1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <drm/drmP.h> 29 #include <drm/drm_vma_manager.h> 30 #include <drm/i915_drm.h> 31 #include "i915_drv.h" 32 #include "i915_gem_clflush.h" 33 #include "i915_vgpu.h" 34 #include "i915_trace.h" 35 #include "intel_drv.h" 36 #include "intel_frontbuffer.h" 37 #include "intel_mocs.h" 38 #include "i915_gemfs.h" 39 #include <linux/dma-fence-array.h> 40 #include <linux/kthread.h> 41 #include <linux/reservation.h> 42 #include <linux/shmem_fs.h> 43 #include <linux/slab.h> 44 #include <linux/stop_machine.h> 45 #include <linux/swap.h> 46 #include <linux/pci.h> 47 #include <linux/dma-buf.h> 48 49 static void i915_gem_flush_free_objects(struct drm_i915_private *i915); 50 51 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj) 52 { 53 if (obj->cache_dirty) 54 return false; 55 56 if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE)) 57 return true; 58 59 return obj->pin_global; /* currently in use by HW, keep flushed */ 60 } 61 62 static int 63 insert_mappable_node(struct i915_ggtt *ggtt, 64 struct drm_mm_node *node, u32 size) 65 { 66 memset(node, 0, sizeof(*node)); 67 return drm_mm_insert_node_in_range(&ggtt->base.mm, node, 68 size, 0, I915_COLOR_UNEVICTABLE, 69 0, ggtt->mappable_end, 70 DRM_MM_INSERT_LOW); 71 } 72 73 static void 74 remove_mappable_node(struct drm_mm_node *node) 75 { 76 drm_mm_remove_node(node); 77 } 78 79 /* some bookkeeping */ 80 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv, 81 u64 size) 82 { 83 spin_lock(&dev_priv->mm.object_stat_lock); 84 dev_priv->mm.object_count++; 85 dev_priv->mm.object_memory += size; 86 spin_unlock(&dev_priv->mm.object_stat_lock); 87 } 88 89 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, 90 u64 size) 91 { 92 spin_lock(&dev_priv->mm.object_stat_lock); 93 dev_priv->mm.object_count--; 94 dev_priv->mm.object_memory -= size; 95 spin_unlock(&dev_priv->mm.object_stat_lock); 96 } 97 98 static int 99 i915_gem_wait_for_error(struct i915_gpu_error *error) 100 { 101 int ret; 102 103 might_sleep(); 104 105 /* 106 * Only wait 10 seconds for the gpu reset to complete to avoid hanging 107 * userspace. If it takes that long something really bad is going on and 108 * we should simply try to bail out and fail as gracefully as possible. 109 */ 110 ret = wait_event_interruptible_timeout(error->reset_queue, 111 !i915_reset_backoff(error), 112 I915_RESET_TIMEOUT); 113 if (ret == 0) { 114 DRM_ERROR("Timed out waiting for the gpu reset to complete\n"); 115 return -EIO; 116 } else if (ret < 0) { 117 return ret; 118 } else { 119 return 0; 120 } 121 } 122 123 int i915_mutex_lock_interruptible(struct drm_device *dev) 124 { 125 struct drm_i915_private *dev_priv = to_i915(dev); 126 int ret; 127 128 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 129 if (ret) 130 return ret; 131 132 ret = mutex_lock_interruptible(&dev->struct_mutex); 133 if (ret) 134 return ret; 135 136 return 0; 137 } 138 139 int 140 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 141 struct drm_file *file) 142 { 143 struct drm_i915_private *dev_priv = to_i915(dev); 144 struct i915_ggtt *ggtt = &dev_priv->ggtt; 145 struct drm_i915_gem_get_aperture *args = data; 146 struct i915_vma *vma; 147 u64 pinned; 148 149 pinned = ggtt->base.reserved; 150 mutex_lock(&dev->struct_mutex); 151 list_for_each_entry(vma, &ggtt->base.active_list, vm_link) 152 if (i915_vma_is_pinned(vma)) 153 pinned += vma->node.size; 154 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link) 155 if (i915_vma_is_pinned(vma)) 156 pinned += vma->node.size; 157 mutex_unlock(&dev->struct_mutex); 158 159 args->aper_size = ggtt->base.total; 160 args->aper_available_size = args->aper_size - pinned; 161 162 return 0; 163 } 164 165 static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj) 166 { 167 struct address_space *mapping = obj->base.filp->f_mapping; 168 drm_dma_handle_t *phys; 169 struct sg_table *st; 170 struct scatterlist *sg; 171 char *vaddr; 172 int i; 173 int err; 174 175 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj))) 176 return -EINVAL; 177 178 /* Always aligning to the object size, allows a single allocation 179 * to handle all possible callers, and given typical object sizes, 180 * the alignment of the buddy allocation will naturally match. 181 */ 182 phys = drm_pci_alloc(obj->base.dev, 183 roundup_pow_of_two(obj->base.size), 184 roundup_pow_of_two(obj->base.size)); 185 if (!phys) 186 return -ENOMEM; 187 188 vaddr = phys->vaddr; 189 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { 190 struct page *page; 191 char *src; 192 193 page = shmem_read_mapping_page(mapping, i); 194 if (IS_ERR(page)) { 195 err = PTR_ERR(page); 196 goto err_phys; 197 } 198 199 src = kmap_atomic(page); 200 memcpy(vaddr, src, PAGE_SIZE); 201 drm_clflush_virt_range(vaddr, PAGE_SIZE); 202 kunmap_atomic(src); 203 204 put_page(page); 205 vaddr += PAGE_SIZE; 206 } 207 208 i915_gem_chipset_flush(to_i915(obj->base.dev)); 209 210 st = kmalloc(sizeof(*st), GFP_KERNEL); 211 if (!st) { 212 err = -ENOMEM; 213 goto err_phys; 214 } 215 216 if (sg_alloc_table(st, 1, GFP_KERNEL)) { 217 kfree(st); 218 err = -ENOMEM; 219 goto err_phys; 220 } 221 222 sg = st->sgl; 223 sg->offset = 0; 224 sg->length = obj->base.size; 225 226 sg_dma_address(sg) = phys->busaddr; 227 sg_dma_len(sg) = obj->base.size; 228 229 obj->phys_handle = phys; 230 231 __i915_gem_object_set_pages(obj, st, sg->length); 232 233 return 0; 234 235 err_phys: 236 drm_pci_free(obj->base.dev, phys); 237 238 return err; 239 } 240 241 static void __start_cpu_write(struct drm_i915_gem_object *obj) 242 { 243 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 244 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 245 if (cpu_write_needs_clflush(obj)) 246 obj->cache_dirty = true; 247 } 248 249 static void 250 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj, 251 struct sg_table *pages, 252 bool needs_clflush) 253 { 254 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED); 255 256 if (obj->mm.madv == I915_MADV_DONTNEED) 257 obj->mm.dirty = false; 258 259 if (needs_clflush && 260 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 && 261 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)) 262 drm_clflush_sg(pages); 263 264 __start_cpu_write(obj); 265 } 266 267 static void 268 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj, 269 struct sg_table *pages) 270 { 271 __i915_gem_object_release_shmem(obj, pages, false); 272 273 if (obj->mm.dirty) { 274 struct address_space *mapping = obj->base.filp->f_mapping; 275 char *vaddr = obj->phys_handle->vaddr; 276 int i; 277 278 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { 279 struct page *page; 280 char *dst; 281 282 page = shmem_read_mapping_page(mapping, i); 283 if (IS_ERR(page)) 284 continue; 285 286 dst = kmap_atomic(page); 287 drm_clflush_virt_range(vaddr, PAGE_SIZE); 288 memcpy(dst, vaddr, PAGE_SIZE); 289 kunmap_atomic(dst); 290 291 set_page_dirty(page); 292 if (obj->mm.madv == I915_MADV_WILLNEED) 293 mark_page_accessed(page); 294 put_page(page); 295 vaddr += PAGE_SIZE; 296 } 297 obj->mm.dirty = false; 298 } 299 300 sg_free_table(pages); 301 kfree(pages); 302 303 drm_pci_free(obj->base.dev, obj->phys_handle); 304 } 305 306 static void 307 i915_gem_object_release_phys(struct drm_i915_gem_object *obj) 308 { 309 i915_gem_object_unpin_pages(obj); 310 } 311 312 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = { 313 .get_pages = i915_gem_object_get_pages_phys, 314 .put_pages = i915_gem_object_put_pages_phys, 315 .release = i915_gem_object_release_phys, 316 }; 317 318 static const struct drm_i915_gem_object_ops i915_gem_object_ops; 319 320 int i915_gem_object_unbind(struct drm_i915_gem_object *obj) 321 { 322 struct i915_vma *vma; 323 LIST_HEAD(still_in_list); 324 int ret; 325 326 lockdep_assert_held(&obj->base.dev->struct_mutex); 327 328 /* Closed vma are removed from the obj->vma_list - but they may 329 * still have an active binding on the object. To remove those we 330 * must wait for all rendering to complete to the object (as unbinding 331 * must anyway), and retire the requests. 332 */ 333 ret = i915_gem_object_set_to_cpu_domain(obj, false); 334 if (ret) 335 return ret; 336 337 while ((vma = list_first_entry_or_null(&obj->vma_list, 338 struct i915_vma, 339 obj_link))) { 340 list_move_tail(&vma->obj_link, &still_in_list); 341 ret = i915_vma_unbind(vma); 342 if (ret) 343 break; 344 } 345 list_splice(&still_in_list, &obj->vma_list); 346 347 return ret; 348 } 349 350 static long 351 i915_gem_object_wait_fence(struct dma_fence *fence, 352 unsigned int flags, 353 long timeout, 354 struct intel_rps_client *rps_client) 355 { 356 struct drm_i915_gem_request *rq; 357 358 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1); 359 360 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 361 return timeout; 362 363 if (!dma_fence_is_i915(fence)) 364 return dma_fence_wait_timeout(fence, 365 flags & I915_WAIT_INTERRUPTIBLE, 366 timeout); 367 368 rq = to_request(fence); 369 if (i915_gem_request_completed(rq)) 370 goto out; 371 372 /* This client is about to stall waiting for the GPU. In many cases 373 * this is undesirable and limits the throughput of the system, as 374 * many clients cannot continue processing user input/output whilst 375 * blocked. RPS autotuning may take tens of milliseconds to respond 376 * to the GPU load and thus incurs additional latency for the client. 377 * We can circumvent that by promoting the GPU frequency to maximum 378 * before we wait. This makes the GPU throttle up much more quickly 379 * (good for benchmarks and user experience, e.g. window animations), 380 * but at a cost of spending more power processing the workload 381 * (bad for battery). Not all clients even want their results 382 * immediately and for them we should just let the GPU select its own 383 * frequency to maximise efficiency. To prevent a single client from 384 * forcing the clocks too high for the whole system, we only allow 385 * each client to waitboost once in a busy period. 386 */ 387 if (rps_client) { 388 if (INTEL_GEN(rq->i915) >= 6) 389 gen6_rps_boost(rq, rps_client); 390 else 391 rps_client = NULL; 392 } 393 394 timeout = i915_wait_request(rq, flags, timeout); 395 396 out: 397 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq)) 398 i915_gem_request_retire_upto(rq); 399 400 return timeout; 401 } 402 403 static long 404 i915_gem_object_wait_reservation(struct reservation_object *resv, 405 unsigned int flags, 406 long timeout, 407 struct intel_rps_client *rps_client) 408 { 409 unsigned int seq = __read_seqcount_begin(&resv->seq); 410 struct dma_fence *excl; 411 bool prune_fences = false; 412 413 if (flags & I915_WAIT_ALL) { 414 struct dma_fence **shared; 415 unsigned int count, i; 416 int ret; 417 418 ret = reservation_object_get_fences_rcu(resv, 419 &excl, &count, &shared); 420 if (ret) 421 return ret; 422 423 for (i = 0; i < count; i++) { 424 timeout = i915_gem_object_wait_fence(shared[i], 425 flags, timeout, 426 rps_client); 427 if (timeout < 0) 428 break; 429 430 dma_fence_put(shared[i]); 431 } 432 433 for (; i < count; i++) 434 dma_fence_put(shared[i]); 435 kfree(shared); 436 437 prune_fences = count && timeout >= 0; 438 } else { 439 excl = reservation_object_get_excl_rcu(resv); 440 } 441 442 if (excl && timeout >= 0) { 443 timeout = i915_gem_object_wait_fence(excl, flags, timeout, 444 rps_client); 445 prune_fences = timeout >= 0; 446 } 447 448 dma_fence_put(excl); 449 450 /* Oportunistically prune the fences iff we know they have *all* been 451 * signaled and that the reservation object has not been changed (i.e. 452 * no new fences have been added). 453 */ 454 if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) { 455 if (reservation_object_trylock(resv)) { 456 if (!__read_seqcount_retry(&resv->seq, seq)) 457 reservation_object_add_excl_fence(resv, NULL); 458 reservation_object_unlock(resv); 459 } 460 } 461 462 return timeout; 463 } 464 465 static void __fence_set_priority(struct dma_fence *fence, int prio) 466 { 467 struct drm_i915_gem_request *rq; 468 struct intel_engine_cs *engine; 469 470 if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence)) 471 return; 472 473 rq = to_request(fence); 474 engine = rq->engine; 475 if (!engine->schedule) 476 return; 477 478 engine->schedule(rq, prio); 479 } 480 481 static void fence_set_priority(struct dma_fence *fence, int prio) 482 { 483 /* Recurse once into a fence-array */ 484 if (dma_fence_is_array(fence)) { 485 struct dma_fence_array *array = to_dma_fence_array(fence); 486 int i; 487 488 for (i = 0; i < array->num_fences; i++) 489 __fence_set_priority(array->fences[i], prio); 490 } else { 491 __fence_set_priority(fence, prio); 492 } 493 } 494 495 int 496 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj, 497 unsigned int flags, 498 int prio) 499 { 500 struct dma_fence *excl; 501 502 if (flags & I915_WAIT_ALL) { 503 struct dma_fence **shared; 504 unsigned int count, i; 505 int ret; 506 507 ret = reservation_object_get_fences_rcu(obj->resv, 508 &excl, &count, &shared); 509 if (ret) 510 return ret; 511 512 for (i = 0; i < count; i++) { 513 fence_set_priority(shared[i], prio); 514 dma_fence_put(shared[i]); 515 } 516 517 kfree(shared); 518 } else { 519 excl = reservation_object_get_excl_rcu(obj->resv); 520 } 521 522 if (excl) { 523 fence_set_priority(excl, prio); 524 dma_fence_put(excl); 525 } 526 return 0; 527 } 528 529 /** 530 * Waits for rendering to the object to be completed 531 * @obj: i915 gem object 532 * @flags: how to wait (under a lock, for all rendering or just for writes etc) 533 * @timeout: how long to wait 534 * @rps_client: client (user process) to charge for any waitboosting 535 */ 536 int 537 i915_gem_object_wait(struct drm_i915_gem_object *obj, 538 unsigned int flags, 539 long timeout, 540 struct intel_rps_client *rps_client) 541 { 542 might_sleep(); 543 #if IS_ENABLED(CONFIG_LOCKDEP) 544 GEM_BUG_ON(debug_locks && 545 !!lockdep_is_held(&obj->base.dev->struct_mutex) != 546 !!(flags & I915_WAIT_LOCKED)); 547 #endif 548 GEM_BUG_ON(timeout < 0); 549 550 timeout = i915_gem_object_wait_reservation(obj->resv, 551 flags, timeout, 552 rps_client); 553 return timeout < 0 ? timeout : 0; 554 } 555 556 static struct intel_rps_client *to_rps_client(struct drm_file *file) 557 { 558 struct drm_i915_file_private *fpriv = file->driver_priv; 559 560 return &fpriv->rps_client; 561 } 562 563 static int 564 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj, 565 struct drm_i915_gem_pwrite *args, 566 struct drm_file *file) 567 { 568 void *vaddr = obj->phys_handle->vaddr + args->offset; 569 char __user *user_data = u64_to_user_ptr(args->data_ptr); 570 571 /* We manually control the domain here and pretend that it 572 * remains coherent i.e. in the GTT domain, like shmem_pwrite. 573 */ 574 intel_fb_obj_invalidate(obj, ORIGIN_CPU); 575 if (copy_from_user(vaddr, user_data, args->size)) 576 return -EFAULT; 577 578 drm_clflush_virt_range(vaddr, args->size); 579 i915_gem_chipset_flush(to_i915(obj->base.dev)); 580 581 intel_fb_obj_flush(obj, ORIGIN_CPU); 582 return 0; 583 } 584 585 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv) 586 { 587 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL); 588 } 589 590 void i915_gem_object_free(struct drm_i915_gem_object *obj) 591 { 592 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 593 kmem_cache_free(dev_priv->objects, obj); 594 } 595 596 static int 597 i915_gem_create(struct drm_file *file, 598 struct drm_i915_private *dev_priv, 599 uint64_t size, 600 uint32_t *handle_p) 601 { 602 struct drm_i915_gem_object *obj; 603 int ret; 604 u32 handle; 605 606 size = roundup(size, PAGE_SIZE); 607 if (size == 0) 608 return -EINVAL; 609 610 /* Allocate the new object */ 611 obj = i915_gem_object_create(dev_priv, size); 612 if (IS_ERR(obj)) 613 return PTR_ERR(obj); 614 615 ret = drm_gem_handle_create(file, &obj->base, &handle); 616 /* drop reference from allocate - handle holds it now */ 617 i915_gem_object_put(obj); 618 if (ret) 619 return ret; 620 621 *handle_p = handle; 622 return 0; 623 } 624 625 int 626 i915_gem_dumb_create(struct drm_file *file, 627 struct drm_device *dev, 628 struct drm_mode_create_dumb *args) 629 { 630 /* have to work out size/pitch and return them */ 631 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64); 632 args->size = args->pitch * args->height; 633 return i915_gem_create(file, to_i915(dev), 634 args->size, &args->handle); 635 } 636 637 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj) 638 { 639 return !(obj->cache_level == I915_CACHE_NONE || 640 obj->cache_level == I915_CACHE_WT); 641 } 642 643 /** 644 * Creates a new mm object and returns a handle to it. 645 * @dev: drm device pointer 646 * @data: ioctl data blob 647 * @file: drm file pointer 648 */ 649 int 650 i915_gem_create_ioctl(struct drm_device *dev, void *data, 651 struct drm_file *file) 652 { 653 struct drm_i915_private *dev_priv = to_i915(dev); 654 struct drm_i915_gem_create *args = data; 655 656 i915_gem_flush_free_objects(dev_priv); 657 658 return i915_gem_create(file, dev_priv, 659 args->size, &args->handle); 660 } 661 662 static inline enum fb_op_origin 663 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain) 664 { 665 return (domain == I915_GEM_DOMAIN_GTT ? 666 obj->frontbuffer_ggtt_origin : ORIGIN_CPU); 667 } 668 669 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv) 670 { 671 /* 672 * No actual flushing is required for the GTT write domain for reads 673 * from the GTT domain. Writes to it "immediately" go to main memory 674 * as far as we know, so there's no chipset flush. It also doesn't 675 * land in the GPU render cache. 676 * 677 * However, we do have to enforce the order so that all writes through 678 * the GTT land before any writes to the device, such as updates to 679 * the GATT itself. 680 * 681 * We also have to wait a bit for the writes to land from the GTT. 682 * An uncached read (i.e. mmio) seems to be ideal for the round-trip 683 * timing. This issue has only been observed when switching quickly 684 * between GTT writes and CPU reads from inside the kernel on recent hw, 685 * and it appears to only affect discrete GTT blocks (i.e. on LLC 686 * system agents we cannot reproduce this behaviour, until Cannonlake 687 * that was!). 688 */ 689 690 wmb(); 691 692 intel_runtime_pm_get(dev_priv); 693 spin_lock_irq(&dev_priv->uncore.lock); 694 695 POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE)); 696 697 spin_unlock_irq(&dev_priv->uncore.lock); 698 intel_runtime_pm_put(dev_priv); 699 } 700 701 static void 702 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains) 703 { 704 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 705 struct i915_vma *vma; 706 707 if (!(obj->base.write_domain & flush_domains)) 708 return; 709 710 switch (obj->base.write_domain) { 711 case I915_GEM_DOMAIN_GTT: 712 i915_gem_flush_ggtt_writes(dev_priv); 713 714 intel_fb_obj_flush(obj, 715 fb_write_origin(obj, I915_GEM_DOMAIN_GTT)); 716 717 for_each_ggtt_vma(vma, obj) { 718 if (vma->iomap) 719 continue; 720 721 i915_vma_unset_ggtt_write(vma); 722 } 723 break; 724 725 case I915_GEM_DOMAIN_CPU: 726 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC); 727 break; 728 729 case I915_GEM_DOMAIN_RENDER: 730 if (gpu_write_needs_clflush(obj)) 731 obj->cache_dirty = true; 732 break; 733 } 734 735 obj->base.write_domain = 0; 736 } 737 738 static inline int 739 __copy_to_user_swizzled(char __user *cpu_vaddr, 740 const char *gpu_vaddr, int gpu_offset, 741 int length) 742 { 743 int ret, cpu_offset = 0; 744 745 while (length > 0) { 746 int cacheline_end = ALIGN(gpu_offset + 1, 64); 747 int this_length = min(cacheline_end - gpu_offset, length); 748 int swizzled_gpu_offset = gpu_offset ^ 64; 749 750 ret = __copy_to_user(cpu_vaddr + cpu_offset, 751 gpu_vaddr + swizzled_gpu_offset, 752 this_length); 753 if (ret) 754 return ret + length; 755 756 cpu_offset += this_length; 757 gpu_offset += this_length; 758 length -= this_length; 759 } 760 761 return 0; 762 } 763 764 static inline int 765 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset, 766 const char __user *cpu_vaddr, 767 int length) 768 { 769 int ret, cpu_offset = 0; 770 771 while (length > 0) { 772 int cacheline_end = ALIGN(gpu_offset + 1, 64); 773 int this_length = min(cacheline_end - gpu_offset, length); 774 int swizzled_gpu_offset = gpu_offset ^ 64; 775 776 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset, 777 cpu_vaddr + cpu_offset, 778 this_length); 779 if (ret) 780 return ret + length; 781 782 cpu_offset += this_length; 783 gpu_offset += this_length; 784 length -= this_length; 785 } 786 787 return 0; 788 } 789 790 /* 791 * Pins the specified object's pages and synchronizes the object with 792 * GPU accesses. Sets needs_clflush to non-zero if the caller should 793 * flush the object from the CPU cache. 794 */ 795 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, 796 unsigned int *needs_clflush) 797 { 798 int ret; 799 800 lockdep_assert_held(&obj->base.dev->struct_mutex); 801 802 *needs_clflush = 0; 803 if (!i915_gem_object_has_struct_page(obj)) 804 return -ENODEV; 805 806 ret = i915_gem_object_wait(obj, 807 I915_WAIT_INTERRUPTIBLE | 808 I915_WAIT_LOCKED, 809 MAX_SCHEDULE_TIMEOUT, 810 NULL); 811 if (ret) 812 return ret; 813 814 ret = i915_gem_object_pin_pages(obj); 815 if (ret) 816 return ret; 817 818 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ || 819 !static_cpu_has(X86_FEATURE_CLFLUSH)) { 820 ret = i915_gem_object_set_to_cpu_domain(obj, false); 821 if (ret) 822 goto err_unpin; 823 else 824 goto out; 825 } 826 827 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); 828 829 /* If we're not in the cpu read domain, set ourself into the gtt 830 * read domain and manually flush cachelines (if required). This 831 * optimizes for the case when the gpu will dirty the data 832 * anyway again before the next pread happens. 833 */ 834 if (!obj->cache_dirty && 835 !(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) 836 *needs_clflush = CLFLUSH_BEFORE; 837 838 out: 839 /* return with the pages pinned */ 840 return 0; 841 842 err_unpin: 843 i915_gem_object_unpin_pages(obj); 844 return ret; 845 } 846 847 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj, 848 unsigned int *needs_clflush) 849 { 850 int ret; 851 852 lockdep_assert_held(&obj->base.dev->struct_mutex); 853 854 *needs_clflush = 0; 855 if (!i915_gem_object_has_struct_page(obj)) 856 return -ENODEV; 857 858 ret = i915_gem_object_wait(obj, 859 I915_WAIT_INTERRUPTIBLE | 860 I915_WAIT_LOCKED | 861 I915_WAIT_ALL, 862 MAX_SCHEDULE_TIMEOUT, 863 NULL); 864 if (ret) 865 return ret; 866 867 ret = i915_gem_object_pin_pages(obj); 868 if (ret) 869 return ret; 870 871 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE || 872 !static_cpu_has(X86_FEATURE_CLFLUSH)) { 873 ret = i915_gem_object_set_to_cpu_domain(obj, true); 874 if (ret) 875 goto err_unpin; 876 else 877 goto out; 878 } 879 880 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); 881 882 /* If we're not in the cpu write domain, set ourself into the 883 * gtt write domain and manually flush cachelines (as required). 884 * This optimizes for the case when the gpu will use the data 885 * right away and we therefore have to clflush anyway. 886 */ 887 if (!obj->cache_dirty) { 888 *needs_clflush |= CLFLUSH_AFTER; 889 890 /* 891 * Same trick applies to invalidate partially written 892 * cachelines read before writing. 893 */ 894 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) 895 *needs_clflush |= CLFLUSH_BEFORE; 896 } 897 898 out: 899 intel_fb_obj_invalidate(obj, ORIGIN_CPU); 900 obj->mm.dirty = true; 901 /* return with the pages pinned */ 902 return 0; 903 904 err_unpin: 905 i915_gem_object_unpin_pages(obj); 906 return ret; 907 } 908 909 static void 910 shmem_clflush_swizzled_range(char *addr, unsigned long length, 911 bool swizzled) 912 { 913 if (unlikely(swizzled)) { 914 unsigned long start = (unsigned long) addr; 915 unsigned long end = (unsigned long) addr + length; 916 917 /* For swizzling simply ensure that we always flush both 918 * channels. Lame, but simple and it works. Swizzled 919 * pwrite/pread is far from a hotpath - current userspace 920 * doesn't use it at all. */ 921 start = round_down(start, 128); 922 end = round_up(end, 128); 923 924 drm_clflush_virt_range((void *)start, end - start); 925 } else { 926 drm_clflush_virt_range(addr, length); 927 } 928 929 } 930 931 /* Only difference to the fast-path function is that this can handle bit17 932 * and uses non-atomic copy and kmap functions. */ 933 static int 934 shmem_pread_slow(struct page *page, int offset, int length, 935 char __user *user_data, 936 bool page_do_bit17_swizzling, bool needs_clflush) 937 { 938 char *vaddr; 939 int ret; 940 941 vaddr = kmap(page); 942 if (needs_clflush) 943 shmem_clflush_swizzled_range(vaddr + offset, length, 944 page_do_bit17_swizzling); 945 946 if (page_do_bit17_swizzling) 947 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length); 948 else 949 ret = __copy_to_user(user_data, vaddr + offset, length); 950 kunmap(page); 951 952 return ret ? - EFAULT : 0; 953 } 954 955 static int 956 shmem_pread(struct page *page, int offset, int length, char __user *user_data, 957 bool page_do_bit17_swizzling, bool needs_clflush) 958 { 959 int ret; 960 961 ret = -ENODEV; 962 if (!page_do_bit17_swizzling) { 963 char *vaddr = kmap_atomic(page); 964 965 if (needs_clflush) 966 drm_clflush_virt_range(vaddr + offset, length); 967 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length); 968 kunmap_atomic(vaddr); 969 } 970 if (ret == 0) 971 return 0; 972 973 return shmem_pread_slow(page, offset, length, user_data, 974 page_do_bit17_swizzling, needs_clflush); 975 } 976 977 static int 978 i915_gem_shmem_pread(struct drm_i915_gem_object *obj, 979 struct drm_i915_gem_pread *args) 980 { 981 char __user *user_data; 982 u64 remain; 983 unsigned int obj_do_bit17_swizzling; 984 unsigned int needs_clflush; 985 unsigned int idx, offset; 986 int ret; 987 988 obj_do_bit17_swizzling = 0; 989 if (i915_gem_object_needs_bit17_swizzle(obj)) 990 obj_do_bit17_swizzling = BIT(17); 991 992 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex); 993 if (ret) 994 return ret; 995 996 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush); 997 mutex_unlock(&obj->base.dev->struct_mutex); 998 if (ret) 999 return ret; 1000 1001 remain = args->size; 1002 user_data = u64_to_user_ptr(args->data_ptr); 1003 offset = offset_in_page(args->offset); 1004 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { 1005 struct page *page = i915_gem_object_get_page(obj, idx); 1006 int length; 1007 1008 length = remain; 1009 if (offset + length > PAGE_SIZE) 1010 length = PAGE_SIZE - offset; 1011 1012 ret = shmem_pread(page, offset, length, user_data, 1013 page_to_phys(page) & obj_do_bit17_swizzling, 1014 needs_clflush); 1015 if (ret) 1016 break; 1017 1018 remain -= length; 1019 user_data += length; 1020 offset = 0; 1021 } 1022 1023 i915_gem_obj_finish_shmem_access(obj); 1024 return ret; 1025 } 1026 1027 static inline bool 1028 gtt_user_read(struct io_mapping *mapping, 1029 loff_t base, int offset, 1030 char __user *user_data, int length) 1031 { 1032 void __iomem *vaddr; 1033 unsigned long unwritten; 1034 1035 /* We can use the cpu mem copy function because this is X86. */ 1036 vaddr = io_mapping_map_atomic_wc(mapping, base); 1037 unwritten = __copy_to_user_inatomic(user_data, 1038 (void __force *)vaddr + offset, 1039 length); 1040 io_mapping_unmap_atomic(vaddr); 1041 if (unwritten) { 1042 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE); 1043 unwritten = copy_to_user(user_data, 1044 (void __force *)vaddr + offset, 1045 length); 1046 io_mapping_unmap(vaddr); 1047 } 1048 return unwritten; 1049 } 1050 1051 static int 1052 i915_gem_gtt_pread(struct drm_i915_gem_object *obj, 1053 const struct drm_i915_gem_pread *args) 1054 { 1055 struct drm_i915_private *i915 = to_i915(obj->base.dev); 1056 struct i915_ggtt *ggtt = &i915->ggtt; 1057 struct drm_mm_node node; 1058 struct i915_vma *vma; 1059 void __user *user_data; 1060 u64 remain, offset; 1061 int ret; 1062 1063 ret = mutex_lock_interruptible(&i915->drm.struct_mutex); 1064 if (ret) 1065 return ret; 1066 1067 intel_runtime_pm_get(i915); 1068 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 1069 PIN_MAPPABLE | 1070 PIN_NONFAULT | 1071 PIN_NONBLOCK); 1072 if (!IS_ERR(vma)) { 1073 node.start = i915_ggtt_offset(vma); 1074 node.allocated = false; 1075 ret = i915_vma_put_fence(vma); 1076 if (ret) { 1077 i915_vma_unpin(vma); 1078 vma = ERR_PTR(ret); 1079 } 1080 } 1081 if (IS_ERR(vma)) { 1082 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE); 1083 if (ret) 1084 goto out_unlock; 1085 GEM_BUG_ON(!node.allocated); 1086 } 1087 1088 ret = i915_gem_object_set_to_gtt_domain(obj, false); 1089 if (ret) 1090 goto out_unpin; 1091 1092 mutex_unlock(&i915->drm.struct_mutex); 1093 1094 user_data = u64_to_user_ptr(args->data_ptr); 1095 remain = args->size; 1096 offset = args->offset; 1097 1098 while (remain > 0) { 1099 /* Operation in this page 1100 * 1101 * page_base = page offset within aperture 1102 * page_offset = offset within page 1103 * page_length = bytes to copy for this page 1104 */ 1105 u32 page_base = node.start; 1106 unsigned page_offset = offset_in_page(offset); 1107 unsigned page_length = PAGE_SIZE - page_offset; 1108 page_length = remain < page_length ? remain : page_length; 1109 if (node.allocated) { 1110 wmb(); 1111 ggtt->base.insert_page(&ggtt->base, 1112 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), 1113 node.start, I915_CACHE_NONE, 0); 1114 wmb(); 1115 } else { 1116 page_base += offset & PAGE_MASK; 1117 } 1118 1119 if (gtt_user_read(&ggtt->iomap, page_base, page_offset, 1120 user_data, page_length)) { 1121 ret = -EFAULT; 1122 break; 1123 } 1124 1125 remain -= page_length; 1126 user_data += page_length; 1127 offset += page_length; 1128 } 1129 1130 mutex_lock(&i915->drm.struct_mutex); 1131 out_unpin: 1132 if (node.allocated) { 1133 wmb(); 1134 ggtt->base.clear_range(&ggtt->base, 1135 node.start, node.size); 1136 remove_mappable_node(&node); 1137 } else { 1138 i915_vma_unpin(vma); 1139 } 1140 out_unlock: 1141 intel_runtime_pm_put(i915); 1142 mutex_unlock(&i915->drm.struct_mutex); 1143 1144 return ret; 1145 } 1146 1147 /** 1148 * Reads data from the object referenced by handle. 1149 * @dev: drm device pointer 1150 * @data: ioctl data blob 1151 * @file: drm file pointer 1152 * 1153 * On error, the contents of *data are undefined. 1154 */ 1155 int 1156 i915_gem_pread_ioctl(struct drm_device *dev, void *data, 1157 struct drm_file *file) 1158 { 1159 struct drm_i915_gem_pread *args = data; 1160 struct drm_i915_gem_object *obj; 1161 int ret; 1162 1163 if (args->size == 0) 1164 return 0; 1165 1166 if (!access_ok(VERIFY_WRITE, 1167 u64_to_user_ptr(args->data_ptr), 1168 args->size)) 1169 return -EFAULT; 1170 1171 obj = i915_gem_object_lookup(file, args->handle); 1172 if (!obj) 1173 return -ENOENT; 1174 1175 /* Bounds check source. */ 1176 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) { 1177 ret = -EINVAL; 1178 goto out; 1179 } 1180 1181 trace_i915_gem_object_pread(obj, args->offset, args->size); 1182 1183 ret = i915_gem_object_wait(obj, 1184 I915_WAIT_INTERRUPTIBLE, 1185 MAX_SCHEDULE_TIMEOUT, 1186 to_rps_client(file)); 1187 if (ret) 1188 goto out; 1189 1190 ret = i915_gem_object_pin_pages(obj); 1191 if (ret) 1192 goto out; 1193 1194 ret = i915_gem_shmem_pread(obj, args); 1195 if (ret == -EFAULT || ret == -ENODEV) 1196 ret = i915_gem_gtt_pread(obj, args); 1197 1198 i915_gem_object_unpin_pages(obj); 1199 out: 1200 i915_gem_object_put(obj); 1201 return ret; 1202 } 1203 1204 /* This is the fast write path which cannot handle 1205 * page faults in the source data 1206 */ 1207 1208 static inline bool 1209 ggtt_write(struct io_mapping *mapping, 1210 loff_t base, int offset, 1211 char __user *user_data, int length) 1212 { 1213 void __iomem *vaddr; 1214 unsigned long unwritten; 1215 1216 /* We can use the cpu mem copy function because this is X86. */ 1217 vaddr = io_mapping_map_atomic_wc(mapping, base); 1218 unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset, 1219 user_data, length); 1220 io_mapping_unmap_atomic(vaddr); 1221 if (unwritten) { 1222 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE); 1223 unwritten = copy_from_user((void __force *)vaddr + offset, 1224 user_data, length); 1225 io_mapping_unmap(vaddr); 1226 } 1227 1228 return unwritten; 1229 } 1230 1231 /** 1232 * This is the fast pwrite path, where we copy the data directly from the 1233 * user into the GTT, uncached. 1234 * @obj: i915 GEM object 1235 * @args: pwrite arguments structure 1236 */ 1237 static int 1238 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj, 1239 const struct drm_i915_gem_pwrite *args) 1240 { 1241 struct drm_i915_private *i915 = to_i915(obj->base.dev); 1242 struct i915_ggtt *ggtt = &i915->ggtt; 1243 struct drm_mm_node node; 1244 struct i915_vma *vma; 1245 u64 remain, offset; 1246 void __user *user_data; 1247 int ret; 1248 1249 ret = mutex_lock_interruptible(&i915->drm.struct_mutex); 1250 if (ret) 1251 return ret; 1252 1253 if (i915_gem_object_has_struct_page(obj)) { 1254 /* 1255 * Avoid waking the device up if we can fallback, as 1256 * waking/resuming is very slow (worst-case 10-100 ms 1257 * depending on PCI sleeps and our own resume time). 1258 * This easily dwarfs any performance advantage from 1259 * using the cache bypass of indirect GGTT access. 1260 */ 1261 if (!intel_runtime_pm_get_if_in_use(i915)) { 1262 ret = -EFAULT; 1263 goto out_unlock; 1264 } 1265 } else { 1266 /* No backing pages, no fallback, we must force GGTT access */ 1267 intel_runtime_pm_get(i915); 1268 } 1269 1270 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 1271 PIN_MAPPABLE | 1272 PIN_NONFAULT | 1273 PIN_NONBLOCK); 1274 if (!IS_ERR(vma)) { 1275 node.start = i915_ggtt_offset(vma); 1276 node.allocated = false; 1277 ret = i915_vma_put_fence(vma); 1278 if (ret) { 1279 i915_vma_unpin(vma); 1280 vma = ERR_PTR(ret); 1281 } 1282 } 1283 if (IS_ERR(vma)) { 1284 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE); 1285 if (ret) 1286 goto out_rpm; 1287 GEM_BUG_ON(!node.allocated); 1288 } 1289 1290 ret = i915_gem_object_set_to_gtt_domain(obj, true); 1291 if (ret) 1292 goto out_unpin; 1293 1294 mutex_unlock(&i915->drm.struct_mutex); 1295 1296 intel_fb_obj_invalidate(obj, ORIGIN_CPU); 1297 1298 user_data = u64_to_user_ptr(args->data_ptr); 1299 offset = args->offset; 1300 remain = args->size; 1301 while (remain) { 1302 /* Operation in this page 1303 * 1304 * page_base = page offset within aperture 1305 * page_offset = offset within page 1306 * page_length = bytes to copy for this page 1307 */ 1308 u32 page_base = node.start; 1309 unsigned int page_offset = offset_in_page(offset); 1310 unsigned int page_length = PAGE_SIZE - page_offset; 1311 page_length = remain < page_length ? remain : page_length; 1312 if (node.allocated) { 1313 wmb(); /* flush the write before we modify the GGTT */ 1314 ggtt->base.insert_page(&ggtt->base, 1315 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), 1316 node.start, I915_CACHE_NONE, 0); 1317 wmb(); /* flush modifications to the GGTT (insert_page) */ 1318 } else { 1319 page_base += offset & PAGE_MASK; 1320 } 1321 /* If we get a fault while copying data, then (presumably) our 1322 * source page isn't available. Return the error and we'll 1323 * retry in the slow path. 1324 * If the object is non-shmem backed, we retry again with the 1325 * path that handles page fault. 1326 */ 1327 if (ggtt_write(&ggtt->iomap, page_base, page_offset, 1328 user_data, page_length)) { 1329 ret = -EFAULT; 1330 break; 1331 } 1332 1333 remain -= page_length; 1334 user_data += page_length; 1335 offset += page_length; 1336 } 1337 intel_fb_obj_flush(obj, ORIGIN_CPU); 1338 1339 mutex_lock(&i915->drm.struct_mutex); 1340 out_unpin: 1341 if (node.allocated) { 1342 wmb(); 1343 ggtt->base.clear_range(&ggtt->base, 1344 node.start, node.size); 1345 remove_mappable_node(&node); 1346 } else { 1347 i915_vma_unpin(vma); 1348 } 1349 out_rpm: 1350 intel_runtime_pm_put(i915); 1351 out_unlock: 1352 mutex_unlock(&i915->drm.struct_mutex); 1353 return ret; 1354 } 1355 1356 static int 1357 shmem_pwrite_slow(struct page *page, int offset, int length, 1358 char __user *user_data, 1359 bool page_do_bit17_swizzling, 1360 bool needs_clflush_before, 1361 bool needs_clflush_after) 1362 { 1363 char *vaddr; 1364 int ret; 1365 1366 vaddr = kmap(page); 1367 if (unlikely(needs_clflush_before || page_do_bit17_swizzling)) 1368 shmem_clflush_swizzled_range(vaddr + offset, length, 1369 page_do_bit17_swizzling); 1370 if (page_do_bit17_swizzling) 1371 ret = __copy_from_user_swizzled(vaddr, offset, user_data, 1372 length); 1373 else 1374 ret = __copy_from_user(vaddr + offset, user_data, length); 1375 if (needs_clflush_after) 1376 shmem_clflush_swizzled_range(vaddr + offset, length, 1377 page_do_bit17_swizzling); 1378 kunmap(page); 1379 1380 return ret ? -EFAULT : 0; 1381 } 1382 1383 /* Per-page copy function for the shmem pwrite fastpath. 1384 * Flushes invalid cachelines before writing to the target if 1385 * needs_clflush_before is set and flushes out any written cachelines after 1386 * writing if needs_clflush is set. 1387 */ 1388 static int 1389 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data, 1390 bool page_do_bit17_swizzling, 1391 bool needs_clflush_before, 1392 bool needs_clflush_after) 1393 { 1394 int ret; 1395 1396 ret = -ENODEV; 1397 if (!page_do_bit17_swizzling) { 1398 char *vaddr = kmap_atomic(page); 1399 1400 if (needs_clflush_before) 1401 drm_clflush_virt_range(vaddr + offset, len); 1402 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len); 1403 if (needs_clflush_after) 1404 drm_clflush_virt_range(vaddr + offset, len); 1405 1406 kunmap_atomic(vaddr); 1407 } 1408 if (ret == 0) 1409 return ret; 1410 1411 return shmem_pwrite_slow(page, offset, len, user_data, 1412 page_do_bit17_swizzling, 1413 needs_clflush_before, 1414 needs_clflush_after); 1415 } 1416 1417 static int 1418 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj, 1419 const struct drm_i915_gem_pwrite *args) 1420 { 1421 struct drm_i915_private *i915 = to_i915(obj->base.dev); 1422 void __user *user_data; 1423 u64 remain; 1424 unsigned int obj_do_bit17_swizzling; 1425 unsigned int partial_cacheline_write; 1426 unsigned int needs_clflush; 1427 unsigned int offset, idx; 1428 int ret; 1429 1430 ret = mutex_lock_interruptible(&i915->drm.struct_mutex); 1431 if (ret) 1432 return ret; 1433 1434 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush); 1435 mutex_unlock(&i915->drm.struct_mutex); 1436 if (ret) 1437 return ret; 1438 1439 obj_do_bit17_swizzling = 0; 1440 if (i915_gem_object_needs_bit17_swizzle(obj)) 1441 obj_do_bit17_swizzling = BIT(17); 1442 1443 /* If we don't overwrite a cacheline completely we need to be 1444 * careful to have up-to-date data by first clflushing. Don't 1445 * overcomplicate things and flush the entire patch. 1446 */ 1447 partial_cacheline_write = 0; 1448 if (needs_clflush & CLFLUSH_BEFORE) 1449 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1; 1450 1451 user_data = u64_to_user_ptr(args->data_ptr); 1452 remain = args->size; 1453 offset = offset_in_page(args->offset); 1454 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { 1455 struct page *page = i915_gem_object_get_page(obj, idx); 1456 int length; 1457 1458 length = remain; 1459 if (offset + length > PAGE_SIZE) 1460 length = PAGE_SIZE - offset; 1461 1462 ret = shmem_pwrite(page, offset, length, user_data, 1463 page_to_phys(page) & obj_do_bit17_swizzling, 1464 (offset | length) & partial_cacheline_write, 1465 needs_clflush & CLFLUSH_AFTER); 1466 if (ret) 1467 break; 1468 1469 remain -= length; 1470 user_data += length; 1471 offset = 0; 1472 } 1473 1474 intel_fb_obj_flush(obj, ORIGIN_CPU); 1475 i915_gem_obj_finish_shmem_access(obj); 1476 return ret; 1477 } 1478 1479 /** 1480 * Writes data to the object referenced by handle. 1481 * @dev: drm device 1482 * @data: ioctl data blob 1483 * @file: drm file 1484 * 1485 * On error, the contents of the buffer that were to be modified are undefined. 1486 */ 1487 int 1488 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 1489 struct drm_file *file) 1490 { 1491 struct drm_i915_gem_pwrite *args = data; 1492 struct drm_i915_gem_object *obj; 1493 int ret; 1494 1495 if (args->size == 0) 1496 return 0; 1497 1498 if (!access_ok(VERIFY_READ, 1499 u64_to_user_ptr(args->data_ptr), 1500 args->size)) 1501 return -EFAULT; 1502 1503 obj = i915_gem_object_lookup(file, args->handle); 1504 if (!obj) 1505 return -ENOENT; 1506 1507 /* Bounds check destination. */ 1508 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) { 1509 ret = -EINVAL; 1510 goto err; 1511 } 1512 1513 trace_i915_gem_object_pwrite(obj, args->offset, args->size); 1514 1515 ret = -ENODEV; 1516 if (obj->ops->pwrite) 1517 ret = obj->ops->pwrite(obj, args); 1518 if (ret != -ENODEV) 1519 goto err; 1520 1521 ret = i915_gem_object_wait(obj, 1522 I915_WAIT_INTERRUPTIBLE | 1523 I915_WAIT_ALL, 1524 MAX_SCHEDULE_TIMEOUT, 1525 to_rps_client(file)); 1526 if (ret) 1527 goto err; 1528 1529 ret = i915_gem_object_pin_pages(obj); 1530 if (ret) 1531 goto err; 1532 1533 ret = -EFAULT; 1534 /* We can only do the GTT pwrite on untiled buffers, as otherwise 1535 * it would end up going through the fenced access, and we'll get 1536 * different detiling behavior between reading and writing. 1537 * pread/pwrite currently are reading and writing from the CPU 1538 * perspective, requiring manual detiling by the client. 1539 */ 1540 if (!i915_gem_object_has_struct_page(obj) || 1541 cpu_write_needs_clflush(obj)) 1542 /* Note that the gtt paths might fail with non-page-backed user 1543 * pointers (e.g. gtt mappings when moving data between 1544 * textures). Fallback to the shmem path in that case. 1545 */ 1546 ret = i915_gem_gtt_pwrite_fast(obj, args); 1547 1548 if (ret == -EFAULT || ret == -ENOSPC) { 1549 if (obj->phys_handle) 1550 ret = i915_gem_phys_pwrite(obj, args, file); 1551 else 1552 ret = i915_gem_shmem_pwrite(obj, args); 1553 } 1554 1555 i915_gem_object_unpin_pages(obj); 1556 err: 1557 i915_gem_object_put(obj); 1558 return ret; 1559 } 1560 1561 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj) 1562 { 1563 struct drm_i915_private *i915; 1564 struct list_head *list; 1565 struct i915_vma *vma; 1566 1567 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 1568 1569 for_each_ggtt_vma(vma, obj) { 1570 if (i915_vma_is_active(vma)) 1571 continue; 1572 1573 if (!drm_mm_node_allocated(&vma->node)) 1574 continue; 1575 1576 list_move_tail(&vma->vm_link, &vma->vm->inactive_list); 1577 } 1578 1579 i915 = to_i915(obj->base.dev); 1580 spin_lock(&i915->mm.obj_lock); 1581 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list; 1582 list_move_tail(&obj->mm.link, list); 1583 spin_unlock(&i915->mm.obj_lock); 1584 } 1585 1586 /** 1587 * Called when user space prepares to use an object with the CPU, either 1588 * through the mmap ioctl's mapping or a GTT mapping. 1589 * @dev: drm device 1590 * @data: ioctl data blob 1591 * @file: drm file 1592 */ 1593 int 1594 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 1595 struct drm_file *file) 1596 { 1597 struct drm_i915_gem_set_domain *args = data; 1598 struct drm_i915_gem_object *obj; 1599 uint32_t read_domains = args->read_domains; 1600 uint32_t write_domain = args->write_domain; 1601 int err; 1602 1603 /* Only handle setting domains to types used by the CPU. */ 1604 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS) 1605 return -EINVAL; 1606 1607 /* Having something in the write domain implies it's in the read 1608 * domain, and only that read domain. Enforce that in the request. 1609 */ 1610 if (write_domain != 0 && read_domains != write_domain) 1611 return -EINVAL; 1612 1613 obj = i915_gem_object_lookup(file, args->handle); 1614 if (!obj) 1615 return -ENOENT; 1616 1617 /* Try to flush the object off the GPU without holding the lock. 1618 * We will repeat the flush holding the lock in the normal manner 1619 * to catch cases where we are gazumped. 1620 */ 1621 err = i915_gem_object_wait(obj, 1622 I915_WAIT_INTERRUPTIBLE | 1623 (write_domain ? I915_WAIT_ALL : 0), 1624 MAX_SCHEDULE_TIMEOUT, 1625 to_rps_client(file)); 1626 if (err) 1627 goto out; 1628 1629 /* 1630 * Proxy objects do not control access to the backing storage, ergo 1631 * they cannot be used as a means to manipulate the cache domain 1632 * tracking for that backing storage. The proxy object is always 1633 * considered to be outside of any cache domain. 1634 */ 1635 if (i915_gem_object_is_proxy(obj)) { 1636 err = -ENXIO; 1637 goto out; 1638 } 1639 1640 /* 1641 * Flush and acquire obj->pages so that we are coherent through 1642 * direct access in memory with previous cached writes through 1643 * shmemfs and that our cache domain tracking remains valid. 1644 * For example, if the obj->filp was moved to swap without us 1645 * being notified and releasing the pages, we would mistakenly 1646 * continue to assume that the obj remained out of the CPU cached 1647 * domain. 1648 */ 1649 err = i915_gem_object_pin_pages(obj); 1650 if (err) 1651 goto out; 1652 1653 err = i915_mutex_lock_interruptible(dev); 1654 if (err) 1655 goto out_unpin; 1656 1657 if (read_domains & I915_GEM_DOMAIN_WC) 1658 err = i915_gem_object_set_to_wc_domain(obj, write_domain); 1659 else if (read_domains & I915_GEM_DOMAIN_GTT) 1660 err = i915_gem_object_set_to_gtt_domain(obj, write_domain); 1661 else 1662 err = i915_gem_object_set_to_cpu_domain(obj, write_domain); 1663 1664 /* And bump the LRU for this access */ 1665 i915_gem_object_bump_inactive_ggtt(obj); 1666 1667 mutex_unlock(&dev->struct_mutex); 1668 1669 if (write_domain != 0) 1670 intel_fb_obj_invalidate(obj, 1671 fb_write_origin(obj, write_domain)); 1672 1673 out_unpin: 1674 i915_gem_object_unpin_pages(obj); 1675 out: 1676 i915_gem_object_put(obj); 1677 return err; 1678 } 1679 1680 /** 1681 * Called when user space has done writes to this buffer 1682 * @dev: drm device 1683 * @data: ioctl data blob 1684 * @file: drm file 1685 */ 1686 int 1687 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 1688 struct drm_file *file) 1689 { 1690 struct drm_i915_gem_sw_finish *args = data; 1691 struct drm_i915_gem_object *obj; 1692 1693 obj = i915_gem_object_lookup(file, args->handle); 1694 if (!obj) 1695 return -ENOENT; 1696 1697 /* 1698 * Proxy objects are barred from CPU access, so there is no 1699 * need to ban sw_finish as it is a nop. 1700 */ 1701 1702 /* Pinned buffers may be scanout, so flush the cache */ 1703 i915_gem_object_flush_if_display(obj); 1704 i915_gem_object_put(obj); 1705 1706 return 0; 1707 } 1708 1709 /** 1710 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address 1711 * it is mapped to. 1712 * @dev: drm device 1713 * @data: ioctl data blob 1714 * @file: drm file 1715 * 1716 * While the mapping holds a reference on the contents of the object, it doesn't 1717 * imply a ref on the object itself. 1718 * 1719 * IMPORTANT: 1720 * 1721 * DRM driver writers who look a this function as an example for how to do GEM 1722 * mmap support, please don't implement mmap support like here. The modern way 1723 * to implement DRM mmap support is with an mmap offset ioctl (like 1724 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly. 1725 * That way debug tooling like valgrind will understand what's going on, hiding 1726 * the mmap call in a driver private ioctl will break that. The i915 driver only 1727 * does cpu mmaps this way because we didn't know better. 1728 */ 1729 int 1730 i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 1731 struct drm_file *file) 1732 { 1733 struct drm_i915_gem_mmap *args = data; 1734 struct drm_i915_gem_object *obj; 1735 unsigned long addr; 1736 1737 if (args->flags & ~(I915_MMAP_WC)) 1738 return -EINVAL; 1739 1740 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT)) 1741 return -ENODEV; 1742 1743 obj = i915_gem_object_lookup(file, args->handle); 1744 if (!obj) 1745 return -ENOENT; 1746 1747 /* prime objects have no backing filp to GEM mmap 1748 * pages from. 1749 */ 1750 if (!obj->base.filp) { 1751 i915_gem_object_put(obj); 1752 return -ENXIO; 1753 } 1754 1755 addr = vm_mmap(obj->base.filp, 0, args->size, 1756 PROT_READ | PROT_WRITE, MAP_SHARED, 1757 args->offset); 1758 if (args->flags & I915_MMAP_WC) { 1759 struct mm_struct *mm = current->mm; 1760 struct vm_area_struct *vma; 1761 1762 if (down_write_killable(&mm->mmap_sem)) { 1763 i915_gem_object_put(obj); 1764 return -EINTR; 1765 } 1766 vma = find_vma(mm, addr); 1767 if (vma) 1768 vma->vm_page_prot = 1769 pgprot_writecombine(vm_get_page_prot(vma->vm_flags)); 1770 else 1771 addr = -ENOMEM; 1772 up_write(&mm->mmap_sem); 1773 1774 /* This may race, but that's ok, it only gets set */ 1775 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU); 1776 } 1777 i915_gem_object_put(obj); 1778 if (IS_ERR((void *)addr)) 1779 return addr; 1780 1781 args->addr_ptr = (uint64_t) addr; 1782 1783 return 0; 1784 } 1785 1786 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj) 1787 { 1788 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT; 1789 } 1790 1791 /** 1792 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps 1793 * 1794 * A history of the GTT mmap interface: 1795 * 1796 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to 1797 * aligned and suitable for fencing, and still fit into the available 1798 * mappable space left by the pinned display objects. A classic problem 1799 * we called the page-fault-of-doom where we would ping-pong between 1800 * two objects that could not fit inside the GTT and so the memcpy 1801 * would page one object in at the expense of the other between every 1802 * single byte. 1803 * 1804 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none 1805 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the 1806 * object is too large for the available space (or simply too large 1807 * for the mappable aperture!), a view is created instead and faulted 1808 * into userspace. (This view is aligned and sized appropriately for 1809 * fenced access.) 1810 * 1811 * 2 - Recognise WC as a separate cache domain so that we can flush the 1812 * delayed writes via GTT before performing direct access via WC. 1813 * 1814 * Restrictions: 1815 * 1816 * * snoopable objects cannot be accessed via the GTT. It can cause machine 1817 * hangs on some architectures, corruption on others. An attempt to service 1818 * a GTT page fault from a snoopable object will generate a SIGBUS. 1819 * 1820 * * the object must be able to fit into RAM (physical memory, though no 1821 * limited to the mappable aperture). 1822 * 1823 * 1824 * Caveats: 1825 * 1826 * * a new GTT page fault will synchronize rendering from the GPU and flush 1827 * all data to system memory. Subsequent access will not be synchronized. 1828 * 1829 * * all mappings are revoked on runtime device suspend. 1830 * 1831 * * there are only 8, 16 or 32 fence registers to share between all users 1832 * (older machines require fence register for display and blitter access 1833 * as well). Contention of the fence registers will cause the previous users 1834 * to be unmapped and any new access will generate new page faults. 1835 * 1836 * * running out of memory while servicing a fault may generate a SIGBUS, 1837 * rather than the expected SIGSEGV. 1838 */ 1839 int i915_gem_mmap_gtt_version(void) 1840 { 1841 return 2; 1842 } 1843 1844 static inline struct i915_ggtt_view 1845 compute_partial_view(struct drm_i915_gem_object *obj, 1846 pgoff_t page_offset, 1847 unsigned int chunk) 1848 { 1849 struct i915_ggtt_view view; 1850 1851 if (i915_gem_object_is_tiled(obj)) 1852 chunk = roundup(chunk, tile_row_pages(obj)); 1853 1854 view.type = I915_GGTT_VIEW_PARTIAL; 1855 view.partial.offset = rounddown(page_offset, chunk); 1856 view.partial.size = 1857 min_t(unsigned int, chunk, 1858 (obj->base.size >> PAGE_SHIFT) - view.partial.offset); 1859 1860 /* If the partial covers the entire object, just create a normal VMA. */ 1861 if (chunk >= obj->base.size >> PAGE_SHIFT) 1862 view.type = I915_GGTT_VIEW_NORMAL; 1863 1864 return view; 1865 } 1866 1867 /** 1868 * i915_gem_fault - fault a page into the GTT 1869 * @vmf: fault info 1870 * 1871 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped 1872 * from userspace. The fault handler takes care of binding the object to 1873 * the GTT (if needed), allocating and programming a fence register (again, 1874 * only if needed based on whether the old reg is still valid or the object 1875 * is tiled) and inserting a new PTE into the faulting process. 1876 * 1877 * Note that the faulting process may involve evicting existing objects 1878 * from the GTT and/or fence registers to make room. So performance may 1879 * suffer if the GTT working set is large or there are few fence registers 1880 * left. 1881 * 1882 * The current feature set supported by i915_gem_fault() and thus GTT mmaps 1883 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version). 1884 */ 1885 int i915_gem_fault(struct vm_fault *vmf) 1886 { 1887 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */ 1888 struct vm_area_struct *area = vmf->vma; 1889 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data); 1890 struct drm_device *dev = obj->base.dev; 1891 struct drm_i915_private *dev_priv = to_i915(dev); 1892 struct i915_ggtt *ggtt = &dev_priv->ggtt; 1893 bool write = !!(vmf->flags & FAULT_FLAG_WRITE); 1894 struct i915_vma *vma; 1895 pgoff_t page_offset; 1896 unsigned int flags; 1897 int ret; 1898 1899 /* We don't use vmf->pgoff since that has the fake offset */ 1900 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT; 1901 1902 trace_i915_gem_object_fault(obj, page_offset, true, write); 1903 1904 /* Try to flush the object off the GPU first without holding the lock. 1905 * Upon acquiring the lock, we will perform our sanity checks and then 1906 * repeat the flush holding the lock in the normal manner to catch cases 1907 * where we are gazumped. 1908 */ 1909 ret = i915_gem_object_wait(obj, 1910 I915_WAIT_INTERRUPTIBLE, 1911 MAX_SCHEDULE_TIMEOUT, 1912 NULL); 1913 if (ret) 1914 goto err; 1915 1916 ret = i915_gem_object_pin_pages(obj); 1917 if (ret) 1918 goto err; 1919 1920 intel_runtime_pm_get(dev_priv); 1921 1922 ret = i915_mutex_lock_interruptible(dev); 1923 if (ret) 1924 goto err_rpm; 1925 1926 /* Access to snoopable pages through the GTT is incoherent. */ 1927 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) { 1928 ret = -EFAULT; 1929 goto err_unlock; 1930 } 1931 1932 /* If the object is smaller than a couple of partial vma, it is 1933 * not worth only creating a single partial vma - we may as well 1934 * clear enough space for the full object. 1935 */ 1936 flags = PIN_MAPPABLE; 1937 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT) 1938 flags |= PIN_NONBLOCK | PIN_NONFAULT; 1939 1940 /* Now pin it into the GTT as needed */ 1941 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags); 1942 if (IS_ERR(vma)) { 1943 /* Use a partial view if it is bigger than available space */ 1944 struct i915_ggtt_view view = 1945 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES); 1946 1947 /* Userspace is now writing through an untracked VMA, abandon 1948 * all hope that the hardware is able to track future writes. 1949 */ 1950 obj->frontbuffer_ggtt_origin = ORIGIN_CPU; 1951 1952 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE); 1953 } 1954 if (IS_ERR(vma)) { 1955 ret = PTR_ERR(vma); 1956 goto err_unlock; 1957 } 1958 1959 ret = i915_gem_object_set_to_gtt_domain(obj, write); 1960 if (ret) 1961 goto err_unpin; 1962 1963 ret = i915_vma_pin_fence(vma); 1964 if (ret) 1965 goto err_unpin; 1966 1967 /* Finally, remap it using the new GTT offset */ 1968 ret = remap_io_mapping(area, 1969 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT), 1970 (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT, 1971 min_t(u64, vma->size, area->vm_end - area->vm_start), 1972 &ggtt->iomap); 1973 if (ret) 1974 goto err_fence; 1975 1976 /* Mark as being mmapped into userspace for later revocation */ 1977 assert_rpm_wakelock_held(dev_priv); 1978 if (!i915_vma_set_userfault(vma) && !obj->userfault_count++) 1979 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list); 1980 GEM_BUG_ON(!obj->userfault_count); 1981 1982 i915_vma_set_ggtt_write(vma); 1983 1984 err_fence: 1985 i915_vma_unpin_fence(vma); 1986 err_unpin: 1987 __i915_vma_unpin(vma); 1988 err_unlock: 1989 mutex_unlock(&dev->struct_mutex); 1990 err_rpm: 1991 intel_runtime_pm_put(dev_priv); 1992 i915_gem_object_unpin_pages(obj); 1993 err: 1994 switch (ret) { 1995 case -EIO: 1996 /* 1997 * We eat errors when the gpu is terminally wedged to avoid 1998 * userspace unduly crashing (gl has no provisions for mmaps to 1999 * fail). But any other -EIO isn't ours (e.g. swap in failure) 2000 * and so needs to be reported. 2001 */ 2002 if (!i915_terminally_wedged(&dev_priv->gpu_error)) { 2003 ret = VM_FAULT_SIGBUS; 2004 break; 2005 } 2006 case -EAGAIN: 2007 /* 2008 * EAGAIN means the gpu is hung and we'll wait for the error 2009 * handler to reset everything when re-faulting in 2010 * i915_mutex_lock_interruptible. 2011 */ 2012 case 0: 2013 case -ERESTARTSYS: 2014 case -EINTR: 2015 case -EBUSY: 2016 /* 2017 * EBUSY is ok: this just means that another thread 2018 * already did the job. 2019 */ 2020 ret = VM_FAULT_NOPAGE; 2021 break; 2022 case -ENOMEM: 2023 ret = VM_FAULT_OOM; 2024 break; 2025 case -ENOSPC: 2026 case -EFAULT: 2027 ret = VM_FAULT_SIGBUS; 2028 break; 2029 default: 2030 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret); 2031 ret = VM_FAULT_SIGBUS; 2032 break; 2033 } 2034 return ret; 2035 } 2036 2037 static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj) 2038 { 2039 struct i915_vma *vma; 2040 2041 GEM_BUG_ON(!obj->userfault_count); 2042 2043 obj->userfault_count = 0; 2044 list_del(&obj->userfault_link); 2045 drm_vma_node_unmap(&obj->base.vma_node, 2046 obj->base.dev->anon_inode->i_mapping); 2047 2048 for_each_ggtt_vma(vma, obj) 2049 i915_vma_unset_userfault(vma); 2050 } 2051 2052 /** 2053 * i915_gem_release_mmap - remove physical page mappings 2054 * @obj: obj in question 2055 * 2056 * Preserve the reservation of the mmapping with the DRM core code, but 2057 * relinquish ownership of the pages back to the system. 2058 * 2059 * It is vital that we remove the page mapping if we have mapped a tiled 2060 * object through the GTT and then lose the fence register due to 2061 * resource pressure. Similarly if the object has been moved out of the 2062 * aperture, than pages mapped into userspace must be revoked. Removing the 2063 * mapping will then trigger a page fault on the next user access, allowing 2064 * fixup by i915_gem_fault(). 2065 */ 2066 void 2067 i915_gem_release_mmap(struct drm_i915_gem_object *obj) 2068 { 2069 struct drm_i915_private *i915 = to_i915(obj->base.dev); 2070 2071 /* Serialisation between user GTT access and our code depends upon 2072 * revoking the CPU's PTE whilst the mutex is held. The next user 2073 * pagefault then has to wait until we release the mutex. 2074 * 2075 * Note that RPM complicates somewhat by adding an additional 2076 * requirement that operations to the GGTT be made holding the RPM 2077 * wakeref. 2078 */ 2079 lockdep_assert_held(&i915->drm.struct_mutex); 2080 intel_runtime_pm_get(i915); 2081 2082 if (!obj->userfault_count) 2083 goto out; 2084 2085 __i915_gem_object_release_mmap(obj); 2086 2087 /* Ensure that the CPU's PTE are revoked and there are not outstanding 2088 * memory transactions from userspace before we return. The TLB 2089 * flushing implied above by changing the PTE above *should* be 2090 * sufficient, an extra barrier here just provides us with a bit 2091 * of paranoid documentation about our requirement to serialise 2092 * memory writes before touching registers / GSM. 2093 */ 2094 wmb(); 2095 2096 out: 2097 intel_runtime_pm_put(i915); 2098 } 2099 2100 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv) 2101 { 2102 struct drm_i915_gem_object *obj, *on; 2103 int i; 2104 2105 /* 2106 * Only called during RPM suspend. All users of the userfault_list 2107 * must be holding an RPM wakeref to ensure that this can not 2108 * run concurrently with themselves (and use the struct_mutex for 2109 * protection between themselves). 2110 */ 2111 2112 list_for_each_entry_safe(obj, on, 2113 &dev_priv->mm.userfault_list, userfault_link) 2114 __i915_gem_object_release_mmap(obj); 2115 2116 /* The fence will be lost when the device powers down. If any were 2117 * in use by hardware (i.e. they are pinned), we should not be powering 2118 * down! All other fences will be reacquired by the user upon waking. 2119 */ 2120 for (i = 0; i < dev_priv->num_fence_regs; i++) { 2121 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i]; 2122 2123 /* Ideally we want to assert that the fence register is not 2124 * live at this point (i.e. that no piece of code will be 2125 * trying to write through fence + GTT, as that both violates 2126 * our tracking of activity and associated locking/barriers, 2127 * but also is illegal given that the hw is powered down). 2128 * 2129 * Previously we used reg->pin_count as a "liveness" indicator. 2130 * That is not sufficient, and we need a more fine-grained 2131 * tool if we want to have a sanity check here. 2132 */ 2133 2134 if (!reg->vma) 2135 continue; 2136 2137 GEM_BUG_ON(i915_vma_has_userfault(reg->vma)); 2138 reg->dirty = true; 2139 } 2140 } 2141 2142 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj) 2143 { 2144 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 2145 int err; 2146 2147 err = drm_gem_create_mmap_offset(&obj->base); 2148 if (likely(!err)) 2149 return 0; 2150 2151 /* Attempt to reap some mmap space from dead objects */ 2152 do { 2153 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE); 2154 if (err) 2155 break; 2156 2157 i915_gem_drain_freed_objects(dev_priv); 2158 err = drm_gem_create_mmap_offset(&obj->base); 2159 if (!err) 2160 break; 2161 2162 } while (flush_delayed_work(&dev_priv->gt.retire_work)); 2163 2164 return err; 2165 } 2166 2167 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj) 2168 { 2169 drm_gem_free_mmap_offset(&obj->base); 2170 } 2171 2172 int 2173 i915_gem_mmap_gtt(struct drm_file *file, 2174 struct drm_device *dev, 2175 uint32_t handle, 2176 uint64_t *offset) 2177 { 2178 struct drm_i915_gem_object *obj; 2179 int ret; 2180 2181 obj = i915_gem_object_lookup(file, handle); 2182 if (!obj) 2183 return -ENOENT; 2184 2185 ret = i915_gem_object_create_mmap_offset(obj); 2186 if (ret == 0) 2187 *offset = drm_vma_node_offset_addr(&obj->base.vma_node); 2188 2189 i915_gem_object_put(obj); 2190 return ret; 2191 } 2192 2193 /** 2194 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing 2195 * @dev: DRM device 2196 * @data: GTT mapping ioctl data 2197 * @file: GEM object info 2198 * 2199 * Simply returns the fake offset to userspace so it can mmap it. 2200 * The mmap call will end up in drm_gem_mmap(), which will set things 2201 * up so we can get faults in the handler above. 2202 * 2203 * The fault handler will take care of binding the object into the GTT 2204 * (since it may have been evicted to make room for something), allocating 2205 * a fence register, and mapping the appropriate aperture address into 2206 * userspace. 2207 */ 2208 int 2209 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 2210 struct drm_file *file) 2211 { 2212 struct drm_i915_gem_mmap_gtt *args = data; 2213 2214 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset); 2215 } 2216 2217 /* Immediately discard the backing storage */ 2218 static void 2219 i915_gem_object_truncate(struct drm_i915_gem_object *obj) 2220 { 2221 i915_gem_object_free_mmap_offset(obj); 2222 2223 if (obj->base.filp == NULL) 2224 return; 2225 2226 /* Our goal here is to return as much of the memory as 2227 * is possible back to the system as we are called from OOM. 2228 * To do this we must instruct the shmfs to drop all of its 2229 * backing pages, *now*. 2230 */ 2231 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1); 2232 obj->mm.madv = __I915_MADV_PURGED; 2233 obj->mm.pages = ERR_PTR(-EFAULT); 2234 } 2235 2236 /* Try to discard unwanted pages */ 2237 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj) 2238 { 2239 struct address_space *mapping; 2240 2241 lockdep_assert_held(&obj->mm.lock); 2242 GEM_BUG_ON(i915_gem_object_has_pages(obj)); 2243 2244 switch (obj->mm.madv) { 2245 case I915_MADV_DONTNEED: 2246 i915_gem_object_truncate(obj); 2247 case __I915_MADV_PURGED: 2248 return; 2249 } 2250 2251 if (obj->base.filp == NULL) 2252 return; 2253 2254 mapping = obj->base.filp->f_mapping, 2255 invalidate_mapping_pages(mapping, 0, (loff_t)-1); 2256 } 2257 2258 static void 2259 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj, 2260 struct sg_table *pages) 2261 { 2262 struct sgt_iter sgt_iter; 2263 struct page *page; 2264 2265 __i915_gem_object_release_shmem(obj, pages, true); 2266 2267 i915_gem_gtt_finish_pages(obj, pages); 2268 2269 if (i915_gem_object_needs_bit17_swizzle(obj)) 2270 i915_gem_object_save_bit_17_swizzle(obj, pages); 2271 2272 for_each_sgt_page(page, sgt_iter, pages) { 2273 if (obj->mm.dirty) 2274 set_page_dirty(page); 2275 2276 if (obj->mm.madv == I915_MADV_WILLNEED) 2277 mark_page_accessed(page); 2278 2279 put_page(page); 2280 } 2281 obj->mm.dirty = false; 2282 2283 sg_free_table(pages); 2284 kfree(pages); 2285 } 2286 2287 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj) 2288 { 2289 struct radix_tree_iter iter; 2290 void __rcu **slot; 2291 2292 rcu_read_lock(); 2293 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0) 2294 radix_tree_delete(&obj->mm.get_page.radix, iter.index); 2295 rcu_read_unlock(); 2296 } 2297 2298 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj, 2299 enum i915_mm_subclass subclass) 2300 { 2301 struct drm_i915_private *i915 = to_i915(obj->base.dev); 2302 struct sg_table *pages; 2303 2304 if (i915_gem_object_has_pinned_pages(obj)) 2305 return; 2306 2307 GEM_BUG_ON(obj->bind_count); 2308 if (!i915_gem_object_has_pages(obj)) 2309 return; 2310 2311 /* May be called by shrinker from within get_pages() (on another bo) */ 2312 mutex_lock_nested(&obj->mm.lock, subclass); 2313 if (unlikely(atomic_read(&obj->mm.pages_pin_count))) 2314 goto unlock; 2315 2316 /* ->put_pages might need to allocate memory for the bit17 swizzle 2317 * array, hence protect them from being reaped by removing them from gtt 2318 * lists early. */ 2319 pages = fetch_and_zero(&obj->mm.pages); 2320 GEM_BUG_ON(!pages); 2321 2322 spin_lock(&i915->mm.obj_lock); 2323 list_del(&obj->mm.link); 2324 spin_unlock(&i915->mm.obj_lock); 2325 2326 if (obj->mm.mapping) { 2327 void *ptr; 2328 2329 ptr = page_mask_bits(obj->mm.mapping); 2330 if (is_vmalloc_addr(ptr)) 2331 vunmap(ptr); 2332 else 2333 kunmap(kmap_to_page(ptr)); 2334 2335 obj->mm.mapping = NULL; 2336 } 2337 2338 __i915_gem_object_reset_page_iter(obj); 2339 2340 if (!IS_ERR(pages)) 2341 obj->ops->put_pages(obj, pages); 2342 2343 obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0; 2344 2345 unlock: 2346 mutex_unlock(&obj->mm.lock); 2347 } 2348 2349 static bool i915_sg_trim(struct sg_table *orig_st) 2350 { 2351 struct sg_table new_st; 2352 struct scatterlist *sg, *new_sg; 2353 unsigned int i; 2354 2355 if (orig_st->nents == orig_st->orig_nents) 2356 return false; 2357 2358 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN)) 2359 return false; 2360 2361 new_sg = new_st.sgl; 2362 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) { 2363 sg_set_page(new_sg, sg_page(sg), sg->length, 0); 2364 /* called before being DMA mapped, no need to copy sg->dma_* */ 2365 new_sg = sg_next(new_sg); 2366 } 2367 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */ 2368 2369 sg_free_table(orig_st); 2370 2371 *orig_st = new_st; 2372 return true; 2373 } 2374 2375 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj) 2376 { 2377 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 2378 const unsigned long page_count = obj->base.size / PAGE_SIZE; 2379 unsigned long i; 2380 struct address_space *mapping; 2381 struct sg_table *st; 2382 struct scatterlist *sg; 2383 struct sgt_iter sgt_iter; 2384 struct page *page; 2385 unsigned long last_pfn = 0; /* suppress gcc warning */ 2386 unsigned int max_segment = i915_sg_segment_size(); 2387 unsigned int sg_page_sizes; 2388 gfp_t noreclaim; 2389 int ret; 2390 2391 /* Assert that the object is not currently in any GPU domain. As it 2392 * wasn't in the GTT, there shouldn't be any way it could have been in 2393 * a GPU cache 2394 */ 2395 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS); 2396 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS); 2397 2398 st = kmalloc(sizeof(*st), GFP_KERNEL); 2399 if (st == NULL) 2400 return -ENOMEM; 2401 2402 rebuild_st: 2403 if (sg_alloc_table(st, page_count, GFP_KERNEL)) { 2404 kfree(st); 2405 return -ENOMEM; 2406 } 2407 2408 /* Get the list of pages out of our struct file. They'll be pinned 2409 * at this point until we release them. 2410 * 2411 * Fail silently without starting the shrinker 2412 */ 2413 mapping = obj->base.filp->f_mapping; 2414 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM); 2415 noreclaim |= __GFP_NORETRY | __GFP_NOWARN; 2416 2417 sg = st->sgl; 2418 st->nents = 0; 2419 sg_page_sizes = 0; 2420 for (i = 0; i < page_count; i++) { 2421 const unsigned int shrink[] = { 2422 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE, 2423 0, 2424 }, *s = shrink; 2425 gfp_t gfp = noreclaim; 2426 2427 do { 2428 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 2429 if (likely(!IS_ERR(page))) 2430 break; 2431 2432 if (!*s) { 2433 ret = PTR_ERR(page); 2434 goto err_sg; 2435 } 2436 2437 i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++); 2438 cond_resched(); 2439 2440 /* We've tried hard to allocate the memory by reaping 2441 * our own buffer, now let the real VM do its job and 2442 * go down in flames if truly OOM. 2443 * 2444 * However, since graphics tend to be disposable, 2445 * defer the oom here by reporting the ENOMEM back 2446 * to userspace. 2447 */ 2448 if (!*s) { 2449 /* reclaim and warn, but no oom */ 2450 gfp = mapping_gfp_mask(mapping); 2451 2452 /* Our bo are always dirty and so we require 2453 * kswapd to reclaim our pages (direct reclaim 2454 * does not effectively begin pageout of our 2455 * buffers on its own). However, direct reclaim 2456 * only waits for kswapd when under allocation 2457 * congestion. So as a result __GFP_RECLAIM is 2458 * unreliable and fails to actually reclaim our 2459 * dirty pages -- unless you try over and over 2460 * again with !__GFP_NORETRY. However, we still 2461 * want to fail this allocation rather than 2462 * trigger the out-of-memory killer and for 2463 * this we want __GFP_RETRY_MAYFAIL. 2464 */ 2465 gfp |= __GFP_RETRY_MAYFAIL; 2466 } 2467 } while (1); 2468 2469 if (!i || 2470 sg->length >= max_segment || 2471 page_to_pfn(page) != last_pfn + 1) { 2472 if (i) { 2473 sg_page_sizes |= sg->length; 2474 sg = sg_next(sg); 2475 } 2476 st->nents++; 2477 sg_set_page(sg, page, PAGE_SIZE, 0); 2478 } else { 2479 sg->length += PAGE_SIZE; 2480 } 2481 last_pfn = page_to_pfn(page); 2482 2483 /* Check that the i965g/gm workaround works. */ 2484 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL)); 2485 } 2486 if (sg) { /* loop terminated early; short sg table */ 2487 sg_page_sizes |= sg->length; 2488 sg_mark_end(sg); 2489 } 2490 2491 /* Trim unused sg entries to avoid wasting memory. */ 2492 i915_sg_trim(st); 2493 2494 ret = i915_gem_gtt_prepare_pages(obj, st); 2495 if (ret) { 2496 /* DMA remapping failed? One possible cause is that 2497 * it could not reserve enough large entries, asking 2498 * for PAGE_SIZE chunks instead may be helpful. 2499 */ 2500 if (max_segment > PAGE_SIZE) { 2501 for_each_sgt_page(page, sgt_iter, st) 2502 put_page(page); 2503 sg_free_table(st); 2504 2505 max_segment = PAGE_SIZE; 2506 goto rebuild_st; 2507 } else { 2508 dev_warn(&dev_priv->drm.pdev->dev, 2509 "Failed to DMA remap %lu pages\n", 2510 page_count); 2511 goto err_pages; 2512 } 2513 } 2514 2515 if (i915_gem_object_needs_bit17_swizzle(obj)) 2516 i915_gem_object_do_bit_17_swizzle(obj, st); 2517 2518 __i915_gem_object_set_pages(obj, st, sg_page_sizes); 2519 2520 return 0; 2521 2522 err_sg: 2523 sg_mark_end(sg); 2524 err_pages: 2525 for_each_sgt_page(page, sgt_iter, st) 2526 put_page(page); 2527 sg_free_table(st); 2528 kfree(st); 2529 2530 /* shmemfs first checks if there is enough memory to allocate the page 2531 * and reports ENOSPC should there be insufficient, along with the usual 2532 * ENOMEM for a genuine allocation failure. 2533 * 2534 * We use ENOSPC in our driver to mean that we have run out of aperture 2535 * space and so want to translate the error from shmemfs back to our 2536 * usual understanding of ENOMEM. 2537 */ 2538 if (ret == -ENOSPC) 2539 ret = -ENOMEM; 2540 2541 return ret; 2542 } 2543 2544 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj, 2545 struct sg_table *pages, 2546 unsigned int sg_page_sizes) 2547 { 2548 struct drm_i915_private *i915 = to_i915(obj->base.dev); 2549 unsigned long supported = INTEL_INFO(i915)->page_sizes; 2550 int i; 2551 2552 lockdep_assert_held(&obj->mm.lock); 2553 2554 obj->mm.get_page.sg_pos = pages->sgl; 2555 obj->mm.get_page.sg_idx = 0; 2556 2557 obj->mm.pages = pages; 2558 2559 if (i915_gem_object_is_tiled(obj) && 2560 i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) { 2561 GEM_BUG_ON(obj->mm.quirked); 2562 __i915_gem_object_pin_pages(obj); 2563 obj->mm.quirked = true; 2564 } 2565 2566 GEM_BUG_ON(!sg_page_sizes); 2567 obj->mm.page_sizes.phys = sg_page_sizes; 2568 2569 /* 2570 * Calculate the supported page-sizes which fit into the given 2571 * sg_page_sizes. This will give us the page-sizes which we may be able 2572 * to use opportunistically when later inserting into the GTT. For 2573 * example if phys=2G, then in theory we should be able to use 1G, 2M, 2574 * 64K or 4K pages, although in practice this will depend on a number of 2575 * other factors. 2576 */ 2577 obj->mm.page_sizes.sg = 0; 2578 for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) { 2579 if (obj->mm.page_sizes.phys & ~0u << i) 2580 obj->mm.page_sizes.sg |= BIT(i); 2581 } 2582 GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg)); 2583 2584 spin_lock(&i915->mm.obj_lock); 2585 list_add(&obj->mm.link, &i915->mm.unbound_list); 2586 spin_unlock(&i915->mm.obj_lock); 2587 } 2588 2589 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 2590 { 2591 int err; 2592 2593 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) { 2594 DRM_DEBUG("Attempting to obtain a purgeable object\n"); 2595 return -EFAULT; 2596 } 2597 2598 err = obj->ops->get_pages(obj); 2599 GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj)); 2600 2601 return err; 2602 } 2603 2604 /* Ensure that the associated pages are gathered from the backing storage 2605 * and pinned into our object. i915_gem_object_pin_pages() may be called 2606 * multiple times before they are released by a single call to 2607 * i915_gem_object_unpin_pages() - once the pages are no longer referenced 2608 * either as a result of memory pressure (reaping pages under the shrinker) 2609 * or as the object is itself released. 2610 */ 2611 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 2612 { 2613 int err; 2614 2615 err = mutex_lock_interruptible(&obj->mm.lock); 2616 if (err) 2617 return err; 2618 2619 if (unlikely(!i915_gem_object_has_pages(obj))) { 2620 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj)); 2621 2622 err = ____i915_gem_object_get_pages(obj); 2623 if (err) 2624 goto unlock; 2625 2626 smp_mb__before_atomic(); 2627 } 2628 atomic_inc(&obj->mm.pages_pin_count); 2629 2630 unlock: 2631 mutex_unlock(&obj->mm.lock); 2632 return err; 2633 } 2634 2635 /* The 'mapping' part of i915_gem_object_pin_map() below */ 2636 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj, 2637 enum i915_map_type type) 2638 { 2639 unsigned long n_pages = obj->base.size >> PAGE_SHIFT; 2640 struct sg_table *sgt = obj->mm.pages; 2641 struct sgt_iter sgt_iter; 2642 struct page *page; 2643 struct page *stack_pages[32]; 2644 struct page **pages = stack_pages; 2645 unsigned long i = 0; 2646 pgprot_t pgprot; 2647 void *addr; 2648 2649 /* A single page can always be kmapped */ 2650 if (n_pages == 1 && type == I915_MAP_WB) 2651 return kmap(sg_page(sgt->sgl)); 2652 2653 if (n_pages > ARRAY_SIZE(stack_pages)) { 2654 /* Too big for stack -- allocate temporary array instead */ 2655 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL); 2656 if (!pages) 2657 return NULL; 2658 } 2659 2660 for_each_sgt_page(page, sgt_iter, sgt) 2661 pages[i++] = page; 2662 2663 /* Check that we have the expected number of pages */ 2664 GEM_BUG_ON(i != n_pages); 2665 2666 switch (type) { 2667 default: 2668 MISSING_CASE(type); 2669 /* fallthrough to use PAGE_KERNEL anyway */ 2670 case I915_MAP_WB: 2671 pgprot = PAGE_KERNEL; 2672 break; 2673 case I915_MAP_WC: 2674 pgprot = pgprot_writecombine(PAGE_KERNEL_IO); 2675 break; 2676 } 2677 addr = vmap(pages, n_pages, 0, pgprot); 2678 2679 if (pages != stack_pages) 2680 kvfree(pages); 2681 2682 return addr; 2683 } 2684 2685 /* get, pin, and map the pages of the object into kernel space */ 2686 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj, 2687 enum i915_map_type type) 2688 { 2689 enum i915_map_type has_type; 2690 bool pinned; 2691 void *ptr; 2692 int ret; 2693 2694 if (unlikely(!i915_gem_object_has_struct_page(obj))) 2695 return ERR_PTR(-ENXIO); 2696 2697 ret = mutex_lock_interruptible(&obj->mm.lock); 2698 if (ret) 2699 return ERR_PTR(ret); 2700 2701 pinned = !(type & I915_MAP_OVERRIDE); 2702 type &= ~I915_MAP_OVERRIDE; 2703 2704 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) { 2705 if (unlikely(!i915_gem_object_has_pages(obj))) { 2706 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj)); 2707 2708 ret = ____i915_gem_object_get_pages(obj); 2709 if (ret) 2710 goto err_unlock; 2711 2712 smp_mb__before_atomic(); 2713 } 2714 atomic_inc(&obj->mm.pages_pin_count); 2715 pinned = false; 2716 } 2717 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 2718 2719 ptr = page_unpack_bits(obj->mm.mapping, &has_type); 2720 if (ptr && has_type != type) { 2721 if (pinned) { 2722 ret = -EBUSY; 2723 goto err_unpin; 2724 } 2725 2726 if (is_vmalloc_addr(ptr)) 2727 vunmap(ptr); 2728 else 2729 kunmap(kmap_to_page(ptr)); 2730 2731 ptr = obj->mm.mapping = NULL; 2732 } 2733 2734 if (!ptr) { 2735 ptr = i915_gem_object_map(obj, type); 2736 if (!ptr) { 2737 ret = -ENOMEM; 2738 goto err_unpin; 2739 } 2740 2741 obj->mm.mapping = page_pack_bits(ptr, type); 2742 } 2743 2744 out_unlock: 2745 mutex_unlock(&obj->mm.lock); 2746 return ptr; 2747 2748 err_unpin: 2749 atomic_dec(&obj->mm.pages_pin_count); 2750 err_unlock: 2751 ptr = ERR_PTR(ret); 2752 goto out_unlock; 2753 } 2754 2755 static int 2756 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj, 2757 const struct drm_i915_gem_pwrite *arg) 2758 { 2759 struct address_space *mapping = obj->base.filp->f_mapping; 2760 char __user *user_data = u64_to_user_ptr(arg->data_ptr); 2761 u64 remain, offset; 2762 unsigned int pg; 2763 2764 /* Before we instantiate/pin the backing store for our use, we 2765 * can prepopulate the shmemfs filp efficiently using a write into 2766 * the pagecache. We avoid the penalty of instantiating all the 2767 * pages, important if the user is just writing to a few and never 2768 * uses the object on the GPU, and using a direct write into shmemfs 2769 * allows it to avoid the cost of retrieving a page (either swapin 2770 * or clearing-before-use) before it is overwritten. 2771 */ 2772 if (i915_gem_object_has_pages(obj)) 2773 return -ENODEV; 2774 2775 if (obj->mm.madv != I915_MADV_WILLNEED) 2776 return -EFAULT; 2777 2778 /* Before the pages are instantiated the object is treated as being 2779 * in the CPU domain. The pages will be clflushed as required before 2780 * use, and we can freely write into the pages directly. If userspace 2781 * races pwrite with any other operation; corruption will ensue - 2782 * that is userspace's prerogative! 2783 */ 2784 2785 remain = arg->size; 2786 offset = arg->offset; 2787 pg = offset_in_page(offset); 2788 2789 do { 2790 unsigned int len, unwritten; 2791 struct page *page; 2792 void *data, *vaddr; 2793 int err; 2794 2795 len = PAGE_SIZE - pg; 2796 if (len > remain) 2797 len = remain; 2798 2799 err = pagecache_write_begin(obj->base.filp, mapping, 2800 offset, len, 0, 2801 &page, &data); 2802 if (err < 0) 2803 return err; 2804 2805 vaddr = kmap(page); 2806 unwritten = copy_from_user(vaddr + pg, user_data, len); 2807 kunmap(page); 2808 2809 err = pagecache_write_end(obj->base.filp, mapping, 2810 offset, len, len - unwritten, 2811 page, data); 2812 if (err < 0) 2813 return err; 2814 2815 if (unwritten) 2816 return -EFAULT; 2817 2818 remain -= len; 2819 user_data += len; 2820 offset += len; 2821 pg = 0; 2822 } while (remain); 2823 2824 return 0; 2825 } 2826 2827 static bool ban_context(const struct i915_gem_context *ctx, 2828 unsigned int score) 2829 { 2830 return (i915_gem_context_is_bannable(ctx) && 2831 score >= CONTEXT_SCORE_BAN_THRESHOLD); 2832 } 2833 2834 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx) 2835 { 2836 unsigned int score; 2837 bool banned; 2838 2839 atomic_inc(&ctx->guilty_count); 2840 2841 score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score); 2842 banned = ban_context(ctx, score); 2843 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n", 2844 ctx->name, score, yesno(banned)); 2845 if (!banned) 2846 return; 2847 2848 i915_gem_context_set_banned(ctx); 2849 if (!IS_ERR_OR_NULL(ctx->file_priv)) { 2850 atomic_inc(&ctx->file_priv->context_bans); 2851 DRM_DEBUG_DRIVER("client %s has had %d context banned\n", 2852 ctx->name, atomic_read(&ctx->file_priv->context_bans)); 2853 } 2854 } 2855 2856 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx) 2857 { 2858 atomic_inc(&ctx->active_count); 2859 } 2860 2861 struct drm_i915_gem_request * 2862 i915_gem_find_active_request(struct intel_engine_cs *engine) 2863 { 2864 struct drm_i915_gem_request *request, *active = NULL; 2865 unsigned long flags; 2866 2867 /* We are called by the error capture and reset at a random 2868 * point in time. In particular, note that neither is crucially 2869 * ordered with an interrupt. After a hang, the GPU is dead and we 2870 * assume that no more writes can happen (we waited long enough for 2871 * all writes that were in transaction to be flushed) - adding an 2872 * extra delay for a recent interrupt is pointless. Hence, we do 2873 * not need an engine->irq_seqno_barrier() before the seqno reads. 2874 */ 2875 spin_lock_irqsave(&engine->timeline->lock, flags); 2876 list_for_each_entry(request, &engine->timeline->requests, link) { 2877 if (__i915_gem_request_completed(request, 2878 request->global_seqno)) 2879 continue; 2880 2881 GEM_BUG_ON(request->engine != engine); 2882 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, 2883 &request->fence.flags)); 2884 2885 active = request; 2886 break; 2887 } 2888 spin_unlock_irqrestore(&engine->timeline->lock, flags); 2889 2890 return active; 2891 } 2892 2893 static bool engine_stalled(struct intel_engine_cs *engine) 2894 { 2895 if (!engine->hangcheck.stalled) 2896 return false; 2897 2898 /* Check for possible seqno movement after hang declaration */ 2899 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) { 2900 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name); 2901 return false; 2902 } 2903 2904 return true; 2905 } 2906 2907 /* 2908 * Ensure irq handler finishes, and not run again. 2909 * Also return the active request so that we only search for it once. 2910 */ 2911 struct drm_i915_gem_request * 2912 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine) 2913 { 2914 struct drm_i915_gem_request *request = NULL; 2915 2916 /* 2917 * During the reset sequence, we must prevent the engine from 2918 * entering RC6. As the context state is undefined until we restart 2919 * the engine, if it does enter RC6 during the reset, the state 2920 * written to the powercontext is undefined and so we may lose 2921 * GPU state upon resume, i.e. fail to restart after a reset. 2922 */ 2923 intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL); 2924 2925 /* 2926 * Prevent the signaler thread from updating the request 2927 * state (by calling dma_fence_signal) as we are processing 2928 * the reset. The write from the GPU of the seqno is 2929 * asynchronous and the signaler thread may see a different 2930 * value to us and declare the request complete, even though 2931 * the reset routine have picked that request as the active 2932 * (incomplete) request. This conflict is not handled 2933 * gracefully! 2934 */ 2935 kthread_park(engine->breadcrumbs.signaler); 2936 2937 /* 2938 * Prevent request submission to the hardware until we have 2939 * completed the reset in i915_gem_reset_finish(). If a request 2940 * is completed by one engine, it may then queue a request 2941 * to a second via its execlists->tasklet *just* as we are 2942 * calling engine->init_hw() and also writing the ELSP. 2943 * Turning off the execlists->tasklet until the reset is over 2944 * prevents the race. 2945 */ 2946 tasklet_kill(&engine->execlists.tasklet); 2947 tasklet_disable(&engine->execlists.tasklet); 2948 2949 /* 2950 * We're using worker to queue preemption requests from the tasklet in 2951 * GuC submission mode. 2952 * Even though tasklet was disabled, we may still have a worker queued. 2953 * Let's make sure that all workers scheduled before disabling the 2954 * tasklet are completed before continuing with the reset. 2955 */ 2956 if (engine->i915->guc.preempt_wq) 2957 flush_workqueue(engine->i915->guc.preempt_wq); 2958 2959 if (engine->irq_seqno_barrier) 2960 engine->irq_seqno_barrier(engine); 2961 2962 request = i915_gem_find_active_request(engine); 2963 if (request && request->fence.error == -EIO) 2964 request = ERR_PTR(-EIO); /* Previous reset failed! */ 2965 2966 return request; 2967 } 2968 2969 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv) 2970 { 2971 struct intel_engine_cs *engine; 2972 struct drm_i915_gem_request *request; 2973 enum intel_engine_id id; 2974 int err = 0; 2975 2976 for_each_engine(engine, dev_priv, id) { 2977 request = i915_gem_reset_prepare_engine(engine); 2978 if (IS_ERR(request)) { 2979 err = PTR_ERR(request); 2980 continue; 2981 } 2982 2983 engine->hangcheck.active_request = request; 2984 } 2985 2986 i915_gem_revoke_fences(dev_priv); 2987 2988 return err; 2989 } 2990 2991 static void skip_request(struct drm_i915_gem_request *request) 2992 { 2993 void *vaddr = request->ring->vaddr; 2994 u32 head; 2995 2996 /* As this request likely depends on state from the lost 2997 * context, clear out all the user operations leaving the 2998 * breadcrumb at the end (so we get the fence notifications). 2999 */ 3000 head = request->head; 3001 if (request->postfix < head) { 3002 memset(vaddr + head, 0, request->ring->size - head); 3003 head = 0; 3004 } 3005 memset(vaddr + head, 0, request->postfix - head); 3006 3007 dma_fence_set_error(&request->fence, -EIO); 3008 } 3009 3010 static void engine_skip_context(struct drm_i915_gem_request *request) 3011 { 3012 struct intel_engine_cs *engine = request->engine; 3013 struct i915_gem_context *hung_ctx = request->ctx; 3014 struct intel_timeline *timeline; 3015 unsigned long flags; 3016 3017 timeline = i915_gem_context_lookup_timeline(hung_ctx, engine); 3018 3019 spin_lock_irqsave(&engine->timeline->lock, flags); 3020 spin_lock(&timeline->lock); 3021 3022 list_for_each_entry_continue(request, &engine->timeline->requests, link) 3023 if (request->ctx == hung_ctx) 3024 skip_request(request); 3025 3026 list_for_each_entry(request, &timeline->requests, link) 3027 skip_request(request); 3028 3029 spin_unlock(&timeline->lock); 3030 spin_unlock_irqrestore(&engine->timeline->lock, flags); 3031 } 3032 3033 /* Returns the request if it was guilty of the hang */ 3034 static struct drm_i915_gem_request * 3035 i915_gem_reset_request(struct intel_engine_cs *engine, 3036 struct drm_i915_gem_request *request) 3037 { 3038 /* The guilty request will get skipped on a hung engine. 3039 * 3040 * Users of client default contexts do not rely on logical 3041 * state preserved between batches so it is safe to execute 3042 * queued requests following the hang. Non default contexts 3043 * rely on preserved state, so skipping a batch loses the 3044 * evolution of the state and it needs to be considered corrupted. 3045 * Executing more queued batches on top of corrupted state is 3046 * risky. But we take the risk by trying to advance through 3047 * the queued requests in order to make the client behaviour 3048 * more predictable around resets, by not throwing away random 3049 * amount of batches it has prepared for execution. Sophisticated 3050 * clients can use gem_reset_stats_ioctl and dma fence status 3051 * (exported via sync_file info ioctl on explicit fences) to observe 3052 * when it loses the context state and should rebuild accordingly. 3053 * 3054 * The context ban, and ultimately the client ban, mechanism are safety 3055 * valves if client submission ends up resulting in nothing more than 3056 * subsequent hangs. 3057 */ 3058 3059 if (engine_stalled(engine)) { 3060 i915_gem_context_mark_guilty(request->ctx); 3061 skip_request(request); 3062 3063 /* If this context is now banned, skip all pending requests. */ 3064 if (i915_gem_context_is_banned(request->ctx)) 3065 engine_skip_context(request); 3066 } else { 3067 /* 3068 * Since this is not the hung engine, it may have advanced 3069 * since the hang declaration. Double check by refinding 3070 * the active request at the time of the reset. 3071 */ 3072 request = i915_gem_find_active_request(engine); 3073 if (request) { 3074 i915_gem_context_mark_innocent(request->ctx); 3075 dma_fence_set_error(&request->fence, -EAGAIN); 3076 3077 /* Rewind the engine to replay the incomplete rq */ 3078 spin_lock_irq(&engine->timeline->lock); 3079 request = list_prev_entry(request, link); 3080 if (&request->link == &engine->timeline->requests) 3081 request = NULL; 3082 spin_unlock_irq(&engine->timeline->lock); 3083 } 3084 } 3085 3086 return request; 3087 } 3088 3089 void i915_gem_reset_engine(struct intel_engine_cs *engine, 3090 struct drm_i915_gem_request *request) 3091 { 3092 /* 3093 * Make sure this write is visible before we re-enable the interrupt 3094 * handlers on another CPU, as tasklet_enable() resolves to just 3095 * a compiler barrier which is insufficient for our purpose here. 3096 */ 3097 smp_store_mb(engine->irq_posted, 0); 3098 3099 if (request) 3100 request = i915_gem_reset_request(engine, request); 3101 3102 if (request) { 3103 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n", 3104 engine->name, request->global_seqno); 3105 } 3106 3107 /* Setup the CS to resume from the breadcrumb of the hung request */ 3108 engine->reset_hw(engine, request); 3109 } 3110 3111 void i915_gem_reset(struct drm_i915_private *dev_priv) 3112 { 3113 struct intel_engine_cs *engine; 3114 enum intel_engine_id id; 3115 3116 lockdep_assert_held(&dev_priv->drm.struct_mutex); 3117 3118 i915_gem_retire_requests(dev_priv); 3119 3120 for_each_engine(engine, dev_priv, id) { 3121 struct i915_gem_context *ctx; 3122 3123 i915_gem_reset_engine(engine, engine->hangcheck.active_request); 3124 ctx = fetch_and_zero(&engine->last_retired_context); 3125 if (ctx) 3126 engine->context_unpin(engine, ctx); 3127 3128 /* 3129 * Ostensibily, we always want a context loaded for powersaving, 3130 * so if the engine is idle after the reset, send a request 3131 * to load our scratch kernel_context. 3132 * 3133 * More mysteriously, if we leave the engine idle after a reset, 3134 * the next userspace batch may hang, with what appears to be 3135 * an incoherent read by the CS (presumably stale TLB). An 3136 * empty request appears sufficient to paper over the glitch. 3137 */ 3138 if (list_empty(&engine->timeline->requests)) { 3139 struct drm_i915_gem_request *rq; 3140 3141 rq = i915_gem_request_alloc(engine, 3142 dev_priv->kernel_context); 3143 if (!IS_ERR(rq)) 3144 __i915_add_request(rq, false); 3145 } 3146 } 3147 3148 i915_gem_restore_fences(dev_priv); 3149 3150 if (dev_priv->gt.awake) { 3151 intel_sanitize_gt_powersave(dev_priv); 3152 intel_enable_gt_powersave(dev_priv); 3153 if (INTEL_GEN(dev_priv) >= 6) 3154 gen6_rps_busy(dev_priv); 3155 } 3156 } 3157 3158 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine) 3159 { 3160 tasklet_enable(&engine->execlists.tasklet); 3161 kthread_unpark(engine->breadcrumbs.signaler); 3162 3163 intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL); 3164 } 3165 3166 void i915_gem_reset_finish(struct drm_i915_private *dev_priv) 3167 { 3168 struct intel_engine_cs *engine; 3169 enum intel_engine_id id; 3170 3171 lockdep_assert_held(&dev_priv->drm.struct_mutex); 3172 3173 for_each_engine(engine, dev_priv, id) { 3174 engine->hangcheck.active_request = NULL; 3175 i915_gem_reset_finish_engine(engine); 3176 } 3177 } 3178 3179 static void nop_submit_request(struct drm_i915_gem_request *request) 3180 { 3181 dma_fence_set_error(&request->fence, -EIO); 3182 3183 i915_gem_request_submit(request); 3184 } 3185 3186 static void nop_complete_submit_request(struct drm_i915_gem_request *request) 3187 { 3188 unsigned long flags; 3189 3190 dma_fence_set_error(&request->fence, -EIO); 3191 3192 spin_lock_irqsave(&request->engine->timeline->lock, flags); 3193 __i915_gem_request_submit(request); 3194 intel_engine_init_global_seqno(request->engine, request->global_seqno); 3195 spin_unlock_irqrestore(&request->engine->timeline->lock, flags); 3196 } 3197 3198 void i915_gem_set_wedged(struct drm_i915_private *i915) 3199 { 3200 struct intel_engine_cs *engine; 3201 enum intel_engine_id id; 3202 3203 /* 3204 * First, stop submission to hw, but do not yet complete requests by 3205 * rolling the global seqno forward (since this would complete requests 3206 * for which we haven't set the fence error to EIO yet). 3207 */ 3208 for_each_engine(engine, i915, id) 3209 engine->submit_request = nop_submit_request; 3210 3211 /* 3212 * Make sure no one is running the old callback before we proceed with 3213 * cancelling requests and resetting the completion tracking. Otherwise 3214 * we might submit a request to the hardware which never completes. 3215 */ 3216 synchronize_rcu(); 3217 3218 for_each_engine(engine, i915, id) { 3219 /* Mark all executing requests as skipped */ 3220 engine->cancel_requests(engine); 3221 3222 /* 3223 * Only once we've force-cancelled all in-flight requests can we 3224 * start to complete all requests. 3225 */ 3226 engine->submit_request = nop_complete_submit_request; 3227 } 3228 3229 /* 3230 * Make sure no request can slip through without getting completed by 3231 * either this call here to intel_engine_init_global_seqno, or the one 3232 * in nop_complete_submit_request. 3233 */ 3234 synchronize_rcu(); 3235 3236 for_each_engine(engine, i915, id) { 3237 unsigned long flags; 3238 3239 /* Mark all pending requests as complete so that any concurrent 3240 * (lockless) lookup doesn't try and wait upon the request as we 3241 * reset it. 3242 */ 3243 spin_lock_irqsave(&engine->timeline->lock, flags); 3244 intel_engine_init_global_seqno(engine, 3245 intel_engine_last_submit(engine)); 3246 spin_unlock_irqrestore(&engine->timeline->lock, flags); 3247 } 3248 3249 set_bit(I915_WEDGED, &i915->gpu_error.flags); 3250 wake_up_all(&i915->gpu_error.reset_queue); 3251 } 3252 3253 bool i915_gem_unset_wedged(struct drm_i915_private *i915) 3254 { 3255 struct i915_gem_timeline *tl; 3256 int i; 3257 3258 lockdep_assert_held(&i915->drm.struct_mutex); 3259 if (!test_bit(I915_WEDGED, &i915->gpu_error.flags)) 3260 return true; 3261 3262 /* Before unwedging, make sure that all pending operations 3263 * are flushed and errored out - we may have requests waiting upon 3264 * third party fences. We marked all inflight requests as EIO, and 3265 * every execbuf since returned EIO, for consistency we want all 3266 * the currently pending requests to also be marked as EIO, which 3267 * is done inside our nop_submit_request - and so we must wait. 3268 * 3269 * No more can be submitted until we reset the wedged bit. 3270 */ 3271 list_for_each_entry(tl, &i915->gt.timelines, link) { 3272 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) { 3273 struct drm_i915_gem_request *rq; 3274 3275 rq = i915_gem_active_peek(&tl->engine[i].last_request, 3276 &i915->drm.struct_mutex); 3277 if (!rq) 3278 continue; 3279 3280 /* We can't use our normal waiter as we want to 3281 * avoid recursively trying to handle the current 3282 * reset. The basic dma_fence_default_wait() installs 3283 * a callback for dma_fence_signal(), which is 3284 * triggered by our nop handler (indirectly, the 3285 * callback enables the signaler thread which is 3286 * woken by the nop_submit_request() advancing the seqno 3287 * and when the seqno passes the fence, the signaler 3288 * then signals the fence waking us up). 3289 */ 3290 if (dma_fence_default_wait(&rq->fence, true, 3291 MAX_SCHEDULE_TIMEOUT) < 0) 3292 return false; 3293 } 3294 } 3295 3296 /* Undo nop_submit_request. We prevent all new i915 requests from 3297 * being queued (by disallowing execbuf whilst wedged) so having 3298 * waited for all active requests above, we know the system is idle 3299 * and do not have to worry about a thread being inside 3300 * engine->submit_request() as we swap over. So unlike installing 3301 * the nop_submit_request on reset, we can do this from normal 3302 * context and do not require stop_machine(). 3303 */ 3304 intel_engines_reset_default_submission(i915); 3305 i915_gem_contexts_lost(i915); 3306 3307 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */ 3308 clear_bit(I915_WEDGED, &i915->gpu_error.flags); 3309 3310 return true; 3311 } 3312 3313 static void 3314 i915_gem_retire_work_handler(struct work_struct *work) 3315 { 3316 struct drm_i915_private *dev_priv = 3317 container_of(work, typeof(*dev_priv), gt.retire_work.work); 3318 struct drm_device *dev = &dev_priv->drm; 3319 3320 /* Come back later if the device is busy... */ 3321 if (mutex_trylock(&dev->struct_mutex)) { 3322 i915_gem_retire_requests(dev_priv); 3323 mutex_unlock(&dev->struct_mutex); 3324 } 3325 3326 /* Keep the retire handler running until we are finally idle. 3327 * We do not need to do this test under locking as in the worst-case 3328 * we queue the retire worker once too often. 3329 */ 3330 if (READ_ONCE(dev_priv->gt.awake)) { 3331 i915_queue_hangcheck(dev_priv); 3332 queue_delayed_work(dev_priv->wq, 3333 &dev_priv->gt.retire_work, 3334 round_jiffies_up_relative(HZ)); 3335 } 3336 } 3337 3338 static inline bool 3339 new_requests_since_last_retire(const struct drm_i915_private *i915) 3340 { 3341 return (READ_ONCE(i915->gt.active_requests) || 3342 work_pending(&i915->gt.idle_work.work)); 3343 } 3344 3345 static void 3346 i915_gem_idle_work_handler(struct work_struct *work) 3347 { 3348 struct drm_i915_private *dev_priv = 3349 container_of(work, typeof(*dev_priv), gt.idle_work.work); 3350 bool rearm_hangcheck; 3351 ktime_t end; 3352 3353 if (!READ_ONCE(dev_priv->gt.awake)) 3354 return; 3355 3356 /* 3357 * Wait for last execlists context complete, but bail out in case a 3358 * new request is submitted. 3359 */ 3360 end = ktime_add_ms(ktime_get(), I915_IDLE_ENGINES_TIMEOUT); 3361 do { 3362 if (new_requests_since_last_retire(dev_priv)) 3363 return; 3364 3365 if (intel_engines_are_idle(dev_priv)) 3366 break; 3367 3368 usleep_range(100, 500); 3369 } while (ktime_before(ktime_get(), end)); 3370 3371 rearm_hangcheck = 3372 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work); 3373 3374 if (!mutex_trylock(&dev_priv->drm.struct_mutex)) { 3375 /* Currently busy, come back later */ 3376 mod_delayed_work(dev_priv->wq, 3377 &dev_priv->gt.idle_work, 3378 msecs_to_jiffies(50)); 3379 goto out_rearm; 3380 } 3381 3382 /* 3383 * New request retired after this work handler started, extend active 3384 * period until next instance of the work. 3385 */ 3386 if (new_requests_since_last_retire(dev_priv)) 3387 goto out_unlock; 3388 3389 /* 3390 * Be paranoid and flush a concurrent interrupt to make sure 3391 * we don't reactivate any irq tasklets after parking. 3392 * 3393 * FIXME: Note that even though we have waited for execlists to be idle, 3394 * there may still be an in-flight interrupt even though the CSB 3395 * is now empty. synchronize_irq() makes sure that a residual interrupt 3396 * is completed before we continue, but it doesn't prevent the HW from 3397 * raising a spurious interrupt later. To complete the shield we should 3398 * coordinate disabling the CS irq with flushing the interrupts. 3399 */ 3400 synchronize_irq(dev_priv->drm.irq); 3401 3402 intel_engines_park(dev_priv); 3403 i915_gem_timelines_park(dev_priv); 3404 3405 i915_pmu_gt_parked(dev_priv); 3406 3407 GEM_BUG_ON(!dev_priv->gt.awake); 3408 dev_priv->gt.awake = false; 3409 rearm_hangcheck = false; 3410 3411 if (INTEL_GEN(dev_priv) >= 6) 3412 gen6_rps_idle(dev_priv); 3413 3414 intel_display_power_put(dev_priv, POWER_DOMAIN_GT_IRQ); 3415 3416 intel_runtime_pm_put(dev_priv); 3417 out_unlock: 3418 mutex_unlock(&dev_priv->drm.struct_mutex); 3419 3420 out_rearm: 3421 if (rearm_hangcheck) { 3422 GEM_BUG_ON(!dev_priv->gt.awake); 3423 i915_queue_hangcheck(dev_priv); 3424 } 3425 } 3426 3427 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file) 3428 { 3429 struct drm_i915_private *i915 = to_i915(gem->dev); 3430 struct drm_i915_gem_object *obj = to_intel_bo(gem); 3431 struct drm_i915_file_private *fpriv = file->driver_priv; 3432 struct i915_lut_handle *lut, *ln; 3433 3434 mutex_lock(&i915->drm.struct_mutex); 3435 3436 list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) { 3437 struct i915_gem_context *ctx = lut->ctx; 3438 struct i915_vma *vma; 3439 3440 GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF)); 3441 if (ctx->file_priv != fpriv) 3442 continue; 3443 3444 vma = radix_tree_delete(&ctx->handles_vma, lut->handle); 3445 GEM_BUG_ON(vma->obj != obj); 3446 3447 /* We allow the process to have multiple handles to the same 3448 * vma, in the same fd namespace, by virtue of flink/open. 3449 */ 3450 GEM_BUG_ON(!vma->open_count); 3451 if (!--vma->open_count && !i915_vma_is_ggtt(vma)) 3452 i915_vma_close(vma); 3453 3454 list_del(&lut->obj_link); 3455 list_del(&lut->ctx_link); 3456 3457 kmem_cache_free(i915->luts, lut); 3458 __i915_gem_object_release_unless_active(obj); 3459 } 3460 3461 mutex_unlock(&i915->drm.struct_mutex); 3462 } 3463 3464 static unsigned long to_wait_timeout(s64 timeout_ns) 3465 { 3466 if (timeout_ns < 0) 3467 return MAX_SCHEDULE_TIMEOUT; 3468 3469 if (timeout_ns == 0) 3470 return 0; 3471 3472 return nsecs_to_jiffies_timeout(timeout_ns); 3473 } 3474 3475 /** 3476 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT 3477 * @dev: drm device pointer 3478 * @data: ioctl data blob 3479 * @file: drm file pointer 3480 * 3481 * Returns 0 if successful, else an error is returned with the remaining time in 3482 * the timeout parameter. 3483 * -ETIME: object is still busy after timeout 3484 * -ERESTARTSYS: signal interrupted the wait 3485 * -ENONENT: object doesn't exist 3486 * Also possible, but rare: 3487 * -EAGAIN: incomplete, restart syscall 3488 * -ENOMEM: damn 3489 * -ENODEV: Internal IRQ fail 3490 * -E?: The add request failed 3491 * 3492 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any 3493 * non-zero timeout parameter the wait ioctl will wait for the given number of 3494 * nanoseconds on an object becoming unbusy. Since the wait itself does so 3495 * without holding struct_mutex the object may become re-busied before this 3496 * function completes. A similar but shorter * race condition exists in the busy 3497 * ioctl 3498 */ 3499 int 3500 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file) 3501 { 3502 struct drm_i915_gem_wait *args = data; 3503 struct drm_i915_gem_object *obj; 3504 ktime_t start; 3505 long ret; 3506 3507 if (args->flags != 0) 3508 return -EINVAL; 3509 3510 obj = i915_gem_object_lookup(file, args->bo_handle); 3511 if (!obj) 3512 return -ENOENT; 3513 3514 start = ktime_get(); 3515 3516 ret = i915_gem_object_wait(obj, 3517 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL, 3518 to_wait_timeout(args->timeout_ns), 3519 to_rps_client(file)); 3520 3521 if (args->timeout_ns > 0) { 3522 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start)); 3523 if (args->timeout_ns < 0) 3524 args->timeout_ns = 0; 3525 3526 /* 3527 * Apparently ktime isn't accurate enough and occasionally has a 3528 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch 3529 * things up to make the test happy. We allow up to 1 jiffy. 3530 * 3531 * This is a regression from the timespec->ktime conversion. 3532 */ 3533 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns)) 3534 args->timeout_ns = 0; 3535 3536 /* Asked to wait beyond the jiffie/scheduler precision? */ 3537 if (ret == -ETIME && args->timeout_ns) 3538 ret = -EAGAIN; 3539 } 3540 3541 i915_gem_object_put(obj); 3542 return ret; 3543 } 3544 3545 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags) 3546 { 3547 int ret, i; 3548 3549 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) { 3550 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags); 3551 if (ret) 3552 return ret; 3553 } 3554 3555 return 0; 3556 } 3557 3558 static int wait_for_engines(struct drm_i915_private *i915) 3559 { 3560 if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) { 3561 dev_err(i915->drm.dev, 3562 "Failed to idle engines, declaring wedged!\n"); 3563 if (drm_debug & DRM_UT_DRIVER) { 3564 struct drm_printer p = drm_debug_printer(__func__); 3565 struct intel_engine_cs *engine; 3566 enum intel_engine_id id; 3567 3568 for_each_engine(engine, i915, id) 3569 intel_engine_dump(engine, &p, 3570 "%s", engine->name); 3571 } 3572 3573 i915_gem_set_wedged(i915); 3574 return -EIO; 3575 } 3576 3577 return 0; 3578 } 3579 3580 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags) 3581 { 3582 int ret; 3583 3584 /* If the device is asleep, we have no requests outstanding */ 3585 if (!READ_ONCE(i915->gt.awake)) 3586 return 0; 3587 3588 if (flags & I915_WAIT_LOCKED) { 3589 struct i915_gem_timeline *tl; 3590 3591 lockdep_assert_held(&i915->drm.struct_mutex); 3592 3593 list_for_each_entry(tl, &i915->gt.timelines, link) { 3594 ret = wait_for_timeline(tl, flags); 3595 if (ret) 3596 return ret; 3597 } 3598 i915_gem_retire_requests(i915); 3599 3600 ret = wait_for_engines(i915); 3601 } else { 3602 ret = wait_for_timeline(&i915->gt.global_timeline, flags); 3603 } 3604 3605 return ret; 3606 } 3607 3608 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj) 3609 { 3610 /* 3611 * We manually flush the CPU domain so that we can override and 3612 * force the flush for the display, and perform it asyncrhonously. 3613 */ 3614 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); 3615 if (obj->cache_dirty) 3616 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE); 3617 obj->base.write_domain = 0; 3618 } 3619 3620 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj) 3621 { 3622 if (!READ_ONCE(obj->pin_global)) 3623 return; 3624 3625 mutex_lock(&obj->base.dev->struct_mutex); 3626 __i915_gem_object_flush_for_display(obj); 3627 mutex_unlock(&obj->base.dev->struct_mutex); 3628 } 3629 3630 /** 3631 * Moves a single object to the WC read, and possibly write domain. 3632 * @obj: object to act on 3633 * @write: ask for write access or read only 3634 * 3635 * This function returns when the move is complete, including waiting on 3636 * flushes to occur. 3637 */ 3638 int 3639 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write) 3640 { 3641 int ret; 3642 3643 lockdep_assert_held(&obj->base.dev->struct_mutex); 3644 3645 ret = i915_gem_object_wait(obj, 3646 I915_WAIT_INTERRUPTIBLE | 3647 I915_WAIT_LOCKED | 3648 (write ? I915_WAIT_ALL : 0), 3649 MAX_SCHEDULE_TIMEOUT, 3650 NULL); 3651 if (ret) 3652 return ret; 3653 3654 if (obj->base.write_domain == I915_GEM_DOMAIN_WC) 3655 return 0; 3656 3657 /* Flush and acquire obj->pages so that we are coherent through 3658 * direct access in memory with previous cached writes through 3659 * shmemfs and that our cache domain tracking remains valid. 3660 * For example, if the obj->filp was moved to swap without us 3661 * being notified and releasing the pages, we would mistakenly 3662 * continue to assume that the obj remained out of the CPU cached 3663 * domain. 3664 */ 3665 ret = i915_gem_object_pin_pages(obj); 3666 if (ret) 3667 return ret; 3668 3669 flush_write_domain(obj, ~I915_GEM_DOMAIN_WC); 3670 3671 /* Serialise direct access to this object with the barriers for 3672 * coherent writes from the GPU, by effectively invalidating the 3673 * WC domain upon first access. 3674 */ 3675 if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0) 3676 mb(); 3677 3678 /* It should now be out of any other write domains, and we can update 3679 * the domain values for our changes. 3680 */ 3681 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0); 3682 obj->base.read_domains |= I915_GEM_DOMAIN_WC; 3683 if (write) { 3684 obj->base.read_domains = I915_GEM_DOMAIN_WC; 3685 obj->base.write_domain = I915_GEM_DOMAIN_WC; 3686 obj->mm.dirty = true; 3687 } 3688 3689 i915_gem_object_unpin_pages(obj); 3690 return 0; 3691 } 3692 3693 /** 3694 * Moves a single object to the GTT read, and possibly write domain. 3695 * @obj: object to act on 3696 * @write: ask for write access or read only 3697 * 3698 * This function returns when the move is complete, including waiting on 3699 * flushes to occur. 3700 */ 3701 int 3702 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write) 3703 { 3704 int ret; 3705 3706 lockdep_assert_held(&obj->base.dev->struct_mutex); 3707 3708 ret = i915_gem_object_wait(obj, 3709 I915_WAIT_INTERRUPTIBLE | 3710 I915_WAIT_LOCKED | 3711 (write ? I915_WAIT_ALL : 0), 3712 MAX_SCHEDULE_TIMEOUT, 3713 NULL); 3714 if (ret) 3715 return ret; 3716 3717 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT) 3718 return 0; 3719 3720 /* Flush and acquire obj->pages so that we are coherent through 3721 * direct access in memory with previous cached writes through 3722 * shmemfs and that our cache domain tracking remains valid. 3723 * For example, if the obj->filp was moved to swap without us 3724 * being notified and releasing the pages, we would mistakenly 3725 * continue to assume that the obj remained out of the CPU cached 3726 * domain. 3727 */ 3728 ret = i915_gem_object_pin_pages(obj); 3729 if (ret) 3730 return ret; 3731 3732 flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT); 3733 3734 /* Serialise direct access to this object with the barriers for 3735 * coherent writes from the GPU, by effectively invalidating the 3736 * GTT domain upon first access. 3737 */ 3738 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 3739 mb(); 3740 3741 /* It should now be out of any other write domains, and we can update 3742 * the domain values for our changes. 3743 */ 3744 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0); 3745 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3746 if (write) { 3747 obj->base.read_domains = I915_GEM_DOMAIN_GTT; 3748 obj->base.write_domain = I915_GEM_DOMAIN_GTT; 3749 obj->mm.dirty = true; 3750 } 3751 3752 i915_gem_object_unpin_pages(obj); 3753 return 0; 3754 } 3755 3756 /** 3757 * Changes the cache-level of an object across all VMA. 3758 * @obj: object to act on 3759 * @cache_level: new cache level to set for the object 3760 * 3761 * After this function returns, the object will be in the new cache-level 3762 * across all GTT and the contents of the backing storage will be coherent, 3763 * with respect to the new cache-level. In order to keep the backing storage 3764 * coherent for all users, we only allow a single cache level to be set 3765 * globally on the object and prevent it from being changed whilst the 3766 * hardware is reading from the object. That is if the object is currently 3767 * on the scanout it will be set to uncached (or equivalent display 3768 * cache coherency) and all non-MOCS GPU access will also be uncached so 3769 * that all direct access to the scanout remains coherent. 3770 */ 3771 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3772 enum i915_cache_level cache_level) 3773 { 3774 struct i915_vma *vma; 3775 int ret; 3776 3777 lockdep_assert_held(&obj->base.dev->struct_mutex); 3778 3779 if (obj->cache_level == cache_level) 3780 return 0; 3781 3782 /* Inspect the list of currently bound VMA and unbind any that would 3783 * be invalid given the new cache-level. This is principally to 3784 * catch the issue of the CS prefetch crossing page boundaries and 3785 * reading an invalid PTE on older architectures. 3786 */ 3787 restart: 3788 list_for_each_entry(vma, &obj->vma_list, obj_link) { 3789 if (!drm_mm_node_allocated(&vma->node)) 3790 continue; 3791 3792 if (i915_vma_is_pinned(vma)) { 3793 DRM_DEBUG("can not change the cache level of pinned objects\n"); 3794 return -EBUSY; 3795 } 3796 3797 if (!i915_vma_is_closed(vma) && 3798 i915_gem_valid_gtt_space(vma, cache_level)) 3799 continue; 3800 3801 ret = i915_vma_unbind(vma); 3802 if (ret) 3803 return ret; 3804 3805 /* As unbinding may affect other elements in the 3806 * obj->vma_list (due to side-effects from retiring 3807 * an active vma), play safe and restart the iterator. 3808 */ 3809 goto restart; 3810 } 3811 3812 /* We can reuse the existing drm_mm nodes but need to change the 3813 * cache-level on the PTE. We could simply unbind them all and 3814 * rebind with the correct cache-level on next use. However since 3815 * we already have a valid slot, dma mapping, pages etc, we may as 3816 * rewrite the PTE in the belief that doing so tramples upon less 3817 * state and so involves less work. 3818 */ 3819 if (obj->bind_count) { 3820 /* Before we change the PTE, the GPU must not be accessing it. 3821 * If we wait upon the object, we know that all the bound 3822 * VMA are no longer active. 3823 */ 3824 ret = i915_gem_object_wait(obj, 3825 I915_WAIT_INTERRUPTIBLE | 3826 I915_WAIT_LOCKED | 3827 I915_WAIT_ALL, 3828 MAX_SCHEDULE_TIMEOUT, 3829 NULL); 3830 if (ret) 3831 return ret; 3832 3833 if (!HAS_LLC(to_i915(obj->base.dev)) && 3834 cache_level != I915_CACHE_NONE) { 3835 /* Access to snoopable pages through the GTT is 3836 * incoherent and on some machines causes a hard 3837 * lockup. Relinquish the CPU mmaping to force 3838 * userspace to refault in the pages and we can 3839 * then double check if the GTT mapping is still 3840 * valid for that pointer access. 3841 */ 3842 i915_gem_release_mmap(obj); 3843 3844 /* As we no longer need a fence for GTT access, 3845 * we can relinquish it now (and so prevent having 3846 * to steal a fence from someone else on the next 3847 * fence request). Note GPU activity would have 3848 * dropped the fence as all snoopable access is 3849 * supposed to be linear. 3850 */ 3851 for_each_ggtt_vma(vma, obj) { 3852 ret = i915_vma_put_fence(vma); 3853 if (ret) 3854 return ret; 3855 } 3856 } else { 3857 /* We either have incoherent backing store and 3858 * so no GTT access or the architecture is fully 3859 * coherent. In such cases, existing GTT mmaps 3860 * ignore the cache bit in the PTE and we can 3861 * rewrite it without confusing the GPU or having 3862 * to force userspace to fault back in its mmaps. 3863 */ 3864 } 3865 3866 list_for_each_entry(vma, &obj->vma_list, obj_link) { 3867 if (!drm_mm_node_allocated(&vma->node)) 3868 continue; 3869 3870 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE); 3871 if (ret) 3872 return ret; 3873 } 3874 } 3875 3876 list_for_each_entry(vma, &obj->vma_list, obj_link) 3877 vma->node.color = cache_level; 3878 i915_gem_object_set_cache_coherency(obj, cache_level); 3879 obj->cache_dirty = true; /* Always invalidate stale cachelines */ 3880 3881 return 0; 3882 } 3883 3884 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 3885 struct drm_file *file) 3886 { 3887 struct drm_i915_gem_caching *args = data; 3888 struct drm_i915_gem_object *obj; 3889 int err = 0; 3890 3891 rcu_read_lock(); 3892 obj = i915_gem_object_lookup_rcu(file, args->handle); 3893 if (!obj) { 3894 err = -ENOENT; 3895 goto out; 3896 } 3897 3898 switch (obj->cache_level) { 3899 case I915_CACHE_LLC: 3900 case I915_CACHE_L3_LLC: 3901 args->caching = I915_CACHING_CACHED; 3902 break; 3903 3904 case I915_CACHE_WT: 3905 args->caching = I915_CACHING_DISPLAY; 3906 break; 3907 3908 default: 3909 args->caching = I915_CACHING_NONE; 3910 break; 3911 } 3912 out: 3913 rcu_read_unlock(); 3914 return err; 3915 } 3916 3917 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 3918 struct drm_file *file) 3919 { 3920 struct drm_i915_private *i915 = to_i915(dev); 3921 struct drm_i915_gem_caching *args = data; 3922 struct drm_i915_gem_object *obj; 3923 enum i915_cache_level level; 3924 int ret = 0; 3925 3926 switch (args->caching) { 3927 case I915_CACHING_NONE: 3928 level = I915_CACHE_NONE; 3929 break; 3930 case I915_CACHING_CACHED: 3931 /* 3932 * Due to a HW issue on BXT A stepping, GPU stores via a 3933 * snooped mapping may leave stale data in a corresponding CPU 3934 * cacheline, whereas normally such cachelines would get 3935 * invalidated. 3936 */ 3937 if (!HAS_LLC(i915) && !HAS_SNOOP(i915)) 3938 return -ENODEV; 3939 3940 level = I915_CACHE_LLC; 3941 break; 3942 case I915_CACHING_DISPLAY: 3943 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE; 3944 break; 3945 default: 3946 return -EINVAL; 3947 } 3948 3949 obj = i915_gem_object_lookup(file, args->handle); 3950 if (!obj) 3951 return -ENOENT; 3952 3953 /* 3954 * The caching mode of proxy object is handled by its generator, and 3955 * not allowed to be changed by userspace. 3956 */ 3957 if (i915_gem_object_is_proxy(obj)) { 3958 ret = -ENXIO; 3959 goto out; 3960 } 3961 3962 if (obj->cache_level == level) 3963 goto out; 3964 3965 ret = i915_gem_object_wait(obj, 3966 I915_WAIT_INTERRUPTIBLE, 3967 MAX_SCHEDULE_TIMEOUT, 3968 to_rps_client(file)); 3969 if (ret) 3970 goto out; 3971 3972 ret = i915_mutex_lock_interruptible(dev); 3973 if (ret) 3974 goto out; 3975 3976 ret = i915_gem_object_set_cache_level(obj, level); 3977 mutex_unlock(&dev->struct_mutex); 3978 3979 out: 3980 i915_gem_object_put(obj); 3981 return ret; 3982 } 3983 3984 /* 3985 * Prepare buffer for display plane (scanout, cursors, etc). 3986 * Can be called from an uninterruptible phase (modesetting) and allows 3987 * any flushes to be pipelined (for pageflips). 3988 */ 3989 struct i915_vma * 3990 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3991 u32 alignment, 3992 const struct i915_ggtt_view *view) 3993 { 3994 struct i915_vma *vma; 3995 int ret; 3996 3997 lockdep_assert_held(&obj->base.dev->struct_mutex); 3998 3999 /* Mark the global pin early so that we account for the 4000 * display coherency whilst setting up the cache domains. 4001 */ 4002 obj->pin_global++; 4003 4004 /* The display engine is not coherent with the LLC cache on gen6. As 4005 * a result, we make sure that the pinning that is about to occur is 4006 * done with uncached PTEs. This is lowest common denominator for all 4007 * chipsets. 4008 * 4009 * However for gen6+, we could do better by using the GFDT bit instead 4010 * of uncaching, which would allow us to flush all the LLC-cached data 4011 * with that bit in the PTE to main memory with just one PIPE_CONTROL. 4012 */ 4013 ret = i915_gem_object_set_cache_level(obj, 4014 HAS_WT(to_i915(obj->base.dev)) ? 4015 I915_CACHE_WT : I915_CACHE_NONE); 4016 if (ret) { 4017 vma = ERR_PTR(ret); 4018 goto err_unpin_global; 4019 } 4020 4021 /* As the user may map the buffer once pinned in the display plane 4022 * (e.g. libkms for the bootup splash), we have to ensure that we 4023 * always use map_and_fenceable for all scanout buffers. However, 4024 * it may simply be too big to fit into mappable, in which case 4025 * put it anyway and hope that userspace can cope (but always first 4026 * try to preserve the existing ABI). 4027 */ 4028 vma = ERR_PTR(-ENOSPC); 4029 if (!view || view->type == I915_GGTT_VIEW_NORMAL) 4030 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, 4031 PIN_MAPPABLE | PIN_NONBLOCK); 4032 if (IS_ERR(vma)) { 4033 struct drm_i915_private *i915 = to_i915(obj->base.dev); 4034 unsigned int flags; 4035 4036 /* Valleyview is definitely limited to scanning out the first 4037 * 512MiB. Lets presume this behaviour was inherited from the 4038 * g4x display engine and that all earlier gen are similarly 4039 * limited. Testing suggests that it is a little more 4040 * complicated than this. For example, Cherryview appears quite 4041 * happy to scanout from anywhere within its global aperture. 4042 */ 4043 flags = 0; 4044 if (HAS_GMCH_DISPLAY(i915)) 4045 flags = PIN_MAPPABLE; 4046 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags); 4047 } 4048 if (IS_ERR(vma)) 4049 goto err_unpin_global; 4050 4051 vma->display_alignment = max_t(u64, vma->display_alignment, alignment); 4052 4053 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */ 4054 __i915_gem_object_flush_for_display(obj); 4055 intel_fb_obj_flush(obj, ORIGIN_DIRTYFB); 4056 4057 /* It should now be out of any other write domains, and we can update 4058 * the domain values for our changes. 4059 */ 4060 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 4061 4062 return vma; 4063 4064 err_unpin_global: 4065 obj->pin_global--; 4066 return vma; 4067 } 4068 4069 void 4070 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma) 4071 { 4072 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex); 4073 4074 if (WARN_ON(vma->obj->pin_global == 0)) 4075 return; 4076 4077 if (--vma->obj->pin_global == 0) 4078 vma->display_alignment = I915_GTT_MIN_ALIGNMENT; 4079 4080 /* Bump the LRU to try and avoid premature eviction whilst flipping */ 4081 i915_gem_object_bump_inactive_ggtt(vma->obj); 4082 4083 i915_vma_unpin(vma); 4084 } 4085 4086 /** 4087 * Moves a single object to the CPU read, and possibly write domain. 4088 * @obj: object to act on 4089 * @write: requesting write or read-only access 4090 * 4091 * This function returns when the move is complete, including waiting on 4092 * flushes to occur. 4093 */ 4094 int 4095 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write) 4096 { 4097 int ret; 4098 4099 lockdep_assert_held(&obj->base.dev->struct_mutex); 4100 4101 ret = i915_gem_object_wait(obj, 4102 I915_WAIT_INTERRUPTIBLE | 4103 I915_WAIT_LOCKED | 4104 (write ? I915_WAIT_ALL : 0), 4105 MAX_SCHEDULE_TIMEOUT, 4106 NULL); 4107 if (ret) 4108 return ret; 4109 4110 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); 4111 4112 /* Flush the CPU cache if it's still invalid. */ 4113 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) { 4114 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC); 4115 obj->base.read_domains |= I915_GEM_DOMAIN_CPU; 4116 } 4117 4118 /* It should now be out of any other write domains, and we can update 4119 * the domain values for our changes. 4120 */ 4121 GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU); 4122 4123 /* If we're writing through the CPU, then the GPU read domains will 4124 * need to be invalidated at next use. 4125 */ 4126 if (write) 4127 __start_cpu_write(obj); 4128 4129 return 0; 4130 } 4131 4132 /* Throttle our rendering by waiting until the ring has completed our requests 4133 * emitted over 20 msec ago. 4134 * 4135 * Note that if we were to use the current jiffies each time around the loop, 4136 * we wouldn't escape the function with any frames outstanding if the time to 4137 * render a frame was over 20ms. 4138 * 4139 * This should get us reasonable parallelism between CPU and GPU but also 4140 * relatively low latency when blocking on a particular request to finish. 4141 */ 4142 static int 4143 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file) 4144 { 4145 struct drm_i915_private *dev_priv = to_i915(dev); 4146 struct drm_i915_file_private *file_priv = file->driver_priv; 4147 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES; 4148 struct drm_i915_gem_request *request, *target = NULL; 4149 long ret; 4150 4151 /* ABI: return -EIO if already wedged */ 4152 if (i915_terminally_wedged(&dev_priv->gpu_error)) 4153 return -EIO; 4154 4155 spin_lock(&file_priv->mm.lock); 4156 list_for_each_entry(request, &file_priv->mm.request_list, client_link) { 4157 if (time_after_eq(request->emitted_jiffies, recent_enough)) 4158 break; 4159 4160 if (target) { 4161 list_del(&target->client_link); 4162 target->file_priv = NULL; 4163 } 4164 4165 target = request; 4166 } 4167 if (target) 4168 i915_gem_request_get(target); 4169 spin_unlock(&file_priv->mm.lock); 4170 4171 if (target == NULL) 4172 return 0; 4173 4174 ret = i915_wait_request(target, 4175 I915_WAIT_INTERRUPTIBLE, 4176 MAX_SCHEDULE_TIMEOUT); 4177 i915_gem_request_put(target); 4178 4179 return ret < 0 ? ret : 0; 4180 } 4181 4182 struct i915_vma * 4183 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, 4184 const struct i915_ggtt_view *view, 4185 u64 size, 4186 u64 alignment, 4187 u64 flags) 4188 { 4189 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 4190 struct i915_address_space *vm = &dev_priv->ggtt.base; 4191 struct i915_vma *vma; 4192 int ret; 4193 4194 lockdep_assert_held(&obj->base.dev->struct_mutex); 4195 4196 if (!view && flags & PIN_MAPPABLE) { 4197 /* If the required space is larger than the available 4198 * aperture, we will not able to find a slot for the 4199 * object and unbinding the object now will be in 4200 * vain. Worse, doing so may cause us to ping-pong 4201 * the object in and out of the Global GTT and 4202 * waste a lot of cycles under the mutex. 4203 */ 4204 if (obj->base.size > dev_priv->ggtt.mappable_end) 4205 return ERR_PTR(-E2BIG); 4206 4207 /* If NONBLOCK is set the caller is optimistically 4208 * trying to cache the full object within the mappable 4209 * aperture, and *must* have a fallback in place for 4210 * situations where we cannot bind the object. We 4211 * can be a little more lax here and use the fallback 4212 * more often to avoid costly migrations of ourselves 4213 * and other objects within the aperture. 4214 * 4215 * Half-the-aperture is used as a simple heuristic. 4216 * More interesting would to do search for a free 4217 * block prior to making the commitment to unbind. 4218 * That caters for the self-harm case, and with a 4219 * little more heuristics (e.g. NOFAULT, NOEVICT) 4220 * we could try to minimise harm to others. 4221 */ 4222 if (flags & PIN_NONBLOCK && 4223 obj->base.size > dev_priv->ggtt.mappable_end / 2) 4224 return ERR_PTR(-ENOSPC); 4225 } 4226 4227 vma = i915_vma_instance(obj, vm, view); 4228 if (unlikely(IS_ERR(vma))) 4229 return vma; 4230 4231 if (i915_vma_misplaced(vma, size, alignment, flags)) { 4232 if (flags & PIN_NONBLOCK) { 4233 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) 4234 return ERR_PTR(-ENOSPC); 4235 4236 if (flags & PIN_MAPPABLE && 4237 vma->fence_size > dev_priv->ggtt.mappable_end / 2) 4238 return ERR_PTR(-ENOSPC); 4239 } 4240 4241 WARN(i915_vma_is_pinned(vma), 4242 "bo is already pinned in ggtt with incorrect alignment:" 4243 " offset=%08x, req.alignment=%llx," 4244 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n", 4245 i915_ggtt_offset(vma), alignment, 4246 !!(flags & PIN_MAPPABLE), 4247 i915_vma_is_map_and_fenceable(vma)); 4248 ret = i915_vma_unbind(vma); 4249 if (ret) 4250 return ERR_PTR(ret); 4251 } 4252 4253 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL); 4254 if (ret) 4255 return ERR_PTR(ret); 4256 4257 return vma; 4258 } 4259 4260 static __always_inline unsigned int __busy_read_flag(unsigned int id) 4261 { 4262 /* Note that we could alias engines in the execbuf API, but 4263 * that would be very unwise as it prevents userspace from 4264 * fine control over engine selection. Ahem. 4265 * 4266 * This should be something like EXEC_MAX_ENGINE instead of 4267 * I915_NUM_ENGINES. 4268 */ 4269 BUILD_BUG_ON(I915_NUM_ENGINES > 16); 4270 return 0x10000 << id; 4271 } 4272 4273 static __always_inline unsigned int __busy_write_id(unsigned int id) 4274 { 4275 /* The uABI guarantees an active writer is also amongst the read 4276 * engines. This would be true if we accessed the activity tracking 4277 * under the lock, but as we perform the lookup of the object and 4278 * its activity locklessly we can not guarantee that the last_write 4279 * being active implies that we have set the same engine flag from 4280 * last_read - hence we always set both read and write busy for 4281 * last_write. 4282 */ 4283 return id | __busy_read_flag(id); 4284 } 4285 4286 static __always_inline unsigned int 4287 __busy_set_if_active(const struct dma_fence *fence, 4288 unsigned int (*flag)(unsigned int id)) 4289 { 4290 struct drm_i915_gem_request *rq; 4291 4292 /* We have to check the current hw status of the fence as the uABI 4293 * guarantees forward progress. We could rely on the idle worker 4294 * to eventually flush us, but to minimise latency just ask the 4295 * hardware. 4296 * 4297 * Note we only report on the status of native fences. 4298 */ 4299 if (!dma_fence_is_i915(fence)) 4300 return 0; 4301 4302 /* opencode to_request() in order to avoid const warnings */ 4303 rq = container_of(fence, struct drm_i915_gem_request, fence); 4304 if (i915_gem_request_completed(rq)) 4305 return 0; 4306 4307 return flag(rq->engine->uabi_id); 4308 } 4309 4310 static __always_inline unsigned int 4311 busy_check_reader(const struct dma_fence *fence) 4312 { 4313 return __busy_set_if_active(fence, __busy_read_flag); 4314 } 4315 4316 static __always_inline unsigned int 4317 busy_check_writer(const struct dma_fence *fence) 4318 { 4319 if (!fence) 4320 return 0; 4321 4322 return __busy_set_if_active(fence, __busy_write_id); 4323 } 4324 4325 int 4326 i915_gem_busy_ioctl(struct drm_device *dev, void *data, 4327 struct drm_file *file) 4328 { 4329 struct drm_i915_gem_busy *args = data; 4330 struct drm_i915_gem_object *obj; 4331 struct reservation_object_list *list; 4332 unsigned int seq; 4333 int err; 4334 4335 err = -ENOENT; 4336 rcu_read_lock(); 4337 obj = i915_gem_object_lookup_rcu(file, args->handle); 4338 if (!obj) 4339 goto out; 4340 4341 /* A discrepancy here is that we do not report the status of 4342 * non-i915 fences, i.e. even though we may report the object as idle, 4343 * a call to set-domain may still stall waiting for foreign rendering. 4344 * This also means that wait-ioctl may report an object as busy, 4345 * where busy-ioctl considers it idle. 4346 * 4347 * We trade the ability to warn of foreign fences to report on which 4348 * i915 engines are active for the object. 4349 * 4350 * Alternatively, we can trade that extra information on read/write 4351 * activity with 4352 * args->busy = 4353 * !reservation_object_test_signaled_rcu(obj->resv, true); 4354 * to report the overall busyness. This is what the wait-ioctl does. 4355 * 4356 */ 4357 retry: 4358 seq = raw_read_seqcount(&obj->resv->seq); 4359 4360 /* Translate the exclusive fence to the READ *and* WRITE engine */ 4361 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl)); 4362 4363 /* Translate shared fences to READ set of engines */ 4364 list = rcu_dereference(obj->resv->fence); 4365 if (list) { 4366 unsigned int shared_count = list->shared_count, i; 4367 4368 for (i = 0; i < shared_count; ++i) { 4369 struct dma_fence *fence = 4370 rcu_dereference(list->shared[i]); 4371 4372 args->busy |= busy_check_reader(fence); 4373 } 4374 } 4375 4376 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq)) 4377 goto retry; 4378 4379 err = 0; 4380 out: 4381 rcu_read_unlock(); 4382 return err; 4383 } 4384 4385 int 4386 i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 4387 struct drm_file *file_priv) 4388 { 4389 return i915_gem_ring_throttle(dev, file_priv); 4390 } 4391 4392 int 4393 i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 4394 struct drm_file *file_priv) 4395 { 4396 struct drm_i915_private *dev_priv = to_i915(dev); 4397 struct drm_i915_gem_madvise *args = data; 4398 struct drm_i915_gem_object *obj; 4399 int err; 4400 4401 switch (args->madv) { 4402 case I915_MADV_DONTNEED: 4403 case I915_MADV_WILLNEED: 4404 break; 4405 default: 4406 return -EINVAL; 4407 } 4408 4409 obj = i915_gem_object_lookup(file_priv, args->handle); 4410 if (!obj) 4411 return -ENOENT; 4412 4413 err = mutex_lock_interruptible(&obj->mm.lock); 4414 if (err) 4415 goto out; 4416 4417 if (i915_gem_object_has_pages(obj) && 4418 i915_gem_object_is_tiled(obj) && 4419 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) { 4420 if (obj->mm.madv == I915_MADV_WILLNEED) { 4421 GEM_BUG_ON(!obj->mm.quirked); 4422 __i915_gem_object_unpin_pages(obj); 4423 obj->mm.quirked = false; 4424 } 4425 if (args->madv == I915_MADV_WILLNEED) { 4426 GEM_BUG_ON(obj->mm.quirked); 4427 __i915_gem_object_pin_pages(obj); 4428 obj->mm.quirked = true; 4429 } 4430 } 4431 4432 if (obj->mm.madv != __I915_MADV_PURGED) 4433 obj->mm.madv = args->madv; 4434 4435 /* if the object is no longer attached, discard its backing storage */ 4436 if (obj->mm.madv == I915_MADV_DONTNEED && 4437 !i915_gem_object_has_pages(obj)) 4438 i915_gem_object_truncate(obj); 4439 4440 args->retained = obj->mm.madv != __I915_MADV_PURGED; 4441 mutex_unlock(&obj->mm.lock); 4442 4443 out: 4444 i915_gem_object_put(obj); 4445 return err; 4446 } 4447 4448 static void 4449 frontbuffer_retire(struct i915_gem_active *active, 4450 struct drm_i915_gem_request *request) 4451 { 4452 struct drm_i915_gem_object *obj = 4453 container_of(active, typeof(*obj), frontbuffer_write); 4454 4455 intel_fb_obj_flush(obj, ORIGIN_CS); 4456 } 4457 4458 void i915_gem_object_init(struct drm_i915_gem_object *obj, 4459 const struct drm_i915_gem_object_ops *ops) 4460 { 4461 mutex_init(&obj->mm.lock); 4462 4463 INIT_LIST_HEAD(&obj->vma_list); 4464 INIT_LIST_HEAD(&obj->lut_list); 4465 INIT_LIST_HEAD(&obj->batch_pool_link); 4466 4467 obj->ops = ops; 4468 4469 reservation_object_init(&obj->__builtin_resv); 4470 obj->resv = &obj->__builtin_resv; 4471 4472 obj->frontbuffer_ggtt_origin = ORIGIN_GTT; 4473 init_request_active(&obj->frontbuffer_write, frontbuffer_retire); 4474 4475 obj->mm.madv = I915_MADV_WILLNEED; 4476 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN); 4477 mutex_init(&obj->mm.get_page.lock); 4478 4479 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size); 4480 } 4481 4482 static const struct drm_i915_gem_object_ops i915_gem_object_ops = { 4483 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE | 4484 I915_GEM_OBJECT_IS_SHRINKABLE, 4485 4486 .get_pages = i915_gem_object_get_pages_gtt, 4487 .put_pages = i915_gem_object_put_pages_gtt, 4488 4489 .pwrite = i915_gem_object_pwrite_gtt, 4490 }; 4491 4492 static int i915_gem_object_create_shmem(struct drm_device *dev, 4493 struct drm_gem_object *obj, 4494 size_t size) 4495 { 4496 struct drm_i915_private *i915 = to_i915(dev); 4497 unsigned long flags = VM_NORESERVE; 4498 struct file *filp; 4499 4500 drm_gem_private_object_init(dev, obj, size); 4501 4502 if (i915->mm.gemfs) 4503 filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size, 4504 flags); 4505 else 4506 filp = shmem_file_setup("i915", size, flags); 4507 4508 if (IS_ERR(filp)) 4509 return PTR_ERR(filp); 4510 4511 obj->filp = filp; 4512 4513 return 0; 4514 } 4515 4516 struct drm_i915_gem_object * 4517 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size) 4518 { 4519 struct drm_i915_gem_object *obj; 4520 struct address_space *mapping; 4521 unsigned int cache_level; 4522 gfp_t mask; 4523 int ret; 4524 4525 /* There is a prevalence of the assumption that we fit the object's 4526 * page count inside a 32bit _signed_ variable. Let's document this and 4527 * catch if we ever need to fix it. In the meantime, if you do spot 4528 * such a local variable, please consider fixing! 4529 */ 4530 if (size >> PAGE_SHIFT > INT_MAX) 4531 return ERR_PTR(-E2BIG); 4532 4533 if (overflows_type(size, obj->base.size)) 4534 return ERR_PTR(-E2BIG); 4535 4536 obj = i915_gem_object_alloc(dev_priv); 4537 if (obj == NULL) 4538 return ERR_PTR(-ENOMEM); 4539 4540 ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size); 4541 if (ret) 4542 goto fail; 4543 4544 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; 4545 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) { 4546 /* 965gm cannot relocate objects above 4GiB. */ 4547 mask &= ~__GFP_HIGHMEM; 4548 mask |= __GFP_DMA32; 4549 } 4550 4551 mapping = obj->base.filp->f_mapping; 4552 mapping_set_gfp_mask(mapping, mask); 4553 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM)); 4554 4555 i915_gem_object_init(obj, &i915_gem_object_ops); 4556 4557 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 4558 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 4559 4560 if (HAS_LLC(dev_priv)) 4561 /* On some devices, we can have the GPU use the LLC (the CPU 4562 * cache) for about a 10% performance improvement 4563 * compared to uncached. Graphics requests other than 4564 * display scanout are coherent with the CPU in 4565 * accessing this cache. This means in this mode we 4566 * don't need to clflush on the CPU side, and on the 4567 * GPU side we only need to flush internal caches to 4568 * get data visible to the CPU. 4569 * 4570 * However, we maintain the display planes as UC, and so 4571 * need to rebind when first used as such. 4572 */ 4573 cache_level = I915_CACHE_LLC; 4574 else 4575 cache_level = I915_CACHE_NONE; 4576 4577 i915_gem_object_set_cache_coherency(obj, cache_level); 4578 4579 trace_i915_gem_object_create(obj); 4580 4581 return obj; 4582 4583 fail: 4584 i915_gem_object_free(obj); 4585 return ERR_PTR(ret); 4586 } 4587 4588 static bool discard_backing_storage(struct drm_i915_gem_object *obj) 4589 { 4590 /* If we are the last user of the backing storage (be it shmemfs 4591 * pages or stolen etc), we know that the pages are going to be 4592 * immediately released. In this case, we can then skip copying 4593 * back the contents from the GPU. 4594 */ 4595 4596 if (obj->mm.madv != I915_MADV_WILLNEED) 4597 return false; 4598 4599 if (obj->base.filp == NULL) 4600 return true; 4601 4602 /* At first glance, this looks racy, but then again so would be 4603 * userspace racing mmap against close. However, the first external 4604 * reference to the filp can only be obtained through the 4605 * i915_gem_mmap_ioctl() which safeguards us against the user 4606 * acquiring such a reference whilst we are in the middle of 4607 * freeing the object. 4608 */ 4609 return atomic_long_read(&obj->base.filp->f_count) == 1; 4610 } 4611 4612 static void __i915_gem_free_objects(struct drm_i915_private *i915, 4613 struct llist_node *freed) 4614 { 4615 struct drm_i915_gem_object *obj, *on; 4616 4617 intel_runtime_pm_get(i915); 4618 llist_for_each_entry_safe(obj, on, freed, freed) { 4619 struct i915_vma *vma, *vn; 4620 4621 trace_i915_gem_object_destroy(obj); 4622 4623 mutex_lock(&i915->drm.struct_mutex); 4624 4625 GEM_BUG_ON(i915_gem_object_is_active(obj)); 4626 list_for_each_entry_safe(vma, vn, 4627 &obj->vma_list, obj_link) { 4628 GEM_BUG_ON(i915_vma_is_active(vma)); 4629 vma->flags &= ~I915_VMA_PIN_MASK; 4630 i915_vma_close(vma); 4631 } 4632 GEM_BUG_ON(!list_empty(&obj->vma_list)); 4633 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree)); 4634 4635 /* This serializes freeing with the shrinker. Since the free 4636 * is delayed, first by RCU then by the workqueue, we want the 4637 * shrinker to be able to free pages of unreferenced objects, 4638 * or else we may oom whilst there are plenty of deferred 4639 * freed objects. 4640 */ 4641 if (i915_gem_object_has_pages(obj)) { 4642 spin_lock(&i915->mm.obj_lock); 4643 list_del_init(&obj->mm.link); 4644 spin_unlock(&i915->mm.obj_lock); 4645 } 4646 4647 mutex_unlock(&i915->drm.struct_mutex); 4648 4649 GEM_BUG_ON(obj->bind_count); 4650 GEM_BUG_ON(obj->userfault_count); 4651 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits)); 4652 GEM_BUG_ON(!list_empty(&obj->lut_list)); 4653 4654 if (obj->ops->release) 4655 obj->ops->release(obj); 4656 4657 if (WARN_ON(i915_gem_object_has_pinned_pages(obj))) 4658 atomic_set(&obj->mm.pages_pin_count, 0); 4659 __i915_gem_object_put_pages(obj, I915_MM_NORMAL); 4660 GEM_BUG_ON(i915_gem_object_has_pages(obj)); 4661 4662 if (obj->base.import_attach) 4663 drm_prime_gem_destroy(&obj->base, NULL); 4664 4665 reservation_object_fini(&obj->__builtin_resv); 4666 drm_gem_object_release(&obj->base); 4667 i915_gem_info_remove_obj(i915, obj->base.size); 4668 4669 kfree(obj->bit_17); 4670 i915_gem_object_free(obj); 4671 4672 if (on) 4673 cond_resched(); 4674 } 4675 intel_runtime_pm_put(i915); 4676 } 4677 4678 static void i915_gem_flush_free_objects(struct drm_i915_private *i915) 4679 { 4680 struct llist_node *freed; 4681 4682 /* Free the oldest, most stale object to keep the free_list short */ 4683 freed = NULL; 4684 if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */ 4685 /* Only one consumer of llist_del_first() allowed */ 4686 spin_lock(&i915->mm.free_lock); 4687 freed = llist_del_first(&i915->mm.free_list); 4688 spin_unlock(&i915->mm.free_lock); 4689 } 4690 if (unlikely(freed)) { 4691 freed->next = NULL; 4692 __i915_gem_free_objects(i915, freed); 4693 } 4694 } 4695 4696 static void __i915_gem_free_work(struct work_struct *work) 4697 { 4698 struct drm_i915_private *i915 = 4699 container_of(work, struct drm_i915_private, mm.free_work); 4700 struct llist_node *freed; 4701 4702 /* All file-owned VMA should have been released by this point through 4703 * i915_gem_close_object(), or earlier by i915_gem_context_close(). 4704 * However, the object may also be bound into the global GTT (e.g. 4705 * older GPUs without per-process support, or for direct access through 4706 * the GTT either for the user or for scanout). Those VMA still need to 4707 * unbound now. 4708 */ 4709 4710 spin_lock(&i915->mm.free_lock); 4711 while ((freed = llist_del_all(&i915->mm.free_list))) { 4712 spin_unlock(&i915->mm.free_lock); 4713 4714 __i915_gem_free_objects(i915, freed); 4715 if (need_resched()) 4716 return; 4717 4718 spin_lock(&i915->mm.free_lock); 4719 } 4720 spin_unlock(&i915->mm.free_lock); 4721 } 4722 4723 static void __i915_gem_free_object_rcu(struct rcu_head *head) 4724 { 4725 struct drm_i915_gem_object *obj = 4726 container_of(head, typeof(*obj), rcu); 4727 struct drm_i915_private *i915 = to_i915(obj->base.dev); 4728 4729 /* We can't simply use call_rcu() from i915_gem_free_object() 4730 * as we need to block whilst unbinding, and the call_rcu 4731 * task may be called from softirq context. So we take a 4732 * detour through a worker. 4733 */ 4734 if (llist_add(&obj->freed, &i915->mm.free_list)) 4735 schedule_work(&i915->mm.free_work); 4736 } 4737 4738 void i915_gem_free_object(struct drm_gem_object *gem_obj) 4739 { 4740 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); 4741 4742 if (obj->mm.quirked) 4743 __i915_gem_object_unpin_pages(obj); 4744 4745 if (discard_backing_storage(obj)) 4746 obj->mm.madv = I915_MADV_DONTNEED; 4747 4748 /* Before we free the object, make sure any pure RCU-only 4749 * read-side critical sections are complete, e.g. 4750 * i915_gem_busy_ioctl(). For the corresponding synchronized 4751 * lookup see i915_gem_object_lookup_rcu(). 4752 */ 4753 call_rcu(&obj->rcu, __i915_gem_free_object_rcu); 4754 } 4755 4756 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj) 4757 { 4758 lockdep_assert_held(&obj->base.dev->struct_mutex); 4759 4760 if (!i915_gem_object_has_active_reference(obj) && 4761 i915_gem_object_is_active(obj)) 4762 i915_gem_object_set_active_reference(obj); 4763 else 4764 i915_gem_object_put(obj); 4765 } 4766 4767 static void assert_kernel_context_is_current(struct drm_i915_private *i915) 4768 { 4769 struct i915_gem_context *kernel_context = i915->kernel_context; 4770 struct intel_engine_cs *engine; 4771 enum intel_engine_id id; 4772 4773 for_each_engine(engine, i915, id) { 4774 GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline->last_request)); 4775 GEM_BUG_ON(engine->last_retired_context != kernel_context); 4776 } 4777 } 4778 4779 void i915_gem_sanitize(struct drm_i915_private *i915) 4780 { 4781 if (i915_terminally_wedged(&i915->gpu_error)) { 4782 mutex_lock(&i915->drm.struct_mutex); 4783 i915_gem_unset_wedged(i915); 4784 mutex_unlock(&i915->drm.struct_mutex); 4785 } 4786 4787 /* 4788 * If we inherit context state from the BIOS or earlier occupants 4789 * of the GPU, the GPU may be in an inconsistent state when we 4790 * try to take over. The only way to remove the earlier state 4791 * is by resetting. However, resetting on earlier gen is tricky as 4792 * it may impact the display and we are uncertain about the stability 4793 * of the reset, so this could be applied to even earlier gen. 4794 */ 4795 if (INTEL_GEN(i915) >= 5) { 4796 int reset = intel_gpu_reset(i915, ALL_ENGINES); 4797 WARN_ON(reset && reset != -ENODEV); 4798 } 4799 } 4800 4801 int i915_gem_suspend(struct drm_i915_private *dev_priv) 4802 { 4803 struct drm_device *dev = &dev_priv->drm; 4804 int ret; 4805 4806 intel_runtime_pm_get(dev_priv); 4807 intel_suspend_gt_powersave(dev_priv); 4808 4809 mutex_lock(&dev->struct_mutex); 4810 4811 /* We have to flush all the executing contexts to main memory so 4812 * that they can saved in the hibernation image. To ensure the last 4813 * context image is coherent, we have to switch away from it. That 4814 * leaves the dev_priv->kernel_context still active when 4815 * we actually suspend, and its image in memory may not match the GPU 4816 * state. Fortunately, the kernel_context is disposable and we do 4817 * not rely on its state. 4818 */ 4819 if (!i915_terminally_wedged(&dev_priv->gpu_error)) { 4820 ret = i915_gem_switch_to_kernel_context(dev_priv); 4821 if (ret) 4822 goto err_unlock; 4823 4824 ret = i915_gem_wait_for_idle(dev_priv, 4825 I915_WAIT_INTERRUPTIBLE | 4826 I915_WAIT_LOCKED); 4827 if (ret && ret != -EIO) 4828 goto err_unlock; 4829 4830 assert_kernel_context_is_current(dev_priv); 4831 } 4832 i915_gem_contexts_lost(dev_priv); 4833 mutex_unlock(&dev->struct_mutex); 4834 4835 intel_guc_suspend(dev_priv); 4836 4837 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work); 4838 cancel_delayed_work_sync(&dev_priv->gt.retire_work); 4839 4840 /* As the idle_work is rearming if it detects a race, play safe and 4841 * repeat the flush until it is definitely idle. 4842 */ 4843 drain_delayed_work(&dev_priv->gt.idle_work); 4844 4845 /* Assert that we sucessfully flushed all the work and 4846 * reset the GPU back to its idle, low power state. 4847 */ 4848 WARN_ON(dev_priv->gt.awake); 4849 if (WARN_ON(!intel_engines_are_idle(dev_priv))) 4850 i915_gem_set_wedged(dev_priv); /* no hope, discard everything */ 4851 4852 /* 4853 * Neither the BIOS, ourselves or any other kernel 4854 * expects the system to be in execlists mode on startup, 4855 * so we need to reset the GPU back to legacy mode. And the only 4856 * known way to disable logical contexts is through a GPU reset. 4857 * 4858 * So in order to leave the system in a known default configuration, 4859 * always reset the GPU upon unload and suspend. Afterwards we then 4860 * clean up the GEM state tracking, flushing off the requests and 4861 * leaving the system in a known idle state. 4862 * 4863 * Note that is of the upmost importance that the GPU is idle and 4864 * all stray writes are flushed *before* we dismantle the backing 4865 * storage for the pinned objects. 4866 * 4867 * However, since we are uncertain that resetting the GPU on older 4868 * machines is a good idea, we don't - just in case it leaves the 4869 * machine in an unusable condition. 4870 */ 4871 i915_gem_sanitize(dev_priv); 4872 4873 intel_runtime_pm_put(dev_priv); 4874 return 0; 4875 4876 err_unlock: 4877 mutex_unlock(&dev->struct_mutex); 4878 intel_runtime_pm_put(dev_priv); 4879 return ret; 4880 } 4881 4882 void i915_gem_resume(struct drm_i915_private *i915) 4883 { 4884 WARN_ON(i915->gt.awake); 4885 4886 mutex_lock(&i915->drm.struct_mutex); 4887 intel_uncore_forcewake_get(i915, FORCEWAKE_ALL); 4888 4889 i915_gem_restore_gtt_mappings(i915); 4890 i915_gem_restore_fences(i915); 4891 4892 /* 4893 * As we didn't flush the kernel context before suspend, we cannot 4894 * guarantee that the context image is complete. So let's just reset 4895 * it and start again. 4896 */ 4897 i915->gt.resume(i915); 4898 4899 if (i915_gem_init_hw(i915)) 4900 goto err_wedged; 4901 4902 intel_guc_resume(i915); 4903 4904 /* Always reload a context for powersaving. */ 4905 if (i915_gem_switch_to_kernel_context(i915)) 4906 goto err_wedged; 4907 4908 out_unlock: 4909 intel_uncore_forcewake_put(i915, FORCEWAKE_ALL); 4910 mutex_unlock(&i915->drm.struct_mutex); 4911 return; 4912 4913 err_wedged: 4914 if (!i915_terminally_wedged(&i915->gpu_error)) { 4915 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n"); 4916 i915_gem_set_wedged(i915); 4917 } 4918 goto out_unlock; 4919 } 4920 4921 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv) 4922 { 4923 if (INTEL_GEN(dev_priv) < 5 || 4924 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) 4925 return; 4926 4927 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | 4928 DISP_TILE_SURFACE_SWIZZLING); 4929 4930 if (IS_GEN5(dev_priv)) 4931 return; 4932 4933 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL); 4934 if (IS_GEN6(dev_priv)) 4935 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); 4936 else if (IS_GEN7(dev_priv)) 4937 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); 4938 else if (IS_GEN8(dev_priv)) 4939 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW)); 4940 else 4941 BUG(); 4942 } 4943 4944 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base) 4945 { 4946 I915_WRITE(RING_CTL(base), 0); 4947 I915_WRITE(RING_HEAD(base), 0); 4948 I915_WRITE(RING_TAIL(base), 0); 4949 I915_WRITE(RING_START(base), 0); 4950 } 4951 4952 static void init_unused_rings(struct drm_i915_private *dev_priv) 4953 { 4954 if (IS_I830(dev_priv)) { 4955 init_unused_ring(dev_priv, PRB1_BASE); 4956 init_unused_ring(dev_priv, SRB0_BASE); 4957 init_unused_ring(dev_priv, SRB1_BASE); 4958 init_unused_ring(dev_priv, SRB2_BASE); 4959 init_unused_ring(dev_priv, SRB3_BASE); 4960 } else if (IS_GEN2(dev_priv)) { 4961 init_unused_ring(dev_priv, SRB0_BASE); 4962 init_unused_ring(dev_priv, SRB1_BASE); 4963 } else if (IS_GEN3(dev_priv)) { 4964 init_unused_ring(dev_priv, PRB1_BASE); 4965 init_unused_ring(dev_priv, PRB2_BASE); 4966 } 4967 } 4968 4969 static int __i915_gem_restart_engines(void *data) 4970 { 4971 struct drm_i915_private *i915 = data; 4972 struct intel_engine_cs *engine; 4973 enum intel_engine_id id; 4974 int err; 4975 4976 for_each_engine(engine, i915, id) { 4977 err = engine->init_hw(engine); 4978 if (err) 4979 return err; 4980 } 4981 4982 return 0; 4983 } 4984 4985 int i915_gem_init_hw(struct drm_i915_private *dev_priv) 4986 { 4987 int ret; 4988 4989 dev_priv->gt.last_init_time = ktime_get(); 4990 4991 /* Double layer security blanket, see i915_gem_init() */ 4992 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); 4993 4994 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9) 4995 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf)); 4996 4997 if (IS_HASWELL(dev_priv)) 4998 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ? 4999 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); 5000 5001 if (HAS_PCH_NOP(dev_priv)) { 5002 if (IS_IVYBRIDGE(dev_priv)) { 5003 u32 temp = I915_READ(GEN7_MSG_CTL); 5004 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK); 5005 I915_WRITE(GEN7_MSG_CTL, temp); 5006 } else if (INTEL_GEN(dev_priv) >= 7) { 5007 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT); 5008 temp &= ~RESET_PCH_HANDSHAKE_ENABLE; 5009 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp); 5010 } 5011 } 5012 5013 i915_gem_init_swizzling(dev_priv); 5014 5015 /* 5016 * At least 830 can leave some of the unused rings 5017 * "active" (ie. head != tail) after resume which 5018 * will prevent c3 entry. Makes sure all unused rings 5019 * are totally idle. 5020 */ 5021 init_unused_rings(dev_priv); 5022 5023 BUG_ON(!dev_priv->kernel_context); 5024 if (i915_terminally_wedged(&dev_priv->gpu_error)) { 5025 ret = -EIO; 5026 goto out; 5027 } 5028 5029 ret = i915_ppgtt_init_hw(dev_priv); 5030 if (ret) { 5031 DRM_ERROR("PPGTT enable HW failed %d\n", ret); 5032 goto out; 5033 } 5034 5035 /* We can't enable contexts until all firmware is loaded */ 5036 ret = intel_uc_init_hw(dev_priv); 5037 if (ret) 5038 goto out; 5039 5040 intel_mocs_init_l3cc_table(dev_priv); 5041 5042 /* Only when the HW is re-initialised, can we replay the requests */ 5043 ret = __i915_gem_restart_engines(dev_priv); 5044 out: 5045 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 5046 return ret; 5047 } 5048 5049 static int __intel_engines_record_defaults(struct drm_i915_private *i915) 5050 { 5051 struct i915_gem_context *ctx; 5052 struct intel_engine_cs *engine; 5053 enum intel_engine_id id; 5054 int err; 5055 5056 /* 5057 * As we reset the gpu during very early sanitisation, the current 5058 * register state on the GPU should reflect its defaults values. 5059 * We load a context onto the hw (with restore-inhibit), then switch 5060 * over to a second context to save that default register state. We 5061 * can then prime every new context with that state so they all start 5062 * from the same default HW values. 5063 */ 5064 5065 ctx = i915_gem_context_create_kernel(i915, 0); 5066 if (IS_ERR(ctx)) 5067 return PTR_ERR(ctx); 5068 5069 for_each_engine(engine, i915, id) { 5070 struct drm_i915_gem_request *rq; 5071 5072 rq = i915_gem_request_alloc(engine, ctx); 5073 if (IS_ERR(rq)) { 5074 err = PTR_ERR(rq); 5075 goto out_ctx; 5076 } 5077 5078 err = 0; 5079 if (engine->init_context) 5080 err = engine->init_context(rq); 5081 5082 __i915_add_request(rq, true); 5083 if (err) 5084 goto err_active; 5085 } 5086 5087 err = i915_gem_switch_to_kernel_context(i915); 5088 if (err) 5089 goto err_active; 5090 5091 err = i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED); 5092 if (err) 5093 goto err_active; 5094 5095 assert_kernel_context_is_current(i915); 5096 5097 for_each_engine(engine, i915, id) { 5098 struct i915_vma *state; 5099 5100 state = ctx->engine[id].state; 5101 if (!state) 5102 continue; 5103 5104 /* 5105 * As we will hold a reference to the logical state, it will 5106 * not be torn down with the context, and importantly the 5107 * object will hold onto its vma (making it possible for a 5108 * stray GTT write to corrupt our defaults). Unmap the vma 5109 * from the GTT to prevent such accidents and reclaim the 5110 * space. 5111 */ 5112 err = i915_vma_unbind(state); 5113 if (err) 5114 goto err_active; 5115 5116 err = i915_gem_object_set_to_cpu_domain(state->obj, false); 5117 if (err) 5118 goto err_active; 5119 5120 engine->default_state = i915_gem_object_get(state->obj); 5121 } 5122 5123 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) { 5124 unsigned int found = intel_engines_has_context_isolation(i915); 5125 5126 /* 5127 * Make sure that classes with multiple engine instances all 5128 * share the same basic configuration. 5129 */ 5130 for_each_engine(engine, i915, id) { 5131 unsigned int bit = BIT(engine->uabi_class); 5132 unsigned int expected = engine->default_state ? bit : 0; 5133 5134 if ((found & bit) != expected) { 5135 DRM_ERROR("mismatching default context state for class %d on engine %s\n", 5136 engine->uabi_class, engine->name); 5137 } 5138 } 5139 } 5140 5141 out_ctx: 5142 i915_gem_context_set_closed(ctx); 5143 i915_gem_context_put(ctx); 5144 return err; 5145 5146 err_active: 5147 /* 5148 * If we have to abandon now, we expect the engines to be idle 5149 * and ready to be torn-down. First try to flush any remaining 5150 * request, ensure we are pointing at the kernel context and 5151 * then remove it. 5152 */ 5153 if (WARN_ON(i915_gem_switch_to_kernel_context(i915))) 5154 goto out_ctx; 5155 5156 if (WARN_ON(i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED))) 5157 goto out_ctx; 5158 5159 i915_gem_contexts_lost(i915); 5160 goto out_ctx; 5161 } 5162 5163 int i915_gem_init(struct drm_i915_private *dev_priv) 5164 { 5165 int ret; 5166 5167 /* 5168 * We need to fallback to 4K pages since gvt gtt handling doesn't 5169 * support huge page entries - we will need to check either hypervisor 5170 * mm can support huge guest page or just do emulation in gvt. 5171 */ 5172 if (intel_vgpu_active(dev_priv)) 5173 mkwrite_device_info(dev_priv)->page_sizes = 5174 I915_GTT_PAGE_SIZE_4K; 5175 5176 dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1); 5177 5178 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) { 5179 dev_priv->gt.resume = intel_lr_context_resume; 5180 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup; 5181 } else { 5182 dev_priv->gt.resume = intel_legacy_submission_resume; 5183 dev_priv->gt.cleanup_engine = intel_engine_cleanup; 5184 } 5185 5186 ret = i915_gem_init_userptr(dev_priv); 5187 if (ret) 5188 return ret; 5189 5190 ret = intel_uc_init_wq(dev_priv); 5191 if (ret) 5192 return ret; 5193 5194 /* This is just a security blanket to placate dragons. 5195 * On some systems, we very sporadically observe that the first TLBs 5196 * used by the CS may be stale, despite us poking the TLB reset. If 5197 * we hold the forcewake during initialisation these problems 5198 * just magically go away. 5199 */ 5200 mutex_lock(&dev_priv->drm.struct_mutex); 5201 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); 5202 5203 ret = i915_gem_init_ggtt(dev_priv); 5204 if (ret) { 5205 GEM_BUG_ON(ret == -EIO); 5206 goto err_unlock; 5207 } 5208 5209 ret = i915_gem_contexts_init(dev_priv); 5210 if (ret) { 5211 GEM_BUG_ON(ret == -EIO); 5212 goto err_ggtt; 5213 } 5214 5215 ret = intel_engines_init(dev_priv); 5216 if (ret) { 5217 GEM_BUG_ON(ret == -EIO); 5218 goto err_context; 5219 } 5220 5221 intel_init_gt_powersave(dev_priv); 5222 5223 ret = intel_uc_init(dev_priv); 5224 if (ret) 5225 goto err_pm; 5226 5227 ret = i915_gem_init_hw(dev_priv); 5228 if (ret) 5229 goto err_uc_init; 5230 5231 /* 5232 * Despite its name intel_init_clock_gating applies both display 5233 * clock gating workarounds; GT mmio workarounds and the occasional 5234 * GT power context workaround. Worse, sometimes it includes a context 5235 * register workaround which we need to apply before we record the 5236 * default HW state for all contexts. 5237 * 5238 * FIXME: break up the workarounds and apply them at the right time! 5239 */ 5240 intel_init_clock_gating(dev_priv); 5241 5242 ret = __intel_engines_record_defaults(dev_priv); 5243 if (ret) 5244 goto err_init_hw; 5245 5246 if (i915_inject_load_failure()) { 5247 ret = -ENODEV; 5248 goto err_init_hw; 5249 } 5250 5251 if (i915_inject_load_failure()) { 5252 ret = -EIO; 5253 goto err_init_hw; 5254 } 5255 5256 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 5257 mutex_unlock(&dev_priv->drm.struct_mutex); 5258 5259 return 0; 5260 5261 /* 5262 * Unwinding is complicated by that we want to handle -EIO to mean 5263 * disable GPU submission but keep KMS alive. We want to mark the 5264 * HW as irrevisibly wedged, but keep enough state around that the 5265 * driver doesn't explode during runtime. 5266 */ 5267 err_init_hw: 5268 i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED); 5269 i915_gem_contexts_lost(dev_priv); 5270 intel_uc_fini_hw(dev_priv); 5271 err_uc_init: 5272 intel_uc_fini(dev_priv); 5273 err_pm: 5274 if (ret != -EIO) { 5275 intel_cleanup_gt_powersave(dev_priv); 5276 i915_gem_cleanup_engines(dev_priv); 5277 } 5278 err_context: 5279 if (ret != -EIO) 5280 i915_gem_contexts_fini(dev_priv); 5281 err_ggtt: 5282 err_unlock: 5283 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 5284 mutex_unlock(&dev_priv->drm.struct_mutex); 5285 5286 if (ret != -EIO) 5287 i915_gem_cleanup_userptr(dev_priv); 5288 5289 if (ret == -EIO) { 5290 /* 5291 * Allow engine initialisation to fail by marking the GPU as 5292 * wedged. But we only want to do this where the GPU is angry, 5293 * for all other failure, such as an allocation failure, bail. 5294 */ 5295 if (!i915_terminally_wedged(&dev_priv->gpu_error)) { 5296 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n"); 5297 i915_gem_set_wedged(dev_priv); 5298 } 5299 ret = 0; 5300 } 5301 5302 i915_gem_drain_freed_objects(dev_priv); 5303 return ret; 5304 } 5305 5306 void i915_gem_init_mmio(struct drm_i915_private *i915) 5307 { 5308 i915_gem_sanitize(i915); 5309 } 5310 5311 void 5312 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv) 5313 { 5314 struct intel_engine_cs *engine; 5315 enum intel_engine_id id; 5316 5317 for_each_engine(engine, dev_priv, id) 5318 dev_priv->gt.cleanup_engine(engine); 5319 } 5320 5321 void 5322 i915_gem_load_init_fences(struct drm_i915_private *dev_priv) 5323 { 5324 int i; 5325 5326 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) && 5327 !IS_CHERRYVIEW(dev_priv)) 5328 dev_priv->num_fence_regs = 32; 5329 else if (INTEL_INFO(dev_priv)->gen >= 4 || 5330 IS_I945G(dev_priv) || IS_I945GM(dev_priv) || 5331 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) 5332 dev_priv->num_fence_regs = 16; 5333 else 5334 dev_priv->num_fence_regs = 8; 5335 5336 if (intel_vgpu_active(dev_priv)) 5337 dev_priv->num_fence_regs = 5338 I915_READ(vgtif_reg(avail_rs.fence_num)); 5339 5340 /* Initialize fence registers to zero */ 5341 for (i = 0; i < dev_priv->num_fence_regs; i++) { 5342 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i]; 5343 5344 fence->i915 = dev_priv; 5345 fence->id = i; 5346 list_add_tail(&fence->link, &dev_priv->mm.fence_list); 5347 } 5348 i915_gem_restore_fences(dev_priv); 5349 5350 i915_gem_detect_bit_6_swizzle(dev_priv); 5351 } 5352 5353 static void i915_gem_init__mm(struct drm_i915_private *i915) 5354 { 5355 spin_lock_init(&i915->mm.object_stat_lock); 5356 spin_lock_init(&i915->mm.obj_lock); 5357 spin_lock_init(&i915->mm.free_lock); 5358 5359 init_llist_head(&i915->mm.free_list); 5360 5361 INIT_LIST_HEAD(&i915->mm.unbound_list); 5362 INIT_LIST_HEAD(&i915->mm.bound_list); 5363 INIT_LIST_HEAD(&i915->mm.fence_list); 5364 INIT_LIST_HEAD(&i915->mm.userfault_list); 5365 5366 INIT_WORK(&i915->mm.free_work, __i915_gem_free_work); 5367 } 5368 5369 int 5370 i915_gem_load_init(struct drm_i915_private *dev_priv) 5371 { 5372 int err = -ENOMEM; 5373 5374 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN); 5375 if (!dev_priv->objects) 5376 goto err_out; 5377 5378 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN); 5379 if (!dev_priv->vmas) 5380 goto err_objects; 5381 5382 dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0); 5383 if (!dev_priv->luts) 5384 goto err_vmas; 5385 5386 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request, 5387 SLAB_HWCACHE_ALIGN | 5388 SLAB_RECLAIM_ACCOUNT | 5389 SLAB_TYPESAFE_BY_RCU); 5390 if (!dev_priv->requests) 5391 goto err_luts; 5392 5393 dev_priv->dependencies = KMEM_CACHE(i915_dependency, 5394 SLAB_HWCACHE_ALIGN | 5395 SLAB_RECLAIM_ACCOUNT); 5396 if (!dev_priv->dependencies) 5397 goto err_requests; 5398 5399 dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN); 5400 if (!dev_priv->priorities) 5401 goto err_dependencies; 5402 5403 mutex_lock(&dev_priv->drm.struct_mutex); 5404 INIT_LIST_HEAD(&dev_priv->gt.timelines); 5405 err = i915_gem_timeline_init__global(dev_priv); 5406 mutex_unlock(&dev_priv->drm.struct_mutex); 5407 if (err) 5408 goto err_priorities; 5409 5410 i915_gem_init__mm(dev_priv); 5411 5412 INIT_DELAYED_WORK(&dev_priv->gt.retire_work, 5413 i915_gem_retire_work_handler); 5414 INIT_DELAYED_WORK(&dev_priv->gt.idle_work, 5415 i915_gem_idle_work_handler); 5416 init_waitqueue_head(&dev_priv->gpu_error.wait_queue); 5417 init_waitqueue_head(&dev_priv->gpu_error.reset_queue); 5418 5419 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0); 5420 5421 spin_lock_init(&dev_priv->fb_tracking.lock); 5422 5423 err = i915_gemfs_init(dev_priv); 5424 if (err) 5425 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err); 5426 5427 return 0; 5428 5429 err_priorities: 5430 kmem_cache_destroy(dev_priv->priorities); 5431 err_dependencies: 5432 kmem_cache_destroy(dev_priv->dependencies); 5433 err_requests: 5434 kmem_cache_destroy(dev_priv->requests); 5435 err_luts: 5436 kmem_cache_destroy(dev_priv->luts); 5437 err_vmas: 5438 kmem_cache_destroy(dev_priv->vmas); 5439 err_objects: 5440 kmem_cache_destroy(dev_priv->objects); 5441 err_out: 5442 return err; 5443 } 5444 5445 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv) 5446 { 5447 i915_gem_drain_freed_objects(dev_priv); 5448 WARN_ON(!llist_empty(&dev_priv->mm.free_list)); 5449 WARN_ON(dev_priv->mm.object_count); 5450 5451 mutex_lock(&dev_priv->drm.struct_mutex); 5452 i915_gem_timeline_fini(&dev_priv->gt.global_timeline); 5453 WARN_ON(!list_empty(&dev_priv->gt.timelines)); 5454 mutex_unlock(&dev_priv->drm.struct_mutex); 5455 5456 kmem_cache_destroy(dev_priv->priorities); 5457 kmem_cache_destroy(dev_priv->dependencies); 5458 kmem_cache_destroy(dev_priv->requests); 5459 kmem_cache_destroy(dev_priv->luts); 5460 kmem_cache_destroy(dev_priv->vmas); 5461 kmem_cache_destroy(dev_priv->objects); 5462 5463 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */ 5464 rcu_barrier(); 5465 5466 i915_gemfs_fini(dev_priv); 5467 } 5468 5469 int i915_gem_freeze(struct drm_i915_private *dev_priv) 5470 { 5471 /* Discard all purgeable objects, let userspace recover those as 5472 * required after resuming. 5473 */ 5474 i915_gem_shrink_all(dev_priv); 5475 5476 return 0; 5477 } 5478 5479 int i915_gem_freeze_late(struct drm_i915_private *dev_priv) 5480 { 5481 struct drm_i915_gem_object *obj; 5482 struct list_head *phases[] = { 5483 &dev_priv->mm.unbound_list, 5484 &dev_priv->mm.bound_list, 5485 NULL 5486 }, **p; 5487 5488 /* Called just before we write the hibernation image. 5489 * 5490 * We need to update the domain tracking to reflect that the CPU 5491 * will be accessing all the pages to create and restore from the 5492 * hibernation, and so upon restoration those pages will be in the 5493 * CPU domain. 5494 * 5495 * To make sure the hibernation image contains the latest state, 5496 * we update that state just before writing out the image. 5497 * 5498 * To try and reduce the hibernation image, we manually shrink 5499 * the objects as well, see i915_gem_freeze() 5500 */ 5501 5502 i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND); 5503 i915_gem_drain_freed_objects(dev_priv); 5504 5505 spin_lock(&dev_priv->mm.obj_lock); 5506 for (p = phases; *p; p++) { 5507 list_for_each_entry(obj, *p, mm.link) 5508 __start_cpu_write(obj); 5509 } 5510 spin_unlock(&dev_priv->mm.obj_lock); 5511 5512 return 0; 5513 } 5514 5515 void i915_gem_release(struct drm_device *dev, struct drm_file *file) 5516 { 5517 struct drm_i915_file_private *file_priv = file->driver_priv; 5518 struct drm_i915_gem_request *request; 5519 5520 /* Clean up our request list when the client is going away, so that 5521 * later retire_requests won't dereference our soon-to-be-gone 5522 * file_priv. 5523 */ 5524 spin_lock(&file_priv->mm.lock); 5525 list_for_each_entry(request, &file_priv->mm.request_list, client_link) 5526 request->file_priv = NULL; 5527 spin_unlock(&file_priv->mm.lock); 5528 } 5529 5530 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file) 5531 { 5532 struct drm_i915_file_private *file_priv; 5533 int ret; 5534 5535 DRM_DEBUG("\n"); 5536 5537 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL); 5538 if (!file_priv) 5539 return -ENOMEM; 5540 5541 file->driver_priv = file_priv; 5542 file_priv->dev_priv = i915; 5543 file_priv->file = file; 5544 5545 spin_lock_init(&file_priv->mm.lock); 5546 INIT_LIST_HEAD(&file_priv->mm.request_list); 5547 5548 file_priv->bsd_engine = -1; 5549 5550 ret = i915_gem_context_open(i915, file); 5551 if (ret) 5552 kfree(file_priv); 5553 5554 return ret; 5555 } 5556 5557 /** 5558 * i915_gem_track_fb - update frontbuffer tracking 5559 * @old: current GEM buffer for the frontbuffer slots 5560 * @new: new GEM buffer for the frontbuffer slots 5561 * @frontbuffer_bits: bitmask of frontbuffer slots 5562 * 5563 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them 5564 * from @old and setting them in @new. Both @old and @new can be NULL. 5565 */ 5566 void i915_gem_track_fb(struct drm_i915_gem_object *old, 5567 struct drm_i915_gem_object *new, 5568 unsigned frontbuffer_bits) 5569 { 5570 /* Control of individual bits within the mask are guarded by 5571 * the owning plane->mutex, i.e. we can never see concurrent 5572 * manipulation of individual bits. But since the bitfield as a whole 5573 * is updated using RMW, we need to use atomics in order to update 5574 * the bits. 5575 */ 5576 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 5577 sizeof(atomic_t) * BITS_PER_BYTE); 5578 5579 if (old) { 5580 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits)); 5581 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits); 5582 } 5583 5584 if (new) { 5585 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits); 5586 atomic_or(frontbuffer_bits, &new->frontbuffer_bits); 5587 } 5588 } 5589 5590 /* Allocate a new GEM object and fill it with the supplied data */ 5591 struct drm_i915_gem_object * 5592 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv, 5593 const void *data, size_t size) 5594 { 5595 struct drm_i915_gem_object *obj; 5596 struct file *file; 5597 size_t offset; 5598 int err; 5599 5600 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE)); 5601 if (IS_ERR(obj)) 5602 return obj; 5603 5604 GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU); 5605 5606 file = obj->base.filp; 5607 offset = 0; 5608 do { 5609 unsigned int len = min_t(typeof(size), size, PAGE_SIZE); 5610 struct page *page; 5611 void *pgdata, *vaddr; 5612 5613 err = pagecache_write_begin(file, file->f_mapping, 5614 offset, len, 0, 5615 &page, &pgdata); 5616 if (err < 0) 5617 goto fail; 5618 5619 vaddr = kmap(page); 5620 memcpy(vaddr, data, len); 5621 kunmap(page); 5622 5623 err = pagecache_write_end(file, file->f_mapping, 5624 offset, len, len, 5625 page, pgdata); 5626 if (err < 0) 5627 goto fail; 5628 5629 size -= len; 5630 data += len; 5631 offset += len; 5632 } while (size); 5633 5634 return obj; 5635 5636 fail: 5637 i915_gem_object_put(obj); 5638 return ERR_PTR(err); 5639 } 5640 5641 struct scatterlist * 5642 i915_gem_object_get_sg(struct drm_i915_gem_object *obj, 5643 unsigned int n, 5644 unsigned int *offset) 5645 { 5646 struct i915_gem_object_page_iter *iter = &obj->mm.get_page; 5647 struct scatterlist *sg; 5648 unsigned int idx, count; 5649 5650 might_sleep(); 5651 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT); 5652 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 5653 5654 /* As we iterate forward through the sg, we record each entry in a 5655 * radixtree for quick repeated (backwards) lookups. If we have seen 5656 * this index previously, we will have an entry for it. 5657 * 5658 * Initial lookup is O(N), but this is amortized to O(1) for 5659 * sequential page access (where each new request is consecutive 5660 * to the previous one). Repeated lookups are O(lg(obj->base.size)), 5661 * i.e. O(1) with a large constant! 5662 */ 5663 if (n < READ_ONCE(iter->sg_idx)) 5664 goto lookup; 5665 5666 mutex_lock(&iter->lock); 5667 5668 /* We prefer to reuse the last sg so that repeated lookup of this 5669 * (or the subsequent) sg are fast - comparing against the last 5670 * sg is faster than going through the radixtree. 5671 */ 5672 5673 sg = iter->sg_pos; 5674 idx = iter->sg_idx; 5675 count = __sg_page_count(sg); 5676 5677 while (idx + count <= n) { 5678 unsigned long exception, i; 5679 int ret; 5680 5681 /* If we cannot allocate and insert this entry, or the 5682 * individual pages from this range, cancel updating the 5683 * sg_idx so that on this lookup we are forced to linearly 5684 * scan onwards, but on future lookups we will try the 5685 * insertion again (in which case we need to be careful of 5686 * the error return reporting that we have already inserted 5687 * this index). 5688 */ 5689 ret = radix_tree_insert(&iter->radix, idx, sg); 5690 if (ret && ret != -EEXIST) 5691 goto scan; 5692 5693 exception = 5694 RADIX_TREE_EXCEPTIONAL_ENTRY | 5695 idx << RADIX_TREE_EXCEPTIONAL_SHIFT; 5696 for (i = 1; i < count; i++) { 5697 ret = radix_tree_insert(&iter->radix, idx + i, 5698 (void *)exception); 5699 if (ret && ret != -EEXIST) 5700 goto scan; 5701 } 5702 5703 idx += count; 5704 sg = ____sg_next(sg); 5705 count = __sg_page_count(sg); 5706 } 5707 5708 scan: 5709 iter->sg_pos = sg; 5710 iter->sg_idx = idx; 5711 5712 mutex_unlock(&iter->lock); 5713 5714 if (unlikely(n < idx)) /* insertion completed by another thread */ 5715 goto lookup; 5716 5717 /* In case we failed to insert the entry into the radixtree, we need 5718 * to look beyond the current sg. 5719 */ 5720 while (idx + count <= n) { 5721 idx += count; 5722 sg = ____sg_next(sg); 5723 count = __sg_page_count(sg); 5724 } 5725 5726 *offset = n - idx; 5727 return sg; 5728 5729 lookup: 5730 rcu_read_lock(); 5731 5732 sg = radix_tree_lookup(&iter->radix, n); 5733 GEM_BUG_ON(!sg); 5734 5735 /* If this index is in the middle of multi-page sg entry, 5736 * the radixtree will contain an exceptional entry that points 5737 * to the start of that range. We will return the pointer to 5738 * the base page and the offset of this page within the 5739 * sg entry's range. 5740 */ 5741 *offset = 0; 5742 if (unlikely(radix_tree_exception(sg))) { 5743 unsigned long base = 5744 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT; 5745 5746 sg = radix_tree_lookup(&iter->radix, base); 5747 GEM_BUG_ON(!sg); 5748 5749 *offset = n - base; 5750 } 5751 5752 rcu_read_unlock(); 5753 5754 return sg; 5755 } 5756 5757 struct page * 5758 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n) 5759 { 5760 struct scatterlist *sg; 5761 unsigned int offset; 5762 5763 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj)); 5764 5765 sg = i915_gem_object_get_sg(obj, n, &offset); 5766 return nth_page(sg_page(sg), offset); 5767 } 5768 5769 /* Like i915_gem_object_get_page(), but mark the returned page dirty */ 5770 struct page * 5771 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, 5772 unsigned int n) 5773 { 5774 struct page *page; 5775 5776 page = i915_gem_object_get_page(obj, n); 5777 if (!obj->mm.dirty) 5778 set_page_dirty(page); 5779 5780 return page; 5781 } 5782 5783 dma_addr_t 5784 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, 5785 unsigned long n) 5786 { 5787 struct scatterlist *sg; 5788 unsigned int offset; 5789 5790 sg = i915_gem_object_get_sg(obj, n, &offset); 5791 return sg_dma_address(sg) + (offset << PAGE_SHIFT); 5792 } 5793 5794 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align) 5795 { 5796 struct sg_table *pages; 5797 int err; 5798 5799 if (align > obj->base.size) 5800 return -EINVAL; 5801 5802 if (obj->ops == &i915_gem_phys_ops) 5803 return 0; 5804 5805 if (obj->ops != &i915_gem_object_ops) 5806 return -EINVAL; 5807 5808 err = i915_gem_object_unbind(obj); 5809 if (err) 5810 return err; 5811 5812 mutex_lock(&obj->mm.lock); 5813 5814 if (obj->mm.madv != I915_MADV_WILLNEED) { 5815 err = -EFAULT; 5816 goto err_unlock; 5817 } 5818 5819 if (obj->mm.quirked) { 5820 err = -EFAULT; 5821 goto err_unlock; 5822 } 5823 5824 if (obj->mm.mapping) { 5825 err = -EBUSY; 5826 goto err_unlock; 5827 } 5828 5829 pages = fetch_and_zero(&obj->mm.pages); 5830 if (pages) { 5831 struct drm_i915_private *i915 = to_i915(obj->base.dev); 5832 5833 __i915_gem_object_reset_page_iter(obj); 5834 5835 spin_lock(&i915->mm.obj_lock); 5836 list_del(&obj->mm.link); 5837 spin_unlock(&i915->mm.obj_lock); 5838 } 5839 5840 obj->ops = &i915_gem_phys_ops; 5841 5842 err = ____i915_gem_object_get_pages(obj); 5843 if (err) 5844 goto err_xfer; 5845 5846 /* Perma-pin (until release) the physical set of pages */ 5847 __i915_gem_object_pin_pages(obj); 5848 5849 if (!IS_ERR_OR_NULL(pages)) 5850 i915_gem_object_ops.put_pages(obj, pages); 5851 mutex_unlock(&obj->mm.lock); 5852 return 0; 5853 5854 err_xfer: 5855 obj->ops = &i915_gem_object_ops; 5856 obj->mm.pages = pages; 5857 err_unlock: 5858 mutex_unlock(&obj->mm.lock); 5859 return err; 5860 } 5861 5862 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 5863 #include "selftests/scatterlist.c" 5864 #include "selftests/mock_gem_device.c" 5865 #include "selftests/huge_gem_object.c" 5866 #include "selftests/huge_pages.c" 5867 #include "selftests/i915_gem_object.c" 5868 #include "selftests/i915_gem_coherency.c" 5869 #endif 5870