xref: /linux/drivers/gpu/drm/i915/i915_gem.c (revision 4d7696f1b05f4aeb586c74868fe3da2731daca4b)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39 
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42 						   bool force);
43 static __must_check int
44 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
45 			   struct i915_address_space *vm,
46 			   unsigned alignment,
47 			   bool map_and_fenceable,
48 			   bool nonblocking);
49 static int i915_gem_phys_pwrite(struct drm_device *dev,
50 				struct drm_i915_gem_object *obj,
51 				struct drm_i915_gem_pwrite *args,
52 				struct drm_file *file);
53 
54 static void i915_gem_write_fence(struct drm_device *dev, int reg,
55 				 struct drm_i915_gem_object *obj);
56 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
57 					 struct drm_i915_fence_reg *fence,
58 					 bool enable);
59 
60 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
61 				    struct shrink_control *sc);
62 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
63 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
65 
66 static bool cpu_cache_is_coherent(struct drm_device *dev,
67 				  enum i915_cache_level level)
68 {
69 	return HAS_LLC(dev) || level != I915_CACHE_NONE;
70 }
71 
72 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
73 {
74 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
75 		return true;
76 
77 	return obj->pin_display;
78 }
79 
80 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
81 {
82 	if (obj->tiling_mode)
83 		i915_gem_release_mmap(obj);
84 
85 	/* As we do not have an associated fence register, we will force
86 	 * a tiling change if we ever need to acquire one.
87 	 */
88 	obj->fence_dirty = false;
89 	obj->fence_reg = I915_FENCE_REG_NONE;
90 }
91 
92 /* some bookkeeping */
93 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
94 				  size_t size)
95 {
96 	spin_lock(&dev_priv->mm.object_stat_lock);
97 	dev_priv->mm.object_count++;
98 	dev_priv->mm.object_memory += size;
99 	spin_unlock(&dev_priv->mm.object_stat_lock);
100 }
101 
102 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
103 				     size_t size)
104 {
105 	spin_lock(&dev_priv->mm.object_stat_lock);
106 	dev_priv->mm.object_count--;
107 	dev_priv->mm.object_memory -= size;
108 	spin_unlock(&dev_priv->mm.object_stat_lock);
109 }
110 
111 static int
112 i915_gem_wait_for_error(struct i915_gpu_error *error)
113 {
114 	int ret;
115 
116 #define EXIT_COND (!i915_reset_in_progress(error) || \
117 		   i915_terminally_wedged(error))
118 	if (EXIT_COND)
119 		return 0;
120 
121 	/*
122 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
123 	 * userspace. If it takes that long something really bad is going on and
124 	 * we should simply try to bail out and fail as gracefully as possible.
125 	 */
126 	ret = wait_event_interruptible_timeout(error->reset_queue,
127 					       EXIT_COND,
128 					       10*HZ);
129 	if (ret == 0) {
130 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
131 		return -EIO;
132 	} else if (ret < 0) {
133 		return ret;
134 	}
135 #undef EXIT_COND
136 
137 	return 0;
138 }
139 
140 int i915_mutex_lock_interruptible(struct drm_device *dev)
141 {
142 	struct drm_i915_private *dev_priv = dev->dev_private;
143 	int ret;
144 
145 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
146 	if (ret)
147 		return ret;
148 
149 	ret = mutex_lock_interruptible(&dev->struct_mutex);
150 	if (ret)
151 		return ret;
152 
153 	WARN_ON(i915_verify_lists(dev));
154 	return 0;
155 }
156 
157 static inline bool
158 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
159 {
160 	return i915_gem_obj_bound_any(obj) && !obj->active;
161 }
162 
163 int
164 i915_gem_init_ioctl(struct drm_device *dev, void *data,
165 		    struct drm_file *file)
166 {
167 	struct drm_i915_private *dev_priv = dev->dev_private;
168 	struct drm_i915_gem_init *args = data;
169 
170 	if (drm_core_check_feature(dev, DRIVER_MODESET))
171 		return -ENODEV;
172 
173 	if (args->gtt_start >= args->gtt_end ||
174 	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
175 		return -EINVAL;
176 
177 	/* GEM with user mode setting was never supported on ilk and later. */
178 	if (INTEL_INFO(dev)->gen >= 5)
179 		return -ENODEV;
180 
181 	mutex_lock(&dev->struct_mutex);
182 	i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
183 				  args->gtt_end);
184 	dev_priv->gtt.mappable_end = args->gtt_end;
185 	mutex_unlock(&dev->struct_mutex);
186 
187 	return 0;
188 }
189 
190 int
191 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
192 			    struct drm_file *file)
193 {
194 	struct drm_i915_private *dev_priv = dev->dev_private;
195 	struct drm_i915_gem_get_aperture *args = data;
196 	struct drm_i915_gem_object *obj;
197 	size_t pinned;
198 
199 	pinned = 0;
200 	mutex_lock(&dev->struct_mutex);
201 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
202 		if (obj->pin_count)
203 			pinned += i915_gem_obj_ggtt_size(obj);
204 	mutex_unlock(&dev->struct_mutex);
205 
206 	args->aper_size = dev_priv->gtt.base.total;
207 	args->aper_available_size = args->aper_size - pinned;
208 
209 	return 0;
210 }
211 
212 void *i915_gem_object_alloc(struct drm_device *dev)
213 {
214 	struct drm_i915_private *dev_priv = dev->dev_private;
215 	return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
216 }
217 
218 void i915_gem_object_free(struct drm_i915_gem_object *obj)
219 {
220 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
221 	kmem_cache_free(dev_priv->slab, obj);
222 }
223 
224 static int
225 i915_gem_create(struct drm_file *file,
226 		struct drm_device *dev,
227 		uint64_t size,
228 		uint32_t *handle_p)
229 {
230 	struct drm_i915_gem_object *obj;
231 	int ret;
232 	u32 handle;
233 
234 	size = roundup(size, PAGE_SIZE);
235 	if (size == 0)
236 		return -EINVAL;
237 
238 	/* Allocate the new object */
239 	obj = i915_gem_alloc_object(dev, size);
240 	if (obj == NULL)
241 		return -ENOMEM;
242 
243 	ret = drm_gem_handle_create(file, &obj->base, &handle);
244 	/* drop reference from allocate - handle holds it now */
245 	drm_gem_object_unreference_unlocked(&obj->base);
246 	if (ret)
247 		return ret;
248 
249 	*handle_p = handle;
250 	return 0;
251 }
252 
253 int
254 i915_gem_dumb_create(struct drm_file *file,
255 		     struct drm_device *dev,
256 		     struct drm_mode_create_dumb *args)
257 {
258 	/* have to work out size/pitch and return them */
259 	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
260 	args->size = args->pitch * args->height;
261 	return i915_gem_create(file, dev,
262 			       args->size, &args->handle);
263 }
264 
265 /**
266  * Creates a new mm object and returns a handle to it.
267  */
268 int
269 i915_gem_create_ioctl(struct drm_device *dev, void *data,
270 		      struct drm_file *file)
271 {
272 	struct drm_i915_gem_create *args = data;
273 
274 	return i915_gem_create(file, dev,
275 			       args->size, &args->handle);
276 }
277 
278 static inline int
279 __copy_to_user_swizzled(char __user *cpu_vaddr,
280 			const char *gpu_vaddr, int gpu_offset,
281 			int length)
282 {
283 	int ret, cpu_offset = 0;
284 
285 	while (length > 0) {
286 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
287 		int this_length = min(cacheline_end - gpu_offset, length);
288 		int swizzled_gpu_offset = gpu_offset ^ 64;
289 
290 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
291 				     gpu_vaddr + swizzled_gpu_offset,
292 				     this_length);
293 		if (ret)
294 			return ret + length;
295 
296 		cpu_offset += this_length;
297 		gpu_offset += this_length;
298 		length -= this_length;
299 	}
300 
301 	return 0;
302 }
303 
304 static inline int
305 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
306 			  const char __user *cpu_vaddr,
307 			  int length)
308 {
309 	int ret, cpu_offset = 0;
310 
311 	while (length > 0) {
312 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
313 		int this_length = min(cacheline_end - gpu_offset, length);
314 		int swizzled_gpu_offset = gpu_offset ^ 64;
315 
316 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
317 				       cpu_vaddr + cpu_offset,
318 				       this_length);
319 		if (ret)
320 			return ret + length;
321 
322 		cpu_offset += this_length;
323 		gpu_offset += this_length;
324 		length -= this_length;
325 	}
326 
327 	return 0;
328 }
329 
330 /* Per-page copy function for the shmem pread fastpath.
331  * Flushes invalid cachelines before reading the target if
332  * needs_clflush is set. */
333 static int
334 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
335 		 char __user *user_data,
336 		 bool page_do_bit17_swizzling, bool needs_clflush)
337 {
338 	char *vaddr;
339 	int ret;
340 
341 	if (unlikely(page_do_bit17_swizzling))
342 		return -EINVAL;
343 
344 	vaddr = kmap_atomic(page);
345 	if (needs_clflush)
346 		drm_clflush_virt_range(vaddr + shmem_page_offset,
347 				       page_length);
348 	ret = __copy_to_user_inatomic(user_data,
349 				      vaddr + shmem_page_offset,
350 				      page_length);
351 	kunmap_atomic(vaddr);
352 
353 	return ret ? -EFAULT : 0;
354 }
355 
356 static void
357 shmem_clflush_swizzled_range(char *addr, unsigned long length,
358 			     bool swizzled)
359 {
360 	if (unlikely(swizzled)) {
361 		unsigned long start = (unsigned long) addr;
362 		unsigned long end = (unsigned long) addr + length;
363 
364 		/* For swizzling simply ensure that we always flush both
365 		 * channels. Lame, but simple and it works. Swizzled
366 		 * pwrite/pread is far from a hotpath - current userspace
367 		 * doesn't use it at all. */
368 		start = round_down(start, 128);
369 		end = round_up(end, 128);
370 
371 		drm_clflush_virt_range((void *)start, end - start);
372 	} else {
373 		drm_clflush_virt_range(addr, length);
374 	}
375 
376 }
377 
378 /* Only difference to the fast-path function is that this can handle bit17
379  * and uses non-atomic copy and kmap functions. */
380 static int
381 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
382 		 char __user *user_data,
383 		 bool page_do_bit17_swizzling, bool needs_clflush)
384 {
385 	char *vaddr;
386 	int ret;
387 
388 	vaddr = kmap(page);
389 	if (needs_clflush)
390 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
391 					     page_length,
392 					     page_do_bit17_swizzling);
393 
394 	if (page_do_bit17_swizzling)
395 		ret = __copy_to_user_swizzled(user_data,
396 					      vaddr, shmem_page_offset,
397 					      page_length);
398 	else
399 		ret = __copy_to_user(user_data,
400 				     vaddr + shmem_page_offset,
401 				     page_length);
402 	kunmap(page);
403 
404 	return ret ? - EFAULT : 0;
405 }
406 
407 static int
408 i915_gem_shmem_pread(struct drm_device *dev,
409 		     struct drm_i915_gem_object *obj,
410 		     struct drm_i915_gem_pread *args,
411 		     struct drm_file *file)
412 {
413 	char __user *user_data;
414 	ssize_t remain;
415 	loff_t offset;
416 	int shmem_page_offset, page_length, ret = 0;
417 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
418 	int prefaulted = 0;
419 	int needs_clflush = 0;
420 	struct sg_page_iter sg_iter;
421 
422 	user_data = to_user_ptr(args->data_ptr);
423 	remain = args->size;
424 
425 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
426 
427 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
428 		/* If we're not in the cpu read domain, set ourself into the gtt
429 		 * read domain and manually flush cachelines (if required). This
430 		 * optimizes for the case when the gpu will dirty the data
431 		 * anyway again before the next pread happens. */
432 		needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
433 		if (i915_gem_obj_bound_any(obj)) {
434 			ret = i915_gem_object_set_to_gtt_domain(obj, false);
435 			if (ret)
436 				return ret;
437 		}
438 	}
439 
440 	ret = i915_gem_object_get_pages(obj);
441 	if (ret)
442 		return ret;
443 
444 	i915_gem_object_pin_pages(obj);
445 
446 	offset = args->offset;
447 
448 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
449 			 offset >> PAGE_SHIFT) {
450 		struct page *page = sg_page_iter_page(&sg_iter);
451 
452 		if (remain <= 0)
453 			break;
454 
455 		/* Operation in this page
456 		 *
457 		 * shmem_page_offset = offset within page in shmem file
458 		 * page_length = bytes to copy for this page
459 		 */
460 		shmem_page_offset = offset_in_page(offset);
461 		page_length = remain;
462 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
463 			page_length = PAGE_SIZE - shmem_page_offset;
464 
465 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
466 			(page_to_phys(page) & (1 << 17)) != 0;
467 
468 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
469 				       user_data, page_do_bit17_swizzling,
470 				       needs_clflush);
471 		if (ret == 0)
472 			goto next_page;
473 
474 		mutex_unlock(&dev->struct_mutex);
475 
476 		if (likely(!i915_prefault_disable) && !prefaulted) {
477 			ret = fault_in_multipages_writeable(user_data, remain);
478 			/* Userspace is tricking us, but we've already clobbered
479 			 * its pages with the prefault and promised to write the
480 			 * data up to the first fault. Hence ignore any errors
481 			 * and just continue. */
482 			(void)ret;
483 			prefaulted = 1;
484 		}
485 
486 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
487 				       user_data, page_do_bit17_swizzling,
488 				       needs_clflush);
489 
490 		mutex_lock(&dev->struct_mutex);
491 
492 next_page:
493 		mark_page_accessed(page);
494 
495 		if (ret)
496 			goto out;
497 
498 		remain -= page_length;
499 		user_data += page_length;
500 		offset += page_length;
501 	}
502 
503 out:
504 	i915_gem_object_unpin_pages(obj);
505 
506 	return ret;
507 }
508 
509 /**
510  * Reads data from the object referenced by handle.
511  *
512  * On error, the contents of *data are undefined.
513  */
514 int
515 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
516 		     struct drm_file *file)
517 {
518 	struct drm_i915_gem_pread *args = data;
519 	struct drm_i915_gem_object *obj;
520 	int ret = 0;
521 
522 	if (args->size == 0)
523 		return 0;
524 
525 	if (!access_ok(VERIFY_WRITE,
526 		       to_user_ptr(args->data_ptr),
527 		       args->size))
528 		return -EFAULT;
529 
530 	ret = i915_mutex_lock_interruptible(dev);
531 	if (ret)
532 		return ret;
533 
534 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
535 	if (&obj->base == NULL) {
536 		ret = -ENOENT;
537 		goto unlock;
538 	}
539 
540 	/* Bounds check source.  */
541 	if (args->offset > obj->base.size ||
542 	    args->size > obj->base.size - args->offset) {
543 		ret = -EINVAL;
544 		goto out;
545 	}
546 
547 	/* prime objects have no backing filp to GEM pread/pwrite
548 	 * pages from.
549 	 */
550 	if (!obj->base.filp) {
551 		ret = -EINVAL;
552 		goto out;
553 	}
554 
555 	trace_i915_gem_object_pread(obj, args->offset, args->size);
556 
557 	ret = i915_gem_shmem_pread(dev, obj, args, file);
558 
559 out:
560 	drm_gem_object_unreference(&obj->base);
561 unlock:
562 	mutex_unlock(&dev->struct_mutex);
563 	return ret;
564 }
565 
566 /* This is the fast write path which cannot handle
567  * page faults in the source data
568  */
569 
570 static inline int
571 fast_user_write(struct io_mapping *mapping,
572 		loff_t page_base, int page_offset,
573 		char __user *user_data,
574 		int length)
575 {
576 	void __iomem *vaddr_atomic;
577 	void *vaddr;
578 	unsigned long unwritten;
579 
580 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
581 	/* We can use the cpu mem copy function because this is X86. */
582 	vaddr = (void __force*)vaddr_atomic + page_offset;
583 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
584 						      user_data, length);
585 	io_mapping_unmap_atomic(vaddr_atomic);
586 	return unwritten;
587 }
588 
589 /**
590  * This is the fast pwrite path, where we copy the data directly from the
591  * user into the GTT, uncached.
592  */
593 static int
594 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
595 			 struct drm_i915_gem_object *obj,
596 			 struct drm_i915_gem_pwrite *args,
597 			 struct drm_file *file)
598 {
599 	drm_i915_private_t *dev_priv = dev->dev_private;
600 	ssize_t remain;
601 	loff_t offset, page_base;
602 	char __user *user_data;
603 	int page_offset, page_length, ret;
604 
605 	ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
606 	if (ret)
607 		goto out;
608 
609 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
610 	if (ret)
611 		goto out_unpin;
612 
613 	ret = i915_gem_object_put_fence(obj);
614 	if (ret)
615 		goto out_unpin;
616 
617 	user_data = to_user_ptr(args->data_ptr);
618 	remain = args->size;
619 
620 	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
621 
622 	while (remain > 0) {
623 		/* Operation in this page
624 		 *
625 		 * page_base = page offset within aperture
626 		 * page_offset = offset within page
627 		 * page_length = bytes to copy for this page
628 		 */
629 		page_base = offset & PAGE_MASK;
630 		page_offset = offset_in_page(offset);
631 		page_length = remain;
632 		if ((page_offset + remain) > PAGE_SIZE)
633 			page_length = PAGE_SIZE - page_offset;
634 
635 		/* If we get a fault while copying data, then (presumably) our
636 		 * source page isn't available.  Return the error and we'll
637 		 * retry in the slow path.
638 		 */
639 		if (fast_user_write(dev_priv->gtt.mappable, page_base,
640 				    page_offset, user_data, page_length)) {
641 			ret = -EFAULT;
642 			goto out_unpin;
643 		}
644 
645 		remain -= page_length;
646 		user_data += page_length;
647 		offset += page_length;
648 	}
649 
650 out_unpin:
651 	i915_gem_object_unpin(obj);
652 out:
653 	return ret;
654 }
655 
656 /* Per-page copy function for the shmem pwrite fastpath.
657  * Flushes invalid cachelines before writing to the target if
658  * needs_clflush_before is set and flushes out any written cachelines after
659  * writing if needs_clflush is set. */
660 static int
661 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
662 		  char __user *user_data,
663 		  bool page_do_bit17_swizzling,
664 		  bool needs_clflush_before,
665 		  bool needs_clflush_after)
666 {
667 	char *vaddr;
668 	int ret;
669 
670 	if (unlikely(page_do_bit17_swizzling))
671 		return -EINVAL;
672 
673 	vaddr = kmap_atomic(page);
674 	if (needs_clflush_before)
675 		drm_clflush_virt_range(vaddr + shmem_page_offset,
676 				       page_length);
677 	ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
678 						user_data,
679 						page_length);
680 	if (needs_clflush_after)
681 		drm_clflush_virt_range(vaddr + shmem_page_offset,
682 				       page_length);
683 	kunmap_atomic(vaddr);
684 
685 	return ret ? -EFAULT : 0;
686 }
687 
688 /* Only difference to the fast-path function is that this can handle bit17
689  * and uses non-atomic copy and kmap functions. */
690 static int
691 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
692 		  char __user *user_data,
693 		  bool page_do_bit17_swizzling,
694 		  bool needs_clflush_before,
695 		  bool needs_clflush_after)
696 {
697 	char *vaddr;
698 	int ret;
699 
700 	vaddr = kmap(page);
701 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
702 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
703 					     page_length,
704 					     page_do_bit17_swizzling);
705 	if (page_do_bit17_swizzling)
706 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
707 						user_data,
708 						page_length);
709 	else
710 		ret = __copy_from_user(vaddr + shmem_page_offset,
711 				       user_data,
712 				       page_length);
713 	if (needs_clflush_after)
714 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
715 					     page_length,
716 					     page_do_bit17_swizzling);
717 	kunmap(page);
718 
719 	return ret ? -EFAULT : 0;
720 }
721 
722 static int
723 i915_gem_shmem_pwrite(struct drm_device *dev,
724 		      struct drm_i915_gem_object *obj,
725 		      struct drm_i915_gem_pwrite *args,
726 		      struct drm_file *file)
727 {
728 	ssize_t remain;
729 	loff_t offset;
730 	char __user *user_data;
731 	int shmem_page_offset, page_length, ret = 0;
732 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
733 	int hit_slowpath = 0;
734 	int needs_clflush_after = 0;
735 	int needs_clflush_before = 0;
736 	struct sg_page_iter sg_iter;
737 
738 	user_data = to_user_ptr(args->data_ptr);
739 	remain = args->size;
740 
741 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
742 
743 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
744 		/* If we're not in the cpu write domain, set ourself into the gtt
745 		 * write domain and manually flush cachelines (if required). This
746 		 * optimizes for the case when the gpu will use the data
747 		 * right away and we therefore have to clflush anyway. */
748 		needs_clflush_after = cpu_write_needs_clflush(obj);
749 		if (i915_gem_obj_bound_any(obj)) {
750 			ret = i915_gem_object_set_to_gtt_domain(obj, true);
751 			if (ret)
752 				return ret;
753 		}
754 	}
755 	/* Same trick applies to invalidate partially written cachelines read
756 	 * before writing. */
757 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
758 		needs_clflush_before =
759 			!cpu_cache_is_coherent(dev, obj->cache_level);
760 
761 	ret = i915_gem_object_get_pages(obj);
762 	if (ret)
763 		return ret;
764 
765 	i915_gem_object_pin_pages(obj);
766 
767 	offset = args->offset;
768 	obj->dirty = 1;
769 
770 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
771 			 offset >> PAGE_SHIFT) {
772 		struct page *page = sg_page_iter_page(&sg_iter);
773 		int partial_cacheline_write;
774 
775 		if (remain <= 0)
776 			break;
777 
778 		/* Operation in this page
779 		 *
780 		 * shmem_page_offset = offset within page in shmem file
781 		 * page_length = bytes to copy for this page
782 		 */
783 		shmem_page_offset = offset_in_page(offset);
784 
785 		page_length = remain;
786 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
787 			page_length = PAGE_SIZE - shmem_page_offset;
788 
789 		/* If we don't overwrite a cacheline completely we need to be
790 		 * careful to have up-to-date data by first clflushing. Don't
791 		 * overcomplicate things and flush the entire patch. */
792 		partial_cacheline_write = needs_clflush_before &&
793 			((shmem_page_offset | page_length)
794 				& (boot_cpu_data.x86_clflush_size - 1));
795 
796 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
797 			(page_to_phys(page) & (1 << 17)) != 0;
798 
799 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
800 					user_data, page_do_bit17_swizzling,
801 					partial_cacheline_write,
802 					needs_clflush_after);
803 		if (ret == 0)
804 			goto next_page;
805 
806 		hit_slowpath = 1;
807 		mutex_unlock(&dev->struct_mutex);
808 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
809 					user_data, page_do_bit17_swizzling,
810 					partial_cacheline_write,
811 					needs_clflush_after);
812 
813 		mutex_lock(&dev->struct_mutex);
814 
815 next_page:
816 		set_page_dirty(page);
817 		mark_page_accessed(page);
818 
819 		if (ret)
820 			goto out;
821 
822 		remain -= page_length;
823 		user_data += page_length;
824 		offset += page_length;
825 	}
826 
827 out:
828 	i915_gem_object_unpin_pages(obj);
829 
830 	if (hit_slowpath) {
831 		/*
832 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
833 		 * cachelines in-line while writing and the object moved
834 		 * out of the cpu write domain while we've dropped the lock.
835 		 */
836 		if (!needs_clflush_after &&
837 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
838 			if (i915_gem_clflush_object(obj, obj->pin_display))
839 				i915_gem_chipset_flush(dev);
840 		}
841 	}
842 
843 	if (needs_clflush_after)
844 		i915_gem_chipset_flush(dev);
845 
846 	return ret;
847 }
848 
849 /**
850  * Writes data to the object referenced by handle.
851  *
852  * On error, the contents of the buffer that were to be modified are undefined.
853  */
854 int
855 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
856 		      struct drm_file *file)
857 {
858 	struct drm_i915_gem_pwrite *args = data;
859 	struct drm_i915_gem_object *obj;
860 	int ret;
861 
862 	if (args->size == 0)
863 		return 0;
864 
865 	if (!access_ok(VERIFY_READ,
866 		       to_user_ptr(args->data_ptr),
867 		       args->size))
868 		return -EFAULT;
869 
870 	if (likely(!i915_prefault_disable)) {
871 		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
872 						   args->size);
873 		if (ret)
874 			return -EFAULT;
875 	}
876 
877 	ret = i915_mutex_lock_interruptible(dev);
878 	if (ret)
879 		return ret;
880 
881 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
882 	if (&obj->base == NULL) {
883 		ret = -ENOENT;
884 		goto unlock;
885 	}
886 
887 	/* Bounds check destination. */
888 	if (args->offset > obj->base.size ||
889 	    args->size > obj->base.size - args->offset) {
890 		ret = -EINVAL;
891 		goto out;
892 	}
893 
894 	/* prime objects have no backing filp to GEM pread/pwrite
895 	 * pages from.
896 	 */
897 	if (!obj->base.filp) {
898 		ret = -EINVAL;
899 		goto out;
900 	}
901 
902 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
903 
904 	ret = -EFAULT;
905 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
906 	 * it would end up going through the fenced access, and we'll get
907 	 * different detiling behavior between reading and writing.
908 	 * pread/pwrite currently are reading and writing from the CPU
909 	 * perspective, requiring manual detiling by the client.
910 	 */
911 	if (obj->phys_obj) {
912 		ret = i915_gem_phys_pwrite(dev, obj, args, file);
913 		goto out;
914 	}
915 
916 	if (obj->tiling_mode == I915_TILING_NONE &&
917 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
918 	    cpu_write_needs_clflush(obj)) {
919 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
920 		/* Note that the gtt paths might fail with non-page-backed user
921 		 * pointers (e.g. gtt mappings when moving data between
922 		 * textures). Fallback to the shmem path in that case. */
923 	}
924 
925 	if (ret == -EFAULT || ret == -ENOSPC)
926 		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
927 
928 out:
929 	drm_gem_object_unreference(&obj->base);
930 unlock:
931 	mutex_unlock(&dev->struct_mutex);
932 	return ret;
933 }
934 
935 int
936 i915_gem_check_wedge(struct i915_gpu_error *error,
937 		     bool interruptible)
938 {
939 	if (i915_reset_in_progress(error)) {
940 		/* Non-interruptible callers can't handle -EAGAIN, hence return
941 		 * -EIO unconditionally for these. */
942 		if (!interruptible)
943 			return -EIO;
944 
945 		/* Recovery complete, but the reset failed ... */
946 		if (i915_terminally_wedged(error))
947 			return -EIO;
948 
949 		return -EAGAIN;
950 	}
951 
952 	return 0;
953 }
954 
955 /*
956  * Compare seqno against outstanding lazy request. Emit a request if they are
957  * equal.
958  */
959 static int
960 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
961 {
962 	int ret;
963 
964 	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
965 
966 	ret = 0;
967 	if (seqno == ring->outstanding_lazy_request)
968 		ret = i915_add_request(ring, NULL);
969 
970 	return ret;
971 }
972 
973 /**
974  * __wait_seqno - wait until execution of seqno has finished
975  * @ring: the ring expected to report seqno
976  * @seqno: duh!
977  * @reset_counter: reset sequence associated with the given seqno
978  * @interruptible: do an interruptible wait (normally yes)
979  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
980  *
981  * Note: It is of utmost importance that the passed in seqno and reset_counter
982  * values have been read by the caller in an smp safe manner. Where read-side
983  * locks are involved, it is sufficient to read the reset_counter before
984  * unlocking the lock that protects the seqno. For lockless tricks, the
985  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
986  * inserted.
987  *
988  * Returns 0 if the seqno was found within the alloted time. Else returns the
989  * errno with remaining time filled in timeout argument.
990  */
991 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
992 			unsigned reset_counter,
993 			bool interruptible, struct timespec *timeout)
994 {
995 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
996 	struct timespec before, now, wait_time={1,0};
997 	unsigned long timeout_jiffies;
998 	long end;
999 	bool wait_forever = true;
1000 	int ret;
1001 
1002 	WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1003 
1004 	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1005 		return 0;
1006 
1007 	trace_i915_gem_request_wait_begin(ring, seqno);
1008 
1009 	if (timeout != NULL) {
1010 		wait_time = *timeout;
1011 		wait_forever = false;
1012 	}
1013 
1014 	timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
1015 
1016 	if (WARN_ON(!ring->irq_get(ring)))
1017 		return -ENODEV;
1018 
1019 	/* Record current time in case interrupted by signal, or wedged * */
1020 	getrawmonotonic(&before);
1021 
1022 #define EXIT_COND \
1023 	(i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1024 	 i915_reset_in_progress(&dev_priv->gpu_error) || \
1025 	 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1026 	do {
1027 		if (interruptible)
1028 			end = wait_event_interruptible_timeout(ring->irq_queue,
1029 							       EXIT_COND,
1030 							       timeout_jiffies);
1031 		else
1032 			end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1033 						 timeout_jiffies);
1034 
1035 		/* We need to check whether any gpu reset happened in between
1036 		 * the caller grabbing the seqno and now ... */
1037 		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1038 			end = -EAGAIN;
1039 
1040 		/* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1041 		 * gone. */
1042 		ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1043 		if (ret)
1044 			end = ret;
1045 	} while (end == 0 && wait_forever);
1046 
1047 	getrawmonotonic(&now);
1048 
1049 	ring->irq_put(ring);
1050 	trace_i915_gem_request_wait_end(ring, seqno);
1051 #undef EXIT_COND
1052 
1053 	if (timeout) {
1054 		struct timespec sleep_time = timespec_sub(now, before);
1055 		*timeout = timespec_sub(*timeout, sleep_time);
1056 		if (!timespec_valid(timeout)) /* i.e. negative time remains */
1057 			set_normalized_timespec(timeout, 0, 0);
1058 	}
1059 
1060 	switch (end) {
1061 	case -EIO:
1062 	case -EAGAIN: /* Wedged */
1063 	case -ERESTARTSYS: /* Signal */
1064 		return (int)end;
1065 	case 0: /* Timeout */
1066 		return -ETIME;
1067 	default: /* Completed */
1068 		WARN_ON(end < 0); /* We're not aware of other errors */
1069 		return 0;
1070 	}
1071 }
1072 
1073 /**
1074  * Waits for a sequence number to be signaled, and cleans up the
1075  * request and object lists appropriately for that event.
1076  */
1077 int
1078 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1079 {
1080 	struct drm_device *dev = ring->dev;
1081 	struct drm_i915_private *dev_priv = dev->dev_private;
1082 	bool interruptible = dev_priv->mm.interruptible;
1083 	int ret;
1084 
1085 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1086 	BUG_ON(seqno == 0);
1087 
1088 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1089 	if (ret)
1090 		return ret;
1091 
1092 	ret = i915_gem_check_olr(ring, seqno);
1093 	if (ret)
1094 		return ret;
1095 
1096 	return __wait_seqno(ring, seqno,
1097 			    atomic_read(&dev_priv->gpu_error.reset_counter),
1098 			    interruptible, NULL);
1099 }
1100 
1101 static int
1102 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1103 				     struct intel_ring_buffer *ring)
1104 {
1105 	i915_gem_retire_requests_ring(ring);
1106 
1107 	/* Manually manage the write flush as we may have not yet
1108 	 * retired the buffer.
1109 	 *
1110 	 * Note that the last_write_seqno is always the earlier of
1111 	 * the two (read/write) seqno, so if we haved successfully waited,
1112 	 * we know we have passed the last write.
1113 	 */
1114 	obj->last_write_seqno = 0;
1115 	obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1116 
1117 	return 0;
1118 }
1119 
1120 /**
1121  * Ensures that all rendering to the object has completed and the object is
1122  * safe to unbind from the GTT or access from the CPU.
1123  */
1124 static __must_check int
1125 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1126 			       bool readonly)
1127 {
1128 	struct intel_ring_buffer *ring = obj->ring;
1129 	u32 seqno;
1130 	int ret;
1131 
1132 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1133 	if (seqno == 0)
1134 		return 0;
1135 
1136 	ret = i915_wait_seqno(ring, seqno);
1137 	if (ret)
1138 		return ret;
1139 
1140 	return i915_gem_object_wait_rendering__tail(obj, ring);
1141 }
1142 
1143 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1144  * as the object state may change during this call.
1145  */
1146 static __must_check int
1147 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1148 					    bool readonly)
1149 {
1150 	struct drm_device *dev = obj->base.dev;
1151 	struct drm_i915_private *dev_priv = dev->dev_private;
1152 	struct intel_ring_buffer *ring = obj->ring;
1153 	unsigned reset_counter;
1154 	u32 seqno;
1155 	int ret;
1156 
1157 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1158 	BUG_ON(!dev_priv->mm.interruptible);
1159 
1160 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1161 	if (seqno == 0)
1162 		return 0;
1163 
1164 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1165 	if (ret)
1166 		return ret;
1167 
1168 	ret = i915_gem_check_olr(ring, seqno);
1169 	if (ret)
1170 		return ret;
1171 
1172 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1173 	mutex_unlock(&dev->struct_mutex);
1174 	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1175 	mutex_lock(&dev->struct_mutex);
1176 	if (ret)
1177 		return ret;
1178 
1179 	return i915_gem_object_wait_rendering__tail(obj, ring);
1180 }
1181 
1182 /**
1183  * Called when user space prepares to use an object with the CPU, either
1184  * through the mmap ioctl's mapping or a GTT mapping.
1185  */
1186 int
1187 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1188 			  struct drm_file *file)
1189 {
1190 	struct drm_i915_gem_set_domain *args = data;
1191 	struct drm_i915_gem_object *obj;
1192 	uint32_t read_domains = args->read_domains;
1193 	uint32_t write_domain = args->write_domain;
1194 	int ret;
1195 
1196 	/* Only handle setting domains to types used by the CPU. */
1197 	if (write_domain & I915_GEM_GPU_DOMAINS)
1198 		return -EINVAL;
1199 
1200 	if (read_domains & I915_GEM_GPU_DOMAINS)
1201 		return -EINVAL;
1202 
1203 	/* Having something in the write domain implies it's in the read
1204 	 * domain, and only that read domain.  Enforce that in the request.
1205 	 */
1206 	if (write_domain != 0 && read_domains != write_domain)
1207 		return -EINVAL;
1208 
1209 	ret = i915_mutex_lock_interruptible(dev);
1210 	if (ret)
1211 		return ret;
1212 
1213 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1214 	if (&obj->base == NULL) {
1215 		ret = -ENOENT;
1216 		goto unlock;
1217 	}
1218 
1219 	/* Try to flush the object off the GPU without holding the lock.
1220 	 * We will repeat the flush holding the lock in the normal manner
1221 	 * to catch cases where we are gazumped.
1222 	 */
1223 	ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1224 	if (ret)
1225 		goto unref;
1226 
1227 	if (read_domains & I915_GEM_DOMAIN_GTT) {
1228 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1229 
1230 		/* Silently promote "you're not bound, there was nothing to do"
1231 		 * to success, since the client was just asking us to
1232 		 * make sure everything was done.
1233 		 */
1234 		if (ret == -EINVAL)
1235 			ret = 0;
1236 	} else {
1237 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1238 	}
1239 
1240 unref:
1241 	drm_gem_object_unreference(&obj->base);
1242 unlock:
1243 	mutex_unlock(&dev->struct_mutex);
1244 	return ret;
1245 }
1246 
1247 /**
1248  * Called when user space has done writes to this buffer
1249  */
1250 int
1251 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1252 			 struct drm_file *file)
1253 {
1254 	struct drm_i915_gem_sw_finish *args = data;
1255 	struct drm_i915_gem_object *obj;
1256 	int ret = 0;
1257 
1258 	ret = i915_mutex_lock_interruptible(dev);
1259 	if (ret)
1260 		return ret;
1261 
1262 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1263 	if (&obj->base == NULL) {
1264 		ret = -ENOENT;
1265 		goto unlock;
1266 	}
1267 
1268 	/* Pinned buffers may be scanout, so flush the cache */
1269 	if (obj->pin_display)
1270 		i915_gem_object_flush_cpu_write_domain(obj, true);
1271 
1272 	drm_gem_object_unreference(&obj->base);
1273 unlock:
1274 	mutex_unlock(&dev->struct_mutex);
1275 	return ret;
1276 }
1277 
1278 /**
1279  * Maps the contents of an object, returning the address it is mapped
1280  * into.
1281  *
1282  * While the mapping holds a reference on the contents of the object, it doesn't
1283  * imply a ref on the object itself.
1284  */
1285 int
1286 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1287 		    struct drm_file *file)
1288 {
1289 	struct drm_i915_gem_mmap *args = data;
1290 	struct drm_gem_object *obj;
1291 	unsigned long addr;
1292 
1293 	obj = drm_gem_object_lookup(dev, file, args->handle);
1294 	if (obj == NULL)
1295 		return -ENOENT;
1296 
1297 	/* prime objects have no backing filp to GEM mmap
1298 	 * pages from.
1299 	 */
1300 	if (!obj->filp) {
1301 		drm_gem_object_unreference_unlocked(obj);
1302 		return -EINVAL;
1303 	}
1304 
1305 	addr = vm_mmap(obj->filp, 0, args->size,
1306 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1307 		       args->offset);
1308 	drm_gem_object_unreference_unlocked(obj);
1309 	if (IS_ERR((void *)addr))
1310 		return addr;
1311 
1312 	args->addr_ptr = (uint64_t) addr;
1313 
1314 	return 0;
1315 }
1316 
1317 /**
1318  * i915_gem_fault - fault a page into the GTT
1319  * vma: VMA in question
1320  * vmf: fault info
1321  *
1322  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1323  * from userspace.  The fault handler takes care of binding the object to
1324  * the GTT (if needed), allocating and programming a fence register (again,
1325  * only if needed based on whether the old reg is still valid or the object
1326  * is tiled) and inserting a new PTE into the faulting process.
1327  *
1328  * Note that the faulting process may involve evicting existing objects
1329  * from the GTT and/or fence registers to make room.  So performance may
1330  * suffer if the GTT working set is large or there are few fence registers
1331  * left.
1332  */
1333 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1334 {
1335 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1336 	struct drm_device *dev = obj->base.dev;
1337 	drm_i915_private_t *dev_priv = dev->dev_private;
1338 	pgoff_t page_offset;
1339 	unsigned long pfn;
1340 	int ret = 0;
1341 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1342 
1343 	/* We don't use vmf->pgoff since that has the fake offset */
1344 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1345 		PAGE_SHIFT;
1346 
1347 	ret = i915_mutex_lock_interruptible(dev);
1348 	if (ret)
1349 		goto out;
1350 
1351 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1352 
1353 	/* Access to snoopable pages through the GTT is incoherent. */
1354 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1355 		ret = -EINVAL;
1356 		goto unlock;
1357 	}
1358 
1359 	/* Now bind it into the GTT if needed */
1360 	ret = i915_gem_obj_ggtt_pin(obj,  0, true, false);
1361 	if (ret)
1362 		goto unlock;
1363 
1364 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1365 	if (ret)
1366 		goto unpin;
1367 
1368 	ret = i915_gem_object_get_fence(obj);
1369 	if (ret)
1370 		goto unpin;
1371 
1372 	obj->fault_mappable = true;
1373 
1374 	pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1375 	pfn >>= PAGE_SHIFT;
1376 	pfn += page_offset;
1377 
1378 	/* Finally, remap it using the new GTT offset */
1379 	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1380 unpin:
1381 	i915_gem_object_unpin(obj);
1382 unlock:
1383 	mutex_unlock(&dev->struct_mutex);
1384 out:
1385 	switch (ret) {
1386 	case -EIO:
1387 		/* If this -EIO is due to a gpu hang, give the reset code a
1388 		 * chance to clean up the mess. Otherwise return the proper
1389 		 * SIGBUS. */
1390 		if (i915_terminally_wedged(&dev_priv->gpu_error))
1391 			return VM_FAULT_SIGBUS;
1392 	case -EAGAIN:
1393 		/* Give the error handler a chance to run and move the
1394 		 * objects off the GPU active list. Next time we service the
1395 		 * fault, we should be able to transition the page into the
1396 		 * GTT without touching the GPU (and so avoid further
1397 		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1398 		 * with coherency, just lost writes.
1399 		 */
1400 		set_need_resched();
1401 	case 0:
1402 	case -ERESTARTSYS:
1403 	case -EINTR:
1404 	case -EBUSY:
1405 		/*
1406 		 * EBUSY is ok: this just means that another thread
1407 		 * already did the job.
1408 		 */
1409 		return VM_FAULT_NOPAGE;
1410 	case -ENOMEM:
1411 		return VM_FAULT_OOM;
1412 	case -ENOSPC:
1413 		return VM_FAULT_SIGBUS;
1414 	default:
1415 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1416 		return VM_FAULT_SIGBUS;
1417 	}
1418 }
1419 
1420 /**
1421  * i915_gem_release_mmap - remove physical page mappings
1422  * @obj: obj in question
1423  *
1424  * Preserve the reservation of the mmapping with the DRM core code, but
1425  * relinquish ownership of the pages back to the system.
1426  *
1427  * It is vital that we remove the page mapping if we have mapped a tiled
1428  * object through the GTT and then lose the fence register due to
1429  * resource pressure. Similarly if the object has been moved out of the
1430  * aperture, than pages mapped into userspace must be revoked. Removing the
1431  * mapping will then trigger a page fault on the next user access, allowing
1432  * fixup by i915_gem_fault().
1433  */
1434 void
1435 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1436 {
1437 	if (!obj->fault_mappable)
1438 		return;
1439 
1440 	drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
1441 	obj->fault_mappable = false;
1442 }
1443 
1444 uint32_t
1445 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1446 {
1447 	uint32_t gtt_size;
1448 
1449 	if (INTEL_INFO(dev)->gen >= 4 ||
1450 	    tiling_mode == I915_TILING_NONE)
1451 		return size;
1452 
1453 	/* Previous chips need a power-of-two fence region when tiling */
1454 	if (INTEL_INFO(dev)->gen == 3)
1455 		gtt_size = 1024*1024;
1456 	else
1457 		gtt_size = 512*1024;
1458 
1459 	while (gtt_size < size)
1460 		gtt_size <<= 1;
1461 
1462 	return gtt_size;
1463 }
1464 
1465 /**
1466  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1467  * @obj: object to check
1468  *
1469  * Return the required GTT alignment for an object, taking into account
1470  * potential fence register mapping.
1471  */
1472 uint32_t
1473 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1474 			   int tiling_mode, bool fenced)
1475 {
1476 	/*
1477 	 * Minimum alignment is 4k (GTT page size), but might be greater
1478 	 * if a fence register is needed for the object.
1479 	 */
1480 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1481 	    tiling_mode == I915_TILING_NONE)
1482 		return 4096;
1483 
1484 	/*
1485 	 * Previous chips need to be aligned to the size of the smallest
1486 	 * fence register that can contain the object.
1487 	 */
1488 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1489 }
1490 
1491 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1492 {
1493 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1494 	int ret;
1495 
1496 	if (drm_vma_node_has_offset(&obj->base.vma_node))
1497 		return 0;
1498 
1499 	dev_priv->mm.shrinker_no_lock_stealing = true;
1500 
1501 	ret = drm_gem_create_mmap_offset(&obj->base);
1502 	if (ret != -ENOSPC)
1503 		goto out;
1504 
1505 	/* Badly fragmented mmap space? The only way we can recover
1506 	 * space is by destroying unwanted objects. We can't randomly release
1507 	 * mmap_offsets as userspace expects them to be persistent for the
1508 	 * lifetime of the objects. The closest we can is to release the
1509 	 * offsets on purgeable objects by truncating it and marking it purged,
1510 	 * which prevents userspace from ever using that object again.
1511 	 */
1512 	i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1513 	ret = drm_gem_create_mmap_offset(&obj->base);
1514 	if (ret != -ENOSPC)
1515 		goto out;
1516 
1517 	i915_gem_shrink_all(dev_priv);
1518 	ret = drm_gem_create_mmap_offset(&obj->base);
1519 out:
1520 	dev_priv->mm.shrinker_no_lock_stealing = false;
1521 
1522 	return ret;
1523 }
1524 
1525 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1526 {
1527 	drm_gem_free_mmap_offset(&obj->base);
1528 }
1529 
1530 int
1531 i915_gem_mmap_gtt(struct drm_file *file,
1532 		  struct drm_device *dev,
1533 		  uint32_t handle,
1534 		  uint64_t *offset)
1535 {
1536 	struct drm_i915_private *dev_priv = dev->dev_private;
1537 	struct drm_i915_gem_object *obj;
1538 	int ret;
1539 
1540 	ret = i915_mutex_lock_interruptible(dev);
1541 	if (ret)
1542 		return ret;
1543 
1544 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1545 	if (&obj->base == NULL) {
1546 		ret = -ENOENT;
1547 		goto unlock;
1548 	}
1549 
1550 	if (obj->base.size > dev_priv->gtt.mappable_end) {
1551 		ret = -E2BIG;
1552 		goto out;
1553 	}
1554 
1555 	if (obj->madv != I915_MADV_WILLNEED) {
1556 		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1557 		ret = -EINVAL;
1558 		goto out;
1559 	}
1560 
1561 	ret = i915_gem_object_create_mmap_offset(obj);
1562 	if (ret)
1563 		goto out;
1564 
1565 	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1566 
1567 out:
1568 	drm_gem_object_unreference(&obj->base);
1569 unlock:
1570 	mutex_unlock(&dev->struct_mutex);
1571 	return ret;
1572 }
1573 
1574 /**
1575  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1576  * @dev: DRM device
1577  * @data: GTT mapping ioctl data
1578  * @file: GEM object info
1579  *
1580  * Simply returns the fake offset to userspace so it can mmap it.
1581  * The mmap call will end up in drm_gem_mmap(), which will set things
1582  * up so we can get faults in the handler above.
1583  *
1584  * The fault handler will take care of binding the object into the GTT
1585  * (since it may have been evicted to make room for something), allocating
1586  * a fence register, and mapping the appropriate aperture address into
1587  * userspace.
1588  */
1589 int
1590 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1591 			struct drm_file *file)
1592 {
1593 	struct drm_i915_gem_mmap_gtt *args = data;
1594 
1595 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1596 }
1597 
1598 /* Immediately discard the backing storage */
1599 static void
1600 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1601 {
1602 	struct inode *inode;
1603 
1604 	i915_gem_object_free_mmap_offset(obj);
1605 
1606 	if (obj->base.filp == NULL)
1607 		return;
1608 
1609 	/* Our goal here is to return as much of the memory as
1610 	 * is possible back to the system as we are called from OOM.
1611 	 * To do this we must instruct the shmfs to drop all of its
1612 	 * backing pages, *now*.
1613 	 */
1614 	inode = file_inode(obj->base.filp);
1615 	shmem_truncate_range(inode, 0, (loff_t)-1);
1616 
1617 	obj->madv = __I915_MADV_PURGED;
1618 }
1619 
1620 static inline int
1621 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1622 {
1623 	return obj->madv == I915_MADV_DONTNEED;
1624 }
1625 
1626 static void
1627 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1628 {
1629 	struct sg_page_iter sg_iter;
1630 	int ret;
1631 
1632 	BUG_ON(obj->madv == __I915_MADV_PURGED);
1633 
1634 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
1635 	if (ret) {
1636 		/* In the event of a disaster, abandon all caches and
1637 		 * hope for the best.
1638 		 */
1639 		WARN_ON(ret != -EIO);
1640 		i915_gem_clflush_object(obj, true);
1641 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1642 	}
1643 
1644 	if (i915_gem_object_needs_bit17_swizzle(obj))
1645 		i915_gem_object_save_bit_17_swizzle(obj);
1646 
1647 	if (obj->madv == I915_MADV_DONTNEED)
1648 		obj->dirty = 0;
1649 
1650 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1651 		struct page *page = sg_page_iter_page(&sg_iter);
1652 
1653 		if (obj->dirty)
1654 			set_page_dirty(page);
1655 
1656 		if (obj->madv == I915_MADV_WILLNEED)
1657 			mark_page_accessed(page);
1658 
1659 		page_cache_release(page);
1660 	}
1661 	obj->dirty = 0;
1662 
1663 	sg_free_table(obj->pages);
1664 	kfree(obj->pages);
1665 }
1666 
1667 int
1668 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1669 {
1670 	const struct drm_i915_gem_object_ops *ops = obj->ops;
1671 
1672 	if (obj->pages == NULL)
1673 		return 0;
1674 
1675 	if (obj->pages_pin_count)
1676 		return -EBUSY;
1677 
1678 	BUG_ON(i915_gem_obj_bound_any(obj));
1679 
1680 	/* ->put_pages might need to allocate memory for the bit17 swizzle
1681 	 * array, hence protect them from being reaped by removing them from gtt
1682 	 * lists early. */
1683 	list_del(&obj->global_list);
1684 
1685 	ops->put_pages(obj);
1686 	obj->pages = NULL;
1687 
1688 	if (i915_gem_object_is_purgeable(obj))
1689 		i915_gem_object_truncate(obj);
1690 
1691 	return 0;
1692 }
1693 
1694 static long
1695 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1696 		  bool purgeable_only)
1697 {
1698 	struct drm_i915_gem_object *obj, *next;
1699 	long count = 0;
1700 
1701 	list_for_each_entry_safe(obj, next,
1702 				 &dev_priv->mm.unbound_list,
1703 				 global_list) {
1704 		if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1705 		    i915_gem_object_put_pages(obj) == 0) {
1706 			count += obj->base.size >> PAGE_SHIFT;
1707 			if (count >= target)
1708 				return count;
1709 		}
1710 	}
1711 
1712 	list_for_each_entry_safe(obj, next, &dev_priv->mm.bound_list,
1713 				 global_list) {
1714 		struct i915_vma *vma, *v;
1715 
1716 		if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1717 			continue;
1718 
1719 		list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1720 			if (i915_vma_unbind(vma))
1721 				break;
1722 
1723 		if (!i915_gem_object_put_pages(obj)) {
1724 			count += obj->base.size >> PAGE_SHIFT;
1725 			if (count >= target)
1726 				return count;
1727 		}
1728 	}
1729 
1730 	return count;
1731 }
1732 
1733 static long
1734 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1735 {
1736 	return __i915_gem_shrink(dev_priv, target, true);
1737 }
1738 
1739 static void
1740 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1741 {
1742 	struct drm_i915_gem_object *obj, *next;
1743 
1744 	i915_gem_evict_everything(dev_priv->dev);
1745 
1746 	list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1747 				 global_list)
1748 		i915_gem_object_put_pages(obj);
1749 }
1750 
1751 static int
1752 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1753 {
1754 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1755 	int page_count, i;
1756 	struct address_space *mapping;
1757 	struct sg_table *st;
1758 	struct scatterlist *sg;
1759 	struct sg_page_iter sg_iter;
1760 	struct page *page;
1761 	unsigned long last_pfn = 0;	/* suppress gcc warning */
1762 	gfp_t gfp;
1763 
1764 	/* Assert that the object is not currently in any GPU domain. As it
1765 	 * wasn't in the GTT, there shouldn't be any way it could have been in
1766 	 * a GPU cache
1767 	 */
1768 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1769 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1770 
1771 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1772 	if (st == NULL)
1773 		return -ENOMEM;
1774 
1775 	page_count = obj->base.size / PAGE_SIZE;
1776 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1777 		sg_free_table(st);
1778 		kfree(st);
1779 		return -ENOMEM;
1780 	}
1781 
1782 	/* Get the list of pages out of our struct file.  They'll be pinned
1783 	 * at this point until we release them.
1784 	 *
1785 	 * Fail silently without starting the shrinker
1786 	 */
1787 	mapping = file_inode(obj->base.filp)->i_mapping;
1788 	gfp = mapping_gfp_mask(mapping);
1789 	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1790 	gfp &= ~(__GFP_IO | __GFP_WAIT);
1791 	sg = st->sgl;
1792 	st->nents = 0;
1793 	for (i = 0; i < page_count; i++) {
1794 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1795 		if (IS_ERR(page)) {
1796 			i915_gem_purge(dev_priv, page_count);
1797 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1798 		}
1799 		if (IS_ERR(page)) {
1800 			/* We've tried hard to allocate the memory by reaping
1801 			 * our own buffer, now let the real VM do its job and
1802 			 * go down in flames if truly OOM.
1803 			 */
1804 			gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1805 			gfp |= __GFP_IO | __GFP_WAIT;
1806 
1807 			i915_gem_shrink_all(dev_priv);
1808 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1809 			if (IS_ERR(page))
1810 				goto err_pages;
1811 
1812 			gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1813 			gfp &= ~(__GFP_IO | __GFP_WAIT);
1814 		}
1815 #ifdef CONFIG_SWIOTLB
1816 		if (swiotlb_nr_tbl()) {
1817 			st->nents++;
1818 			sg_set_page(sg, page, PAGE_SIZE, 0);
1819 			sg = sg_next(sg);
1820 			continue;
1821 		}
1822 #endif
1823 		if (!i || page_to_pfn(page) != last_pfn + 1) {
1824 			if (i)
1825 				sg = sg_next(sg);
1826 			st->nents++;
1827 			sg_set_page(sg, page, PAGE_SIZE, 0);
1828 		} else {
1829 			sg->length += PAGE_SIZE;
1830 		}
1831 		last_pfn = page_to_pfn(page);
1832 	}
1833 #ifdef CONFIG_SWIOTLB
1834 	if (!swiotlb_nr_tbl())
1835 #endif
1836 		sg_mark_end(sg);
1837 	obj->pages = st;
1838 
1839 	if (i915_gem_object_needs_bit17_swizzle(obj))
1840 		i915_gem_object_do_bit_17_swizzle(obj);
1841 
1842 	return 0;
1843 
1844 err_pages:
1845 	sg_mark_end(sg);
1846 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1847 		page_cache_release(sg_page_iter_page(&sg_iter));
1848 	sg_free_table(st);
1849 	kfree(st);
1850 	return PTR_ERR(page);
1851 }
1852 
1853 /* Ensure that the associated pages are gathered from the backing storage
1854  * and pinned into our object. i915_gem_object_get_pages() may be called
1855  * multiple times before they are released by a single call to
1856  * i915_gem_object_put_pages() - once the pages are no longer referenced
1857  * either as a result of memory pressure (reaping pages under the shrinker)
1858  * or as the object is itself released.
1859  */
1860 int
1861 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1862 {
1863 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1864 	const struct drm_i915_gem_object_ops *ops = obj->ops;
1865 	int ret;
1866 
1867 	if (obj->pages)
1868 		return 0;
1869 
1870 	if (obj->madv != I915_MADV_WILLNEED) {
1871 		DRM_ERROR("Attempting to obtain a purgeable object\n");
1872 		return -EINVAL;
1873 	}
1874 
1875 	BUG_ON(obj->pages_pin_count);
1876 
1877 	ret = ops->get_pages(obj);
1878 	if (ret)
1879 		return ret;
1880 
1881 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1882 	return 0;
1883 }
1884 
1885 void
1886 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1887 			       struct intel_ring_buffer *ring)
1888 {
1889 	struct drm_device *dev = obj->base.dev;
1890 	struct drm_i915_private *dev_priv = dev->dev_private;
1891 	u32 seqno = intel_ring_get_seqno(ring);
1892 
1893 	BUG_ON(ring == NULL);
1894 	if (obj->ring != ring && obj->last_write_seqno) {
1895 		/* Keep the seqno relative to the current ring */
1896 		obj->last_write_seqno = seqno;
1897 	}
1898 	obj->ring = ring;
1899 
1900 	/* Add a reference if we're newly entering the active list. */
1901 	if (!obj->active) {
1902 		drm_gem_object_reference(&obj->base);
1903 		obj->active = 1;
1904 	}
1905 
1906 	list_move_tail(&obj->ring_list, &ring->active_list);
1907 
1908 	obj->last_read_seqno = seqno;
1909 
1910 	if (obj->fenced_gpu_access) {
1911 		obj->last_fenced_seqno = seqno;
1912 
1913 		/* Bump MRU to take account of the delayed flush */
1914 		if (obj->fence_reg != I915_FENCE_REG_NONE) {
1915 			struct drm_i915_fence_reg *reg;
1916 
1917 			reg = &dev_priv->fence_regs[obj->fence_reg];
1918 			list_move_tail(&reg->lru_list,
1919 				       &dev_priv->mm.fence_list);
1920 		}
1921 	}
1922 }
1923 
1924 static void
1925 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1926 {
1927 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1928 	struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1929 	struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1930 
1931 	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1932 	BUG_ON(!obj->active);
1933 
1934 	list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
1935 
1936 	list_del_init(&obj->ring_list);
1937 	obj->ring = NULL;
1938 
1939 	obj->last_read_seqno = 0;
1940 	obj->last_write_seqno = 0;
1941 	obj->base.write_domain = 0;
1942 
1943 	obj->last_fenced_seqno = 0;
1944 	obj->fenced_gpu_access = false;
1945 
1946 	obj->active = 0;
1947 	drm_gem_object_unreference(&obj->base);
1948 
1949 	WARN_ON(i915_verify_lists(dev));
1950 }
1951 
1952 static int
1953 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1954 {
1955 	struct drm_i915_private *dev_priv = dev->dev_private;
1956 	struct intel_ring_buffer *ring;
1957 	int ret, i, j;
1958 
1959 	/* Carefully retire all requests without writing to the rings */
1960 	for_each_ring(ring, dev_priv, i) {
1961 		ret = intel_ring_idle(ring);
1962 		if (ret)
1963 			return ret;
1964 	}
1965 	i915_gem_retire_requests(dev);
1966 
1967 	/* Finally reset hw state */
1968 	for_each_ring(ring, dev_priv, i) {
1969 		intel_ring_init_seqno(ring, seqno);
1970 
1971 		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1972 			ring->sync_seqno[j] = 0;
1973 	}
1974 
1975 	return 0;
1976 }
1977 
1978 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1979 {
1980 	struct drm_i915_private *dev_priv = dev->dev_private;
1981 	int ret;
1982 
1983 	if (seqno == 0)
1984 		return -EINVAL;
1985 
1986 	/* HWS page needs to be set less than what we
1987 	 * will inject to ring
1988 	 */
1989 	ret = i915_gem_init_seqno(dev, seqno - 1);
1990 	if (ret)
1991 		return ret;
1992 
1993 	/* Carefully set the last_seqno value so that wrap
1994 	 * detection still works
1995 	 */
1996 	dev_priv->next_seqno = seqno;
1997 	dev_priv->last_seqno = seqno - 1;
1998 	if (dev_priv->last_seqno == 0)
1999 		dev_priv->last_seqno--;
2000 
2001 	return 0;
2002 }
2003 
2004 int
2005 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2006 {
2007 	struct drm_i915_private *dev_priv = dev->dev_private;
2008 
2009 	/* reserve 0 for non-seqno */
2010 	if (dev_priv->next_seqno == 0) {
2011 		int ret = i915_gem_init_seqno(dev, 0);
2012 		if (ret)
2013 			return ret;
2014 
2015 		dev_priv->next_seqno = 1;
2016 	}
2017 
2018 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2019 	return 0;
2020 }
2021 
2022 int __i915_add_request(struct intel_ring_buffer *ring,
2023 		       struct drm_file *file,
2024 		       struct drm_i915_gem_object *obj,
2025 		       u32 *out_seqno)
2026 {
2027 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
2028 	struct drm_i915_gem_request *request;
2029 	u32 request_ring_position, request_start;
2030 	int was_empty;
2031 	int ret;
2032 
2033 	request_start = intel_ring_get_tail(ring);
2034 	/*
2035 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
2036 	 * after having emitted the batchbuffer command. Hence we need to fix
2037 	 * things up similar to emitting the lazy request. The difference here
2038 	 * is that the flush _must_ happen before the next request, no matter
2039 	 * what.
2040 	 */
2041 	ret = intel_ring_flush_all_caches(ring);
2042 	if (ret)
2043 		return ret;
2044 
2045 	request = kmalloc(sizeof(*request), GFP_KERNEL);
2046 	if (request == NULL)
2047 		return -ENOMEM;
2048 
2049 
2050 	/* Record the position of the start of the request so that
2051 	 * should we detect the updated seqno part-way through the
2052 	 * GPU processing the request, we never over-estimate the
2053 	 * position of the head.
2054 	 */
2055 	request_ring_position = intel_ring_get_tail(ring);
2056 
2057 	ret = ring->add_request(ring);
2058 	if (ret) {
2059 		kfree(request);
2060 		return ret;
2061 	}
2062 
2063 	request->seqno = intel_ring_get_seqno(ring);
2064 	request->ring = ring;
2065 	request->head = request_start;
2066 	request->tail = request_ring_position;
2067 	request->ctx = ring->last_context;
2068 	request->batch_obj = obj;
2069 
2070 	/* Whilst this request exists, batch_obj will be on the
2071 	 * active_list, and so will hold the active reference. Only when this
2072 	 * request is retired will the the batch_obj be moved onto the
2073 	 * inactive_list and lose its active reference. Hence we do not need
2074 	 * to explicitly hold another reference here.
2075 	 */
2076 
2077 	if (request->ctx)
2078 		i915_gem_context_reference(request->ctx);
2079 
2080 	request->emitted_jiffies = jiffies;
2081 	was_empty = list_empty(&ring->request_list);
2082 	list_add_tail(&request->list, &ring->request_list);
2083 	request->file_priv = NULL;
2084 
2085 	if (file) {
2086 		struct drm_i915_file_private *file_priv = file->driver_priv;
2087 
2088 		spin_lock(&file_priv->mm.lock);
2089 		request->file_priv = file_priv;
2090 		list_add_tail(&request->client_list,
2091 			      &file_priv->mm.request_list);
2092 		spin_unlock(&file_priv->mm.lock);
2093 	}
2094 
2095 	trace_i915_gem_request_add(ring, request->seqno);
2096 	ring->outstanding_lazy_request = 0;
2097 
2098 	if (!dev_priv->ums.mm_suspended) {
2099 		i915_queue_hangcheck(ring->dev);
2100 
2101 		if (was_empty) {
2102 			queue_delayed_work(dev_priv->wq,
2103 					   &dev_priv->mm.retire_work,
2104 					   round_jiffies_up_relative(HZ));
2105 			intel_mark_busy(dev_priv->dev);
2106 		}
2107 	}
2108 
2109 	if (out_seqno)
2110 		*out_seqno = request->seqno;
2111 	return 0;
2112 }
2113 
2114 static inline void
2115 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2116 {
2117 	struct drm_i915_file_private *file_priv = request->file_priv;
2118 
2119 	if (!file_priv)
2120 		return;
2121 
2122 	spin_lock(&file_priv->mm.lock);
2123 	if (request->file_priv) {
2124 		list_del(&request->client_list);
2125 		request->file_priv = NULL;
2126 	}
2127 	spin_unlock(&file_priv->mm.lock);
2128 }
2129 
2130 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2131 				    struct i915_address_space *vm)
2132 {
2133 	if (acthd >= i915_gem_obj_offset(obj, vm) &&
2134 	    acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
2135 		return true;
2136 
2137 	return false;
2138 }
2139 
2140 static bool i915_head_inside_request(const u32 acthd_unmasked,
2141 				     const u32 request_start,
2142 				     const u32 request_end)
2143 {
2144 	const u32 acthd = acthd_unmasked & HEAD_ADDR;
2145 
2146 	if (request_start < request_end) {
2147 		if (acthd >= request_start && acthd < request_end)
2148 			return true;
2149 	} else if (request_start > request_end) {
2150 		if (acthd >= request_start || acthd < request_end)
2151 			return true;
2152 	}
2153 
2154 	return false;
2155 }
2156 
2157 static struct i915_address_space *
2158 request_to_vm(struct drm_i915_gem_request *request)
2159 {
2160 	struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2161 	struct i915_address_space *vm;
2162 
2163 	vm = &dev_priv->gtt.base;
2164 
2165 	return vm;
2166 }
2167 
2168 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2169 				const u32 acthd, bool *inside)
2170 {
2171 	/* There is a possibility that unmasked head address
2172 	 * pointing inside the ring, matches the batch_obj address range.
2173 	 * However this is extremely unlikely.
2174 	 */
2175 	if (request->batch_obj) {
2176 		if (i915_head_inside_object(acthd, request->batch_obj,
2177 					    request_to_vm(request))) {
2178 			*inside = true;
2179 			return true;
2180 		}
2181 	}
2182 
2183 	if (i915_head_inside_request(acthd, request->head, request->tail)) {
2184 		*inside = false;
2185 		return true;
2186 	}
2187 
2188 	return false;
2189 }
2190 
2191 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2192 				  struct drm_i915_gem_request *request,
2193 				  u32 acthd)
2194 {
2195 	struct i915_ctx_hang_stats *hs = NULL;
2196 	bool inside, guilty;
2197 	unsigned long offset = 0;
2198 
2199 	/* Innocent until proven guilty */
2200 	guilty = false;
2201 
2202 	if (request->batch_obj)
2203 		offset = i915_gem_obj_offset(request->batch_obj,
2204 					     request_to_vm(request));
2205 
2206 	if (ring->hangcheck.action != HANGCHECK_WAIT &&
2207 	    i915_request_guilty(request, acthd, &inside)) {
2208 		DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2209 			  ring->name,
2210 			  inside ? "inside" : "flushing",
2211 			  offset,
2212 			  request->ctx ? request->ctx->id : 0,
2213 			  acthd);
2214 
2215 		guilty = true;
2216 	}
2217 
2218 	/* If contexts are disabled or this is the default context, use
2219 	 * file_priv->reset_state
2220 	 */
2221 	if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2222 		hs = &request->ctx->hang_stats;
2223 	else if (request->file_priv)
2224 		hs = &request->file_priv->hang_stats;
2225 
2226 	if (hs) {
2227 		if (guilty)
2228 			hs->batch_active++;
2229 		else
2230 			hs->batch_pending++;
2231 	}
2232 }
2233 
2234 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2235 {
2236 	list_del(&request->list);
2237 	i915_gem_request_remove_from_client(request);
2238 
2239 	if (request->ctx)
2240 		i915_gem_context_unreference(request->ctx);
2241 
2242 	kfree(request);
2243 }
2244 
2245 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2246 				      struct intel_ring_buffer *ring)
2247 {
2248 	u32 completed_seqno;
2249 	u32 acthd;
2250 
2251 	acthd = intel_ring_get_active_head(ring);
2252 	completed_seqno = ring->get_seqno(ring, false);
2253 
2254 	while (!list_empty(&ring->request_list)) {
2255 		struct drm_i915_gem_request *request;
2256 
2257 		request = list_first_entry(&ring->request_list,
2258 					   struct drm_i915_gem_request,
2259 					   list);
2260 
2261 		if (request->seqno > completed_seqno)
2262 			i915_set_reset_status(ring, request, acthd);
2263 
2264 		i915_gem_free_request(request);
2265 	}
2266 
2267 	while (!list_empty(&ring->active_list)) {
2268 		struct drm_i915_gem_object *obj;
2269 
2270 		obj = list_first_entry(&ring->active_list,
2271 				       struct drm_i915_gem_object,
2272 				       ring_list);
2273 
2274 		i915_gem_object_move_to_inactive(obj);
2275 	}
2276 }
2277 
2278 void i915_gem_restore_fences(struct drm_device *dev)
2279 {
2280 	struct drm_i915_private *dev_priv = dev->dev_private;
2281 	int i;
2282 
2283 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2284 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2285 
2286 		/*
2287 		 * Commit delayed tiling changes if we have an object still
2288 		 * attached to the fence, otherwise just clear the fence.
2289 		 */
2290 		if (reg->obj) {
2291 			i915_gem_object_update_fence(reg->obj, reg,
2292 						     reg->obj->tiling_mode);
2293 		} else {
2294 			i915_gem_write_fence(dev, i, NULL);
2295 		}
2296 	}
2297 }
2298 
2299 void i915_gem_reset(struct drm_device *dev)
2300 {
2301 	struct drm_i915_private *dev_priv = dev->dev_private;
2302 	struct intel_ring_buffer *ring;
2303 	int i;
2304 
2305 	for_each_ring(ring, dev_priv, i)
2306 		i915_gem_reset_ring_lists(dev_priv, ring);
2307 
2308 	i915_gem_restore_fences(dev);
2309 }
2310 
2311 /**
2312  * This function clears the request list as sequence numbers are passed.
2313  */
2314 void
2315 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2316 {
2317 	uint32_t seqno;
2318 
2319 	if (list_empty(&ring->request_list))
2320 		return;
2321 
2322 	WARN_ON(i915_verify_lists(ring->dev));
2323 
2324 	seqno = ring->get_seqno(ring, true);
2325 
2326 	while (!list_empty(&ring->request_list)) {
2327 		struct drm_i915_gem_request *request;
2328 
2329 		request = list_first_entry(&ring->request_list,
2330 					   struct drm_i915_gem_request,
2331 					   list);
2332 
2333 		if (!i915_seqno_passed(seqno, request->seqno))
2334 			break;
2335 
2336 		trace_i915_gem_request_retire(ring, request->seqno);
2337 		/* We know the GPU must have read the request to have
2338 		 * sent us the seqno + interrupt, so use the position
2339 		 * of tail of the request to update the last known position
2340 		 * of the GPU head.
2341 		 */
2342 		ring->last_retired_head = request->tail;
2343 
2344 		i915_gem_free_request(request);
2345 	}
2346 
2347 	/* Move any buffers on the active list that are no longer referenced
2348 	 * by the ringbuffer to the flushing/inactive lists as appropriate.
2349 	 */
2350 	while (!list_empty(&ring->active_list)) {
2351 		struct drm_i915_gem_object *obj;
2352 
2353 		obj = list_first_entry(&ring->active_list,
2354 				      struct drm_i915_gem_object,
2355 				      ring_list);
2356 
2357 		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2358 			break;
2359 
2360 		i915_gem_object_move_to_inactive(obj);
2361 	}
2362 
2363 	if (unlikely(ring->trace_irq_seqno &&
2364 		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2365 		ring->irq_put(ring);
2366 		ring->trace_irq_seqno = 0;
2367 	}
2368 
2369 	WARN_ON(i915_verify_lists(ring->dev));
2370 }
2371 
2372 void
2373 i915_gem_retire_requests(struct drm_device *dev)
2374 {
2375 	drm_i915_private_t *dev_priv = dev->dev_private;
2376 	struct intel_ring_buffer *ring;
2377 	int i;
2378 
2379 	for_each_ring(ring, dev_priv, i)
2380 		i915_gem_retire_requests_ring(ring);
2381 }
2382 
2383 static void
2384 i915_gem_retire_work_handler(struct work_struct *work)
2385 {
2386 	drm_i915_private_t *dev_priv;
2387 	struct drm_device *dev;
2388 	struct intel_ring_buffer *ring;
2389 	bool idle;
2390 	int i;
2391 
2392 	dev_priv = container_of(work, drm_i915_private_t,
2393 				mm.retire_work.work);
2394 	dev = dev_priv->dev;
2395 
2396 	/* Come back later if the device is busy... */
2397 	if (!mutex_trylock(&dev->struct_mutex)) {
2398 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2399 				   round_jiffies_up_relative(HZ));
2400 		return;
2401 	}
2402 
2403 	i915_gem_retire_requests(dev);
2404 
2405 	/* Send a periodic flush down the ring so we don't hold onto GEM
2406 	 * objects indefinitely.
2407 	 */
2408 	idle = true;
2409 	for_each_ring(ring, dev_priv, i) {
2410 		if (ring->gpu_caches_dirty)
2411 			i915_add_request(ring, NULL);
2412 
2413 		idle &= list_empty(&ring->request_list);
2414 	}
2415 
2416 	if (!dev_priv->ums.mm_suspended && !idle)
2417 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2418 				   round_jiffies_up_relative(HZ));
2419 	if (idle)
2420 		intel_mark_idle(dev);
2421 
2422 	mutex_unlock(&dev->struct_mutex);
2423 }
2424 
2425 /**
2426  * Ensures that an object will eventually get non-busy by flushing any required
2427  * write domains, emitting any outstanding lazy request and retiring and
2428  * completed requests.
2429  */
2430 static int
2431 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2432 {
2433 	int ret;
2434 
2435 	if (obj->active) {
2436 		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2437 		if (ret)
2438 			return ret;
2439 
2440 		i915_gem_retire_requests_ring(obj->ring);
2441 	}
2442 
2443 	return 0;
2444 }
2445 
2446 /**
2447  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2448  * @DRM_IOCTL_ARGS: standard ioctl arguments
2449  *
2450  * Returns 0 if successful, else an error is returned with the remaining time in
2451  * the timeout parameter.
2452  *  -ETIME: object is still busy after timeout
2453  *  -ERESTARTSYS: signal interrupted the wait
2454  *  -ENONENT: object doesn't exist
2455  * Also possible, but rare:
2456  *  -EAGAIN: GPU wedged
2457  *  -ENOMEM: damn
2458  *  -ENODEV: Internal IRQ fail
2459  *  -E?: The add request failed
2460  *
2461  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2462  * non-zero timeout parameter the wait ioctl will wait for the given number of
2463  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2464  * without holding struct_mutex the object may become re-busied before this
2465  * function completes. A similar but shorter * race condition exists in the busy
2466  * ioctl
2467  */
2468 int
2469 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2470 {
2471 	drm_i915_private_t *dev_priv = dev->dev_private;
2472 	struct drm_i915_gem_wait *args = data;
2473 	struct drm_i915_gem_object *obj;
2474 	struct intel_ring_buffer *ring = NULL;
2475 	struct timespec timeout_stack, *timeout = NULL;
2476 	unsigned reset_counter;
2477 	u32 seqno = 0;
2478 	int ret = 0;
2479 
2480 	if (args->timeout_ns >= 0) {
2481 		timeout_stack = ns_to_timespec(args->timeout_ns);
2482 		timeout = &timeout_stack;
2483 	}
2484 
2485 	ret = i915_mutex_lock_interruptible(dev);
2486 	if (ret)
2487 		return ret;
2488 
2489 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2490 	if (&obj->base == NULL) {
2491 		mutex_unlock(&dev->struct_mutex);
2492 		return -ENOENT;
2493 	}
2494 
2495 	/* Need to make sure the object gets inactive eventually. */
2496 	ret = i915_gem_object_flush_active(obj);
2497 	if (ret)
2498 		goto out;
2499 
2500 	if (obj->active) {
2501 		seqno = obj->last_read_seqno;
2502 		ring = obj->ring;
2503 	}
2504 
2505 	if (seqno == 0)
2506 		 goto out;
2507 
2508 	/* Do this after OLR check to make sure we make forward progress polling
2509 	 * on this IOCTL with a 0 timeout (like busy ioctl)
2510 	 */
2511 	if (!args->timeout_ns) {
2512 		ret = -ETIME;
2513 		goto out;
2514 	}
2515 
2516 	drm_gem_object_unreference(&obj->base);
2517 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2518 	mutex_unlock(&dev->struct_mutex);
2519 
2520 	ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2521 	if (timeout)
2522 		args->timeout_ns = timespec_to_ns(timeout);
2523 	return ret;
2524 
2525 out:
2526 	drm_gem_object_unreference(&obj->base);
2527 	mutex_unlock(&dev->struct_mutex);
2528 	return ret;
2529 }
2530 
2531 /**
2532  * i915_gem_object_sync - sync an object to a ring.
2533  *
2534  * @obj: object which may be in use on another ring.
2535  * @to: ring we wish to use the object on. May be NULL.
2536  *
2537  * This code is meant to abstract object synchronization with the GPU.
2538  * Calling with NULL implies synchronizing the object with the CPU
2539  * rather than a particular GPU ring.
2540  *
2541  * Returns 0 if successful, else propagates up the lower layer error.
2542  */
2543 int
2544 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2545 		     struct intel_ring_buffer *to)
2546 {
2547 	struct intel_ring_buffer *from = obj->ring;
2548 	u32 seqno;
2549 	int ret, idx;
2550 
2551 	if (from == NULL || to == from)
2552 		return 0;
2553 
2554 	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2555 		return i915_gem_object_wait_rendering(obj, false);
2556 
2557 	idx = intel_ring_sync_index(from, to);
2558 
2559 	seqno = obj->last_read_seqno;
2560 	if (seqno <= from->sync_seqno[idx])
2561 		return 0;
2562 
2563 	ret = i915_gem_check_olr(obj->ring, seqno);
2564 	if (ret)
2565 		return ret;
2566 
2567 	ret = to->sync_to(to, from, seqno);
2568 	if (!ret)
2569 		/* We use last_read_seqno because sync_to()
2570 		 * might have just caused seqno wrap under
2571 		 * the radar.
2572 		 */
2573 		from->sync_seqno[idx] = obj->last_read_seqno;
2574 
2575 	return ret;
2576 }
2577 
2578 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2579 {
2580 	u32 old_write_domain, old_read_domains;
2581 
2582 	/* Force a pagefault for domain tracking on next user access */
2583 	i915_gem_release_mmap(obj);
2584 
2585 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2586 		return;
2587 
2588 	/* Wait for any direct GTT access to complete */
2589 	mb();
2590 
2591 	old_read_domains = obj->base.read_domains;
2592 	old_write_domain = obj->base.write_domain;
2593 
2594 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2595 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2596 
2597 	trace_i915_gem_object_change_domain(obj,
2598 					    old_read_domains,
2599 					    old_write_domain);
2600 }
2601 
2602 int i915_vma_unbind(struct i915_vma *vma)
2603 {
2604 	struct drm_i915_gem_object *obj = vma->obj;
2605 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2606 	int ret;
2607 
2608 	if (list_empty(&vma->vma_link))
2609 		return 0;
2610 
2611 	if (!drm_mm_node_allocated(&vma->node))
2612 		goto destroy;
2613 
2614 	if (obj->pin_count)
2615 		return -EBUSY;
2616 
2617 	BUG_ON(obj->pages == NULL);
2618 
2619 	ret = i915_gem_object_finish_gpu(obj);
2620 	if (ret)
2621 		return ret;
2622 	/* Continue on if we fail due to EIO, the GPU is hung so we
2623 	 * should be safe and we need to cleanup or else we might
2624 	 * cause memory corruption through use-after-free.
2625 	 */
2626 
2627 	i915_gem_object_finish_gtt(obj);
2628 
2629 	/* release the fence reg _after_ flushing */
2630 	ret = i915_gem_object_put_fence(obj);
2631 	if (ret)
2632 		return ret;
2633 
2634 	trace_i915_vma_unbind(vma);
2635 
2636 	if (obj->has_global_gtt_mapping)
2637 		i915_gem_gtt_unbind_object(obj);
2638 	if (obj->has_aliasing_ppgtt_mapping) {
2639 		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2640 		obj->has_aliasing_ppgtt_mapping = 0;
2641 	}
2642 	i915_gem_gtt_finish_object(obj);
2643 	i915_gem_object_unpin_pages(obj);
2644 
2645 	list_del(&vma->mm_list);
2646 	/* Avoid an unnecessary call to unbind on rebind. */
2647 	if (i915_is_ggtt(vma->vm))
2648 		obj->map_and_fenceable = true;
2649 
2650 	drm_mm_remove_node(&vma->node);
2651 
2652 destroy:
2653 	i915_gem_vma_destroy(vma);
2654 
2655 	/* Since the unbound list is global, only move to that list if
2656 	 * no more VMAs exist.
2657 	 * NB: Until we have real VMAs there will only ever be one */
2658 	WARN_ON(!list_empty(&obj->vma_list));
2659 	if (list_empty(&obj->vma_list))
2660 		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2661 
2662 	return 0;
2663 }
2664 
2665 /**
2666  * Unbinds an object from the global GTT aperture.
2667  */
2668 int
2669 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2670 {
2671 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2672 	struct i915_address_space *ggtt = &dev_priv->gtt.base;
2673 
2674 	if (!i915_gem_obj_ggtt_bound(obj))
2675 		return 0;
2676 
2677 	if (obj->pin_count)
2678 		return -EBUSY;
2679 
2680 	BUG_ON(obj->pages == NULL);
2681 
2682 	return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2683 }
2684 
2685 int i915_gpu_idle(struct drm_device *dev)
2686 {
2687 	drm_i915_private_t *dev_priv = dev->dev_private;
2688 	struct intel_ring_buffer *ring;
2689 	int ret, i;
2690 
2691 	/* Flush everything onto the inactive list. */
2692 	for_each_ring(ring, dev_priv, i) {
2693 		ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2694 		if (ret)
2695 			return ret;
2696 
2697 		ret = intel_ring_idle(ring);
2698 		if (ret)
2699 			return ret;
2700 	}
2701 
2702 	return 0;
2703 }
2704 
2705 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2706 				 struct drm_i915_gem_object *obj)
2707 {
2708 	drm_i915_private_t *dev_priv = dev->dev_private;
2709 	int fence_reg;
2710 	int fence_pitch_shift;
2711 
2712 	if (INTEL_INFO(dev)->gen >= 6) {
2713 		fence_reg = FENCE_REG_SANDYBRIDGE_0;
2714 		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2715 	} else {
2716 		fence_reg = FENCE_REG_965_0;
2717 		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2718 	}
2719 
2720 	fence_reg += reg * 8;
2721 
2722 	/* To w/a incoherency with non-atomic 64-bit register updates,
2723 	 * we split the 64-bit update into two 32-bit writes. In order
2724 	 * for a partial fence not to be evaluated between writes, we
2725 	 * precede the update with write to turn off the fence register,
2726 	 * and only enable the fence as the last step.
2727 	 *
2728 	 * For extra levels of paranoia, we make sure each step lands
2729 	 * before applying the next step.
2730 	 */
2731 	I915_WRITE(fence_reg, 0);
2732 	POSTING_READ(fence_reg);
2733 
2734 	if (obj) {
2735 		u32 size = i915_gem_obj_ggtt_size(obj);
2736 		uint64_t val;
2737 
2738 		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2739 				 0xfffff000) << 32;
2740 		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2741 		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2742 		if (obj->tiling_mode == I915_TILING_Y)
2743 			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2744 		val |= I965_FENCE_REG_VALID;
2745 
2746 		I915_WRITE(fence_reg + 4, val >> 32);
2747 		POSTING_READ(fence_reg + 4);
2748 
2749 		I915_WRITE(fence_reg + 0, val);
2750 		POSTING_READ(fence_reg);
2751 	} else {
2752 		I915_WRITE(fence_reg + 4, 0);
2753 		POSTING_READ(fence_reg + 4);
2754 	}
2755 }
2756 
2757 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2758 				 struct drm_i915_gem_object *obj)
2759 {
2760 	drm_i915_private_t *dev_priv = dev->dev_private;
2761 	u32 val;
2762 
2763 	if (obj) {
2764 		u32 size = i915_gem_obj_ggtt_size(obj);
2765 		int pitch_val;
2766 		int tile_width;
2767 
2768 		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2769 		     (size & -size) != size ||
2770 		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2771 		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2772 		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2773 
2774 		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2775 			tile_width = 128;
2776 		else
2777 			tile_width = 512;
2778 
2779 		/* Note: pitch better be a power of two tile widths */
2780 		pitch_val = obj->stride / tile_width;
2781 		pitch_val = ffs(pitch_val) - 1;
2782 
2783 		val = i915_gem_obj_ggtt_offset(obj);
2784 		if (obj->tiling_mode == I915_TILING_Y)
2785 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2786 		val |= I915_FENCE_SIZE_BITS(size);
2787 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2788 		val |= I830_FENCE_REG_VALID;
2789 	} else
2790 		val = 0;
2791 
2792 	if (reg < 8)
2793 		reg = FENCE_REG_830_0 + reg * 4;
2794 	else
2795 		reg = FENCE_REG_945_8 + (reg - 8) * 4;
2796 
2797 	I915_WRITE(reg, val);
2798 	POSTING_READ(reg);
2799 }
2800 
2801 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2802 				struct drm_i915_gem_object *obj)
2803 {
2804 	drm_i915_private_t *dev_priv = dev->dev_private;
2805 	uint32_t val;
2806 
2807 	if (obj) {
2808 		u32 size = i915_gem_obj_ggtt_size(obj);
2809 		uint32_t pitch_val;
2810 
2811 		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2812 		     (size & -size) != size ||
2813 		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2814 		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2815 		     i915_gem_obj_ggtt_offset(obj), size);
2816 
2817 		pitch_val = obj->stride / 128;
2818 		pitch_val = ffs(pitch_val) - 1;
2819 
2820 		val = i915_gem_obj_ggtt_offset(obj);
2821 		if (obj->tiling_mode == I915_TILING_Y)
2822 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2823 		val |= I830_FENCE_SIZE_BITS(size);
2824 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2825 		val |= I830_FENCE_REG_VALID;
2826 	} else
2827 		val = 0;
2828 
2829 	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2830 	POSTING_READ(FENCE_REG_830_0 + reg * 4);
2831 }
2832 
2833 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2834 {
2835 	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2836 }
2837 
2838 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2839 				 struct drm_i915_gem_object *obj)
2840 {
2841 	struct drm_i915_private *dev_priv = dev->dev_private;
2842 
2843 	/* Ensure that all CPU reads are completed before installing a fence
2844 	 * and all writes before removing the fence.
2845 	 */
2846 	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2847 		mb();
2848 
2849 	WARN(obj && (!obj->stride || !obj->tiling_mode),
2850 	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2851 	     obj->stride, obj->tiling_mode);
2852 
2853 	switch (INTEL_INFO(dev)->gen) {
2854 	case 7:
2855 	case 6:
2856 	case 5:
2857 	case 4: i965_write_fence_reg(dev, reg, obj); break;
2858 	case 3: i915_write_fence_reg(dev, reg, obj); break;
2859 	case 2: i830_write_fence_reg(dev, reg, obj); break;
2860 	default: BUG();
2861 	}
2862 
2863 	/* And similarly be paranoid that no direct access to this region
2864 	 * is reordered to before the fence is installed.
2865 	 */
2866 	if (i915_gem_object_needs_mb(obj))
2867 		mb();
2868 }
2869 
2870 static inline int fence_number(struct drm_i915_private *dev_priv,
2871 			       struct drm_i915_fence_reg *fence)
2872 {
2873 	return fence - dev_priv->fence_regs;
2874 }
2875 
2876 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2877 					 struct drm_i915_fence_reg *fence,
2878 					 bool enable)
2879 {
2880 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2881 	int reg = fence_number(dev_priv, fence);
2882 
2883 	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2884 
2885 	if (enable) {
2886 		obj->fence_reg = reg;
2887 		fence->obj = obj;
2888 		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2889 	} else {
2890 		obj->fence_reg = I915_FENCE_REG_NONE;
2891 		fence->obj = NULL;
2892 		list_del_init(&fence->lru_list);
2893 	}
2894 	obj->fence_dirty = false;
2895 }
2896 
2897 static int
2898 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2899 {
2900 	if (obj->last_fenced_seqno) {
2901 		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2902 		if (ret)
2903 			return ret;
2904 
2905 		obj->last_fenced_seqno = 0;
2906 	}
2907 
2908 	obj->fenced_gpu_access = false;
2909 	return 0;
2910 }
2911 
2912 int
2913 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2914 {
2915 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2916 	struct drm_i915_fence_reg *fence;
2917 	int ret;
2918 
2919 	ret = i915_gem_object_wait_fence(obj);
2920 	if (ret)
2921 		return ret;
2922 
2923 	if (obj->fence_reg == I915_FENCE_REG_NONE)
2924 		return 0;
2925 
2926 	fence = &dev_priv->fence_regs[obj->fence_reg];
2927 
2928 	i915_gem_object_fence_lost(obj);
2929 	i915_gem_object_update_fence(obj, fence, false);
2930 
2931 	return 0;
2932 }
2933 
2934 static struct drm_i915_fence_reg *
2935 i915_find_fence_reg(struct drm_device *dev)
2936 {
2937 	struct drm_i915_private *dev_priv = dev->dev_private;
2938 	struct drm_i915_fence_reg *reg, *avail;
2939 	int i;
2940 
2941 	/* First try to find a free reg */
2942 	avail = NULL;
2943 	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2944 		reg = &dev_priv->fence_regs[i];
2945 		if (!reg->obj)
2946 			return reg;
2947 
2948 		if (!reg->pin_count)
2949 			avail = reg;
2950 	}
2951 
2952 	if (avail == NULL)
2953 		return NULL;
2954 
2955 	/* None available, try to steal one or wait for a user to finish */
2956 	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2957 		if (reg->pin_count)
2958 			continue;
2959 
2960 		return reg;
2961 	}
2962 
2963 	return NULL;
2964 }
2965 
2966 /**
2967  * i915_gem_object_get_fence - set up fencing for an object
2968  * @obj: object to map through a fence reg
2969  *
2970  * When mapping objects through the GTT, userspace wants to be able to write
2971  * to them without having to worry about swizzling if the object is tiled.
2972  * This function walks the fence regs looking for a free one for @obj,
2973  * stealing one if it can't find any.
2974  *
2975  * It then sets up the reg based on the object's properties: address, pitch
2976  * and tiling format.
2977  *
2978  * For an untiled surface, this removes any existing fence.
2979  */
2980 int
2981 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2982 {
2983 	struct drm_device *dev = obj->base.dev;
2984 	struct drm_i915_private *dev_priv = dev->dev_private;
2985 	bool enable = obj->tiling_mode != I915_TILING_NONE;
2986 	struct drm_i915_fence_reg *reg;
2987 	int ret;
2988 
2989 	/* Have we updated the tiling parameters upon the object and so
2990 	 * will need to serialise the write to the associated fence register?
2991 	 */
2992 	if (obj->fence_dirty) {
2993 		ret = i915_gem_object_wait_fence(obj);
2994 		if (ret)
2995 			return ret;
2996 	}
2997 
2998 	/* Just update our place in the LRU if our fence is getting reused. */
2999 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
3000 		reg = &dev_priv->fence_regs[obj->fence_reg];
3001 		if (!obj->fence_dirty) {
3002 			list_move_tail(&reg->lru_list,
3003 				       &dev_priv->mm.fence_list);
3004 			return 0;
3005 		}
3006 	} else if (enable) {
3007 		reg = i915_find_fence_reg(dev);
3008 		if (reg == NULL)
3009 			return -EDEADLK;
3010 
3011 		if (reg->obj) {
3012 			struct drm_i915_gem_object *old = reg->obj;
3013 
3014 			ret = i915_gem_object_wait_fence(old);
3015 			if (ret)
3016 				return ret;
3017 
3018 			i915_gem_object_fence_lost(old);
3019 		}
3020 	} else
3021 		return 0;
3022 
3023 	i915_gem_object_update_fence(obj, reg, enable);
3024 
3025 	return 0;
3026 }
3027 
3028 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3029 				     struct drm_mm_node *gtt_space,
3030 				     unsigned long cache_level)
3031 {
3032 	struct drm_mm_node *other;
3033 
3034 	/* On non-LLC machines we have to be careful when putting differing
3035 	 * types of snoopable memory together to avoid the prefetcher
3036 	 * crossing memory domains and dying.
3037 	 */
3038 	if (HAS_LLC(dev))
3039 		return true;
3040 
3041 	if (!drm_mm_node_allocated(gtt_space))
3042 		return true;
3043 
3044 	if (list_empty(&gtt_space->node_list))
3045 		return true;
3046 
3047 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3048 	if (other->allocated && !other->hole_follows && other->color != cache_level)
3049 		return false;
3050 
3051 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3052 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3053 		return false;
3054 
3055 	return true;
3056 }
3057 
3058 static void i915_gem_verify_gtt(struct drm_device *dev)
3059 {
3060 #if WATCH_GTT
3061 	struct drm_i915_private *dev_priv = dev->dev_private;
3062 	struct drm_i915_gem_object *obj;
3063 	int err = 0;
3064 
3065 	list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3066 		if (obj->gtt_space == NULL) {
3067 			printk(KERN_ERR "object found on GTT list with no space reserved\n");
3068 			err++;
3069 			continue;
3070 		}
3071 
3072 		if (obj->cache_level != obj->gtt_space->color) {
3073 			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3074 			       i915_gem_obj_ggtt_offset(obj),
3075 			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3076 			       obj->cache_level,
3077 			       obj->gtt_space->color);
3078 			err++;
3079 			continue;
3080 		}
3081 
3082 		if (!i915_gem_valid_gtt_space(dev,
3083 					      obj->gtt_space,
3084 					      obj->cache_level)) {
3085 			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3086 			       i915_gem_obj_ggtt_offset(obj),
3087 			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3088 			       obj->cache_level);
3089 			err++;
3090 			continue;
3091 		}
3092 	}
3093 
3094 	WARN_ON(err);
3095 #endif
3096 }
3097 
3098 /**
3099  * Finds free space in the GTT aperture and binds the object there.
3100  */
3101 static int
3102 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3103 			   struct i915_address_space *vm,
3104 			   unsigned alignment,
3105 			   bool map_and_fenceable,
3106 			   bool nonblocking)
3107 {
3108 	struct drm_device *dev = obj->base.dev;
3109 	drm_i915_private_t *dev_priv = dev->dev_private;
3110 	u32 size, fence_size, fence_alignment, unfenced_alignment;
3111 	size_t gtt_max =
3112 		map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
3113 	struct i915_vma *vma;
3114 	int ret;
3115 
3116 	fence_size = i915_gem_get_gtt_size(dev,
3117 					   obj->base.size,
3118 					   obj->tiling_mode);
3119 	fence_alignment = i915_gem_get_gtt_alignment(dev,
3120 						     obj->base.size,
3121 						     obj->tiling_mode, true);
3122 	unfenced_alignment =
3123 		i915_gem_get_gtt_alignment(dev,
3124 						    obj->base.size,
3125 						    obj->tiling_mode, false);
3126 
3127 	if (alignment == 0)
3128 		alignment = map_and_fenceable ? fence_alignment :
3129 						unfenced_alignment;
3130 	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3131 		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3132 		return -EINVAL;
3133 	}
3134 
3135 	size = map_and_fenceable ? fence_size : obj->base.size;
3136 
3137 	/* If the object is bigger than the entire aperture, reject it early
3138 	 * before evicting everything in a vain attempt to find space.
3139 	 */
3140 	if (obj->base.size > gtt_max) {
3141 		DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3142 			  obj->base.size,
3143 			  map_and_fenceable ? "mappable" : "total",
3144 			  gtt_max);
3145 		return -E2BIG;
3146 	}
3147 
3148 	ret = i915_gem_object_get_pages(obj);
3149 	if (ret)
3150 		return ret;
3151 
3152 	i915_gem_object_pin_pages(obj);
3153 
3154 	BUG_ON(!i915_is_ggtt(vm));
3155 
3156 	vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3157 	if (IS_ERR(vma)) {
3158 		ret = PTR_ERR(vma);
3159 		goto err_unpin;
3160 	}
3161 
3162 	/* For now we only ever use 1 vma per object */
3163 	WARN_ON(!list_is_singular(&obj->vma_list));
3164 
3165 search_free:
3166 	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3167 						  size, alignment,
3168 						  obj->cache_level, 0, gtt_max,
3169 						  DRM_MM_SEARCH_DEFAULT);
3170 	if (ret) {
3171 		ret = i915_gem_evict_something(dev, vm, size, alignment,
3172 					       obj->cache_level,
3173 					       map_and_fenceable,
3174 					       nonblocking);
3175 		if (ret == 0)
3176 			goto search_free;
3177 
3178 		goto err_free_vma;
3179 	}
3180 	if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3181 					      obj->cache_level))) {
3182 		ret = -EINVAL;
3183 		goto err_remove_node;
3184 	}
3185 
3186 	ret = i915_gem_gtt_prepare_object(obj);
3187 	if (ret)
3188 		goto err_remove_node;
3189 
3190 	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3191 	list_add_tail(&vma->mm_list, &vm->inactive_list);
3192 
3193 	if (i915_is_ggtt(vm)) {
3194 		bool mappable, fenceable;
3195 
3196 		fenceable = (vma->node.size == fence_size &&
3197 			     (vma->node.start & (fence_alignment - 1)) == 0);
3198 
3199 		mappable = (vma->node.start + obj->base.size <=
3200 			    dev_priv->gtt.mappable_end);
3201 
3202 		obj->map_and_fenceable = mappable && fenceable;
3203 	}
3204 
3205 	WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
3206 
3207 	trace_i915_vma_bind(vma, map_and_fenceable);
3208 	i915_gem_verify_gtt(dev);
3209 	return 0;
3210 
3211 err_remove_node:
3212 	drm_mm_remove_node(&vma->node);
3213 err_free_vma:
3214 	i915_gem_vma_destroy(vma);
3215 err_unpin:
3216 	i915_gem_object_unpin_pages(obj);
3217 	return ret;
3218 }
3219 
3220 bool
3221 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3222 			bool force)
3223 {
3224 	/* If we don't have a page list set up, then we're not pinned
3225 	 * to GPU, and we can ignore the cache flush because it'll happen
3226 	 * again at bind time.
3227 	 */
3228 	if (obj->pages == NULL)
3229 		return false;
3230 
3231 	/*
3232 	 * Stolen memory is always coherent with the GPU as it is explicitly
3233 	 * marked as wc by the system, or the system is cache-coherent.
3234 	 */
3235 	if (obj->stolen)
3236 		return false;
3237 
3238 	/* If the GPU is snooping the contents of the CPU cache,
3239 	 * we do not need to manually clear the CPU cache lines.  However,
3240 	 * the caches are only snooped when the render cache is
3241 	 * flushed/invalidated.  As we always have to emit invalidations
3242 	 * and flushes when moving into and out of the RENDER domain, correct
3243 	 * snooping behaviour occurs naturally as the result of our domain
3244 	 * tracking.
3245 	 */
3246 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3247 		return false;
3248 
3249 	trace_i915_gem_object_clflush(obj);
3250 	drm_clflush_sg(obj->pages);
3251 
3252 	return true;
3253 }
3254 
3255 /** Flushes the GTT write domain for the object if it's dirty. */
3256 static void
3257 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3258 {
3259 	uint32_t old_write_domain;
3260 
3261 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3262 		return;
3263 
3264 	/* No actual flushing is required for the GTT write domain.  Writes
3265 	 * to it immediately go to main memory as far as we know, so there's
3266 	 * no chipset flush.  It also doesn't land in render cache.
3267 	 *
3268 	 * However, we do have to enforce the order so that all writes through
3269 	 * the GTT land before any writes to the device, such as updates to
3270 	 * the GATT itself.
3271 	 */
3272 	wmb();
3273 
3274 	old_write_domain = obj->base.write_domain;
3275 	obj->base.write_domain = 0;
3276 
3277 	trace_i915_gem_object_change_domain(obj,
3278 					    obj->base.read_domains,
3279 					    old_write_domain);
3280 }
3281 
3282 /** Flushes the CPU write domain for the object if it's dirty. */
3283 static void
3284 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3285 				       bool force)
3286 {
3287 	uint32_t old_write_domain;
3288 
3289 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3290 		return;
3291 
3292 	if (i915_gem_clflush_object(obj, force))
3293 		i915_gem_chipset_flush(obj->base.dev);
3294 
3295 	old_write_domain = obj->base.write_domain;
3296 	obj->base.write_domain = 0;
3297 
3298 	trace_i915_gem_object_change_domain(obj,
3299 					    obj->base.read_domains,
3300 					    old_write_domain);
3301 }
3302 
3303 /**
3304  * Moves a single object to the GTT read, and possibly write domain.
3305  *
3306  * This function returns when the move is complete, including waiting on
3307  * flushes to occur.
3308  */
3309 int
3310 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3311 {
3312 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3313 	uint32_t old_write_domain, old_read_domains;
3314 	int ret;
3315 
3316 	/* Not valid to be called on unbound objects. */
3317 	if (!i915_gem_obj_bound_any(obj))
3318 		return -EINVAL;
3319 
3320 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3321 		return 0;
3322 
3323 	ret = i915_gem_object_wait_rendering(obj, !write);
3324 	if (ret)
3325 		return ret;
3326 
3327 	i915_gem_object_flush_cpu_write_domain(obj, false);
3328 
3329 	/* Serialise direct access to this object with the barriers for
3330 	 * coherent writes from the GPU, by effectively invalidating the
3331 	 * GTT domain upon first access.
3332 	 */
3333 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3334 		mb();
3335 
3336 	old_write_domain = obj->base.write_domain;
3337 	old_read_domains = obj->base.read_domains;
3338 
3339 	/* It should now be out of any other write domains, and we can update
3340 	 * the domain values for our changes.
3341 	 */
3342 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3343 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3344 	if (write) {
3345 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3346 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3347 		obj->dirty = 1;
3348 	}
3349 
3350 	trace_i915_gem_object_change_domain(obj,
3351 					    old_read_domains,
3352 					    old_write_domain);
3353 
3354 	/* And bump the LRU for this access */
3355 	if (i915_gem_object_is_inactive(obj)) {
3356 		struct i915_vma *vma = i915_gem_obj_to_vma(obj,
3357 							   &dev_priv->gtt.base);
3358 		if (vma)
3359 			list_move_tail(&vma->mm_list,
3360 				       &dev_priv->gtt.base.inactive_list);
3361 
3362 	}
3363 
3364 	return 0;
3365 }
3366 
3367 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3368 				    enum i915_cache_level cache_level)
3369 {
3370 	struct drm_device *dev = obj->base.dev;
3371 	drm_i915_private_t *dev_priv = dev->dev_private;
3372 	struct i915_vma *vma;
3373 	int ret;
3374 
3375 	if (obj->cache_level == cache_level)
3376 		return 0;
3377 
3378 	if (obj->pin_count) {
3379 		DRM_DEBUG("can not change the cache level of pinned objects\n");
3380 		return -EBUSY;
3381 	}
3382 
3383 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
3384 		if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3385 			ret = i915_vma_unbind(vma);
3386 			if (ret)
3387 				return ret;
3388 
3389 			break;
3390 		}
3391 	}
3392 
3393 	if (i915_gem_obj_bound_any(obj)) {
3394 		ret = i915_gem_object_finish_gpu(obj);
3395 		if (ret)
3396 			return ret;
3397 
3398 		i915_gem_object_finish_gtt(obj);
3399 
3400 		/* Before SandyBridge, you could not use tiling or fence
3401 		 * registers with snooped memory, so relinquish any fences
3402 		 * currently pointing to our region in the aperture.
3403 		 */
3404 		if (INTEL_INFO(dev)->gen < 6) {
3405 			ret = i915_gem_object_put_fence(obj);
3406 			if (ret)
3407 				return ret;
3408 		}
3409 
3410 		if (obj->has_global_gtt_mapping)
3411 			i915_gem_gtt_bind_object(obj, cache_level);
3412 		if (obj->has_aliasing_ppgtt_mapping)
3413 			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3414 					       obj, cache_level);
3415 	}
3416 
3417 	list_for_each_entry(vma, &obj->vma_list, vma_link)
3418 		vma->node.color = cache_level;
3419 	obj->cache_level = cache_level;
3420 
3421 	if (cpu_write_needs_clflush(obj)) {
3422 		u32 old_read_domains, old_write_domain;
3423 
3424 		/* If we're coming from LLC cached, then we haven't
3425 		 * actually been tracking whether the data is in the
3426 		 * CPU cache or not, since we only allow one bit set
3427 		 * in obj->write_domain and have been skipping the clflushes.
3428 		 * Just set it to the CPU cache for now.
3429 		 */
3430 		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3431 
3432 		old_read_domains = obj->base.read_domains;
3433 		old_write_domain = obj->base.write_domain;
3434 
3435 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3436 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3437 
3438 		trace_i915_gem_object_change_domain(obj,
3439 						    old_read_domains,
3440 						    old_write_domain);
3441 	}
3442 
3443 	i915_gem_verify_gtt(dev);
3444 	return 0;
3445 }
3446 
3447 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3448 			       struct drm_file *file)
3449 {
3450 	struct drm_i915_gem_caching *args = data;
3451 	struct drm_i915_gem_object *obj;
3452 	int ret;
3453 
3454 	ret = i915_mutex_lock_interruptible(dev);
3455 	if (ret)
3456 		return ret;
3457 
3458 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3459 	if (&obj->base == NULL) {
3460 		ret = -ENOENT;
3461 		goto unlock;
3462 	}
3463 
3464 	switch (obj->cache_level) {
3465 	case I915_CACHE_LLC:
3466 	case I915_CACHE_L3_LLC:
3467 		args->caching = I915_CACHING_CACHED;
3468 		break;
3469 
3470 	case I915_CACHE_WT:
3471 		args->caching = I915_CACHING_DISPLAY;
3472 		break;
3473 
3474 	default:
3475 		args->caching = I915_CACHING_NONE;
3476 		break;
3477 	}
3478 
3479 	drm_gem_object_unreference(&obj->base);
3480 unlock:
3481 	mutex_unlock(&dev->struct_mutex);
3482 	return ret;
3483 }
3484 
3485 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3486 			       struct drm_file *file)
3487 {
3488 	struct drm_i915_gem_caching *args = data;
3489 	struct drm_i915_gem_object *obj;
3490 	enum i915_cache_level level;
3491 	int ret;
3492 
3493 	switch (args->caching) {
3494 	case I915_CACHING_NONE:
3495 		level = I915_CACHE_NONE;
3496 		break;
3497 	case I915_CACHING_CACHED:
3498 		level = I915_CACHE_LLC;
3499 		break;
3500 	case I915_CACHING_DISPLAY:
3501 		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3502 		break;
3503 	default:
3504 		return -EINVAL;
3505 	}
3506 
3507 	ret = i915_mutex_lock_interruptible(dev);
3508 	if (ret)
3509 		return ret;
3510 
3511 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3512 	if (&obj->base == NULL) {
3513 		ret = -ENOENT;
3514 		goto unlock;
3515 	}
3516 
3517 	ret = i915_gem_object_set_cache_level(obj, level);
3518 
3519 	drm_gem_object_unreference(&obj->base);
3520 unlock:
3521 	mutex_unlock(&dev->struct_mutex);
3522 	return ret;
3523 }
3524 
3525 static bool is_pin_display(struct drm_i915_gem_object *obj)
3526 {
3527 	/* There are 3 sources that pin objects:
3528 	 *   1. The display engine (scanouts, sprites, cursors);
3529 	 *   2. Reservations for execbuffer;
3530 	 *   3. The user.
3531 	 *
3532 	 * We can ignore reservations as we hold the struct_mutex and
3533 	 * are only called outside of the reservation path.  The user
3534 	 * can only increment pin_count once, and so if after
3535 	 * subtracting the potential reference by the user, any pin_count
3536 	 * remains, it must be due to another use by the display engine.
3537 	 */
3538 	return obj->pin_count - !!obj->user_pin_count;
3539 }
3540 
3541 /*
3542  * Prepare buffer for display plane (scanout, cursors, etc).
3543  * Can be called from an uninterruptible phase (modesetting) and allows
3544  * any flushes to be pipelined (for pageflips).
3545  */
3546 int
3547 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3548 				     u32 alignment,
3549 				     struct intel_ring_buffer *pipelined)
3550 {
3551 	u32 old_read_domains, old_write_domain;
3552 	int ret;
3553 
3554 	if (pipelined != obj->ring) {
3555 		ret = i915_gem_object_sync(obj, pipelined);
3556 		if (ret)
3557 			return ret;
3558 	}
3559 
3560 	/* Mark the pin_display early so that we account for the
3561 	 * display coherency whilst setting up the cache domains.
3562 	 */
3563 	obj->pin_display = true;
3564 
3565 	/* The display engine is not coherent with the LLC cache on gen6.  As
3566 	 * a result, we make sure that the pinning that is about to occur is
3567 	 * done with uncached PTEs. This is lowest common denominator for all
3568 	 * chipsets.
3569 	 *
3570 	 * However for gen6+, we could do better by using the GFDT bit instead
3571 	 * of uncaching, which would allow us to flush all the LLC-cached data
3572 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3573 	 */
3574 	ret = i915_gem_object_set_cache_level(obj,
3575 					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3576 	if (ret)
3577 		goto err_unpin_display;
3578 
3579 	/* As the user may map the buffer once pinned in the display plane
3580 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3581 	 * always use map_and_fenceable for all scanout buffers.
3582 	 */
3583 	ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
3584 	if (ret)
3585 		goto err_unpin_display;
3586 
3587 	i915_gem_object_flush_cpu_write_domain(obj, true);
3588 
3589 	old_write_domain = obj->base.write_domain;
3590 	old_read_domains = obj->base.read_domains;
3591 
3592 	/* It should now be out of any other write domains, and we can update
3593 	 * the domain values for our changes.
3594 	 */
3595 	obj->base.write_domain = 0;
3596 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3597 
3598 	trace_i915_gem_object_change_domain(obj,
3599 					    old_read_domains,
3600 					    old_write_domain);
3601 
3602 	return 0;
3603 
3604 err_unpin_display:
3605 	obj->pin_display = is_pin_display(obj);
3606 	return ret;
3607 }
3608 
3609 void
3610 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3611 {
3612 	i915_gem_object_unpin(obj);
3613 	obj->pin_display = is_pin_display(obj);
3614 }
3615 
3616 int
3617 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3618 {
3619 	int ret;
3620 
3621 	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3622 		return 0;
3623 
3624 	ret = i915_gem_object_wait_rendering(obj, false);
3625 	if (ret)
3626 		return ret;
3627 
3628 	/* Ensure that we invalidate the GPU's caches and TLBs. */
3629 	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3630 	return 0;
3631 }
3632 
3633 /**
3634  * Moves a single object to the CPU read, and possibly write domain.
3635  *
3636  * This function returns when the move is complete, including waiting on
3637  * flushes to occur.
3638  */
3639 int
3640 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3641 {
3642 	uint32_t old_write_domain, old_read_domains;
3643 	int ret;
3644 
3645 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3646 		return 0;
3647 
3648 	ret = i915_gem_object_wait_rendering(obj, !write);
3649 	if (ret)
3650 		return ret;
3651 
3652 	i915_gem_object_flush_gtt_write_domain(obj);
3653 
3654 	old_write_domain = obj->base.write_domain;
3655 	old_read_domains = obj->base.read_domains;
3656 
3657 	/* Flush the CPU cache if it's still invalid. */
3658 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3659 		i915_gem_clflush_object(obj, false);
3660 
3661 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3662 	}
3663 
3664 	/* It should now be out of any other write domains, and we can update
3665 	 * the domain values for our changes.
3666 	 */
3667 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3668 
3669 	/* If we're writing through the CPU, then the GPU read domains will
3670 	 * need to be invalidated at next use.
3671 	 */
3672 	if (write) {
3673 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3674 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3675 	}
3676 
3677 	trace_i915_gem_object_change_domain(obj,
3678 					    old_read_domains,
3679 					    old_write_domain);
3680 
3681 	return 0;
3682 }
3683 
3684 /* Throttle our rendering by waiting until the ring has completed our requests
3685  * emitted over 20 msec ago.
3686  *
3687  * Note that if we were to use the current jiffies each time around the loop,
3688  * we wouldn't escape the function with any frames outstanding if the time to
3689  * render a frame was over 20ms.
3690  *
3691  * This should get us reasonable parallelism between CPU and GPU but also
3692  * relatively low latency when blocking on a particular request to finish.
3693  */
3694 static int
3695 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3696 {
3697 	struct drm_i915_private *dev_priv = dev->dev_private;
3698 	struct drm_i915_file_private *file_priv = file->driver_priv;
3699 	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3700 	struct drm_i915_gem_request *request;
3701 	struct intel_ring_buffer *ring = NULL;
3702 	unsigned reset_counter;
3703 	u32 seqno = 0;
3704 	int ret;
3705 
3706 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3707 	if (ret)
3708 		return ret;
3709 
3710 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3711 	if (ret)
3712 		return ret;
3713 
3714 	spin_lock(&file_priv->mm.lock);
3715 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3716 		if (time_after_eq(request->emitted_jiffies, recent_enough))
3717 			break;
3718 
3719 		ring = request->ring;
3720 		seqno = request->seqno;
3721 	}
3722 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3723 	spin_unlock(&file_priv->mm.lock);
3724 
3725 	if (seqno == 0)
3726 		return 0;
3727 
3728 	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3729 	if (ret == 0)
3730 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3731 
3732 	return ret;
3733 }
3734 
3735 int
3736 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3737 		    struct i915_address_space *vm,
3738 		    uint32_t alignment,
3739 		    bool map_and_fenceable,
3740 		    bool nonblocking)
3741 {
3742 	struct i915_vma *vma;
3743 	int ret;
3744 
3745 	if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3746 		return -EBUSY;
3747 
3748 	WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3749 
3750 	vma = i915_gem_obj_to_vma(obj, vm);
3751 
3752 	if (vma) {
3753 		if ((alignment &&
3754 		     vma->node.start & (alignment - 1)) ||
3755 		    (map_and_fenceable && !obj->map_and_fenceable)) {
3756 			WARN(obj->pin_count,
3757 			     "bo is already pinned with incorrect alignment:"
3758 			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3759 			     " obj->map_and_fenceable=%d\n",
3760 			     i915_gem_obj_offset(obj, vm), alignment,
3761 			     map_and_fenceable,
3762 			     obj->map_and_fenceable);
3763 			ret = i915_vma_unbind(vma);
3764 			if (ret)
3765 				return ret;
3766 		}
3767 	}
3768 
3769 	if (!i915_gem_obj_bound(obj, vm)) {
3770 		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3771 
3772 		ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3773 						 map_and_fenceable,
3774 						 nonblocking);
3775 		if (ret)
3776 			return ret;
3777 
3778 		if (!dev_priv->mm.aliasing_ppgtt)
3779 			i915_gem_gtt_bind_object(obj, obj->cache_level);
3780 	}
3781 
3782 	if (!obj->has_global_gtt_mapping && map_and_fenceable)
3783 		i915_gem_gtt_bind_object(obj, obj->cache_level);
3784 
3785 	obj->pin_count++;
3786 	obj->pin_mappable |= map_and_fenceable;
3787 
3788 	return 0;
3789 }
3790 
3791 void
3792 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3793 {
3794 	BUG_ON(obj->pin_count == 0);
3795 	BUG_ON(!i915_gem_obj_bound_any(obj));
3796 
3797 	if (--obj->pin_count == 0)
3798 		obj->pin_mappable = false;
3799 }
3800 
3801 int
3802 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3803 		   struct drm_file *file)
3804 {
3805 	struct drm_i915_gem_pin *args = data;
3806 	struct drm_i915_gem_object *obj;
3807 	int ret;
3808 
3809 	ret = i915_mutex_lock_interruptible(dev);
3810 	if (ret)
3811 		return ret;
3812 
3813 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3814 	if (&obj->base == NULL) {
3815 		ret = -ENOENT;
3816 		goto unlock;
3817 	}
3818 
3819 	if (obj->madv != I915_MADV_WILLNEED) {
3820 		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3821 		ret = -EINVAL;
3822 		goto out;
3823 	}
3824 
3825 	if (obj->pin_filp != NULL && obj->pin_filp != file) {
3826 		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3827 			  args->handle);
3828 		ret = -EINVAL;
3829 		goto out;
3830 	}
3831 
3832 	if (obj->user_pin_count == 0) {
3833 		ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
3834 		if (ret)
3835 			goto out;
3836 	}
3837 
3838 	obj->user_pin_count++;
3839 	obj->pin_filp = file;
3840 
3841 	args->offset = i915_gem_obj_ggtt_offset(obj);
3842 out:
3843 	drm_gem_object_unreference(&obj->base);
3844 unlock:
3845 	mutex_unlock(&dev->struct_mutex);
3846 	return ret;
3847 }
3848 
3849 int
3850 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3851 		     struct drm_file *file)
3852 {
3853 	struct drm_i915_gem_pin *args = data;
3854 	struct drm_i915_gem_object *obj;
3855 	int ret;
3856 
3857 	ret = i915_mutex_lock_interruptible(dev);
3858 	if (ret)
3859 		return ret;
3860 
3861 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3862 	if (&obj->base == NULL) {
3863 		ret = -ENOENT;
3864 		goto unlock;
3865 	}
3866 
3867 	if (obj->pin_filp != file) {
3868 		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3869 			  args->handle);
3870 		ret = -EINVAL;
3871 		goto out;
3872 	}
3873 	obj->user_pin_count--;
3874 	if (obj->user_pin_count == 0) {
3875 		obj->pin_filp = NULL;
3876 		i915_gem_object_unpin(obj);
3877 	}
3878 
3879 out:
3880 	drm_gem_object_unreference(&obj->base);
3881 unlock:
3882 	mutex_unlock(&dev->struct_mutex);
3883 	return ret;
3884 }
3885 
3886 int
3887 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3888 		    struct drm_file *file)
3889 {
3890 	struct drm_i915_gem_busy *args = data;
3891 	struct drm_i915_gem_object *obj;
3892 	int ret;
3893 
3894 	ret = i915_mutex_lock_interruptible(dev);
3895 	if (ret)
3896 		return ret;
3897 
3898 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3899 	if (&obj->base == NULL) {
3900 		ret = -ENOENT;
3901 		goto unlock;
3902 	}
3903 
3904 	/* Count all active objects as busy, even if they are currently not used
3905 	 * by the gpu. Users of this interface expect objects to eventually
3906 	 * become non-busy without any further actions, therefore emit any
3907 	 * necessary flushes here.
3908 	 */
3909 	ret = i915_gem_object_flush_active(obj);
3910 
3911 	args->busy = obj->active;
3912 	if (obj->ring) {
3913 		BUILD_BUG_ON(I915_NUM_RINGS > 16);
3914 		args->busy |= intel_ring_flag(obj->ring) << 16;
3915 	}
3916 
3917 	drm_gem_object_unreference(&obj->base);
3918 unlock:
3919 	mutex_unlock(&dev->struct_mutex);
3920 	return ret;
3921 }
3922 
3923 int
3924 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3925 			struct drm_file *file_priv)
3926 {
3927 	return i915_gem_ring_throttle(dev, file_priv);
3928 }
3929 
3930 int
3931 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3932 		       struct drm_file *file_priv)
3933 {
3934 	struct drm_i915_gem_madvise *args = data;
3935 	struct drm_i915_gem_object *obj;
3936 	int ret;
3937 
3938 	switch (args->madv) {
3939 	case I915_MADV_DONTNEED:
3940 	case I915_MADV_WILLNEED:
3941 	    break;
3942 	default:
3943 	    return -EINVAL;
3944 	}
3945 
3946 	ret = i915_mutex_lock_interruptible(dev);
3947 	if (ret)
3948 		return ret;
3949 
3950 	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3951 	if (&obj->base == NULL) {
3952 		ret = -ENOENT;
3953 		goto unlock;
3954 	}
3955 
3956 	if (obj->pin_count) {
3957 		ret = -EINVAL;
3958 		goto out;
3959 	}
3960 
3961 	if (obj->madv != __I915_MADV_PURGED)
3962 		obj->madv = args->madv;
3963 
3964 	/* if the object is no longer attached, discard its backing storage */
3965 	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3966 		i915_gem_object_truncate(obj);
3967 
3968 	args->retained = obj->madv != __I915_MADV_PURGED;
3969 
3970 out:
3971 	drm_gem_object_unreference(&obj->base);
3972 unlock:
3973 	mutex_unlock(&dev->struct_mutex);
3974 	return ret;
3975 }
3976 
3977 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3978 			  const struct drm_i915_gem_object_ops *ops)
3979 {
3980 	INIT_LIST_HEAD(&obj->global_list);
3981 	INIT_LIST_HEAD(&obj->ring_list);
3982 	INIT_LIST_HEAD(&obj->exec_list);
3983 	INIT_LIST_HEAD(&obj->obj_exec_link);
3984 	INIT_LIST_HEAD(&obj->vma_list);
3985 
3986 	obj->ops = ops;
3987 
3988 	obj->fence_reg = I915_FENCE_REG_NONE;
3989 	obj->madv = I915_MADV_WILLNEED;
3990 	/* Avoid an unnecessary call to unbind on the first bind. */
3991 	obj->map_and_fenceable = true;
3992 
3993 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3994 }
3995 
3996 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3997 	.get_pages = i915_gem_object_get_pages_gtt,
3998 	.put_pages = i915_gem_object_put_pages_gtt,
3999 };
4000 
4001 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4002 						  size_t size)
4003 {
4004 	struct drm_i915_gem_object *obj;
4005 	struct address_space *mapping;
4006 	gfp_t mask;
4007 
4008 	obj = i915_gem_object_alloc(dev);
4009 	if (obj == NULL)
4010 		return NULL;
4011 
4012 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4013 		i915_gem_object_free(obj);
4014 		return NULL;
4015 	}
4016 
4017 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4018 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4019 		/* 965gm cannot relocate objects above 4GiB. */
4020 		mask &= ~__GFP_HIGHMEM;
4021 		mask |= __GFP_DMA32;
4022 	}
4023 
4024 	mapping = file_inode(obj->base.filp)->i_mapping;
4025 	mapping_set_gfp_mask(mapping, mask);
4026 
4027 	i915_gem_object_init(obj, &i915_gem_object_ops);
4028 
4029 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4030 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4031 
4032 	if (HAS_LLC(dev)) {
4033 		/* On some devices, we can have the GPU use the LLC (the CPU
4034 		 * cache) for about a 10% performance improvement
4035 		 * compared to uncached.  Graphics requests other than
4036 		 * display scanout are coherent with the CPU in
4037 		 * accessing this cache.  This means in this mode we
4038 		 * don't need to clflush on the CPU side, and on the
4039 		 * GPU side we only need to flush internal caches to
4040 		 * get data visible to the CPU.
4041 		 *
4042 		 * However, we maintain the display planes as UC, and so
4043 		 * need to rebind when first used as such.
4044 		 */
4045 		obj->cache_level = I915_CACHE_LLC;
4046 	} else
4047 		obj->cache_level = I915_CACHE_NONE;
4048 
4049 	trace_i915_gem_object_create(obj);
4050 
4051 	return obj;
4052 }
4053 
4054 int i915_gem_init_object(struct drm_gem_object *obj)
4055 {
4056 	BUG();
4057 
4058 	return 0;
4059 }
4060 
4061 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4062 {
4063 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4064 	struct drm_device *dev = obj->base.dev;
4065 	drm_i915_private_t *dev_priv = dev->dev_private;
4066 	struct i915_vma *vma, *next;
4067 
4068 	trace_i915_gem_object_destroy(obj);
4069 
4070 	if (obj->phys_obj)
4071 		i915_gem_detach_phys_object(dev, obj);
4072 
4073 	obj->pin_count = 0;
4074 	/* NB: 0 or 1 elements */
4075 	WARN_ON(!list_empty(&obj->vma_list) &&
4076 		!list_is_singular(&obj->vma_list));
4077 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4078 		int ret = i915_vma_unbind(vma);
4079 		if (WARN_ON(ret == -ERESTARTSYS)) {
4080 			bool was_interruptible;
4081 
4082 			was_interruptible = dev_priv->mm.interruptible;
4083 			dev_priv->mm.interruptible = false;
4084 
4085 			WARN_ON(i915_vma_unbind(vma));
4086 
4087 			dev_priv->mm.interruptible = was_interruptible;
4088 		}
4089 	}
4090 
4091 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4092 	 * before progressing. */
4093 	if (obj->stolen)
4094 		i915_gem_object_unpin_pages(obj);
4095 
4096 	if (WARN_ON(obj->pages_pin_count))
4097 		obj->pages_pin_count = 0;
4098 	i915_gem_object_put_pages(obj);
4099 	i915_gem_object_free_mmap_offset(obj);
4100 	i915_gem_object_release_stolen(obj);
4101 
4102 	BUG_ON(obj->pages);
4103 
4104 	if (obj->base.import_attach)
4105 		drm_prime_gem_destroy(&obj->base, NULL);
4106 
4107 	drm_gem_object_release(&obj->base);
4108 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4109 
4110 	kfree(obj->bit_17);
4111 	i915_gem_object_free(obj);
4112 }
4113 
4114 struct i915_vma *i915_gem_vma_create(struct drm_i915_gem_object *obj,
4115 				     struct i915_address_space *vm)
4116 {
4117 	struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4118 	if (vma == NULL)
4119 		return ERR_PTR(-ENOMEM);
4120 
4121 	INIT_LIST_HEAD(&vma->vma_link);
4122 	INIT_LIST_HEAD(&vma->mm_list);
4123 	INIT_LIST_HEAD(&vma->exec_list);
4124 	vma->vm = vm;
4125 	vma->obj = obj;
4126 
4127 	/* Keep GGTT vmas first to make debug easier */
4128 	if (i915_is_ggtt(vm))
4129 		list_add(&vma->vma_link, &obj->vma_list);
4130 	else
4131 		list_add_tail(&vma->vma_link, &obj->vma_list);
4132 
4133 	return vma;
4134 }
4135 
4136 void i915_gem_vma_destroy(struct i915_vma *vma)
4137 {
4138 	WARN_ON(vma->node.allocated);
4139 	list_del(&vma->vma_link);
4140 	kfree(vma);
4141 }
4142 
4143 int
4144 i915_gem_idle(struct drm_device *dev)
4145 {
4146 	drm_i915_private_t *dev_priv = dev->dev_private;
4147 	int ret;
4148 
4149 	if (dev_priv->ums.mm_suspended) {
4150 		mutex_unlock(&dev->struct_mutex);
4151 		return 0;
4152 	}
4153 
4154 	ret = i915_gpu_idle(dev);
4155 	if (ret) {
4156 		mutex_unlock(&dev->struct_mutex);
4157 		return ret;
4158 	}
4159 	i915_gem_retire_requests(dev);
4160 
4161 	/* Under UMS, be paranoid and evict. */
4162 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4163 		i915_gem_evict_everything(dev);
4164 
4165 	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4166 
4167 	i915_kernel_lost_context(dev);
4168 	i915_gem_cleanup_ringbuffer(dev);
4169 
4170 	/* Cancel the retire work handler, which should be idle now. */
4171 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4172 
4173 	return 0;
4174 }
4175 
4176 void i915_gem_l3_remap(struct drm_device *dev)
4177 {
4178 	drm_i915_private_t *dev_priv = dev->dev_private;
4179 	u32 misccpctl;
4180 	int i;
4181 
4182 	if (!HAS_L3_GPU_CACHE(dev))
4183 		return;
4184 
4185 	if (!dev_priv->l3_parity.remap_info)
4186 		return;
4187 
4188 	misccpctl = I915_READ(GEN7_MISCCPCTL);
4189 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4190 	POSTING_READ(GEN7_MISCCPCTL);
4191 
4192 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4193 		u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
4194 		if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
4195 			DRM_DEBUG("0x%x was already programmed to %x\n",
4196 				  GEN7_L3LOG_BASE + i, remap);
4197 		if (remap && !dev_priv->l3_parity.remap_info[i/4])
4198 			DRM_DEBUG_DRIVER("Clearing remapped register\n");
4199 		I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
4200 	}
4201 
4202 	/* Make sure all the writes land before disabling dop clock gating */
4203 	POSTING_READ(GEN7_L3LOG_BASE);
4204 
4205 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4206 }
4207 
4208 void i915_gem_init_swizzling(struct drm_device *dev)
4209 {
4210 	drm_i915_private_t *dev_priv = dev->dev_private;
4211 
4212 	if (INTEL_INFO(dev)->gen < 5 ||
4213 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4214 		return;
4215 
4216 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4217 				 DISP_TILE_SURFACE_SWIZZLING);
4218 
4219 	if (IS_GEN5(dev))
4220 		return;
4221 
4222 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4223 	if (IS_GEN6(dev))
4224 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4225 	else if (IS_GEN7(dev))
4226 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4227 	else
4228 		BUG();
4229 }
4230 
4231 static bool
4232 intel_enable_blt(struct drm_device *dev)
4233 {
4234 	if (!HAS_BLT(dev))
4235 		return false;
4236 
4237 	/* The blitter was dysfunctional on early prototypes */
4238 	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4239 		DRM_INFO("BLT not supported on this pre-production hardware;"
4240 			 " graphics performance will be degraded.\n");
4241 		return false;
4242 	}
4243 
4244 	return true;
4245 }
4246 
4247 static int i915_gem_init_rings(struct drm_device *dev)
4248 {
4249 	struct drm_i915_private *dev_priv = dev->dev_private;
4250 	int ret;
4251 
4252 	ret = intel_init_render_ring_buffer(dev);
4253 	if (ret)
4254 		return ret;
4255 
4256 	if (HAS_BSD(dev)) {
4257 		ret = intel_init_bsd_ring_buffer(dev);
4258 		if (ret)
4259 			goto cleanup_render_ring;
4260 	}
4261 
4262 	if (intel_enable_blt(dev)) {
4263 		ret = intel_init_blt_ring_buffer(dev);
4264 		if (ret)
4265 			goto cleanup_bsd_ring;
4266 	}
4267 
4268 	if (HAS_VEBOX(dev)) {
4269 		ret = intel_init_vebox_ring_buffer(dev);
4270 		if (ret)
4271 			goto cleanup_blt_ring;
4272 	}
4273 
4274 
4275 	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4276 	if (ret)
4277 		goto cleanup_vebox_ring;
4278 
4279 	return 0;
4280 
4281 cleanup_vebox_ring:
4282 	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4283 cleanup_blt_ring:
4284 	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4285 cleanup_bsd_ring:
4286 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4287 cleanup_render_ring:
4288 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4289 
4290 	return ret;
4291 }
4292 
4293 int
4294 i915_gem_init_hw(struct drm_device *dev)
4295 {
4296 	drm_i915_private_t *dev_priv = dev->dev_private;
4297 	int ret;
4298 
4299 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4300 		return -EIO;
4301 
4302 	if (dev_priv->ellc_size)
4303 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4304 
4305 	if (HAS_PCH_NOP(dev)) {
4306 		u32 temp = I915_READ(GEN7_MSG_CTL);
4307 		temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4308 		I915_WRITE(GEN7_MSG_CTL, temp);
4309 	}
4310 
4311 	i915_gem_l3_remap(dev);
4312 
4313 	i915_gem_init_swizzling(dev);
4314 
4315 	ret = i915_gem_init_rings(dev);
4316 	if (ret)
4317 		return ret;
4318 
4319 	/*
4320 	 * XXX: There was some w/a described somewhere suggesting loading
4321 	 * contexts before PPGTT.
4322 	 */
4323 	i915_gem_context_init(dev);
4324 	if (dev_priv->mm.aliasing_ppgtt) {
4325 		ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4326 		if (ret) {
4327 			i915_gem_cleanup_aliasing_ppgtt(dev);
4328 			DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4329 		}
4330 	}
4331 
4332 	return 0;
4333 }
4334 
4335 int i915_gem_init(struct drm_device *dev)
4336 {
4337 	struct drm_i915_private *dev_priv = dev->dev_private;
4338 	int ret;
4339 
4340 	mutex_lock(&dev->struct_mutex);
4341 
4342 	if (IS_VALLEYVIEW(dev)) {
4343 		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4344 		I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4345 		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4346 			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4347 	}
4348 
4349 	i915_gem_init_global_gtt(dev);
4350 
4351 	ret = i915_gem_init_hw(dev);
4352 	mutex_unlock(&dev->struct_mutex);
4353 	if (ret) {
4354 		i915_gem_cleanup_aliasing_ppgtt(dev);
4355 		return ret;
4356 	}
4357 
4358 	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4359 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4360 		dev_priv->dri1.allow_batchbuffer = 1;
4361 	return 0;
4362 }
4363 
4364 void
4365 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4366 {
4367 	drm_i915_private_t *dev_priv = dev->dev_private;
4368 	struct intel_ring_buffer *ring;
4369 	int i;
4370 
4371 	for_each_ring(ring, dev_priv, i)
4372 		intel_cleanup_ring_buffer(ring);
4373 }
4374 
4375 int
4376 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4377 		       struct drm_file *file_priv)
4378 {
4379 	struct drm_i915_private *dev_priv = dev->dev_private;
4380 	int ret;
4381 
4382 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4383 		return 0;
4384 
4385 	if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4386 		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4387 		atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4388 	}
4389 
4390 	mutex_lock(&dev->struct_mutex);
4391 	dev_priv->ums.mm_suspended = 0;
4392 
4393 	ret = i915_gem_init_hw(dev);
4394 	if (ret != 0) {
4395 		mutex_unlock(&dev->struct_mutex);
4396 		return ret;
4397 	}
4398 
4399 	BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4400 	mutex_unlock(&dev->struct_mutex);
4401 
4402 	ret = drm_irq_install(dev);
4403 	if (ret)
4404 		goto cleanup_ringbuffer;
4405 
4406 	return 0;
4407 
4408 cleanup_ringbuffer:
4409 	mutex_lock(&dev->struct_mutex);
4410 	i915_gem_cleanup_ringbuffer(dev);
4411 	dev_priv->ums.mm_suspended = 1;
4412 	mutex_unlock(&dev->struct_mutex);
4413 
4414 	return ret;
4415 }
4416 
4417 int
4418 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4419 		       struct drm_file *file_priv)
4420 {
4421 	struct drm_i915_private *dev_priv = dev->dev_private;
4422 	int ret;
4423 
4424 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4425 		return 0;
4426 
4427 	drm_irq_uninstall(dev);
4428 
4429 	mutex_lock(&dev->struct_mutex);
4430 	ret =  i915_gem_idle(dev);
4431 
4432 	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
4433 	 * We need to replace this with a semaphore, or something.
4434 	 * And not confound ums.mm_suspended!
4435 	 */
4436 	if (ret != 0)
4437 		dev_priv->ums.mm_suspended = 1;
4438 	mutex_unlock(&dev->struct_mutex);
4439 
4440 	return ret;
4441 }
4442 
4443 void
4444 i915_gem_lastclose(struct drm_device *dev)
4445 {
4446 	int ret;
4447 
4448 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4449 		return;
4450 
4451 	mutex_lock(&dev->struct_mutex);
4452 	ret = i915_gem_idle(dev);
4453 	if (ret)
4454 		DRM_ERROR("failed to idle hardware: %d\n", ret);
4455 	mutex_unlock(&dev->struct_mutex);
4456 }
4457 
4458 static void
4459 init_ring_lists(struct intel_ring_buffer *ring)
4460 {
4461 	INIT_LIST_HEAD(&ring->active_list);
4462 	INIT_LIST_HEAD(&ring->request_list);
4463 }
4464 
4465 static void i915_init_vm(struct drm_i915_private *dev_priv,
4466 			 struct i915_address_space *vm)
4467 {
4468 	vm->dev = dev_priv->dev;
4469 	INIT_LIST_HEAD(&vm->active_list);
4470 	INIT_LIST_HEAD(&vm->inactive_list);
4471 	INIT_LIST_HEAD(&vm->global_link);
4472 	list_add(&vm->global_link, &dev_priv->vm_list);
4473 }
4474 
4475 void
4476 i915_gem_load(struct drm_device *dev)
4477 {
4478 	drm_i915_private_t *dev_priv = dev->dev_private;
4479 	int i;
4480 
4481 	dev_priv->slab =
4482 		kmem_cache_create("i915_gem_object",
4483 				  sizeof(struct drm_i915_gem_object), 0,
4484 				  SLAB_HWCACHE_ALIGN,
4485 				  NULL);
4486 
4487 	INIT_LIST_HEAD(&dev_priv->vm_list);
4488 	i915_init_vm(dev_priv, &dev_priv->gtt.base);
4489 
4490 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4491 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4492 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4493 	for (i = 0; i < I915_NUM_RINGS; i++)
4494 		init_ring_lists(&dev_priv->ring[i]);
4495 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4496 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4497 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4498 			  i915_gem_retire_work_handler);
4499 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4500 
4501 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4502 	if (IS_GEN3(dev)) {
4503 		I915_WRITE(MI_ARB_STATE,
4504 			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4505 	}
4506 
4507 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4508 
4509 	/* Old X drivers will take 0-2 for front, back, depth buffers */
4510 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4511 		dev_priv->fence_reg_start = 3;
4512 
4513 	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4514 		dev_priv->num_fence_regs = 32;
4515 	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4516 		dev_priv->num_fence_regs = 16;
4517 	else
4518 		dev_priv->num_fence_regs = 8;
4519 
4520 	/* Initialize fence registers to zero */
4521 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4522 	i915_gem_restore_fences(dev);
4523 
4524 	i915_gem_detect_bit_6_swizzle(dev);
4525 	init_waitqueue_head(&dev_priv->pending_flip_queue);
4526 
4527 	dev_priv->mm.interruptible = true;
4528 
4529 	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4530 	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4531 	register_shrinker(&dev_priv->mm.inactive_shrinker);
4532 }
4533 
4534 /*
4535  * Create a physically contiguous memory object for this object
4536  * e.g. for cursor + overlay regs
4537  */
4538 static int i915_gem_init_phys_object(struct drm_device *dev,
4539 				     int id, int size, int align)
4540 {
4541 	drm_i915_private_t *dev_priv = dev->dev_private;
4542 	struct drm_i915_gem_phys_object *phys_obj;
4543 	int ret;
4544 
4545 	if (dev_priv->mm.phys_objs[id - 1] || !size)
4546 		return 0;
4547 
4548 	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4549 	if (!phys_obj)
4550 		return -ENOMEM;
4551 
4552 	phys_obj->id = id;
4553 
4554 	phys_obj->handle = drm_pci_alloc(dev, size, align);
4555 	if (!phys_obj->handle) {
4556 		ret = -ENOMEM;
4557 		goto kfree_obj;
4558 	}
4559 #ifdef CONFIG_X86
4560 	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4561 #endif
4562 
4563 	dev_priv->mm.phys_objs[id - 1] = phys_obj;
4564 
4565 	return 0;
4566 kfree_obj:
4567 	kfree(phys_obj);
4568 	return ret;
4569 }
4570 
4571 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4572 {
4573 	drm_i915_private_t *dev_priv = dev->dev_private;
4574 	struct drm_i915_gem_phys_object *phys_obj;
4575 
4576 	if (!dev_priv->mm.phys_objs[id - 1])
4577 		return;
4578 
4579 	phys_obj = dev_priv->mm.phys_objs[id - 1];
4580 	if (phys_obj->cur_obj) {
4581 		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4582 	}
4583 
4584 #ifdef CONFIG_X86
4585 	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4586 #endif
4587 	drm_pci_free(dev, phys_obj->handle);
4588 	kfree(phys_obj);
4589 	dev_priv->mm.phys_objs[id - 1] = NULL;
4590 }
4591 
4592 void i915_gem_free_all_phys_object(struct drm_device *dev)
4593 {
4594 	int i;
4595 
4596 	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4597 		i915_gem_free_phys_object(dev, i);
4598 }
4599 
4600 void i915_gem_detach_phys_object(struct drm_device *dev,
4601 				 struct drm_i915_gem_object *obj)
4602 {
4603 	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4604 	char *vaddr;
4605 	int i;
4606 	int page_count;
4607 
4608 	if (!obj->phys_obj)
4609 		return;
4610 	vaddr = obj->phys_obj->handle->vaddr;
4611 
4612 	page_count = obj->base.size / PAGE_SIZE;
4613 	for (i = 0; i < page_count; i++) {
4614 		struct page *page = shmem_read_mapping_page(mapping, i);
4615 		if (!IS_ERR(page)) {
4616 			char *dst = kmap_atomic(page);
4617 			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4618 			kunmap_atomic(dst);
4619 
4620 			drm_clflush_pages(&page, 1);
4621 
4622 			set_page_dirty(page);
4623 			mark_page_accessed(page);
4624 			page_cache_release(page);
4625 		}
4626 	}
4627 	i915_gem_chipset_flush(dev);
4628 
4629 	obj->phys_obj->cur_obj = NULL;
4630 	obj->phys_obj = NULL;
4631 }
4632 
4633 int
4634 i915_gem_attach_phys_object(struct drm_device *dev,
4635 			    struct drm_i915_gem_object *obj,
4636 			    int id,
4637 			    int align)
4638 {
4639 	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4640 	drm_i915_private_t *dev_priv = dev->dev_private;
4641 	int ret = 0;
4642 	int page_count;
4643 	int i;
4644 
4645 	if (id > I915_MAX_PHYS_OBJECT)
4646 		return -EINVAL;
4647 
4648 	if (obj->phys_obj) {
4649 		if (obj->phys_obj->id == id)
4650 			return 0;
4651 		i915_gem_detach_phys_object(dev, obj);
4652 	}
4653 
4654 	/* create a new object */
4655 	if (!dev_priv->mm.phys_objs[id - 1]) {
4656 		ret = i915_gem_init_phys_object(dev, id,
4657 						obj->base.size, align);
4658 		if (ret) {
4659 			DRM_ERROR("failed to init phys object %d size: %zu\n",
4660 				  id, obj->base.size);
4661 			return ret;
4662 		}
4663 	}
4664 
4665 	/* bind to the object */
4666 	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4667 	obj->phys_obj->cur_obj = obj;
4668 
4669 	page_count = obj->base.size / PAGE_SIZE;
4670 
4671 	for (i = 0; i < page_count; i++) {
4672 		struct page *page;
4673 		char *dst, *src;
4674 
4675 		page = shmem_read_mapping_page(mapping, i);
4676 		if (IS_ERR(page))
4677 			return PTR_ERR(page);
4678 
4679 		src = kmap_atomic(page);
4680 		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4681 		memcpy(dst, src, PAGE_SIZE);
4682 		kunmap_atomic(src);
4683 
4684 		mark_page_accessed(page);
4685 		page_cache_release(page);
4686 	}
4687 
4688 	return 0;
4689 }
4690 
4691 static int
4692 i915_gem_phys_pwrite(struct drm_device *dev,
4693 		     struct drm_i915_gem_object *obj,
4694 		     struct drm_i915_gem_pwrite *args,
4695 		     struct drm_file *file_priv)
4696 {
4697 	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4698 	char __user *user_data = to_user_ptr(args->data_ptr);
4699 
4700 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4701 		unsigned long unwritten;
4702 
4703 		/* The physical object once assigned is fixed for the lifetime
4704 		 * of the obj, so we can safely drop the lock and continue
4705 		 * to access vaddr.
4706 		 */
4707 		mutex_unlock(&dev->struct_mutex);
4708 		unwritten = copy_from_user(vaddr, user_data, args->size);
4709 		mutex_lock(&dev->struct_mutex);
4710 		if (unwritten)
4711 			return -EFAULT;
4712 	}
4713 
4714 	i915_gem_chipset_flush(dev);
4715 	return 0;
4716 }
4717 
4718 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4719 {
4720 	struct drm_i915_file_private *file_priv = file->driver_priv;
4721 
4722 	/* Clean up our request list when the client is going away, so that
4723 	 * later retire_requests won't dereference our soon-to-be-gone
4724 	 * file_priv.
4725 	 */
4726 	spin_lock(&file_priv->mm.lock);
4727 	while (!list_empty(&file_priv->mm.request_list)) {
4728 		struct drm_i915_gem_request *request;
4729 
4730 		request = list_first_entry(&file_priv->mm.request_list,
4731 					   struct drm_i915_gem_request,
4732 					   client_list);
4733 		list_del(&request->client_list);
4734 		request->file_priv = NULL;
4735 	}
4736 	spin_unlock(&file_priv->mm.lock);
4737 }
4738 
4739 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4740 {
4741 	if (!mutex_is_locked(mutex))
4742 		return false;
4743 
4744 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4745 	return mutex->owner == task;
4746 #else
4747 	/* Since UP may be pre-empted, we cannot assume that we own the lock */
4748 	return false;
4749 #endif
4750 }
4751 
4752 static int
4753 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4754 {
4755 	struct drm_i915_private *dev_priv =
4756 		container_of(shrinker,
4757 			     struct drm_i915_private,
4758 			     mm.inactive_shrinker);
4759 	struct drm_device *dev = dev_priv->dev;
4760 	struct drm_i915_gem_object *obj;
4761 	int nr_to_scan = sc->nr_to_scan;
4762 	bool unlock = true;
4763 	int cnt;
4764 
4765 	if (!mutex_trylock(&dev->struct_mutex)) {
4766 		if (!mutex_is_locked_by(&dev->struct_mutex, current))
4767 			return 0;
4768 
4769 		if (dev_priv->mm.shrinker_no_lock_stealing)
4770 			return 0;
4771 
4772 		unlock = false;
4773 	}
4774 
4775 	if (nr_to_scan) {
4776 		nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4777 		if (nr_to_scan > 0)
4778 			nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4779 							false);
4780 		if (nr_to_scan > 0)
4781 			i915_gem_shrink_all(dev_priv);
4782 	}
4783 
4784 	cnt = 0;
4785 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4786 		if (obj->pages_pin_count == 0)
4787 			cnt += obj->base.size >> PAGE_SHIFT;
4788 
4789 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4790 		if (obj->active)
4791 			continue;
4792 
4793 		if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4794 			cnt += obj->base.size >> PAGE_SHIFT;
4795 	}
4796 
4797 	if (unlock)
4798 		mutex_unlock(&dev->struct_mutex);
4799 	return cnt;
4800 }
4801 
4802 /* All the new VM stuff */
4803 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4804 				  struct i915_address_space *vm)
4805 {
4806 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4807 	struct i915_vma *vma;
4808 
4809 	if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4810 		vm = &dev_priv->gtt.base;
4811 
4812 	BUG_ON(list_empty(&o->vma_list));
4813 	list_for_each_entry(vma, &o->vma_list, vma_link) {
4814 		if (vma->vm == vm)
4815 			return vma->node.start;
4816 
4817 	}
4818 	return -1;
4819 }
4820 
4821 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4822 			struct i915_address_space *vm)
4823 {
4824 	struct i915_vma *vma;
4825 
4826 	list_for_each_entry(vma, &o->vma_list, vma_link)
4827 		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4828 			return true;
4829 
4830 	return false;
4831 }
4832 
4833 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4834 {
4835 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4836 	struct i915_address_space *vm;
4837 
4838 	list_for_each_entry(vm, &dev_priv->vm_list, global_link)
4839 		if (i915_gem_obj_bound(o, vm))
4840 			return true;
4841 
4842 	return false;
4843 }
4844 
4845 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4846 				struct i915_address_space *vm)
4847 {
4848 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4849 	struct i915_vma *vma;
4850 
4851 	if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4852 		vm = &dev_priv->gtt.base;
4853 
4854 	BUG_ON(list_empty(&o->vma_list));
4855 
4856 	list_for_each_entry(vma, &o->vma_list, vma_link)
4857 		if (vma->vm == vm)
4858 			return vma->node.size;
4859 
4860 	return 0;
4861 }
4862 
4863 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4864 				     struct i915_address_space *vm)
4865 {
4866 	struct i915_vma *vma;
4867 	list_for_each_entry(vma, &obj->vma_list, vma_link)
4868 		if (vma->vm == vm)
4869 			return vma;
4870 
4871 	return NULL;
4872 }
4873 
4874 struct i915_vma *
4875 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
4876 				  struct i915_address_space *vm)
4877 {
4878 	struct i915_vma *vma;
4879 
4880 	vma = i915_gem_obj_to_vma(obj, vm);
4881 	if (!vma)
4882 		vma = i915_gem_vma_create(obj, vm);
4883 
4884 	return vma;
4885 }
4886