xref: /linux/drivers/gpu/drm/i915/i915_gem.c (revision 36110669ddf832e6c9ceba4dd203749d5be31d31)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <linux/dma-fence-array.h>
29 #include <linux/kthread.h>
30 #include <linux/dma-resv.h>
31 #include <linux/shmem_fs.h>
32 #include <linux/slab.h>
33 #include <linux/stop_machine.h>
34 #include <linux/swap.h>
35 #include <linux/pci.h>
36 #include <linux/dma-buf.h>
37 #include <linux/mman.h>
38 
39 #include <drm/drm_cache.h>
40 #include <drm/drm_vma_manager.h>
41 
42 #include "gem/i915_gem_clflush.h"
43 #include "gem/i915_gem_context.h"
44 #include "gem/i915_gem_ioctls.h"
45 #include "gem/i915_gem_mman.h"
46 #include "gem/i915_gem_object_frontbuffer.h"
47 #include "gem/i915_gem_pm.h"
48 #include "gem/i915_gem_region.h"
49 #include "gt/intel_engine_user.h"
50 #include "gt/intel_gt.h"
51 #include "gt/intel_gt_pm.h"
52 #include "gt/intel_workarounds.h"
53 
54 #include "i915_drv.h"
55 #include "i915_file_private.h"
56 #include "i915_trace.h"
57 #include "i915_vgpu.h"
58 #include "intel_clock_gating.h"
59 
60 static int
61 insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
62 {
63 	int err;
64 
65 	err = mutex_lock_interruptible(&ggtt->vm.mutex);
66 	if (err)
67 		return err;
68 
69 	memset(node, 0, sizeof(*node));
70 	err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
71 					  size, 0, I915_COLOR_UNEVICTABLE,
72 					  0, ggtt->mappable_end,
73 					  DRM_MM_INSERT_LOW);
74 
75 	mutex_unlock(&ggtt->vm.mutex);
76 
77 	return err;
78 }
79 
80 static void
81 remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
82 {
83 	mutex_lock(&ggtt->vm.mutex);
84 	drm_mm_remove_node(node);
85 	mutex_unlock(&ggtt->vm.mutex);
86 }
87 
88 int
89 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
90 			    struct drm_file *file)
91 {
92 	struct drm_i915_private *i915 = to_i915(dev);
93 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
94 	struct drm_i915_gem_get_aperture *args = data;
95 	struct i915_vma *vma;
96 	u64 pinned;
97 
98 	if (mutex_lock_interruptible(&ggtt->vm.mutex))
99 		return -EINTR;
100 
101 	pinned = ggtt->vm.reserved;
102 	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
103 		if (i915_vma_is_pinned(vma))
104 			pinned += vma->node.size;
105 
106 	mutex_unlock(&ggtt->vm.mutex);
107 
108 	args->aper_size = ggtt->vm.total;
109 	args->aper_available_size = args->aper_size - pinned;
110 
111 	return 0;
112 }
113 
114 int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
115 			   unsigned long flags)
116 {
117 	struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
118 	bool vm_trylock = !!(flags & I915_GEM_OBJECT_UNBIND_VM_TRYLOCK);
119 	LIST_HEAD(still_in_list);
120 	intel_wakeref_t wakeref;
121 	struct i915_vma *vma;
122 	int ret;
123 
124 	assert_object_held(obj);
125 
126 	if (list_empty(&obj->vma.list))
127 		return 0;
128 
129 	/*
130 	 * As some machines use ACPI to handle runtime-resume callbacks, and
131 	 * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
132 	 * as they are required by the shrinker. Ergo, we wake the device up
133 	 * first just in case.
134 	 */
135 	wakeref = intel_runtime_pm_get(rpm);
136 
137 try_again:
138 	ret = 0;
139 	spin_lock(&obj->vma.lock);
140 	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
141 						       struct i915_vma,
142 						       obj_link))) {
143 		list_move_tail(&vma->obj_link, &still_in_list);
144 		if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
145 			continue;
146 
147 		if (flags & I915_GEM_OBJECT_UNBIND_TEST) {
148 			ret = -EBUSY;
149 			break;
150 		}
151 
152 		/*
153 		 * Requiring the vm destructor to take the object lock
154 		 * before destroying a vma would help us eliminate the
155 		 * i915_vm_tryget() here, AND thus also the barrier stuff
156 		 * at the end. That's an easy fix, but sleeping locks in
157 		 * a kthread should generally be avoided.
158 		 */
159 		ret = -EAGAIN;
160 		if (!i915_vm_tryget(vma->vm))
161 			break;
162 
163 		spin_unlock(&obj->vma.lock);
164 
165 		/*
166 		 * Since i915_vma_parked() takes the object lock
167 		 * before vma destruction, it won't race us here,
168 		 * and destroy the vma from under us.
169 		 */
170 
171 		ret = -EBUSY;
172 		if (flags & I915_GEM_OBJECT_UNBIND_ASYNC) {
173 			assert_object_held(vma->obj);
174 			ret = i915_vma_unbind_async(vma, vm_trylock);
175 		}
176 
177 		if (ret == -EBUSY && (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
178 				      !i915_vma_is_active(vma))) {
179 			if (vm_trylock) {
180 				if (mutex_trylock(&vma->vm->mutex)) {
181 					ret = __i915_vma_unbind(vma);
182 					mutex_unlock(&vma->vm->mutex);
183 				}
184 			} else {
185 				ret = i915_vma_unbind(vma);
186 			}
187 		}
188 
189 		i915_vm_put(vma->vm);
190 		spin_lock(&obj->vma.lock);
191 	}
192 	list_splice_init(&still_in_list, &obj->vma.list);
193 	spin_unlock(&obj->vma.lock);
194 
195 	if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
196 		rcu_barrier(); /* flush the i915_vm_release() */
197 		goto try_again;
198 	}
199 
200 	intel_runtime_pm_put(rpm, wakeref);
201 
202 	return ret;
203 }
204 
205 static int
206 shmem_pread(struct page *page, int offset, int len, char __user *user_data,
207 	    bool needs_clflush)
208 {
209 	char *vaddr;
210 	int ret;
211 
212 	vaddr = kmap(page);
213 
214 	if (needs_clflush)
215 		drm_clflush_virt_range(vaddr + offset, len);
216 
217 	ret = __copy_to_user(user_data, vaddr + offset, len);
218 
219 	kunmap(page);
220 
221 	return ret ? -EFAULT : 0;
222 }
223 
224 static int
225 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
226 		     struct drm_i915_gem_pread *args)
227 {
228 	unsigned int needs_clflush;
229 	char __user *user_data;
230 	unsigned long offset;
231 	pgoff_t idx;
232 	u64 remain;
233 	int ret;
234 
235 	ret = i915_gem_object_lock_interruptible(obj, NULL);
236 	if (ret)
237 		return ret;
238 
239 	ret = i915_gem_object_pin_pages(obj);
240 	if (ret)
241 		goto err_unlock;
242 
243 	ret = i915_gem_object_prepare_read(obj, &needs_clflush);
244 	if (ret)
245 		goto err_unpin;
246 
247 	i915_gem_object_finish_access(obj);
248 	i915_gem_object_unlock(obj);
249 
250 	remain = args->size;
251 	user_data = u64_to_user_ptr(args->data_ptr);
252 	offset = offset_in_page(args->offset);
253 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
254 		struct page *page = i915_gem_object_get_page(obj, idx);
255 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
256 
257 		ret = shmem_pread(page, offset, length, user_data,
258 				  needs_clflush);
259 		if (ret)
260 			break;
261 
262 		remain -= length;
263 		user_data += length;
264 		offset = 0;
265 	}
266 
267 	i915_gem_object_unpin_pages(obj);
268 	return ret;
269 
270 err_unpin:
271 	i915_gem_object_unpin_pages(obj);
272 err_unlock:
273 	i915_gem_object_unlock(obj);
274 	return ret;
275 }
276 
277 static inline bool
278 gtt_user_read(struct io_mapping *mapping,
279 	      loff_t base, int offset,
280 	      char __user *user_data, int length)
281 {
282 	void __iomem *vaddr;
283 	unsigned long unwritten;
284 
285 	/* We can use the cpu mem copy function because this is X86. */
286 	vaddr = io_mapping_map_atomic_wc(mapping, base);
287 	unwritten = __copy_to_user_inatomic(user_data,
288 					    (void __force *)vaddr + offset,
289 					    length);
290 	io_mapping_unmap_atomic(vaddr);
291 	if (unwritten) {
292 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
293 		unwritten = copy_to_user(user_data,
294 					 (void __force *)vaddr + offset,
295 					 length);
296 		io_mapping_unmap(vaddr);
297 	}
298 	return unwritten;
299 }
300 
301 static struct i915_vma *i915_gem_gtt_prepare(struct drm_i915_gem_object *obj,
302 					     struct drm_mm_node *node,
303 					     bool write)
304 {
305 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
306 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
307 	struct i915_vma *vma;
308 	struct i915_gem_ww_ctx ww;
309 	int ret;
310 
311 	i915_gem_ww_ctx_init(&ww, true);
312 retry:
313 	vma = ERR_PTR(-ENODEV);
314 	ret = i915_gem_object_lock(obj, &ww);
315 	if (ret)
316 		goto err_ww;
317 
318 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
319 	if (ret)
320 		goto err_ww;
321 
322 	if (!i915_gem_object_is_tiled(obj))
323 		vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0,
324 						  PIN_MAPPABLE |
325 						  PIN_NONBLOCK /* NOWARN */ |
326 						  PIN_NOEVICT);
327 	if (vma == ERR_PTR(-EDEADLK)) {
328 		ret = -EDEADLK;
329 		goto err_ww;
330 	} else if (!IS_ERR(vma)) {
331 		node->start = i915_ggtt_offset(vma);
332 		node->flags = 0;
333 	} else {
334 		ret = insert_mappable_node(ggtt, node, PAGE_SIZE);
335 		if (ret)
336 			goto err_ww;
337 		GEM_BUG_ON(!drm_mm_node_allocated(node));
338 		vma = NULL;
339 	}
340 
341 	ret = i915_gem_object_pin_pages(obj);
342 	if (ret) {
343 		if (drm_mm_node_allocated(node)) {
344 			ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
345 			remove_mappable_node(ggtt, node);
346 		} else {
347 			i915_vma_unpin(vma);
348 		}
349 	}
350 
351 err_ww:
352 	if (ret == -EDEADLK) {
353 		ret = i915_gem_ww_ctx_backoff(&ww);
354 		if (!ret)
355 			goto retry;
356 	}
357 	i915_gem_ww_ctx_fini(&ww);
358 
359 	return ret ? ERR_PTR(ret) : vma;
360 }
361 
362 static void i915_gem_gtt_cleanup(struct drm_i915_gem_object *obj,
363 				 struct drm_mm_node *node,
364 				 struct i915_vma *vma)
365 {
366 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
367 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
368 
369 	i915_gem_object_unpin_pages(obj);
370 	if (drm_mm_node_allocated(node)) {
371 		ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
372 		remove_mappable_node(ggtt, node);
373 	} else {
374 		i915_vma_unpin(vma);
375 	}
376 }
377 
378 static int
379 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
380 		   const struct drm_i915_gem_pread *args)
381 {
382 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
383 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
384 	unsigned long remain, offset;
385 	intel_wakeref_t wakeref;
386 	struct drm_mm_node node;
387 	void __user *user_data;
388 	struct i915_vma *vma;
389 	int ret = 0;
390 
391 	if (overflows_type(args->size, remain) ||
392 	    overflows_type(args->offset, offset))
393 		return -EINVAL;
394 
395 	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
396 
397 	vma = i915_gem_gtt_prepare(obj, &node, false);
398 	if (IS_ERR(vma)) {
399 		ret = PTR_ERR(vma);
400 		goto out_rpm;
401 	}
402 
403 	user_data = u64_to_user_ptr(args->data_ptr);
404 	remain = args->size;
405 	offset = args->offset;
406 
407 	while (remain > 0) {
408 		/* Operation in this page
409 		 *
410 		 * page_base = page offset within aperture
411 		 * page_offset = offset within page
412 		 * page_length = bytes to copy for this page
413 		 */
414 		u32 page_base = node.start;
415 		unsigned page_offset = offset_in_page(offset);
416 		unsigned page_length = PAGE_SIZE - page_offset;
417 		page_length = remain < page_length ? remain : page_length;
418 		if (drm_mm_node_allocated(&node)) {
419 			ggtt->vm.insert_page(&ggtt->vm,
420 					     i915_gem_object_get_dma_address(obj,
421 									     offset >> PAGE_SHIFT),
422 					     node.start,
423 					     i915_gem_get_pat_index(i915,
424 								    I915_CACHE_NONE), 0);
425 		} else {
426 			page_base += offset & PAGE_MASK;
427 		}
428 
429 		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
430 				  user_data, page_length)) {
431 			ret = -EFAULT;
432 			break;
433 		}
434 
435 		remain -= page_length;
436 		user_data += page_length;
437 		offset += page_length;
438 	}
439 
440 	i915_gem_gtt_cleanup(obj, &node, vma);
441 out_rpm:
442 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
443 	return ret;
444 }
445 
446 /**
447  * i915_gem_pread_ioctl - Reads data from the object referenced by handle.
448  * @dev: drm device pointer
449  * @data: ioctl data blob
450  * @file: drm file pointer
451  *
452  * On error, the contents of *data are undefined.
453  */
454 int
455 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
456 		     struct drm_file *file)
457 {
458 	struct drm_i915_private *i915 = to_i915(dev);
459 	struct drm_i915_gem_pread *args = data;
460 	struct drm_i915_gem_object *obj;
461 	int ret;
462 
463 	/* PREAD is disallowed for all platforms after TGL-LP.  This also
464 	 * covers all platforms with local memory.
465 	 */
466 	if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
467 		return -EOPNOTSUPP;
468 
469 	if (args->size == 0)
470 		return 0;
471 
472 	if (!access_ok(u64_to_user_ptr(args->data_ptr),
473 		       args->size))
474 		return -EFAULT;
475 
476 	obj = i915_gem_object_lookup(file, args->handle);
477 	if (!obj)
478 		return -ENOENT;
479 
480 	/* Bounds check source.  */
481 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
482 		ret = -EINVAL;
483 		goto out;
484 	}
485 
486 	trace_i915_gem_object_pread(obj, args->offset, args->size);
487 	ret = -ENODEV;
488 	if (obj->ops->pread)
489 		ret = obj->ops->pread(obj, args);
490 	if (ret != -ENODEV)
491 		goto out;
492 
493 	ret = i915_gem_object_wait(obj,
494 				   I915_WAIT_INTERRUPTIBLE,
495 				   MAX_SCHEDULE_TIMEOUT);
496 	if (ret)
497 		goto out;
498 
499 	ret = i915_gem_shmem_pread(obj, args);
500 	if (ret == -EFAULT || ret == -ENODEV)
501 		ret = i915_gem_gtt_pread(obj, args);
502 
503 out:
504 	i915_gem_object_put(obj);
505 	return ret;
506 }
507 
508 /* This is the fast write path which cannot handle
509  * page faults in the source data
510  */
511 
512 static inline bool
513 ggtt_write(struct io_mapping *mapping,
514 	   loff_t base, int offset,
515 	   char __user *user_data, int length)
516 {
517 	void __iomem *vaddr;
518 	unsigned long unwritten;
519 
520 	/* We can use the cpu mem copy function because this is X86. */
521 	vaddr = io_mapping_map_atomic_wc(mapping, base);
522 	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
523 						      user_data, length);
524 	io_mapping_unmap_atomic(vaddr);
525 	if (unwritten) {
526 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
527 		unwritten = copy_from_user((void __force *)vaddr + offset,
528 					   user_data, length);
529 		io_mapping_unmap(vaddr);
530 	}
531 
532 	return unwritten;
533 }
534 
535 /**
536  * i915_gem_gtt_pwrite_fast - This is the fast pwrite path, where we copy the data directly from the
537  * user into the GTT, uncached.
538  * @obj: i915 GEM object
539  * @args: pwrite arguments structure
540  */
541 static int
542 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
543 			 const struct drm_i915_gem_pwrite *args)
544 {
545 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
546 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
547 	struct intel_runtime_pm *rpm = &i915->runtime_pm;
548 	unsigned long remain, offset;
549 	intel_wakeref_t wakeref;
550 	struct drm_mm_node node;
551 	struct i915_vma *vma;
552 	void __user *user_data;
553 	int ret = 0;
554 
555 	if (overflows_type(args->size, remain) ||
556 	    overflows_type(args->offset, offset))
557 		return -EINVAL;
558 
559 	if (i915_gem_object_has_struct_page(obj)) {
560 		/*
561 		 * Avoid waking the device up if we can fallback, as
562 		 * waking/resuming is very slow (worst-case 10-100 ms
563 		 * depending on PCI sleeps and our own resume time).
564 		 * This easily dwarfs any performance advantage from
565 		 * using the cache bypass of indirect GGTT access.
566 		 */
567 		wakeref = intel_runtime_pm_get_if_in_use(rpm);
568 		if (!wakeref)
569 			return -EFAULT;
570 	} else {
571 		/* No backing pages, no fallback, we must force GGTT access */
572 		wakeref = intel_runtime_pm_get(rpm);
573 	}
574 
575 	vma = i915_gem_gtt_prepare(obj, &node, true);
576 	if (IS_ERR(vma)) {
577 		ret = PTR_ERR(vma);
578 		goto out_rpm;
579 	}
580 
581 	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
582 
583 	user_data = u64_to_user_ptr(args->data_ptr);
584 	offset = args->offset;
585 	remain = args->size;
586 	while (remain) {
587 		/* Operation in this page
588 		 *
589 		 * page_base = page offset within aperture
590 		 * page_offset = offset within page
591 		 * page_length = bytes to copy for this page
592 		 */
593 		u32 page_base = node.start;
594 		unsigned int page_offset = offset_in_page(offset);
595 		unsigned int page_length = PAGE_SIZE - page_offset;
596 		page_length = remain < page_length ? remain : page_length;
597 		if (drm_mm_node_allocated(&node)) {
598 			/* flush the write before we modify the GGTT */
599 			intel_gt_flush_ggtt_writes(ggtt->vm.gt);
600 			ggtt->vm.insert_page(&ggtt->vm,
601 					     i915_gem_object_get_dma_address(obj,
602 									     offset >> PAGE_SHIFT),
603 					     node.start,
604 					     i915_gem_get_pat_index(i915,
605 								    I915_CACHE_NONE), 0);
606 			wmb(); /* flush modifications to the GGTT (insert_page) */
607 		} else {
608 			page_base += offset & PAGE_MASK;
609 		}
610 		/* If we get a fault while copying data, then (presumably) our
611 		 * source page isn't available.  Return the error and we'll
612 		 * retry in the slow path.
613 		 * If the object is non-shmem backed, we retry again with the
614 		 * path that handles page fault.
615 		 */
616 		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
617 			       user_data, page_length)) {
618 			ret = -EFAULT;
619 			break;
620 		}
621 
622 		remain -= page_length;
623 		user_data += page_length;
624 		offset += page_length;
625 	}
626 
627 	intel_gt_flush_ggtt_writes(ggtt->vm.gt);
628 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
629 
630 	i915_gem_gtt_cleanup(obj, &node, vma);
631 out_rpm:
632 	intel_runtime_pm_put(rpm, wakeref);
633 	return ret;
634 }
635 
636 /* Per-page copy function for the shmem pwrite fastpath.
637  * Flushes invalid cachelines before writing to the target if
638  * needs_clflush_before is set and flushes out any written cachelines after
639  * writing if needs_clflush is set.
640  */
641 static int
642 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
643 	     bool needs_clflush_before,
644 	     bool needs_clflush_after)
645 {
646 	char *vaddr;
647 	int ret;
648 
649 	vaddr = kmap(page);
650 
651 	if (needs_clflush_before)
652 		drm_clflush_virt_range(vaddr + offset, len);
653 
654 	ret = __copy_from_user(vaddr + offset, user_data, len);
655 	if (!ret && needs_clflush_after)
656 		drm_clflush_virt_range(vaddr + offset, len);
657 
658 	kunmap(page);
659 
660 	return ret ? -EFAULT : 0;
661 }
662 
663 static int
664 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
665 		      const struct drm_i915_gem_pwrite *args)
666 {
667 	unsigned int partial_cacheline_write;
668 	unsigned int needs_clflush;
669 	void __user *user_data;
670 	unsigned long offset;
671 	pgoff_t idx;
672 	u64 remain;
673 	int ret;
674 
675 	ret = i915_gem_object_lock_interruptible(obj, NULL);
676 	if (ret)
677 		return ret;
678 
679 	ret = i915_gem_object_pin_pages(obj);
680 	if (ret)
681 		goto err_unlock;
682 
683 	ret = i915_gem_object_prepare_write(obj, &needs_clflush);
684 	if (ret)
685 		goto err_unpin;
686 
687 	i915_gem_object_finish_access(obj);
688 	i915_gem_object_unlock(obj);
689 
690 	/* If we don't overwrite a cacheline completely we need to be
691 	 * careful to have up-to-date data by first clflushing. Don't
692 	 * overcomplicate things and flush the entire patch.
693 	 */
694 	partial_cacheline_write = 0;
695 	if (needs_clflush & CLFLUSH_BEFORE)
696 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
697 
698 	user_data = u64_to_user_ptr(args->data_ptr);
699 	remain = args->size;
700 	offset = offset_in_page(args->offset);
701 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
702 		struct page *page = i915_gem_object_get_page(obj, idx);
703 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
704 
705 		ret = shmem_pwrite(page, offset, length, user_data,
706 				   (offset | length) & partial_cacheline_write,
707 				   needs_clflush & CLFLUSH_AFTER);
708 		if (ret)
709 			break;
710 
711 		remain -= length;
712 		user_data += length;
713 		offset = 0;
714 	}
715 
716 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
717 
718 	i915_gem_object_unpin_pages(obj);
719 	return ret;
720 
721 err_unpin:
722 	i915_gem_object_unpin_pages(obj);
723 err_unlock:
724 	i915_gem_object_unlock(obj);
725 	return ret;
726 }
727 
728 /**
729  * i915_gem_pwrite_ioctl - Writes data to the object referenced by handle.
730  * @dev: drm device
731  * @data: ioctl data blob
732  * @file: drm file
733  *
734  * On error, the contents of the buffer that were to be modified are undefined.
735  */
736 int
737 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
738 		      struct drm_file *file)
739 {
740 	struct drm_i915_private *i915 = to_i915(dev);
741 	struct drm_i915_gem_pwrite *args = data;
742 	struct drm_i915_gem_object *obj;
743 	int ret;
744 
745 	/* PWRITE is disallowed for all platforms after TGL-LP.  This also
746 	 * covers all platforms with local memory.
747 	 */
748 	if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
749 		return -EOPNOTSUPP;
750 
751 	if (args->size == 0)
752 		return 0;
753 
754 	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
755 		return -EFAULT;
756 
757 	obj = i915_gem_object_lookup(file, args->handle);
758 	if (!obj)
759 		return -ENOENT;
760 
761 	/* Bounds check destination. */
762 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
763 		ret = -EINVAL;
764 		goto err;
765 	}
766 
767 	/* Writes not allowed into this read-only object */
768 	if (i915_gem_object_is_readonly(obj)) {
769 		ret = -EINVAL;
770 		goto err;
771 	}
772 
773 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
774 
775 	ret = -ENODEV;
776 	if (obj->ops->pwrite)
777 		ret = obj->ops->pwrite(obj, args);
778 	if (ret != -ENODEV)
779 		goto err;
780 
781 	ret = i915_gem_object_wait(obj,
782 				   I915_WAIT_INTERRUPTIBLE |
783 				   I915_WAIT_ALL,
784 				   MAX_SCHEDULE_TIMEOUT);
785 	if (ret)
786 		goto err;
787 
788 	ret = -EFAULT;
789 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
790 	 * it would end up going through the fenced access, and we'll get
791 	 * different detiling behavior between reading and writing.
792 	 * pread/pwrite currently are reading and writing from the CPU
793 	 * perspective, requiring manual detiling by the client.
794 	 */
795 	if (!i915_gem_object_has_struct_page(obj) ||
796 	    i915_gem_cpu_write_needs_clflush(obj))
797 		/* Note that the gtt paths might fail with non-page-backed user
798 		 * pointers (e.g. gtt mappings when moving data between
799 		 * textures). Fallback to the shmem path in that case.
800 		 */
801 		ret = i915_gem_gtt_pwrite_fast(obj, args);
802 
803 	if (ret == -EFAULT || ret == -ENOSPC) {
804 		if (i915_gem_object_has_struct_page(obj))
805 			ret = i915_gem_shmem_pwrite(obj, args);
806 	}
807 
808 err:
809 	i915_gem_object_put(obj);
810 	return ret;
811 }
812 
813 /**
814  * i915_gem_sw_finish_ioctl - Called when user space has done writes to this buffer
815  * @dev: drm device
816  * @data: ioctl data blob
817  * @file: drm file
818  */
819 int
820 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
821 			 struct drm_file *file)
822 {
823 	struct drm_i915_gem_sw_finish *args = data;
824 	struct drm_i915_gem_object *obj;
825 
826 	obj = i915_gem_object_lookup(file, args->handle);
827 	if (!obj)
828 		return -ENOENT;
829 
830 	/*
831 	 * Proxy objects are barred from CPU access, so there is no
832 	 * need to ban sw_finish as it is a nop.
833 	 */
834 
835 	/* Pinned buffers may be scanout, so flush the cache */
836 	i915_gem_object_flush_if_display(obj);
837 	i915_gem_object_put(obj);
838 
839 	return 0;
840 }
841 
842 void i915_gem_runtime_suspend(struct drm_i915_private *i915)
843 {
844 	struct drm_i915_gem_object *obj, *on;
845 	int i;
846 
847 	/*
848 	 * Only called during RPM suspend. All users of the userfault_list
849 	 * must be holding an RPM wakeref to ensure that this can not
850 	 * run concurrently with themselves (and use the struct_mutex for
851 	 * protection between themselves).
852 	 */
853 
854 	list_for_each_entry_safe(obj, on,
855 				 &to_gt(i915)->ggtt->userfault_list, userfault_link)
856 		__i915_gem_object_release_mmap_gtt(obj);
857 
858 	list_for_each_entry_safe(obj, on,
859 				 &i915->runtime_pm.lmem_userfault_list, userfault_link)
860 		i915_gem_object_runtime_pm_release_mmap_offset(obj);
861 
862 	/*
863 	 * The fence will be lost when the device powers down. If any were
864 	 * in use by hardware (i.e. they are pinned), we should not be powering
865 	 * down! All other fences will be reacquired by the user upon waking.
866 	 */
867 	for (i = 0; i < to_gt(i915)->ggtt->num_fences; i++) {
868 		struct i915_fence_reg *reg = &to_gt(i915)->ggtt->fence_regs[i];
869 
870 		/*
871 		 * Ideally we want to assert that the fence register is not
872 		 * live at this point (i.e. that no piece of code will be
873 		 * trying to write through fence + GTT, as that both violates
874 		 * our tracking of activity and associated locking/barriers,
875 		 * but also is illegal given that the hw is powered down).
876 		 *
877 		 * Previously we used reg->pin_count as a "liveness" indicator.
878 		 * That is not sufficient, and we need a more fine-grained
879 		 * tool if we want to have a sanity check here.
880 		 */
881 
882 		if (!reg->vma)
883 			continue;
884 
885 		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
886 		reg->dirty = true;
887 	}
888 }
889 
890 static void discard_ggtt_vma(struct i915_vma *vma)
891 {
892 	struct drm_i915_gem_object *obj = vma->obj;
893 
894 	spin_lock(&obj->vma.lock);
895 	if (!RB_EMPTY_NODE(&vma->obj_node)) {
896 		rb_erase(&vma->obj_node, &obj->vma.tree);
897 		RB_CLEAR_NODE(&vma->obj_node);
898 	}
899 	spin_unlock(&obj->vma.lock);
900 }
901 
902 struct i915_vma *
903 i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj,
904 			    struct i915_gem_ww_ctx *ww,
905 			    const struct i915_gtt_view *view,
906 			    u64 size, u64 alignment, u64 flags)
907 {
908 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
909 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
910 	struct i915_vma *vma;
911 	int ret;
912 
913 	GEM_WARN_ON(!ww);
914 
915 	if (flags & PIN_MAPPABLE &&
916 	    (!view || view->type == I915_GTT_VIEW_NORMAL)) {
917 		/*
918 		 * If the required space is larger than the available
919 		 * aperture, we will not able to find a slot for the
920 		 * object and unbinding the object now will be in
921 		 * vain. Worse, doing so may cause us to ping-pong
922 		 * the object in and out of the Global GTT and
923 		 * waste a lot of cycles under the mutex.
924 		 */
925 		if (obj->base.size > ggtt->mappable_end)
926 			return ERR_PTR(-E2BIG);
927 
928 		/*
929 		 * If NONBLOCK is set the caller is optimistically
930 		 * trying to cache the full object within the mappable
931 		 * aperture, and *must* have a fallback in place for
932 		 * situations where we cannot bind the object. We
933 		 * can be a little more lax here and use the fallback
934 		 * more often to avoid costly migrations of ourselves
935 		 * and other objects within the aperture.
936 		 *
937 		 * Half-the-aperture is used as a simple heuristic.
938 		 * More interesting would to do search for a free
939 		 * block prior to making the commitment to unbind.
940 		 * That caters for the self-harm case, and with a
941 		 * little more heuristics (e.g. NOFAULT, NOEVICT)
942 		 * we could try to minimise harm to others.
943 		 */
944 		if (flags & PIN_NONBLOCK &&
945 		    obj->base.size > ggtt->mappable_end / 2)
946 			return ERR_PTR(-ENOSPC);
947 	}
948 
949 new_vma:
950 	vma = i915_vma_instance(obj, &ggtt->vm, view);
951 	if (IS_ERR(vma))
952 		return vma;
953 
954 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
955 		if (flags & PIN_NONBLOCK) {
956 			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
957 				return ERR_PTR(-ENOSPC);
958 
959 			/*
960 			 * If this misplaced vma is too big (i.e, at-least
961 			 * half the size of aperture) or hasn't been pinned
962 			 * mappable before, we ignore the misplacement when
963 			 * PIN_NONBLOCK is set in order to avoid the ping-pong
964 			 * issue described above. In other words, we try to
965 			 * avoid the costly operation of unbinding this vma
966 			 * from the GGTT and rebinding it back because there
967 			 * may not be enough space for this vma in the aperture.
968 			 */
969 			if (flags & PIN_MAPPABLE &&
970 			    (vma->fence_size > ggtt->mappable_end / 2 ||
971 			    !i915_vma_is_map_and_fenceable(vma)))
972 				return ERR_PTR(-ENOSPC);
973 		}
974 
975 		if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) {
976 			discard_ggtt_vma(vma);
977 			goto new_vma;
978 		}
979 
980 		ret = i915_vma_unbind(vma);
981 		if (ret)
982 			return ERR_PTR(ret);
983 	}
984 
985 	ret = i915_vma_pin_ww(vma, ww, size, alignment, flags | PIN_GLOBAL);
986 
987 	if (ret)
988 		return ERR_PTR(ret);
989 
990 	if (vma->fence && !i915_gem_object_is_tiled(obj)) {
991 		mutex_lock(&ggtt->vm.mutex);
992 		i915_vma_revoke_fence(vma);
993 		mutex_unlock(&ggtt->vm.mutex);
994 	}
995 
996 	ret = i915_vma_wait_for_bind(vma);
997 	if (ret) {
998 		i915_vma_unpin(vma);
999 		return ERR_PTR(ret);
1000 	}
1001 
1002 	return vma;
1003 }
1004 
1005 struct i915_vma * __must_check
1006 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
1007 			 const struct i915_gtt_view *view,
1008 			 u64 size, u64 alignment, u64 flags)
1009 {
1010 	struct i915_gem_ww_ctx ww;
1011 	struct i915_vma *ret;
1012 	int err;
1013 
1014 	for_i915_gem_ww(&ww, err, true) {
1015 		err = i915_gem_object_lock(obj, &ww);
1016 		if (err)
1017 			continue;
1018 
1019 		ret = i915_gem_object_ggtt_pin_ww(obj, &ww, view, size,
1020 						  alignment, flags);
1021 		if (IS_ERR(ret))
1022 			err = PTR_ERR(ret);
1023 	}
1024 
1025 	return err ? ERR_PTR(err) : ret;
1026 }
1027 
1028 int
1029 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
1030 		       struct drm_file *file_priv)
1031 {
1032 	struct drm_i915_private *i915 = to_i915(dev);
1033 	struct drm_i915_gem_madvise *args = data;
1034 	struct drm_i915_gem_object *obj;
1035 	int err;
1036 
1037 	switch (args->madv) {
1038 	case I915_MADV_DONTNEED:
1039 	case I915_MADV_WILLNEED:
1040 	    break;
1041 	default:
1042 	    return -EINVAL;
1043 	}
1044 
1045 	obj = i915_gem_object_lookup(file_priv, args->handle);
1046 	if (!obj)
1047 		return -ENOENT;
1048 
1049 	err = i915_gem_object_lock_interruptible(obj, NULL);
1050 	if (err)
1051 		goto out;
1052 
1053 	if (i915_gem_object_has_pages(obj) &&
1054 	    i915_gem_object_is_tiled(obj) &&
1055 	    i915->gem_quirks & GEM_QUIRK_PIN_SWIZZLED_PAGES) {
1056 		if (obj->mm.madv == I915_MADV_WILLNEED) {
1057 			GEM_BUG_ON(!i915_gem_object_has_tiling_quirk(obj));
1058 			i915_gem_object_clear_tiling_quirk(obj);
1059 			i915_gem_object_make_shrinkable(obj);
1060 		}
1061 		if (args->madv == I915_MADV_WILLNEED) {
1062 			GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
1063 			i915_gem_object_make_unshrinkable(obj);
1064 			i915_gem_object_set_tiling_quirk(obj);
1065 		}
1066 	}
1067 
1068 	if (obj->mm.madv != __I915_MADV_PURGED) {
1069 		obj->mm.madv = args->madv;
1070 		if (obj->ops->adjust_lru)
1071 			obj->ops->adjust_lru(obj);
1072 	}
1073 
1074 	if (i915_gem_object_has_pages(obj) ||
1075 	    i915_gem_object_has_self_managed_shrink_list(obj)) {
1076 		unsigned long flags;
1077 
1078 		spin_lock_irqsave(&i915->mm.obj_lock, flags);
1079 		if (!list_empty(&obj->mm.link)) {
1080 			struct list_head *list;
1081 
1082 			if (obj->mm.madv != I915_MADV_WILLNEED)
1083 				list = &i915->mm.purge_list;
1084 			else
1085 				list = &i915->mm.shrink_list;
1086 			list_move_tail(&obj->mm.link, list);
1087 
1088 		}
1089 		spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1090 	}
1091 
1092 	/* if the object is no longer attached, discard its backing storage */
1093 	if (obj->mm.madv == I915_MADV_DONTNEED &&
1094 	    !i915_gem_object_has_pages(obj))
1095 		i915_gem_object_truncate(obj);
1096 
1097 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
1098 
1099 	i915_gem_object_unlock(obj);
1100 out:
1101 	i915_gem_object_put(obj);
1102 	return err;
1103 }
1104 
1105 /*
1106  * A single pass should suffice to release all the freed objects (along most
1107  * call paths), but be a little more paranoid in that freeing the objects does
1108  * take a little amount of time, during which the rcu callbacks could have added
1109  * new objects into the freed list, and armed the work again.
1110  */
1111 void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
1112 {
1113 	while (atomic_read(&i915->mm.free_count)) {
1114 		flush_work(&i915->mm.free_work);
1115 		drain_workqueue(i915->bdev.wq);
1116 		rcu_barrier();
1117 	}
1118 }
1119 
1120 /*
1121  * Similar to objects above (see i915_gem_drain_freed-objects), in general we
1122  * have workers that are armed by RCU and then rearm themselves in their
1123  * callbacks. To be paranoid, we need to drain the workqueue a second time after
1124  * waiting for the RCU grace period so that we catch work queued via RCU from
1125  * the first pass. As neither drain_workqueue() nor flush_workqueue() report a
1126  * result, we make an assumption that we only don't require more than 3 passes
1127  * to catch all _recursive_ RCU delayed work.
1128  */
1129 void i915_gem_drain_workqueue(struct drm_i915_private *i915)
1130 {
1131 	int i;
1132 
1133 	for (i = 0; i < 3; i++) {
1134 		flush_workqueue(i915->wq);
1135 		rcu_barrier();
1136 		i915_gem_drain_freed_objects(i915);
1137 	}
1138 
1139 	drain_workqueue(i915->wq);
1140 }
1141 
1142 int i915_gem_init(struct drm_i915_private *dev_priv)
1143 {
1144 	struct intel_gt *gt;
1145 	unsigned int i;
1146 	int ret;
1147 
1148 	/*
1149 	 * In the proccess of replacing cache_level with pat_index a tricky
1150 	 * dependency is created on the definition of the enum i915_cache_level.
1151 	 * in case this enum is changed, PTE encode would be broken.
1152 	 * Add a WARNING here. And remove when we completely quit using this
1153 	 * enum
1154 	 */
1155 	BUILD_BUG_ON(I915_CACHE_NONE != 0 ||
1156 		     I915_CACHE_LLC != 1 ||
1157 		     I915_CACHE_L3_LLC != 2 ||
1158 		     I915_CACHE_WT != 3 ||
1159 		     I915_MAX_CACHE_LEVEL != 4);
1160 
1161 	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
1162 	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1163 		RUNTIME_INFO(dev_priv)->page_sizes = I915_GTT_PAGE_SIZE_4K;
1164 
1165 	for_each_gt(gt, dev_priv, i) {
1166 		intel_uc_fetch_firmwares(&gt->uc);
1167 		intel_wopcm_init(&gt->wopcm);
1168 		if (GRAPHICS_VER(dev_priv) >= 8)
1169 			setup_private_pat(gt);
1170 	}
1171 
1172 	ret = i915_init_ggtt(dev_priv);
1173 	if (ret) {
1174 		GEM_BUG_ON(ret == -EIO);
1175 		goto err_unlock;
1176 	}
1177 
1178 	/*
1179 	 * Despite its name intel_clock_gating_init applies both display
1180 	 * clock gating workarounds; GT mmio workarounds and the occasional
1181 	 * GT power context workaround. Worse, sometimes it includes a context
1182 	 * register workaround which we need to apply before we record the
1183 	 * default HW state for all contexts.
1184 	 *
1185 	 * FIXME: break up the workarounds and apply them at the right time!
1186 	 */
1187 	intel_clock_gating_init(dev_priv);
1188 
1189 	for_each_gt(gt, dev_priv, i) {
1190 		ret = intel_gt_init(gt);
1191 		if (ret)
1192 			goto err_unlock;
1193 	}
1194 
1195 	/*
1196 	 * Register engines early to ensure the engine list is in its final
1197 	 * rb-tree form, lowering the amount of code that has to deal with
1198 	 * the intermediate llist state.
1199 	 */
1200 	intel_engines_driver_register(dev_priv);
1201 
1202 	return 0;
1203 
1204 	/*
1205 	 * Unwinding is complicated by that we want to handle -EIO to mean
1206 	 * disable GPU submission but keep KMS alive. We want to mark the
1207 	 * HW as irrevisibly wedged, but keep enough state around that the
1208 	 * driver doesn't explode during runtime.
1209 	 */
1210 err_unlock:
1211 	i915_gem_drain_workqueue(dev_priv);
1212 
1213 	if (ret != -EIO) {
1214 		for_each_gt(gt, dev_priv, i) {
1215 			intel_gt_driver_remove(gt);
1216 			intel_gt_driver_release(gt);
1217 			intel_uc_cleanup_firmwares(&gt->uc);
1218 		}
1219 	}
1220 
1221 	if (ret == -EIO) {
1222 		/*
1223 		 * Allow engines or uC initialisation to fail by marking the GPU
1224 		 * as wedged. But we only want to do this when the GPU is angry,
1225 		 * for all other failure, such as an allocation failure, bail.
1226 		 */
1227 		for_each_gt(gt, dev_priv, i) {
1228 			if (!intel_gt_is_wedged(gt)) {
1229 				i915_probe_error(dev_priv,
1230 						 "Failed to initialize GPU, declaring it wedged!\n");
1231 				intel_gt_set_wedged(gt);
1232 			}
1233 		}
1234 
1235 		/* Minimal basic recovery for KMS */
1236 		ret = i915_ggtt_enable_hw(dev_priv);
1237 		i915_ggtt_resume(to_gt(dev_priv)->ggtt);
1238 		intel_clock_gating_init(dev_priv);
1239 	}
1240 
1241 	i915_gem_drain_freed_objects(dev_priv);
1242 
1243 	return ret;
1244 }
1245 
1246 void i915_gem_driver_register(struct drm_i915_private *i915)
1247 {
1248 	i915_gem_driver_register__shrinker(i915);
1249 }
1250 
1251 void i915_gem_driver_unregister(struct drm_i915_private *i915)
1252 {
1253 	i915_gem_driver_unregister__shrinker(i915);
1254 }
1255 
1256 void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1257 {
1258 	struct intel_gt *gt;
1259 	unsigned int i;
1260 
1261 	i915_gem_suspend_late(dev_priv);
1262 	for_each_gt(gt, dev_priv, i)
1263 		intel_gt_driver_remove(gt);
1264 	dev_priv->uabi_engines = RB_ROOT;
1265 
1266 	/* Flush any outstanding unpin_work. */
1267 	i915_gem_drain_workqueue(dev_priv);
1268 }
1269 
1270 void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1271 {
1272 	struct intel_gt *gt;
1273 	unsigned int i;
1274 
1275 	for_each_gt(gt, dev_priv, i) {
1276 		intel_gt_driver_release(gt);
1277 		intel_uc_cleanup_firmwares(&gt->uc);
1278 	}
1279 
1280 	/* Flush any outstanding work, including i915_gem_context.release_work. */
1281 	i915_gem_drain_workqueue(dev_priv);
1282 
1283 	drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list));
1284 }
1285 
1286 static void i915_gem_init__mm(struct drm_i915_private *i915)
1287 {
1288 	spin_lock_init(&i915->mm.obj_lock);
1289 
1290 	init_llist_head(&i915->mm.free_list);
1291 
1292 	INIT_LIST_HEAD(&i915->mm.purge_list);
1293 	INIT_LIST_HEAD(&i915->mm.shrink_list);
1294 
1295 	i915_gem_init__objects(i915);
1296 }
1297 
1298 void i915_gem_init_early(struct drm_i915_private *dev_priv)
1299 {
1300 	i915_gem_init__mm(dev_priv);
1301 	i915_gem_init__contexts(dev_priv);
1302 }
1303 
1304 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1305 {
1306 	i915_gem_drain_workqueue(dev_priv);
1307 	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1308 	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1309 	drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count);
1310 }
1311 
1312 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1313 {
1314 	struct drm_i915_file_private *file_priv;
1315 	struct i915_drm_client *client;
1316 	int ret = -ENOMEM;
1317 
1318 	drm_dbg(&i915->drm, "\n");
1319 
1320 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1321 	if (!file_priv)
1322 		goto err_alloc;
1323 
1324 	client = i915_drm_client_alloc();
1325 	if (!client)
1326 		goto err_client;
1327 
1328 	file->driver_priv = file_priv;
1329 	file_priv->i915 = i915;
1330 	file_priv->file = file;
1331 	file_priv->client = client;
1332 
1333 	file_priv->bsd_engine = -1;
1334 	file_priv->hang_timestamp = jiffies;
1335 
1336 	ret = i915_gem_context_open(i915, file);
1337 	if (ret)
1338 		goto err_context;
1339 
1340 	return 0;
1341 
1342 err_context:
1343 	i915_drm_client_put(client);
1344 err_client:
1345 	kfree(file_priv);
1346 err_alloc:
1347 	return ret;
1348 }
1349 
1350 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1351 #include "selftests/mock_gem_device.c"
1352 #include "selftests/i915_gem.c"
1353 #endif
1354