xref: /linux/drivers/gpu/drm/i915/i915_gem.c (revision 32786fdc9506aeba98278c1844d4bfb766863832)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_frontbuffer.h"
36 #include "intel_mocs.h"
37 #include <linux/dma-fence-array.h>
38 #include <linux/reservation.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/pci.h>
43 #include <linux/dma-buf.h>
44 
45 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
46 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
47 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
48 
49 static bool cpu_cache_is_coherent(struct drm_device *dev,
50 				  enum i915_cache_level level)
51 {
52 	return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
53 }
54 
55 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56 {
57 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
58 		return false;
59 
60 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
61 		return true;
62 
63 	return obj->pin_display;
64 }
65 
66 static int
67 insert_mappable_node(struct i915_ggtt *ggtt,
68                      struct drm_mm_node *node, u32 size)
69 {
70 	memset(node, 0, sizeof(*node));
71 	return drm_mm_insert_node_in_range_generic(&ggtt->base.mm, node,
72 						   size, 0, -1,
73 						   0, ggtt->mappable_end,
74 						   DRM_MM_SEARCH_DEFAULT,
75 						   DRM_MM_CREATE_DEFAULT);
76 }
77 
78 static void
79 remove_mappable_node(struct drm_mm_node *node)
80 {
81 	drm_mm_remove_node(node);
82 }
83 
84 /* some bookkeeping */
85 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
86 				  u64 size)
87 {
88 	spin_lock(&dev_priv->mm.object_stat_lock);
89 	dev_priv->mm.object_count++;
90 	dev_priv->mm.object_memory += size;
91 	spin_unlock(&dev_priv->mm.object_stat_lock);
92 }
93 
94 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
95 				     u64 size)
96 {
97 	spin_lock(&dev_priv->mm.object_stat_lock);
98 	dev_priv->mm.object_count--;
99 	dev_priv->mm.object_memory -= size;
100 	spin_unlock(&dev_priv->mm.object_stat_lock);
101 }
102 
103 static int
104 i915_gem_wait_for_error(struct i915_gpu_error *error)
105 {
106 	int ret;
107 
108 	might_sleep();
109 
110 	if (!i915_reset_in_progress(error))
111 		return 0;
112 
113 	/*
114 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
115 	 * userspace. If it takes that long something really bad is going on and
116 	 * we should simply try to bail out and fail as gracefully as possible.
117 	 */
118 	ret = wait_event_interruptible_timeout(error->reset_queue,
119 					       !i915_reset_in_progress(error),
120 					       I915_RESET_TIMEOUT);
121 	if (ret == 0) {
122 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
123 		return -EIO;
124 	} else if (ret < 0) {
125 		return ret;
126 	} else {
127 		return 0;
128 	}
129 }
130 
131 int i915_mutex_lock_interruptible(struct drm_device *dev)
132 {
133 	struct drm_i915_private *dev_priv = to_i915(dev);
134 	int ret;
135 
136 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
137 	if (ret)
138 		return ret;
139 
140 	ret = mutex_lock_interruptible(&dev->struct_mutex);
141 	if (ret)
142 		return ret;
143 
144 	return 0;
145 }
146 
147 int
148 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
149 			    struct drm_file *file)
150 {
151 	struct drm_i915_private *dev_priv = to_i915(dev);
152 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
153 	struct drm_i915_gem_get_aperture *args = data;
154 	struct i915_vma *vma;
155 	size_t pinned;
156 
157 	pinned = 0;
158 	mutex_lock(&dev->struct_mutex);
159 	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
160 		if (i915_vma_is_pinned(vma))
161 			pinned += vma->node.size;
162 	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
163 		if (i915_vma_is_pinned(vma))
164 			pinned += vma->node.size;
165 	mutex_unlock(&dev->struct_mutex);
166 
167 	args->aper_size = ggtt->base.total;
168 	args->aper_available_size = args->aper_size - pinned;
169 
170 	return 0;
171 }
172 
173 static struct sg_table *
174 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
175 {
176 	struct address_space *mapping = obj->base.filp->f_mapping;
177 	char *vaddr = obj->phys_handle->vaddr;
178 	struct sg_table *st;
179 	struct scatterlist *sg;
180 	int i;
181 
182 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
183 		return ERR_PTR(-EINVAL);
184 
185 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
186 		struct page *page;
187 		char *src;
188 
189 		page = shmem_read_mapping_page(mapping, i);
190 		if (IS_ERR(page))
191 			return ERR_CAST(page);
192 
193 		src = kmap_atomic(page);
194 		memcpy(vaddr, src, PAGE_SIZE);
195 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
196 		kunmap_atomic(src);
197 
198 		put_page(page);
199 		vaddr += PAGE_SIZE;
200 	}
201 
202 	i915_gem_chipset_flush(to_i915(obj->base.dev));
203 
204 	st = kmalloc(sizeof(*st), GFP_KERNEL);
205 	if (st == NULL)
206 		return ERR_PTR(-ENOMEM);
207 
208 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
209 		kfree(st);
210 		return ERR_PTR(-ENOMEM);
211 	}
212 
213 	sg = st->sgl;
214 	sg->offset = 0;
215 	sg->length = obj->base.size;
216 
217 	sg_dma_address(sg) = obj->phys_handle->busaddr;
218 	sg_dma_len(sg) = obj->base.size;
219 
220 	return st;
221 }
222 
223 static void
224 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
225 				struct sg_table *pages)
226 {
227 	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
228 
229 	if (obj->mm.madv == I915_MADV_DONTNEED)
230 		obj->mm.dirty = false;
231 
232 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
233 	    !cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
234 		drm_clflush_sg(pages);
235 
236 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
237 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
238 }
239 
240 static void
241 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
242 			       struct sg_table *pages)
243 {
244 	__i915_gem_object_release_shmem(obj, pages);
245 
246 	if (obj->mm.dirty) {
247 		struct address_space *mapping = obj->base.filp->f_mapping;
248 		char *vaddr = obj->phys_handle->vaddr;
249 		int i;
250 
251 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
252 			struct page *page;
253 			char *dst;
254 
255 			page = shmem_read_mapping_page(mapping, i);
256 			if (IS_ERR(page))
257 				continue;
258 
259 			dst = kmap_atomic(page);
260 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
261 			memcpy(dst, vaddr, PAGE_SIZE);
262 			kunmap_atomic(dst);
263 
264 			set_page_dirty(page);
265 			if (obj->mm.madv == I915_MADV_WILLNEED)
266 				mark_page_accessed(page);
267 			put_page(page);
268 			vaddr += PAGE_SIZE;
269 		}
270 		obj->mm.dirty = false;
271 	}
272 
273 	sg_free_table(pages);
274 	kfree(pages);
275 }
276 
277 static void
278 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
279 {
280 	drm_pci_free(obj->base.dev, obj->phys_handle);
281 	i915_gem_object_unpin_pages(obj);
282 }
283 
284 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
285 	.get_pages = i915_gem_object_get_pages_phys,
286 	.put_pages = i915_gem_object_put_pages_phys,
287 	.release = i915_gem_object_release_phys,
288 };
289 
290 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
291 {
292 	struct i915_vma *vma;
293 	LIST_HEAD(still_in_list);
294 	int ret;
295 
296 	lockdep_assert_held(&obj->base.dev->struct_mutex);
297 
298 	/* Closed vma are removed from the obj->vma_list - but they may
299 	 * still have an active binding on the object. To remove those we
300 	 * must wait for all rendering to complete to the object (as unbinding
301 	 * must anyway), and retire the requests.
302 	 */
303 	ret = i915_gem_object_wait(obj,
304 				   I915_WAIT_INTERRUPTIBLE |
305 				   I915_WAIT_LOCKED |
306 				   I915_WAIT_ALL,
307 				   MAX_SCHEDULE_TIMEOUT,
308 				   NULL);
309 	if (ret)
310 		return ret;
311 
312 	i915_gem_retire_requests(to_i915(obj->base.dev));
313 
314 	while ((vma = list_first_entry_or_null(&obj->vma_list,
315 					       struct i915_vma,
316 					       obj_link))) {
317 		list_move_tail(&vma->obj_link, &still_in_list);
318 		ret = i915_vma_unbind(vma);
319 		if (ret)
320 			break;
321 	}
322 	list_splice(&still_in_list, &obj->vma_list);
323 
324 	return ret;
325 }
326 
327 static long
328 i915_gem_object_wait_fence(struct dma_fence *fence,
329 			   unsigned int flags,
330 			   long timeout,
331 			   struct intel_rps_client *rps)
332 {
333 	struct drm_i915_gem_request *rq;
334 
335 	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
336 
337 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
338 		return timeout;
339 
340 	if (!dma_fence_is_i915(fence))
341 		return dma_fence_wait_timeout(fence,
342 					      flags & I915_WAIT_INTERRUPTIBLE,
343 					      timeout);
344 
345 	rq = to_request(fence);
346 	if (i915_gem_request_completed(rq))
347 		goto out;
348 
349 	/* This client is about to stall waiting for the GPU. In many cases
350 	 * this is undesirable and limits the throughput of the system, as
351 	 * many clients cannot continue processing user input/output whilst
352 	 * blocked. RPS autotuning may take tens of milliseconds to respond
353 	 * to the GPU load and thus incurs additional latency for the client.
354 	 * We can circumvent that by promoting the GPU frequency to maximum
355 	 * before we wait. This makes the GPU throttle up much more quickly
356 	 * (good for benchmarks and user experience, e.g. window animations),
357 	 * but at a cost of spending more power processing the workload
358 	 * (bad for battery). Not all clients even want their results
359 	 * immediately and for them we should just let the GPU select its own
360 	 * frequency to maximise efficiency. To prevent a single client from
361 	 * forcing the clocks too high for the whole system, we only allow
362 	 * each client to waitboost once in a busy period.
363 	 */
364 	if (rps) {
365 		if (INTEL_GEN(rq->i915) >= 6)
366 			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
367 		else
368 			rps = NULL;
369 	}
370 
371 	timeout = i915_wait_request(rq, flags, timeout);
372 
373 out:
374 	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
375 		i915_gem_request_retire_upto(rq);
376 
377 	if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
378 		/* The GPU is now idle and this client has stalled.
379 		 * Since no other client has submitted a request in the
380 		 * meantime, assume that this client is the only one
381 		 * supplying work to the GPU but is unable to keep that
382 		 * work supplied because it is waiting. Since the GPU is
383 		 * then never kept fully busy, RPS autoclocking will
384 		 * keep the clocks relatively low, causing further delays.
385 		 * Compensate by giving the synchronous client credit for
386 		 * a waitboost next time.
387 		 */
388 		spin_lock(&rq->i915->rps.client_lock);
389 		list_del_init(&rps->link);
390 		spin_unlock(&rq->i915->rps.client_lock);
391 	}
392 
393 	return timeout;
394 }
395 
396 static long
397 i915_gem_object_wait_reservation(struct reservation_object *resv,
398 				 unsigned int flags,
399 				 long timeout,
400 				 struct intel_rps_client *rps)
401 {
402 	struct dma_fence *excl;
403 
404 	if (flags & I915_WAIT_ALL) {
405 		struct dma_fence **shared;
406 		unsigned int count, i;
407 		int ret;
408 
409 		ret = reservation_object_get_fences_rcu(resv,
410 							&excl, &count, &shared);
411 		if (ret)
412 			return ret;
413 
414 		for (i = 0; i < count; i++) {
415 			timeout = i915_gem_object_wait_fence(shared[i],
416 							     flags, timeout,
417 							     rps);
418 			if (timeout <= 0)
419 				break;
420 
421 			dma_fence_put(shared[i]);
422 		}
423 
424 		for (; i < count; i++)
425 			dma_fence_put(shared[i]);
426 		kfree(shared);
427 	} else {
428 		excl = reservation_object_get_excl_rcu(resv);
429 	}
430 
431 	if (excl && timeout > 0)
432 		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
433 
434 	dma_fence_put(excl);
435 
436 	return timeout;
437 }
438 
439 static void __fence_set_priority(struct dma_fence *fence, int prio)
440 {
441 	struct drm_i915_gem_request *rq;
442 	struct intel_engine_cs *engine;
443 
444 	if (!dma_fence_is_i915(fence))
445 		return;
446 
447 	rq = to_request(fence);
448 	engine = rq->engine;
449 	if (!engine->schedule)
450 		return;
451 
452 	engine->schedule(rq, prio);
453 }
454 
455 static void fence_set_priority(struct dma_fence *fence, int prio)
456 {
457 	/* Recurse once into a fence-array */
458 	if (dma_fence_is_array(fence)) {
459 		struct dma_fence_array *array = to_dma_fence_array(fence);
460 		int i;
461 
462 		for (i = 0; i < array->num_fences; i++)
463 			__fence_set_priority(array->fences[i], prio);
464 	} else {
465 		__fence_set_priority(fence, prio);
466 	}
467 }
468 
469 int
470 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
471 			      unsigned int flags,
472 			      int prio)
473 {
474 	struct dma_fence *excl;
475 
476 	if (flags & I915_WAIT_ALL) {
477 		struct dma_fence **shared;
478 		unsigned int count, i;
479 		int ret;
480 
481 		ret = reservation_object_get_fences_rcu(obj->resv,
482 							&excl, &count, &shared);
483 		if (ret)
484 			return ret;
485 
486 		for (i = 0; i < count; i++) {
487 			fence_set_priority(shared[i], prio);
488 			dma_fence_put(shared[i]);
489 		}
490 
491 		kfree(shared);
492 	} else {
493 		excl = reservation_object_get_excl_rcu(obj->resv);
494 	}
495 
496 	if (excl) {
497 		fence_set_priority(excl, prio);
498 		dma_fence_put(excl);
499 	}
500 	return 0;
501 }
502 
503 /**
504  * Waits for rendering to the object to be completed
505  * @obj: i915 gem object
506  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
507  * @timeout: how long to wait
508  * @rps: client (user process) to charge for any waitboosting
509  */
510 int
511 i915_gem_object_wait(struct drm_i915_gem_object *obj,
512 		     unsigned int flags,
513 		     long timeout,
514 		     struct intel_rps_client *rps)
515 {
516 	might_sleep();
517 #if IS_ENABLED(CONFIG_LOCKDEP)
518 	GEM_BUG_ON(debug_locks &&
519 		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
520 		   !!(flags & I915_WAIT_LOCKED));
521 #endif
522 	GEM_BUG_ON(timeout < 0);
523 
524 	timeout = i915_gem_object_wait_reservation(obj->resv,
525 						   flags, timeout,
526 						   rps);
527 	return timeout < 0 ? timeout : 0;
528 }
529 
530 static struct intel_rps_client *to_rps_client(struct drm_file *file)
531 {
532 	struct drm_i915_file_private *fpriv = file->driver_priv;
533 
534 	return &fpriv->rps;
535 }
536 
537 int
538 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
539 			    int align)
540 {
541 	drm_dma_handle_t *phys;
542 	int ret;
543 
544 	if (obj->phys_handle) {
545 		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
546 			return -EBUSY;
547 
548 		return 0;
549 	}
550 
551 	if (obj->mm.madv != I915_MADV_WILLNEED)
552 		return -EFAULT;
553 
554 	if (obj->base.filp == NULL)
555 		return -EINVAL;
556 
557 	ret = i915_gem_object_unbind(obj);
558 	if (ret)
559 		return ret;
560 
561 	__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
562 	if (obj->mm.pages)
563 		return -EBUSY;
564 
565 	/* create a new object */
566 	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
567 	if (!phys)
568 		return -ENOMEM;
569 
570 	obj->phys_handle = phys;
571 	obj->ops = &i915_gem_phys_ops;
572 
573 	return i915_gem_object_pin_pages(obj);
574 }
575 
576 static int
577 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
578 		     struct drm_i915_gem_pwrite *args,
579 		     struct drm_file *file)
580 {
581 	struct drm_device *dev = obj->base.dev;
582 	void *vaddr = obj->phys_handle->vaddr + args->offset;
583 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
584 	int ret;
585 
586 	/* We manually control the domain here and pretend that it
587 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
588 	 */
589 	lockdep_assert_held(&obj->base.dev->struct_mutex);
590 	ret = i915_gem_object_wait(obj,
591 				   I915_WAIT_INTERRUPTIBLE |
592 				   I915_WAIT_LOCKED |
593 				   I915_WAIT_ALL,
594 				   MAX_SCHEDULE_TIMEOUT,
595 				   to_rps_client(file));
596 	if (ret)
597 		return ret;
598 
599 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
600 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
601 		unsigned long unwritten;
602 
603 		/* The physical object once assigned is fixed for the lifetime
604 		 * of the obj, so we can safely drop the lock and continue
605 		 * to access vaddr.
606 		 */
607 		mutex_unlock(&dev->struct_mutex);
608 		unwritten = copy_from_user(vaddr, user_data, args->size);
609 		mutex_lock(&dev->struct_mutex);
610 		if (unwritten) {
611 			ret = -EFAULT;
612 			goto out;
613 		}
614 	}
615 
616 	drm_clflush_virt_range(vaddr, args->size);
617 	i915_gem_chipset_flush(to_i915(dev));
618 
619 out:
620 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
621 	return ret;
622 }
623 
624 void *i915_gem_object_alloc(struct drm_device *dev)
625 {
626 	struct drm_i915_private *dev_priv = to_i915(dev);
627 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
628 }
629 
630 void i915_gem_object_free(struct drm_i915_gem_object *obj)
631 {
632 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
633 	kmem_cache_free(dev_priv->objects, obj);
634 }
635 
636 static int
637 i915_gem_create(struct drm_file *file,
638 		struct drm_device *dev,
639 		uint64_t size,
640 		uint32_t *handle_p)
641 {
642 	struct drm_i915_gem_object *obj;
643 	int ret;
644 	u32 handle;
645 
646 	size = roundup(size, PAGE_SIZE);
647 	if (size == 0)
648 		return -EINVAL;
649 
650 	/* Allocate the new object */
651 	obj = i915_gem_object_create(dev, size);
652 	if (IS_ERR(obj))
653 		return PTR_ERR(obj);
654 
655 	ret = drm_gem_handle_create(file, &obj->base, &handle);
656 	/* drop reference from allocate - handle holds it now */
657 	i915_gem_object_put(obj);
658 	if (ret)
659 		return ret;
660 
661 	*handle_p = handle;
662 	return 0;
663 }
664 
665 int
666 i915_gem_dumb_create(struct drm_file *file,
667 		     struct drm_device *dev,
668 		     struct drm_mode_create_dumb *args)
669 {
670 	/* have to work out size/pitch and return them */
671 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
672 	args->size = args->pitch * args->height;
673 	return i915_gem_create(file, dev,
674 			       args->size, &args->handle);
675 }
676 
677 /**
678  * Creates a new mm object and returns a handle to it.
679  * @dev: drm device pointer
680  * @data: ioctl data blob
681  * @file: drm file pointer
682  */
683 int
684 i915_gem_create_ioctl(struct drm_device *dev, void *data,
685 		      struct drm_file *file)
686 {
687 	struct drm_i915_gem_create *args = data;
688 
689 	i915_gem_flush_free_objects(to_i915(dev));
690 
691 	return i915_gem_create(file, dev,
692 			       args->size, &args->handle);
693 }
694 
695 static inline int
696 __copy_to_user_swizzled(char __user *cpu_vaddr,
697 			const char *gpu_vaddr, int gpu_offset,
698 			int length)
699 {
700 	int ret, cpu_offset = 0;
701 
702 	while (length > 0) {
703 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
704 		int this_length = min(cacheline_end - gpu_offset, length);
705 		int swizzled_gpu_offset = gpu_offset ^ 64;
706 
707 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
708 				     gpu_vaddr + swizzled_gpu_offset,
709 				     this_length);
710 		if (ret)
711 			return ret + length;
712 
713 		cpu_offset += this_length;
714 		gpu_offset += this_length;
715 		length -= this_length;
716 	}
717 
718 	return 0;
719 }
720 
721 static inline int
722 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
723 			  const char __user *cpu_vaddr,
724 			  int length)
725 {
726 	int ret, cpu_offset = 0;
727 
728 	while (length > 0) {
729 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
730 		int this_length = min(cacheline_end - gpu_offset, length);
731 		int swizzled_gpu_offset = gpu_offset ^ 64;
732 
733 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
734 				       cpu_vaddr + cpu_offset,
735 				       this_length);
736 		if (ret)
737 			return ret + length;
738 
739 		cpu_offset += this_length;
740 		gpu_offset += this_length;
741 		length -= this_length;
742 	}
743 
744 	return 0;
745 }
746 
747 /*
748  * Pins the specified object's pages and synchronizes the object with
749  * GPU accesses. Sets needs_clflush to non-zero if the caller should
750  * flush the object from the CPU cache.
751  */
752 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
753 				    unsigned int *needs_clflush)
754 {
755 	int ret;
756 
757 	lockdep_assert_held(&obj->base.dev->struct_mutex);
758 
759 	*needs_clflush = 0;
760 	if (!i915_gem_object_has_struct_page(obj))
761 		return -ENODEV;
762 
763 	ret = i915_gem_object_wait(obj,
764 				   I915_WAIT_INTERRUPTIBLE |
765 				   I915_WAIT_LOCKED,
766 				   MAX_SCHEDULE_TIMEOUT,
767 				   NULL);
768 	if (ret)
769 		return ret;
770 
771 	ret = i915_gem_object_pin_pages(obj);
772 	if (ret)
773 		return ret;
774 
775 	i915_gem_object_flush_gtt_write_domain(obj);
776 
777 	/* If we're not in the cpu read domain, set ourself into the gtt
778 	 * read domain and manually flush cachelines (if required). This
779 	 * optimizes for the case when the gpu will dirty the data
780 	 * anyway again before the next pread happens.
781 	 */
782 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
783 		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
784 							obj->cache_level);
785 
786 	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
787 		ret = i915_gem_object_set_to_cpu_domain(obj, false);
788 		if (ret)
789 			goto err_unpin;
790 
791 		*needs_clflush = 0;
792 	}
793 
794 	/* return with the pages pinned */
795 	return 0;
796 
797 err_unpin:
798 	i915_gem_object_unpin_pages(obj);
799 	return ret;
800 }
801 
802 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
803 				     unsigned int *needs_clflush)
804 {
805 	int ret;
806 
807 	lockdep_assert_held(&obj->base.dev->struct_mutex);
808 
809 	*needs_clflush = 0;
810 	if (!i915_gem_object_has_struct_page(obj))
811 		return -ENODEV;
812 
813 	ret = i915_gem_object_wait(obj,
814 				   I915_WAIT_INTERRUPTIBLE |
815 				   I915_WAIT_LOCKED |
816 				   I915_WAIT_ALL,
817 				   MAX_SCHEDULE_TIMEOUT,
818 				   NULL);
819 	if (ret)
820 		return ret;
821 
822 	ret = i915_gem_object_pin_pages(obj);
823 	if (ret)
824 		return ret;
825 
826 	i915_gem_object_flush_gtt_write_domain(obj);
827 
828 	/* If we're not in the cpu write domain, set ourself into the
829 	 * gtt write domain and manually flush cachelines (as required).
830 	 * This optimizes for the case when the gpu will use the data
831 	 * right away and we therefore have to clflush anyway.
832 	 */
833 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
834 		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;
835 
836 	/* Same trick applies to invalidate partially written cachelines read
837 	 * before writing.
838 	 */
839 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
840 		*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
841 							 obj->cache_level);
842 
843 	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
844 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
845 		if (ret)
846 			goto err_unpin;
847 
848 		*needs_clflush = 0;
849 	}
850 
851 	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
852 		obj->cache_dirty = true;
853 
854 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
855 	obj->mm.dirty = true;
856 	/* return with the pages pinned */
857 	return 0;
858 
859 err_unpin:
860 	i915_gem_object_unpin_pages(obj);
861 	return ret;
862 }
863 
864 static void
865 shmem_clflush_swizzled_range(char *addr, unsigned long length,
866 			     bool swizzled)
867 {
868 	if (unlikely(swizzled)) {
869 		unsigned long start = (unsigned long) addr;
870 		unsigned long end = (unsigned long) addr + length;
871 
872 		/* For swizzling simply ensure that we always flush both
873 		 * channels. Lame, but simple and it works. Swizzled
874 		 * pwrite/pread is far from a hotpath - current userspace
875 		 * doesn't use it at all. */
876 		start = round_down(start, 128);
877 		end = round_up(end, 128);
878 
879 		drm_clflush_virt_range((void *)start, end - start);
880 	} else {
881 		drm_clflush_virt_range(addr, length);
882 	}
883 
884 }
885 
886 /* Only difference to the fast-path function is that this can handle bit17
887  * and uses non-atomic copy and kmap functions. */
888 static int
889 shmem_pread_slow(struct page *page, int offset, int length,
890 		 char __user *user_data,
891 		 bool page_do_bit17_swizzling, bool needs_clflush)
892 {
893 	char *vaddr;
894 	int ret;
895 
896 	vaddr = kmap(page);
897 	if (needs_clflush)
898 		shmem_clflush_swizzled_range(vaddr + offset, length,
899 					     page_do_bit17_swizzling);
900 
901 	if (page_do_bit17_swizzling)
902 		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
903 	else
904 		ret = __copy_to_user(user_data, vaddr + offset, length);
905 	kunmap(page);
906 
907 	return ret ? - EFAULT : 0;
908 }
909 
910 static int
911 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
912 	    bool page_do_bit17_swizzling, bool needs_clflush)
913 {
914 	int ret;
915 
916 	ret = -ENODEV;
917 	if (!page_do_bit17_swizzling) {
918 		char *vaddr = kmap_atomic(page);
919 
920 		if (needs_clflush)
921 			drm_clflush_virt_range(vaddr + offset, length);
922 		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
923 		kunmap_atomic(vaddr);
924 	}
925 	if (ret == 0)
926 		return 0;
927 
928 	return shmem_pread_slow(page, offset, length, user_data,
929 				page_do_bit17_swizzling, needs_clflush);
930 }
931 
932 static int
933 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
934 		     struct drm_i915_gem_pread *args)
935 {
936 	char __user *user_data;
937 	u64 remain;
938 	unsigned int obj_do_bit17_swizzling;
939 	unsigned int needs_clflush;
940 	unsigned int idx, offset;
941 	int ret;
942 
943 	obj_do_bit17_swizzling = 0;
944 	if (i915_gem_object_needs_bit17_swizzle(obj))
945 		obj_do_bit17_swizzling = BIT(17);
946 
947 	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
948 	if (ret)
949 		return ret;
950 
951 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
952 	mutex_unlock(&obj->base.dev->struct_mutex);
953 	if (ret)
954 		return ret;
955 
956 	remain = args->size;
957 	user_data = u64_to_user_ptr(args->data_ptr);
958 	offset = offset_in_page(args->offset);
959 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
960 		struct page *page = i915_gem_object_get_page(obj, idx);
961 		int length;
962 
963 		length = remain;
964 		if (offset + length > PAGE_SIZE)
965 			length = PAGE_SIZE - offset;
966 
967 		ret = shmem_pread(page, offset, length, user_data,
968 				  page_to_phys(page) & obj_do_bit17_swizzling,
969 				  needs_clflush);
970 		if (ret)
971 			break;
972 
973 		remain -= length;
974 		user_data += length;
975 		offset = 0;
976 	}
977 
978 	i915_gem_obj_finish_shmem_access(obj);
979 	return ret;
980 }
981 
982 static inline bool
983 gtt_user_read(struct io_mapping *mapping,
984 	      loff_t base, int offset,
985 	      char __user *user_data, int length)
986 {
987 	void *vaddr;
988 	unsigned long unwritten;
989 
990 	/* We can use the cpu mem copy function because this is X86. */
991 	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
992 	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
993 	io_mapping_unmap_atomic(vaddr);
994 	if (unwritten) {
995 		vaddr = (void __force *)
996 			io_mapping_map_wc(mapping, base, PAGE_SIZE);
997 		unwritten = copy_to_user(user_data, vaddr + offset, length);
998 		io_mapping_unmap(vaddr);
999 	}
1000 	return unwritten;
1001 }
1002 
1003 static int
1004 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1005 		   const struct drm_i915_gem_pread *args)
1006 {
1007 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1008 	struct i915_ggtt *ggtt = &i915->ggtt;
1009 	struct drm_mm_node node;
1010 	struct i915_vma *vma;
1011 	void __user *user_data;
1012 	u64 remain, offset;
1013 	int ret;
1014 
1015 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1016 	if (ret)
1017 		return ret;
1018 
1019 	intel_runtime_pm_get(i915);
1020 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1021 				       PIN_MAPPABLE | PIN_NONBLOCK);
1022 	if (!IS_ERR(vma)) {
1023 		node.start = i915_ggtt_offset(vma);
1024 		node.allocated = false;
1025 		ret = i915_vma_put_fence(vma);
1026 		if (ret) {
1027 			i915_vma_unpin(vma);
1028 			vma = ERR_PTR(ret);
1029 		}
1030 	}
1031 	if (IS_ERR(vma)) {
1032 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1033 		if (ret)
1034 			goto out_unlock;
1035 		GEM_BUG_ON(!node.allocated);
1036 	}
1037 
1038 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
1039 	if (ret)
1040 		goto out_unpin;
1041 
1042 	mutex_unlock(&i915->drm.struct_mutex);
1043 
1044 	user_data = u64_to_user_ptr(args->data_ptr);
1045 	remain = args->size;
1046 	offset = args->offset;
1047 
1048 	while (remain > 0) {
1049 		/* Operation in this page
1050 		 *
1051 		 * page_base = page offset within aperture
1052 		 * page_offset = offset within page
1053 		 * page_length = bytes to copy for this page
1054 		 */
1055 		u32 page_base = node.start;
1056 		unsigned page_offset = offset_in_page(offset);
1057 		unsigned page_length = PAGE_SIZE - page_offset;
1058 		page_length = remain < page_length ? remain : page_length;
1059 		if (node.allocated) {
1060 			wmb();
1061 			ggtt->base.insert_page(&ggtt->base,
1062 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1063 					       node.start, I915_CACHE_NONE, 0);
1064 			wmb();
1065 		} else {
1066 			page_base += offset & PAGE_MASK;
1067 		}
1068 
1069 		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1070 				  user_data, page_length)) {
1071 			ret = -EFAULT;
1072 			break;
1073 		}
1074 
1075 		remain -= page_length;
1076 		user_data += page_length;
1077 		offset += page_length;
1078 	}
1079 
1080 	mutex_lock(&i915->drm.struct_mutex);
1081 out_unpin:
1082 	if (node.allocated) {
1083 		wmb();
1084 		ggtt->base.clear_range(&ggtt->base,
1085 				       node.start, node.size);
1086 		remove_mappable_node(&node);
1087 	} else {
1088 		i915_vma_unpin(vma);
1089 	}
1090 out_unlock:
1091 	intel_runtime_pm_put(i915);
1092 	mutex_unlock(&i915->drm.struct_mutex);
1093 
1094 	return ret;
1095 }
1096 
1097 /**
1098  * Reads data from the object referenced by handle.
1099  * @dev: drm device pointer
1100  * @data: ioctl data blob
1101  * @file: drm file pointer
1102  *
1103  * On error, the contents of *data are undefined.
1104  */
1105 int
1106 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1107 		     struct drm_file *file)
1108 {
1109 	struct drm_i915_gem_pread *args = data;
1110 	struct drm_i915_gem_object *obj;
1111 	int ret;
1112 
1113 	if (args->size == 0)
1114 		return 0;
1115 
1116 	if (!access_ok(VERIFY_WRITE,
1117 		       u64_to_user_ptr(args->data_ptr),
1118 		       args->size))
1119 		return -EFAULT;
1120 
1121 	obj = i915_gem_object_lookup(file, args->handle);
1122 	if (!obj)
1123 		return -ENOENT;
1124 
1125 	/* Bounds check source.  */
1126 	if (args->offset > obj->base.size ||
1127 	    args->size > obj->base.size - args->offset) {
1128 		ret = -EINVAL;
1129 		goto out;
1130 	}
1131 
1132 	trace_i915_gem_object_pread(obj, args->offset, args->size);
1133 
1134 	ret = i915_gem_object_wait(obj,
1135 				   I915_WAIT_INTERRUPTIBLE,
1136 				   MAX_SCHEDULE_TIMEOUT,
1137 				   to_rps_client(file));
1138 	if (ret)
1139 		goto out;
1140 
1141 	ret = i915_gem_object_pin_pages(obj);
1142 	if (ret)
1143 		goto out;
1144 
1145 	ret = i915_gem_shmem_pread(obj, args);
1146 	if (ret == -EFAULT || ret == -ENODEV)
1147 		ret = i915_gem_gtt_pread(obj, args);
1148 
1149 	i915_gem_object_unpin_pages(obj);
1150 out:
1151 	i915_gem_object_put(obj);
1152 	return ret;
1153 }
1154 
1155 /* This is the fast write path which cannot handle
1156  * page faults in the source data
1157  */
1158 
1159 static inline bool
1160 ggtt_write(struct io_mapping *mapping,
1161 	   loff_t base, int offset,
1162 	   char __user *user_data, int length)
1163 {
1164 	void *vaddr;
1165 	unsigned long unwritten;
1166 
1167 	/* We can use the cpu mem copy function because this is X86. */
1168 	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1169 	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1170 						      user_data, length);
1171 	io_mapping_unmap_atomic(vaddr);
1172 	if (unwritten) {
1173 		vaddr = (void __force *)
1174 			io_mapping_map_wc(mapping, base, PAGE_SIZE);
1175 		unwritten = copy_from_user(vaddr + offset, user_data, length);
1176 		io_mapping_unmap(vaddr);
1177 	}
1178 
1179 	return unwritten;
1180 }
1181 
1182 /**
1183  * This is the fast pwrite path, where we copy the data directly from the
1184  * user into the GTT, uncached.
1185  * @obj: i915 GEM object
1186  * @args: pwrite arguments structure
1187  */
1188 static int
1189 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1190 			 const struct drm_i915_gem_pwrite *args)
1191 {
1192 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1193 	struct i915_ggtt *ggtt = &i915->ggtt;
1194 	struct drm_mm_node node;
1195 	struct i915_vma *vma;
1196 	u64 remain, offset;
1197 	void __user *user_data;
1198 	int ret;
1199 
1200 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1201 	if (ret)
1202 		return ret;
1203 
1204 	intel_runtime_pm_get(i915);
1205 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1206 				       PIN_MAPPABLE | PIN_NONBLOCK);
1207 	if (!IS_ERR(vma)) {
1208 		node.start = i915_ggtt_offset(vma);
1209 		node.allocated = false;
1210 		ret = i915_vma_put_fence(vma);
1211 		if (ret) {
1212 			i915_vma_unpin(vma);
1213 			vma = ERR_PTR(ret);
1214 		}
1215 	}
1216 	if (IS_ERR(vma)) {
1217 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1218 		if (ret)
1219 			goto out_unlock;
1220 		GEM_BUG_ON(!node.allocated);
1221 	}
1222 
1223 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1224 	if (ret)
1225 		goto out_unpin;
1226 
1227 	mutex_unlock(&i915->drm.struct_mutex);
1228 
1229 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1230 
1231 	user_data = u64_to_user_ptr(args->data_ptr);
1232 	offset = args->offset;
1233 	remain = args->size;
1234 	while (remain) {
1235 		/* Operation in this page
1236 		 *
1237 		 * page_base = page offset within aperture
1238 		 * page_offset = offset within page
1239 		 * page_length = bytes to copy for this page
1240 		 */
1241 		u32 page_base = node.start;
1242 		unsigned int page_offset = offset_in_page(offset);
1243 		unsigned int page_length = PAGE_SIZE - page_offset;
1244 		page_length = remain < page_length ? remain : page_length;
1245 		if (node.allocated) {
1246 			wmb(); /* flush the write before we modify the GGTT */
1247 			ggtt->base.insert_page(&ggtt->base,
1248 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1249 					       node.start, I915_CACHE_NONE, 0);
1250 			wmb(); /* flush modifications to the GGTT (insert_page) */
1251 		} else {
1252 			page_base += offset & PAGE_MASK;
1253 		}
1254 		/* If we get a fault while copying data, then (presumably) our
1255 		 * source page isn't available.  Return the error and we'll
1256 		 * retry in the slow path.
1257 		 * If the object is non-shmem backed, we retry again with the
1258 		 * path that handles page fault.
1259 		 */
1260 		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1261 			       user_data, page_length)) {
1262 			ret = -EFAULT;
1263 			break;
1264 		}
1265 
1266 		remain -= page_length;
1267 		user_data += page_length;
1268 		offset += page_length;
1269 	}
1270 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1271 
1272 	mutex_lock(&i915->drm.struct_mutex);
1273 out_unpin:
1274 	if (node.allocated) {
1275 		wmb();
1276 		ggtt->base.clear_range(&ggtt->base,
1277 				       node.start, node.size);
1278 		remove_mappable_node(&node);
1279 	} else {
1280 		i915_vma_unpin(vma);
1281 	}
1282 out_unlock:
1283 	intel_runtime_pm_put(i915);
1284 	mutex_unlock(&i915->drm.struct_mutex);
1285 	return ret;
1286 }
1287 
1288 static int
1289 shmem_pwrite_slow(struct page *page, int offset, int length,
1290 		  char __user *user_data,
1291 		  bool page_do_bit17_swizzling,
1292 		  bool needs_clflush_before,
1293 		  bool needs_clflush_after)
1294 {
1295 	char *vaddr;
1296 	int ret;
1297 
1298 	vaddr = kmap(page);
1299 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1300 		shmem_clflush_swizzled_range(vaddr + offset, length,
1301 					     page_do_bit17_swizzling);
1302 	if (page_do_bit17_swizzling)
1303 		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1304 						length);
1305 	else
1306 		ret = __copy_from_user(vaddr + offset, user_data, length);
1307 	if (needs_clflush_after)
1308 		shmem_clflush_swizzled_range(vaddr + offset, length,
1309 					     page_do_bit17_swizzling);
1310 	kunmap(page);
1311 
1312 	return ret ? -EFAULT : 0;
1313 }
1314 
1315 /* Per-page copy function for the shmem pwrite fastpath.
1316  * Flushes invalid cachelines before writing to the target if
1317  * needs_clflush_before is set and flushes out any written cachelines after
1318  * writing if needs_clflush is set.
1319  */
1320 static int
1321 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1322 	     bool page_do_bit17_swizzling,
1323 	     bool needs_clflush_before,
1324 	     bool needs_clflush_after)
1325 {
1326 	int ret;
1327 
1328 	ret = -ENODEV;
1329 	if (!page_do_bit17_swizzling) {
1330 		char *vaddr = kmap_atomic(page);
1331 
1332 		if (needs_clflush_before)
1333 			drm_clflush_virt_range(vaddr + offset, len);
1334 		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1335 		if (needs_clflush_after)
1336 			drm_clflush_virt_range(vaddr + offset, len);
1337 
1338 		kunmap_atomic(vaddr);
1339 	}
1340 	if (ret == 0)
1341 		return ret;
1342 
1343 	return shmem_pwrite_slow(page, offset, len, user_data,
1344 				 page_do_bit17_swizzling,
1345 				 needs_clflush_before,
1346 				 needs_clflush_after);
1347 }
1348 
1349 static int
1350 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1351 		      const struct drm_i915_gem_pwrite *args)
1352 {
1353 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1354 	void __user *user_data;
1355 	u64 remain;
1356 	unsigned int obj_do_bit17_swizzling;
1357 	unsigned int partial_cacheline_write;
1358 	unsigned int needs_clflush;
1359 	unsigned int offset, idx;
1360 	int ret;
1361 
1362 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1363 	if (ret)
1364 		return ret;
1365 
1366 	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1367 	mutex_unlock(&i915->drm.struct_mutex);
1368 	if (ret)
1369 		return ret;
1370 
1371 	obj_do_bit17_swizzling = 0;
1372 	if (i915_gem_object_needs_bit17_swizzle(obj))
1373 		obj_do_bit17_swizzling = BIT(17);
1374 
1375 	/* If we don't overwrite a cacheline completely we need to be
1376 	 * careful to have up-to-date data by first clflushing. Don't
1377 	 * overcomplicate things and flush the entire patch.
1378 	 */
1379 	partial_cacheline_write = 0;
1380 	if (needs_clflush & CLFLUSH_BEFORE)
1381 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1382 
1383 	user_data = u64_to_user_ptr(args->data_ptr);
1384 	remain = args->size;
1385 	offset = offset_in_page(args->offset);
1386 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1387 		struct page *page = i915_gem_object_get_page(obj, idx);
1388 		int length;
1389 
1390 		length = remain;
1391 		if (offset + length > PAGE_SIZE)
1392 			length = PAGE_SIZE - offset;
1393 
1394 		ret = shmem_pwrite(page, offset, length, user_data,
1395 				   page_to_phys(page) & obj_do_bit17_swizzling,
1396 				   (offset | length) & partial_cacheline_write,
1397 				   needs_clflush & CLFLUSH_AFTER);
1398 		if (ret)
1399 			break;
1400 
1401 		remain -= length;
1402 		user_data += length;
1403 		offset = 0;
1404 	}
1405 
1406 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1407 	i915_gem_obj_finish_shmem_access(obj);
1408 	return ret;
1409 }
1410 
1411 /**
1412  * Writes data to the object referenced by handle.
1413  * @dev: drm device
1414  * @data: ioctl data blob
1415  * @file: drm file
1416  *
1417  * On error, the contents of the buffer that were to be modified are undefined.
1418  */
1419 int
1420 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1421 		      struct drm_file *file)
1422 {
1423 	struct drm_i915_gem_pwrite *args = data;
1424 	struct drm_i915_gem_object *obj;
1425 	int ret;
1426 
1427 	if (args->size == 0)
1428 		return 0;
1429 
1430 	if (!access_ok(VERIFY_READ,
1431 		       u64_to_user_ptr(args->data_ptr),
1432 		       args->size))
1433 		return -EFAULT;
1434 
1435 	obj = i915_gem_object_lookup(file, args->handle);
1436 	if (!obj)
1437 		return -ENOENT;
1438 
1439 	/* Bounds check destination. */
1440 	if (args->offset > obj->base.size ||
1441 	    args->size > obj->base.size - args->offset) {
1442 		ret = -EINVAL;
1443 		goto err;
1444 	}
1445 
1446 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1447 
1448 	ret = i915_gem_object_wait(obj,
1449 				   I915_WAIT_INTERRUPTIBLE |
1450 				   I915_WAIT_ALL,
1451 				   MAX_SCHEDULE_TIMEOUT,
1452 				   to_rps_client(file));
1453 	if (ret)
1454 		goto err;
1455 
1456 	ret = i915_gem_object_pin_pages(obj);
1457 	if (ret)
1458 		goto err;
1459 
1460 	ret = -EFAULT;
1461 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1462 	 * it would end up going through the fenced access, and we'll get
1463 	 * different detiling behavior between reading and writing.
1464 	 * pread/pwrite currently are reading and writing from the CPU
1465 	 * perspective, requiring manual detiling by the client.
1466 	 */
1467 	if (!i915_gem_object_has_struct_page(obj) ||
1468 	    cpu_write_needs_clflush(obj))
1469 		/* Note that the gtt paths might fail with non-page-backed user
1470 		 * pointers (e.g. gtt mappings when moving data between
1471 		 * textures). Fallback to the shmem path in that case.
1472 		 */
1473 		ret = i915_gem_gtt_pwrite_fast(obj, args);
1474 
1475 	if (ret == -EFAULT || ret == -ENOSPC) {
1476 		if (obj->phys_handle)
1477 			ret = i915_gem_phys_pwrite(obj, args, file);
1478 		else
1479 			ret = i915_gem_shmem_pwrite(obj, args);
1480 	}
1481 
1482 	i915_gem_object_unpin_pages(obj);
1483 err:
1484 	i915_gem_object_put(obj);
1485 	return ret;
1486 }
1487 
1488 static inline enum fb_op_origin
1489 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1490 {
1491 	return (domain == I915_GEM_DOMAIN_GTT ?
1492 		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1493 }
1494 
1495 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1496 {
1497 	struct drm_i915_private *i915;
1498 	struct list_head *list;
1499 	struct i915_vma *vma;
1500 
1501 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
1502 		if (!i915_vma_is_ggtt(vma))
1503 			continue;
1504 
1505 		if (i915_vma_is_active(vma))
1506 			continue;
1507 
1508 		if (!drm_mm_node_allocated(&vma->node))
1509 			continue;
1510 
1511 		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1512 	}
1513 
1514 	i915 = to_i915(obj->base.dev);
1515 	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1516 	list_move_tail(&obj->global_link, list);
1517 }
1518 
1519 /**
1520  * Called when user space prepares to use an object with the CPU, either
1521  * through the mmap ioctl's mapping or a GTT mapping.
1522  * @dev: drm device
1523  * @data: ioctl data blob
1524  * @file: drm file
1525  */
1526 int
1527 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1528 			  struct drm_file *file)
1529 {
1530 	struct drm_i915_gem_set_domain *args = data;
1531 	struct drm_i915_gem_object *obj;
1532 	uint32_t read_domains = args->read_domains;
1533 	uint32_t write_domain = args->write_domain;
1534 	int err;
1535 
1536 	/* Only handle setting domains to types used by the CPU. */
1537 	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1538 		return -EINVAL;
1539 
1540 	/* Having something in the write domain implies it's in the read
1541 	 * domain, and only that read domain.  Enforce that in the request.
1542 	 */
1543 	if (write_domain != 0 && read_domains != write_domain)
1544 		return -EINVAL;
1545 
1546 	obj = i915_gem_object_lookup(file, args->handle);
1547 	if (!obj)
1548 		return -ENOENT;
1549 
1550 	/* Try to flush the object off the GPU without holding the lock.
1551 	 * We will repeat the flush holding the lock in the normal manner
1552 	 * to catch cases where we are gazumped.
1553 	 */
1554 	err = i915_gem_object_wait(obj,
1555 				   I915_WAIT_INTERRUPTIBLE |
1556 				   (write_domain ? I915_WAIT_ALL : 0),
1557 				   MAX_SCHEDULE_TIMEOUT,
1558 				   to_rps_client(file));
1559 	if (err)
1560 		goto out;
1561 
1562 	/* Flush and acquire obj->pages so that we are coherent through
1563 	 * direct access in memory with previous cached writes through
1564 	 * shmemfs and that our cache domain tracking remains valid.
1565 	 * For example, if the obj->filp was moved to swap without us
1566 	 * being notified and releasing the pages, we would mistakenly
1567 	 * continue to assume that the obj remained out of the CPU cached
1568 	 * domain.
1569 	 */
1570 	err = i915_gem_object_pin_pages(obj);
1571 	if (err)
1572 		goto out;
1573 
1574 	err = i915_mutex_lock_interruptible(dev);
1575 	if (err)
1576 		goto out_unpin;
1577 
1578 	if (read_domains & I915_GEM_DOMAIN_GTT)
1579 		err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1580 	else
1581 		err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1582 
1583 	/* And bump the LRU for this access */
1584 	i915_gem_object_bump_inactive_ggtt(obj);
1585 
1586 	mutex_unlock(&dev->struct_mutex);
1587 
1588 	if (write_domain != 0)
1589 		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1590 
1591 out_unpin:
1592 	i915_gem_object_unpin_pages(obj);
1593 out:
1594 	i915_gem_object_put(obj);
1595 	return err;
1596 }
1597 
1598 /**
1599  * Called when user space has done writes to this buffer
1600  * @dev: drm device
1601  * @data: ioctl data blob
1602  * @file: drm file
1603  */
1604 int
1605 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1606 			 struct drm_file *file)
1607 {
1608 	struct drm_i915_gem_sw_finish *args = data;
1609 	struct drm_i915_gem_object *obj;
1610 	int err = 0;
1611 
1612 	obj = i915_gem_object_lookup(file, args->handle);
1613 	if (!obj)
1614 		return -ENOENT;
1615 
1616 	/* Pinned buffers may be scanout, so flush the cache */
1617 	if (READ_ONCE(obj->pin_display)) {
1618 		err = i915_mutex_lock_interruptible(dev);
1619 		if (!err) {
1620 			i915_gem_object_flush_cpu_write_domain(obj);
1621 			mutex_unlock(&dev->struct_mutex);
1622 		}
1623 	}
1624 
1625 	i915_gem_object_put(obj);
1626 	return err;
1627 }
1628 
1629 /**
1630  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1631  *			 it is mapped to.
1632  * @dev: drm device
1633  * @data: ioctl data blob
1634  * @file: drm file
1635  *
1636  * While the mapping holds a reference on the contents of the object, it doesn't
1637  * imply a ref on the object itself.
1638  *
1639  * IMPORTANT:
1640  *
1641  * DRM driver writers who look a this function as an example for how to do GEM
1642  * mmap support, please don't implement mmap support like here. The modern way
1643  * to implement DRM mmap support is with an mmap offset ioctl (like
1644  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1645  * That way debug tooling like valgrind will understand what's going on, hiding
1646  * the mmap call in a driver private ioctl will break that. The i915 driver only
1647  * does cpu mmaps this way because we didn't know better.
1648  */
1649 int
1650 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1651 		    struct drm_file *file)
1652 {
1653 	struct drm_i915_gem_mmap *args = data;
1654 	struct drm_i915_gem_object *obj;
1655 	unsigned long addr;
1656 
1657 	if (args->flags & ~(I915_MMAP_WC))
1658 		return -EINVAL;
1659 
1660 	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1661 		return -ENODEV;
1662 
1663 	obj = i915_gem_object_lookup(file, args->handle);
1664 	if (!obj)
1665 		return -ENOENT;
1666 
1667 	/* prime objects have no backing filp to GEM mmap
1668 	 * pages from.
1669 	 */
1670 	if (!obj->base.filp) {
1671 		i915_gem_object_put(obj);
1672 		return -EINVAL;
1673 	}
1674 
1675 	addr = vm_mmap(obj->base.filp, 0, args->size,
1676 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1677 		       args->offset);
1678 	if (args->flags & I915_MMAP_WC) {
1679 		struct mm_struct *mm = current->mm;
1680 		struct vm_area_struct *vma;
1681 
1682 		if (down_write_killable(&mm->mmap_sem)) {
1683 			i915_gem_object_put(obj);
1684 			return -EINTR;
1685 		}
1686 		vma = find_vma(mm, addr);
1687 		if (vma)
1688 			vma->vm_page_prot =
1689 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1690 		else
1691 			addr = -ENOMEM;
1692 		up_write(&mm->mmap_sem);
1693 
1694 		/* This may race, but that's ok, it only gets set */
1695 		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1696 	}
1697 	i915_gem_object_put(obj);
1698 	if (IS_ERR((void *)addr))
1699 		return addr;
1700 
1701 	args->addr_ptr = (uint64_t) addr;
1702 
1703 	return 0;
1704 }
1705 
1706 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1707 {
1708 	u64 size;
1709 
1710 	size = i915_gem_object_get_stride(obj);
1711 	size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;
1712 
1713 	return size >> PAGE_SHIFT;
1714 }
1715 
1716 /**
1717  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1718  *
1719  * A history of the GTT mmap interface:
1720  *
1721  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1722  *     aligned and suitable for fencing, and still fit into the available
1723  *     mappable space left by the pinned display objects. A classic problem
1724  *     we called the page-fault-of-doom where we would ping-pong between
1725  *     two objects that could not fit inside the GTT and so the memcpy
1726  *     would page one object in at the expense of the other between every
1727  *     single byte.
1728  *
1729  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1730  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1731  *     object is too large for the available space (or simply too large
1732  *     for the mappable aperture!), a view is created instead and faulted
1733  *     into userspace. (This view is aligned and sized appropriately for
1734  *     fenced access.)
1735  *
1736  * Restrictions:
1737  *
1738  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1739  *    hangs on some architectures, corruption on others. An attempt to service
1740  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1741  *
1742  *  * the object must be able to fit into RAM (physical memory, though no
1743  *    limited to the mappable aperture).
1744  *
1745  *
1746  * Caveats:
1747  *
1748  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1749  *    all data to system memory. Subsequent access will not be synchronized.
1750  *
1751  *  * all mappings are revoked on runtime device suspend.
1752  *
1753  *  * there are only 8, 16 or 32 fence registers to share between all users
1754  *    (older machines require fence register for display and blitter access
1755  *    as well). Contention of the fence registers will cause the previous users
1756  *    to be unmapped and any new access will generate new page faults.
1757  *
1758  *  * running out of memory while servicing a fault may generate a SIGBUS,
1759  *    rather than the expected SIGSEGV.
1760  */
1761 int i915_gem_mmap_gtt_version(void)
1762 {
1763 	return 1;
1764 }
1765 
1766 /**
1767  * i915_gem_fault - fault a page into the GTT
1768  * @area: CPU VMA in question
1769  * @vmf: fault info
1770  *
1771  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1772  * from userspace.  The fault handler takes care of binding the object to
1773  * the GTT (if needed), allocating and programming a fence register (again,
1774  * only if needed based on whether the old reg is still valid or the object
1775  * is tiled) and inserting a new PTE into the faulting process.
1776  *
1777  * Note that the faulting process may involve evicting existing objects
1778  * from the GTT and/or fence registers to make room.  So performance may
1779  * suffer if the GTT working set is large or there are few fence registers
1780  * left.
1781  *
1782  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1783  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1784  */
1785 int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1786 {
1787 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1788 	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1789 	struct drm_device *dev = obj->base.dev;
1790 	struct drm_i915_private *dev_priv = to_i915(dev);
1791 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1792 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1793 	struct i915_vma *vma;
1794 	pgoff_t page_offset;
1795 	unsigned int flags;
1796 	int ret;
1797 
1798 	/* We don't use vmf->pgoff since that has the fake offset */
1799 	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1800 
1801 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1802 
1803 	/* Try to flush the object off the GPU first without holding the lock.
1804 	 * Upon acquiring the lock, we will perform our sanity checks and then
1805 	 * repeat the flush holding the lock in the normal manner to catch cases
1806 	 * where we are gazumped.
1807 	 */
1808 	ret = i915_gem_object_wait(obj,
1809 				   I915_WAIT_INTERRUPTIBLE,
1810 				   MAX_SCHEDULE_TIMEOUT,
1811 				   NULL);
1812 	if (ret)
1813 		goto err;
1814 
1815 	ret = i915_gem_object_pin_pages(obj);
1816 	if (ret)
1817 		goto err;
1818 
1819 	intel_runtime_pm_get(dev_priv);
1820 
1821 	ret = i915_mutex_lock_interruptible(dev);
1822 	if (ret)
1823 		goto err_rpm;
1824 
1825 	/* Access to snoopable pages through the GTT is incoherent. */
1826 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1827 		ret = -EFAULT;
1828 		goto err_unlock;
1829 	}
1830 
1831 	/* If the object is smaller than a couple of partial vma, it is
1832 	 * not worth only creating a single partial vma - we may as well
1833 	 * clear enough space for the full object.
1834 	 */
1835 	flags = PIN_MAPPABLE;
1836 	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1837 		flags |= PIN_NONBLOCK | PIN_NONFAULT;
1838 
1839 	/* Now pin it into the GTT as needed */
1840 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1841 	if (IS_ERR(vma)) {
1842 		struct i915_ggtt_view view;
1843 		unsigned int chunk_size;
1844 
1845 		/* Use a partial view if it is bigger than available space */
1846 		chunk_size = MIN_CHUNK_PAGES;
1847 		if (i915_gem_object_is_tiled(obj))
1848 			chunk_size = roundup(chunk_size, tile_row_pages(obj));
1849 
1850 		memset(&view, 0, sizeof(view));
1851 		view.type = I915_GGTT_VIEW_PARTIAL;
1852 		view.params.partial.offset = rounddown(page_offset, chunk_size);
1853 		view.params.partial.size =
1854 			min_t(unsigned int, chunk_size,
1855 			      vma_pages(area) - view.params.partial.offset);
1856 
1857 		/* If the partial covers the entire object, just create a
1858 		 * normal VMA.
1859 		 */
1860 		if (chunk_size >= obj->base.size >> PAGE_SHIFT)
1861 			view.type = I915_GGTT_VIEW_NORMAL;
1862 
1863 		/* Userspace is now writing through an untracked VMA, abandon
1864 		 * all hope that the hardware is able to track future writes.
1865 		 */
1866 		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1867 
1868 		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1869 	}
1870 	if (IS_ERR(vma)) {
1871 		ret = PTR_ERR(vma);
1872 		goto err_unlock;
1873 	}
1874 
1875 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1876 	if (ret)
1877 		goto err_unpin;
1878 
1879 	ret = i915_vma_get_fence(vma);
1880 	if (ret)
1881 		goto err_unpin;
1882 
1883 	/* Mark as being mmapped into userspace for later revocation */
1884 	assert_rpm_wakelock_held(dev_priv);
1885 	if (list_empty(&obj->userfault_link))
1886 		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1887 
1888 	/* Finally, remap it using the new GTT offset */
1889 	ret = remap_io_mapping(area,
1890 			       area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
1891 			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1892 			       min_t(u64, vma->size, area->vm_end - area->vm_start),
1893 			       &ggtt->mappable);
1894 
1895 err_unpin:
1896 	__i915_vma_unpin(vma);
1897 err_unlock:
1898 	mutex_unlock(&dev->struct_mutex);
1899 err_rpm:
1900 	intel_runtime_pm_put(dev_priv);
1901 	i915_gem_object_unpin_pages(obj);
1902 err:
1903 	switch (ret) {
1904 	case -EIO:
1905 		/*
1906 		 * We eat errors when the gpu is terminally wedged to avoid
1907 		 * userspace unduly crashing (gl has no provisions for mmaps to
1908 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1909 		 * and so needs to be reported.
1910 		 */
1911 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1912 			ret = VM_FAULT_SIGBUS;
1913 			break;
1914 		}
1915 	case -EAGAIN:
1916 		/*
1917 		 * EAGAIN means the gpu is hung and we'll wait for the error
1918 		 * handler to reset everything when re-faulting in
1919 		 * i915_mutex_lock_interruptible.
1920 		 */
1921 	case 0:
1922 	case -ERESTARTSYS:
1923 	case -EINTR:
1924 	case -EBUSY:
1925 		/*
1926 		 * EBUSY is ok: this just means that another thread
1927 		 * already did the job.
1928 		 */
1929 		ret = VM_FAULT_NOPAGE;
1930 		break;
1931 	case -ENOMEM:
1932 		ret = VM_FAULT_OOM;
1933 		break;
1934 	case -ENOSPC:
1935 	case -EFAULT:
1936 		ret = VM_FAULT_SIGBUS;
1937 		break;
1938 	default:
1939 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1940 		ret = VM_FAULT_SIGBUS;
1941 		break;
1942 	}
1943 	return ret;
1944 }
1945 
1946 /**
1947  * i915_gem_release_mmap - remove physical page mappings
1948  * @obj: obj in question
1949  *
1950  * Preserve the reservation of the mmapping with the DRM core code, but
1951  * relinquish ownership of the pages back to the system.
1952  *
1953  * It is vital that we remove the page mapping if we have mapped a tiled
1954  * object through the GTT and then lose the fence register due to
1955  * resource pressure. Similarly if the object has been moved out of the
1956  * aperture, than pages mapped into userspace must be revoked. Removing the
1957  * mapping will then trigger a page fault on the next user access, allowing
1958  * fixup by i915_gem_fault().
1959  */
1960 void
1961 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1962 {
1963 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1964 
1965 	/* Serialisation between user GTT access and our code depends upon
1966 	 * revoking the CPU's PTE whilst the mutex is held. The next user
1967 	 * pagefault then has to wait until we release the mutex.
1968 	 *
1969 	 * Note that RPM complicates somewhat by adding an additional
1970 	 * requirement that operations to the GGTT be made holding the RPM
1971 	 * wakeref.
1972 	 */
1973 	lockdep_assert_held(&i915->drm.struct_mutex);
1974 	intel_runtime_pm_get(i915);
1975 
1976 	if (list_empty(&obj->userfault_link))
1977 		goto out;
1978 
1979 	list_del_init(&obj->userfault_link);
1980 	drm_vma_node_unmap(&obj->base.vma_node,
1981 			   obj->base.dev->anon_inode->i_mapping);
1982 
1983 	/* Ensure that the CPU's PTE are revoked and there are not outstanding
1984 	 * memory transactions from userspace before we return. The TLB
1985 	 * flushing implied above by changing the PTE above *should* be
1986 	 * sufficient, an extra barrier here just provides us with a bit
1987 	 * of paranoid documentation about our requirement to serialise
1988 	 * memory writes before touching registers / GSM.
1989 	 */
1990 	wmb();
1991 
1992 out:
1993 	intel_runtime_pm_put(i915);
1994 }
1995 
1996 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
1997 {
1998 	struct drm_i915_gem_object *obj, *on;
1999 	int i;
2000 
2001 	/*
2002 	 * Only called during RPM suspend. All users of the userfault_list
2003 	 * must be holding an RPM wakeref to ensure that this can not
2004 	 * run concurrently with themselves (and use the struct_mutex for
2005 	 * protection between themselves).
2006 	 */
2007 
2008 	list_for_each_entry_safe(obj, on,
2009 				 &dev_priv->mm.userfault_list, userfault_link) {
2010 		list_del_init(&obj->userfault_link);
2011 		drm_vma_node_unmap(&obj->base.vma_node,
2012 				   obj->base.dev->anon_inode->i_mapping);
2013 	}
2014 
2015 	/* The fence will be lost when the device powers down. If any were
2016 	 * in use by hardware (i.e. they are pinned), we should not be powering
2017 	 * down! All other fences will be reacquired by the user upon waking.
2018 	 */
2019 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2020 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2021 
2022 		if (WARN_ON(reg->pin_count))
2023 			continue;
2024 
2025 		if (!reg->vma)
2026 			continue;
2027 
2028 		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2029 		reg->dirty = true;
2030 	}
2031 }
2032 
2033 /**
2034  * i915_gem_get_ggtt_size - return required global GTT size for an object
2035  * @dev_priv: i915 device
2036  * @size: object size
2037  * @tiling_mode: tiling mode
2038  *
2039  * Return the required global GTT size for an object, taking into account
2040  * potential fence register mapping.
2041  */
2042 u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
2043 			   u64 size, int tiling_mode)
2044 {
2045 	u64 ggtt_size;
2046 
2047 	GEM_BUG_ON(size == 0);
2048 
2049 	if (INTEL_GEN(dev_priv) >= 4 ||
2050 	    tiling_mode == I915_TILING_NONE)
2051 		return size;
2052 
2053 	/* Previous chips need a power-of-two fence region when tiling */
2054 	if (IS_GEN3(dev_priv))
2055 		ggtt_size = 1024*1024;
2056 	else
2057 		ggtt_size = 512*1024;
2058 
2059 	while (ggtt_size < size)
2060 		ggtt_size <<= 1;
2061 
2062 	return ggtt_size;
2063 }
2064 
2065 /**
2066  * i915_gem_get_ggtt_alignment - return required global GTT alignment
2067  * @dev_priv: i915 device
2068  * @size: object size
2069  * @tiling_mode: tiling mode
2070  * @fenced: is fenced alignment required or not
2071  *
2072  * Return the required global GTT alignment for an object, taking into account
2073  * potential fence register mapping.
2074  */
2075 u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
2076 				int tiling_mode, bool fenced)
2077 {
2078 	GEM_BUG_ON(size == 0);
2079 
2080 	/*
2081 	 * Minimum alignment is 4k (GTT page size), but might be greater
2082 	 * if a fence register is needed for the object.
2083 	 */
2084 	if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
2085 	    tiling_mode == I915_TILING_NONE)
2086 		return 4096;
2087 
2088 	/*
2089 	 * Previous chips need to be aligned to the size of the smallest
2090 	 * fence register that can contain the object.
2091 	 */
2092 	return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
2093 }
2094 
2095 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2096 {
2097 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2098 	int err;
2099 
2100 	err = drm_gem_create_mmap_offset(&obj->base);
2101 	if (!err)
2102 		return 0;
2103 
2104 	/* We can idle the GPU locklessly to flush stale objects, but in order
2105 	 * to claim that space for ourselves, we need to take the big
2106 	 * struct_mutex to free the requests+objects and allocate our slot.
2107 	 */
2108 	err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2109 	if (err)
2110 		return err;
2111 
2112 	err = i915_mutex_lock_interruptible(&dev_priv->drm);
2113 	if (!err) {
2114 		i915_gem_retire_requests(dev_priv);
2115 		err = drm_gem_create_mmap_offset(&obj->base);
2116 		mutex_unlock(&dev_priv->drm.struct_mutex);
2117 	}
2118 
2119 	return err;
2120 }
2121 
2122 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2123 {
2124 	drm_gem_free_mmap_offset(&obj->base);
2125 }
2126 
2127 int
2128 i915_gem_mmap_gtt(struct drm_file *file,
2129 		  struct drm_device *dev,
2130 		  uint32_t handle,
2131 		  uint64_t *offset)
2132 {
2133 	struct drm_i915_gem_object *obj;
2134 	int ret;
2135 
2136 	obj = i915_gem_object_lookup(file, handle);
2137 	if (!obj)
2138 		return -ENOENT;
2139 
2140 	ret = i915_gem_object_create_mmap_offset(obj);
2141 	if (ret == 0)
2142 		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2143 
2144 	i915_gem_object_put(obj);
2145 	return ret;
2146 }
2147 
2148 /**
2149  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2150  * @dev: DRM device
2151  * @data: GTT mapping ioctl data
2152  * @file: GEM object info
2153  *
2154  * Simply returns the fake offset to userspace so it can mmap it.
2155  * The mmap call will end up in drm_gem_mmap(), which will set things
2156  * up so we can get faults in the handler above.
2157  *
2158  * The fault handler will take care of binding the object into the GTT
2159  * (since it may have been evicted to make room for something), allocating
2160  * a fence register, and mapping the appropriate aperture address into
2161  * userspace.
2162  */
2163 int
2164 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2165 			struct drm_file *file)
2166 {
2167 	struct drm_i915_gem_mmap_gtt *args = data;
2168 
2169 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2170 }
2171 
2172 /* Immediately discard the backing storage */
2173 static void
2174 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2175 {
2176 	i915_gem_object_free_mmap_offset(obj);
2177 
2178 	if (obj->base.filp == NULL)
2179 		return;
2180 
2181 	/* Our goal here is to return as much of the memory as
2182 	 * is possible back to the system as we are called from OOM.
2183 	 * To do this we must instruct the shmfs to drop all of its
2184 	 * backing pages, *now*.
2185 	 */
2186 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2187 	obj->mm.madv = __I915_MADV_PURGED;
2188 }
2189 
2190 /* Try to discard unwanted pages */
2191 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2192 {
2193 	struct address_space *mapping;
2194 
2195 	lockdep_assert_held(&obj->mm.lock);
2196 	GEM_BUG_ON(obj->mm.pages);
2197 
2198 	switch (obj->mm.madv) {
2199 	case I915_MADV_DONTNEED:
2200 		i915_gem_object_truncate(obj);
2201 	case __I915_MADV_PURGED:
2202 		return;
2203 	}
2204 
2205 	if (obj->base.filp == NULL)
2206 		return;
2207 
2208 	mapping = obj->base.filp->f_mapping,
2209 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2210 }
2211 
2212 static void
2213 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2214 			      struct sg_table *pages)
2215 {
2216 	struct sgt_iter sgt_iter;
2217 	struct page *page;
2218 
2219 	__i915_gem_object_release_shmem(obj, pages);
2220 
2221 	i915_gem_gtt_finish_pages(obj, pages);
2222 
2223 	if (i915_gem_object_needs_bit17_swizzle(obj))
2224 		i915_gem_object_save_bit_17_swizzle(obj, pages);
2225 
2226 	for_each_sgt_page(page, sgt_iter, pages) {
2227 		if (obj->mm.dirty)
2228 			set_page_dirty(page);
2229 
2230 		if (obj->mm.madv == I915_MADV_WILLNEED)
2231 			mark_page_accessed(page);
2232 
2233 		put_page(page);
2234 	}
2235 	obj->mm.dirty = false;
2236 
2237 	sg_free_table(pages);
2238 	kfree(pages);
2239 }
2240 
2241 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2242 {
2243 	struct radix_tree_iter iter;
2244 	void **slot;
2245 
2246 	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2247 		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2248 }
2249 
2250 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2251 				 enum i915_mm_subclass subclass)
2252 {
2253 	struct sg_table *pages;
2254 
2255 	if (i915_gem_object_has_pinned_pages(obj))
2256 		return;
2257 
2258 	GEM_BUG_ON(obj->bind_count);
2259 	if (!READ_ONCE(obj->mm.pages))
2260 		return;
2261 
2262 	/* May be called by shrinker from within get_pages() (on another bo) */
2263 	mutex_lock_nested(&obj->mm.lock, subclass);
2264 	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2265 		goto unlock;
2266 
2267 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2268 	 * array, hence protect them from being reaped by removing them from gtt
2269 	 * lists early. */
2270 	pages = fetch_and_zero(&obj->mm.pages);
2271 	GEM_BUG_ON(!pages);
2272 
2273 	if (obj->mm.mapping) {
2274 		void *ptr;
2275 
2276 		ptr = ptr_mask_bits(obj->mm.mapping);
2277 		if (is_vmalloc_addr(ptr))
2278 			vunmap(ptr);
2279 		else
2280 			kunmap(kmap_to_page(ptr));
2281 
2282 		obj->mm.mapping = NULL;
2283 	}
2284 
2285 	__i915_gem_object_reset_page_iter(obj);
2286 
2287 	obj->ops->put_pages(obj, pages);
2288 unlock:
2289 	mutex_unlock(&obj->mm.lock);
2290 }
2291 
2292 static unsigned int swiotlb_max_size(void)
2293 {
2294 #if IS_ENABLED(CONFIG_SWIOTLB)
2295 	return rounddown(swiotlb_nr_tbl() << IO_TLB_SHIFT, PAGE_SIZE);
2296 #else
2297 	return 0;
2298 #endif
2299 }
2300 
2301 static void i915_sg_trim(struct sg_table *orig_st)
2302 {
2303 	struct sg_table new_st;
2304 	struct scatterlist *sg, *new_sg;
2305 	unsigned int i;
2306 
2307 	if (orig_st->nents == orig_st->orig_nents)
2308 		return;
2309 
2310 	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL))
2311 		return;
2312 
2313 	new_sg = new_st.sgl;
2314 	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2315 		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2316 		/* called before being DMA mapped, no need to copy sg->dma_* */
2317 		new_sg = sg_next(new_sg);
2318 	}
2319 
2320 	sg_free_table(orig_st);
2321 
2322 	*orig_st = new_st;
2323 }
2324 
2325 static struct sg_table *
2326 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2327 {
2328 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2329 	int page_count, i;
2330 	struct address_space *mapping;
2331 	struct sg_table *st;
2332 	struct scatterlist *sg;
2333 	struct sgt_iter sgt_iter;
2334 	struct page *page;
2335 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2336 	unsigned int max_segment;
2337 	int ret;
2338 	gfp_t gfp;
2339 
2340 	/* Assert that the object is not currently in any GPU domain. As it
2341 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2342 	 * a GPU cache
2343 	 */
2344 	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2345 	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2346 
2347 	max_segment = swiotlb_max_size();
2348 	if (!max_segment)
2349 		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2350 
2351 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2352 	if (st == NULL)
2353 		return ERR_PTR(-ENOMEM);
2354 
2355 	page_count = obj->base.size / PAGE_SIZE;
2356 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2357 		kfree(st);
2358 		return ERR_PTR(-ENOMEM);
2359 	}
2360 
2361 	/* Get the list of pages out of our struct file.  They'll be pinned
2362 	 * at this point until we release them.
2363 	 *
2364 	 * Fail silently without starting the shrinker
2365 	 */
2366 	mapping = obj->base.filp->f_mapping;
2367 	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2368 	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2369 	sg = st->sgl;
2370 	st->nents = 0;
2371 	for (i = 0; i < page_count; i++) {
2372 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2373 		if (IS_ERR(page)) {
2374 			i915_gem_shrink(dev_priv,
2375 					page_count,
2376 					I915_SHRINK_BOUND |
2377 					I915_SHRINK_UNBOUND |
2378 					I915_SHRINK_PURGEABLE);
2379 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2380 		}
2381 		if (IS_ERR(page)) {
2382 			/* We've tried hard to allocate the memory by reaping
2383 			 * our own buffer, now let the real VM do its job and
2384 			 * go down in flames if truly OOM.
2385 			 */
2386 			page = shmem_read_mapping_page(mapping, i);
2387 			if (IS_ERR(page)) {
2388 				ret = PTR_ERR(page);
2389 				goto err_sg;
2390 			}
2391 		}
2392 		if (!i ||
2393 		    sg->length >= max_segment ||
2394 		    page_to_pfn(page) != last_pfn + 1) {
2395 			if (i)
2396 				sg = sg_next(sg);
2397 			st->nents++;
2398 			sg_set_page(sg, page, PAGE_SIZE, 0);
2399 		} else {
2400 			sg->length += PAGE_SIZE;
2401 		}
2402 		last_pfn = page_to_pfn(page);
2403 
2404 		/* Check that the i965g/gm workaround works. */
2405 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2406 	}
2407 	if (sg) /* loop terminated early; short sg table */
2408 		sg_mark_end(sg);
2409 
2410 	/* Trim unused sg entries to avoid wasting memory. */
2411 	i915_sg_trim(st);
2412 
2413 	ret = i915_gem_gtt_prepare_pages(obj, st);
2414 	if (ret)
2415 		goto err_pages;
2416 
2417 	if (i915_gem_object_needs_bit17_swizzle(obj))
2418 		i915_gem_object_do_bit_17_swizzle(obj, st);
2419 
2420 	return st;
2421 
2422 err_sg:
2423 	sg_mark_end(sg);
2424 err_pages:
2425 	for_each_sgt_page(page, sgt_iter, st)
2426 		put_page(page);
2427 	sg_free_table(st);
2428 	kfree(st);
2429 
2430 	/* shmemfs first checks if there is enough memory to allocate the page
2431 	 * and reports ENOSPC should there be insufficient, along with the usual
2432 	 * ENOMEM for a genuine allocation failure.
2433 	 *
2434 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2435 	 * space and so want to translate the error from shmemfs back to our
2436 	 * usual understanding of ENOMEM.
2437 	 */
2438 	if (ret == -ENOSPC)
2439 		ret = -ENOMEM;
2440 
2441 	return ERR_PTR(ret);
2442 }
2443 
2444 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2445 				 struct sg_table *pages)
2446 {
2447 	lockdep_assert_held(&obj->mm.lock);
2448 
2449 	obj->mm.get_page.sg_pos = pages->sgl;
2450 	obj->mm.get_page.sg_idx = 0;
2451 
2452 	obj->mm.pages = pages;
2453 
2454 	if (i915_gem_object_is_tiled(obj) &&
2455 	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2456 		GEM_BUG_ON(obj->mm.quirked);
2457 		__i915_gem_object_pin_pages(obj);
2458 		obj->mm.quirked = true;
2459 	}
2460 }
2461 
2462 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2463 {
2464 	struct sg_table *pages;
2465 
2466 	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2467 
2468 	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2469 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2470 		return -EFAULT;
2471 	}
2472 
2473 	pages = obj->ops->get_pages(obj);
2474 	if (unlikely(IS_ERR(pages)))
2475 		return PTR_ERR(pages);
2476 
2477 	__i915_gem_object_set_pages(obj, pages);
2478 	return 0;
2479 }
2480 
2481 /* Ensure that the associated pages are gathered from the backing storage
2482  * and pinned into our object. i915_gem_object_pin_pages() may be called
2483  * multiple times before they are released by a single call to
2484  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2485  * either as a result of memory pressure (reaping pages under the shrinker)
2486  * or as the object is itself released.
2487  */
2488 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2489 {
2490 	int err;
2491 
2492 	err = mutex_lock_interruptible(&obj->mm.lock);
2493 	if (err)
2494 		return err;
2495 
2496 	if (unlikely(!obj->mm.pages)) {
2497 		err = ____i915_gem_object_get_pages(obj);
2498 		if (err)
2499 			goto unlock;
2500 
2501 		smp_mb__before_atomic();
2502 	}
2503 	atomic_inc(&obj->mm.pages_pin_count);
2504 
2505 unlock:
2506 	mutex_unlock(&obj->mm.lock);
2507 	return err;
2508 }
2509 
2510 /* The 'mapping' part of i915_gem_object_pin_map() below */
2511 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2512 				 enum i915_map_type type)
2513 {
2514 	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2515 	struct sg_table *sgt = obj->mm.pages;
2516 	struct sgt_iter sgt_iter;
2517 	struct page *page;
2518 	struct page *stack_pages[32];
2519 	struct page **pages = stack_pages;
2520 	unsigned long i = 0;
2521 	pgprot_t pgprot;
2522 	void *addr;
2523 
2524 	/* A single page can always be kmapped */
2525 	if (n_pages == 1 && type == I915_MAP_WB)
2526 		return kmap(sg_page(sgt->sgl));
2527 
2528 	if (n_pages > ARRAY_SIZE(stack_pages)) {
2529 		/* Too big for stack -- allocate temporary array instead */
2530 		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2531 		if (!pages)
2532 			return NULL;
2533 	}
2534 
2535 	for_each_sgt_page(page, sgt_iter, sgt)
2536 		pages[i++] = page;
2537 
2538 	/* Check that we have the expected number of pages */
2539 	GEM_BUG_ON(i != n_pages);
2540 
2541 	switch (type) {
2542 	case I915_MAP_WB:
2543 		pgprot = PAGE_KERNEL;
2544 		break;
2545 	case I915_MAP_WC:
2546 		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2547 		break;
2548 	}
2549 	addr = vmap(pages, n_pages, 0, pgprot);
2550 
2551 	if (pages != stack_pages)
2552 		drm_free_large(pages);
2553 
2554 	return addr;
2555 }
2556 
2557 /* get, pin, and map the pages of the object into kernel space */
2558 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2559 			      enum i915_map_type type)
2560 {
2561 	enum i915_map_type has_type;
2562 	bool pinned;
2563 	void *ptr;
2564 	int ret;
2565 
2566 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2567 
2568 	ret = mutex_lock_interruptible(&obj->mm.lock);
2569 	if (ret)
2570 		return ERR_PTR(ret);
2571 
2572 	pinned = true;
2573 	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2574 		if (unlikely(!obj->mm.pages)) {
2575 			ret = ____i915_gem_object_get_pages(obj);
2576 			if (ret)
2577 				goto err_unlock;
2578 
2579 			smp_mb__before_atomic();
2580 		}
2581 		atomic_inc(&obj->mm.pages_pin_count);
2582 		pinned = false;
2583 	}
2584 	GEM_BUG_ON(!obj->mm.pages);
2585 
2586 	ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2587 	if (ptr && has_type != type) {
2588 		if (pinned) {
2589 			ret = -EBUSY;
2590 			goto err_unpin;
2591 		}
2592 
2593 		if (is_vmalloc_addr(ptr))
2594 			vunmap(ptr);
2595 		else
2596 			kunmap(kmap_to_page(ptr));
2597 
2598 		ptr = obj->mm.mapping = NULL;
2599 	}
2600 
2601 	if (!ptr) {
2602 		ptr = i915_gem_object_map(obj, type);
2603 		if (!ptr) {
2604 			ret = -ENOMEM;
2605 			goto err_unpin;
2606 		}
2607 
2608 		obj->mm.mapping = ptr_pack_bits(ptr, type);
2609 	}
2610 
2611 out_unlock:
2612 	mutex_unlock(&obj->mm.lock);
2613 	return ptr;
2614 
2615 err_unpin:
2616 	atomic_dec(&obj->mm.pages_pin_count);
2617 err_unlock:
2618 	ptr = ERR_PTR(ret);
2619 	goto out_unlock;
2620 }
2621 
2622 static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2623 {
2624 	unsigned long elapsed;
2625 
2626 	if (ctx->hang_stats.banned)
2627 		return true;
2628 
2629 	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2630 	if (ctx->hang_stats.ban_period_seconds &&
2631 	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2632 		DRM_DEBUG("context hanging too fast, banning!\n");
2633 		return true;
2634 	}
2635 
2636 	return false;
2637 }
2638 
2639 static void i915_set_reset_status(struct i915_gem_context *ctx,
2640 				  const bool guilty)
2641 {
2642 	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2643 
2644 	if (guilty) {
2645 		hs->banned = i915_context_is_banned(ctx);
2646 		hs->batch_active++;
2647 		hs->guilty_ts = get_seconds();
2648 	} else {
2649 		hs->batch_pending++;
2650 	}
2651 }
2652 
2653 struct drm_i915_gem_request *
2654 i915_gem_find_active_request(struct intel_engine_cs *engine)
2655 {
2656 	struct drm_i915_gem_request *request;
2657 
2658 	/* We are called by the error capture and reset at a random
2659 	 * point in time. In particular, note that neither is crucially
2660 	 * ordered with an interrupt. After a hang, the GPU is dead and we
2661 	 * assume that no more writes can happen (we waited long enough for
2662 	 * all writes that were in transaction to be flushed) - adding an
2663 	 * extra delay for a recent interrupt is pointless. Hence, we do
2664 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2665 	 */
2666 	list_for_each_entry(request, &engine->timeline->requests, link) {
2667 		if (__i915_gem_request_completed(request))
2668 			continue;
2669 
2670 		return request;
2671 	}
2672 
2673 	return NULL;
2674 }
2675 
2676 static void reset_request(struct drm_i915_gem_request *request)
2677 {
2678 	void *vaddr = request->ring->vaddr;
2679 	u32 head;
2680 
2681 	/* As this request likely depends on state from the lost
2682 	 * context, clear out all the user operations leaving the
2683 	 * breadcrumb at the end (so we get the fence notifications).
2684 	 */
2685 	head = request->head;
2686 	if (request->postfix < head) {
2687 		memset(vaddr + head, 0, request->ring->size - head);
2688 		head = 0;
2689 	}
2690 	memset(vaddr + head, 0, request->postfix - head);
2691 }
2692 
2693 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2694 {
2695 	struct drm_i915_gem_request *request;
2696 	struct i915_gem_context *incomplete_ctx;
2697 	struct intel_timeline *timeline;
2698 	bool ring_hung;
2699 
2700 	if (engine->irq_seqno_barrier)
2701 		engine->irq_seqno_barrier(engine);
2702 
2703 	request = i915_gem_find_active_request(engine);
2704 	if (!request)
2705 		return;
2706 
2707 	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2708 	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine))
2709 		ring_hung = false;
2710 
2711 	i915_set_reset_status(request->ctx, ring_hung);
2712 	if (!ring_hung)
2713 		return;
2714 
2715 	DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2716 			 engine->name, request->global_seqno);
2717 
2718 	/* Setup the CS to resume from the breadcrumb of the hung request */
2719 	engine->reset_hw(engine, request);
2720 
2721 	/* Users of the default context do not rely on logical state
2722 	 * preserved between batches. They have to emit full state on
2723 	 * every batch and so it is safe to execute queued requests following
2724 	 * the hang.
2725 	 *
2726 	 * Other contexts preserve state, now corrupt. We want to skip all
2727 	 * queued requests that reference the corrupt context.
2728 	 */
2729 	incomplete_ctx = request->ctx;
2730 	if (i915_gem_context_is_default(incomplete_ctx))
2731 		return;
2732 
2733 	list_for_each_entry_continue(request, &engine->timeline->requests, link)
2734 		if (request->ctx == incomplete_ctx)
2735 			reset_request(request);
2736 
2737 	timeline = i915_gem_context_lookup_timeline(incomplete_ctx, engine);
2738 	list_for_each_entry(request, &timeline->requests, link)
2739 		reset_request(request);
2740 }
2741 
2742 void i915_gem_reset(struct drm_i915_private *dev_priv)
2743 {
2744 	struct intel_engine_cs *engine;
2745 	enum intel_engine_id id;
2746 
2747 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2748 
2749 	i915_gem_retire_requests(dev_priv);
2750 
2751 	for_each_engine(engine, dev_priv, id)
2752 		i915_gem_reset_engine(engine);
2753 
2754 	i915_gem_restore_fences(dev_priv);
2755 
2756 	if (dev_priv->gt.awake) {
2757 		intel_sanitize_gt_powersave(dev_priv);
2758 		intel_enable_gt_powersave(dev_priv);
2759 		if (INTEL_GEN(dev_priv) >= 6)
2760 			gen6_rps_busy(dev_priv);
2761 	}
2762 }
2763 
2764 static void nop_submit_request(struct drm_i915_gem_request *request)
2765 {
2766 	i915_gem_request_submit(request);
2767 	intel_engine_init_global_seqno(request->engine, request->global_seqno);
2768 }
2769 
2770 static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
2771 {
2772 	engine->submit_request = nop_submit_request;
2773 
2774 	/* Mark all pending requests as complete so that any concurrent
2775 	 * (lockless) lookup doesn't try and wait upon the request as we
2776 	 * reset it.
2777 	 */
2778 	intel_engine_init_global_seqno(engine,
2779 				       intel_engine_last_submit(engine));
2780 
2781 	/*
2782 	 * Clear the execlists queue up before freeing the requests, as those
2783 	 * are the ones that keep the context and ringbuffer backing objects
2784 	 * pinned in place.
2785 	 */
2786 
2787 	if (i915.enable_execlists) {
2788 		unsigned long flags;
2789 
2790 		spin_lock_irqsave(&engine->timeline->lock, flags);
2791 
2792 		i915_gem_request_put(engine->execlist_port[0].request);
2793 		i915_gem_request_put(engine->execlist_port[1].request);
2794 		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2795 		engine->execlist_queue = RB_ROOT;
2796 		engine->execlist_first = NULL;
2797 
2798 		spin_unlock_irqrestore(&engine->timeline->lock, flags);
2799 	}
2800 }
2801 
2802 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2803 {
2804 	struct intel_engine_cs *engine;
2805 	enum intel_engine_id id;
2806 
2807 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2808 	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2809 
2810 	i915_gem_context_lost(dev_priv);
2811 	for_each_engine(engine, dev_priv, id)
2812 		i915_gem_cleanup_engine(engine);
2813 	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2814 
2815 	i915_gem_retire_requests(dev_priv);
2816 }
2817 
2818 static void
2819 i915_gem_retire_work_handler(struct work_struct *work)
2820 {
2821 	struct drm_i915_private *dev_priv =
2822 		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2823 	struct drm_device *dev = &dev_priv->drm;
2824 
2825 	/* Come back later if the device is busy... */
2826 	if (mutex_trylock(&dev->struct_mutex)) {
2827 		i915_gem_retire_requests(dev_priv);
2828 		mutex_unlock(&dev->struct_mutex);
2829 	}
2830 
2831 	/* Keep the retire handler running until we are finally idle.
2832 	 * We do not need to do this test under locking as in the worst-case
2833 	 * we queue the retire worker once too often.
2834 	 */
2835 	if (READ_ONCE(dev_priv->gt.awake)) {
2836 		i915_queue_hangcheck(dev_priv);
2837 		queue_delayed_work(dev_priv->wq,
2838 				   &dev_priv->gt.retire_work,
2839 				   round_jiffies_up_relative(HZ));
2840 	}
2841 }
2842 
2843 static void
2844 i915_gem_idle_work_handler(struct work_struct *work)
2845 {
2846 	struct drm_i915_private *dev_priv =
2847 		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2848 	struct drm_device *dev = &dev_priv->drm;
2849 	struct intel_engine_cs *engine;
2850 	enum intel_engine_id id;
2851 	bool rearm_hangcheck;
2852 
2853 	if (!READ_ONCE(dev_priv->gt.awake))
2854 		return;
2855 
2856 	/*
2857 	 * Wait for last execlists context complete, but bail out in case a
2858 	 * new request is submitted.
2859 	 */
2860 	wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
2861 		 intel_execlists_idle(dev_priv), 10);
2862 
2863 	if (READ_ONCE(dev_priv->gt.active_requests))
2864 		return;
2865 
2866 	rearm_hangcheck =
2867 		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2868 
2869 	if (!mutex_trylock(&dev->struct_mutex)) {
2870 		/* Currently busy, come back later */
2871 		mod_delayed_work(dev_priv->wq,
2872 				 &dev_priv->gt.idle_work,
2873 				 msecs_to_jiffies(50));
2874 		goto out_rearm;
2875 	}
2876 
2877 	/*
2878 	 * New request retired after this work handler started, extend active
2879 	 * period until next instance of the work.
2880 	 */
2881 	if (work_pending(work))
2882 		goto out_unlock;
2883 
2884 	if (dev_priv->gt.active_requests)
2885 		goto out_unlock;
2886 
2887 	if (wait_for(intel_execlists_idle(dev_priv), 10))
2888 		DRM_ERROR("Timeout waiting for engines to idle\n");
2889 
2890 	for_each_engine(engine, dev_priv, id)
2891 		i915_gem_batch_pool_fini(&engine->batch_pool);
2892 
2893 	GEM_BUG_ON(!dev_priv->gt.awake);
2894 	dev_priv->gt.awake = false;
2895 	rearm_hangcheck = false;
2896 
2897 	if (INTEL_GEN(dev_priv) >= 6)
2898 		gen6_rps_idle(dev_priv);
2899 	intel_runtime_pm_put(dev_priv);
2900 out_unlock:
2901 	mutex_unlock(&dev->struct_mutex);
2902 
2903 out_rearm:
2904 	if (rearm_hangcheck) {
2905 		GEM_BUG_ON(!dev_priv->gt.awake);
2906 		i915_queue_hangcheck(dev_priv);
2907 	}
2908 }
2909 
2910 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2911 {
2912 	struct drm_i915_gem_object *obj = to_intel_bo(gem);
2913 	struct drm_i915_file_private *fpriv = file->driver_priv;
2914 	struct i915_vma *vma, *vn;
2915 
2916 	mutex_lock(&obj->base.dev->struct_mutex);
2917 	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2918 		if (vma->vm->file == fpriv)
2919 			i915_vma_close(vma);
2920 
2921 	if (i915_gem_object_is_active(obj) &&
2922 	    !i915_gem_object_has_active_reference(obj)) {
2923 		i915_gem_object_set_active_reference(obj);
2924 		i915_gem_object_get(obj);
2925 	}
2926 	mutex_unlock(&obj->base.dev->struct_mutex);
2927 }
2928 
2929 static unsigned long to_wait_timeout(s64 timeout_ns)
2930 {
2931 	if (timeout_ns < 0)
2932 		return MAX_SCHEDULE_TIMEOUT;
2933 
2934 	if (timeout_ns == 0)
2935 		return 0;
2936 
2937 	return nsecs_to_jiffies_timeout(timeout_ns);
2938 }
2939 
2940 /**
2941  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2942  * @dev: drm device pointer
2943  * @data: ioctl data blob
2944  * @file: drm file pointer
2945  *
2946  * Returns 0 if successful, else an error is returned with the remaining time in
2947  * the timeout parameter.
2948  *  -ETIME: object is still busy after timeout
2949  *  -ERESTARTSYS: signal interrupted the wait
2950  *  -ENONENT: object doesn't exist
2951  * Also possible, but rare:
2952  *  -EAGAIN: GPU wedged
2953  *  -ENOMEM: damn
2954  *  -ENODEV: Internal IRQ fail
2955  *  -E?: The add request failed
2956  *
2957  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2958  * non-zero timeout parameter the wait ioctl will wait for the given number of
2959  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2960  * without holding struct_mutex the object may become re-busied before this
2961  * function completes. A similar but shorter * race condition exists in the busy
2962  * ioctl
2963  */
2964 int
2965 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2966 {
2967 	struct drm_i915_gem_wait *args = data;
2968 	struct drm_i915_gem_object *obj;
2969 	ktime_t start;
2970 	long ret;
2971 
2972 	if (args->flags != 0)
2973 		return -EINVAL;
2974 
2975 	obj = i915_gem_object_lookup(file, args->bo_handle);
2976 	if (!obj)
2977 		return -ENOENT;
2978 
2979 	start = ktime_get();
2980 
2981 	ret = i915_gem_object_wait(obj,
2982 				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
2983 				   to_wait_timeout(args->timeout_ns),
2984 				   to_rps_client(file));
2985 
2986 	if (args->timeout_ns > 0) {
2987 		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
2988 		if (args->timeout_ns < 0)
2989 			args->timeout_ns = 0;
2990 	}
2991 
2992 	i915_gem_object_put(obj);
2993 	return ret;
2994 }
2995 
2996 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
2997 {
2998 	int ret, i;
2999 
3000 	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3001 		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3002 		if (ret)
3003 			return ret;
3004 	}
3005 
3006 	return 0;
3007 }
3008 
3009 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3010 {
3011 	int ret;
3012 
3013 	if (flags & I915_WAIT_LOCKED) {
3014 		struct i915_gem_timeline *tl;
3015 
3016 		lockdep_assert_held(&i915->drm.struct_mutex);
3017 
3018 		list_for_each_entry(tl, &i915->gt.timelines, link) {
3019 			ret = wait_for_timeline(tl, flags);
3020 			if (ret)
3021 				return ret;
3022 		}
3023 	} else {
3024 		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3025 		if (ret)
3026 			return ret;
3027 	}
3028 
3029 	return 0;
3030 }
3031 
3032 void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3033 			     bool force)
3034 {
3035 	/* If we don't have a page list set up, then we're not pinned
3036 	 * to GPU, and we can ignore the cache flush because it'll happen
3037 	 * again at bind time.
3038 	 */
3039 	if (!obj->mm.pages)
3040 		return;
3041 
3042 	/*
3043 	 * Stolen memory is always coherent with the GPU as it is explicitly
3044 	 * marked as wc by the system, or the system is cache-coherent.
3045 	 */
3046 	if (obj->stolen || obj->phys_handle)
3047 		return;
3048 
3049 	/* If the GPU is snooping the contents of the CPU cache,
3050 	 * we do not need to manually clear the CPU cache lines.  However,
3051 	 * the caches are only snooped when the render cache is
3052 	 * flushed/invalidated.  As we always have to emit invalidations
3053 	 * and flushes when moving into and out of the RENDER domain, correct
3054 	 * snooping behaviour occurs naturally as the result of our domain
3055 	 * tracking.
3056 	 */
3057 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3058 		obj->cache_dirty = true;
3059 		return;
3060 	}
3061 
3062 	trace_i915_gem_object_clflush(obj);
3063 	drm_clflush_sg(obj->mm.pages);
3064 	obj->cache_dirty = false;
3065 }
3066 
3067 /** Flushes the GTT write domain for the object if it's dirty. */
3068 static void
3069 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3070 {
3071 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3072 
3073 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3074 		return;
3075 
3076 	/* No actual flushing is required for the GTT write domain.  Writes
3077 	 * to it "immediately" go to main memory as far as we know, so there's
3078 	 * no chipset flush.  It also doesn't land in render cache.
3079 	 *
3080 	 * However, we do have to enforce the order so that all writes through
3081 	 * the GTT land before any writes to the device, such as updates to
3082 	 * the GATT itself.
3083 	 *
3084 	 * We also have to wait a bit for the writes to land from the GTT.
3085 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3086 	 * timing. This issue has only been observed when switching quickly
3087 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
3088 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
3089 	 * system agents we cannot reproduce this behaviour).
3090 	 */
3091 	wmb();
3092 	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3093 		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3094 
3095 	intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3096 
3097 	obj->base.write_domain = 0;
3098 	trace_i915_gem_object_change_domain(obj,
3099 					    obj->base.read_domains,
3100 					    I915_GEM_DOMAIN_GTT);
3101 }
3102 
3103 /** Flushes the CPU write domain for the object if it's dirty. */
3104 static void
3105 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3106 {
3107 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3108 		return;
3109 
3110 	i915_gem_clflush_object(obj, obj->pin_display);
3111 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3112 
3113 	obj->base.write_domain = 0;
3114 	trace_i915_gem_object_change_domain(obj,
3115 					    obj->base.read_domains,
3116 					    I915_GEM_DOMAIN_CPU);
3117 }
3118 
3119 /**
3120  * Moves a single object to the GTT read, and possibly write domain.
3121  * @obj: object to act on
3122  * @write: ask for write access or read only
3123  *
3124  * This function returns when the move is complete, including waiting on
3125  * flushes to occur.
3126  */
3127 int
3128 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3129 {
3130 	uint32_t old_write_domain, old_read_domains;
3131 	int ret;
3132 
3133 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3134 
3135 	ret = i915_gem_object_wait(obj,
3136 				   I915_WAIT_INTERRUPTIBLE |
3137 				   I915_WAIT_LOCKED |
3138 				   (write ? I915_WAIT_ALL : 0),
3139 				   MAX_SCHEDULE_TIMEOUT,
3140 				   NULL);
3141 	if (ret)
3142 		return ret;
3143 
3144 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3145 		return 0;
3146 
3147 	/* Flush and acquire obj->pages so that we are coherent through
3148 	 * direct access in memory with previous cached writes through
3149 	 * shmemfs and that our cache domain tracking remains valid.
3150 	 * For example, if the obj->filp was moved to swap without us
3151 	 * being notified and releasing the pages, we would mistakenly
3152 	 * continue to assume that the obj remained out of the CPU cached
3153 	 * domain.
3154 	 */
3155 	ret = i915_gem_object_pin_pages(obj);
3156 	if (ret)
3157 		return ret;
3158 
3159 	i915_gem_object_flush_cpu_write_domain(obj);
3160 
3161 	/* Serialise direct access to this object with the barriers for
3162 	 * coherent writes from the GPU, by effectively invalidating the
3163 	 * GTT domain upon first access.
3164 	 */
3165 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3166 		mb();
3167 
3168 	old_write_domain = obj->base.write_domain;
3169 	old_read_domains = obj->base.read_domains;
3170 
3171 	/* It should now be out of any other write domains, and we can update
3172 	 * the domain values for our changes.
3173 	 */
3174 	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3175 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3176 	if (write) {
3177 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3178 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3179 		obj->mm.dirty = true;
3180 	}
3181 
3182 	trace_i915_gem_object_change_domain(obj,
3183 					    old_read_domains,
3184 					    old_write_domain);
3185 
3186 	i915_gem_object_unpin_pages(obj);
3187 	return 0;
3188 }
3189 
3190 /**
3191  * Changes the cache-level of an object across all VMA.
3192  * @obj: object to act on
3193  * @cache_level: new cache level to set for the object
3194  *
3195  * After this function returns, the object will be in the new cache-level
3196  * across all GTT and the contents of the backing storage will be coherent,
3197  * with respect to the new cache-level. In order to keep the backing storage
3198  * coherent for all users, we only allow a single cache level to be set
3199  * globally on the object and prevent it from being changed whilst the
3200  * hardware is reading from the object. That is if the object is currently
3201  * on the scanout it will be set to uncached (or equivalent display
3202  * cache coherency) and all non-MOCS GPU access will also be uncached so
3203  * that all direct access to the scanout remains coherent.
3204  */
3205 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3206 				    enum i915_cache_level cache_level)
3207 {
3208 	struct i915_vma *vma;
3209 	int ret;
3210 
3211 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3212 
3213 	if (obj->cache_level == cache_level)
3214 		return 0;
3215 
3216 	/* Inspect the list of currently bound VMA and unbind any that would
3217 	 * be invalid given the new cache-level. This is principally to
3218 	 * catch the issue of the CS prefetch crossing page boundaries and
3219 	 * reading an invalid PTE on older architectures.
3220 	 */
3221 restart:
3222 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3223 		if (!drm_mm_node_allocated(&vma->node))
3224 			continue;
3225 
3226 		if (i915_vma_is_pinned(vma)) {
3227 			DRM_DEBUG("can not change the cache level of pinned objects\n");
3228 			return -EBUSY;
3229 		}
3230 
3231 		if (i915_gem_valid_gtt_space(vma, cache_level))
3232 			continue;
3233 
3234 		ret = i915_vma_unbind(vma);
3235 		if (ret)
3236 			return ret;
3237 
3238 		/* As unbinding may affect other elements in the
3239 		 * obj->vma_list (due to side-effects from retiring
3240 		 * an active vma), play safe and restart the iterator.
3241 		 */
3242 		goto restart;
3243 	}
3244 
3245 	/* We can reuse the existing drm_mm nodes but need to change the
3246 	 * cache-level on the PTE. We could simply unbind them all and
3247 	 * rebind with the correct cache-level on next use. However since
3248 	 * we already have a valid slot, dma mapping, pages etc, we may as
3249 	 * rewrite the PTE in the belief that doing so tramples upon less
3250 	 * state and so involves less work.
3251 	 */
3252 	if (obj->bind_count) {
3253 		/* Before we change the PTE, the GPU must not be accessing it.
3254 		 * If we wait upon the object, we know that all the bound
3255 		 * VMA are no longer active.
3256 		 */
3257 		ret = i915_gem_object_wait(obj,
3258 					   I915_WAIT_INTERRUPTIBLE |
3259 					   I915_WAIT_LOCKED |
3260 					   I915_WAIT_ALL,
3261 					   MAX_SCHEDULE_TIMEOUT,
3262 					   NULL);
3263 		if (ret)
3264 			return ret;
3265 
3266 		if (!HAS_LLC(to_i915(obj->base.dev)) &&
3267 		    cache_level != I915_CACHE_NONE) {
3268 			/* Access to snoopable pages through the GTT is
3269 			 * incoherent and on some machines causes a hard
3270 			 * lockup. Relinquish the CPU mmaping to force
3271 			 * userspace to refault in the pages and we can
3272 			 * then double check if the GTT mapping is still
3273 			 * valid for that pointer access.
3274 			 */
3275 			i915_gem_release_mmap(obj);
3276 
3277 			/* As we no longer need a fence for GTT access,
3278 			 * we can relinquish it now (and so prevent having
3279 			 * to steal a fence from someone else on the next
3280 			 * fence request). Note GPU activity would have
3281 			 * dropped the fence as all snoopable access is
3282 			 * supposed to be linear.
3283 			 */
3284 			list_for_each_entry(vma, &obj->vma_list, obj_link) {
3285 				ret = i915_vma_put_fence(vma);
3286 				if (ret)
3287 					return ret;
3288 			}
3289 		} else {
3290 			/* We either have incoherent backing store and
3291 			 * so no GTT access or the architecture is fully
3292 			 * coherent. In such cases, existing GTT mmaps
3293 			 * ignore the cache bit in the PTE and we can
3294 			 * rewrite it without confusing the GPU or having
3295 			 * to force userspace to fault back in its mmaps.
3296 			 */
3297 		}
3298 
3299 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3300 			if (!drm_mm_node_allocated(&vma->node))
3301 				continue;
3302 
3303 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3304 			if (ret)
3305 				return ret;
3306 		}
3307 	}
3308 
3309 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3310 	    cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3311 		obj->cache_dirty = true;
3312 
3313 	list_for_each_entry(vma, &obj->vma_list, obj_link)
3314 		vma->node.color = cache_level;
3315 	obj->cache_level = cache_level;
3316 
3317 	return 0;
3318 }
3319 
3320 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3321 			       struct drm_file *file)
3322 {
3323 	struct drm_i915_gem_caching *args = data;
3324 	struct drm_i915_gem_object *obj;
3325 	int err = 0;
3326 
3327 	rcu_read_lock();
3328 	obj = i915_gem_object_lookup_rcu(file, args->handle);
3329 	if (!obj) {
3330 		err = -ENOENT;
3331 		goto out;
3332 	}
3333 
3334 	switch (obj->cache_level) {
3335 	case I915_CACHE_LLC:
3336 	case I915_CACHE_L3_LLC:
3337 		args->caching = I915_CACHING_CACHED;
3338 		break;
3339 
3340 	case I915_CACHE_WT:
3341 		args->caching = I915_CACHING_DISPLAY;
3342 		break;
3343 
3344 	default:
3345 		args->caching = I915_CACHING_NONE;
3346 		break;
3347 	}
3348 out:
3349 	rcu_read_unlock();
3350 	return err;
3351 }
3352 
3353 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3354 			       struct drm_file *file)
3355 {
3356 	struct drm_i915_private *i915 = to_i915(dev);
3357 	struct drm_i915_gem_caching *args = data;
3358 	struct drm_i915_gem_object *obj;
3359 	enum i915_cache_level level;
3360 	int ret;
3361 
3362 	switch (args->caching) {
3363 	case I915_CACHING_NONE:
3364 		level = I915_CACHE_NONE;
3365 		break;
3366 	case I915_CACHING_CACHED:
3367 		/*
3368 		 * Due to a HW issue on BXT A stepping, GPU stores via a
3369 		 * snooped mapping may leave stale data in a corresponding CPU
3370 		 * cacheline, whereas normally such cachelines would get
3371 		 * invalidated.
3372 		 */
3373 		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3374 			return -ENODEV;
3375 
3376 		level = I915_CACHE_LLC;
3377 		break;
3378 	case I915_CACHING_DISPLAY:
3379 		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3380 		break;
3381 	default:
3382 		return -EINVAL;
3383 	}
3384 
3385 	ret = i915_mutex_lock_interruptible(dev);
3386 	if (ret)
3387 		return ret;
3388 
3389 	obj = i915_gem_object_lookup(file, args->handle);
3390 	if (!obj) {
3391 		ret = -ENOENT;
3392 		goto unlock;
3393 	}
3394 
3395 	ret = i915_gem_object_set_cache_level(obj, level);
3396 	i915_gem_object_put(obj);
3397 unlock:
3398 	mutex_unlock(&dev->struct_mutex);
3399 	return ret;
3400 }
3401 
3402 /*
3403  * Prepare buffer for display plane (scanout, cursors, etc).
3404  * Can be called from an uninterruptible phase (modesetting) and allows
3405  * any flushes to be pipelined (for pageflips).
3406  */
3407 struct i915_vma *
3408 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3409 				     u32 alignment,
3410 				     const struct i915_ggtt_view *view)
3411 {
3412 	struct i915_vma *vma;
3413 	u32 old_read_domains, old_write_domain;
3414 	int ret;
3415 
3416 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3417 
3418 	/* Mark the pin_display early so that we account for the
3419 	 * display coherency whilst setting up the cache domains.
3420 	 */
3421 	obj->pin_display++;
3422 
3423 	/* The display engine is not coherent with the LLC cache on gen6.  As
3424 	 * a result, we make sure that the pinning that is about to occur is
3425 	 * done with uncached PTEs. This is lowest common denominator for all
3426 	 * chipsets.
3427 	 *
3428 	 * However for gen6+, we could do better by using the GFDT bit instead
3429 	 * of uncaching, which would allow us to flush all the LLC-cached data
3430 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3431 	 */
3432 	ret = i915_gem_object_set_cache_level(obj,
3433 					      HAS_WT(to_i915(obj->base.dev)) ?
3434 					      I915_CACHE_WT : I915_CACHE_NONE);
3435 	if (ret) {
3436 		vma = ERR_PTR(ret);
3437 		goto err_unpin_display;
3438 	}
3439 
3440 	/* As the user may map the buffer once pinned in the display plane
3441 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3442 	 * always use map_and_fenceable for all scanout buffers. However,
3443 	 * it may simply be too big to fit into mappable, in which case
3444 	 * put it anyway and hope that userspace can cope (but always first
3445 	 * try to preserve the existing ABI).
3446 	 */
3447 	vma = ERR_PTR(-ENOSPC);
3448 	if (view->type == I915_GGTT_VIEW_NORMAL)
3449 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3450 					       PIN_MAPPABLE | PIN_NONBLOCK);
3451 	if (IS_ERR(vma)) {
3452 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3453 		unsigned int flags;
3454 
3455 		/* Valleyview is definitely limited to scanning out the first
3456 		 * 512MiB. Lets presume this behaviour was inherited from the
3457 		 * g4x display engine and that all earlier gen are similarly
3458 		 * limited. Testing suggests that it is a little more
3459 		 * complicated than this. For example, Cherryview appears quite
3460 		 * happy to scanout from anywhere within its global aperture.
3461 		 */
3462 		flags = 0;
3463 		if (HAS_GMCH_DISPLAY(i915))
3464 			flags = PIN_MAPPABLE;
3465 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3466 	}
3467 	if (IS_ERR(vma))
3468 		goto err_unpin_display;
3469 
3470 	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3471 
3472 	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3473 	if (obj->cache_dirty) {
3474 		i915_gem_clflush_object(obj, true);
3475 		intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
3476 	}
3477 
3478 	old_write_domain = obj->base.write_domain;
3479 	old_read_domains = obj->base.read_domains;
3480 
3481 	/* It should now be out of any other write domains, and we can update
3482 	 * the domain values for our changes.
3483 	 */
3484 	obj->base.write_domain = 0;
3485 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3486 
3487 	trace_i915_gem_object_change_domain(obj,
3488 					    old_read_domains,
3489 					    old_write_domain);
3490 
3491 	return vma;
3492 
3493 err_unpin_display:
3494 	obj->pin_display--;
3495 	return vma;
3496 }
3497 
3498 void
3499 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3500 {
3501 	lockdep_assert_held(&vma->vm->dev->struct_mutex);
3502 
3503 	if (WARN_ON(vma->obj->pin_display == 0))
3504 		return;
3505 
3506 	if (--vma->obj->pin_display == 0)
3507 		vma->display_alignment = 0;
3508 
3509 	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3510 	if (!i915_vma_is_active(vma))
3511 		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3512 
3513 	i915_vma_unpin(vma);
3514 }
3515 
3516 /**
3517  * Moves a single object to the CPU read, and possibly write domain.
3518  * @obj: object to act on
3519  * @write: requesting write or read-only access
3520  *
3521  * This function returns when the move is complete, including waiting on
3522  * flushes to occur.
3523  */
3524 int
3525 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3526 {
3527 	uint32_t old_write_domain, old_read_domains;
3528 	int ret;
3529 
3530 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3531 
3532 	ret = i915_gem_object_wait(obj,
3533 				   I915_WAIT_INTERRUPTIBLE |
3534 				   I915_WAIT_LOCKED |
3535 				   (write ? I915_WAIT_ALL : 0),
3536 				   MAX_SCHEDULE_TIMEOUT,
3537 				   NULL);
3538 	if (ret)
3539 		return ret;
3540 
3541 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3542 		return 0;
3543 
3544 	i915_gem_object_flush_gtt_write_domain(obj);
3545 
3546 	old_write_domain = obj->base.write_domain;
3547 	old_read_domains = obj->base.read_domains;
3548 
3549 	/* Flush the CPU cache if it's still invalid. */
3550 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3551 		i915_gem_clflush_object(obj, false);
3552 
3553 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3554 	}
3555 
3556 	/* It should now be out of any other write domains, and we can update
3557 	 * the domain values for our changes.
3558 	 */
3559 	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3560 
3561 	/* If we're writing through the CPU, then the GPU read domains will
3562 	 * need to be invalidated at next use.
3563 	 */
3564 	if (write) {
3565 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3566 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3567 	}
3568 
3569 	trace_i915_gem_object_change_domain(obj,
3570 					    old_read_domains,
3571 					    old_write_domain);
3572 
3573 	return 0;
3574 }
3575 
3576 /* Throttle our rendering by waiting until the ring has completed our requests
3577  * emitted over 20 msec ago.
3578  *
3579  * Note that if we were to use the current jiffies each time around the loop,
3580  * we wouldn't escape the function with any frames outstanding if the time to
3581  * render a frame was over 20ms.
3582  *
3583  * This should get us reasonable parallelism between CPU and GPU but also
3584  * relatively low latency when blocking on a particular request to finish.
3585  */
3586 static int
3587 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3588 {
3589 	struct drm_i915_private *dev_priv = to_i915(dev);
3590 	struct drm_i915_file_private *file_priv = file->driver_priv;
3591 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3592 	struct drm_i915_gem_request *request, *target = NULL;
3593 	long ret;
3594 
3595 	/* ABI: return -EIO if already wedged */
3596 	if (i915_terminally_wedged(&dev_priv->gpu_error))
3597 		return -EIO;
3598 
3599 	spin_lock(&file_priv->mm.lock);
3600 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3601 		if (time_after_eq(request->emitted_jiffies, recent_enough))
3602 			break;
3603 
3604 		/*
3605 		 * Note that the request might not have been submitted yet.
3606 		 * In which case emitted_jiffies will be zero.
3607 		 */
3608 		if (!request->emitted_jiffies)
3609 			continue;
3610 
3611 		target = request;
3612 	}
3613 	if (target)
3614 		i915_gem_request_get(target);
3615 	spin_unlock(&file_priv->mm.lock);
3616 
3617 	if (target == NULL)
3618 		return 0;
3619 
3620 	ret = i915_wait_request(target,
3621 				I915_WAIT_INTERRUPTIBLE,
3622 				MAX_SCHEDULE_TIMEOUT);
3623 	i915_gem_request_put(target);
3624 
3625 	return ret < 0 ? ret : 0;
3626 }
3627 
3628 struct i915_vma *
3629 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3630 			 const struct i915_ggtt_view *view,
3631 			 u64 size,
3632 			 u64 alignment,
3633 			 u64 flags)
3634 {
3635 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3636 	struct i915_address_space *vm = &dev_priv->ggtt.base;
3637 	struct i915_vma *vma;
3638 	int ret;
3639 
3640 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3641 
3642 	vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3643 	if (IS_ERR(vma))
3644 		return vma;
3645 
3646 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
3647 		if (flags & PIN_NONBLOCK &&
3648 		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3649 			return ERR_PTR(-ENOSPC);
3650 
3651 		if (flags & PIN_MAPPABLE) {
3652 			u32 fence_size;
3653 
3654 			fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size,
3655 							    i915_gem_object_get_tiling(obj));
3656 			/* If the required space is larger than the available
3657 			 * aperture, we will not able to find a slot for the
3658 			 * object and unbinding the object now will be in
3659 			 * vain. Worse, doing so may cause us to ping-pong
3660 			 * the object in and out of the Global GTT and
3661 			 * waste a lot of cycles under the mutex.
3662 			 */
3663 			if (fence_size > dev_priv->ggtt.mappable_end)
3664 				return ERR_PTR(-E2BIG);
3665 
3666 			/* If NONBLOCK is set the caller is optimistically
3667 			 * trying to cache the full object within the mappable
3668 			 * aperture, and *must* have a fallback in place for
3669 			 * situations where we cannot bind the object. We
3670 			 * can be a little more lax here and use the fallback
3671 			 * more often to avoid costly migrations of ourselves
3672 			 * and other objects within the aperture.
3673 			 *
3674 			 * Half-the-aperture is used as a simple heuristic.
3675 			 * More interesting would to do search for a free
3676 			 * block prior to making the commitment to unbind.
3677 			 * That caters for the self-harm case, and with a
3678 			 * little more heuristics (e.g. NOFAULT, NOEVICT)
3679 			 * we could try to minimise harm to others.
3680 			 */
3681 			if (flags & PIN_NONBLOCK &&
3682 			    fence_size > dev_priv->ggtt.mappable_end / 2)
3683 				return ERR_PTR(-ENOSPC);
3684 		}
3685 
3686 		WARN(i915_vma_is_pinned(vma),
3687 		     "bo is already pinned in ggtt with incorrect alignment:"
3688 		     " offset=%08x, req.alignment=%llx,"
3689 		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3690 		     i915_ggtt_offset(vma), alignment,
3691 		     !!(flags & PIN_MAPPABLE),
3692 		     i915_vma_is_map_and_fenceable(vma));
3693 		ret = i915_vma_unbind(vma);
3694 		if (ret)
3695 			return ERR_PTR(ret);
3696 	}
3697 
3698 	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3699 	if (ret)
3700 		return ERR_PTR(ret);
3701 
3702 	return vma;
3703 }
3704 
3705 static __always_inline unsigned int __busy_read_flag(unsigned int id)
3706 {
3707 	/* Note that we could alias engines in the execbuf API, but
3708 	 * that would be very unwise as it prevents userspace from
3709 	 * fine control over engine selection. Ahem.
3710 	 *
3711 	 * This should be something like EXEC_MAX_ENGINE instead of
3712 	 * I915_NUM_ENGINES.
3713 	 */
3714 	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3715 	return 0x10000 << id;
3716 }
3717 
3718 static __always_inline unsigned int __busy_write_id(unsigned int id)
3719 {
3720 	/* The uABI guarantees an active writer is also amongst the read
3721 	 * engines. This would be true if we accessed the activity tracking
3722 	 * under the lock, but as we perform the lookup of the object and
3723 	 * its activity locklessly we can not guarantee that the last_write
3724 	 * being active implies that we have set the same engine flag from
3725 	 * last_read - hence we always set both read and write busy for
3726 	 * last_write.
3727 	 */
3728 	return id | __busy_read_flag(id);
3729 }
3730 
3731 static __always_inline unsigned int
3732 __busy_set_if_active(const struct dma_fence *fence,
3733 		     unsigned int (*flag)(unsigned int id))
3734 {
3735 	struct drm_i915_gem_request *rq;
3736 
3737 	/* We have to check the current hw status of the fence as the uABI
3738 	 * guarantees forward progress. We could rely on the idle worker
3739 	 * to eventually flush us, but to minimise latency just ask the
3740 	 * hardware.
3741 	 *
3742 	 * Note we only report on the status of native fences.
3743 	 */
3744 	if (!dma_fence_is_i915(fence))
3745 		return 0;
3746 
3747 	/* opencode to_request() in order to avoid const warnings */
3748 	rq = container_of(fence, struct drm_i915_gem_request, fence);
3749 	if (i915_gem_request_completed(rq))
3750 		return 0;
3751 
3752 	return flag(rq->engine->exec_id);
3753 }
3754 
3755 static __always_inline unsigned int
3756 busy_check_reader(const struct dma_fence *fence)
3757 {
3758 	return __busy_set_if_active(fence, __busy_read_flag);
3759 }
3760 
3761 static __always_inline unsigned int
3762 busy_check_writer(const struct dma_fence *fence)
3763 {
3764 	if (!fence)
3765 		return 0;
3766 
3767 	return __busy_set_if_active(fence, __busy_write_id);
3768 }
3769 
3770 int
3771 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3772 		    struct drm_file *file)
3773 {
3774 	struct drm_i915_gem_busy *args = data;
3775 	struct drm_i915_gem_object *obj;
3776 	struct reservation_object_list *list;
3777 	unsigned int seq;
3778 	int err;
3779 
3780 	err = -ENOENT;
3781 	rcu_read_lock();
3782 	obj = i915_gem_object_lookup_rcu(file, args->handle);
3783 	if (!obj)
3784 		goto out;
3785 
3786 	/* A discrepancy here is that we do not report the status of
3787 	 * non-i915 fences, i.e. even though we may report the object as idle,
3788 	 * a call to set-domain may still stall waiting for foreign rendering.
3789 	 * This also means that wait-ioctl may report an object as busy,
3790 	 * where busy-ioctl considers it idle.
3791 	 *
3792 	 * We trade the ability to warn of foreign fences to report on which
3793 	 * i915 engines are active for the object.
3794 	 *
3795 	 * Alternatively, we can trade that extra information on read/write
3796 	 * activity with
3797 	 *	args->busy =
3798 	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
3799 	 * to report the overall busyness. This is what the wait-ioctl does.
3800 	 *
3801 	 */
3802 retry:
3803 	seq = raw_read_seqcount(&obj->resv->seq);
3804 
3805 	/* Translate the exclusive fence to the READ *and* WRITE engine */
3806 	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3807 
3808 	/* Translate shared fences to READ set of engines */
3809 	list = rcu_dereference(obj->resv->fence);
3810 	if (list) {
3811 		unsigned int shared_count = list->shared_count, i;
3812 
3813 		for (i = 0; i < shared_count; ++i) {
3814 			struct dma_fence *fence =
3815 				rcu_dereference(list->shared[i]);
3816 
3817 			args->busy |= busy_check_reader(fence);
3818 		}
3819 	}
3820 
3821 	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
3822 		goto retry;
3823 
3824 	err = 0;
3825 out:
3826 	rcu_read_unlock();
3827 	return err;
3828 }
3829 
3830 int
3831 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3832 			struct drm_file *file_priv)
3833 {
3834 	return i915_gem_ring_throttle(dev, file_priv);
3835 }
3836 
3837 int
3838 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3839 		       struct drm_file *file_priv)
3840 {
3841 	struct drm_i915_private *dev_priv = to_i915(dev);
3842 	struct drm_i915_gem_madvise *args = data;
3843 	struct drm_i915_gem_object *obj;
3844 	int err;
3845 
3846 	switch (args->madv) {
3847 	case I915_MADV_DONTNEED:
3848 	case I915_MADV_WILLNEED:
3849 	    break;
3850 	default:
3851 	    return -EINVAL;
3852 	}
3853 
3854 	obj = i915_gem_object_lookup(file_priv, args->handle);
3855 	if (!obj)
3856 		return -ENOENT;
3857 
3858 	err = mutex_lock_interruptible(&obj->mm.lock);
3859 	if (err)
3860 		goto out;
3861 
3862 	if (obj->mm.pages &&
3863 	    i915_gem_object_is_tiled(obj) &&
3864 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3865 		if (obj->mm.madv == I915_MADV_WILLNEED) {
3866 			GEM_BUG_ON(!obj->mm.quirked);
3867 			__i915_gem_object_unpin_pages(obj);
3868 			obj->mm.quirked = false;
3869 		}
3870 		if (args->madv == I915_MADV_WILLNEED) {
3871 			GEM_BUG_ON(obj->mm.quirked);
3872 			__i915_gem_object_pin_pages(obj);
3873 			obj->mm.quirked = true;
3874 		}
3875 	}
3876 
3877 	if (obj->mm.madv != __I915_MADV_PURGED)
3878 		obj->mm.madv = args->madv;
3879 
3880 	/* if the object is no longer attached, discard its backing storage */
3881 	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
3882 		i915_gem_object_truncate(obj);
3883 
3884 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
3885 	mutex_unlock(&obj->mm.lock);
3886 
3887 out:
3888 	i915_gem_object_put(obj);
3889 	return err;
3890 }
3891 
3892 static void
3893 frontbuffer_retire(struct i915_gem_active *active,
3894 		   struct drm_i915_gem_request *request)
3895 {
3896 	struct drm_i915_gem_object *obj =
3897 		container_of(active, typeof(*obj), frontbuffer_write);
3898 
3899 	intel_fb_obj_flush(obj, true, ORIGIN_CS);
3900 }
3901 
3902 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3903 			  const struct drm_i915_gem_object_ops *ops)
3904 {
3905 	mutex_init(&obj->mm.lock);
3906 
3907 	INIT_LIST_HEAD(&obj->global_link);
3908 	INIT_LIST_HEAD(&obj->userfault_link);
3909 	INIT_LIST_HEAD(&obj->obj_exec_link);
3910 	INIT_LIST_HEAD(&obj->vma_list);
3911 	INIT_LIST_HEAD(&obj->batch_pool_link);
3912 
3913 	obj->ops = ops;
3914 
3915 	reservation_object_init(&obj->__builtin_resv);
3916 	obj->resv = &obj->__builtin_resv;
3917 
3918 	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
3919 	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
3920 
3921 	obj->mm.madv = I915_MADV_WILLNEED;
3922 	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
3923 	mutex_init(&obj->mm.get_page.lock);
3924 
3925 	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3926 }
3927 
3928 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3929 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
3930 		 I915_GEM_OBJECT_IS_SHRINKABLE,
3931 	.get_pages = i915_gem_object_get_pages_gtt,
3932 	.put_pages = i915_gem_object_put_pages_gtt,
3933 };
3934 
3935 /* Note we don't consider signbits :| */
3936 #define overflows_type(x, T) \
3937 	(sizeof(x) > sizeof(T) && (x) >> (sizeof(T) * BITS_PER_BYTE))
3938 
3939 struct drm_i915_gem_object *
3940 i915_gem_object_create(struct drm_device *dev, u64 size)
3941 {
3942 	struct drm_i915_private *dev_priv = to_i915(dev);
3943 	struct drm_i915_gem_object *obj;
3944 	struct address_space *mapping;
3945 	gfp_t mask;
3946 	int ret;
3947 
3948 	/* There is a prevalence of the assumption that we fit the object's
3949 	 * page count inside a 32bit _signed_ variable. Let's document this and
3950 	 * catch if we ever need to fix it. In the meantime, if you do spot
3951 	 * such a local variable, please consider fixing!
3952 	 */
3953 	if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
3954 		return ERR_PTR(-E2BIG);
3955 
3956 	if (overflows_type(size, obj->base.size))
3957 		return ERR_PTR(-E2BIG);
3958 
3959 	obj = i915_gem_object_alloc(dev);
3960 	if (obj == NULL)
3961 		return ERR_PTR(-ENOMEM);
3962 
3963 	ret = drm_gem_object_init(dev, &obj->base, size);
3964 	if (ret)
3965 		goto fail;
3966 
3967 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3968 	if (IS_CRESTLINE(dev_priv) || IS_BROADWATER(dev_priv)) {
3969 		/* 965gm cannot relocate objects above 4GiB. */
3970 		mask &= ~__GFP_HIGHMEM;
3971 		mask |= __GFP_DMA32;
3972 	}
3973 
3974 	mapping = obj->base.filp->f_mapping;
3975 	mapping_set_gfp_mask(mapping, mask);
3976 
3977 	i915_gem_object_init(obj, &i915_gem_object_ops);
3978 
3979 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3980 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3981 
3982 	if (HAS_LLC(dev_priv)) {
3983 		/* On some devices, we can have the GPU use the LLC (the CPU
3984 		 * cache) for about a 10% performance improvement
3985 		 * compared to uncached.  Graphics requests other than
3986 		 * display scanout are coherent with the CPU in
3987 		 * accessing this cache.  This means in this mode we
3988 		 * don't need to clflush on the CPU side, and on the
3989 		 * GPU side we only need to flush internal caches to
3990 		 * get data visible to the CPU.
3991 		 *
3992 		 * However, we maintain the display planes as UC, and so
3993 		 * need to rebind when first used as such.
3994 		 */
3995 		obj->cache_level = I915_CACHE_LLC;
3996 	} else
3997 		obj->cache_level = I915_CACHE_NONE;
3998 
3999 	trace_i915_gem_object_create(obj);
4000 
4001 	return obj;
4002 
4003 fail:
4004 	i915_gem_object_free(obj);
4005 	return ERR_PTR(ret);
4006 }
4007 
4008 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4009 {
4010 	/* If we are the last user of the backing storage (be it shmemfs
4011 	 * pages or stolen etc), we know that the pages are going to be
4012 	 * immediately released. In this case, we can then skip copying
4013 	 * back the contents from the GPU.
4014 	 */
4015 
4016 	if (obj->mm.madv != I915_MADV_WILLNEED)
4017 		return false;
4018 
4019 	if (obj->base.filp == NULL)
4020 		return true;
4021 
4022 	/* At first glance, this looks racy, but then again so would be
4023 	 * userspace racing mmap against close. However, the first external
4024 	 * reference to the filp can only be obtained through the
4025 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4026 	 * acquiring such a reference whilst we are in the middle of
4027 	 * freeing the object.
4028 	 */
4029 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4030 }
4031 
4032 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4033 				    struct llist_node *freed)
4034 {
4035 	struct drm_i915_gem_object *obj, *on;
4036 
4037 	mutex_lock(&i915->drm.struct_mutex);
4038 	intel_runtime_pm_get(i915);
4039 	llist_for_each_entry(obj, freed, freed) {
4040 		struct i915_vma *vma, *vn;
4041 
4042 		trace_i915_gem_object_destroy(obj);
4043 
4044 		GEM_BUG_ON(i915_gem_object_is_active(obj));
4045 		list_for_each_entry_safe(vma, vn,
4046 					 &obj->vma_list, obj_link) {
4047 			GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4048 			GEM_BUG_ON(i915_vma_is_active(vma));
4049 			vma->flags &= ~I915_VMA_PIN_MASK;
4050 			i915_vma_close(vma);
4051 		}
4052 		GEM_BUG_ON(!list_empty(&obj->vma_list));
4053 		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4054 
4055 		list_del(&obj->global_link);
4056 	}
4057 	intel_runtime_pm_put(i915);
4058 	mutex_unlock(&i915->drm.struct_mutex);
4059 
4060 	llist_for_each_entry_safe(obj, on, freed, freed) {
4061 		GEM_BUG_ON(obj->bind_count);
4062 		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4063 
4064 		if (obj->ops->release)
4065 			obj->ops->release(obj);
4066 
4067 		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4068 			atomic_set(&obj->mm.pages_pin_count, 0);
4069 		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4070 		GEM_BUG_ON(obj->mm.pages);
4071 
4072 		if (obj->base.import_attach)
4073 			drm_prime_gem_destroy(&obj->base, NULL);
4074 
4075 		reservation_object_fini(&obj->__builtin_resv);
4076 		drm_gem_object_release(&obj->base);
4077 		i915_gem_info_remove_obj(i915, obj->base.size);
4078 
4079 		kfree(obj->bit_17);
4080 		i915_gem_object_free(obj);
4081 	}
4082 }
4083 
4084 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4085 {
4086 	struct llist_node *freed;
4087 
4088 	freed = llist_del_all(&i915->mm.free_list);
4089 	if (unlikely(freed))
4090 		__i915_gem_free_objects(i915, freed);
4091 }
4092 
4093 static void __i915_gem_free_work(struct work_struct *work)
4094 {
4095 	struct drm_i915_private *i915 =
4096 		container_of(work, struct drm_i915_private, mm.free_work);
4097 	struct llist_node *freed;
4098 
4099 	/* All file-owned VMA should have been released by this point through
4100 	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4101 	 * However, the object may also be bound into the global GTT (e.g.
4102 	 * older GPUs without per-process support, or for direct access through
4103 	 * the GTT either for the user or for scanout). Those VMA still need to
4104 	 * unbound now.
4105 	 */
4106 
4107 	while ((freed = llist_del_all(&i915->mm.free_list)))
4108 		__i915_gem_free_objects(i915, freed);
4109 }
4110 
4111 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4112 {
4113 	struct drm_i915_gem_object *obj =
4114 		container_of(head, typeof(*obj), rcu);
4115 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4116 
4117 	/* We can't simply use call_rcu() from i915_gem_free_object()
4118 	 * as we need to block whilst unbinding, and the call_rcu
4119 	 * task may be called from softirq context. So we take a
4120 	 * detour through a worker.
4121 	 */
4122 	if (llist_add(&obj->freed, &i915->mm.free_list))
4123 		schedule_work(&i915->mm.free_work);
4124 }
4125 
4126 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4127 {
4128 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4129 
4130 	if (obj->mm.quirked)
4131 		__i915_gem_object_unpin_pages(obj);
4132 
4133 	if (discard_backing_storage(obj))
4134 		obj->mm.madv = I915_MADV_DONTNEED;
4135 
4136 	/* Before we free the object, make sure any pure RCU-only
4137 	 * read-side critical sections are complete, e.g.
4138 	 * i915_gem_busy_ioctl(). For the corresponding synchronized
4139 	 * lookup see i915_gem_object_lookup_rcu().
4140 	 */
4141 	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4142 }
4143 
4144 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4145 {
4146 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4147 
4148 	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4149 	if (i915_gem_object_is_active(obj))
4150 		i915_gem_object_set_active_reference(obj);
4151 	else
4152 		i915_gem_object_put(obj);
4153 }
4154 
4155 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4156 {
4157 	struct intel_engine_cs *engine;
4158 	enum intel_engine_id id;
4159 
4160 	for_each_engine(engine, dev_priv, id)
4161 		GEM_BUG_ON(engine->last_context != dev_priv->kernel_context);
4162 }
4163 
4164 int i915_gem_suspend(struct drm_device *dev)
4165 {
4166 	struct drm_i915_private *dev_priv = to_i915(dev);
4167 	int ret;
4168 
4169 	intel_suspend_gt_powersave(dev_priv);
4170 
4171 	mutex_lock(&dev->struct_mutex);
4172 
4173 	/* We have to flush all the executing contexts to main memory so
4174 	 * that they can saved in the hibernation image. To ensure the last
4175 	 * context image is coherent, we have to switch away from it. That
4176 	 * leaves the dev_priv->kernel_context still active when
4177 	 * we actually suspend, and its image in memory may not match the GPU
4178 	 * state. Fortunately, the kernel_context is disposable and we do
4179 	 * not rely on its state.
4180 	 */
4181 	ret = i915_gem_switch_to_kernel_context(dev_priv);
4182 	if (ret)
4183 		goto err;
4184 
4185 	ret = i915_gem_wait_for_idle(dev_priv,
4186 				     I915_WAIT_INTERRUPTIBLE |
4187 				     I915_WAIT_LOCKED);
4188 	if (ret)
4189 		goto err;
4190 
4191 	i915_gem_retire_requests(dev_priv);
4192 	GEM_BUG_ON(dev_priv->gt.active_requests);
4193 
4194 	assert_kernel_context_is_current(dev_priv);
4195 	i915_gem_context_lost(dev_priv);
4196 	mutex_unlock(&dev->struct_mutex);
4197 
4198 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4199 	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4200 	flush_delayed_work(&dev_priv->gt.idle_work);
4201 	flush_work(&dev_priv->mm.free_work);
4202 
4203 	/* Assert that we sucessfully flushed all the work and
4204 	 * reset the GPU back to its idle, low power state.
4205 	 */
4206 	WARN_ON(dev_priv->gt.awake);
4207 	WARN_ON(!intel_execlists_idle(dev_priv));
4208 
4209 	/*
4210 	 * Neither the BIOS, ourselves or any other kernel
4211 	 * expects the system to be in execlists mode on startup,
4212 	 * so we need to reset the GPU back to legacy mode. And the only
4213 	 * known way to disable logical contexts is through a GPU reset.
4214 	 *
4215 	 * So in order to leave the system in a known default configuration,
4216 	 * always reset the GPU upon unload and suspend. Afterwards we then
4217 	 * clean up the GEM state tracking, flushing off the requests and
4218 	 * leaving the system in a known idle state.
4219 	 *
4220 	 * Note that is of the upmost importance that the GPU is idle and
4221 	 * all stray writes are flushed *before* we dismantle the backing
4222 	 * storage for the pinned objects.
4223 	 *
4224 	 * However, since we are uncertain that resetting the GPU on older
4225 	 * machines is a good idea, we don't - just in case it leaves the
4226 	 * machine in an unusable condition.
4227 	 */
4228 	if (HAS_HW_CONTEXTS(dev_priv)) {
4229 		int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
4230 		WARN_ON(reset && reset != -ENODEV);
4231 	}
4232 
4233 	return 0;
4234 
4235 err:
4236 	mutex_unlock(&dev->struct_mutex);
4237 	return ret;
4238 }
4239 
4240 void i915_gem_resume(struct drm_device *dev)
4241 {
4242 	struct drm_i915_private *dev_priv = to_i915(dev);
4243 
4244 	WARN_ON(dev_priv->gt.awake);
4245 
4246 	mutex_lock(&dev->struct_mutex);
4247 	i915_gem_restore_gtt_mappings(dev_priv);
4248 
4249 	/* As we didn't flush the kernel context before suspend, we cannot
4250 	 * guarantee that the context image is complete. So let's just reset
4251 	 * it and start again.
4252 	 */
4253 	dev_priv->gt.resume(dev_priv);
4254 
4255 	mutex_unlock(&dev->struct_mutex);
4256 }
4257 
4258 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4259 {
4260 	if (INTEL_GEN(dev_priv) < 5 ||
4261 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4262 		return;
4263 
4264 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4265 				 DISP_TILE_SURFACE_SWIZZLING);
4266 
4267 	if (IS_GEN5(dev_priv))
4268 		return;
4269 
4270 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4271 	if (IS_GEN6(dev_priv))
4272 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4273 	else if (IS_GEN7(dev_priv))
4274 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4275 	else if (IS_GEN8(dev_priv))
4276 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4277 	else
4278 		BUG();
4279 }
4280 
4281 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4282 {
4283 	I915_WRITE(RING_CTL(base), 0);
4284 	I915_WRITE(RING_HEAD(base), 0);
4285 	I915_WRITE(RING_TAIL(base), 0);
4286 	I915_WRITE(RING_START(base), 0);
4287 }
4288 
4289 static void init_unused_rings(struct drm_i915_private *dev_priv)
4290 {
4291 	if (IS_I830(dev_priv)) {
4292 		init_unused_ring(dev_priv, PRB1_BASE);
4293 		init_unused_ring(dev_priv, SRB0_BASE);
4294 		init_unused_ring(dev_priv, SRB1_BASE);
4295 		init_unused_ring(dev_priv, SRB2_BASE);
4296 		init_unused_ring(dev_priv, SRB3_BASE);
4297 	} else if (IS_GEN2(dev_priv)) {
4298 		init_unused_ring(dev_priv, SRB0_BASE);
4299 		init_unused_ring(dev_priv, SRB1_BASE);
4300 	} else if (IS_GEN3(dev_priv)) {
4301 		init_unused_ring(dev_priv, PRB1_BASE);
4302 		init_unused_ring(dev_priv, PRB2_BASE);
4303 	}
4304 }
4305 
4306 int
4307 i915_gem_init_hw(struct drm_device *dev)
4308 {
4309 	struct drm_i915_private *dev_priv = to_i915(dev);
4310 	struct intel_engine_cs *engine;
4311 	enum intel_engine_id id;
4312 	int ret;
4313 
4314 	dev_priv->gt.last_init_time = ktime_get();
4315 
4316 	/* Double layer security blanket, see i915_gem_init() */
4317 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4318 
4319 	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4320 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4321 
4322 	if (IS_HASWELL(dev_priv))
4323 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4324 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4325 
4326 	if (HAS_PCH_NOP(dev_priv)) {
4327 		if (IS_IVYBRIDGE(dev_priv)) {
4328 			u32 temp = I915_READ(GEN7_MSG_CTL);
4329 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4330 			I915_WRITE(GEN7_MSG_CTL, temp);
4331 		} else if (INTEL_GEN(dev_priv) >= 7) {
4332 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4333 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4334 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4335 		}
4336 	}
4337 
4338 	i915_gem_init_swizzling(dev_priv);
4339 
4340 	/*
4341 	 * At least 830 can leave some of the unused rings
4342 	 * "active" (ie. head != tail) after resume which
4343 	 * will prevent c3 entry. Makes sure all unused rings
4344 	 * are totally idle.
4345 	 */
4346 	init_unused_rings(dev_priv);
4347 
4348 	BUG_ON(!dev_priv->kernel_context);
4349 
4350 	ret = i915_ppgtt_init_hw(dev_priv);
4351 	if (ret) {
4352 		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4353 		goto out;
4354 	}
4355 
4356 	/* Need to do basic initialisation of all rings first: */
4357 	for_each_engine(engine, dev_priv, id) {
4358 		ret = engine->init_hw(engine);
4359 		if (ret)
4360 			goto out;
4361 	}
4362 
4363 	intel_mocs_init_l3cc_table(dev);
4364 
4365 	/* We can't enable contexts until all firmware is loaded */
4366 	ret = intel_guc_setup(dev);
4367 	if (ret)
4368 		goto out;
4369 
4370 out:
4371 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4372 	return ret;
4373 }
4374 
4375 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4376 {
4377 	if (INTEL_INFO(dev_priv)->gen < 6)
4378 		return false;
4379 
4380 	/* TODO: make semaphores and Execlists play nicely together */
4381 	if (i915.enable_execlists)
4382 		return false;
4383 
4384 	if (value >= 0)
4385 		return value;
4386 
4387 #ifdef CONFIG_INTEL_IOMMU
4388 	/* Enable semaphores on SNB when IO remapping is off */
4389 	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4390 		return false;
4391 #endif
4392 
4393 	return true;
4394 }
4395 
4396 int i915_gem_init(struct drm_device *dev)
4397 {
4398 	struct drm_i915_private *dev_priv = to_i915(dev);
4399 	int ret;
4400 
4401 	mutex_lock(&dev->struct_mutex);
4402 
4403 	if (!i915.enable_execlists) {
4404 		dev_priv->gt.resume = intel_legacy_submission_resume;
4405 		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4406 	} else {
4407 		dev_priv->gt.resume = intel_lr_context_resume;
4408 		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4409 	}
4410 
4411 	/* This is just a security blanket to placate dragons.
4412 	 * On some systems, we very sporadically observe that the first TLBs
4413 	 * used by the CS may be stale, despite us poking the TLB reset. If
4414 	 * we hold the forcewake during initialisation these problems
4415 	 * just magically go away.
4416 	 */
4417 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4418 
4419 	i915_gem_init_userptr(dev_priv);
4420 
4421 	ret = i915_gem_init_ggtt(dev_priv);
4422 	if (ret)
4423 		goto out_unlock;
4424 
4425 	ret = i915_gem_context_init(dev);
4426 	if (ret)
4427 		goto out_unlock;
4428 
4429 	ret = intel_engines_init(dev);
4430 	if (ret)
4431 		goto out_unlock;
4432 
4433 	ret = i915_gem_init_hw(dev);
4434 	if (ret == -EIO) {
4435 		/* Allow engine initialisation to fail by marking the GPU as
4436 		 * wedged. But we only want to do this where the GPU is angry,
4437 		 * for all other failure, such as an allocation failure, bail.
4438 		 */
4439 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4440 		i915_gem_set_wedged(dev_priv);
4441 		ret = 0;
4442 	}
4443 
4444 out_unlock:
4445 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4446 	mutex_unlock(&dev->struct_mutex);
4447 
4448 	return ret;
4449 }
4450 
4451 void
4452 i915_gem_cleanup_engines(struct drm_device *dev)
4453 {
4454 	struct drm_i915_private *dev_priv = to_i915(dev);
4455 	struct intel_engine_cs *engine;
4456 	enum intel_engine_id id;
4457 
4458 	for_each_engine(engine, dev_priv, id)
4459 		dev_priv->gt.cleanup_engine(engine);
4460 }
4461 
4462 void
4463 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4464 {
4465 	int i;
4466 
4467 	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4468 	    !IS_CHERRYVIEW(dev_priv))
4469 		dev_priv->num_fence_regs = 32;
4470 	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4471 		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
4472 		dev_priv->num_fence_regs = 16;
4473 	else
4474 		dev_priv->num_fence_regs = 8;
4475 
4476 	if (intel_vgpu_active(dev_priv))
4477 		dev_priv->num_fence_regs =
4478 				I915_READ(vgtif_reg(avail_rs.fence_num));
4479 
4480 	/* Initialize fence registers to zero */
4481 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
4482 		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4483 
4484 		fence->i915 = dev_priv;
4485 		fence->id = i;
4486 		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4487 	}
4488 	i915_gem_restore_fences(dev_priv);
4489 
4490 	i915_gem_detect_bit_6_swizzle(dev_priv);
4491 }
4492 
4493 int
4494 i915_gem_load_init(struct drm_device *dev)
4495 {
4496 	struct drm_i915_private *dev_priv = to_i915(dev);
4497 	int err = -ENOMEM;
4498 
4499 	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4500 	if (!dev_priv->objects)
4501 		goto err_out;
4502 
4503 	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4504 	if (!dev_priv->vmas)
4505 		goto err_objects;
4506 
4507 	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4508 					SLAB_HWCACHE_ALIGN |
4509 					SLAB_RECLAIM_ACCOUNT |
4510 					SLAB_DESTROY_BY_RCU);
4511 	if (!dev_priv->requests)
4512 		goto err_vmas;
4513 
4514 	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4515 					    SLAB_HWCACHE_ALIGN |
4516 					    SLAB_RECLAIM_ACCOUNT);
4517 	if (!dev_priv->dependencies)
4518 		goto err_requests;
4519 
4520 	mutex_lock(&dev_priv->drm.struct_mutex);
4521 	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4522 	err = i915_gem_timeline_init__global(dev_priv);
4523 	mutex_unlock(&dev_priv->drm.struct_mutex);
4524 	if (err)
4525 		goto err_dependencies;
4526 
4527 	INIT_LIST_HEAD(&dev_priv->context_list);
4528 	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4529 	init_llist_head(&dev_priv->mm.free_list);
4530 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4531 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4532 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4533 	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4534 	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4535 			  i915_gem_retire_work_handler);
4536 	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4537 			  i915_gem_idle_work_handler);
4538 	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4539 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4540 
4541 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4542 
4543 	init_waitqueue_head(&dev_priv->pending_flip_queue);
4544 
4545 	dev_priv->mm.interruptible = true;
4546 
4547 	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4548 
4549 	spin_lock_init(&dev_priv->fb_tracking.lock);
4550 
4551 	return 0;
4552 
4553 err_dependencies:
4554 	kmem_cache_destroy(dev_priv->dependencies);
4555 err_requests:
4556 	kmem_cache_destroy(dev_priv->requests);
4557 err_vmas:
4558 	kmem_cache_destroy(dev_priv->vmas);
4559 err_objects:
4560 	kmem_cache_destroy(dev_priv->objects);
4561 err_out:
4562 	return err;
4563 }
4564 
4565 void i915_gem_load_cleanup(struct drm_device *dev)
4566 {
4567 	struct drm_i915_private *dev_priv = to_i915(dev);
4568 
4569 	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4570 
4571 	mutex_lock(&dev_priv->drm.struct_mutex);
4572 	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4573 	WARN_ON(!list_empty(&dev_priv->gt.timelines));
4574 	mutex_unlock(&dev_priv->drm.struct_mutex);
4575 
4576 	kmem_cache_destroy(dev_priv->dependencies);
4577 	kmem_cache_destroy(dev_priv->requests);
4578 	kmem_cache_destroy(dev_priv->vmas);
4579 	kmem_cache_destroy(dev_priv->objects);
4580 
4581 	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4582 	rcu_barrier();
4583 }
4584 
4585 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4586 {
4587 	intel_runtime_pm_get(dev_priv);
4588 
4589 	mutex_lock(&dev_priv->drm.struct_mutex);
4590 	i915_gem_shrink_all(dev_priv);
4591 	mutex_unlock(&dev_priv->drm.struct_mutex);
4592 
4593 	intel_runtime_pm_put(dev_priv);
4594 
4595 	return 0;
4596 }
4597 
4598 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4599 {
4600 	struct drm_i915_gem_object *obj;
4601 	struct list_head *phases[] = {
4602 		&dev_priv->mm.unbound_list,
4603 		&dev_priv->mm.bound_list,
4604 		NULL
4605 	}, **p;
4606 
4607 	/* Called just before we write the hibernation image.
4608 	 *
4609 	 * We need to update the domain tracking to reflect that the CPU
4610 	 * will be accessing all the pages to create and restore from the
4611 	 * hibernation, and so upon restoration those pages will be in the
4612 	 * CPU domain.
4613 	 *
4614 	 * To make sure the hibernation image contains the latest state,
4615 	 * we update that state just before writing out the image.
4616 	 *
4617 	 * To try and reduce the hibernation image, we manually shrink
4618 	 * the objects as well.
4619 	 */
4620 
4621 	mutex_lock(&dev_priv->drm.struct_mutex);
4622 	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4623 
4624 	for (p = phases; *p; p++) {
4625 		list_for_each_entry(obj, *p, global_link) {
4626 			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4627 			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4628 		}
4629 	}
4630 	mutex_unlock(&dev_priv->drm.struct_mutex);
4631 
4632 	return 0;
4633 }
4634 
4635 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4636 {
4637 	struct drm_i915_file_private *file_priv = file->driver_priv;
4638 	struct drm_i915_gem_request *request;
4639 
4640 	/* Clean up our request list when the client is going away, so that
4641 	 * later retire_requests won't dereference our soon-to-be-gone
4642 	 * file_priv.
4643 	 */
4644 	spin_lock(&file_priv->mm.lock);
4645 	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4646 		request->file_priv = NULL;
4647 	spin_unlock(&file_priv->mm.lock);
4648 
4649 	if (!list_empty(&file_priv->rps.link)) {
4650 		spin_lock(&to_i915(dev)->rps.client_lock);
4651 		list_del(&file_priv->rps.link);
4652 		spin_unlock(&to_i915(dev)->rps.client_lock);
4653 	}
4654 }
4655 
4656 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4657 {
4658 	struct drm_i915_file_private *file_priv;
4659 	int ret;
4660 
4661 	DRM_DEBUG("\n");
4662 
4663 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4664 	if (!file_priv)
4665 		return -ENOMEM;
4666 
4667 	file->driver_priv = file_priv;
4668 	file_priv->dev_priv = to_i915(dev);
4669 	file_priv->file = file;
4670 	INIT_LIST_HEAD(&file_priv->rps.link);
4671 
4672 	spin_lock_init(&file_priv->mm.lock);
4673 	INIT_LIST_HEAD(&file_priv->mm.request_list);
4674 
4675 	file_priv->bsd_engine = -1;
4676 
4677 	ret = i915_gem_context_open(dev, file);
4678 	if (ret)
4679 		kfree(file_priv);
4680 
4681 	return ret;
4682 }
4683 
4684 /**
4685  * i915_gem_track_fb - update frontbuffer tracking
4686  * @old: current GEM buffer for the frontbuffer slots
4687  * @new: new GEM buffer for the frontbuffer slots
4688  * @frontbuffer_bits: bitmask of frontbuffer slots
4689  *
4690  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4691  * from @old and setting them in @new. Both @old and @new can be NULL.
4692  */
4693 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4694 		       struct drm_i915_gem_object *new,
4695 		       unsigned frontbuffer_bits)
4696 {
4697 	/* Control of individual bits within the mask are guarded by
4698 	 * the owning plane->mutex, i.e. we can never see concurrent
4699 	 * manipulation of individual bits. But since the bitfield as a whole
4700 	 * is updated using RMW, we need to use atomics in order to update
4701 	 * the bits.
4702 	 */
4703 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4704 		     sizeof(atomic_t) * BITS_PER_BYTE);
4705 
4706 	if (old) {
4707 		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4708 		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4709 	}
4710 
4711 	if (new) {
4712 		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4713 		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4714 	}
4715 }
4716 
4717 /* Allocate a new GEM object and fill it with the supplied data */
4718 struct drm_i915_gem_object *
4719 i915_gem_object_create_from_data(struct drm_device *dev,
4720 			         const void *data, size_t size)
4721 {
4722 	struct drm_i915_gem_object *obj;
4723 	struct sg_table *sg;
4724 	size_t bytes;
4725 	int ret;
4726 
4727 	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4728 	if (IS_ERR(obj))
4729 		return obj;
4730 
4731 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
4732 	if (ret)
4733 		goto fail;
4734 
4735 	ret = i915_gem_object_pin_pages(obj);
4736 	if (ret)
4737 		goto fail;
4738 
4739 	sg = obj->mm.pages;
4740 	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4741 	obj->mm.dirty = true; /* Backing store is now out of date */
4742 	i915_gem_object_unpin_pages(obj);
4743 
4744 	if (WARN_ON(bytes != size)) {
4745 		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4746 		ret = -EFAULT;
4747 		goto fail;
4748 	}
4749 
4750 	return obj;
4751 
4752 fail:
4753 	i915_gem_object_put(obj);
4754 	return ERR_PTR(ret);
4755 }
4756 
4757 struct scatterlist *
4758 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
4759 		       unsigned int n,
4760 		       unsigned int *offset)
4761 {
4762 	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4763 	struct scatterlist *sg;
4764 	unsigned int idx, count;
4765 
4766 	might_sleep();
4767 	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
4768 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4769 
4770 	/* As we iterate forward through the sg, we record each entry in a
4771 	 * radixtree for quick repeated (backwards) lookups. If we have seen
4772 	 * this index previously, we will have an entry for it.
4773 	 *
4774 	 * Initial lookup is O(N), but this is amortized to O(1) for
4775 	 * sequential page access (where each new request is consecutive
4776 	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
4777 	 * i.e. O(1) with a large constant!
4778 	 */
4779 	if (n < READ_ONCE(iter->sg_idx))
4780 		goto lookup;
4781 
4782 	mutex_lock(&iter->lock);
4783 
4784 	/* We prefer to reuse the last sg so that repeated lookup of this
4785 	 * (or the subsequent) sg are fast - comparing against the last
4786 	 * sg is faster than going through the radixtree.
4787 	 */
4788 
4789 	sg = iter->sg_pos;
4790 	idx = iter->sg_idx;
4791 	count = __sg_page_count(sg);
4792 
4793 	while (idx + count <= n) {
4794 		unsigned long exception, i;
4795 		int ret;
4796 
4797 		/* If we cannot allocate and insert this entry, or the
4798 		 * individual pages from this range, cancel updating the
4799 		 * sg_idx so that on this lookup we are forced to linearly
4800 		 * scan onwards, but on future lookups we will try the
4801 		 * insertion again (in which case we need to be careful of
4802 		 * the error return reporting that we have already inserted
4803 		 * this index).
4804 		 */
4805 		ret = radix_tree_insert(&iter->radix, idx, sg);
4806 		if (ret && ret != -EEXIST)
4807 			goto scan;
4808 
4809 		exception =
4810 			RADIX_TREE_EXCEPTIONAL_ENTRY |
4811 			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
4812 		for (i = 1; i < count; i++) {
4813 			ret = radix_tree_insert(&iter->radix, idx + i,
4814 						(void *)exception);
4815 			if (ret && ret != -EEXIST)
4816 				goto scan;
4817 		}
4818 
4819 		idx += count;
4820 		sg = ____sg_next(sg);
4821 		count = __sg_page_count(sg);
4822 	}
4823 
4824 scan:
4825 	iter->sg_pos = sg;
4826 	iter->sg_idx = idx;
4827 
4828 	mutex_unlock(&iter->lock);
4829 
4830 	if (unlikely(n < idx)) /* insertion completed by another thread */
4831 		goto lookup;
4832 
4833 	/* In case we failed to insert the entry into the radixtree, we need
4834 	 * to look beyond the current sg.
4835 	 */
4836 	while (idx + count <= n) {
4837 		idx += count;
4838 		sg = ____sg_next(sg);
4839 		count = __sg_page_count(sg);
4840 	}
4841 
4842 	*offset = n - idx;
4843 	return sg;
4844 
4845 lookup:
4846 	rcu_read_lock();
4847 
4848 	sg = radix_tree_lookup(&iter->radix, n);
4849 	GEM_BUG_ON(!sg);
4850 
4851 	/* If this index is in the middle of multi-page sg entry,
4852 	 * the radixtree will contain an exceptional entry that points
4853 	 * to the start of that range. We will return the pointer to
4854 	 * the base page and the offset of this page within the
4855 	 * sg entry's range.
4856 	 */
4857 	*offset = 0;
4858 	if (unlikely(radix_tree_exception(sg))) {
4859 		unsigned long base =
4860 			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
4861 
4862 		sg = radix_tree_lookup(&iter->radix, base);
4863 		GEM_BUG_ON(!sg);
4864 
4865 		*offset = n - base;
4866 	}
4867 
4868 	rcu_read_unlock();
4869 
4870 	return sg;
4871 }
4872 
4873 struct page *
4874 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
4875 {
4876 	struct scatterlist *sg;
4877 	unsigned int offset;
4878 
4879 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
4880 
4881 	sg = i915_gem_object_get_sg(obj, n, &offset);
4882 	return nth_page(sg_page(sg), offset);
4883 }
4884 
4885 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
4886 struct page *
4887 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
4888 			       unsigned int n)
4889 {
4890 	struct page *page;
4891 
4892 	page = i915_gem_object_get_page(obj, n);
4893 	if (!obj->mm.dirty)
4894 		set_page_dirty(page);
4895 
4896 	return page;
4897 }
4898 
4899 dma_addr_t
4900 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
4901 				unsigned long n)
4902 {
4903 	struct scatterlist *sg;
4904 	unsigned int offset;
4905 
4906 	sg = i915_gem_object_get_sg(obj, n, &offset);
4907 	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
4908 }
4909