->sync_seqno[i] = 0; 2142 2143 while (!list_empty(&ring->request_list)) { 2144 struct drm_i915_gem_request *request; 2145 2146 request = list_first_entry(&ring->request_list, 2147 struct drm_i915_gem_request, 2148 list); 2149 2150 if (!i915_seqno_passed(seqno, request->seqno)) 2151 break; 2152 2153 trace_i915_gem_request_retire(ring, request->seqno); 2154 /* We know the GPU must have read the request to have 2155 * sent us the seqno + interrupt, so use the position 2156 * of tail of the request to update the last known position 2157 * of the GPU head. 2158 */ 2159 ring->last_retired_head = request->tail; 2160 2161 list_del(&request->list); 2162 i915_gem_request_remove_from_client(request); 2163 kfree(request); 2164 } 2165 2166 /* Move any buffers on the active list that are no longer referenced 2167 * by the ringbuffer to the flushing/inactive lists as appropriate. 2168 */ 2169 while (!list_empty(&ring->active_list)) { 2170 struct drm_i915_gem_object *obj; 2171 2172 obj = list_first_entry(&ring->active_list, 2173 struct drm_i915_gem_object, 2174 ring_list); 2175 2176 if (!i915_seqno_passed(seqno, obj->last_read_seqno)) 2177 break; 2178 2179 i915_gem_object_move_to_inactive(obj); 2180 } 2181 2182 if (unlikely(ring->trace_irq_seqno && 2183 i915_seqno_passed(seqno, ring->trace_irq_seqno))) { 2184 ring->irq_put(ring); 2185 ring->trace_irq_seqno = 0; 2186 } 2187 2188 WARN_ON(i915_verify_lists(ring->dev)); 2189 } 2190 2191 void 2192 i915_gem_retire_requests(struct drm_device *dev) 2193 { 2194 drm_i915_private_t *dev_priv = dev->dev_private; 2195 struct intel_ring_buffer *ring; 2196 int i; 2197 2198 for_each_ring(ring, dev_priv, i) 2199 i915_gem_retire_requests_ring(ring); 2200 } 2201 2202 static void 2203 i915_gem_retire_work_handler(struct work_struct *work) 2204 { 2205 drm_i915_private_t *dev_priv; 2206 struct drm_device *dev; 2207 struct intel_ring_buffer *ring; 2208 bool idle; 2209 int i; 2210 2211 dev_priv = container_of(work, drm_i915_private_t, 2212 mm.retire_work.work); 2213 dev = dev_priv->dev; 2214 2215 /* Come back later if the device is busy... */ 2216 if (!mutex_trylock(&dev->struct_mutex)) { 2217 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ); 2218 return; 2219 } 2220 2221 i915_gem_retire_requests(dev); 2222 2223 /* Send a periodic flush down the ring so we don't hold onto GEM 2224 * objects indefinitely. 2225 */ 2226 idle = true; 2227 for_each_ring(ring, dev_priv, i) { 2228 if (ring->gpu_caches_dirty) 2229 i915_add_request(ring, NULL, NULL); 2230 2231 idle &= list_empty(&ring->request_list); 2232 } 2233 2234 if (!dev_priv->mm.suspended && !idle) 2235 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ); 2236 if (idle) 2237 intel_mark_idle(dev); 2238 2239 mutex_unlock(&dev->struct_mutex); 2240 } 2241 2242 /** 2243 * Ensures that an object will eventually get non-busy by flushing any required 2244 * write domains, emitting any outstanding lazy request and retiring and 2245 * completed requests. 2246 */ 2247 static int 2248 i915_gem_object_flush_active(struct drm_i915_gem_object *obj) 2249 { 2250 int ret; 2251 2252 if (obj->active) { 2253 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno); 2254 if (ret) 2255 return ret; 2256 2257 i915_gem_retire_requests_ring(obj->ring); 2258 } 2259 2260 return 0; 2261 } 2262 2263 /** 2264 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT 2265 * @DRM_IOCTL_ARGS: standard ioctl arguments 2266 * 2267 * Returns 0 if successful, else an error is returned with the remaining time in 2268 * the timeout parameter. 2269 * -ETIME: object is still busy after timeout 2270 * -ERESTARTSYS: signal interrupted the wait 2271 * -ENONENT: object doesn't exist 2272 * Also possible, but rare: 2273 * -EAGAIN: GPU wedged 2274 * -ENOMEM: damn 2275 * -ENODEV: Internal IRQ fail 2276 * -E?: The add request failed 2277 * 2278 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any 2279 * non-zero timeout parameter the wait ioctl will wait for the given number of 2280 * nanoseconds on an object becoming unbusy. Since the wait itself does so 2281 * without holding struct_mutex the object may become re-busied before this 2282 * function completes. A similar but shorter * race condition exists in the busy 2283 * ioctl 2284 */ 2285 int 2286 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file) 2287 { 2288 struct drm_i915_gem_wait *args = data; 2289 struct drm_i915_gem_object *obj; 2290 struct intel_ring_buffer *ring = NULL; 2291 struct timespec timeout_stack, *timeout = NULL; 2292 u32 seqno = 0; 2293 int ret = 0; 2294 2295 if (args->timeout_ns >= 0) { 2296 timeout_stack = ns_to_timespec(args->timeout_ns); 2297 timeout = &timeout_stack; 2298 } 2299 2300 ret = i915_mutex_lock_interruptible(dev); 2301 if (ret) 2302 return ret; 2303 2304 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle)); 2305 if (&obj->base == NULL) { 2306 mutex_unlock(&dev->struct_mutex); 2307 return -ENOENT; 2308 } 2309 2310 /* Need to make sure the object gets inactive eventually. */ 2311 ret = i915_gem_object_flush_active(obj); 2312 if (ret) 2313 goto out; 2314 2315 if (obj->active) { 2316 seqno = obj->last_read_seqno; 2317 ring = obj->ring; 2318 } 2319 2320 if (seqno == 0) 2321 goto out; 2322 2323 /* Do this after OLR check to make sure we make forward progress polling 2324 * on this IOCTL with a 0 timeout (like busy ioctl) 2325 */ 2326 if (!args->timeout_ns) { 2327 ret = -ETIME; 2328 goto out; 2329 } 2330 2331 drm_gem_object_unreference(&obj->base); 2332 mutex_unlock(&dev->struct_mutex); 2333 2334 ret = __wait_seqno(ring, seqno, true, timeout); 2335 if (timeout) { 2336 WARN_ON(!timespec_valid(timeout)); 2337 args->timeout_ns = timespec_to_ns(timeout); 2338 } 2339 return ret; 2340 2341 out: 2342 drm_gem_object_unreference(&obj->base); 2343 mutex_unlock(&dev->struct_mutex); 2344 return ret; 2345 } 2346 2347 /** 2348 * i915_gem_object_sync - sync an object to a ring. 2349 * 2350 * @obj: object which may be in use on another ring. 2351 * @to: ring we wish to use the object on. May be NULL. 2352 * 2353 * This code is meant to abstract object synchronization with the GPU. 2354 * Calling with NULL implies synchronizing the object with the CPU 2355 * rather than a particular GPU ring. 2356 * 2357 * Returns 0 if successful, else propagates up the lower layer error. 2358 */ 2359 int 2360 i915_gem_object_sync(struct drm_i915_gem_object *obj, 2361 struct intel_ring_buffer *to) 2362 { 2363 struct intel_ring_buffer *from = obj->ring; 2364 u32 seqno; 2365 int ret, idx; 2366 2367 if (from == NULL || to == from) 2368 return 0; 2369 2370 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev)) 2371 return i915_gem_object_wait_rendering(obj, false); 2372 2373 idx = intel_ring_sync_index(from, to); 2374 2375 seqno = obj->last_read_seqno; 2376 if (seqno <= from->sync_seqno[idx]) 2377 return 0; 2378 2379 ret = i915_gem_check_olr(obj->ring, seqno); 2380 if (ret) 2381 return ret; 2382 2383 ret = to->sync_to(to, from, seqno); 2384 if (!ret) 2385 from->sync_seqno[idx] = seqno; 2386 2387 return ret; 2388 } 2389 2390 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj) 2391 { 2392 u32 old_write_domain, old_read_domains; 2393 2394 /* Act a barrier for all accesses through the GTT */ 2395 mb(); 2396 2397 /* Force a pagefault for domain tracking on next user access */ 2398 i915_gem_release_mmap(obj); 2399 2400 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 2401 return; 2402 2403 old_read_domains = obj->base.read_domains; 2404 old_write_domain = obj->base.write_domain; 2405 2406 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT; 2407 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT; 2408 2409 trace_i915_gem_object_change_domain(obj, 2410 old_read_domains, 2411 old_write_domain); 2412 } 2413 2414 /** 2415 * Unbinds an object from the GTT aperture. 2416 */ 2417 int 2418 i915_gem_object_unbind(struct drm_i915_gem_object *obj) 2419 { 2420 drm_i915_private_t *dev_priv = obj->base.dev->dev_private; 2421 int ret = 0; 2422 2423 if (obj->gtt_space == NULL) 2424 return 0; 2425 2426 if (obj->pin_count) 2427 return -EBUSY; 2428 2429 BUG_ON(obj->pages == NULL); 2430 2431 ret = i915_gem_object_finish_gpu(obj); 2432 if (ret) 2433 return ret; 2434 /* Continue on if we fail due to EIO, the GPU is hung so we 2435 * should be safe and we need to cleanup or else we might 2436 * cause memory corruption through use-after-free. 2437 */ 2438 2439 i915_gem_object_finish_gtt(obj); 2440 2441 /* release the fence reg _after_ flushing */ 2442 ret = i915_gem_object_put_fence(obj); 2443 if (ret) 2444 return ret; 2445 2446 trace_i915_gem_object_unbind(obj); 2447 2448 if (obj->has_global_gtt_mapping) 2449 i915_gem_gtt_unbind_object(obj); 2450 if (obj->has_aliasing_ppgtt_mapping) { 2451 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj); 2452 obj->has_aliasing_ppgtt_mapping = 0; 2453 } 2454 i915_gem_gtt_finish_object(obj); 2455 2456 list_del(&obj->mm_list); 2457 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list); 2458 /* Avoid an unnecessary call to unbind on rebind. */ 2459 obj->map_and_fenceable = true; 2460 2461 drm_mm_put_block(obj->gtt_space); 2462 obj->gtt_space = NULL; 2463 obj->gtt_offset = 0; 2464 2465 return 0; 2466 } 2467 2468 static int i915_ring_idle(struct intel_ring_buffer *ring) 2469 { 2470 if (list_empty(&ring->active_list)) 2471 return 0; 2472 2473 return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring)); 2474 } 2475 2476 int i915_gpu_idle(struct drm_device *dev) 2477 { 2478 drm_i915_private_t *dev_priv = dev->dev_private; 2479 struct intel_ring_buffer *ring; 2480 int ret, i; 2481 2482 /* Flush everything onto the inactive list. */ 2483 for_each_ring(ring, dev_priv, i) { 2484 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID); 2485 if (ret) 2486 return ret; 2487 2488 ret = i915_ring_idle(ring); 2489 if (ret) 2490 return ret; 2491 } 2492 2493 return 0; 2494 } 2495 2496 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg, 2497 struct drm_i915_gem_object *obj) 2498 { 2499 drm_i915_private_t *dev_priv = dev->dev_private; 2500 uint64_t val; 2501 2502 if (obj) { 2503 u32 size = obj->gtt_space->size; 2504 2505 val = (uint64_t)((obj->gtt_offset + size - 4096) & 2506 0xfffff000) << 32; 2507 val |= obj->gtt_offset & 0xfffff000; 2508 val |= (uint64_t)((obj->stride / 128) - 1) << 2509 SANDYBRIDGE_FENCE_PITCH_SHIFT; 2510 2511 if (obj->tiling_mode == I915_TILING_Y) 2512 val |= 1 << I965_FENCE_TILING_Y_SHIFT; 2513 val |= I965_FENCE_REG_VALID; 2514 } else 2515 val = 0; 2516 2517 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val); 2518 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8); 2519 } 2520 2521 static void i965_write_fence_reg(struct drm_device *dev, int reg, 2522 struct drm_i915_gem_object *obj) 2523 { 2524 drm_i915_private_t *dev_priv = dev->dev_private; 2525 uint64_t val; 2526 2527 if (obj) { 2528 u32 size = obj->gtt_space->size; 2529 2530 val = (uint64_t)((obj->gtt_offset + size - 4096) & 2531 0xfffff000) << 32; 2532 val |= obj->gtt_offset & 0xfffff000; 2533 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT; 2534 if (obj->tiling_mode == I915_TILING_Y) 2535 val |= 1 << I965_FENCE_TILING_Y_SHIFT; 2536 val |= I965_FENCE_REG_VALID; 2537 } else 2538 val = 0; 2539 2540 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val); 2541 POSTING_READ(FENCE_REG_965_0 + reg * 8); 2542 } 2543 2544 static void i915_write_fence_reg(struct drm_device *dev, int reg, 2545 struct drm_i915_gem_object *obj) 2546 { 2547 drm_i915_private_t *dev_priv = dev->dev_private; 2548 u32 val; 2549 2550 if (obj) { 2551 u32 size = obj->gtt_space->size; 2552 int pitch_val; 2553 int tile_width; 2554 2555 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) || 2556 (size & -size) != size || 2557 (obj->gtt_offset & (size - 1)), 2558 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n", 2559 obj->gtt_offset, obj->map_and_fenceable, size); 2560 2561 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)) 2562 tile_width = 128; 2563 else 2564 tile_width = 512; 2565 2566 /* Note: pitch better be a power of two tile widths */ 2567 pitch_val = obj->stride / tile_width; 2568 pitch_val = ffs(pitch_val) - 1; 2569 2570 val = obj->gtt_offset; 2571 if (obj->tiling_mode == I915_TILING_Y) 2572 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 2573 val |= I915_FENCE_SIZE_BITS(size); 2574 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 2575 val |= I830_FENCE_REG_VALID; 2576 } else 2577 val = 0; 2578 2579 if (reg < 8) 2580 reg = FENCE_REG_830_0 + reg * 4; 2581 else 2582 reg = FENCE_REG_945_8 + (reg - 8) * 4; 2583 2584 I915_WRITE(reg, val); 2585 POSTING_READ(reg); 2586 } 2587 2588 static void i830_write_fence_reg(struct drm_device *dev, int reg, 2589 struct drm_i915_gem_object *obj) 2590 { 2591 drm_i915_private_t *dev_priv = dev->dev_private; 2592 uint32_t val; 2593 2594 if (obj) { 2595 u32 size = obj->gtt_space->size; 2596 uint32_t pitch_val; 2597 2598 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) || 2599 (size & -size) != size || 2600 (obj->gtt_offset & (size - 1)), 2601 "object 0x%08x not 512K or pot-size 0x%08x aligned\n", 2602 obj->gtt_offset, size); 2603 2604 pitch_val = obj->stride / 128; 2605 pitch_val = ffs(pitch_val) - 1; 2606 2607 val = obj->gtt_offset; 2608 if (obj->tiling_mode == I915_TILING_Y) 2609 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 2610 val |= I830_FENCE_SIZE_BITS(size); 2611 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 2612 val |= I830_FENCE_REG_VALID; 2613 } else 2614 val = 0; 2615 2616 I915_WRITE(FENCE_REG_830_0 + reg * 4, val); 2617 POSTING_READ(FENCE_REG_830_0 + reg * 4); 2618 } 2619 2620 static void i915_gem_write_fence(struct drm_device *dev, int reg, 2621 struct drm_i915_gem_object *obj) 2622 { 2623 switch (INTEL_INFO(dev)->gen) { 2624 case 7: 2625 case 6: sandybridge_write_fence_reg(dev, reg, obj); break; 2626 case 5: 2627 case 4: i965_write_fence_reg(dev, reg, obj); break; 2628 case 3: i915_write_fence_reg(dev, reg, obj); break; 2629 case 2: i830_write_fence_reg(dev, reg, obj); break; 2630 default: break; 2631 } 2632 } 2633 2634 static inline int fence_number(struct drm_i915_private *dev_priv, 2635 struct drm_i915_fence_reg *fence) 2636 { 2637 return fence - dev_priv->fence_regs; 2638 } 2639 2640 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, 2641 struct drm_i915_fence_reg *fence, 2642 bool enable) 2643 { 2644 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2645 int reg = fence_number(dev_priv, fence); 2646 2647 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL); 2648 2649 if (enable) { 2650 obj->fence_reg = reg; 2651 fence->obj = obj; 2652 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list); 2653 } else { 2654 obj->fence_reg = I915_FENCE_REG_NONE; 2655 fence->obj = NULL; 2656 list_del_init(&fence->lru_list); 2657 } 2658 } 2659 2660 static int 2661 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj) 2662 { 2663 if (obj->last_fenced_seqno) { 2664 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno); 2665 if (ret) 2666 return ret; 2667 2668 obj->last_fenced_seqno = 0; 2669 } 2670 2671 /* Ensure that all CPU reads are completed before installing a fence 2672 * and all writes before removing the fence. 2673 */ 2674 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT) 2675 mb(); 2676 2677 obj->fenced_gpu_access = false; 2678 return 0; 2679 } 2680 2681 int 2682 i915_gem_object_put_fence(struct drm_i915_gem_object *obj) 2683 { 2684 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2685 int ret; 2686 2687 ret = i915_gem_object_flush_fence(obj); 2688 if (ret) 2689 return ret; 2690 2691 if (obj->fence_reg == I915_FENCE_REG_NONE) 2692 return 0; 2693 2694 i915_gem_object_update_fence(obj, 2695 &dev_priv->fence_regs[obj->fence_reg], 2696 false); 2697 i915_gem_object_fence_lost(obj); 2698 2699 return 0; 2700 } 2701 2702 static struct drm_i915_fence_reg * 2703 i915_find_fence_reg(struct drm_device *dev) 2704 { 2705 struct drm_i915_private *dev_priv = dev->dev_private; 2706 struct drm_i915_fence_reg *reg, *avail; 2707 int i; 2708 2709 /* First try to find a free reg */ 2710 avail = NULL; 2711 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) { 2712 reg = &dev_priv->fence_regs[i]; 2713 if (!reg->obj) 2714 return reg; 2715 2716 if (!reg->pin_count) 2717 avail = reg; 2718 } 2719 2720 if (avail == NULL) 2721 return NULL; 2722 2723 /* None available, try to steal one or wait for a user to finish */ 2724 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) { 2725 if (reg->pin_count) 2726 continue; 2727 2728 return reg; 2729 } 2730 2731 return NULL; 2732 } 2733 2734 /** 2735 * i915_gem_object_get_fence - set up fencing for an object 2736 * @obj: object to map through a fence reg 2737 * 2738 * When mapping objects through the GTT, userspace wants to be able to write 2739 * to them without having to worry about swizzling if the object is tiled. 2740 * This function walks the fence regs looking for a free one for @obj, 2741 * stealing one if it can't find any. 2742 * 2743 * It then sets up the reg based on the object's properties: address, pitch 2744 * and tiling format. 2745 * 2746 * For an untiled surface, this removes any existing fence. 2747 */ 2748 int 2749 i915_gem_object_get_fence(struct drm_i915_gem_object *obj) 2750 { 2751 struct drm_device *dev = obj->base.dev; 2752 struct drm_i915_private *dev_priv = dev->dev_private; 2753 bool enable = obj->tiling_mode != I915_TILING_NONE; 2754 struct drm_i915_fence_reg *reg; 2755 int ret; 2756 2757 /* Have we updated the tiling parameters upon the object and so 2758 * will need to serialise the write to the associated fence register? 2759 */ 2760 if (obj->fence_dirty) { 2761 ret = i915_gem_object_flush_fence(obj); 2762 if (ret) 2763 return ret; 2764 } 2765 2766 /* Just update our place in the LRU if our fence is getting reused. */ 2767 if (obj->fence_reg != I915_FENCE_REG_NONE) { 2768 reg = &dev_priv->fence_regs[obj->fence_reg]; 2769 if (!obj->fence_dirty) { 2770 list_move_tail(®->lru_list, 2771 &dev_priv->mm.fence_list); 2772 return 0; 2773 } 2774 } else if (enable) { 2775 reg = i915_find_fence_reg(dev); 2776 if (reg == NULL) 2777 return -EDEADLK; 2778 2779 if (reg->obj) { 2780 struct drm_i915_gem_object *old = reg->obj; 2781 2782 ret = i915_gem_object_flush_fence(old); 2783 if (ret) 2784 return ret; 2785 2786 i915_gem_object_fence_lost(old); 2787 } 2788 } else 2789 return 0; 2790 2791 i915_gem_object_update_fence(obj, reg, enable); 2792 obj->fence_dirty = false; 2793 2794 return 0; 2795 } 2796 2797 static bool i915_gem_valid_gtt_space(struct drm_device *dev, 2798 struct drm_mm_node *gtt_space, 2799 unsigned long cache_level) 2800 { 2801 struct drm_mm_node *other; 2802 2803 /* On non-LLC machines we have to be careful when putting differing 2804 * types of snoopable memory together to avoid the prefetcher 2805 * crossing memory domains and dieing. 2806 */ 2807 if (HAS_LLC(dev)) 2808 return true; 2809 2810 if (gtt_space == NULL) 2811 return true; 2812 2813 if (list_empty(>t_space->node_list)) 2814 return true; 2815 2816 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list); 2817 if (other->allocated && !other->hole_follows && other->color != cache_level) 2818 return false; 2819 2820 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list); 2821 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level) 2822 return false; 2823 2824 return true; 2825 } 2826 2827 static void i915_gem_verify_gtt(struct drm_device *dev) 2828 { 2829 #if WATCH_GTT 2830 struct drm_i915_private *dev_priv = dev->dev_private; 2831 struct drm_i915_gem_object *obj; 2832 int err = 0; 2833 2834 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) { 2835 if (obj->gtt_space == NULL) { 2836 printk(KERN_ERR "object found on GTT list with no space reserved\n"); 2837 err++; 2838 continue; 2839 } 2840 2841 if (obj->cache_level != obj->gtt_space->color) { 2842 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n", 2843 obj->gtt_space->start, 2844 obj->gtt_space->start + obj->gtt_space->size, 2845 obj->cache_level, 2846 obj->gtt_space->color); 2847 err++; 2848 continue; 2849 } 2850 2851 if (!i915_gem_valid_gtt_space(dev, 2852 obj->gtt_space, 2853 obj->cache_level)) { 2854 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n", 2855 obj->gtt_space->start, 2856 obj->gtt_space->start + obj->gtt_space->size, 2857 obj->cache_level); 2858 err++; 2859 continue; 2860 } 2861 } 2862 2863 WARN_ON(err); 2864 #endif 2865 } 2866 2867 /** 2868 * Finds free space in the GTT aperture and binds the object there. 2869 */ 2870 static int 2871 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj, 2872 unsigned alignment, 2873 bool map_and_fenceable, 2874 bool nonblocking) 2875 { 2876 struct drm_device *dev = obj->base.dev; 2877 drm_i915_private_t *dev_priv = dev->dev_private; 2878 struct drm_mm_node *free_space; 2879 u32 size, fence_size, fence_alignment, unfenced_alignment; 2880 bool mappable, fenceable; 2881 int ret; 2882 2883 if (obj->madv != I915_MADV_WILLNEED) { 2884 DRM_ERROR("Attempting to bind a purgeable object\n"); 2885 return -EINVAL; 2886 } 2887 2888 fence_size = i915_gem_get_gtt_size(dev, 2889 obj->base.size, 2890 obj->tiling_mode); 2891 fence_alignment = i915_gem_get_gtt_alignment(dev, 2892 obj->base.size, 2893 obj->tiling_mode); 2894 unfenced_alignment = 2895 i915_gem_get_unfenced_gtt_alignment(dev, 2896 obj->base.size, 2897 obj->tiling_mode); 2898 2899 if (alignment == 0) 2900 alignment = map_and_fenceable ? fence_alignment : 2901 unfenced_alignment; 2902 if (map_and_fenceable && alignment & (fence_alignment - 1)) { 2903 DRM_ERROR("Invalid object alignment requested %u\n", alignment); 2904 return -EINVAL; 2905 } 2906 2907 size = map_and_fenceable ? fence_size : obj->base.size; 2908 2909 /* If the object is bigger than the entire aperture, reject it early 2910 * before evicting everything in a vain attempt to find space. 2911 */ 2912 if (obj->base.size > 2913 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) { 2914 DRM_ERROR("Attempting to bind an object larger than the aperture\n"); 2915 return -E2BIG; 2916 } 2917 2918 ret = i915_gem_object_get_pages(obj); 2919 if (ret) 2920 return ret; 2921 2922 search_free: 2923 if (map_and_fenceable) 2924 free_space = 2925 drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space, 2926 size, alignment, obj->cache_level, 2927 0, dev_priv->mm.gtt_mappable_end, 2928 false); 2929 else 2930 free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space, 2931 size, alignment, obj->cache_level, 2932 false); 2933 2934 if (free_space != NULL) { 2935 if (map_and_fenceable) 2936 obj->gtt_space = 2937 drm_mm_get_block_range_generic(free_space, 2938 size, alignment, obj->cache_level, 2939 0, dev_priv->mm.gtt_mappable_end, 2940 false); 2941 else 2942 obj->gtt_space = 2943 drm_mm_get_block_generic(free_space, 2944 size, alignment, obj->cache_level, 2945 false); 2946 } 2947 if (obj->gtt_space == NULL) { 2948 ret = i915_gem_evict_something(dev, size, alignment, 2949 obj->cache_level, 2950 map_and_fenceable, 2951 nonblocking); 2952 if (ret) 2953 return ret; 2954 2955 goto search_free; 2956 } 2957 if (WARN_ON(!i915_gem_valid_gtt_space(dev, 2958 obj->gtt_space, 2959 obj->cache_level))) { 2960 drm_mm_put_block(obj->gtt_space); 2961 obj->gtt_space = NULL; 2962 return -EINVAL; 2963 } 2964 2965 2966 ret = i915_gem_gtt_prepare_object(obj); 2967 if (ret) { 2968 drm_mm_put_block(obj->gtt_space); 2969 obj->gtt_space = NULL; 2970 return ret; 2971 } 2972 2973 if (!dev_priv->mm.aliasing_ppgtt) 2974 i915_gem_gtt_bind_object(obj, obj->cache_level); 2975 2976 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list); 2977 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list); 2978 2979 obj->gtt_offset = obj->gtt_space->start; 2980 2981 fenceable = 2982 obj->gtt_space->size == fence_size && 2983 (obj->gtt_space->start & (fence_alignment - 1)) == 0; 2984 2985 mappable = 2986 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end; 2987 2988 obj->map_and_fenceable = mappable && fenceable; 2989 2990 trace_i915_gem_object_bind(obj, map_and_fenceable); 2991 i915_gem_verify_gtt(dev); 2992 return 0; 2993 } 2994 2995 void 2996 i915_gem_clflush_object(struct drm_i915_gem_object *obj) 2997 { 2998 /* If we don't have a page list set up, then we're not pinned 2999 * to GPU, and we can ignore the cache flush because it'll happen 3000 * again at bind time. 3001 */ 3002 if (obj->pages == NULL) 3003 return; 3004 3005 /* If the GPU is snooping the contents of the CPU cache, 3006 * we do not need to manually clear the CPU cache lines. However, 3007 * the caches are only snooped when the render cache is 3008 * flushed/invalidated. As we always have to emit invalidations 3009 * and flushes when moving into and out of the RENDER domain, correct 3010 * snooping behaviour occurs naturally as the result of our domain 3011 * tracking. 3012 */ 3013 if (obj->cache_level != I915_CACHE_NONE) 3014 return; 3015 3016 trace_i915_gem_object_clflush(obj); 3017 3018 drm_clflush_sg(obj->pages); 3019 } 3020 3021 /** Flushes the GTT write domain for the object if it's dirty. */ 3022 static void 3023 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj) 3024 { 3025 uint32_t old_write_domain; 3026 3027 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT) 3028 return; 3029 3030 /* No actual flushing is required for the GTT write domain. Writes 3031 * to it immediately go to main memory as far as we know, so there's 3032 * no chipset flush. It also doesn't land in render cache. 3033 * 3034 * However, we do have to enforce the order so that all writes through 3035 * the GTT land before any writes to the device, such as updates to 3036 * the GATT itself. 3037 */ 3038 wmb(); 3039 3040 old_write_domain = obj->base.write_domain; 3041 obj->base.write_domain = 0; 3042 3043 trace_i915_gem_object_change_domain(obj, 3044 obj->base.read_domains, 3045 old_write_domain); 3046 } 3047 3048 /** Flushes the CPU write domain for the object if it's dirty. */ 3049 static void 3050 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj) 3051 { 3052 uint32_t old_write_domain; 3053 3054 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) 3055 return; 3056 3057 i915_gem_clflush_object(obj); 3058 intel_gtt_chipset_flush(); 3059 old_write_domain = obj->base.write_domain; 3060 obj->base.write_domain = 0; 3061 3062 trace_i915_gem_object_change_domain(obj, 3063 obj->base.read_domains, 3064 old_write_domain); 3065 } 3066 3067 /** 3068 * Moves a single object to the GTT read, and possibly write domain. 3069 * 3070 * This function returns when the move is complete, including waiting on 3071 * flushes to occur. 3072 */ 3073 int 3074 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write) 3075 { 3076 drm_i915_private_t *dev_priv = obj->base.dev->dev_private; 3077 uint32_t old_write_domain, old_read_domains; 3078 int ret; 3079 3080 /* Not valid to be called on unbound objects. */ 3081 if (obj->gtt_space == NULL) 3082 return -EINVAL; 3083 3084 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT) 3085 return 0; 3086 3087 ret = i915_gem_object_wait_rendering(obj, !write); 3088 if (ret) 3089 return ret; 3090 3091 i915_gem_object_flush_cpu_write_domain(obj); 3092 3093 old_write_domain = obj->base.write_domain; 3094 old_read_domains = obj->base.read_domains; 3095 3096 /* It should now be out of any other write domains, and we can update 3097 * the domain values for our changes. 3098 */ 3099 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0); 3100 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3101 if (write) { 3102 obj->base.read_domains = I915_GEM_DOMAIN_GTT; 3103 obj->base.write_domain = I915_GEM_DOMAIN_GTT; 3104 obj->dirty = 1; 3105 } 3106 3107 trace_i915_gem_object_change_domain(obj, 3108 old_read_domains, 3109 old_write_domain); 3110 3111 /* And bump the LRU for this access */ 3112 if (i915_gem_object_is_inactive(obj)) 3113 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list); 3114 3115 return 0; 3116 } 3117 3118 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3119 enum i915_cache_level cache_level) 3120 { 3121 struct drm_device *dev = obj->base.dev; 3122 drm_i915_private_t *dev_priv = dev->dev_private; 3123 int ret; 3124 3125 if (obj->cache_level == cache_level) 3126 return 0; 3127 3128 if (obj->pin_count) { 3129 DRM_DEBUG("can not change the cache level of pinned objects\n"); 3130 return -EBUSY; 3131 } 3132 3133 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) { 3134 ret = i915_gem_object_unbind(obj); 3135 if (ret) 3136 return ret; 3137 } 3138 3139 if (obj->gtt_space) { 3140 ret = i915_gem_object_finish_gpu(obj); 3141 if (ret) 3142 return ret; 3143 3144 i915_gem_object_finish_gtt(obj); 3145 3146 /* Before SandyBridge, you could not use tiling or fence 3147 * registers with snooped memory, so relinquish any fences 3148 * currently pointing to our region in the aperture. 3149 */ 3150 if (INTEL_INFO(dev)->gen < 6) { 3151 ret = i915_gem_object_put_fence(obj); 3152 if (ret) 3153 return ret; 3154 } 3155 3156 if (obj->has_global_gtt_mapping) 3157 i915_gem_gtt_bind_object(obj, cache_level); 3158 if (obj->has_aliasing_ppgtt_mapping) 3159 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt, 3160 obj, cache_level); 3161 3162 obj->gtt_space->color = cache_level; 3163 } 3164 3165 if (cache_level == I915_CACHE_NONE) { 3166 u32 old_read_domains, old_write_domain; 3167 3168 /* If we're coming from LLC cached, then we haven't 3169 * actually been tracking whether the data is in the 3170 * CPU cache or not, since we only allow one bit set 3171 * in obj->write_domain and have been skipping the clflushes. 3172 * Just set it to the CPU cache for now. 3173 */ 3174 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU); 3175 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU); 3176 3177 old_read_domains = obj->base.read_domains; 3178 old_write_domain = obj->base.write_domain; 3179 3180 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3181 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3182 3183 trace_i915_gem_object_change_domain(obj, 3184 old_read_domains, 3185 old_write_domain); 3186 } 3187 3188 obj->cache_level = cache_level; 3189 i915_gem_verify_gtt(dev); 3190 return 0; 3191 } 3192 3193 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 3194 struct drm_file *file) 3195 { 3196 struct drm_i915_gem_caching *args = data; 3197 struct drm_i915_gem_object *obj; 3198 int ret; 3199 3200 ret = i915_mutex_lock_interruptible(dev); 3201 if (ret) 3202 return ret; 3203 3204 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3205 if (&obj->base == NULL) { 3206 ret = -ENOENT; 3207 goto unlock; 3208 } 3209 3210 args->caching = obj->cache_level != I915_CACHE_NONE; 3211 3212 drm_gem_object_unreference(&obj->base); 3213 unlock: 3214 mutex_unlock(&dev->struct_mutex); 3215 return ret; 3216 } 3217 3218 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 3219 struct drm_file *file) 3220 { 3221 struct drm_i915_gem_caching *args = data; 3222 struct drm_i915_gem_object *obj; 3223 enum i915_cache_level level; 3224 int ret; 3225 3226 switch (args->caching) { 3227 case I915_CACHING_NONE: 3228 level = I915_CACHE_NONE; 3229 break; 3230 case I915_CACHING_CACHED: 3231 level = I915_CACHE_LLC; 3232 break; 3233 default: 3234 return -EINVAL; 3235 } 3236 3237 ret = i915_mutex_lock_interruptible(dev); 3238 if (ret) 3239 return ret; 3240 3241 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3242 if (&obj->base == NULL) { 3243 ret = -ENOENT; 3244 goto unlock; 3245 } 3246 3247 ret = i915_gem_object_set_cache_level(obj, level); 3248 3249 drm_gem_object_unreference(&obj->base); 3250 unlock: 3251 mutex_unlock(&dev->struct_mutex); 3252 return ret; 3253 } 3254 3255 /* 3256 * Prepare buffer for display plane (scanout, cursors, etc). 3257 * Can be called from an uninterruptible phase (modesetting) and allows 3258 * any flushes to be pipelined (for pageflips). 3259 */ 3260 int 3261 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3262 u32 alignment, 3263 struct intel_ring_buffer *pipelined) 3264 { 3265 u32 old_read_domains, old_write_domain; 3266 int ret; 3267 3268 if (pipelined != obj->ring) { 3269 ret = i915_gem_object_sync(obj, pipelined); 3270 if (ret) 3271 return ret; 3272 } 3273 3274 /* The display engine is not coherent with the LLC cache on gen6. As 3275 * a result, we make sure that the pinning that is about to occur is 3276 * done with uncached PTEs. This is lowest common denominator for all 3277 * chipsets. 3278 * 3279 * However for gen6+, we could do better by using the GFDT bit instead 3280 * of uncaching, which would allow us to flush all the LLC-cached data 3281 * with that bit in the PTE to main memory with just one PIPE_CONTROL. 3282 */ 3283 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE); 3284 if (ret) 3285 return ret; 3286 3287 /* As the user may map the buffer once pinned in the display plane 3288 * (e.g. libkms for the bootup splash), we have to ensure that we 3289 * always use map_and_fenceable for all scanout buffers. 3290 */ 3291 ret = i915_gem_object_pin(obj, alignment, true, false); 3292 if (ret) 3293 return ret; 3294 3295 i915_gem_object_flush_cpu_write_domain(obj); 3296 3297 old_write_domain = obj->base.write_domain; 3298 old_read_domains = obj->base.read_domains; 3299 3300 /* It should now be out of any other write domains, and we can update 3301 * the domain values for our changes. 3302 */ 3303 obj->base.write_domain = 0; 3304 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3305 3306 trace_i915_gem_object_change_domain(obj, 3307 old_read_domains, 3308 old_write_domain); 3309 3310 return 0; 3311 } 3312 3313 int 3314 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj) 3315 { 3316 int ret; 3317 3318 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0) 3319 return 0; 3320 3321 ret = i915_gem_object_wait_rendering(obj, false); 3322 if (ret) 3323 return ret; 3324 3325 /* Ensure that we invalidate the GPU's caches and TLBs. */ 3326 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS; 3327 return 0; 3328 } 3329 3330 /** 3331 * Moves a single object to the CPU read, and possibly write domain. 3332 * 3333 * This function returns when the move is complete, including waiting on 3334 * flushes to occur. 3335 */ 3336 int 3337 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write) 3338 { 3339 uint32_t old_write_domain, old_read_domains; 3340 int ret; 3341 3342 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) 3343 return 0; 3344 3345 ret = i915_gem_object_wait_rendering(obj, !write); 3346 if (ret) 3347 return ret; 3348 3349 i915_gem_object_flush_gtt_write_domain(obj); 3350 3351 old_write_domain = obj->base.write_domain; 3352 old_read_domains = obj->base.read_domains; 3353 3354 /* Flush the CPU cache if it's still invalid. */ 3355 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) { 3356 i915_gem_clflush_object(obj); 3357 3358 obj->base.read_domains |= I915_GEM_DOMAIN_CPU; 3359 } 3360 3361 /* It should now be out of any other write domains, and we can update 3362 * the domain values for our changes. 3363 */ 3364 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0); 3365 3366 /* If we're writing through the CPU, then the GPU read domains will 3367 * need to be invalidated at next use. 3368 */ 3369 if (write) { 3370 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3371 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3372 } 3373 3374 trace_i915_gem_object_change_domain(obj, 3375 old_read_domains, 3376 old_write_domain); 3377 3378 return 0; 3379 } 3380 3381 /* Throttle our rendering by waiting until the ring has completed our requests 3382 * emitted over 20 msec ago. 3383 * 3384 * Note that if we were to use the current jiffies each time around the loop, 3385 * we wouldn't escape the function with any frames outstanding if the time to 3386 * render a frame was over 20ms. 3387 * 3388 * This should get us reasonable parallelism between CPU and GPU but also 3389 * relatively low latency when blocking on a particular request to finish. 3390 */ 3391 static int 3392 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file) 3393 { 3394 struct drm_i915_private *dev_priv = dev->dev_private; 3395 struct drm_i915_file_private *file_priv = file->driver_priv; 3396 unsigned long recent_enough = jiffies - msecs_to_jiffies(20); 3397 struct drm_i915_gem_request *request; 3398 struct intel_ring_buffer *ring = NULL; 3399 u32 seqno = 0; 3400 int ret; 3401 3402 if (atomic_read(&dev_priv->mm.wedged)) 3403 return -EIO; 3404 3405 spin_lock(&file_priv->mm.lock); 3406 list_for_each_entry(request, &file_priv->mm.request_list, client_list) { 3407 if (time_after_eq(request->emitted_jiffies, recent_enough)) 3408 break; 3409 3410 ring = request->ring; 3411 seqno = request->seqno; 3412 } 3413 spin_unlock(&file_priv->mm.lock); 3414 3415 if (seqno == 0) 3416 return 0; 3417 3418 ret = __wait_seqno(ring, seqno, true, NULL); 3419 if (ret == 0) 3420 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0); 3421 3422 return ret; 3423 } 3424 3425 int 3426 i915_gem_object_pin(struct drm_i915_gem_object *obj, 3427 uint32_t alignment, 3428 bool map_and_fenceable, 3429 bool nonblocking) 3430 { 3431 int ret; 3432 3433 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT)) 3434 return -EBUSY; 3435 3436 if (obj->gtt_space != NULL) { 3437 if ((alignment && obj->gtt_offset & (alignment - 1)) || 3438 (map_and_fenceable && !obj->map_and_fenceable)) { 3439 WARN(obj->pin_count, 3440 "bo is already pinned with incorrect alignment:" 3441 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d," 3442 " obj->map_and_fenceable=%d\n", 3443 obj->gtt_offset, alignment, 3444 map_and_fenceable, 3445 obj->map_and_fenceable); 3446 ret = i915_gem_object_unbind(obj); 3447 if (ret) 3448 return ret; 3449 } 3450 } 3451 3452 if (obj->gtt_space == NULL) { 3453 ret = i915_gem_object_bind_to_gtt(obj, alignment, 3454 map_and_fenceable, 3455 nonblocking); 3456 if (ret) 3457 return ret; 3458 } 3459 3460 if (!obj->has_global_gtt_mapping && map_and_fenceable) 3461 i915_gem_gtt_bind_object(obj, obj->cache_level); 3462 3463 obj->pin_count++; 3464 obj->pin_mappable |= map_and_fenceable; 3465 3466 return 0; 3467 } 3468 3469 void 3470 i915_gem_object_unpin(struct drm_i915_gem_object *obj) 3471 { 3472 BUG_ON(obj->pin_count == 0); 3473 BUG_ON(obj->gtt_space == NULL); 3474 3475 if (--obj->pin_count == 0) 3476 obj->pin_mappable = false; 3477 } 3478 3479 int 3480 i915_gem_pin_ioctl(struct drm_device *dev, void *data, 3481 struct drm_file *file) 3482 { 3483 struct drm_i915_gem_pin *args = data; 3484 struct drm_i915_gem_object *obj; 3485 int ret; 3486 3487 ret = i915_mutex_lock_interruptible(dev); 3488 if (ret) 3489 return ret; 3490 3491 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3492 if (&obj->base == NULL) { 3493 ret = -ENOENT; 3494 goto unlock; 3495 } 3496 3497 if (obj->madv != I915_MADV_WILLNEED) { 3498 DRM_ERROR("Attempting to pin a purgeable buffer\n"); 3499 ret = -EINVAL; 3500 goto out; 3501 } 3502 3503 if (obj->pin_filp != NULL && obj->pin_filp != file) { 3504 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n", 3505 args->handle); 3506 ret = -EINVAL; 3507 goto out; 3508 } 3509 3510 obj->user_pin_count++; 3511 obj->pin_filp = file; 3512 if (obj->user_pin_count == 1) { 3513 ret = i915_gem_object_pin(obj, args->alignment, true, false); 3514 if (ret) 3515 goto out; 3516 } 3517 3518 /* XXX - flush the CPU caches for pinned objects 3519 * as the X server doesn't manage domains yet 3520 */ 3521 i915_gem_object_flush_cpu_write_domain(obj); 3522 args->offset = obj->gtt_offset; 3523 out: 3524 drm_gem_object_unreference(&obj->base); 3525 unlock: 3526 mutex_unlock(&dev->struct_mutex); 3527 return ret; 3528 } 3529 3530 int 3531 i915_gem_unpin_ioctl(struct drm_device *dev, void *data, 3532 struct drm_file *file) 3533 { 3534 struct drm_i915_gem_pin *args = data; 3535 struct drm_i915_gem_object *obj; 3536 int ret; 3537 3538 ret = i915_mutex_lock_interruptible(dev); 3539 if (ret) 3540 return ret; 3541 3542 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3543 if (&obj->base == NULL) { 3544 ret = -ENOENT; 3545 goto unlock; 3546 } 3547 3548 if (obj->pin_filp != file) { 3549 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n", 3550 args->handle); 3551 ret = -EINVAL; 3552 goto out; 3553 } 3554 obj->user_pin_count--; 3555 if (obj->user_pin_count == 0) { 3556 obj->pin_filp = NULL; 3557 i915_gem_object_unpin(obj); 3558 } 3559 3560 out: 3561 drm_gem_object_unreference(&obj->base); 3562 unlock: 3563 mutex_unlock(&dev->struct_mutex); 3564 return ret; 3565 } 3566 3567 int 3568 i915_gem_busy_ioctl(struct drm_device *dev, void *data, 3569 struct drm_file *file) 3570 { 3571 struct drm_i915_gem_busy *args = data; 3572 struct drm_i915_gem_object *obj; 3573 int ret; 3574 3575 ret = i915_mutex_lock_interruptible(dev); 3576 if (ret) 3577 return ret; 3578 3579 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3580 if (&obj->base == NULL) { 3581 ret = -ENOENT; 3582 goto unlock; 3583 } 3584 3585 /* Count all active objects as busy, even if they are currently not used 3586 * by the gpu. Users of this interface expect objects to eventually 3587 * become non-busy without any further actions, therefore emit any 3588 * necessary flushes here. 3589 */ 3590 ret = i915_gem_object_flush_active(obj); 3591 3592 args->busy = obj->active; 3593 if (obj->ring) { 3594 BUILD_BUG_ON(I915_NUM_RINGS > 16); 3595 args->busy |= intel_ring_flag(obj->ring) << 16; 3596 } 3597 3598 drm_gem_object_unreference(&obj->base); 3599 unlock: 3600 mutex_unlock(&dev->struct_mutex); 3601 return ret; 3602 } 3603 3604 int 3605 i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 3606 struct drm_file *file_priv) 3607 { 3608 return i915_gem_ring_throttle(dev, file_priv); 3609 } 3610 3611 int 3612 i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 3613 struct drm_file *file_priv) 3614 { 3615 struct drm_i915_gem_madvise *args = data; 3616 struct drm_i915_gem_object *obj; 3617 int ret; 3618 3619 switch (args->madv) { 3620 case I915_MADV_DONTNEED: 3621 case I915_MADV_WILLNEED: 3622 break; 3623 default: 3624 return -EINVAL; 3625 } 3626 3627 ret = i915_mutex_lock_interruptible(dev); 3628 if (ret) 3629 return ret; 3630 3631 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle)); 3632 if (&obj->base == NULL) { 3633 ret = -ENOENT; 3634 goto unlock; 3635 } 3636 3637 if (obj->pin_count) { 3638 ret = -EINVAL; 3639 goto out; 3640 } 3641 3642 if (obj->madv != __I915_MADV_PURGED) 3643 obj->madv = args->madv; 3644 3645 /* if the object is no longer attached, discard its backing storage */ 3646 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL) 3647 i915_gem_object_truncate(obj); 3648 3649 args->retained = obj->madv != __I915_MADV_PURGED; 3650 3651 out: 3652 drm_gem_object_unreference(&obj->base); 3653 unlock: 3654 mutex_unlock(&dev->struct_mutex); 3655 return ret; 3656 } 3657 3658 void i915_gem_object_init(struct drm_i915_gem_object *obj, 3659 const struct drm_i915_gem_object_ops *ops) 3660 { 3661 INIT_LIST_HEAD(&obj->mm_list); 3662 INIT_LIST_HEAD(&obj->gtt_list); 3663 INIT_LIST_HEAD(&obj->ring_list); 3664 INIT_LIST_HEAD(&obj->exec_list); 3665 3666 obj->ops = ops; 3667 3668 obj->fence_reg = I915_FENCE_REG_NONE; 3669 obj->madv = I915_MADV_WILLNEED; 3670 /* Avoid an unnecessary call to unbind on the first bind. */ 3671 obj->map_and_fenceable = true; 3672 3673 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size); 3674 } 3675 3676 static const struct drm_i915_gem_object_ops i915_gem_object_ops = { 3677 .get_pages = i915_gem_object_get_pages_gtt, 3678 .put_pages = i915_gem_object_put_pages_gtt, 3679 }; 3680 3681 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev, 3682 size_t size) 3683 { 3684 struct drm_i915_gem_object *obj; 3685 struct address_space *mapping; 3686 u32 mask; 3687 3688 obj = kzalloc(sizeof(*obj), GFP_KERNEL); 3689 if (obj == NULL) 3690 return NULL; 3691 3692 if (drm_gem_object_init(dev, &obj->base, size) != 0) { 3693 kfree(obj); 3694 return NULL; 3695 } 3696 3697 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; 3698 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) { 3699 /* 965gm cannot relocate objects above 4GiB. */ 3700 mask &= ~__GFP_HIGHMEM; 3701 mask |= __GFP_DMA32; 3702 } 3703 3704 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping; 3705 mapping_set_gfp_mask(mapping, mask); 3706 3707 i915_gem_object_init(obj, &i915_gem_object_ops); 3708 3709 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3710 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3711 3712 if (HAS_LLC(dev)) { 3713 /* On some devices, we can have the GPU use the LLC (the CPU 3714 * cache) for about a 10% performance improvement 3715 * compared to uncached. Graphics requests other than 3716 * display scanout are coherent with the CPU in 3717 * accessing this cache. This means in this mode we 3718 * don't need to clflush on the CPU side, and on the 3719 * GPU side we only need to flush internal caches to 3720 * get data visible to the CPU. 3721 * 3722 * However, we maintain the display planes as UC, and so 3723 * need to rebind when first used as such. 3724 */ 3725 obj->cache_level = I915_CACHE_LLC; 3726 } else 3727 obj->cache_level = I915_CACHE_NONE; 3728 3729 return obj; 3730 } 3731 3732 int i915_gem_init_object(struct drm_gem_object *obj) 3733 { 3734 BUG(); 3735 3736 return 0; 3737 } 3738 3739 void i915_gem_free_object(struct drm_gem_object *gem_obj) 3740 { 3741 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); 3742 struct drm_device *dev = obj->base.dev; 3743 drm_i915_private_t *dev_priv = dev->dev_private; 3744 3745 trace_i915_gem_object_destroy(obj); 3746 3747 if (obj->phys_obj) 3748 i915_gem_detach_phys_object(dev, obj); 3749 3750 obj->pin_count = 0; 3751 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) { 3752 bool was_interruptible; 3753 3754 was_interruptible = dev_priv->mm.interruptible; 3755 dev_priv->mm.interruptible = false; 3756 3757 WARN_ON(i915_gem_object_unbind(obj)); 3758 3759 dev_priv->mm.interruptible = was_interruptible; 3760 } 3761 3762 obj->pages_pin_count = 0; 3763 i915_gem_object_put_pages(obj); 3764 i915_gem_object_free_mmap_offset(obj); 3765 3766 BUG_ON(obj->pages); 3767 3768 if (obj->base.import_attach) 3769 drm_prime_gem_destroy(&obj->base, NULL); 3770 3771 drm_gem_object_release(&obj->base); 3772 i915_gem_info_remove_obj(dev_priv, obj->base.size); 3773 3774 kfree(obj->bit_17); 3775 kfree(obj); 3776 } 3777 3778 int 3779 i915_gem_idle(struct drm_device *dev) 3780 { 3781 drm_i915_private_t *dev_priv = dev->dev_private; 3782 int ret; 3783 3784 mutex_lock(&dev->struct_mutex); 3785 3786 if (dev_priv->mm.suspended) { 3787 mutex_unlock(&dev->struct_mutex); 3788 return 0; 3789 } 3790 3791 ret = i915_gpu_idle(dev); 3792 if (ret) { 3793 mutex_unlock(&dev->struct_mutex); 3794 return ret; 3795 } 3796 i915_gem_retire_requests(dev); 3797 3798 /* Under UMS, be paranoid and evict. */ 3799 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 3800 i915_gem_evict_everything(dev); 3801 3802 i915_gem_reset_fences(dev); 3803 3804 /* Hack! Don't let anybody do execbuf while we don't control the chip. 3805 * We need to replace this with a semaphore, or something. 3806 * And not confound mm.suspended! 3807 */ 3808 dev_priv->mm.suspended = 1; 3809 del_timer_sync(&dev_priv->hangcheck_timer); 3810 3811 i915_kernel_lost_context(dev); 3812 i915_gem_cleanup_ringbuffer(dev); 3813 3814 mutex_unlock(&dev->struct_mutex); 3815 3816 /* Cancel the retire work handler, which should be idle now. */ 3817 cancel_delayed_work_sync(&dev_priv->mm.retire_work); 3818 3819 return 0; 3820 } 3821 3822 void i915_gem_l3_remap(struct drm_device *dev) 3823 { 3824 drm_i915_private_t *dev_priv = dev->dev_private; 3825 u32 misccpctl; 3826 int i; 3827 3828 if (!IS_IVYBRIDGE(dev)) 3829 return; 3830 3831 if (!dev_priv->mm.l3_remap_info) 3832 return; 3833 3834 misccpctl = I915_READ(GEN7_MISCCPCTL); 3835 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE); 3836 POSTING_READ(GEN7_MISCCPCTL); 3837 3838 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) { 3839 u32 remap = I915_READ(GEN7_L3LOG_BASE + i); 3840 if (remap && remap != dev_priv->mm.l3_remap_info[i/4]) 3841 DRM_DEBUG("0x%x was already programmed to %x\n", 3842 GEN7_L3LOG_BASE + i, remap); 3843 if (remap && !dev_priv->mm.l3_remap_info[i/4]) 3844 DRM_DEBUG_DRIVER("Clearing remapped register\n"); 3845 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]); 3846 } 3847 3848 /* Make sure all the writes land before disabling dop clock gating */ 3849 POSTING_READ(GEN7_L3LOG_BASE); 3850 3851 I915_WRITE(GEN7_MISCCPCTL, misccpctl); 3852 } 3853 3854 void i915_gem_init_swizzling(struct drm_device *dev) 3855 { 3856 drm_i915_private_t *dev_priv = dev->dev_private; 3857 3858 if (INTEL_INFO(dev)->gen < 5 || 3859 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) 3860 return; 3861 3862 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | 3863 DISP_TILE_SURFACE_SWIZZLING); 3864 3865 if (IS_GEN5(dev)) 3866 return; 3867 3868 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL); 3869 if (IS_GEN6(dev)) 3870 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); 3871 else 3872 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); 3873 } 3874 3875 void i915_gem_init_ppgtt(struct drm_device *dev) 3876 { 3877 drm_i915_private_t *dev_priv = dev->dev_private; 3878 uint32_t pd_offset; 3879 struct intel_ring_buffer *ring; 3880 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt; 3881 uint32_t __iomem *pd_addr; 3882 uint32_t pd_entry; 3883 int i; 3884 3885 if (!dev_priv->mm.aliasing_ppgtt) 3886 return; 3887 3888 3889 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t); 3890 for (i = 0; i < ppgtt->num_pd_entries; i++) { 3891 dma_addr_t pt_addr; 3892 3893 if (dev_priv->mm.gtt->needs_dmar) 3894 pt_addr = ppgtt->pt_dma_addr[i]; 3895 else 3896 pt_addr = page_to_phys(ppgtt->pt_pages[i]); 3897 3898 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr); 3899 pd_entry |= GEN6_PDE_VALID; 3900 3901 writel(pd_entry, pd_addr + i); 3902 } 3903 readl(pd_addr); 3904 3905 pd_offset = ppgtt->pd_offset; 3906 pd_offset /= 64; /* in cachelines, */ 3907 pd_offset <<= 16; 3908 3909 if (INTEL_INFO(dev)->gen == 6) { 3910 uint32_t ecochk, gab_ctl, ecobits; 3911 3912 ecobits = I915_READ(GAC_ECO_BITS); 3913 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B); 3914 3915 gab_ctl = I915_READ(GAB_CTL); 3916 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT); 3917 3918 ecochk = I915_READ(GAM_ECOCHK); 3919 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | 3920 ECOCHK_PPGTT_CACHE64B); 3921 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); 3922 } else if (INTEL_INFO(dev)->gen >= 7) { 3923 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B); 3924 /* GFX_MODE is per-ring on gen7+ */ 3925 } 3926 3927 for_each_ring(ring, dev_priv, i) { 3928 if (INTEL_INFO(dev)->gen >= 7) 3929 I915_WRITE(RING_MODE_GEN7(ring), 3930 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); 3931 3932 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G); 3933 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset); 3934 } 3935 } 3936 3937 static bool 3938 intel_enable_blt(struct drm_device *dev) 3939 { 3940 if (!HAS_BLT(dev)) 3941 return false; 3942 3943 /* The blitter was dysfunctional on early prototypes */ 3944 if (IS_GEN6(dev) && dev->pdev->revision < 8) { 3945 DRM_INFO("BLT not supported on this pre-production hardware;" 3946 " graphics performance will be degraded.\n"); 3947 return false; 3948 } 3949 3950 return true; 3951 } 3952 3953 int 3954 i915_gem_init_hw(struct drm_device *dev) 3955 { 3956 drm_i915_private_t *dev_priv = dev->dev_private; 3957 int ret; 3958 3959 if (!intel_enable_gtt()) 3960 return -EIO; 3961 3962 i915_gem_l3_remap(dev); 3963 3964 i915_gem_init_swizzling(dev); 3965 3966 ret = intel_init_render_ring_buffer(dev); 3967 if (ret) 3968 return ret; 3969 3970 if (HAS_BSD(dev)) { 3971 ret = intel_init_bsd_ring_buffer(dev); 3972 if (ret) 3973 goto cleanup_render_ring; 3974 } 3975 3976 if (intel_enable_blt(dev)) { 3977 ret = intel_init_blt_ring_buffer(dev); 3978 if (ret) 3979 goto cleanup_bsd_ring; 3980 } 3981 3982 dev_priv->next_seqno = 1; 3983 3984 /* 3985 * XXX: There was some w/a described somewhere suggesting loading 3986 * contexts before PPGTT. 3987 */ 3988 i915_gem_context_init(dev); 3989 i915_gem_init_ppgtt(dev); 3990 3991 return 0; 3992 3993 cleanup_bsd_ring: 3994 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]); 3995 cleanup_render_ring: 3996 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]); 3997 return ret; 3998 } 3999 4000 static bool 4001 intel_enable_ppgtt(struct drm_device *dev) 4002 { 4003 if (i915_enable_ppgtt >= 0) 4004 return i915_enable_ppgtt; 4005 4006 #ifdef CONFIG_INTEL_IOMMU 4007 /* Disable ppgtt on SNB if VT-d is on. */ 4008 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) 4009 return false; 4010 #endif 4011 4012 return true; 4013 } 4014 4015 int i915_gem_init(struct drm_device *dev) 4016 { 4017 struct drm_i915_private *dev_priv = dev->dev_private; 4018 unsigned long gtt_size, mappable_size; 4019 int ret; 4020 4021 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT; 4022 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT; 4023 4024 mutex_lock(&dev->struct_mutex); 4025 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) { 4026 /* PPGTT pdes are stolen from global gtt ptes, so shrink the 4027 * aperture accordingly when using aliasing ppgtt. */ 4028 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE; 4029 4030 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size); 4031 4032 ret = i915_gem_init_aliasing_ppgtt(dev); 4033 if (ret) { 4034 mutex_unlock(&dev->struct_mutex); 4035 return ret; 4036 } 4037 } else { 4038 /* Let GEM Manage all of the aperture. 4039 * 4040 * However, leave one page at the end still bound to the scratch 4041 * page. There are a number of places where the hardware 4042 * apparently prefetches past the end of the object, and we've 4043 * seen multiple hangs with the GPU head pointer stuck in a 4044 * batchbuffer bound at the last page of the aperture. One page 4045 * should be enough to keep any prefetching inside of the 4046 * aperture. 4047 */ 4048 i915_gem_init_global_gtt(dev, 0, mappable_size, 4049 gtt_size); 4050 } 4051 4052 ret = i915_gem_init_hw(dev); 4053 mutex_unlock(&dev->struct_mutex); 4054 if (ret) { 4055 i915_gem_cleanup_aliasing_ppgtt(dev); 4056 return ret; 4057 } 4058 4059 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */ 4060 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4061 dev_priv->dri1.allow_batchbuffer = 1; 4062 return 0; 4063 } 4064 4065 void 4066 i915_gem_cleanup_ringbuffer(struct drm_device *dev) 4067 { 4068 drm_i915_private_t *dev_priv = dev->dev_private; 4069 struct intel_ring_buffer *ring; 4070 int i; 4071 4072 for_each_ring(ring, dev_priv, i) 4073 intel_cleanup_ring_buffer(ring); 4074 } 4075 4076 int 4077 i915_gem_entervt_ioctl(struct drm_device *dev, void *data, 4078 struct drm_file *file_priv) 4079 { 4080 drm_i915_private_t *dev_priv = dev->dev_private; 4081 int ret; 4082 4083 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4084 return 0; 4085 4086 if (atomic_read(&dev_priv->mm.wedged)) { 4087 DRM_ERROR("Reenabling wedged hardware, good luck\n"); 4088 atomic_set(&dev_priv->mm.wedged, 0); 4089 } 4090 4091 mutex_lock(&dev->struct_mutex); 4092 dev_priv->mm.suspended = 0; 4093 4094 ret = i915_gem_init_hw(dev); 4095 if (ret != 0) { 4096 mutex_unlock(&dev->struct_mutex); 4097 return ret; 4098 } 4099 4100 BUG_ON(!list_empty(&dev_priv->mm.active_list)); 4101 BUG_ON(!list_empty(&dev_priv->mm.inactive_list)); 4102 mutex_unlock(&dev->struct_mutex); 4103 4104 ret = drm_irq_install(dev); 4105 if (ret) 4106 goto cleanup_ringbuffer; 4107 4108 return 0; 4109 4110 cleanup_ringbuffer: 4111 mutex_lock(&dev->struct_mutex); 4112 i915_gem_cleanup_ringbuffer(dev); 4113 dev_priv->mm.suspended = 1; 4114 mutex_unlock(&dev->struct_mutex); 4115 4116 return ret; 4117 } 4118 4119 int 4120 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data, 4121 struct drm_file *file_priv) 4122 { 4123 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4124 return 0; 4125 4126 drm_irq_uninstall(dev); 4127 return i915_gem_idle(dev); 4128 } 4129 4130 void 4131 i915_gem_lastclose(struct drm_device *dev) 4132 { 4133 int ret; 4134 4135 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4136 return; 4137 4138 ret = i915_gem_idle(dev); 4139 if (ret) 4140 DRM_ERROR("failed to idle hardware: %d\n", ret); 4141 } 4142 4143 static void 4144 init_ring_lists(struct intel_ring_buffer *ring) 4145 { 4146 INIT_LIST_HEAD(&ring->active_list); 4147 INIT_LIST_HEAD(&ring->request_list); 4148 } 4149 4150 void 4151 i915_gem_load(struct drm_device *dev) 4152 { 4153 int i; 4154 drm_i915_private_t *dev_priv = dev->dev_private; 4155 4156 INIT_LIST_HEAD(&dev_priv->mm.active_list); 4157 INIT_LIST_HEAD(&dev_priv->mm.inactive_list); 4158 INIT_LIST_HEAD(&dev_priv->mm.unbound_list); 4159 INIT_LIST_HEAD(&dev_priv->mm.bound_list); 4160 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 4161 for (i = 0; i < I915_NUM_RINGS; i++) 4162 init_ring_lists(&dev_priv->ring[i]); 4163 for (i = 0; i < I915_MAX_NUM_FENCES; i++) 4164 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list); 4165 INIT_DELAYED_WORK(&dev_priv->mm.retire_work, 4166 i915_gem_retire_work_handler); 4167 init_completion(&dev_priv->error_completion); 4168 4169 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */ 4170 if (IS_GEN3(dev)) { 4171 I915_WRITE(MI_ARB_STATE, 4172 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE)); 4173 } 4174 4175 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL; 4176 4177 /* Old X drivers will take 0-2 for front, back, depth buffers */ 4178 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4179 dev_priv->fence_reg_start = 3; 4180 4181 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) 4182 dev_priv->num_fence_regs = 16; 4183 else 4184 dev_priv->num_fence_regs = 8; 4185 4186 /* Initialize fence registers to zero */ 4187 i915_gem_reset_fences(dev); 4188 4189 i915_gem_detect_bit_6_swizzle(dev); 4190 init_waitqueue_head(&dev_priv->pending_flip_queue); 4191 4192 dev_priv->mm.interruptible = true; 4193 4194 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink; 4195 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS; 4196 register_shrinker(&dev_priv->mm.inactive_shrinker); 4197 } 4198 4199 /* 4200 * Create a physically contiguous memory object for this object 4201 * e.g. for cursor + overlay regs 4202 */ 4203 static int i915_gem_init_phys_object(struct drm_device *dev, 4204 int id, int size, int align) 4205 { 4206 drm_i915_private_t *dev_priv = dev->dev_private; 4207 struct drm_i915_gem_phys_object *phys_obj; 4208 int ret; 4209 4210 if (dev_priv->mm.phys_objs[id - 1] || !size) 4211 return 0; 4212 4213 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL); 4214 if (!phys_obj) 4215 return -ENOMEM; 4216 4217 phys_obj->id = id; 4218 4219 phys_obj->handle = drm_pci_alloc(dev, size, align); 4220 if (!phys_obj->handle) { 4221 ret = -ENOMEM; 4222 goto kfree_obj; 4223 } 4224 #ifdef CONFIG_X86 4225 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE); 4226 #endif 4227 4228 dev_priv->mm.phys_objs[id - 1] = phys_obj; 4229 4230 return 0; 4231 kfree_obj: 4232 kfree(phys_obj); 4233 return ret; 4234 } 4235 4236 static void i915_gem_free_phys_object(struct drm_device *dev, int id) 4237 { 4238 drm_i915_private_t *dev_priv = dev->dev_private; 4239 struct drm_i915_gem_phys_object *phys_obj; 4240 4241 if (!dev_priv->mm.phys_objs[id - 1]) 4242 return; 4243 4244 phys_obj = dev_priv->mm.phys_objs[id - 1]; 4245 if (phys_obj->cur_obj) { 4246 i915_gem_detach_phys_object(dev, phys_obj->cur_obj); 4247 } 4248 4249 #ifdef CONFIG_X86 4250 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE); 4251 #endif 4252 drm_pci_free(dev, phys_obj->handle); 4253 kfree(phys_obj); 4254 dev_priv->mm.phys_objs[id - 1] = NULL; 4255 } 4256 4257 void i915_gem_free_all_phys_object(struct drm_device *dev) 4258 { 4259 int i; 4260 4261 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++) 4262 i915_gem_free_phys_object(dev, i); 4263 } 4264 4265 void i915_gem_detach_phys_object(struct drm_device *dev, 4266 struct drm_i915_gem_object *obj) 4267 { 4268 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping; 4269 char *vaddr; 4270 int i; 4271 int page_count; 4272 4273 if (!obj->phys_obj) 4274 return; 4275 vaddr = obj->phys_obj->handle->vaddr; 4276 4277 page_count = obj->base.size / PAGE_SIZE; 4278 for (i = 0; i < page_count; i++) { 4279 struct page *page = shmem_read_mapping_page(mapping, i); 4280 if (!IS_ERR(page)) { 4281 char *dst = kmap_atomic(page); 4282 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE); 4283 kunmap_atomic(dst); 4284 4285 drm_clflush_pages(&page, 1); 4286 4287 set_page_dirty(page); 4288 mark_page_accessed(page); 4289 page_cache_release(page); 4290 } 4291 } 4292 intel_gtt_chipset_flush(); 4293 4294 obj->phys_obj->cur_obj = NULL; 4295 obj->phys_obj = NULL; 4296 } 4297 4298 int 4299 i915_gem_attach_phys_object(struct drm_device *dev, 4300 struct drm_i915_gem_object *obj, 4301 int id, 4302 int align) 4303 { 4304 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping; 4305 drm_i915_private_t *dev_priv = dev->dev_private; 4306 int ret = 0; 4307 int page_count; 4308 int i; 4309 4310 if (id > I915_MAX_PHYS_OBJECT) 4311 return -EINVAL; 4312 4313 if (obj->phys_obj) { 4314 if (obj->phys_obj->id == id) 4315 return 0; 4316 i915_gem_detach_phys_object(dev, obj); 4317 } 4318 4319 /* create a new object */ 4320 if (!dev_priv->mm.phys_objs[id - 1]) { 4321 ret = i915_gem_init_phys_object(dev, id, 4322 obj->base.size, align); 4323 if (ret) { 4324 DRM_ERROR("failed to init phys object %d size: %zu\n", 4325 id, obj->base.size); 4326 return ret; 4327 } 4328 } 4329 4330 /* bind to the object */ 4331 obj->phys_obj = dev_priv->mm.phys_objs[id - 1]; 4332 obj->phys_obj->cur_obj = obj; 4333 4334 page_count = obj->base.size / PAGE_SIZE; 4335 4336 for (i = 0; i < page_count; i++) { 4337 struct page *page; 4338 char *dst, *src; 4339 4340 page = shmem_read_mapping_page(mapping, i); 4341 if (IS_ERR(page)) 4342 return PTR_ERR(page); 4343 4344 src = kmap_atomic(page); 4345 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE); 4346 memcpy(dst, src, PAGE_SIZE); 4347 kunmap_atomic(src); 4348 4349 mark_page_accessed(page); 4350 page_cache_release(page); 4351 } 4352 4353 return 0; 4354 } 4355 4356 static int 4357 i915_gem_phys_pwrite(struct drm_device *dev, 4358 struct drm_i915_gem_object *obj, 4359 struct drm_i915_gem_pwrite *args, 4360 struct drm_file *file_priv) 4361 { 4362 void *vaddr = obj->phys_obj->handle->vaddr + args->offset; 4363 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr; 4364 4365 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) { 4366 unsigned long unwritten; 4367 4368 /* The physical object once assigned is fixed for the lifetime 4369 * of the obj, so we can safely drop the lock and continue 4370 * to access vaddr. 4371 */ 4372 mutex_unlock(&dev->struct_mutex); 4373 unwritten = copy_from_user(vaddr, user_data, args->size); 4374 mutex_lock(&dev->struct_mutex); 4375 if (unwritten) 4376 return -EFAULT; 4377 } 4378 4379 intel_gtt_chipset_flush(); 4380 return 0; 4381 } 4382 4383 void i915_gem_release(struct drm_device *dev, struct drm_file *file) 4384 { 4385 struct drm_i915_file_private *file_priv = file->driver_priv; 4386 4387 /* Clean up our request list when the client is going away, so that 4388 * later retire_requests won't dereference our soon-to-be-gone 4389 * file_priv. 4390 */ 4391 spin_lock(&file_priv->mm.lock); 4392 while (!list_empty(&file_priv->mm.request_list)) { 4393 struct drm_i915_gem_request *request; 4394 4395 request = list_first_entry(&file_priv->mm.request_list, 4396 struct drm_i915_gem_request, 4397 client_list); 4398 list_del(&request->client_list); 4399 request->file_priv = NULL; 4400 } 4401 spin_unlock(&file_priv->mm.lock); 4402 } 4403 4404 static int 4405 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc) 4406 { 4407 struct drm_i915_private *dev_priv = 4408 container_of(shrinker, 4409 struct drm_i915_private, 4410 mm.inactive_shrinker); 4411 struct drm_device *dev = dev_priv->dev; 4412 struct drm_i915_gem_object *obj; 4413 int nr_to_scan = sc->nr_to_scan; 4414 int cnt; 4415 4416 if (!mutex_trylock(&dev->struct_mutex)) 4417 return 0; 4418 4419 if (nr_to_scan) { 4420 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan); 4421 if (nr_to_scan > 0) 4422 i915_gem_shrink_all(dev_priv); 4423 } 4424 4425 cnt = 0; 4426 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list) 4427 if (obj->pages_pin_count == 0) 4428 cnt += obj->base.size >> PAGE_SHIFT; 4429 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list) 4430 if (obj->pin_count == 0 && obj->pages_pin_count == 0) 4431 cnt += obj->base.size >> PAGE_SHIFT; 4432 4433 mutex_unlock(&dev->struct_mutex); 4434 return cnt; 4435 } 4436