1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <drm/drm_vma_manager.h> 29 #include <linux/dma-fence-array.h> 30 #include <linux/kthread.h> 31 #include <linux/dma-resv.h> 32 #include <linux/shmem_fs.h> 33 #include <linux/slab.h> 34 #include <linux/stop_machine.h> 35 #include <linux/swap.h> 36 #include <linux/pci.h> 37 #include <linux/dma-buf.h> 38 #include <linux/mman.h> 39 40 #include "display/intel_display.h" 41 #include "display/intel_frontbuffer.h" 42 43 #include "gem/i915_gem_clflush.h" 44 #include "gem/i915_gem_context.h" 45 #include "gem/i915_gem_ioctls.h" 46 #include "gem/i915_gem_mman.h" 47 #include "gem/i915_gem_region.h" 48 #include "gt/intel_engine_user.h" 49 #include "gt/intel_gt.h" 50 #include "gt/intel_gt_pm.h" 51 #include "gt/intel_workarounds.h" 52 53 #include "i915_drv.h" 54 #include "i915_trace.h" 55 #include "i915_vgpu.h" 56 57 #include "intel_pm.h" 58 59 static int 60 insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size) 61 { 62 int err; 63 64 err = mutex_lock_interruptible(&ggtt->vm.mutex); 65 if (err) 66 return err; 67 68 memset(node, 0, sizeof(*node)); 69 err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node, 70 size, 0, I915_COLOR_UNEVICTABLE, 71 0, ggtt->mappable_end, 72 DRM_MM_INSERT_LOW); 73 74 mutex_unlock(&ggtt->vm.mutex); 75 76 return err; 77 } 78 79 static void 80 remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node) 81 { 82 mutex_lock(&ggtt->vm.mutex); 83 drm_mm_remove_node(node); 84 mutex_unlock(&ggtt->vm.mutex); 85 } 86 87 int 88 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 89 struct drm_file *file) 90 { 91 struct i915_ggtt *ggtt = &to_i915(dev)->ggtt; 92 struct drm_i915_gem_get_aperture *args = data; 93 struct i915_vma *vma; 94 u64 pinned; 95 96 if (mutex_lock_interruptible(&ggtt->vm.mutex)) 97 return -EINTR; 98 99 pinned = ggtt->vm.reserved; 100 list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link) 101 if (i915_vma_is_pinned(vma)) 102 pinned += vma->node.size; 103 104 mutex_unlock(&ggtt->vm.mutex); 105 106 args->aper_size = ggtt->vm.total; 107 args->aper_available_size = args->aper_size - pinned; 108 109 return 0; 110 } 111 112 int i915_gem_object_unbind(struct drm_i915_gem_object *obj, 113 unsigned long flags) 114 { 115 struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm; 116 LIST_HEAD(still_in_list); 117 intel_wakeref_t wakeref; 118 struct i915_vma *vma; 119 int ret; 120 121 if (list_empty(&obj->vma.list)) 122 return 0; 123 124 /* 125 * As some machines use ACPI to handle runtime-resume callbacks, and 126 * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex 127 * as they are required by the shrinker. Ergo, we wake the device up 128 * first just in case. 129 */ 130 wakeref = intel_runtime_pm_get(rpm); 131 132 try_again: 133 ret = 0; 134 spin_lock(&obj->vma.lock); 135 while (!ret && (vma = list_first_entry_or_null(&obj->vma.list, 136 struct i915_vma, 137 obj_link))) { 138 struct i915_address_space *vm = vma->vm; 139 140 list_move_tail(&vma->obj_link, &still_in_list); 141 if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) 142 continue; 143 144 if (flags & I915_GEM_OBJECT_UNBIND_TEST) { 145 ret = -EBUSY; 146 break; 147 } 148 149 ret = -EAGAIN; 150 if (!i915_vm_tryopen(vm)) 151 break; 152 153 /* Prevent vma being freed by i915_vma_parked as we unbind */ 154 vma = __i915_vma_get(vma); 155 spin_unlock(&obj->vma.lock); 156 157 if (vma) { 158 ret = -EBUSY; 159 if (flags & I915_GEM_OBJECT_UNBIND_ACTIVE || 160 !i915_vma_is_active(vma)) 161 ret = i915_vma_unbind(vma); 162 163 __i915_vma_put(vma); 164 } 165 166 i915_vm_close(vm); 167 spin_lock(&obj->vma.lock); 168 } 169 list_splice_init(&still_in_list, &obj->vma.list); 170 spin_unlock(&obj->vma.lock); 171 172 if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) { 173 rcu_barrier(); /* flush the i915_vm_release() */ 174 goto try_again; 175 } 176 177 intel_runtime_pm_put(rpm, wakeref); 178 179 return ret; 180 } 181 182 static int 183 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj, 184 struct drm_i915_gem_pwrite *args, 185 struct drm_file *file) 186 { 187 void *vaddr = sg_page(obj->mm.pages->sgl) + args->offset; 188 char __user *user_data = u64_to_user_ptr(args->data_ptr); 189 190 /* 191 * We manually control the domain here and pretend that it 192 * remains coherent i.e. in the GTT domain, like shmem_pwrite. 193 */ 194 i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU); 195 196 if (copy_from_user(vaddr, user_data, args->size)) 197 return -EFAULT; 198 199 drm_clflush_virt_range(vaddr, args->size); 200 intel_gt_chipset_flush(&to_i915(obj->base.dev)->gt); 201 202 i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU); 203 return 0; 204 } 205 206 static int 207 i915_gem_create(struct drm_file *file, 208 struct intel_memory_region *mr, 209 u64 *size_p, 210 u32 *handle_p) 211 { 212 struct drm_i915_gem_object *obj; 213 u32 handle; 214 u64 size; 215 int ret; 216 217 GEM_BUG_ON(!is_power_of_2(mr->min_page_size)); 218 size = round_up(*size_p, mr->min_page_size); 219 if (size == 0) 220 return -EINVAL; 221 222 /* For most of the ABI (e.g. mmap) we think in system pages */ 223 GEM_BUG_ON(!IS_ALIGNED(size, PAGE_SIZE)); 224 225 /* Allocate the new object */ 226 obj = i915_gem_object_create_region(mr, size, 0); 227 if (IS_ERR(obj)) 228 return PTR_ERR(obj); 229 230 ret = drm_gem_handle_create(file, &obj->base, &handle); 231 /* drop reference from allocate - handle holds it now */ 232 i915_gem_object_put(obj); 233 if (ret) 234 return ret; 235 236 *handle_p = handle; 237 *size_p = size; 238 return 0; 239 } 240 241 int 242 i915_gem_dumb_create(struct drm_file *file, 243 struct drm_device *dev, 244 struct drm_mode_create_dumb *args) 245 { 246 enum intel_memory_type mem_type; 247 int cpp = DIV_ROUND_UP(args->bpp, 8); 248 u32 format; 249 250 switch (cpp) { 251 case 1: 252 format = DRM_FORMAT_C8; 253 break; 254 case 2: 255 format = DRM_FORMAT_RGB565; 256 break; 257 case 4: 258 format = DRM_FORMAT_XRGB8888; 259 break; 260 default: 261 return -EINVAL; 262 } 263 264 /* have to work out size/pitch and return them */ 265 args->pitch = ALIGN(args->width * cpp, 64); 266 267 /* align stride to page size so that we can remap */ 268 if (args->pitch > intel_plane_fb_max_stride(to_i915(dev), format, 269 DRM_FORMAT_MOD_LINEAR)) 270 args->pitch = ALIGN(args->pitch, 4096); 271 272 if (args->pitch < args->width) 273 return -EINVAL; 274 275 args->size = mul_u32_u32(args->pitch, args->height); 276 277 mem_type = INTEL_MEMORY_SYSTEM; 278 if (HAS_LMEM(to_i915(dev))) 279 mem_type = INTEL_MEMORY_LOCAL; 280 281 return i915_gem_create(file, 282 intel_memory_region_by_type(to_i915(dev), 283 mem_type), 284 &args->size, &args->handle); 285 } 286 287 /** 288 * Creates a new mm object and returns a handle to it. 289 * @dev: drm device pointer 290 * @data: ioctl data blob 291 * @file: drm file pointer 292 */ 293 int 294 i915_gem_create_ioctl(struct drm_device *dev, void *data, 295 struct drm_file *file) 296 { 297 struct drm_i915_private *i915 = to_i915(dev); 298 struct drm_i915_gem_create *args = data; 299 300 i915_gem_flush_free_objects(i915); 301 302 return i915_gem_create(file, 303 intel_memory_region_by_type(i915, 304 INTEL_MEMORY_SYSTEM), 305 &args->size, &args->handle); 306 } 307 308 static int 309 shmem_pread(struct page *page, int offset, int len, char __user *user_data, 310 bool needs_clflush) 311 { 312 char *vaddr; 313 int ret; 314 315 vaddr = kmap(page); 316 317 if (needs_clflush) 318 drm_clflush_virt_range(vaddr + offset, len); 319 320 ret = __copy_to_user(user_data, vaddr + offset, len); 321 322 kunmap(page); 323 324 return ret ? -EFAULT : 0; 325 } 326 327 static int 328 i915_gem_shmem_pread(struct drm_i915_gem_object *obj, 329 struct drm_i915_gem_pread *args) 330 { 331 unsigned int needs_clflush; 332 unsigned int idx, offset; 333 struct dma_fence *fence; 334 char __user *user_data; 335 u64 remain; 336 int ret; 337 338 ret = i915_gem_object_prepare_read(obj, &needs_clflush); 339 if (ret) 340 return ret; 341 342 fence = i915_gem_object_lock_fence(obj); 343 i915_gem_object_finish_access(obj); 344 if (!fence) 345 return -ENOMEM; 346 347 remain = args->size; 348 user_data = u64_to_user_ptr(args->data_ptr); 349 offset = offset_in_page(args->offset); 350 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { 351 struct page *page = i915_gem_object_get_page(obj, idx); 352 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset); 353 354 ret = shmem_pread(page, offset, length, user_data, 355 needs_clflush); 356 if (ret) 357 break; 358 359 remain -= length; 360 user_data += length; 361 offset = 0; 362 } 363 364 i915_gem_object_unlock_fence(obj, fence); 365 return ret; 366 } 367 368 static inline bool 369 gtt_user_read(struct io_mapping *mapping, 370 loff_t base, int offset, 371 char __user *user_data, int length) 372 { 373 void __iomem *vaddr; 374 unsigned long unwritten; 375 376 /* We can use the cpu mem copy function because this is X86. */ 377 vaddr = io_mapping_map_atomic_wc(mapping, base); 378 unwritten = __copy_to_user_inatomic(user_data, 379 (void __force *)vaddr + offset, 380 length); 381 io_mapping_unmap_atomic(vaddr); 382 if (unwritten) { 383 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE); 384 unwritten = copy_to_user(user_data, 385 (void __force *)vaddr + offset, 386 length); 387 io_mapping_unmap(vaddr); 388 } 389 return unwritten; 390 } 391 392 static int 393 i915_gem_gtt_pread(struct drm_i915_gem_object *obj, 394 const struct drm_i915_gem_pread *args) 395 { 396 struct drm_i915_private *i915 = to_i915(obj->base.dev); 397 struct i915_ggtt *ggtt = &i915->ggtt; 398 intel_wakeref_t wakeref; 399 struct drm_mm_node node; 400 struct dma_fence *fence; 401 void __user *user_data; 402 struct i915_vma *vma; 403 u64 remain, offset; 404 int ret; 405 406 wakeref = intel_runtime_pm_get(&i915->runtime_pm); 407 vma = ERR_PTR(-ENODEV); 408 if (!i915_gem_object_is_tiled(obj)) 409 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 410 PIN_MAPPABLE | 411 PIN_NONBLOCK /* NOWARN */ | 412 PIN_NOEVICT); 413 if (!IS_ERR(vma)) { 414 node.start = i915_ggtt_offset(vma); 415 node.flags = 0; 416 } else { 417 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE); 418 if (ret) 419 goto out_rpm; 420 GEM_BUG_ON(!drm_mm_node_allocated(&node)); 421 } 422 423 ret = i915_gem_object_lock_interruptible(obj); 424 if (ret) 425 goto out_unpin; 426 427 ret = i915_gem_object_set_to_gtt_domain(obj, false); 428 if (ret) { 429 i915_gem_object_unlock(obj); 430 goto out_unpin; 431 } 432 433 fence = i915_gem_object_lock_fence(obj); 434 i915_gem_object_unlock(obj); 435 if (!fence) { 436 ret = -ENOMEM; 437 goto out_unpin; 438 } 439 440 user_data = u64_to_user_ptr(args->data_ptr); 441 remain = args->size; 442 offset = args->offset; 443 444 while (remain > 0) { 445 /* Operation in this page 446 * 447 * page_base = page offset within aperture 448 * page_offset = offset within page 449 * page_length = bytes to copy for this page 450 */ 451 u32 page_base = node.start; 452 unsigned page_offset = offset_in_page(offset); 453 unsigned page_length = PAGE_SIZE - page_offset; 454 page_length = remain < page_length ? remain : page_length; 455 if (drm_mm_node_allocated(&node)) { 456 ggtt->vm.insert_page(&ggtt->vm, 457 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), 458 node.start, I915_CACHE_NONE, 0); 459 } else { 460 page_base += offset & PAGE_MASK; 461 } 462 463 if (gtt_user_read(&ggtt->iomap, page_base, page_offset, 464 user_data, page_length)) { 465 ret = -EFAULT; 466 break; 467 } 468 469 remain -= page_length; 470 user_data += page_length; 471 offset += page_length; 472 } 473 474 i915_gem_object_unlock_fence(obj, fence); 475 out_unpin: 476 if (drm_mm_node_allocated(&node)) { 477 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size); 478 remove_mappable_node(ggtt, &node); 479 } else { 480 i915_vma_unpin(vma); 481 } 482 out_rpm: 483 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 484 return ret; 485 } 486 487 /** 488 * Reads data from the object referenced by handle. 489 * @dev: drm device pointer 490 * @data: ioctl data blob 491 * @file: drm file pointer 492 * 493 * On error, the contents of *data are undefined. 494 */ 495 int 496 i915_gem_pread_ioctl(struct drm_device *dev, void *data, 497 struct drm_file *file) 498 { 499 struct drm_i915_gem_pread *args = data; 500 struct drm_i915_gem_object *obj; 501 int ret; 502 503 if (args->size == 0) 504 return 0; 505 506 if (!access_ok(u64_to_user_ptr(args->data_ptr), 507 args->size)) 508 return -EFAULT; 509 510 obj = i915_gem_object_lookup(file, args->handle); 511 if (!obj) 512 return -ENOENT; 513 514 /* Bounds check source. */ 515 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) { 516 ret = -EINVAL; 517 goto out; 518 } 519 520 trace_i915_gem_object_pread(obj, args->offset, args->size); 521 522 ret = i915_gem_object_wait(obj, 523 I915_WAIT_INTERRUPTIBLE, 524 MAX_SCHEDULE_TIMEOUT); 525 if (ret) 526 goto out; 527 528 ret = i915_gem_object_pin_pages(obj); 529 if (ret) 530 goto out; 531 532 ret = i915_gem_shmem_pread(obj, args); 533 if (ret == -EFAULT || ret == -ENODEV) 534 ret = i915_gem_gtt_pread(obj, args); 535 536 i915_gem_object_unpin_pages(obj); 537 out: 538 i915_gem_object_put(obj); 539 return ret; 540 } 541 542 /* This is the fast write path which cannot handle 543 * page faults in the source data 544 */ 545 546 static inline bool 547 ggtt_write(struct io_mapping *mapping, 548 loff_t base, int offset, 549 char __user *user_data, int length) 550 { 551 void __iomem *vaddr; 552 unsigned long unwritten; 553 554 /* We can use the cpu mem copy function because this is X86. */ 555 vaddr = io_mapping_map_atomic_wc(mapping, base); 556 unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset, 557 user_data, length); 558 io_mapping_unmap_atomic(vaddr); 559 if (unwritten) { 560 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE); 561 unwritten = copy_from_user((void __force *)vaddr + offset, 562 user_data, length); 563 io_mapping_unmap(vaddr); 564 } 565 566 return unwritten; 567 } 568 569 /** 570 * This is the fast pwrite path, where we copy the data directly from the 571 * user into the GTT, uncached. 572 * @obj: i915 GEM object 573 * @args: pwrite arguments structure 574 */ 575 static int 576 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj, 577 const struct drm_i915_gem_pwrite *args) 578 { 579 struct drm_i915_private *i915 = to_i915(obj->base.dev); 580 struct i915_ggtt *ggtt = &i915->ggtt; 581 struct intel_runtime_pm *rpm = &i915->runtime_pm; 582 intel_wakeref_t wakeref; 583 struct drm_mm_node node; 584 struct dma_fence *fence; 585 struct i915_vma *vma; 586 u64 remain, offset; 587 void __user *user_data; 588 int ret; 589 590 if (i915_gem_object_has_struct_page(obj)) { 591 /* 592 * Avoid waking the device up if we can fallback, as 593 * waking/resuming is very slow (worst-case 10-100 ms 594 * depending on PCI sleeps and our own resume time). 595 * This easily dwarfs any performance advantage from 596 * using the cache bypass of indirect GGTT access. 597 */ 598 wakeref = intel_runtime_pm_get_if_in_use(rpm); 599 if (!wakeref) 600 return -EFAULT; 601 } else { 602 /* No backing pages, no fallback, we must force GGTT access */ 603 wakeref = intel_runtime_pm_get(rpm); 604 } 605 606 vma = ERR_PTR(-ENODEV); 607 if (!i915_gem_object_is_tiled(obj)) 608 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 609 PIN_MAPPABLE | 610 PIN_NONBLOCK /* NOWARN */ | 611 PIN_NOEVICT); 612 if (!IS_ERR(vma)) { 613 node.start = i915_ggtt_offset(vma); 614 node.flags = 0; 615 } else { 616 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE); 617 if (ret) 618 goto out_rpm; 619 GEM_BUG_ON(!drm_mm_node_allocated(&node)); 620 } 621 622 ret = i915_gem_object_lock_interruptible(obj); 623 if (ret) 624 goto out_unpin; 625 626 ret = i915_gem_object_set_to_gtt_domain(obj, true); 627 if (ret) { 628 i915_gem_object_unlock(obj); 629 goto out_unpin; 630 } 631 632 fence = i915_gem_object_lock_fence(obj); 633 i915_gem_object_unlock(obj); 634 if (!fence) { 635 ret = -ENOMEM; 636 goto out_unpin; 637 } 638 639 i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU); 640 641 user_data = u64_to_user_ptr(args->data_ptr); 642 offset = args->offset; 643 remain = args->size; 644 while (remain) { 645 /* Operation in this page 646 * 647 * page_base = page offset within aperture 648 * page_offset = offset within page 649 * page_length = bytes to copy for this page 650 */ 651 u32 page_base = node.start; 652 unsigned int page_offset = offset_in_page(offset); 653 unsigned int page_length = PAGE_SIZE - page_offset; 654 page_length = remain < page_length ? remain : page_length; 655 if (drm_mm_node_allocated(&node)) { 656 /* flush the write before we modify the GGTT */ 657 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 658 ggtt->vm.insert_page(&ggtt->vm, 659 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), 660 node.start, I915_CACHE_NONE, 0); 661 wmb(); /* flush modifications to the GGTT (insert_page) */ 662 } else { 663 page_base += offset & PAGE_MASK; 664 } 665 /* If we get a fault while copying data, then (presumably) our 666 * source page isn't available. Return the error and we'll 667 * retry in the slow path. 668 * If the object is non-shmem backed, we retry again with the 669 * path that handles page fault. 670 */ 671 if (ggtt_write(&ggtt->iomap, page_base, page_offset, 672 user_data, page_length)) { 673 ret = -EFAULT; 674 break; 675 } 676 677 remain -= page_length; 678 user_data += page_length; 679 offset += page_length; 680 } 681 682 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 683 i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU); 684 685 i915_gem_object_unlock_fence(obj, fence); 686 out_unpin: 687 if (drm_mm_node_allocated(&node)) { 688 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size); 689 remove_mappable_node(ggtt, &node); 690 } else { 691 i915_vma_unpin(vma); 692 } 693 out_rpm: 694 intel_runtime_pm_put(rpm, wakeref); 695 return ret; 696 } 697 698 /* Per-page copy function for the shmem pwrite fastpath. 699 * Flushes invalid cachelines before writing to the target if 700 * needs_clflush_before is set and flushes out any written cachelines after 701 * writing if needs_clflush is set. 702 */ 703 static int 704 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data, 705 bool needs_clflush_before, 706 bool needs_clflush_after) 707 { 708 char *vaddr; 709 int ret; 710 711 vaddr = kmap(page); 712 713 if (needs_clflush_before) 714 drm_clflush_virt_range(vaddr + offset, len); 715 716 ret = __copy_from_user(vaddr + offset, user_data, len); 717 if (!ret && needs_clflush_after) 718 drm_clflush_virt_range(vaddr + offset, len); 719 720 kunmap(page); 721 722 return ret ? -EFAULT : 0; 723 } 724 725 static int 726 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj, 727 const struct drm_i915_gem_pwrite *args) 728 { 729 unsigned int partial_cacheline_write; 730 unsigned int needs_clflush; 731 unsigned int offset, idx; 732 struct dma_fence *fence; 733 void __user *user_data; 734 u64 remain; 735 int ret; 736 737 ret = i915_gem_object_prepare_write(obj, &needs_clflush); 738 if (ret) 739 return ret; 740 741 fence = i915_gem_object_lock_fence(obj); 742 i915_gem_object_finish_access(obj); 743 if (!fence) 744 return -ENOMEM; 745 746 /* If we don't overwrite a cacheline completely we need to be 747 * careful to have up-to-date data by first clflushing. Don't 748 * overcomplicate things and flush the entire patch. 749 */ 750 partial_cacheline_write = 0; 751 if (needs_clflush & CLFLUSH_BEFORE) 752 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1; 753 754 user_data = u64_to_user_ptr(args->data_ptr); 755 remain = args->size; 756 offset = offset_in_page(args->offset); 757 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { 758 struct page *page = i915_gem_object_get_page(obj, idx); 759 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset); 760 761 ret = shmem_pwrite(page, offset, length, user_data, 762 (offset | length) & partial_cacheline_write, 763 needs_clflush & CLFLUSH_AFTER); 764 if (ret) 765 break; 766 767 remain -= length; 768 user_data += length; 769 offset = 0; 770 } 771 772 i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU); 773 i915_gem_object_unlock_fence(obj, fence); 774 775 return ret; 776 } 777 778 /** 779 * Writes data to the object referenced by handle. 780 * @dev: drm device 781 * @data: ioctl data blob 782 * @file: drm file 783 * 784 * On error, the contents of the buffer that were to be modified are undefined. 785 */ 786 int 787 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 788 struct drm_file *file) 789 { 790 struct drm_i915_gem_pwrite *args = data; 791 struct drm_i915_gem_object *obj; 792 int ret; 793 794 if (args->size == 0) 795 return 0; 796 797 if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size)) 798 return -EFAULT; 799 800 obj = i915_gem_object_lookup(file, args->handle); 801 if (!obj) 802 return -ENOENT; 803 804 /* Bounds check destination. */ 805 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) { 806 ret = -EINVAL; 807 goto err; 808 } 809 810 /* Writes not allowed into this read-only object */ 811 if (i915_gem_object_is_readonly(obj)) { 812 ret = -EINVAL; 813 goto err; 814 } 815 816 trace_i915_gem_object_pwrite(obj, args->offset, args->size); 817 818 ret = -ENODEV; 819 if (obj->ops->pwrite) 820 ret = obj->ops->pwrite(obj, args); 821 if (ret != -ENODEV) 822 goto err; 823 824 ret = i915_gem_object_wait(obj, 825 I915_WAIT_INTERRUPTIBLE | 826 I915_WAIT_ALL, 827 MAX_SCHEDULE_TIMEOUT); 828 if (ret) 829 goto err; 830 831 ret = i915_gem_object_pin_pages(obj); 832 if (ret) 833 goto err; 834 835 ret = -EFAULT; 836 /* We can only do the GTT pwrite on untiled buffers, as otherwise 837 * it would end up going through the fenced access, and we'll get 838 * different detiling behavior between reading and writing. 839 * pread/pwrite currently are reading and writing from the CPU 840 * perspective, requiring manual detiling by the client. 841 */ 842 if (!i915_gem_object_has_struct_page(obj) || 843 cpu_write_needs_clflush(obj)) 844 /* Note that the gtt paths might fail with non-page-backed user 845 * pointers (e.g. gtt mappings when moving data between 846 * textures). Fallback to the shmem path in that case. 847 */ 848 ret = i915_gem_gtt_pwrite_fast(obj, args); 849 850 if (ret == -EFAULT || ret == -ENOSPC) { 851 if (i915_gem_object_has_struct_page(obj)) 852 ret = i915_gem_shmem_pwrite(obj, args); 853 else 854 ret = i915_gem_phys_pwrite(obj, args, file); 855 } 856 857 i915_gem_object_unpin_pages(obj); 858 err: 859 i915_gem_object_put(obj); 860 return ret; 861 } 862 863 /** 864 * Called when user space has done writes to this buffer 865 * @dev: drm device 866 * @data: ioctl data blob 867 * @file: drm file 868 */ 869 int 870 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 871 struct drm_file *file) 872 { 873 struct drm_i915_gem_sw_finish *args = data; 874 struct drm_i915_gem_object *obj; 875 876 obj = i915_gem_object_lookup(file, args->handle); 877 if (!obj) 878 return -ENOENT; 879 880 /* 881 * Proxy objects are barred from CPU access, so there is no 882 * need to ban sw_finish as it is a nop. 883 */ 884 885 /* Pinned buffers may be scanout, so flush the cache */ 886 i915_gem_object_flush_if_display(obj); 887 i915_gem_object_put(obj); 888 889 return 0; 890 } 891 892 void i915_gem_runtime_suspend(struct drm_i915_private *i915) 893 { 894 struct drm_i915_gem_object *obj, *on; 895 int i; 896 897 /* 898 * Only called during RPM suspend. All users of the userfault_list 899 * must be holding an RPM wakeref to ensure that this can not 900 * run concurrently with themselves (and use the struct_mutex for 901 * protection between themselves). 902 */ 903 904 list_for_each_entry_safe(obj, on, 905 &i915->ggtt.userfault_list, userfault_link) 906 __i915_gem_object_release_mmap_gtt(obj); 907 908 /* 909 * The fence will be lost when the device powers down. If any were 910 * in use by hardware (i.e. they are pinned), we should not be powering 911 * down! All other fences will be reacquired by the user upon waking. 912 */ 913 for (i = 0; i < i915->ggtt.num_fences; i++) { 914 struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i]; 915 916 /* 917 * Ideally we want to assert that the fence register is not 918 * live at this point (i.e. that no piece of code will be 919 * trying to write through fence + GTT, as that both violates 920 * our tracking of activity and associated locking/barriers, 921 * but also is illegal given that the hw is powered down). 922 * 923 * Previously we used reg->pin_count as a "liveness" indicator. 924 * That is not sufficient, and we need a more fine-grained 925 * tool if we want to have a sanity check here. 926 */ 927 928 if (!reg->vma) 929 continue; 930 931 GEM_BUG_ON(i915_vma_has_userfault(reg->vma)); 932 reg->dirty = true; 933 } 934 } 935 936 static void discard_ggtt_vma(struct i915_vma *vma) 937 { 938 struct drm_i915_gem_object *obj = vma->obj; 939 940 spin_lock(&obj->vma.lock); 941 if (!RB_EMPTY_NODE(&vma->obj_node)) { 942 rb_erase(&vma->obj_node, &obj->vma.tree); 943 RB_CLEAR_NODE(&vma->obj_node); 944 } 945 spin_unlock(&obj->vma.lock); 946 } 947 948 struct i915_vma * 949 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, 950 const struct i915_ggtt_view *view, 951 u64 size, 952 u64 alignment, 953 u64 flags) 954 { 955 struct drm_i915_private *i915 = to_i915(obj->base.dev); 956 struct i915_ggtt *ggtt = &i915->ggtt; 957 struct i915_vma *vma; 958 int ret; 959 960 if (flags & PIN_MAPPABLE && 961 (!view || view->type == I915_GGTT_VIEW_NORMAL)) { 962 /* 963 * If the required space is larger than the available 964 * aperture, we will not able to find a slot for the 965 * object and unbinding the object now will be in 966 * vain. Worse, doing so may cause us to ping-pong 967 * the object in and out of the Global GTT and 968 * waste a lot of cycles under the mutex. 969 */ 970 if (obj->base.size > ggtt->mappable_end) 971 return ERR_PTR(-E2BIG); 972 973 /* 974 * If NONBLOCK is set the caller is optimistically 975 * trying to cache the full object within the mappable 976 * aperture, and *must* have a fallback in place for 977 * situations where we cannot bind the object. We 978 * can be a little more lax here and use the fallback 979 * more often to avoid costly migrations of ourselves 980 * and other objects within the aperture. 981 * 982 * Half-the-aperture is used as a simple heuristic. 983 * More interesting would to do search for a free 984 * block prior to making the commitment to unbind. 985 * That caters for the self-harm case, and with a 986 * little more heuristics (e.g. NOFAULT, NOEVICT) 987 * we could try to minimise harm to others. 988 */ 989 if (flags & PIN_NONBLOCK && 990 obj->base.size > ggtt->mappable_end / 2) 991 return ERR_PTR(-ENOSPC); 992 } 993 994 new_vma: 995 vma = i915_vma_instance(obj, &ggtt->vm, view); 996 if (IS_ERR(vma)) 997 return vma; 998 999 if (i915_vma_misplaced(vma, size, alignment, flags)) { 1000 if (flags & PIN_NONBLOCK) { 1001 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) 1002 return ERR_PTR(-ENOSPC); 1003 1004 if (flags & PIN_MAPPABLE && 1005 vma->fence_size > ggtt->mappable_end / 2) 1006 return ERR_PTR(-ENOSPC); 1007 } 1008 1009 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) { 1010 discard_ggtt_vma(vma); 1011 goto new_vma; 1012 } 1013 1014 ret = i915_vma_unbind(vma); 1015 if (ret) 1016 return ERR_PTR(ret); 1017 } 1018 1019 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL); 1020 if (ret) 1021 return ERR_PTR(ret); 1022 1023 if (vma->fence && !i915_gem_object_is_tiled(obj)) { 1024 mutex_lock(&ggtt->vm.mutex); 1025 i915_vma_revoke_fence(vma); 1026 mutex_unlock(&ggtt->vm.mutex); 1027 } 1028 1029 ret = i915_vma_wait_for_bind(vma); 1030 if (ret) { 1031 i915_vma_unpin(vma); 1032 return ERR_PTR(ret); 1033 } 1034 1035 return vma; 1036 } 1037 1038 int 1039 i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 1040 struct drm_file *file_priv) 1041 { 1042 struct drm_i915_private *i915 = to_i915(dev); 1043 struct drm_i915_gem_madvise *args = data; 1044 struct drm_i915_gem_object *obj; 1045 int err; 1046 1047 switch (args->madv) { 1048 case I915_MADV_DONTNEED: 1049 case I915_MADV_WILLNEED: 1050 break; 1051 default: 1052 return -EINVAL; 1053 } 1054 1055 obj = i915_gem_object_lookup(file_priv, args->handle); 1056 if (!obj) 1057 return -ENOENT; 1058 1059 err = mutex_lock_interruptible(&obj->mm.lock); 1060 if (err) 1061 goto out; 1062 1063 if (i915_gem_object_has_pages(obj) && 1064 i915_gem_object_is_tiled(obj) && 1065 i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) { 1066 if (obj->mm.madv == I915_MADV_WILLNEED) { 1067 GEM_BUG_ON(!obj->mm.quirked); 1068 __i915_gem_object_unpin_pages(obj); 1069 obj->mm.quirked = false; 1070 } 1071 if (args->madv == I915_MADV_WILLNEED) { 1072 GEM_BUG_ON(obj->mm.quirked); 1073 __i915_gem_object_pin_pages(obj); 1074 obj->mm.quirked = true; 1075 } 1076 } 1077 1078 if (obj->mm.madv != __I915_MADV_PURGED) 1079 obj->mm.madv = args->madv; 1080 1081 if (i915_gem_object_has_pages(obj)) { 1082 struct list_head *list; 1083 1084 if (i915_gem_object_is_shrinkable(obj)) { 1085 unsigned long flags; 1086 1087 spin_lock_irqsave(&i915->mm.obj_lock, flags); 1088 1089 if (obj->mm.madv != I915_MADV_WILLNEED) 1090 list = &i915->mm.purge_list; 1091 else 1092 list = &i915->mm.shrink_list; 1093 list_move_tail(&obj->mm.link, list); 1094 1095 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 1096 } 1097 } 1098 1099 /* if the object is no longer attached, discard its backing storage */ 1100 if (obj->mm.madv == I915_MADV_DONTNEED && 1101 !i915_gem_object_has_pages(obj)) 1102 i915_gem_object_truncate(obj); 1103 1104 args->retained = obj->mm.madv != __I915_MADV_PURGED; 1105 mutex_unlock(&obj->mm.lock); 1106 1107 out: 1108 i915_gem_object_put(obj); 1109 return err; 1110 } 1111 1112 int i915_gem_init(struct drm_i915_private *dev_priv) 1113 { 1114 int ret; 1115 1116 /* We need to fallback to 4K pages if host doesn't support huge gtt. */ 1117 if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv)) 1118 mkwrite_device_info(dev_priv)->page_sizes = 1119 I915_GTT_PAGE_SIZE_4K; 1120 1121 ret = i915_gem_init_userptr(dev_priv); 1122 if (ret) 1123 return ret; 1124 1125 intel_uc_fetch_firmwares(&dev_priv->gt.uc); 1126 intel_wopcm_init(&dev_priv->wopcm); 1127 1128 ret = i915_init_ggtt(dev_priv); 1129 if (ret) { 1130 GEM_BUG_ON(ret == -EIO); 1131 goto err_unlock; 1132 } 1133 1134 /* 1135 * Despite its name intel_init_clock_gating applies both display 1136 * clock gating workarounds; GT mmio workarounds and the occasional 1137 * GT power context workaround. Worse, sometimes it includes a context 1138 * register workaround which we need to apply before we record the 1139 * default HW state for all contexts. 1140 * 1141 * FIXME: break up the workarounds and apply them at the right time! 1142 */ 1143 intel_init_clock_gating(dev_priv); 1144 1145 ret = intel_gt_init(&dev_priv->gt); 1146 if (ret) 1147 goto err_unlock; 1148 1149 return 0; 1150 1151 /* 1152 * Unwinding is complicated by that we want to handle -EIO to mean 1153 * disable GPU submission but keep KMS alive. We want to mark the 1154 * HW as irrevisibly wedged, but keep enough state around that the 1155 * driver doesn't explode during runtime. 1156 */ 1157 err_unlock: 1158 i915_gem_drain_workqueue(dev_priv); 1159 1160 if (ret != -EIO) { 1161 intel_uc_cleanup_firmwares(&dev_priv->gt.uc); 1162 i915_gem_cleanup_userptr(dev_priv); 1163 } 1164 1165 if (ret == -EIO) { 1166 /* 1167 * Allow engines or uC initialisation to fail by marking the GPU 1168 * as wedged. But we only want to do this when the GPU is angry, 1169 * for all other failure, such as an allocation failure, bail. 1170 */ 1171 if (!intel_gt_is_wedged(&dev_priv->gt)) { 1172 i915_probe_error(dev_priv, 1173 "Failed to initialize GPU, declaring it wedged!\n"); 1174 intel_gt_set_wedged(&dev_priv->gt); 1175 } 1176 1177 /* Minimal basic recovery for KMS */ 1178 ret = i915_ggtt_enable_hw(dev_priv); 1179 i915_ggtt_resume(&dev_priv->ggtt); 1180 intel_init_clock_gating(dev_priv); 1181 } 1182 1183 i915_gem_drain_freed_objects(dev_priv); 1184 return ret; 1185 } 1186 1187 void i915_gem_driver_register(struct drm_i915_private *i915) 1188 { 1189 i915_gem_driver_register__shrinker(i915); 1190 1191 intel_engines_driver_register(i915); 1192 } 1193 1194 void i915_gem_driver_unregister(struct drm_i915_private *i915) 1195 { 1196 i915_gem_driver_unregister__shrinker(i915); 1197 } 1198 1199 void i915_gem_driver_remove(struct drm_i915_private *dev_priv) 1200 { 1201 intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref); 1202 1203 i915_gem_suspend_late(dev_priv); 1204 intel_gt_driver_remove(&dev_priv->gt); 1205 dev_priv->uabi_engines = RB_ROOT; 1206 1207 /* Flush any outstanding unpin_work. */ 1208 i915_gem_drain_workqueue(dev_priv); 1209 1210 i915_gem_drain_freed_objects(dev_priv); 1211 } 1212 1213 void i915_gem_driver_release(struct drm_i915_private *dev_priv) 1214 { 1215 i915_gem_driver_release__contexts(dev_priv); 1216 1217 intel_gt_driver_release(&dev_priv->gt); 1218 1219 intel_wa_list_free(&dev_priv->gt_wa_list); 1220 1221 intel_uc_cleanup_firmwares(&dev_priv->gt.uc); 1222 i915_gem_cleanup_userptr(dev_priv); 1223 1224 i915_gem_drain_freed_objects(dev_priv); 1225 1226 drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list)); 1227 } 1228 1229 static void i915_gem_init__mm(struct drm_i915_private *i915) 1230 { 1231 spin_lock_init(&i915->mm.obj_lock); 1232 1233 init_llist_head(&i915->mm.free_list); 1234 1235 INIT_LIST_HEAD(&i915->mm.purge_list); 1236 INIT_LIST_HEAD(&i915->mm.shrink_list); 1237 1238 i915_gem_init__objects(i915); 1239 } 1240 1241 void i915_gem_init_early(struct drm_i915_private *dev_priv) 1242 { 1243 i915_gem_init__mm(dev_priv); 1244 i915_gem_init__contexts(dev_priv); 1245 1246 spin_lock_init(&dev_priv->fb_tracking.lock); 1247 } 1248 1249 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv) 1250 { 1251 i915_gem_drain_freed_objects(dev_priv); 1252 GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list)); 1253 GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count)); 1254 drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count); 1255 } 1256 1257 int i915_gem_freeze(struct drm_i915_private *dev_priv) 1258 { 1259 /* Discard all purgeable objects, let userspace recover those as 1260 * required after resuming. 1261 */ 1262 i915_gem_shrink_all(dev_priv); 1263 1264 return 0; 1265 } 1266 1267 int i915_gem_freeze_late(struct drm_i915_private *i915) 1268 { 1269 struct drm_i915_gem_object *obj; 1270 intel_wakeref_t wakeref; 1271 1272 /* 1273 * Called just before we write the hibernation image. 1274 * 1275 * We need to update the domain tracking to reflect that the CPU 1276 * will be accessing all the pages to create and restore from the 1277 * hibernation, and so upon restoration those pages will be in the 1278 * CPU domain. 1279 * 1280 * To make sure the hibernation image contains the latest state, 1281 * we update that state just before writing out the image. 1282 * 1283 * To try and reduce the hibernation image, we manually shrink 1284 * the objects as well, see i915_gem_freeze() 1285 */ 1286 1287 wakeref = intel_runtime_pm_get(&i915->runtime_pm); 1288 1289 i915_gem_shrink(i915, -1UL, NULL, ~0); 1290 i915_gem_drain_freed_objects(i915); 1291 1292 list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) { 1293 i915_gem_object_lock(obj); 1294 drm_WARN_ON(&i915->drm, 1295 i915_gem_object_set_to_cpu_domain(obj, true)); 1296 i915_gem_object_unlock(obj); 1297 } 1298 1299 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 1300 1301 return 0; 1302 } 1303 1304 void i915_gem_release(struct drm_device *dev, struct drm_file *file) 1305 { 1306 struct drm_i915_file_private *file_priv = file->driver_priv; 1307 struct i915_request *request; 1308 1309 /* Clean up our request list when the client is going away, so that 1310 * later retire_requests won't dereference our soon-to-be-gone 1311 * file_priv. 1312 */ 1313 spin_lock(&file_priv->mm.lock); 1314 list_for_each_entry(request, &file_priv->mm.request_list, client_link) 1315 request->file_priv = NULL; 1316 spin_unlock(&file_priv->mm.lock); 1317 } 1318 1319 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file) 1320 { 1321 struct drm_i915_file_private *file_priv; 1322 int ret; 1323 1324 DRM_DEBUG("\n"); 1325 1326 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL); 1327 if (!file_priv) 1328 return -ENOMEM; 1329 1330 file->driver_priv = file_priv; 1331 file_priv->dev_priv = i915; 1332 file_priv->file = file; 1333 1334 spin_lock_init(&file_priv->mm.lock); 1335 INIT_LIST_HEAD(&file_priv->mm.request_list); 1336 1337 file_priv->bsd_engine = -1; 1338 file_priv->hang_timestamp = jiffies; 1339 1340 ret = i915_gem_context_open(i915, file); 1341 if (ret) 1342 kfree(file_priv); 1343 1344 return ret; 1345 } 1346 1347 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1348 #include "selftests/mock_gem_device.c" 1349 #include "selftests/i915_gem.c" 1350 #endif 1351