1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <linux/dma-fence-array.h> 29 #include <linux/kthread.h> 30 #include <linux/dma-resv.h> 31 #include <linux/shmem_fs.h> 32 #include <linux/slab.h> 33 #include <linux/stop_machine.h> 34 #include <linux/swap.h> 35 #include <linux/pci.h> 36 #include <linux/dma-buf.h> 37 #include <linux/mman.h> 38 39 #include <drm/drm_cache.h> 40 #include <drm/drm_vma_manager.h> 41 42 #include "display/intel_display.h" 43 44 #include "gem/i915_gem_clflush.h" 45 #include "gem/i915_gem_context.h" 46 #include "gem/i915_gem_ioctls.h" 47 #include "gem/i915_gem_mman.h" 48 #include "gem/i915_gem_object_frontbuffer.h" 49 #include "gem/i915_gem_pm.h" 50 #include "gem/i915_gem_region.h" 51 #include "gem/i915_gem_userptr.h" 52 #include "gt/intel_engine_user.h" 53 #include "gt/intel_gt.h" 54 #include "gt/intel_gt_pm.h" 55 #include "gt/intel_workarounds.h" 56 57 #include "i915_drv.h" 58 #include "i915_file_private.h" 59 #include "i915_trace.h" 60 #include "i915_vgpu.h" 61 #include "intel_clock_gating.h" 62 63 static int 64 insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size) 65 { 66 int err; 67 68 err = mutex_lock_interruptible(&ggtt->vm.mutex); 69 if (err) 70 return err; 71 72 memset(node, 0, sizeof(*node)); 73 err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node, 74 size, 0, I915_COLOR_UNEVICTABLE, 75 0, ggtt->mappable_end, 76 DRM_MM_INSERT_LOW); 77 78 mutex_unlock(&ggtt->vm.mutex); 79 80 return err; 81 } 82 83 static void 84 remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node) 85 { 86 mutex_lock(&ggtt->vm.mutex); 87 drm_mm_remove_node(node); 88 mutex_unlock(&ggtt->vm.mutex); 89 } 90 91 int 92 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 93 struct drm_file *file) 94 { 95 struct drm_i915_private *i915 = to_i915(dev); 96 struct i915_ggtt *ggtt = to_gt(i915)->ggtt; 97 struct drm_i915_gem_get_aperture *args = data; 98 struct i915_vma *vma; 99 u64 pinned; 100 101 if (mutex_lock_interruptible(&ggtt->vm.mutex)) 102 return -EINTR; 103 104 pinned = ggtt->vm.reserved; 105 list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link) 106 if (i915_vma_is_pinned(vma)) 107 pinned += vma->node.size; 108 109 mutex_unlock(&ggtt->vm.mutex); 110 111 args->aper_size = ggtt->vm.total; 112 args->aper_available_size = args->aper_size - pinned; 113 114 return 0; 115 } 116 117 int i915_gem_object_unbind(struct drm_i915_gem_object *obj, 118 unsigned long flags) 119 { 120 struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm; 121 bool vm_trylock = !!(flags & I915_GEM_OBJECT_UNBIND_VM_TRYLOCK); 122 LIST_HEAD(still_in_list); 123 intel_wakeref_t wakeref; 124 struct i915_vma *vma; 125 int ret; 126 127 assert_object_held(obj); 128 129 if (list_empty(&obj->vma.list)) 130 return 0; 131 132 /* 133 * As some machines use ACPI to handle runtime-resume callbacks, and 134 * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex 135 * as they are required by the shrinker. Ergo, we wake the device up 136 * first just in case. 137 */ 138 wakeref = intel_runtime_pm_get(rpm); 139 140 try_again: 141 ret = 0; 142 spin_lock(&obj->vma.lock); 143 while (!ret && (vma = list_first_entry_or_null(&obj->vma.list, 144 struct i915_vma, 145 obj_link))) { 146 list_move_tail(&vma->obj_link, &still_in_list); 147 if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) 148 continue; 149 150 if (flags & I915_GEM_OBJECT_UNBIND_TEST) { 151 ret = -EBUSY; 152 break; 153 } 154 155 /* 156 * Requiring the vm destructor to take the object lock 157 * before destroying a vma would help us eliminate the 158 * i915_vm_tryget() here, AND thus also the barrier stuff 159 * at the end. That's an easy fix, but sleeping locks in 160 * a kthread should generally be avoided. 161 */ 162 ret = -EAGAIN; 163 if (!i915_vm_tryget(vma->vm)) 164 break; 165 166 spin_unlock(&obj->vma.lock); 167 168 /* 169 * Since i915_vma_parked() takes the object lock 170 * before vma destruction, it won't race us here, 171 * and destroy the vma from under us. 172 */ 173 174 ret = -EBUSY; 175 if (flags & I915_GEM_OBJECT_UNBIND_ASYNC) { 176 assert_object_held(vma->obj); 177 ret = i915_vma_unbind_async(vma, vm_trylock); 178 } 179 180 if (ret == -EBUSY && (flags & I915_GEM_OBJECT_UNBIND_ACTIVE || 181 !i915_vma_is_active(vma))) { 182 if (vm_trylock) { 183 if (mutex_trylock(&vma->vm->mutex)) { 184 ret = __i915_vma_unbind(vma); 185 mutex_unlock(&vma->vm->mutex); 186 } 187 } else { 188 ret = i915_vma_unbind(vma); 189 } 190 } 191 192 i915_vm_put(vma->vm); 193 spin_lock(&obj->vma.lock); 194 } 195 list_splice_init(&still_in_list, &obj->vma.list); 196 spin_unlock(&obj->vma.lock); 197 198 if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) { 199 rcu_barrier(); /* flush the i915_vm_release() */ 200 goto try_again; 201 } 202 203 intel_runtime_pm_put(rpm, wakeref); 204 205 return ret; 206 } 207 208 static int 209 shmem_pread(struct page *page, int offset, int len, char __user *user_data, 210 bool needs_clflush) 211 { 212 char *vaddr; 213 int ret; 214 215 vaddr = kmap(page); 216 217 if (needs_clflush) 218 drm_clflush_virt_range(vaddr + offset, len); 219 220 ret = __copy_to_user(user_data, vaddr + offset, len); 221 222 kunmap(page); 223 224 return ret ? -EFAULT : 0; 225 } 226 227 static int 228 i915_gem_shmem_pread(struct drm_i915_gem_object *obj, 229 struct drm_i915_gem_pread *args) 230 { 231 unsigned int needs_clflush; 232 char __user *user_data; 233 unsigned long offset; 234 pgoff_t idx; 235 u64 remain; 236 int ret; 237 238 ret = i915_gem_object_lock_interruptible(obj, NULL); 239 if (ret) 240 return ret; 241 242 ret = i915_gem_object_pin_pages(obj); 243 if (ret) 244 goto err_unlock; 245 246 ret = i915_gem_object_prepare_read(obj, &needs_clflush); 247 if (ret) 248 goto err_unpin; 249 250 i915_gem_object_finish_access(obj); 251 i915_gem_object_unlock(obj); 252 253 remain = args->size; 254 user_data = u64_to_user_ptr(args->data_ptr); 255 offset = offset_in_page(args->offset); 256 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { 257 struct page *page = i915_gem_object_get_page(obj, idx); 258 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset); 259 260 ret = shmem_pread(page, offset, length, user_data, 261 needs_clflush); 262 if (ret) 263 break; 264 265 remain -= length; 266 user_data += length; 267 offset = 0; 268 } 269 270 i915_gem_object_unpin_pages(obj); 271 return ret; 272 273 err_unpin: 274 i915_gem_object_unpin_pages(obj); 275 err_unlock: 276 i915_gem_object_unlock(obj); 277 return ret; 278 } 279 280 static inline bool 281 gtt_user_read(struct io_mapping *mapping, 282 loff_t base, int offset, 283 char __user *user_data, int length) 284 { 285 void __iomem *vaddr; 286 unsigned long unwritten; 287 288 /* We can use the cpu mem copy function because this is X86. */ 289 vaddr = io_mapping_map_atomic_wc(mapping, base); 290 unwritten = __copy_to_user_inatomic(user_data, 291 (void __force *)vaddr + offset, 292 length); 293 io_mapping_unmap_atomic(vaddr); 294 if (unwritten) { 295 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE); 296 unwritten = copy_to_user(user_data, 297 (void __force *)vaddr + offset, 298 length); 299 io_mapping_unmap(vaddr); 300 } 301 return unwritten; 302 } 303 304 static struct i915_vma *i915_gem_gtt_prepare(struct drm_i915_gem_object *obj, 305 struct drm_mm_node *node, 306 bool write) 307 { 308 struct drm_i915_private *i915 = to_i915(obj->base.dev); 309 struct i915_ggtt *ggtt = to_gt(i915)->ggtt; 310 struct i915_vma *vma; 311 struct i915_gem_ww_ctx ww; 312 int ret; 313 314 i915_gem_ww_ctx_init(&ww, true); 315 retry: 316 vma = ERR_PTR(-ENODEV); 317 ret = i915_gem_object_lock(obj, &ww); 318 if (ret) 319 goto err_ww; 320 321 ret = i915_gem_object_set_to_gtt_domain(obj, write); 322 if (ret) 323 goto err_ww; 324 325 if (!i915_gem_object_is_tiled(obj)) 326 vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0, 327 PIN_MAPPABLE | 328 PIN_NONBLOCK /* NOWARN */ | 329 PIN_NOEVICT); 330 if (vma == ERR_PTR(-EDEADLK)) { 331 ret = -EDEADLK; 332 goto err_ww; 333 } else if (!IS_ERR(vma)) { 334 node->start = i915_ggtt_offset(vma); 335 node->flags = 0; 336 } else { 337 ret = insert_mappable_node(ggtt, node, PAGE_SIZE); 338 if (ret) 339 goto err_ww; 340 GEM_BUG_ON(!drm_mm_node_allocated(node)); 341 vma = NULL; 342 } 343 344 ret = i915_gem_object_pin_pages(obj); 345 if (ret) { 346 if (drm_mm_node_allocated(node)) { 347 ggtt->vm.clear_range(&ggtt->vm, node->start, node->size); 348 remove_mappable_node(ggtt, node); 349 } else { 350 i915_vma_unpin(vma); 351 } 352 } 353 354 err_ww: 355 if (ret == -EDEADLK) { 356 ret = i915_gem_ww_ctx_backoff(&ww); 357 if (!ret) 358 goto retry; 359 } 360 i915_gem_ww_ctx_fini(&ww); 361 362 return ret ? ERR_PTR(ret) : vma; 363 } 364 365 static void i915_gem_gtt_cleanup(struct drm_i915_gem_object *obj, 366 struct drm_mm_node *node, 367 struct i915_vma *vma) 368 { 369 struct drm_i915_private *i915 = to_i915(obj->base.dev); 370 struct i915_ggtt *ggtt = to_gt(i915)->ggtt; 371 372 i915_gem_object_unpin_pages(obj); 373 if (drm_mm_node_allocated(node)) { 374 ggtt->vm.clear_range(&ggtt->vm, node->start, node->size); 375 remove_mappable_node(ggtt, node); 376 } else { 377 i915_vma_unpin(vma); 378 } 379 } 380 381 static int 382 i915_gem_gtt_pread(struct drm_i915_gem_object *obj, 383 const struct drm_i915_gem_pread *args) 384 { 385 struct drm_i915_private *i915 = to_i915(obj->base.dev); 386 struct i915_ggtt *ggtt = to_gt(i915)->ggtt; 387 unsigned long remain, offset; 388 intel_wakeref_t wakeref; 389 struct drm_mm_node node; 390 void __user *user_data; 391 struct i915_vma *vma; 392 int ret = 0; 393 394 if (overflows_type(args->size, remain) || 395 overflows_type(args->offset, offset)) 396 return -EINVAL; 397 398 wakeref = intel_runtime_pm_get(&i915->runtime_pm); 399 400 vma = i915_gem_gtt_prepare(obj, &node, false); 401 if (IS_ERR(vma)) { 402 ret = PTR_ERR(vma); 403 goto out_rpm; 404 } 405 406 user_data = u64_to_user_ptr(args->data_ptr); 407 remain = args->size; 408 offset = args->offset; 409 410 while (remain > 0) { 411 /* Operation in this page 412 * 413 * page_base = page offset within aperture 414 * page_offset = offset within page 415 * page_length = bytes to copy for this page 416 */ 417 u32 page_base = node.start; 418 unsigned page_offset = offset_in_page(offset); 419 unsigned page_length = PAGE_SIZE - page_offset; 420 page_length = remain < page_length ? remain : page_length; 421 if (drm_mm_node_allocated(&node)) { 422 ggtt->vm.insert_page(&ggtt->vm, 423 i915_gem_object_get_dma_address(obj, 424 offset >> PAGE_SHIFT), 425 node.start, 426 i915_gem_get_pat_index(i915, 427 I915_CACHE_NONE), 0); 428 } else { 429 page_base += offset & PAGE_MASK; 430 } 431 432 if (gtt_user_read(&ggtt->iomap, page_base, page_offset, 433 user_data, page_length)) { 434 ret = -EFAULT; 435 break; 436 } 437 438 remain -= page_length; 439 user_data += page_length; 440 offset += page_length; 441 } 442 443 i915_gem_gtt_cleanup(obj, &node, vma); 444 out_rpm: 445 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 446 return ret; 447 } 448 449 /** 450 * i915_gem_pread_ioctl - Reads data from the object referenced by handle. 451 * @dev: drm device pointer 452 * @data: ioctl data blob 453 * @file: drm file pointer 454 * 455 * On error, the contents of *data are undefined. 456 */ 457 int 458 i915_gem_pread_ioctl(struct drm_device *dev, void *data, 459 struct drm_file *file) 460 { 461 struct drm_i915_private *i915 = to_i915(dev); 462 struct drm_i915_gem_pread *args = data; 463 struct drm_i915_gem_object *obj; 464 int ret; 465 466 /* PREAD is disallowed for all platforms after TGL-LP. This also 467 * covers all platforms with local memory. 468 */ 469 if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915)) 470 return -EOPNOTSUPP; 471 472 if (args->size == 0) 473 return 0; 474 475 if (!access_ok(u64_to_user_ptr(args->data_ptr), 476 args->size)) 477 return -EFAULT; 478 479 obj = i915_gem_object_lookup(file, args->handle); 480 if (!obj) 481 return -ENOENT; 482 483 /* Bounds check source. */ 484 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) { 485 ret = -EINVAL; 486 goto out; 487 } 488 489 trace_i915_gem_object_pread(obj, args->offset, args->size); 490 ret = -ENODEV; 491 if (obj->ops->pread) 492 ret = obj->ops->pread(obj, args); 493 if (ret != -ENODEV) 494 goto out; 495 496 ret = i915_gem_object_wait(obj, 497 I915_WAIT_INTERRUPTIBLE, 498 MAX_SCHEDULE_TIMEOUT); 499 if (ret) 500 goto out; 501 502 ret = i915_gem_shmem_pread(obj, args); 503 if (ret == -EFAULT || ret == -ENODEV) 504 ret = i915_gem_gtt_pread(obj, args); 505 506 out: 507 i915_gem_object_put(obj); 508 return ret; 509 } 510 511 /* This is the fast write path which cannot handle 512 * page faults in the source data 513 */ 514 515 static inline bool 516 ggtt_write(struct io_mapping *mapping, 517 loff_t base, int offset, 518 char __user *user_data, int length) 519 { 520 void __iomem *vaddr; 521 unsigned long unwritten; 522 523 /* We can use the cpu mem copy function because this is X86. */ 524 vaddr = io_mapping_map_atomic_wc(mapping, base); 525 unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset, 526 user_data, length); 527 io_mapping_unmap_atomic(vaddr); 528 if (unwritten) { 529 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE); 530 unwritten = copy_from_user((void __force *)vaddr + offset, 531 user_data, length); 532 io_mapping_unmap(vaddr); 533 } 534 535 return unwritten; 536 } 537 538 /** 539 * i915_gem_gtt_pwrite_fast - This is the fast pwrite path, where we copy the data directly from the 540 * user into the GTT, uncached. 541 * @obj: i915 GEM object 542 * @args: pwrite arguments structure 543 */ 544 static int 545 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj, 546 const struct drm_i915_gem_pwrite *args) 547 { 548 struct drm_i915_private *i915 = to_i915(obj->base.dev); 549 struct i915_ggtt *ggtt = to_gt(i915)->ggtt; 550 struct intel_runtime_pm *rpm = &i915->runtime_pm; 551 unsigned long remain, offset; 552 intel_wakeref_t wakeref; 553 struct drm_mm_node node; 554 struct i915_vma *vma; 555 void __user *user_data; 556 int ret = 0; 557 558 if (overflows_type(args->size, remain) || 559 overflows_type(args->offset, offset)) 560 return -EINVAL; 561 562 if (i915_gem_object_has_struct_page(obj)) { 563 /* 564 * Avoid waking the device up if we can fallback, as 565 * waking/resuming is very slow (worst-case 10-100 ms 566 * depending on PCI sleeps and our own resume time). 567 * This easily dwarfs any performance advantage from 568 * using the cache bypass of indirect GGTT access. 569 */ 570 wakeref = intel_runtime_pm_get_if_in_use(rpm); 571 if (!wakeref) 572 return -EFAULT; 573 } else { 574 /* No backing pages, no fallback, we must force GGTT access */ 575 wakeref = intel_runtime_pm_get(rpm); 576 } 577 578 vma = i915_gem_gtt_prepare(obj, &node, true); 579 if (IS_ERR(vma)) { 580 ret = PTR_ERR(vma); 581 goto out_rpm; 582 } 583 584 i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU); 585 586 user_data = u64_to_user_ptr(args->data_ptr); 587 offset = args->offset; 588 remain = args->size; 589 while (remain) { 590 /* Operation in this page 591 * 592 * page_base = page offset within aperture 593 * page_offset = offset within page 594 * page_length = bytes to copy for this page 595 */ 596 u32 page_base = node.start; 597 unsigned int page_offset = offset_in_page(offset); 598 unsigned int page_length = PAGE_SIZE - page_offset; 599 page_length = remain < page_length ? remain : page_length; 600 if (drm_mm_node_allocated(&node)) { 601 /* flush the write before we modify the GGTT */ 602 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 603 ggtt->vm.insert_page(&ggtt->vm, 604 i915_gem_object_get_dma_address(obj, 605 offset >> PAGE_SHIFT), 606 node.start, 607 i915_gem_get_pat_index(i915, 608 I915_CACHE_NONE), 0); 609 wmb(); /* flush modifications to the GGTT (insert_page) */ 610 } else { 611 page_base += offset & PAGE_MASK; 612 } 613 /* If we get a fault while copying data, then (presumably) our 614 * source page isn't available. Return the error and we'll 615 * retry in the slow path. 616 * If the object is non-shmem backed, we retry again with the 617 * path that handles page fault. 618 */ 619 if (ggtt_write(&ggtt->iomap, page_base, page_offset, 620 user_data, page_length)) { 621 ret = -EFAULT; 622 break; 623 } 624 625 remain -= page_length; 626 user_data += page_length; 627 offset += page_length; 628 } 629 630 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 631 i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU); 632 633 i915_gem_gtt_cleanup(obj, &node, vma); 634 out_rpm: 635 intel_runtime_pm_put(rpm, wakeref); 636 return ret; 637 } 638 639 /* Per-page copy function for the shmem pwrite fastpath. 640 * Flushes invalid cachelines before writing to the target if 641 * needs_clflush_before is set and flushes out any written cachelines after 642 * writing if needs_clflush is set. 643 */ 644 static int 645 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data, 646 bool needs_clflush_before, 647 bool needs_clflush_after) 648 { 649 char *vaddr; 650 int ret; 651 652 vaddr = kmap(page); 653 654 if (needs_clflush_before) 655 drm_clflush_virt_range(vaddr + offset, len); 656 657 ret = __copy_from_user(vaddr + offset, user_data, len); 658 if (!ret && needs_clflush_after) 659 drm_clflush_virt_range(vaddr + offset, len); 660 661 kunmap(page); 662 663 return ret ? -EFAULT : 0; 664 } 665 666 static int 667 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj, 668 const struct drm_i915_gem_pwrite *args) 669 { 670 unsigned int partial_cacheline_write; 671 unsigned int needs_clflush; 672 void __user *user_data; 673 unsigned long offset; 674 pgoff_t idx; 675 u64 remain; 676 int ret; 677 678 ret = i915_gem_object_lock_interruptible(obj, NULL); 679 if (ret) 680 return ret; 681 682 ret = i915_gem_object_pin_pages(obj); 683 if (ret) 684 goto err_unlock; 685 686 ret = i915_gem_object_prepare_write(obj, &needs_clflush); 687 if (ret) 688 goto err_unpin; 689 690 i915_gem_object_finish_access(obj); 691 i915_gem_object_unlock(obj); 692 693 /* If we don't overwrite a cacheline completely we need to be 694 * careful to have up-to-date data by first clflushing. Don't 695 * overcomplicate things and flush the entire patch. 696 */ 697 partial_cacheline_write = 0; 698 if (needs_clflush & CLFLUSH_BEFORE) 699 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1; 700 701 user_data = u64_to_user_ptr(args->data_ptr); 702 remain = args->size; 703 offset = offset_in_page(args->offset); 704 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { 705 struct page *page = i915_gem_object_get_page(obj, idx); 706 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset); 707 708 ret = shmem_pwrite(page, offset, length, user_data, 709 (offset | length) & partial_cacheline_write, 710 needs_clflush & CLFLUSH_AFTER); 711 if (ret) 712 break; 713 714 remain -= length; 715 user_data += length; 716 offset = 0; 717 } 718 719 i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU); 720 721 i915_gem_object_unpin_pages(obj); 722 return ret; 723 724 err_unpin: 725 i915_gem_object_unpin_pages(obj); 726 err_unlock: 727 i915_gem_object_unlock(obj); 728 return ret; 729 } 730 731 /** 732 * i915_gem_pwrite_ioctl - Writes data to the object referenced by handle. 733 * @dev: drm device 734 * @data: ioctl data blob 735 * @file: drm file 736 * 737 * On error, the contents of the buffer that were to be modified are undefined. 738 */ 739 int 740 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 741 struct drm_file *file) 742 { 743 struct drm_i915_private *i915 = to_i915(dev); 744 struct drm_i915_gem_pwrite *args = data; 745 struct drm_i915_gem_object *obj; 746 int ret; 747 748 /* PWRITE is disallowed for all platforms after TGL-LP. This also 749 * covers all platforms with local memory. 750 */ 751 if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915)) 752 return -EOPNOTSUPP; 753 754 if (args->size == 0) 755 return 0; 756 757 if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size)) 758 return -EFAULT; 759 760 obj = i915_gem_object_lookup(file, args->handle); 761 if (!obj) 762 return -ENOENT; 763 764 /* Bounds check destination. */ 765 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) { 766 ret = -EINVAL; 767 goto err; 768 } 769 770 /* Writes not allowed into this read-only object */ 771 if (i915_gem_object_is_readonly(obj)) { 772 ret = -EINVAL; 773 goto err; 774 } 775 776 trace_i915_gem_object_pwrite(obj, args->offset, args->size); 777 778 ret = -ENODEV; 779 if (obj->ops->pwrite) 780 ret = obj->ops->pwrite(obj, args); 781 if (ret != -ENODEV) 782 goto err; 783 784 ret = i915_gem_object_wait(obj, 785 I915_WAIT_INTERRUPTIBLE | 786 I915_WAIT_ALL, 787 MAX_SCHEDULE_TIMEOUT); 788 if (ret) 789 goto err; 790 791 ret = -EFAULT; 792 /* We can only do the GTT pwrite on untiled buffers, as otherwise 793 * it would end up going through the fenced access, and we'll get 794 * different detiling behavior between reading and writing. 795 * pread/pwrite currently are reading and writing from the CPU 796 * perspective, requiring manual detiling by the client. 797 */ 798 if (!i915_gem_object_has_struct_page(obj) || 799 i915_gem_cpu_write_needs_clflush(obj)) 800 /* Note that the gtt paths might fail with non-page-backed user 801 * pointers (e.g. gtt mappings when moving data between 802 * textures). Fallback to the shmem path in that case. 803 */ 804 ret = i915_gem_gtt_pwrite_fast(obj, args); 805 806 if (ret == -EFAULT || ret == -ENOSPC) { 807 if (i915_gem_object_has_struct_page(obj)) 808 ret = i915_gem_shmem_pwrite(obj, args); 809 } 810 811 err: 812 i915_gem_object_put(obj); 813 return ret; 814 } 815 816 /** 817 * i915_gem_sw_finish_ioctl - Called when user space has done writes to this buffer 818 * @dev: drm device 819 * @data: ioctl data blob 820 * @file: drm file 821 */ 822 int 823 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 824 struct drm_file *file) 825 { 826 struct drm_i915_gem_sw_finish *args = data; 827 struct drm_i915_gem_object *obj; 828 829 obj = i915_gem_object_lookup(file, args->handle); 830 if (!obj) 831 return -ENOENT; 832 833 /* 834 * Proxy objects are barred from CPU access, so there is no 835 * need to ban sw_finish as it is a nop. 836 */ 837 838 /* Pinned buffers may be scanout, so flush the cache */ 839 i915_gem_object_flush_if_display(obj); 840 i915_gem_object_put(obj); 841 842 return 0; 843 } 844 845 void i915_gem_runtime_suspend(struct drm_i915_private *i915) 846 { 847 struct drm_i915_gem_object *obj, *on; 848 int i; 849 850 /* 851 * Only called during RPM suspend. All users of the userfault_list 852 * must be holding an RPM wakeref to ensure that this can not 853 * run concurrently with themselves (and use the struct_mutex for 854 * protection between themselves). 855 */ 856 857 list_for_each_entry_safe(obj, on, 858 &to_gt(i915)->ggtt->userfault_list, userfault_link) 859 __i915_gem_object_release_mmap_gtt(obj); 860 861 list_for_each_entry_safe(obj, on, 862 &i915->runtime_pm.lmem_userfault_list, userfault_link) 863 i915_gem_object_runtime_pm_release_mmap_offset(obj); 864 865 /* 866 * The fence will be lost when the device powers down. If any were 867 * in use by hardware (i.e. they are pinned), we should not be powering 868 * down! All other fences will be reacquired by the user upon waking. 869 */ 870 for (i = 0; i < to_gt(i915)->ggtt->num_fences; i++) { 871 struct i915_fence_reg *reg = &to_gt(i915)->ggtt->fence_regs[i]; 872 873 /* 874 * Ideally we want to assert that the fence register is not 875 * live at this point (i.e. that no piece of code will be 876 * trying to write through fence + GTT, as that both violates 877 * our tracking of activity and associated locking/barriers, 878 * but also is illegal given that the hw is powered down). 879 * 880 * Previously we used reg->pin_count as a "liveness" indicator. 881 * That is not sufficient, and we need a more fine-grained 882 * tool if we want to have a sanity check here. 883 */ 884 885 if (!reg->vma) 886 continue; 887 888 GEM_BUG_ON(i915_vma_has_userfault(reg->vma)); 889 reg->dirty = true; 890 } 891 } 892 893 static void discard_ggtt_vma(struct i915_vma *vma) 894 { 895 struct drm_i915_gem_object *obj = vma->obj; 896 897 spin_lock(&obj->vma.lock); 898 if (!RB_EMPTY_NODE(&vma->obj_node)) { 899 rb_erase(&vma->obj_node, &obj->vma.tree); 900 RB_CLEAR_NODE(&vma->obj_node); 901 } 902 spin_unlock(&obj->vma.lock); 903 } 904 905 struct i915_vma * 906 i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj, 907 struct i915_gem_ww_ctx *ww, 908 const struct i915_gtt_view *view, 909 u64 size, u64 alignment, u64 flags) 910 { 911 struct drm_i915_private *i915 = to_i915(obj->base.dev); 912 struct i915_ggtt *ggtt = to_gt(i915)->ggtt; 913 struct i915_vma *vma; 914 int ret; 915 916 GEM_WARN_ON(!ww); 917 918 if (flags & PIN_MAPPABLE && 919 (!view || view->type == I915_GTT_VIEW_NORMAL)) { 920 /* 921 * If the required space is larger than the available 922 * aperture, we will not able to find a slot for the 923 * object and unbinding the object now will be in 924 * vain. Worse, doing so may cause us to ping-pong 925 * the object in and out of the Global GTT and 926 * waste a lot of cycles under the mutex. 927 */ 928 if (obj->base.size > ggtt->mappable_end) 929 return ERR_PTR(-E2BIG); 930 931 /* 932 * If NONBLOCK is set the caller is optimistically 933 * trying to cache the full object within the mappable 934 * aperture, and *must* have a fallback in place for 935 * situations where we cannot bind the object. We 936 * can be a little more lax here and use the fallback 937 * more often to avoid costly migrations of ourselves 938 * and other objects within the aperture. 939 * 940 * Half-the-aperture is used as a simple heuristic. 941 * More interesting would to do search for a free 942 * block prior to making the commitment to unbind. 943 * That caters for the self-harm case, and with a 944 * little more heuristics (e.g. NOFAULT, NOEVICT) 945 * we could try to minimise harm to others. 946 */ 947 if (flags & PIN_NONBLOCK && 948 obj->base.size > ggtt->mappable_end / 2) 949 return ERR_PTR(-ENOSPC); 950 } 951 952 new_vma: 953 vma = i915_vma_instance(obj, &ggtt->vm, view); 954 if (IS_ERR(vma)) 955 return vma; 956 957 if (i915_vma_misplaced(vma, size, alignment, flags)) { 958 if (flags & PIN_NONBLOCK) { 959 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) 960 return ERR_PTR(-ENOSPC); 961 962 /* 963 * If this misplaced vma is too big (i.e, at-least 964 * half the size of aperture) or hasn't been pinned 965 * mappable before, we ignore the misplacement when 966 * PIN_NONBLOCK is set in order to avoid the ping-pong 967 * issue described above. In other words, we try to 968 * avoid the costly operation of unbinding this vma 969 * from the GGTT and rebinding it back because there 970 * may not be enough space for this vma in the aperture. 971 */ 972 if (flags & PIN_MAPPABLE && 973 (vma->fence_size > ggtt->mappable_end / 2 || 974 !i915_vma_is_map_and_fenceable(vma))) 975 return ERR_PTR(-ENOSPC); 976 } 977 978 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) { 979 discard_ggtt_vma(vma); 980 goto new_vma; 981 } 982 983 ret = i915_vma_unbind(vma); 984 if (ret) 985 return ERR_PTR(ret); 986 } 987 988 ret = i915_vma_pin_ww(vma, ww, size, alignment, flags | PIN_GLOBAL); 989 990 if (ret) 991 return ERR_PTR(ret); 992 993 if (vma->fence && !i915_gem_object_is_tiled(obj)) { 994 mutex_lock(&ggtt->vm.mutex); 995 i915_vma_revoke_fence(vma); 996 mutex_unlock(&ggtt->vm.mutex); 997 } 998 999 ret = i915_vma_wait_for_bind(vma); 1000 if (ret) { 1001 i915_vma_unpin(vma); 1002 return ERR_PTR(ret); 1003 } 1004 1005 return vma; 1006 } 1007 1008 struct i915_vma * __must_check 1009 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, 1010 const struct i915_gtt_view *view, 1011 u64 size, u64 alignment, u64 flags) 1012 { 1013 struct i915_gem_ww_ctx ww; 1014 struct i915_vma *ret; 1015 int err; 1016 1017 for_i915_gem_ww(&ww, err, true) { 1018 err = i915_gem_object_lock(obj, &ww); 1019 if (err) 1020 continue; 1021 1022 ret = i915_gem_object_ggtt_pin_ww(obj, &ww, view, size, 1023 alignment, flags); 1024 if (IS_ERR(ret)) 1025 err = PTR_ERR(ret); 1026 } 1027 1028 return err ? ERR_PTR(err) : ret; 1029 } 1030 1031 int 1032 i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 1033 struct drm_file *file_priv) 1034 { 1035 struct drm_i915_private *i915 = to_i915(dev); 1036 struct drm_i915_gem_madvise *args = data; 1037 struct drm_i915_gem_object *obj; 1038 int err; 1039 1040 switch (args->madv) { 1041 case I915_MADV_DONTNEED: 1042 case I915_MADV_WILLNEED: 1043 break; 1044 default: 1045 return -EINVAL; 1046 } 1047 1048 obj = i915_gem_object_lookup(file_priv, args->handle); 1049 if (!obj) 1050 return -ENOENT; 1051 1052 err = i915_gem_object_lock_interruptible(obj, NULL); 1053 if (err) 1054 goto out; 1055 1056 if (i915_gem_object_has_pages(obj) && 1057 i915_gem_object_is_tiled(obj) && 1058 i915->gem_quirks & GEM_QUIRK_PIN_SWIZZLED_PAGES) { 1059 if (obj->mm.madv == I915_MADV_WILLNEED) { 1060 GEM_BUG_ON(!i915_gem_object_has_tiling_quirk(obj)); 1061 i915_gem_object_clear_tiling_quirk(obj); 1062 i915_gem_object_make_shrinkable(obj); 1063 } 1064 if (args->madv == I915_MADV_WILLNEED) { 1065 GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj)); 1066 i915_gem_object_make_unshrinkable(obj); 1067 i915_gem_object_set_tiling_quirk(obj); 1068 } 1069 } 1070 1071 if (obj->mm.madv != __I915_MADV_PURGED) { 1072 obj->mm.madv = args->madv; 1073 if (obj->ops->adjust_lru) 1074 obj->ops->adjust_lru(obj); 1075 } 1076 1077 if (i915_gem_object_has_pages(obj) || 1078 i915_gem_object_has_self_managed_shrink_list(obj)) { 1079 unsigned long flags; 1080 1081 spin_lock_irqsave(&i915->mm.obj_lock, flags); 1082 if (!list_empty(&obj->mm.link)) { 1083 struct list_head *list; 1084 1085 if (obj->mm.madv != I915_MADV_WILLNEED) 1086 list = &i915->mm.purge_list; 1087 else 1088 list = &i915->mm.shrink_list; 1089 list_move_tail(&obj->mm.link, list); 1090 1091 } 1092 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 1093 } 1094 1095 /* if the object is no longer attached, discard its backing storage */ 1096 if (obj->mm.madv == I915_MADV_DONTNEED && 1097 !i915_gem_object_has_pages(obj)) 1098 i915_gem_object_truncate(obj); 1099 1100 args->retained = obj->mm.madv != __I915_MADV_PURGED; 1101 1102 i915_gem_object_unlock(obj); 1103 out: 1104 i915_gem_object_put(obj); 1105 return err; 1106 } 1107 1108 /* 1109 * A single pass should suffice to release all the freed objects (along most 1110 * call paths), but be a little more paranoid in that freeing the objects does 1111 * take a little amount of time, during which the rcu callbacks could have added 1112 * new objects into the freed list, and armed the work again. 1113 */ 1114 void i915_gem_drain_freed_objects(struct drm_i915_private *i915) 1115 { 1116 while (atomic_read(&i915->mm.free_count)) { 1117 flush_work(&i915->mm.free_work); 1118 drain_workqueue(i915->bdev.wq); 1119 rcu_barrier(); 1120 } 1121 } 1122 1123 /* 1124 * Similar to objects above (see i915_gem_drain_freed-objects), in general we 1125 * have workers that are armed by RCU and then rearm themselves in their 1126 * callbacks. To be paranoid, we need to drain the workqueue a second time after 1127 * waiting for the RCU grace period so that we catch work queued via RCU from 1128 * the first pass. As neither drain_workqueue() nor flush_workqueue() report a 1129 * result, we make an assumption that we only don't require more than 3 passes 1130 * to catch all _recursive_ RCU delayed work. 1131 */ 1132 void i915_gem_drain_workqueue(struct drm_i915_private *i915) 1133 { 1134 int i; 1135 1136 for (i = 0; i < 3; i++) { 1137 flush_workqueue(i915->wq); 1138 rcu_barrier(); 1139 i915_gem_drain_freed_objects(i915); 1140 } 1141 1142 drain_workqueue(i915->wq); 1143 } 1144 1145 int i915_gem_init(struct drm_i915_private *dev_priv) 1146 { 1147 struct intel_gt *gt; 1148 unsigned int i; 1149 int ret; 1150 1151 /* 1152 * In the proccess of replacing cache_level with pat_index a tricky 1153 * dependency is created on the definition of the enum i915_cache_level. 1154 * in case this enum is changed, PTE encode would be broken. 1155 * Add a WARNING here. And remove when we completely quit using this 1156 * enum 1157 */ 1158 BUILD_BUG_ON(I915_CACHE_NONE != 0 || 1159 I915_CACHE_LLC != 1 || 1160 I915_CACHE_L3_LLC != 2 || 1161 I915_CACHE_WT != 3 || 1162 I915_MAX_CACHE_LEVEL != 4); 1163 1164 /* We need to fallback to 4K pages if host doesn't support huge gtt. */ 1165 if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv)) 1166 RUNTIME_INFO(dev_priv)->page_sizes = I915_GTT_PAGE_SIZE_4K; 1167 1168 ret = i915_gem_init_userptr(dev_priv); 1169 if (ret) 1170 return ret; 1171 1172 for_each_gt(gt, dev_priv, i) { 1173 intel_uc_fetch_firmwares(>->uc); 1174 intel_wopcm_init(>->wopcm); 1175 if (GRAPHICS_VER(dev_priv) >= 8) 1176 setup_private_pat(gt); 1177 } 1178 1179 ret = i915_init_ggtt(dev_priv); 1180 if (ret) { 1181 GEM_BUG_ON(ret == -EIO); 1182 goto err_unlock; 1183 } 1184 1185 /* 1186 * Despite its name intel_clock_gating_init applies both display 1187 * clock gating workarounds; GT mmio workarounds and the occasional 1188 * GT power context workaround. Worse, sometimes it includes a context 1189 * register workaround which we need to apply before we record the 1190 * default HW state for all contexts. 1191 * 1192 * FIXME: break up the workarounds and apply them at the right time! 1193 */ 1194 intel_clock_gating_init(dev_priv); 1195 1196 for_each_gt(gt, dev_priv, i) { 1197 ret = intel_gt_init(gt); 1198 if (ret) 1199 goto err_unlock; 1200 } 1201 1202 /* 1203 * Register engines early to ensure the engine list is in its final 1204 * rb-tree form, lowering the amount of code that has to deal with 1205 * the intermediate llist state. 1206 */ 1207 intel_engines_driver_register(dev_priv); 1208 1209 return 0; 1210 1211 /* 1212 * Unwinding is complicated by that we want to handle -EIO to mean 1213 * disable GPU submission but keep KMS alive. We want to mark the 1214 * HW as irrevisibly wedged, but keep enough state around that the 1215 * driver doesn't explode during runtime. 1216 */ 1217 err_unlock: 1218 i915_gem_drain_workqueue(dev_priv); 1219 1220 if (ret != -EIO) { 1221 for_each_gt(gt, dev_priv, i) { 1222 intel_gt_driver_remove(gt); 1223 intel_gt_driver_release(gt); 1224 intel_uc_cleanup_firmwares(>->uc); 1225 } 1226 } 1227 1228 if (ret == -EIO) { 1229 /* 1230 * Allow engines or uC initialisation to fail by marking the GPU 1231 * as wedged. But we only want to do this when the GPU is angry, 1232 * for all other failure, such as an allocation failure, bail. 1233 */ 1234 for_each_gt(gt, dev_priv, i) { 1235 if (!intel_gt_is_wedged(gt)) { 1236 i915_probe_error(dev_priv, 1237 "Failed to initialize GPU, declaring it wedged!\n"); 1238 intel_gt_set_wedged(gt); 1239 } 1240 } 1241 1242 /* Minimal basic recovery for KMS */ 1243 ret = i915_ggtt_enable_hw(dev_priv); 1244 i915_ggtt_resume(to_gt(dev_priv)->ggtt); 1245 intel_clock_gating_init(dev_priv); 1246 } 1247 1248 i915_gem_drain_freed_objects(dev_priv); 1249 1250 return ret; 1251 } 1252 1253 void i915_gem_driver_register(struct drm_i915_private *i915) 1254 { 1255 i915_gem_driver_register__shrinker(i915); 1256 } 1257 1258 void i915_gem_driver_unregister(struct drm_i915_private *i915) 1259 { 1260 i915_gem_driver_unregister__shrinker(i915); 1261 } 1262 1263 void i915_gem_driver_remove(struct drm_i915_private *dev_priv) 1264 { 1265 struct intel_gt *gt; 1266 unsigned int i; 1267 1268 i915_gem_suspend_late(dev_priv); 1269 for_each_gt(gt, dev_priv, i) 1270 intel_gt_driver_remove(gt); 1271 dev_priv->uabi_engines = RB_ROOT; 1272 1273 /* Flush any outstanding unpin_work. */ 1274 i915_gem_drain_workqueue(dev_priv); 1275 } 1276 1277 void i915_gem_driver_release(struct drm_i915_private *dev_priv) 1278 { 1279 struct intel_gt *gt; 1280 unsigned int i; 1281 1282 for_each_gt(gt, dev_priv, i) { 1283 intel_gt_driver_release(gt); 1284 intel_uc_cleanup_firmwares(>->uc); 1285 } 1286 1287 /* Flush any outstanding work, including i915_gem_context.release_work. */ 1288 i915_gem_drain_workqueue(dev_priv); 1289 1290 drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list)); 1291 } 1292 1293 static void i915_gem_init__mm(struct drm_i915_private *i915) 1294 { 1295 spin_lock_init(&i915->mm.obj_lock); 1296 1297 init_llist_head(&i915->mm.free_list); 1298 1299 INIT_LIST_HEAD(&i915->mm.purge_list); 1300 INIT_LIST_HEAD(&i915->mm.shrink_list); 1301 1302 i915_gem_init__objects(i915); 1303 } 1304 1305 void i915_gem_init_early(struct drm_i915_private *dev_priv) 1306 { 1307 i915_gem_init__mm(dev_priv); 1308 i915_gem_init__contexts(dev_priv); 1309 } 1310 1311 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv) 1312 { 1313 i915_gem_drain_workqueue(dev_priv); 1314 GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list)); 1315 GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count)); 1316 drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count); 1317 } 1318 1319 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file) 1320 { 1321 struct drm_i915_file_private *file_priv; 1322 struct i915_drm_client *client; 1323 int ret = -ENOMEM; 1324 1325 drm_dbg(&i915->drm, "\n"); 1326 1327 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL); 1328 if (!file_priv) 1329 goto err_alloc; 1330 1331 client = i915_drm_client_alloc(); 1332 if (!client) 1333 goto err_client; 1334 1335 file->driver_priv = file_priv; 1336 file_priv->i915 = i915; 1337 file_priv->file = file; 1338 file_priv->client = client; 1339 1340 file_priv->bsd_engine = -1; 1341 file_priv->hang_timestamp = jiffies; 1342 1343 ret = i915_gem_context_open(i915, file); 1344 if (ret) 1345 goto err_context; 1346 1347 return 0; 1348 1349 err_context: 1350 i915_drm_client_put(client); 1351 err_client: 1352 kfree(file_priv); 1353 err_alloc: 1354 return ret; 1355 } 1356 1357 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1358 #include "selftests/mock_gem_device.c" 1359 #include "selftests/i915_gem.c" 1360 #endif 1361