xref: /linux/drivers/gpu/drm/i915/i915_gem.c (revision 2359ccddc1c3f4752f43cc19b3db189710b15791)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include "i915_gemfs.h"
39 #include <linux/dma-fence-array.h>
40 #include <linux/kthread.h>
41 #include <linux/reservation.h>
42 #include <linux/shmem_fs.h>
43 #include <linux/slab.h>
44 #include <linux/stop_machine.h>
45 #include <linux/swap.h>
46 #include <linux/pci.h>
47 #include <linux/dma-buf.h>
48 
49 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
50 
51 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
52 {
53 	if (obj->cache_dirty)
54 		return false;
55 
56 	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
57 		return true;
58 
59 	return obj->pin_global; /* currently in use by HW, keep flushed */
60 }
61 
62 static int
63 insert_mappable_node(struct i915_ggtt *ggtt,
64                      struct drm_mm_node *node, u32 size)
65 {
66 	memset(node, 0, sizeof(*node));
67 	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
68 					   size, 0, I915_COLOR_UNEVICTABLE,
69 					   0, ggtt->mappable_end,
70 					   DRM_MM_INSERT_LOW);
71 }
72 
73 static void
74 remove_mappable_node(struct drm_mm_node *node)
75 {
76 	drm_mm_remove_node(node);
77 }
78 
79 /* some bookkeeping */
80 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
81 				  u64 size)
82 {
83 	spin_lock(&dev_priv->mm.object_stat_lock);
84 	dev_priv->mm.object_count++;
85 	dev_priv->mm.object_memory += size;
86 	spin_unlock(&dev_priv->mm.object_stat_lock);
87 }
88 
89 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
90 				     u64 size)
91 {
92 	spin_lock(&dev_priv->mm.object_stat_lock);
93 	dev_priv->mm.object_count--;
94 	dev_priv->mm.object_memory -= size;
95 	spin_unlock(&dev_priv->mm.object_stat_lock);
96 }
97 
98 static int
99 i915_gem_wait_for_error(struct i915_gpu_error *error)
100 {
101 	int ret;
102 
103 	might_sleep();
104 
105 	/*
106 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
107 	 * userspace. If it takes that long something really bad is going on and
108 	 * we should simply try to bail out and fail as gracefully as possible.
109 	 */
110 	ret = wait_event_interruptible_timeout(error->reset_queue,
111 					       !i915_reset_backoff(error),
112 					       I915_RESET_TIMEOUT);
113 	if (ret == 0) {
114 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
115 		return -EIO;
116 	} else if (ret < 0) {
117 		return ret;
118 	} else {
119 		return 0;
120 	}
121 }
122 
123 int i915_mutex_lock_interruptible(struct drm_device *dev)
124 {
125 	struct drm_i915_private *dev_priv = to_i915(dev);
126 	int ret;
127 
128 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
129 	if (ret)
130 		return ret;
131 
132 	ret = mutex_lock_interruptible(&dev->struct_mutex);
133 	if (ret)
134 		return ret;
135 
136 	return 0;
137 }
138 
139 int
140 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
141 			    struct drm_file *file)
142 {
143 	struct drm_i915_private *dev_priv = to_i915(dev);
144 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
145 	struct drm_i915_gem_get_aperture *args = data;
146 	struct i915_vma *vma;
147 	u64 pinned;
148 
149 	pinned = ggtt->base.reserved;
150 	mutex_lock(&dev->struct_mutex);
151 	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
152 		if (i915_vma_is_pinned(vma))
153 			pinned += vma->node.size;
154 	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
155 		if (i915_vma_is_pinned(vma))
156 			pinned += vma->node.size;
157 	mutex_unlock(&dev->struct_mutex);
158 
159 	args->aper_size = ggtt->base.total;
160 	args->aper_available_size = args->aper_size - pinned;
161 
162 	return 0;
163 }
164 
165 static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166 {
167 	struct address_space *mapping = obj->base.filp->f_mapping;
168 	drm_dma_handle_t *phys;
169 	struct sg_table *st;
170 	struct scatterlist *sg;
171 	char *vaddr;
172 	int i;
173 	int err;
174 
175 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
176 		return -EINVAL;
177 
178 	/* Always aligning to the object size, allows a single allocation
179 	 * to handle all possible callers, and given typical object sizes,
180 	 * the alignment of the buddy allocation will naturally match.
181 	 */
182 	phys = drm_pci_alloc(obj->base.dev,
183 			     roundup_pow_of_two(obj->base.size),
184 			     roundup_pow_of_two(obj->base.size));
185 	if (!phys)
186 		return -ENOMEM;
187 
188 	vaddr = phys->vaddr;
189 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
190 		struct page *page;
191 		char *src;
192 
193 		page = shmem_read_mapping_page(mapping, i);
194 		if (IS_ERR(page)) {
195 			err = PTR_ERR(page);
196 			goto err_phys;
197 		}
198 
199 		src = kmap_atomic(page);
200 		memcpy(vaddr, src, PAGE_SIZE);
201 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
202 		kunmap_atomic(src);
203 
204 		put_page(page);
205 		vaddr += PAGE_SIZE;
206 	}
207 
208 	i915_gem_chipset_flush(to_i915(obj->base.dev));
209 
210 	st = kmalloc(sizeof(*st), GFP_KERNEL);
211 	if (!st) {
212 		err = -ENOMEM;
213 		goto err_phys;
214 	}
215 
216 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
217 		kfree(st);
218 		err = -ENOMEM;
219 		goto err_phys;
220 	}
221 
222 	sg = st->sgl;
223 	sg->offset = 0;
224 	sg->length = obj->base.size;
225 
226 	sg_dma_address(sg) = phys->busaddr;
227 	sg_dma_len(sg) = obj->base.size;
228 
229 	obj->phys_handle = phys;
230 
231 	__i915_gem_object_set_pages(obj, st, sg->length);
232 
233 	return 0;
234 
235 err_phys:
236 	drm_pci_free(obj->base.dev, phys);
237 
238 	return err;
239 }
240 
241 static void __start_cpu_write(struct drm_i915_gem_object *obj)
242 {
243 	obj->read_domains = I915_GEM_DOMAIN_CPU;
244 	obj->write_domain = I915_GEM_DOMAIN_CPU;
245 	if (cpu_write_needs_clflush(obj))
246 		obj->cache_dirty = true;
247 }
248 
249 static void
250 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
251 				struct sg_table *pages,
252 				bool needs_clflush)
253 {
254 	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
255 
256 	if (obj->mm.madv == I915_MADV_DONTNEED)
257 		obj->mm.dirty = false;
258 
259 	if (needs_clflush &&
260 	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
261 	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
262 		drm_clflush_sg(pages);
263 
264 	__start_cpu_write(obj);
265 }
266 
267 static void
268 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
269 			       struct sg_table *pages)
270 {
271 	__i915_gem_object_release_shmem(obj, pages, false);
272 
273 	if (obj->mm.dirty) {
274 		struct address_space *mapping = obj->base.filp->f_mapping;
275 		char *vaddr = obj->phys_handle->vaddr;
276 		int i;
277 
278 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
279 			struct page *page;
280 			char *dst;
281 
282 			page = shmem_read_mapping_page(mapping, i);
283 			if (IS_ERR(page))
284 				continue;
285 
286 			dst = kmap_atomic(page);
287 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
288 			memcpy(dst, vaddr, PAGE_SIZE);
289 			kunmap_atomic(dst);
290 
291 			set_page_dirty(page);
292 			if (obj->mm.madv == I915_MADV_WILLNEED)
293 				mark_page_accessed(page);
294 			put_page(page);
295 			vaddr += PAGE_SIZE;
296 		}
297 		obj->mm.dirty = false;
298 	}
299 
300 	sg_free_table(pages);
301 	kfree(pages);
302 
303 	drm_pci_free(obj->base.dev, obj->phys_handle);
304 }
305 
306 static void
307 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
308 {
309 	i915_gem_object_unpin_pages(obj);
310 }
311 
312 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
313 	.get_pages = i915_gem_object_get_pages_phys,
314 	.put_pages = i915_gem_object_put_pages_phys,
315 	.release = i915_gem_object_release_phys,
316 };
317 
318 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
319 
320 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
321 {
322 	struct i915_vma *vma;
323 	LIST_HEAD(still_in_list);
324 	int ret;
325 
326 	lockdep_assert_held(&obj->base.dev->struct_mutex);
327 
328 	/* Closed vma are removed from the obj->vma_list - but they may
329 	 * still have an active binding on the object. To remove those we
330 	 * must wait for all rendering to complete to the object (as unbinding
331 	 * must anyway), and retire the requests.
332 	 */
333 	ret = i915_gem_object_set_to_cpu_domain(obj, false);
334 	if (ret)
335 		return ret;
336 
337 	while ((vma = list_first_entry_or_null(&obj->vma_list,
338 					       struct i915_vma,
339 					       obj_link))) {
340 		list_move_tail(&vma->obj_link, &still_in_list);
341 		ret = i915_vma_unbind(vma);
342 		if (ret)
343 			break;
344 	}
345 	list_splice(&still_in_list, &obj->vma_list);
346 
347 	return ret;
348 }
349 
350 static long
351 i915_gem_object_wait_fence(struct dma_fence *fence,
352 			   unsigned int flags,
353 			   long timeout,
354 			   struct intel_rps_client *rps_client)
355 {
356 	struct i915_request *rq;
357 
358 	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
359 
360 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
361 		return timeout;
362 
363 	if (!dma_fence_is_i915(fence))
364 		return dma_fence_wait_timeout(fence,
365 					      flags & I915_WAIT_INTERRUPTIBLE,
366 					      timeout);
367 
368 	rq = to_request(fence);
369 	if (i915_request_completed(rq))
370 		goto out;
371 
372 	/*
373 	 * This client is about to stall waiting for the GPU. In many cases
374 	 * this is undesirable and limits the throughput of the system, as
375 	 * many clients cannot continue processing user input/output whilst
376 	 * blocked. RPS autotuning may take tens of milliseconds to respond
377 	 * to the GPU load and thus incurs additional latency for the client.
378 	 * We can circumvent that by promoting the GPU frequency to maximum
379 	 * before we wait. This makes the GPU throttle up much more quickly
380 	 * (good for benchmarks and user experience, e.g. window animations),
381 	 * but at a cost of spending more power processing the workload
382 	 * (bad for battery). Not all clients even want their results
383 	 * immediately and for them we should just let the GPU select its own
384 	 * frequency to maximise efficiency. To prevent a single client from
385 	 * forcing the clocks too high for the whole system, we only allow
386 	 * each client to waitboost once in a busy period.
387 	 */
388 	if (rps_client && !i915_request_started(rq)) {
389 		if (INTEL_GEN(rq->i915) >= 6)
390 			gen6_rps_boost(rq, rps_client);
391 	}
392 
393 	timeout = i915_request_wait(rq, flags, timeout);
394 
395 out:
396 	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
397 		i915_request_retire_upto(rq);
398 
399 	return timeout;
400 }
401 
402 static long
403 i915_gem_object_wait_reservation(struct reservation_object *resv,
404 				 unsigned int flags,
405 				 long timeout,
406 				 struct intel_rps_client *rps_client)
407 {
408 	unsigned int seq = __read_seqcount_begin(&resv->seq);
409 	struct dma_fence *excl;
410 	bool prune_fences = false;
411 
412 	if (flags & I915_WAIT_ALL) {
413 		struct dma_fence **shared;
414 		unsigned int count, i;
415 		int ret;
416 
417 		ret = reservation_object_get_fences_rcu(resv,
418 							&excl, &count, &shared);
419 		if (ret)
420 			return ret;
421 
422 		for (i = 0; i < count; i++) {
423 			timeout = i915_gem_object_wait_fence(shared[i],
424 							     flags, timeout,
425 							     rps_client);
426 			if (timeout < 0)
427 				break;
428 
429 			dma_fence_put(shared[i]);
430 		}
431 
432 		for (; i < count; i++)
433 			dma_fence_put(shared[i]);
434 		kfree(shared);
435 
436 		/*
437 		 * If both shared fences and an exclusive fence exist,
438 		 * then by construction the shared fences must be later
439 		 * than the exclusive fence. If we successfully wait for
440 		 * all the shared fences, we know that the exclusive fence
441 		 * must all be signaled. If all the shared fences are
442 		 * signaled, we can prune the array and recover the
443 		 * floating references on the fences/requests.
444 		 */
445 		prune_fences = count && timeout >= 0;
446 	} else {
447 		excl = reservation_object_get_excl_rcu(resv);
448 	}
449 
450 	if (excl && timeout >= 0)
451 		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
452 						     rps_client);
453 
454 	dma_fence_put(excl);
455 
456 	/*
457 	 * Opportunistically prune the fences iff we know they have *all* been
458 	 * signaled and that the reservation object has not been changed (i.e.
459 	 * no new fences have been added).
460 	 */
461 	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
462 		if (reservation_object_trylock(resv)) {
463 			if (!__read_seqcount_retry(&resv->seq, seq))
464 				reservation_object_add_excl_fence(resv, NULL);
465 			reservation_object_unlock(resv);
466 		}
467 	}
468 
469 	return timeout;
470 }
471 
472 static void __fence_set_priority(struct dma_fence *fence, int prio)
473 {
474 	struct i915_request *rq;
475 	struct intel_engine_cs *engine;
476 
477 	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
478 		return;
479 
480 	rq = to_request(fence);
481 	engine = rq->engine;
482 
483 	rcu_read_lock();
484 	if (engine->schedule)
485 		engine->schedule(rq, prio);
486 	rcu_read_unlock();
487 }
488 
489 static void fence_set_priority(struct dma_fence *fence, int prio)
490 {
491 	/* Recurse once into a fence-array */
492 	if (dma_fence_is_array(fence)) {
493 		struct dma_fence_array *array = to_dma_fence_array(fence);
494 		int i;
495 
496 		for (i = 0; i < array->num_fences; i++)
497 			__fence_set_priority(array->fences[i], prio);
498 	} else {
499 		__fence_set_priority(fence, prio);
500 	}
501 }
502 
503 int
504 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
505 			      unsigned int flags,
506 			      int prio)
507 {
508 	struct dma_fence *excl;
509 
510 	if (flags & I915_WAIT_ALL) {
511 		struct dma_fence **shared;
512 		unsigned int count, i;
513 		int ret;
514 
515 		ret = reservation_object_get_fences_rcu(obj->resv,
516 							&excl, &count, &shared);
517 		if (ret)
518 			return ret;
519 
520 		for (i = 0; i < count; i++) {
521 			fence_set_priority(shared[i], prio);
522 			dma_fence_put(shared[i]);
523 		}
524 
525 		kfree(shared);
526 	} else {
527 		excl = reservation_object_get_excl_rcu(obj->resv);
528 	}
529 
530 	if (excl) {
531 		fence_set_priority(excl, prio);
532 		dma_fence_put(excl);
533 	}
534 	return 0;
535 }
536 
537 /**
538  * Waits for rendering to the object to be completed
539  * @obj: i915 gem object
540  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
541  * @timeout: how long to wait
542  * @rps_client: client (user process) to charge for any waitboosting
543  */
544 int
545 i915_gem_object_wait(struct drm_i915_gem_object *obj,
546 		     unsigned int flags,
547 		     long timeout,
548 		     struct intel_rps_client *rps_client)
549 {
550 	might_sleep();
551 #if IS_ENABLED(CONFIG_LOCKDEP)
552 	GEM_BUG_ON(debug_locks &&
553 		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
554 		   !!(flags & I915_WAIT_LOCKED));
555 #endif
556 	GEM_BUG_ON(timeout < 0);
557 
558 	timeout = i915_gem_object_wait_reservation(obj->resv,
559 						   flags, timeout,
560 						   rps_client);
561 	return timeout < 0 ? timeout : 0;
562 }
563 
564 static struct intel_rps_client *to_rps_client(struct drm_file *file)
565 {
566 	struct drm_i915_file_private *fpriv = file->driver_priv;
567 
568 	return &fpriv->rps_client;
569 }
570 
571 static int
572 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
573 		     struct drm_i915_gem_pwrite *args,
574 		     struct drm_file *file)
575 {
576 	void *vaddr = obj->phys_handle->vaddr + args->offset;
577 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
578 
579 	/* We manually control the domain here and pretend that it
580 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
581 	 */
582 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
583 	if (copy_from_user(vaddr, user_data, args->size))
584 		return -EFAULT;
585 
586 	drm_clflush_virt_range(vaddr, args->size);
587 	i915_gem_chipset_flush(to_i915(obj->base.dev));
588 
589 	intel_fb_obj_flush(obj, ORIGIN_CPU);
590 	return 0;
591 }
592 
593 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
594 {
595 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
596 }
597 
598 void i915_gem_object_free(struct drm_i915_gem_object *obj)
599 {
600 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
601 	kmem_cache_free(dev_priv->objects, obj);
602 }
603 
604 static int
605 i915_gem_create(struct drm_file *file,
606 		struct drm_i915_private *dev_priv,
607 		uint64_t size,
608 		uint32_t *handle_p)
609 {
610 	struct drm_i915_gem_object *obj;
611 	int ret;
612 	u32 handle;
613 
614 	size = roundup(size, PAGE_SIZE);
615 	if (size == 0)
616 		return -EINVAL;
617 
618 	/* Allocate the new object */
619 	obj = i915_gem_object_create(dev_priv, size);
620 	if (IS_ERR(obj))
621 		return PTR_ERR(obj);
622 
623 	ret = drm_gem_handle_create(file, &obj->base, &handle);
624 	/* drop reference from allocate - handle holds it now */
625 	i915_gem_object_put(obj);
626 	if (ret)
627 		return ret;
628 
629 	*handle_p = handle;
630 	return 0;
631 }
632 
633 int
634 i915_gem_dumb_create(struct drm_file *file,
635 		     struct drm_device *dev,
636 		     struct drm_mode_create_dumb *args)
637 {
638 	/* have to work out size/pitch and return them */
639 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
640 	args->size = args->pitch * args->height;
641 	return i915_gem_create(file, to_i915(dev),
642 			       args->size, &args->handle);
643 }
644 
645 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
646 {
647 	return !(obj->cache_level == I915_CACHE_NONE ||
648 		 obj->cache_level == I915_CACHE_WT);
649 }
650 
651 /**
652  * Creates a new mm object and returns a handle to it.
653  * @dev: drm device pointer
654  * @data: ioctl data blob
655  * @file: drm file pointer
656  */
657 int
658 i915_gem_create_ioctl(struct drm_device *dev, void *data,
659 		      struct drm_file *file)
660 {
661 	struct drm_i915_private *dev_priv = to_i915(dev);
662 	struct drm_i915_gem_create *args = data;
663 
664 	i915_gem_flush_free_objects(dev_priv);
665 
666 	return i915_gem_create(file, dev_priv,
667 			       args->size, &args->handle);
668 }
669 
670 static inline enum fb_op_origin
671 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
672 {
673 	return (domain == I915_GEM_DOMAIN_GTT ?
674 		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
675 }
676 
677 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
678 {
679 	/*
680 	 * No actual flushing is required for the GTT write domain for reads
681 	 * from the GTT domain. Writes to it "immediately" go to main memory
682 	 * as far as we know, so there's no chipset flush. It also doesn't
683 	 * land in the GPU render cache.
684 	 *
685 	 * However, we do have to enforce the order so that all writes through
686 	 * the GTT land before any writes to the device, such as updates to
687 	 * the GATT itself.
688 	 *
689 	 * We also have to wait a bit for the writes to land from the GTT.
690 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
691 	 * timing. This issue has only been observed when switching quickly
692 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
693 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
694 	 * system agents we cannot reproduce this behaviour, until Cannonlake
695 	 * that was!).
696 	 */
697 
698 	wmb();
699 
700 	intel_runtime_pm_get(dev_priv);
701 	spin_lock_irq(&dev_priv->uncore.lock);
702 
703 	POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
704 
705 	spin_unlock_irq(&dev_priv->uncore.lock);
706 	intel_runtime_pm_put(dev_priv);
707 }
708 
709 static void
710 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
711 {
712 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
713 	struct i915_vma *vma;
714 
715 	if (!(obj->write_domain & flush_domains))
716 		return;
717 
718 	switch (obj->write_domain) {
719 	case I915_GEM_DOMAIN_GTT:
720 		i915_gem_flush_ggtt_writes(dev_priv);
721 
722 		intel_fb_obj_flush(obj,
723 				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
724 
725 		for_each_ggtt_vma(vma, obj) {
726 			if (vma->iomap)
727 				continue;
728 
729 			i915_vma_unset_ggtt_write(vma);
730 		}
731 		break;
732 
733 	case I915_GEM_DOMAIN_CPU:
734 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
735 		break;
736 
737 	case I915_GEM_DOMAIN_RENDER:
738 		if (gpu_write_needs_clflush(obj))
739 			obj->cache_dirty = true;
740 		break;
741 	}
742 
743 	obj->write_domain = 0;
744 }
745 
746 static inline int
747 __copy_to_user_swizzled(char __user *cpu_vaddr,
748 			const char *gpu_vaddr, int gpu_offset,
749 			int length)
750 {
751 	int ret, cpu_offset = 0;
752 
753 	while (length > 0) {
754 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
755 		int this_length = min(cacheline_end - gpu_offset, length);
756 		int swizzled_gpu_offset = gpu_offset ^ 64;
757 
758 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
759 				     gpu_vaddr + swizzled_gpu_offset,
760 				     this_length);
761 		if (ret)
762 			return ret + length;
763 
764 		cpu_offset += this_length;
765 		gpu_offset += this_length;
766 		length -= this_length;
767 	}
768 
769 	return 0;
770 }
771 
772 static inline int
773 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
774 			  const char __user *cpu_vaddr,
775 			  int length)
776 {
777 	int ret, cpu_offset = 0;
778 
779 	while (length > 0) {
780 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
781 		int this_length = min(cacheline_end - gpu_offset, length);
782 		int swizzled_gpu_offset = gpu_offset ^ 64;
783 
784 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
785 				       cpu_vaddr + cpu_offset,
786 				       this_length);
787 		if (ret)
788 			return ret + length;
789 
790 		cpu_offset += this_length;
791 		gpu_offset += this_length;
792 		length -= this_length;
793 	}
794 
795 	return 0;
796 }
797 
798 /*
799  * Pins the specified object's pages and synchronizes the object with
800  * GPU accesses. Sets needs_clflush to non-zero if the caller should
801  * flush the object from the CPU cache.
802  */
803 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
804 				    unsigned int *needs_clflush)
805 {
806 	int ret;
807 
808 	lockdep_assert_held(&obj->base.dev->struct_mutex);
809 
810 	*needs_clflush = 0;
811 	if (!i915_gem_object_has_struct_page(obj))
812 		return -ENODEV;
813 
814 	ret = i915_gem_object_wait(obj,
815 				   I915_WAIT_INTERRUPTIBLE |
816 				   I915_WAIT_LOCKED,
817 				   MAX_SCHEDULE_TIMEOUT,
818 				   NULL);
819 	if (ret)
820 		return ret;
821 
822 	ret = i915_gem_object_pin_pages(obj);
823 	if (ret)
824 		return ret;
825 
826 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
827 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
828 		ret = i915_gem_object_set_to_cpu_domain(obj, false);
829 		if (ret)
830 			goto err_unpin;
831 		else
832 			goto out;
833 	}
834 
835 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
836 
837 	/* If we're not in the cpu read domain, set ourself into the gtt
838 	 * read domain and manually flush cachelines (if required). This
839 	 * optimizes for the case when the gpu will dirty the data
840 	 * anyway again before the next pread happens.
841 	 */
842 	if (!obj->cache_dirty &&
843 	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
844 		*needs_clflush = CLFLUSH_BEFORE;
845 
846 out:
847 	/* return with the pages pinned */
848 	return 0;
849 
850 err_unpin:
851 	i915_gem_object_unpin_pages(obj);
852 	return ret;
853 }
854 
855 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
856 				     unsigned int *needs_clflush)
857 {
858 	int ret;
859 
860 	lockdep_assert_held(&obj->base.dev->struct_mutex);
861 
862 	*needs_clflush = 0;
863 	if (!i915_gem_object_has_struct_page(obj))
864 		return -ENODEV;
865 
866 	ret = i915_gem_object_wait(obj,
867 				   I915_WAIT_INTERRUPTIBLE |
868 				   I915_WAIT_LOCKED |
869 				   I915_WAIT_ALL,
870 				   MAX_SCHEDULE_TIMEOUT,
871 				   NULL);
872 	if (ret)
873 		return ret;
874 
875 	ret = i915_gem_object_pin_pages(obj);
876 	if (ret)
877 		return ret;
878 
879 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
880 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
881 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
882 		if (ret)
883 			goto err_unpin;
884 		else
885 			goto out;
886 	}
887 
888 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
889 
890 	/* If we're not in the cpu write domain, set ourself into the
891 	 * gtt write domain and manually flush cachelines (as required).
892 	 * This optimizes for the case when the gpu will use the data
893 	 * right away and we therefore have to clflush anyway.
894 	 */
895 	if (!obj->cache_dirty) {
896 		*needs_clflush |= CLFLUSH_AFTER;
897 
898 		/*
899 		 * Same trick applies to invalidate partially written
900 		 * cachelines read before writing.
901 		 */
902 		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
903 			*needs_clflush |= CLFLUSH_BEFORE;
904 	}
905 
906 out:
907 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
908 	obj->mm.dirty = true;
909 	/* return with the pages pinned */
910 	return 0;
911 
912 err_unpin:
913 	i915_gem_object_unpin_pages(obj);
914 	return ret;
915 }
916 
917 static void
918 shmem_clflush_swizzled_range(char *addr, unsigned long length,
919 			     bool swizzled)
920 {
921 	if (unlikely(swizzled)) {
922 		unsigned long start = (unsigned long) addr;
923 		unsigned long end = (unsigned long) addr + length;
924 
925 		/* For swizzling simply ensure that we always flush both
926 		 * channels. Lame, but simple and it works. Swizzled
927 		 * pwrite/pread is far from a hotpath - current userspace
928 		 * doesn't use it at all. */
929 		start = round_down(start, 128);
930 		end = round_up(end, 128);
931 
932 		drm_clflush_virt_range((void *)start, end - start);
933 	} else {
934 		drm_clflush_virt_range(addr, length);
935 	}
936 
937 }
938 
939 /* Only difference to the fast-path function is that this can handle bit17
940  * and uses non-atomic copy and kmap functions. */
941 static int
942 shmem_pread_slow(struct page *page, int offset, int length,
943 		 char __user *user_data,
944 		 bool page_do_bit17_swizzling, bool needs_clflush)
945 {
946 	char *vaddr;
947 	int ret;
948 
949 	vaddr = kmap(page);
950 	if (needs_clflush)
951 		shmem_clflush_swizzled_range(vaddr + offset, length,
952 					     page_do_bit17_swizzling);
953 
954 	if (page_do_bit17_swizzling)
955 		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
956 	else
957 		ret = __copy_to_user(user_data, vaddr + offset, length);
958 	kunmap(page);
959 
960 	return ret ? - EFAULT : 0;
961 }
962 
963 static int
964 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
965 	    bool page_do_bit17_swizzling, bool needs_clflush)
966 {
967 	int ret;
968 
969 	ret = -ENODEV;
970 	if (!page_do_bit17_swizzling) {
971 		char *vaddr = kmap_atomic(page);
972 
973 		if (needs_clflush)
974 			drm_clflush_virt_range(vaddr + offset, length);
975 		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
976 		kunmap_atomic(vaddr);
977 	}
978 	if (ret == 0)
979 		return 0;
980 
981 	return shmem_pread_slow(page, offset, length, user_data,
982 				page_do_bit17_swizzling, needs_clflush);
983 }
984 
985 static int
986 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
987 		     struct drm_i915_gem_pread *args)
988 {
989 	char __user *user_data;
990 	u64 remain;
991 	unsigned int obj_do_bit17_swizzling;
992 	unsigned int needs_clflush;
993 	unsigned int idx, offset;
994 	int ret;
995 
996 	obj_do_bit17_swizzling = 0;
997 	if (i915_gem_object_needs_bit17_swizzle(obj))
998 		obj_do_bit17_swizzling = BIT(17);
999 
1000 	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
1001 	if (ret)
1002 		return ret;
1003 
1004 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1005 	mutex_unlock(&obj->base.dev->struct_mutex);
1006 	if (ret)
1007 		return ret;
1008 
1009 	remain = args->size;
1010 	user_data = u64_to_user_ptr(args->data_ptr);
1011 	offset = offset_in_page(args->offset);
1012 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1013 		struct page *page = i915_gem_object_get_page(obj, idx);
1014 		int length;
1015 
1016 		length = remain;
1017 		if (offset + length > PAGE_SIZE)
1018 			length = PAGE_SIZE - offset;
1019 
1020 		ret = shmem_pread(page, offset, length, user_data,
1021 				  page_to_phys(page) & obj_do_bit17_swizzling,
1022 				  needs_clflush);
1023 		if (ret)
1024 			break;
1025 
1026 		remain -= length;
1027 		user_data += length;
1028 		offset = 0;
1029 	}
1030 
1031 	i915_gem_obj_finish_shmem_access(obj);
1032 	return ret;
1033 }
1034 
1035 static inline bool
1036 gtt_user_read(struct io_mapping *mapping,
1037 	      loff_t base, int offset,
1038 	      char __user *user_data, int length)
1039 {
1040 	void __iomem *vaddr;
1041 	unsigned long unwritten;
1042 
1043 	/* We can use the cpu mem copy function because this is X86. */
1044 	vaddr = io_mapping_map_atomic_wc(mapping, base);
1045 	unwritten = __copy_to_user_inatomic(user_data,
1046 					    (void __force *)vaddr + offset,
1047 					    length);
1048 	io_mapping_unmap_atomic(vaddr);
1049 	if (unwritten) {
1050 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1051 		unwritten = copy_to_user(user_data,
1052 					 (void __force *)vaddr + offset,
1053 					 length);
1054 		io_mapping_unmap(vaddr);
1055 	}
1056 	return unwritten;
1057 }
1058 
1059 static int
1060 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1061 		   const struct drm_i915_gem_pread *args)
1062 {
1063 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1064 	struct i915_ggtt *ggtt = &i915->ggtt;
1065 	struct drm_mm_node node;
1066 	struct i915_vma *vma;
1067 	void __user *user_data;
1068 	u64 remain, offset;
1069 	int ret;
1070 
1071 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1072 	if (ret)
1073 		return ret;
1074 
1075 	intel_runtime_pm_get(i915);
1076 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1077 				       PIN_MAPPABLE |
1078 				       PIN_NONFAULT |
1079 				       PIN_NONBLOCK);
1080 	if (!IS_ERR(vma)) {
1081 		node.start = i915_ggtt_offset(vma);
1082 		node.allocated = false;
1083 		ret = i915_vma_put_fence(vma);
1084 		if (ret) {
1085 			i915_vma_unpin(vma);
1086 			vma = ERR_PTR(ret);
1087 		}
1088 	}
1089 	if (IS_ERR(vma)) {
1090 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1091 		if (ret)
1092 			goto out_unlock;
1093 		GEM_BUG_ON(!node.allocated);
1094 	}
1095 
1096 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
1097 	if (ret)
1098 		goto out_unpin;
1099 
1100 	mutex_unlock(&i915->drm.struct_mutex);
1101 
1102 	user_data = u64_to_user_ptr(args->data_ptr);
1103 	remain = args->size;
1104 	offset = args->offset;
1105 
1106 	while (remain > 0) {
1107 		/* Operation in this page
1108 		 *
1109 		 * page_base = page offset within aperture
1110 		 * page_offset = offset within page
1111 		 * page_length = bytes to copy for this page
1112 		 */
1113 		u32 page_base = node.start;
1114 		unsigned page_offset = offset_in_page(offset);
1115 		unsigned page_length = PAGE_SIZE - page_offset;
1116 		page_length = remain < page_length ? remain : page_length;
1117 		if (node.allocated) {
1118 			wmb();
1119 			ggtt->base.insert_page(&ggtt->base,
1120 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1121 					       node.start, I915_CACHE_NONE, 0);
1122 			wmb();
1123 		} else {
1124 			page_base += offset & PAGE_MASK;
1125 		}
1126 
1127 		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1128 				  user_data, page_length)) {
1129 			ret = -EFAULT;
1130 			break;
1131 		}
1132 
1133 		remain -= page_length;
1134 		user_data += page_length;
1135 		offset += page_length;
1136 	}
1137 
1138 	mutex_lock(&i915->drm.struct_mutex);
1139 out_unpin:
1140 	if (node.allocated) {
1141 		wmb();
1142 		ggtt->base.clear_range(&ggtt->base,
1143 				       node.start, node.size);
1144 		remove_mappable_node(&node);
1145 	} else {
1146 		i915_vma_unpin(vma);
1147 	}
1148 out_unlock:
1149 	intel_runtime_pm_put(i915);
1150 	mutex_unlock(&i915->drm.struct_mutex);
1151 
1152 	return ret;
1153 }
1154 
1155 /**
1156  * Reads data from the object referenced by handle.
1157  * @dev: drm device pointer
1158  * @data: ioctl data blob
1159  * @file: drm file pointer
1160  *
1161  * On error, the contents of *data are undefined.
1162  */
1163 int
1164 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1165 		     struct drm_file *file)
1166 {
1167 	struct drm_i915_gem_pread *args = data;
1168 	struct drm_i915_gem_object *obj;
1169 	int ret;
1170 
1171 	if (args->size == 0)
1172 		return 0;
1173 
1174 	if (!access_ok(VERIFY_WRITE,
1175 		       u64_to_user_ptr(args->data_ptr),
1176 		       args->size))
1177 		return -EFAULT;
1178 
1179 	obj = i915_gem_object_lookup(file, args->handle);
1180 	if (!obj)
1181 		return -ENOENT;
1182 
1183 	/* Bounds check source.  */
1184 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1185 		ret = -EINVAL;
1186 		goto out;
1187 	}
1188 
1189 	trace_i915_gem_object_pread(obj, args->offset, args->size);
1190 
1191 	ret = i915_gem_object_wait(obj,
1192 				   I915_WAIT_INTERRUPTIBLE,
1193 				   MAX_SCHEDULE_TIMEOUT,
1194 				   to_rps_client(file));
1195 	if (ret)
1196 		goto out;
1197 
1198 	ret = i915_gem_object_pin_pages(obj);
1199 	if (ret)
1200 		goto out;
1201 
1202 	ret = i915_gem_shmem_pread(obj, args);
1203 	if (ret == -EFAULT || ret == -ENODEV)
1204 		ret = i915_gem_gtt_pread(obj, args);
1205 
1206 	i915_gem_object_unpin_pages(obj);
1207 out:
1208 	i915_gem_object_put(obj);
1209 	return ret;
1210 }
1211 
1212 /* This is the fast write path which cannot handle
1213  * page faults in the source data
1214  */
1215 
1216 static inline bool
1217 ggtt_write(struct io_mapping *mapping,
1218 	   loff_t base, int offset,
1219 	   char __user *user_data, int length)
1220 {
1221 	void __iomem *vaddr;
1222 	unsigned long unwritten;
1223 
1224 	/* We can use the cpu mem copy function because this is X86. */
1225 	vaddr = io_mapping_map_atomic_wc(mapping, base);
1226 	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1227 						      user_data, length);
1228 	io_mapping_unmap_atomic(vaddr);
1229 	if (unwritten) {
1230 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1231 		unwritten = copy_from_user((void __force *)vaddr + offset,
1232 					   user_data, length);
1233 		io_mapping_unmap(vaddr);
1234 	}
1235 
1236 	return unwritten;
1237 }
1238 
1239 /**
1240  * This is the fast pwrite path, where we copy the data directly from the
1241  * user into the GTT, uncached.
1242  * @obj: i915 GEM object
1243  * @args: pwrite arguments structure
1244  */
1245 static int
1246 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1247 			 const struct drm_i915_gem_pwrite *args)
1248 {
1249 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1250 	struct i915_ggtt *ggtt = &i915->ggtt;
1251 	struct drm_mm_node node;
1252 	struct i915_vma *vma;
1253 	u64 remain, offset;
1254 	void __user *user_data;
1255 	int ret;
1256 
1257 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1258 	if (ret)
1259 		return ret;
1260 
1261 	if (i915_gem_object_has_struct_page(obj)) {
1262 		/*
1263 		 * Avoid waking the device up if we can fallback, as
1264 		 * waking/resuming is very slow (worst-case 10-100 ms
1265 		 * depending on PCI sleeps and our own resume time).
1266 		 * This easily dwarfs any performance advantage from
1267 		 * using the cache bypass of indirect GGTT access.
1268 		 */
1269 		if (!intel_runtime_pm_get_if_in_use(i915)) {
1270 			ret = -EFAULT;
1271 			goto out_unlock;
1272 		}
1273 	} else {
1274 		/* No backing pages, no fallback, we must force GGTT access */
1275 		intel_runtime_pm_get(i915);
1276 	}
1277 
1278 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1279 				       PIN_MAPPABLE |
1280 				       PIN_NONFAULT |
1281 				       PIN_NONBLOCK);
1282 	if (!IS_ERR(vma)) {
1283 		node.start = i915_ggtt_offset(vma);
1284 		node.allocated = false;
1285 		ret = i915_vma_put_fence(vma);
1286 		if (ret) {
1287 			i915_vma_unpin(vma);
1288 			vma = ERR_PTR(ret);
1289 		}
1290 	}
1291 	if (IS_ERR(vma)) {
1292 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1293 		if (ret)
1294 			goto out_rpm;
1295 		GEM_BUG_ON(!node.allocated);
1296 	}
1297 
1298 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1299 	if (ret)
1300 		goto out_unpin;
1301 
1302 	mutex_unlock(&i915->drm.struct_mutex);
1303 
1304 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1305 
1306 	user_data = u64_to_user_ptr(args->data_ptr);
1307 	offset = args->offset;
1308 	remain = args->size;
1309 	while (remain) {
1310 		/* Operation in this page
1311 		 *
1312 		 * page_base = page offset within aperture
1313 		 * page_offset = offset within page
1314 		 * page_length = bytes to copy for this page
1315 		 */
1316 		u32 page_base = node.start;
1317 		unsigned int page_offset = offset_in_page(offset);
1318 		unsigned int page_length = PAGE_SIZE - page_offset;
1319 		page_length = remain < page_length ? remain : page_length;
1320 		if (node.allocated) {
1321 			wmb(); /* flush the write before we modify the GGTT */
1322 			ggtt->base.insert_page(&ggtt->base,
1323 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1324 					       node.start, I915_CACHE_NONE, 0);
1325 			wmb(); /* flush modifications to the GGTT (insert_page) */
1326 		} else {
1327 			page_base += offset & PAGE_MASK;
1328 		}
1329 		/* If we get a fault while copying data, then (presumably) our
1330 		 * source page isn't available.  Return the error and we'll
1331 		 * retry in the slow path.
1332 		 * If the object is non-shmem backed, we retry again with the
1333 		 * path that handles page fault.
1334 		 */
1335 		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1336 			       user_data, page_length)) {
1337 			ret = -EFAULT;
1338 			break;
1339 		}
1340 
1341 		remain -= page_length;
1342 		user_data += page_length;
1343 		offset += page_length;
1344 	}
1345 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1346 
1347 	mutex_lock(&i915->drm.struct_mutex);
1348 out_unpin:
1349 	if (node.allocated) {
1350 		wmb();
1351 		ggtt->base.clear_range(&ggtt->base,
1352 				       node.start, node.size);
1353 		remove_mappable_node(&node);
1354 	} else {
1355 		i915_vma_unpin(vma);
1356 	}
1357 out_rpm:
1358 	intel_runtime_pm_put(i915);
1359 out_unlock:
1360 	mutex_unlock(&i915->drm.struct_mutex);
1361 	return ret;
1362 }
1363 
1364 static int
1365 shmem_pwrite_slow(struct page *page, int offset, int length,
1366 		  char __user *user_data,
1367 		  bool page_do_bit17_swizzling,
1368 		  bool needs_clflush_before,
1369 		  bool needs_clflush_after)
1370 {
1371 	char *vaddr;
1372 	int ret;
1373 
1374 	vaddr = kmap(page);
1375 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1376 		shmem_clflush_swizzled_range(vaddr + offset, length,
1377 					     page_do_bit17_swizzling);
1378 	if (page_do_bit17_swizzling)
1379 		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1380 						length);
1381 	else
1382 		ret = __copy_from_user(vaddr + offset, user_data, length);
1383 	if (needs_clflush_after)
1384 		shmem_clflush_swizzled_range(vaddr + offset, length,
1385 					     page_do_bit17_swizzling);
1386 	kunmap(page);
1387 
1388 	return ret ? -EFAULT : 0;
1389 }
1390 
1391 /* Per-page copy function for the shmem pwrite fastpath.
1392  * Flushes invalid cachelines before writing to the target if
1393  * needs_clflush_before is set and flushes out any written cachelines after
1394  * writing if needs_clflush is set.
1395  */
1396 static int
1397 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1398 	     bool page_do_bit17_swizzling,
1399 	     bool needs_clflush_before,
1400 	     bool needs_clflush_after)
1401 {
1402 	int ret;
1403 
1404 	ret = -ENODEV;
1405 	if (!page_do_bit17_swizzling) {
1406 		char *vaddr = kmap_atomic(page);
1407 
1408 		if (needs_clflush_before)
1409 			drm_clflush_virt_range(vaddr + offset, len);
1410 		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1411 		if (needs_clflush_after)
1412 			drm_clflush_virt_range(vaddr + offset, len);
1413 
1414 		kunmap_atomic(vaddr);
1415 	}
1416 	if (ret == 0)
1417 		return ret;
1418 
1419 	return shmem_pwrite_slow(page, offset, len, user_data,
1420 				 page_do_bit17_swizzling,
1421 				 needs_clflush_before,
1422 				 needs_clflush_after);
1423 }
1424 
1425 static int
1426 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1427 		      const struct drm_i915_gem_pwrite *args)
1428 {
1429 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1430 	void __user *user_data;
1431 	u64 remain;
1432 	unsigned int obj_do_bit17_swizzling;
1433 	unsigned int partial_cacheline_write;
1434 	unsigned int needs_clflush;
1435 	unsigned int offset, idx;
1436 	int ret;
1437 
1438 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1439 	if (ret)
1440 		return ret;
1441 
1442 	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1443 	mutex_unlock(&i915->drm.struct_mutex);
1444 	if (ret)
1445 		return ret;
1446 
1447 	obj_do_bit17_swizzling = 0;
1448 	if (i915_gem_object_needs_bit17_swizzle(obj))
1449 		obj_do_bit17_swizzling = BIT(17);
1450 
1451 	/* If we don't overwrite a cacheline completely we need to be
1452 	 * careful to have up-to-date data by first clflushing. Don't
1453 	 * overcomplicate things and flush the entire patch.
1454 	 */
1455 	partial_cacheline_write = 0;
1456 	if (needs_clflush & CLFLUSH_BEFORE)
1457 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1458 
1459 	user_data = u64_to_user_ptr(args->data_ptr);
1460 	remain = args->size;
1461 	offset = offset_in_page(args->offset);
1462 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1463 		struct page *page = i915_gem_object_get_page(obj, idx);
1464 		int length;
1465 
1466 		length = remain;
1467 		if (offset + length > PAGE_SIZE)
1468 			length = PAGE_SIZE - offset;
1469 
1470 		ret = shmem_pwrite(page, offset, length, user_data,
1471 				   page_to_phys(page) & obj_do_bit17_swizzling,
1472 				   (offset | length) & partial_cacheline_write,
1473 				   needs_clflush & CLFLUSH_AFTER);
1474 		if (ret)
1475 			break;
1476 
1477 		remain -= length;
1478 		user_data += length;
1479 		offset = 0;
1480 	}
1481 
1482 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1483 	i915_gem_obj_finish_shmem_access(obj);
1484 	return ret;
1485 }
1486 
1487 /**
1488  * Writes data to the object referenced by handle.
1489  * @dev: drm device
1490  * @data: ioctl data blob
1491  * @file: drm file
1492  *
1493  * On error, the contents of the buffer that were to be modified are undefined.
1494  */
1495 int
1496 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1497 		      struct drm_file *file)
1498 {
1499 	struct drm_i915_gem_pwrite *args = data;
1500 	struct drm_i915_gem_object *obj;
1501 	int ret;
1502 
1503 	if (args->size == 0)
1504 		return 0;
1505 
1506 	if (!access_ok(VERIFY_READ,
1507 		       u64_to_user_ptr(args->data_ptr),
1508 		       args->size))
1509 		return -EFAULT;
1510 
1511 	obj = i915_gem_object_lookup(file, args->handle);
1512 	if (!obj)
1513 		return -ENOENT;
1514 
1515 	/* Bounds check destination. */
1516 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1517 		ret = -EINVAL;
1518 		goto err;
1519 	}
1520 
1521 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1522 
1523 	ret = -ENODEV;
1524 	if (obj->ops->pwrite)
1525 		ret = obj->ops->pwrite(obj, args);
1526 	if (ret != -ENODEV)
1527 		goto err;
1528 
1529 	ret = i915_gem_object_wait(obj,
1530 				   I915_WAIT_INTERRUPTIBLE |
1531 				   I915_WAIT_ALL,
1532 				   MAX_SCHEDULE_TIMEOUT,
1533 				   to_rps_client(file));
1534 	if (ret)
1535 		goto err;
1536 
1537 	ret = i915_gem_object_pin_pages(obj);
1538 	if (ret)
1539 		goto err;
1540 
1541 	ret = -EFAULT;
1542 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1543 	 * it would end up going through the fenced access, and we'll get
1544 	 * different detiling behavior between reading and writing.
1545 	 * pread/pwrite currently are reading and writing from the CPU
1546 	 * perspective, requiring manual detiling by the client.
1547 	 */
1548 	if (!i915_gem_object_has_struct_page(obj) ||
1549 	    cpu_write_needs_clflush(obj))
1550 		/* Note that the gtt paths might fail with non-page-backed user
1551 		 * pointers (e.g. gtt mappings when moving data between
1552 		 * textures). Fallback to the shmem path in that case.
1553 		 */
1554 		ret = i915_gem_gtt_pwrite_fast(obj, args);
1555 
1556 	if (ret == -EFAULT || ret == -ENOSPC) {
1557 		if (obj->phys_handle)
1558 			ret = i915_gem_phys_pwrite(obj, args, file);
1559 		else
1560 			ret = i915_gem_shmem_pwrite(obj, args);
1561 	}
1562 
1563 	i915_gem_object_unpin_pages(obj);
1564 err:
1565 	i915_gem_object_put(obj);
1566 	return ret;
1567 }
1568 
1569 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1570 {
1571 	struct drm_i915_private *i915;
1572 	struct list_head *list;
1573 	struct i915_vma *vma;
1574 
1575 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
1576 
1577 	for_each_ggtt_vma(vma, obj) {
1578 		if (i915_vma_is_active(vma))
1579 			continue;
1580 
1581 		if (!drm_mm_node_allocated(&vma->node))
1582 			continue;
1583 
1584 		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1585 	}
1586 
1587 	i915 = to_i915(obj->base.dev);
1588 	spin_lock(&i915->mm.obj_lock);
1589 	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1590 	list_move_tail(&obj->mm.link, list);
1591 	spin_unlock(&i915->mm.obj_lock);
1592 }
1593 
1594 /**
1595  * Called when user space prepares to use an object with the CPU, either
1596  * through the mmap ioctl's mapping or a GTT mapping.
1597  * @dev: drm device
1598  * @data: ioctl data blob
1599  * @file: drm file
1600  */
1601 int
1602 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1603 			  struct drm_file *file)
1604 {
1605 	struct drm_i915_gem_set_domain *args = data;
1606 	struct drm_i915_gem_object *obj;
1607 	uint32_t read_domains = args->read_domains;
1608 	uint32_t write_domain = args->write_domain;
1609 	int err;
1610 
1611 	/* Only handle setting domains to types used by the CPU. */
1612 	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1613 		return -EINVAL;
1614 
1615 	/* Having something in the write domain implies it's in the read
1616 	 * domain, and only that read domain.  Enforce that in the request.
1617 	 */
1618 	if (write_domain != 0 && read_domains != write_domain)
1619 		return -EINVAL;
1620 
1621 	obj = i915_gem_object_lookup(file, args->handle);
1622 	if (!obj)
1623 		return -ENOENT;
1624 
1625 	/* Try to flush the object off the GPU without holding the lock.
1626 	 * We will repeat the flush holding the lock in the normal manner
1627 	 * to catch cases where we are gazumped.
1628 	 */
1629 	err = i915_gem_object_wait(obj,
1630 				   I915_WAIT_INTERRUPTIBLE |
1631 				   (write_domain ? I915_WAIT_ALL : 0),
1632 				   MAX_SCHEDULE_TIMEOUT,
1633 				   to_rps_client(file));
1634 	if (err)
1635 		goto out;
1636 
1637 	/*
1638 	 * Proxy objects do not control access to the backing storage, ergo
1639 	 * they cannot be used as a means to manipulate the cache domain
1640 	 * tracking for that backing storage. The proxy object is always
1641 	 * considered to be outside of any cache domain.
1642 	 */
1643 	if (i915_gem_object_is_proxy(obj)) {
1644 		err = -ENXIO;
1645 		goto out;
1646 	}
1647 
1648 	/*
1649 	 * Flush and acquire obj->pages so that we are coherent through
1650 	 * direct access in memory with previous cached writes through
1651 	 * shmemfs and that our cache domain tracking remains valid.
1652 	 * For example, if the obj->filp was moved to swap without us
1653 	 * being notified and releasing the pages, we would mistakenly
1654 	 * continue to assume that the obj remained out of the CPU cached
1655 	 * domain.
1656 	 */
1657 	err = i915_gem_object_pin_pages(obj);
1658 	if (err)
1659 		goto out;
1660 
1661 	err = i915_mutex_lock_interruptible(dev);
1662 	if (err)
1663 		goto out_unpin;
1664 
1665 	if (read_domains & I915_GEM_DOMAIN_WC)
1666 		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1667 	else if (read_domains & I915_GEM_DOMAIN_GTT)
1668 		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1669 	else
1670 		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1671 
1672 	/* And bump the LRU for this access */
1673 	i915_gem_object_bump_inactive_ggtt(obj);
1674 
1675 	mutex_unlock(&dev->struct_mutex);
1676 
1677 	if (write_domain != 0)
1678 		intel_fb_obj_invalidate(obj,
1679 					fb_write_origin(obj, write_domain));
1680 
1681 out_unpin:
1682 	i915_gem_object_unpin_pages(obj);
1683 out:
1684 	i915_gem_object_put(obj);
1685 	return err;
1686 }
1687 
1688 /**
1689  * Called when user space has done writes to this buffer
1690  * @dev: drm device
1691  * @data: ioctl data blob
1692  * @file: drm file
1693  */
1694 int
1695 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1696 			 struct drm_file *file)
1697 {
1698 	struct drm_i915_gem_sw_finish *args = data;
1699 	struct drm_i915_gem_object *obj;
1700 
1701 	obj = i915_gem_object_lookup(file, args->handle);
1702 	if (!obj)
1703 		return -ENOENT;
1704 
1705 	/*
1706 	 * Proxy objects are barred from CPU access, so there is no
1707 	 * need to ban sw_finish as it is a nop.
1708 	 */
1709 
1710 	/* Pinned buffers may be scanout, so flush the cache */
1711 	i915_gem_object_flush_if_display(obj);
1712 	i915_gem_object_put(obj);
1713 
1714 	return 0;
1715 }
1716 
1717 /**
1718  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1719  *			 it is mapped to.
1720  * @dev: drm device
1721  * @data: ioctl data blob
1722  * @file: drm file
1723  *
1724  * While the mapping holds a reference on the contents of the object, it doesn't
1725  * imply a ref on the object itself.
1726  *
1727  * IMPORTANT:
1728  *
1729  * DRM driver writers who look a this function as an example for how to do GEM
1730  * mmap support, please don't implement mmap support like here. The modern way
1731  * to implement DRM mmap support is with an mmap offset ioctl (like
1732  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1733  * That way debug tooling like valgrind will understand what's going on, hiding
1734  * the mmap call in a driver private ioctl will break that. The i915 driver only
1735  * does cpu mmaps this way because we didn't know better.
1736  */
1737 int
1738 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1739 		    struct drm_file *file)
1740 {
1741 	struct drm_i915_gem_mmap *args = data;
1742 	struct drm_i915_gem_object *obj;
1743 	unsigned long addr;
1744 
1745 	if (args->flags & ~(I915_MMAP_WC))
1746 		return -EINVAL;
1747 
1748 	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1749 		return -ENODEV;
1750 
1751 	obj = i915_gem_object_lookup(file, args->handle);
1752 	if (!obj)
1753 		return -ENOENT;
1754 
1755 	/* prime objects have no backing filp to GEM mmap
1756 	 * pages from.
1757 	 */
1758 	if (!obj->base.filp) {
1759 		i915_gem_object_put(obj);
1760 		return -ENXIO;
1761 	}
1762 
1763 	addr = vm_mmap(obj->base.filp, 0, args->size,
1764 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1765 		       args->offset);
1766 	if (args->flags & I915_MMAP_WC) {
1767 		struct mm_struct *mm = current->mm;
1768 		struct vm_area_struct *vma;
1769 
1770 		if (down_write_killable(&mm->mmap_sem)) {
1771 			i915_gem_object_put(obj);
1772 			return -EINTR;
1773 		}
1774 		vma = find_vma(mm, addr);
1775 		if (vma)
1776 			vma->vm_page_prot =
1777 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1778 		else
1779 			addr = -ENOMEM;
1780 		up_write(&mm->mmap_sem);
1781 
1782 		/* This may race, but that's ok, it only gets set */
1783 		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1784 	}
1785 	i915_gem_object_put(obj);
1786 	if (IS_ERR((void *)addr))
1787 		return addr;
1788 
1789 	args->addr_ptr = (uint64_t) addr;
1790 
1791 	return 0;
1792 }
1793 
1794 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1795 {
1796 	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1797 }
1798 
1799 /**
1800  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1801  *
1802  * A history of the GTT mmap interface:
1803  *
1804  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1805  *     aligned and suitable for fencing, and still fit into the available
1806  *     mappable space left by the pinned display objects. A classic problem
1807  *     we called the page-fault-of-doom where we would ping-pong between
1808  *     two objects that could not fit inside the GTT and so the memcpy
1809  *     would page one object in at the expense of the other between every
1810  *     single byte.
1811  *
1812  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1813  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1814  *     object is too large for the available space (or simply too large
1815  *     for the mappable aperture!), a view is created instead and faulted
1816  *     into userspace. (This view is aligned and sized appropriately for
1817  *     fenced access.)
1818  *
1819  * 2 - Recognise WC as a separate cache domain so that we can flush the
1820  *     delayed writes via GTT before performing direct access via WC.
1821  *
1822  * Restrictions:
1823  *
1824  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1825  *    hangs on some architectures, corruption on others. An attempt to service
1826  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1827  *
1828  *  * the object must be able to fit into RAM (physical memory, though no
1829  *    limited to the mappable aperture).
1830  *
1831  *
1832  * Caveats:
1833  *
1834  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1835  *    all data to system memory. Subsequent access will not be synchronized.
1836  *
1837  *  * all mappings are revoked on runtime device suspend.
1838  *
1839  *  * there are only 8, 16 or 32 fence registers to share between all users
1840  *    (older machines require fence register for display and blitter access
1841  *    as well). Contention of the fence registers will cause the previous users
1842  *    to be unmapped and any new access will generate new page faults.
1843  *
1844  *  * running out of memory while servicing a fault may generate a SIGBUS,
1845  *    rather than the expected SIGSEGV.
1846  */
1847 int i915_gem_mmap_gtt_version(void)
1848 {
1849 	return 2;
1850 }
1851 
1852 static inline struct i915_ggtt_view
1853 compute_partial_view(struct drm_i915_gem_object *obj,
1854 		     pgoff_t page_offset,
1855 		     unsigned int chunk)
1856 {
1857 	struct i915_ggtt_view view;
1858 
1859 	if (i915_gem_object_is_tiled(obj))
1860 		chunk = roundup(chunk, tile_row_pages(obj));
1861 
1862 	view.type = I915_GGTT_VIEW_PARTIAL;
1863 	view.partial.offset = rounddown(page_offset, chunk);
1864 	view.partial.size =
1865 		min_t(unsigned int, chunk,
1866 		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1867 
1868 	/* If the partial covers the entire object, just create a normal VMA. */
1869 	if (chunk >= obj->base.size >> PAGE_SHIFT)
1870 		view.type = I915_GGTT_VIEW_NORMAL;
1871 
1872 	return view;
1873 }
1874 
1875 /**
1876  * i915_gem_fault - fault a page into the GTT
1877  * @vmf: fault info
1878  *
1879  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1880  * from userspace.  The fault handler takes care of binding the object to
1881  * the GTT (if needed), allocating and programming a fence register (again,
1882  * only if needed based on whether the old reg is still valid or the object
1883  * is tiled) and inserting a new PTE into the faulting process.
1884  *
1885  * Note that the faulting process may involve evicting existing objects
1886  * from the GTT and/or fence registers to make room.  So performance may
1887  * suffer if the GTT working set is large or there are few fence registers
1888  * left.
1889  *
1890  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1891  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1892  */
1893 int i915_gem_fault(struct vm_fault *vmf)
1894 {
1895 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1896 	struct vm_area_struct *area = vmf->vma;
1897 	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1898 	struct drm_device *dev = obj->base.dev;
1899 	struct drm_i915_private *dev_priv = to_i915(dev);
1900 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1901 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1902 	struct i915_vma *vma;
1903 	pgoff_t page_offset;
1904 	unsigned int flags;
1905 	int ret;
1906 
1907 	/* We don't use vmf->pgoff since that has the fake offset */
1908 	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1909 
1910 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1911 
1912 	/* Try to flush the object off the GPU first without holding the lock.
1913 	 * Upon acquiring the lock, we will perform our sanity checks and then
1914 	 * repeat the flush holding the lock in the normal manner to catch cases
1915 	 * where we are gazumped.
1916 	 */
1917 	ret = i915_gem_object_wait(obj,
1918 				   I915_WAIT_INTERRUPTIBLE,
1919 				   MAX_SCHEDULE_TIMEOUT,
1920 				   NULL);
1921 	if (ret)
1922 		goto err;
1923 
1924 	ret = i915_gem_object_pin_pages(obj);
1925 	if (ret)
1926 		goto err;
1927 
1928 	intel_runtime_pm_get(dev_priv);
1929 
1930 	ret = i915_mutex_lock_interruptible(dev);
1931 	if (ret)
1932 		goto err_rpm;
1933 
1934 	/* Access to snoopable pages through the GTT is incoherent. */
1935 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1936 		ret = -EFAULT;
1937 		goto err_unlock;
1938 	}
1939 
1940 	/* If the object is smaller than a couple of partial vma, it is
1941 	 * not worth only creating a single partial vma - we may as well
1942 	 * clear enough space for the full object.
1943 	 */
1944 	flags = PIN_MAPPABLE;
1945 	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1946 		flags |= PIN_NONBLOCK | PIN_NONFAULT;
1947 
1948 	/* Now pin it into the GTT as needed */
1949 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1950 	if (IS_ERR(vma)) {
1951 		/* Use a partial view if it is bigger than available space */
1952 		struct i915_ggtt_view view =
1953 			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1954 
1955 		/* Userspace is now writing through an untracked VMA, abandon
1956 		 * all hope that the hardware is able to track future writes.
1957 		 */
1958 		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1959 
1960 		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1961 	}
1962 	if (IS_ERR(vma)) {
1963 		ret = PTR_ERR(vma);
1964 		goto err_unlock;
1965 	}
1966 
1967 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1968 	if (ret)
1969 		goto err_unpin;
1970 
1971 	ret = i915_vma_pin_fence(vma);
1972 	if (ret)
1973 		goto err_unpin;
1974 
1975 	/* Finally, remap it using the new GTT offset */
1976 	ret = remap_io_mapping(area,
1977 			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1978 			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
1979 			       min_t(u64, vma->size, area->vm_end - area->vm_start),
1980 			       &ggtt->iomap);
1981 	if (ret)
1982 		goto err_fence;
1983 
1984 	/* Mark as being mmapped into userspace for later revocation */
1985 	assert_rpm_wakelock_held(dev_priv);
1986 	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
1987 		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1988 	GEM_BUG_ON(!obj->userfault_count);
1989 
1990 	i915_vma_set_ggtt_write(vma);
1991 
1992 err_fence:
1993 	i915_vma_unpin_fence(vma);
1994 err_unpin:
1995 	__i915_vma_unpin(vma);
1996 err_unlock:
1997 	mutex_unlock(&dev->struct_mutex);
1998 err_rpm:
1999 	intel_runtime_pm_put(dev_priv);
2000 	i915_gem_object_unpin_pages(obj);
2001 err:
2002 	switch (ret) {
2003 	case -EIO:
2004 		/*
2005 		 * We eat errors when the gpu is terminally wedged to avoid
2006 		 * userspace unduly crashing (gl has no provisions for mmaps to
2007 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2008 		 * and so needs to be reported.
2009 		 */
2010 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2011 			ret = VM_FAULT_SIGBUS;
2012 			break;
2013 		}
2014 	case -EAGAIN:
2015 		/*
2016 		 * EAGAIN means the gpu is hung and we'll wait for the error
2017 		 * handler to reset everything when re-faulting in
2018 		 * i915_mutex_lock_interruptible.
2019 		 */
2020 	case 0:
2021 	case -ERESTARTSYS:
2022 	case -EINTR:
2023 	case -EBUSY:
2024 		/*
2025 		 * EBUSY is ok: this just means that another thread
2026 		 * already did the job.
2027 		 */
2028 		ret = VM_FAULT_NOPAGE;
2029 		break;
2030 	case -ENOMEM:
2031 		ret = VM_FAULT_OOM;
2032 		break;
2033 	case -ENOSPC:
2034 	case -EFAULT:
2035 		ret = VM_FAULT_SIGBUS;
2036 		break;
2037 	default:
2038 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2039 		ret = VM_FAULT_SIGBUS;
2040 		break;
2041 	}
2042 	return ret;
2043 }
2044 
2045 static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
2046 {
2047 	struct i915_vma *vma;
2048 
2049 	GEM_BUG_ON(!obj->userfault_count);
2050 
2051 	obj->userfault_count = 0;
2052 	list_del(&obj->userfault_link);
2053 	drm_vma_node_unmap(&obj->base.vma_node,
2054 			   obj->base.dev->anon_inode->i_mapping);
2055 
2056 	for_each_ggtt_vma(vma, obj)
2057 		i915_vma_unset_userfault(vma);
2058 }
2059 
2060 /**
2061  * i915_gem_release_mmap - remove physical page mappings
2062  * @obj: obj in question
2063  *
2064  * Preserve the reservation of the mmapping with the DRM core code, but
2065  * relinquish ownership of the pages back to the system.
2066  *
2067  * It is vital that we remove the page mapping if we have mapped a tiled
2068  * object through the GTT and then lose the fence register due to
2069  * resource pressure. Similarly if the object has been moved out of the
2070  * aperture, than pages mapped into userspace must be revoked. Removing the
2071  * mapping will then trigger a page fault on the next user access, allowing
2072  * fixup by i915_gem_fault().
2073  */
2074 void
2075 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2076 {
2077 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2078 
2079 	/* Serialisation between user GTT access and our code depends upon
2080 	 * revoking the CPU's PTE whilst the mutex is held. The next user
2081 	 * pagefault then has to wait until we release the mutex.
2082 	 *
2083 	 * Note that RPM complicates somewhat by adding an additional
2084 	 * requirement that operations to the GGTT be made holding the RPM
2085 	 * wakeref.
2086 	 */
2087 	lockdep_assert_held(&i915->drm.struct_mutex);
2088 	intel_runtime_pm_get(i915);
2089 
2090 	if (!obj->userfault_count)
2091 		goto out;
2092 
2093 	__i915_gem_object_release_mmap(obj);
2094 
2095 	/* Ensure that the CPU's PTE are revoked and there are not outstanding
2096 	 * memory transactions from userspace before we return. The TLB
2097 	 * flushing implied above by changing the PTE above *should* be
2098 	 * sufficient, an extra barrier here just provides us with a bit
2099 	 * of paranoid documentation about our requirement to serialise
2100 	 * memory writes before touching registers / GSM.
2101 	 */
2102 	wmb();
2103 
2104 out:
2105 	intel_runtime_pm_put(i915);
2106 }
2107 
2108 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2109 {
2110 	struct drm_i915_gem_object *obj, *on;
2111 	int i;
2112 
2113 	/*
2114 	 * Only called during RPM suspend. All users of the userfault_list
2115 	 * must be holding an RPM wakeref to ensure that this can not
2116 	 * run concurrently with themselves (and use the struct_mutex for
2117 	 * protection between themselves).
2118 	 */
2119 
2120 	list_for_each_entry_safe(obj, on,
2121 				 &dev_priv->mm.userfault_list, userfault_link)
2122 		__i915_gem_object_release_mmap(obj);
2123 
2124 	/* The fence will be lost when the device powers down. If any were
2125 	 * in use by hardware (i.e. they are pinned), we should not be powering
2126 	 * down! All other fences will be reacquired by the user upon waking.
2127 	 */
2128 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2129 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2130 
2131 		/* Ideally we want to assert that the fence register is not
2132 		 * live at this point (i.e. that no piece of code will be
2133 		 * trying to write through fence + GTT, as that both violates
2134 		 * our tracking of activity and associated locking/barriers,
2135 		 * but also is illegal given that the hw is powered down).
2136 		 *
2137 		 * Previously we used reg->pin_count as a "liveness" indicator.
2138 		 * That is not sufficient, and we need a more fine-grained
2139 		 * tool if we want to have a sanity check here.
2140 		 */
2141 
2142 		if (!reg->vma)
2143 			continue;
2144 
2145 		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2146 		reg->dirty = true;
2147 	}
2148 }
2149 
2150 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2151 {
2152 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2153 	int err;
2154 
2155 	err = drm_gem_create_mmap_offset(&obj->base);
2156 	if (likely(!err))
2157 		return 0;
2158 
2159 	/* Attempt to reap some mmap space from dead objects */
2160 	do {
2161 		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2162 		if (err)
2163 			break;
2164 
2165 		i915_gem_drain_freed_objects(dev_priv);
2166 		err = drm_gem_create_mmap_offset(&obj->base);
2167 		if (!err)
2168 			break;
2169 
2170 	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2171 
2172 	return err;
2173 }
2174 
2175 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2176 {
2177 	drm_gem_free_mmap_offset(&obj->base);
2178 }
2179 
2180 int
2181 i915_gem_mmap_gtt(struct drm_file *file,
2182 		  struct drm_device *dev,
2183 		  uint32_t handle,
2184 		  uint64_t *offset)
2185 {
2186 	struct drm_i915_gem_object *obj;
2187 	int ret;
2188 
2189 	obj = i915_gem_object_lookup(file, handle);
2190 	if (!obj)
2191 		return -ENOENT;
2192 
2193 	ret = i915_gem_object_create_mmap_offset(obj);
2194 	if (ret == 0)
2195 		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2196 
2197 	i915_gem_object_put(obj);
2198 	return ret;
2199 }
2200 
2201 /**
2202  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2203  * @dev: DRM device
2204  * @data: GTT mapping ioctl data
2205  * @file: GEM object info
2206  *
2207  * Simply returns the fake offset to userspace so it can mmap it.
2208  * The mmap call will end up in drm_gem_mmap(), which will set things
2209  * up so we can get faults in the handler above.
2210  *
2211  * The fault handler will take care of binding the object into the GTT
2212  * (since it may have been evicted to make room for something), allocating
2213  * a fence register, and mapping the appropriate aperture address into
2214  * userspace.
2215  */
2216 int
2217 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2218 			struct drm_file *file)
2219 {
2220 	struct drm_i915_gem_mmap_gtt *args = data;
2221 
2222 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2223 }
2224 
2225 /* Immediately discard the backing storage */
2226 static void
2227 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2228 {
2229 	i915_gem_object_free_mmap_offset(obj);
2230 
2231 	if (obj->base.filp == NULL)
2232 		return;
2233 
2234 	/* Our goal here is to return as much of the memory as
2235 	 * is possible back to the system as we are called from OOM.
2236 	 * To do this we must instruct the shmfs to drop all of its
2237 	 * backing pages, *now*.
2238 	 */
2239 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2240 	obj->mm.madv = __I915_MADV_PURGED;
2241 	obj->mm.pages = ERR_PTR(-EFAULT);
2242 }
2243 
2244 /* Try to discard unwanted pages */
2245 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2246 {
2247 	struct address_space *mapping;
2248 
2249 	lockdep_assert_held(&obj->mm.lock);
2250 	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2251 
2252 	switch (obj->mm.madv) {
2253 	case I915_MADV_DONTNEED:
2254 		i915_gem_object_truncate(obj);
2255 	case __I915_MADV_PURGED:
2256 		return;
2257 	}
2258 
2259 	if (obj->base.filp == NULL)
2260 		return;
2261 
2262 	mapping = obj->base.filp->f_mapping,
2263 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2264 }
2265 
2266 static void
2267 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2268 			      struct sg_table *pages)
2269 {
2270 	struct sgt_iter sgt_iter;
2271 	struct page *page;
2272 
2273 	__i915_gem_object_release_shmem(obj, pages, true);
2274 
2275 	i915_gem_gtt_finish_pages(obj, pages);
2276 
2277 	if (i915_gem_object_needs_bit17_swizzle(obj))
2278 		i915_gem_object_save_bit_17_swizzle(obj, pages);
2279 
2280 	for_each_sgt_page(page, sgt_iter, pages) {
2281 		if (obj->mm.dirty)
2282 			set_page_dirty(page);
2283 
2284 		if (obj->mm.madv == I915_MADV_WILLNEED)
2285 			mark_page_accessed(page);
2286 
2287 		put_page(page);
2288 	}
2289 	obj->mm.dirty = false;
2290 
2291 	sg_free_table(pages);
2292 	kfree(pages);
2293 }
2294 
2295 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2296 {
2297 	struct radix_tree_iter iter;
2298 	void __rcu **slot;
2299 
2300 	rcu_read_lock();
2301 	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2302 		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2303 	rcu_read_unlock();
2304 }
2305 
2306 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2307 				 enum i915_mm_subclass subclass)
2308 {
2309 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2310 	struct sg_table *pages;
2311 
2312 	if (i915_gem_object_has_pinned_pages(obj))
2313 		return;
2314 
2315 	GEM_BUG_ON(obj->bind_count);
2316 	if (!i915_gem_object_has_pages(obj))
2317 		return;
2318 
2319 	/* May be called by shrinker from within get_pages() (on another bo) */
2320 	mutex_lock_nested(&obj->mm.lock, subclass);
2321 	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2322 		goto unlock;
2323 
2324 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2325 	 * array, hence protect them from being reaped by removing them from gtt
2326 	 * lists early. */
2327 	pages = fetch_and_zero(&obj->mm.pages);
2328 	GEM_BUG_ON(!pages);
2329 
2330 	spin_lock(&i915->mm.obj_lock);
2331 	list_del(&obj->mm.link);
2332 	spin_unlock(&i915->mm.obj_lock);
2333 
2334 	if (obj->mm.mapping) {
2335 		void *ptr;
2336 
2337 		ptr = page_mask_bits(obj->mm.mapping);
2338 		if (is_vmalloc_addr(ptr))
2339 			vunmap(ptr);
2340 		else
2341 			kunmap(kmap_to_page(ptr));
2342 
2343 		obj->mm.mapping = NULL;
2344 	}
2345 
2346 	__i915_gem_object_reset_page_iter(obj);
2347 
2348 	if (!IS_ERR(pages))
2349 		obj->ops->put_pages(obj, pages);
2350 
2351 	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2352 
2353 unlock:
2354 	mutex_unlock(&obj->mm.lock);
2355 }
2356 
2357 static bool i915_sg_trim(struct sg_table *orig_st)
2358 {
2359 	struct sg_table new_st;
2360 	struct scatterlist *sg, *new_sg;
2361 	unsigned int i;
2362 
2363 	if (orig_st->nents == orig_st->orig_nents)
2364 		return false;
2365 
2366 	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2367 		return false;
2368 
2369 	new_sg = new_st.sgl;
2370 	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2371 		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2372 		/* called before being DMA mapped, no need to copy sg->dma_* */
2373 		new_sg = sg_next(new_sg);
2374 	}
2375 	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2376 
2377 	sg_free_table(orig_st);
2378 
2379 	*orig_st = new_st;
2380 	return true;
2381 }
2382 
2383 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2384 {
2385 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2386 	const unsigned long page_count = obj->base.size / PAGE_SIZE;
2387 	unsigned long i;
2388 	struct address_space *mapping;
2389 	struct sg_table *st;
2390 	struct scatterlist *sg;
2391 	struct sgt_iter sgt_iter;
2392 	struct page *page;
2393 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2394 	unsigned int max_segment = i915_sg_segment_size();
2395 	unsigned int sg_page_sizes;
2396 	gfp_t noreclaim;
2397 	int ret;
2398 
2399 	/* Assert that the object is not currently in any GPU domain. As it
2400 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2401 	 * a GPU cache
2402 	 */
2403 	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2404 	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2405 
2406 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2407 	if (st == NULL)
2408 		return -ENOMEM;
2409 
2410 rebuild_st:
2411 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2412 		kfree(st);
2413 		return -ENOMEM;
2414 	}
2415 
2416 	/* Get the list of pages out of our struct file.  They'll be pinned
2417 	 * at this point until we release them.
2418 	 *
2419 	 * Fail silently without starting the shrinker
2420 	 */
2421 	mapping = obj->base.filp->f_mapping;
2422 	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2423 	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2424 
2425 	sg = st->sgl;
2426 	st->nents = 0;
2427 	sg_page_sizes = 0;
2428 	for (i = 0; i < page_count; i++) {
2429 		const unsigned int shrink[] = {
2430 			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2431 			0,
2432 		}, *s = shrink;
2433 		gfp_t gfp = noreclaim;
2434 
2435 		do {
2436 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2437 			if (likely(!IS_ERR(page)))
2438 				break;
2439 
2440 			if (!*s) {
2441 				ret = PTR_ERR(page);
2442 				goto err_sg;
2443 			}
2444 
2445 			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2446 			cond_resched();
2447 
2448 			/* We've tried hard to allocate the memory by reaping
2449 			 * our own buffer, now let the real VM do its job and
2450 			 * go down in flames if truly OOM.
2451 			 *
2452 			 * However, since graphics tend to be disposable,
2453 			 * defer the oom here by reporting the ENOMEM back
2454 			 * to userspace.
2455 			 */
2456 			if (!*s) {
2457 				/* reclaim and warn, but no oom */
2458 				gfp = mapping_gfp_mask(mapping);
2459 
2460 				/* Our bo are always dirty and so we require
2461 				 * kswapd to reclaim our pages (direct reclaim
2462 				 * does not effectively begin pageout of our
2463 				 * buffers on its own). However, direct reclaim
2464 				 * only waits for kswapd when under allocation
2465 				 * congestion. So as a result __GFP_RECLAIM is
2466 				 * unreliable and fails to actually reclaim our
2467 				 * dirty pages -- unless you try over and over
2468 				 * again with !__GFP_NORETRY. However, we still
2469 				 * want to fail this allocation rather than
2470 				 * trigger the out-of-memory killer and for
2471 				 * this we want __GFP_RETRY_MAYFAIL.
2472 				 */
2473 				gfp |= __GFP_RETRY_MAYFAIL;
2474 			}
2475 		} while (1);
2476 
2477 		if (!i ||
2478 		    sg->length >= max_segment ||
2479 		    page_to_pfn(page) != last_pfn + 1) {
2480 			if (i) {
2481 				sg_page_sizes |= sg->length;
2482 				sg = sg_next(sg);
2483 			}
2484 			st->nents++;
2485 			sg_set_page(sg, page, PAGE_SIZE, 0);
2486 		} else {
2487 			sg->length += PAGE_SIZE;
2488 		}
2489 		last_pfn = page_to_pfn(page);
2490 
2491 		/* Check that the i965g/gm workaround works. */
2492 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2493 	}
2494 	if (sg) { /* loop terminated early; short sg table */
2495 		sg_page_sizes |= sg->length;
2496 		sg_mark_end(sg);
2497 	}
2498 
2499 	/* Trim unused sg entries to avoid wasting memory. */
2500 	i915_sg_trim(st);
2501 
2502 	ret = i915_gem_gtt_prepare_pages(obj, st);
2503 	if (ret) {
2504 		/* DMA remapping failed? One possible cause is that
2505 		 * it could not reserve enough large entries, asking
2506 		 * for PAGE_SIZE chunks instead may be helpful.
2507 		 */
2508 		if (max_segment > PAGE_SIZE) {
2509 			for_each_sgt_page(page, sgt_iter, st)
2510 				put_page(page);
2511 			sg_free_table(st);
2512 
2513 			max_segment = PAGE_SIZE;
2514 			goto rebuild_st;
2515 		} else {
2516 			dev_warn(&dev_priv->drm.pdev->dev,
2517 				 "Failed to DMA remap %lu pages\n",
2518 				 page_count);
2519 			goto err_pages;
2520 		}
2521 	}
2522 
2523 	if (i915_gem_object_needs_bit17_swizzle(obj))
2524 		i915_gem_object_do_bit_17_swizzle(obj, st);
2525 
2526 	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2527 
2528 	return 0;
2529 
2530 err_sg:
2531 	sg_mark_end(sg);
2532 err_pages:
2533 	for_each_sgt_page(page, sgt_iter, st)
2534 		put_page(page);
2535 	sg_free_table(st);
2536 	kfree(st);
2537 
2538 	/* shmemfs first checks if there is enough memory to allocate the page
2539 	 * and reports ENOSPC should there be insufficient, along with the usual
2540 	 * ENOMEM for a genuine allocation failure.
2541 	 *
2542 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2543 	 * space and so want to translate the error from shmemfs back to our
2544 	 * usual understanding of ENOMEM.
2545 	 */
2546 	if (ret == -ENOSPC)
2547 		ret = -ENOMEM;
2548 
2549 	return ret;
2550 }
2551 
2552 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2553 				 struct sg_table *pages,
2554 				 unsigned int sg_page_sizes)
2555 {
2556 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2557 	unsigned long supported = INTEL_INFO(i915)->page_sizes;
2558 	int i;
2559 
2560 	lockdep_assert_held(&obj->mm.lock);
2561 
2562 	obj->mm.get_page.sg_pos = pages->sgl;
2563 	obj->mm.get_page.sg_idx = 0;
2564 
2565 	obj->mm.pages = pages;
2566 
2567 	if (i915_gem_object_is_tiled(obj) &&
2568 	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2569 		GEM_BUG_ON(obj->mm.quirked);
2570 		__i915_gem_object_pin_pages(obj);
2571 		obj->mm.quirked = true;
2572 	}
2573 
2574 	GEM_BUG_ON(!sg_page_sizes);
2575 	obj->mm.page_sizes.phys = sg_page_sizes;
2576 
2577 	/*
2578 	 * Calculate the supported page-sizes which fit into the given
2579 	 * sg_page_sizes. This will give us the page-sizes which we may be able
2580 	 * to use opportunistically when later inserting into the GTT. For
2581 	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
2582 	 * 64K or 4K pages, although in practice this will depend on a number of
2583 	 * other factors.
2584 	 */
2585 	obj->mm.page_sizes.sg = 0;
2586 	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2587 		if (obj->mm.page_sizes.phys & ~0u << i)
2588 			obj->mm.page_sizes.sg |= BIT(i);
2589 	}
2590 	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2591 
2592 	spin_lock(&i915->mm.obj_lock);
2593 	list_add(&obj->mm.link, &i915->mm.unbound_list);
2594 	spin_unlock(&i915->mm.obj_lock);
2595 }
2596 
2597 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2598 {
2599 	int err;
2600 
2601 	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2602 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2603 		return -EFAULT;
2604 	}
2605 
2606 	err = obj->ops->get_pages(obj);
2607 	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2608 
2609 	return err;
2610 }
2611 
2612 /* Ensure that the associated pages are gathered from the backing storage
2613  * and pinned into our object. i915_gem_object_pin_pages() may be called
2614  * multiple times before they are released by a single call to
2615  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2616  * either as a result of memory pressure (reaping pages under the shrinker)
2617  * or as the object is itself released.
2618  */
2619 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2620 {
2621 	int err;
2622 
2623 	err = mutex_lock_interruptible(&obj->mm.lock);
2624 	if (err)
2625 		return err;
2626 
2627 	if (unlikely(!i915_gem_object_has_pages(obj))) {
2628 		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2629 
2630 		err = ____i915_gem_object_get_pages(obj);
2631 		if (err)
2632 			goto unlock;
2633 
2634 		smp_mb__before_atomic();
2635 	}
2636 	atomic_inc(&obj->mm.pages_pin_count);
2637 
2638 unlock:
2639 	mutex_unlock(&obj->mm.lock);
2640 	return err;
2641 }
2642 
2643 /* The 'mapping' part of i915_gem_object_pin_map() below */
2644 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2645 				 enum i915_map_type type)
2646 {
2647 	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2648 	struct sg_table *sgt = obj->mm.pages;
2649 	struct sgt_iter sgt_iter;
2650 	struct page *page;
2651 	struct page *stack_pages[32];
2652 	struct page **pages = stack_pages;
2653 	unsigned long i = 0;
2654 	pgprot_t pgprot;
2655 	void *addr;
2656 
2657 	/* A single page can always be kmapped */
2658 	if (n_pages == 1 && type == I915_MAP_WB)
2659 		return kmap(sg_page(sgt->sgl));
2660 
2661 	if (n_pages > ARRAY_SIZE(stack_pages)) {
2662 		/* Too big for stack -- allocate temporary array instead */
2663 		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2664 		if (!pages)
2665 			return NULL;
2666 	}
2667 
2668 	for_each_sgt_page(page, sgt_iter, sgt)
2669 		pages[i++] = page;
2670 
2671 	/* Check that we have the expected number of pages */
2672 	GEM_BUG_ON(i != n_pages);
2673 
2674 	switch (type) {
2675 	default:
2676 		MISSING_CASE(type);
2677 		/* fallthrough to use PAGE_KERNEL anyway */
2678 	case I915_MAP_WB:
2679 		pgprot = PAGE_KERNEL;
2680 		break;
2681 	case I915_MAP_WC:
2682 		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2683 		break;
2684 	}
2685 	addr = vmap(pages, n_pages, 0, pgprot);
2686 
2687 	if (pages != stack_pages)
2688 		kvfree(pages);
2689 
2690 	return addr;
2691 }
2692 
2693 /* get, pin, and map the pages of the object into kernel space */
2694 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2695 			      enum i915_map_type type)
2696 {
2697 	enum i915_map_type has_type;
2698 	bool pinned;
2699 	void *ptr;
2700 	int ret;
2701 
2702 	if (unlikely(!i915_gem_object_has_struct_page(obj)))
2703 		return ERR_PTR(-ENXIO);
2704 
2705 	ret = mutex_lock_interruptible(&obj->mm.lock);
2706 	if (ret)
2707 		return ERR_PTR(ret);
2708 
2709 	pinned = !(type & I915_MAP_OVERRIDE);
2710 	type &= ~I915_MAP_OVERRIDE;
2711 
2712 	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2713 		if (unlikely(!i915_gem_object_has_pages(obj))) {
2714 			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2715 
2716 			ret = ____i915_gem_object_get_pages(obj);
2717 			if (ret)
2718 				goto err_unlock;
2719 
2720 			smp_mb__before_atomic();
2721 		}
2722 		atomic_inc(&obj->mm.pages_pin_count);
2723 		pinned = false;
2724 	}
2725 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2726 
2727 	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2728 	if (ptr && has_type != type) {
2729 		if (pinned) {
2730 			ret = -EBUSY;
2731 			goto err_unpin;
2732 		}
2733 
2734 		if (is_vmalloc_addr(ptr))
2735 			vunmap(ptr);
2736 		else
2737 			kunmap(kmap_to_page(ptr));
2738 
2739 		ptr = obj->mm.mapping = NULL;
2740 	}
2741 
2742 	if (!ptr) {
2743 		ptr = i915_gem_object_map(obj, type);
2744 		if (!ptr) {
2745 			ret = -ENOMEM;
2746 			goto err_unpin;
2747 		}
2748 
2749 		obj->mm.mapping = page_pack_bits(ptr, type);
2750 	}
2751 
2752 out_unlock:
2753 	mutex_unlock(&obj->mm.lock);
2754 	return ptr;
2755 
2756 err_unpin:
2757 	atomic_dec(&obj->mm.pages_pin_count);
2758 err_unlock:
2759 	ptr = ERR_PTR(ret);
2760 	goto out_unlock;
2761 }
2762 
2763 static int
2764 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2765 			   const struct drm_i915_gem_pwrite *arg)
2766 {
2767 	struct address_space *mapping = obj->base.filp->f_mapping;
2768 	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2769 	u64 remain, offset;
2770 	unsigned int pg;
2771 
2772 	/* Before we instantiate/pin the backing store for our use, we
2773 	 * can prepopulate the shmemfs filp efficiently using a write into
2774 	 * the pagecache. We avoid the penalty of instantiating all the
2775 	 * pages, important if the user is just writing to a few and never
2776 	 * uses the object on the GPU, and using a direct write into shmemfs
2777 	 * allows it to avoid the cost of retrieving a page (either swapin
2778 	 * or clearing-before-use) before it is overwritten.
2779 	 */
2780 	if (i915_gem_object_has_pages(obj))
2781 		return -ENODEV;
2782 
2783 	if (obj->mm.madv != I915_MADV_WILLNEED)
2784 		return -EFAULT;
2785 
2786 	/* Before the pages are instantiated the object is treated as being
2787 	 * in the CPU domain. The pages will be clflushed as required before
2788 	 * use, and we can freely write into the pages directly. If userspace
2789 	 * races pwrite with any other operation; corruption will ensue -
2790 	 * that is userspace's prerogative!
2791 	 */
2792 
2793 	remain = arg->size;
2794 	offset = arg->offset;
2795 	pg = offset_in_page(offset);
2796 
2797 	do {
2798 		unsigned int len, unwritten;
2799 		struct page *page;
2800 		void *data, *vaddr;
2801 		int err;
2802 
2803 		len = PAGE_SIZE - pg;
2804 		if (len > remain)
2805 			len = remain;
2806 
2807 		err = pagecache_write_begin(obj->base.filp, mapping,
2808 					    offset, len, 0,
2809 					    &page, &data);
2810 		if (err < 0)
2811 			return err;
2812 
2813 		vaddr = kmap(page);
2814 		unwritten = copy_from_user(vaddr + pg, user_data, len);
2815 		kunmap(page);
2816 
2817 		err = pagecache_write_end(obj->base.filp, mapping,
2818 					  offset, len, len - unwritten,
2819 					  page, data);
2820 		if (err < 0)
2821 			return err;
2822 
2823 		if (unwritten)
2824 			return -EFAULT;
2825 
2826 		remain -= len;
2827 		user_data += len;
2828 		offset += len;
2829 		pg = 0;
2830 	} while (remain);
2831 
2832 	return 0;
2833 }
2834 
2835 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2836 {
2837 	bool banned;
2838 
2839 	atomic_inc(&ctx->guilty_count);
2840 
2841 	banned = false;
2842 	if (i915_gem_context_is_bannable(ctx)) {
2843 		unsigned int score;
2844 
2845 		score = atomic_add_return(CONTEXT_SCORE_GUILTY,
2846 					  &ctx->ban_score);
2847 		banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;
2848 
2849 		DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2850 				 ctx->name, score, yesno(banned));
2851 	}
2852 	if (!banned)
2853 		return;
2854 
2855 	i915_gem_context_set_banned(ctx);
2856 	if (!IS_ERR_OR_NULL(ctx->file_priv)) {
2857 		atomic_inc(&ctx->file_priv->context_bans);
2858 		DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2859 				 ctx->name, atomic_read(&ctx->file_priv->context_bans));
2860 	}
2861 }
2862 
2863 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2864 {
2865 	atomic_inc(&ctx->active_count);
2866 }
2867 
2868 struct i915_request *
2869 i915_gem_find_active_request(struct intel_engine_cs *engine)
2870 {
2871 	struct i915_request *request, *active = NULL;
2872 	unsigned long flags;
2873 
2874 	/* We are called by the error capture and reset at a random
2875 	 * point in time. In particular, note that neither is crucially
2876 	 * ordered with an interrupt. After a hang, the GPU is dead and we
2877 	 * assume that no more writes can happen (we waited long enough for
2878 	 * all writes that were in transaction to be flushed) - adding an
2879 	 * extra delay for a recent interrupt is pointless. Hence, we do
2880 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2881 	 */
2882 	spin_lock_irqsave(&engine->timeline->lock, flags);
2883 	list_for_each_entry(request, &engine->timeline->requests, link) {
2884 		if (__i915_request_completed(request, request->global_seqno))
2885 			continue;
2886 
2887 		GEM_BUG_ON(request->engine != engine);
2888 		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2889 				    &request->fence.flags));
2890 
2891 		active = request;
2892 		break;
2893 	}
2894 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2895 
2896 	return active;
2897 }
2898 
2899 static bool engine_stalled(struct intel_engine_cs *engine)
2900 {
2901 	if (!engine->hangcheck.stalled)
2902 		return false;
2903 
2904 	/* Check for possible seqno movement after hang declaration */
2905 	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2906 		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2907 		return false;
2908 	}
2909 
2910 	return true;
2911 }
2912 
2913 /*
2914  * Ensure irq handler finishes, and not run again.
2915  * Also return the active request so that we only search for it once.
2916  */
2917 struct i915_request *
2918 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
2919 {
2920 	struct i915_request *request = NULL;
2921 
2922 	/*
2923 	 * During the reset sequence, we must prevent the engine from
2924 	 * entering RC6. As the context state is undefined until we restart
2925 	 * the engine, if it does enter RC6 during the reset, the state
2926 	 * written to the powercontext is undefined and so we may lose
2927 	 * GPU state upon resume, i.e. fail to restart after a reset.
2928 	 */
2929 	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
2930 
2931 	/*
2932 	 * Prevent the signaler thread from updating the request
2933 	 * state (by calling dma_fence_signal) as we are processing
2934 	 * the reset. The write from the GPU of the seqno is
2935 	 * asynchronous and the signaler thread may see a different
2936 	 * value to us and declare the request complete, even though
2937 	 * the reset routine have picked that request as the active
2938 	 * (incomplete) request. This conflict is not handled
2939 	 * gracefully!
2940 	 */
2941 	kthread_park(engine->breadcrumbs.signaler);
2942 
2943 	/*
2944 	 * Prevent request submission to the hardware until we have
2945 	 * completed the reset in i915_gem_reset_finish(). If a request
2946 	 * is completed by one engine, it may then queue a request
2947 	 * to a second via its execlists->tasklet *just* as we are
2948 	 * calling engine->init_hw() and also writing the ELSP.
2949 	 * Turning off the execlists->tasklet until the reset is over
2950 	 * prevents the race.
2951 	 *
2952 	 * Note that this needs to be a single atomic operation on the
2953 	 * tasklet (flush existing tasks, prevent new tasks) to prevent
2954 	 * a race between reset and set-wedged. It is not, so we do the best
2955 	 * we can atm and make sure we don't lock the machine up in the more
2956 	 * common case of recursively being called from set-wedged from inside
2957 	 * i915_reset.
2958 	 */
2959 	if (!atomic_read(&engine->execlists.tasklet.count))
2960 		tasklet_kill(&engine->execlists.tasklet);
2961 	tasklet_disable(&engine->execlists.tasklet);
2962 
2963 	/*
2964 	 * We're using worker to queue preemption requests from the tasklet in
2965 	 * GuC submission mode.
2966 	 * Even though tasklet was disabled, we may still have a worker queued.
2967 	 * Let's make sure that all workers scheduled before disabling the
2968 	 * tasklet are completed before continuing with the reset.
2969 	 */
2970 	if (engine->i915->guc.preempt_wq)
2971 		flush_workqueue(engine->i915->guc.preempt_wq);
2972 
2973 	if (engine->irq_seqno_barrier)
2974 		engine->irq_seqno_barrier(engine);
2975 
2976 	request = i915_gem_find_active_request(engine);
2977 	if (request && request->fence.error == -EIO)
2978 		request = ERR_PTR(-EIO); /* Previous reset failed! */
2979 
2980 	return request;
2981 }
2982 
2983 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2984 {
2985 	struct intel_engine_cs *engine;
2986 	struct i915_request *request;
2987 	enum intel_engine_id id;
2988 	int err = 0;
2989 
2990 	for_each_engine(engine, dev_priv, id) {
2991 		request = i915_gem_reset_prepare_engine(engine);
2992 		if (IS_ERR(request)) {
2993 			err = PTR_ERR(request);
2994 			continue;
2995 		}
2996 
2997 		engine->hangcheck.active_request = request;
2998 	}
2999 
3000 	i915_gem_revoke_fences(dev_priv);
3001 
3002 	return err;
3003 }
3004 
3005 static void skip_request(struct i915_request *request)
3006 {
3007 	void *vaddr = request->ring->vaddr;
3008 	u32 head;
3009 
3010 	/* As this request likely depends on state from the lost
3011 	 * context, clear out all the user operations leaving the
3012 	 * breadcrumb at the end (so we get the fence notifications).
3013 	 */
3014 	head = request->head;
3015 	if (request->postfix < head) {
3016 		memset(vaddr + head, 0, request->ring->size - head);
3017 		head = 0;
3018 	}
3019 	memset(vaddr + head, 0, request->postfix - head);
3020 
3021 	dma_fence_set_error(&request->fence, -EIO);
3022 }
3023 
3024 static void engine_skip_context(struct i915_request *request)
3025 {
3026 	struct intel_engine_cs *engine = request->engine;
3027 	struct i915_gem_context *hung_ctx = request->ctx;
3028 	struct intel_timeline *timeline;
3029 	unsigned long flags;
3030 
3031 	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
3032 
3033 	spin_lock_irqsave(&engine->timeline->lock, flags);
3034 	spin_lock(&timeline->lock);
3035 
3036 	list_for_each_entry_continue(request, &engine->timeline->requests, link)
3037 		if (request->ctx == hung_ctx)
3038 			skip_request(request);
3039 
3040 	list_for_each_entry(request, &timeline->requests, link)
3041 		skip_request(request);
3042 
3043 	spin_unlock(&timeline->lock);
3044 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
3045 }
3046 
3047 /* Returns the request if it was guilty of the hang */
3048 static struct i915_request *
3049 i915_gem_reset_request(struct intel_engine_cs *engine,
3050 		       struct i915_request *request)
3051 {
3052 	/* The guilty request will get skipped on a hung engine.
3053 	 *
3054 	 * Users of client default contexts do not rely on logical
3055 	 * state preserved between batches so it is safe to execute
3056 	 * queued requests following the hang. Non default contexts
3057 	 * rely on preserved state, so skipping a batch loses the
3058 	 * evolution of the state and it needs to be considered corrupted.
3059 	 * Executing more queued batches on top of corrupted state is
3060 	 * risky. But we take the risk by trying to advance through
3061 	 * the queued requests in order to make the client behaviour
3062 	 * more predictable around resets, by not throwing away random
3063 	 * amount of batches it has prepared for execution. Sophisticated
3064 	 * clients can use gem_reset_stats_ioctl and dma fence status
3065 	 * (exported via sync_file info ioctl on explicit fences) to observe
3066 	 * when it loses the context state and should rebuild accordingly.
3067 	 *
3068 	 * The context ban, and ultimately the client ban, mechanism are safety
3069 	 * valves if client submission ends up resulting in nothing more than
3070 	 * subsequent hangs.
3071 	 */
3072 
3073 	if (engine_stalled(engine)) {
3074 		i915_gem_context_mark_guilty(request->ctx);
3075 		skip_request(request);
3076 
3077 		/* If this context is now banned, skip all pending requests. */
3078 		if (i915_gem_context_is_banned(request->ctx))
3079 			engine_skip_context(request);
3080 	} else {
3081 		/*
3082 		 * Since this is not the hung engine, it may have advanced
3083 		 * since the hang declaration. Double check by refinding
3084 		 * the active request at the time of the reset.
3085 		 */
3086 		request = i915_gem_find_active_request(engine);
3087 		if (request) {
3088 			i915_gem_context_mark_innocent(request->ctx);
3089 			dma_fence_set_error(&request->fence, -EAGAIN);
3090 
3091 			/* Rewind the engine to replay the incomplete rq */
3092 			spin_lock_irq(&engine->timeline->lock);
3093 			request = list_prev_entry(request, link);
3094 			if (&request->link == &engine->timeline->requests)
3095 				request = NULL;
3096 			spin_unlock_irq(&engine->timeline->lock);
3097 		}
3098 	}
3099 
3100 	return request;
3101 }
3102 
3103 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3104 			   struct i915_request *request)
3105 {
3106 	/*
3107 	 * Make sure this write is visible before we re-enable the interrupt
3108 	 * handlers on another CPU, as tasklet_enable() resolves to just
3109 	 * a compiler barrier which is insufficient for our purpose here.
3110 	 */
3111 	smp_store_mb(engine->irq_posted, 0);
3112 
3113 	if (request)
3114 		request = i915_gem_reset_request(engine, request);
3115 
3116 	if (request) {
3117 		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
3118 				 engine->name, request->global_seqno);
3119 	}
3120 
3121 	/* Setup the CS to resume from the breadcrumb of the hung request */
3122 	engine->reset_hw(engine, request);
3123 }
3124 
3125 void i915_gem_reset(struct drm_i915_private *dev_priv)
3126 {
3127 	struct intel_engine_cs *engine;
3128 	enum intel_engine_id id;
3129 
3130 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3131 
3132 	i915_retire_requests(dev_priv);
3133 
3134 	for_each_engine(engine, dev_priv, id) {
3135 		struct i915_gem_context *ctx;
3136 
3137 		i915_gem_reset_engine(engine, engine->hangcheck.active_request);
3138 		ctx = fetch_and_zero(&engine->last_retired_context);
3139 		if (ctx)
3140 			engine->context_unpin(engine, ctx);
3141 
3142 		/*
3143 		 * Ostensibily, we always want a context loaded for powersaving,
3144 		 * so if the engine is idle after the reset, send a request
3145 		 * to load our scratch kernel_context.
3146 		 *
3147 		 * More mysteriously, if we leave the engine idle after a reset,
3148 		 * the next userspace batch may hang, with what appears to be
3149 		 * an incoherent read by the CS (presumably stale TLB). An
3150 		 * empty request appears sufficient to paper over the glitch.
3151 		 */
3152 		if (intel_engine_is_idle(engine)) {
3153 			struct i915_request *rq;
3154 
3155 			rq = i915_request_alloc(engine,
3156 						dev_priv->kernel_context);
3157 			if (!IS_ERR(rq))
3158 				__i915_request_add(rq, false);
3159 		}
3160 	}
3161 
3162 	i915_gem_restore_fences(dev_priv);
3163 
3164 	if (dev_priv->gt.awake) {
3165 		intel_sanitize_gt_powersave(dev_priv);
3166 		intel_enable_gt_powersave(dev_priv);
3167 		if (INTEL_GEN(dev_priv) >= 6)
3168 			gen6_rps_busy(dev_priv);
3169 	}
3170 }
3171 
3172 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3173 {
3174 	tasklet_enable(&engine->execlists.tasklet);
3175 	kthread_unpark(engine->breadcrumbs.signaler);
3176 
3177 	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3178 }
3179 
3180 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3181 {
3182 	struct intel_engine_cs *engine;
3183 	enum intel_engine_id id;
3184 
3185 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3186 
3187 	for_each_engine(engine, dev_priv, id) {
3188 		engine->hangcheck.active_request = NULL;
3189 		i915_gem_reset_finish_engine(engine);
3190 	}
3191 }
3192 
3193 static void nop_submit_request(struct i915_request *request)
3194 {
3195 	dma_fence_set_error(&request->fence, -EIO);
3196 
3197 	i915_request_submit(request);
3198 }
3199 
3200 static void nop_complete_submit_request(struct i915_request *request)
3201 {
3202 	unsigned long flags;
3203 
3204 	dma_fence_set_error(&request->fence, -EIO);
3205 
3206 	spin_lock_irqsave(&request->engine->timeline->lock, flags);
3207 	__i915_request_submit(request);
3208 	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3209 	spin_unlock_irqrestore(&request->engine->timeline->lock, flags);
3210 }
3211 
3212 void i915_gem_set_wedged(struct drm_i915_private *i915)
3213 {
3214 	struct intel_engine_cs *engine;
3215 	enum intel_engine_id id;
3216 
3217 	if (drm_debug & DRM_UT_DRIVER) {
3218 		struct drm_printer p = drm_debug_printer(__func__);
3219 
3220 		for_each_engine(engine, i915, id)
3221 			intel_engine_dump(engine, &p, "%s\n", engine->name);
3222 	}
3223 
3224 	set_bit(I915_WEDGED, &i915->gpu_error.flags);
3225 	smp_mb__after_atomic();
3226 
3227 	/*
3228 	 * First, stop submission to hw, but do not yet complete requests by
3229 	 * rolling the global seqno forward (since this would complete requests
3230 	 * for which we haven't set the fence error to EIO yet).
3231 	 */
3232 	for_each_engine(engine, i915, id) {
3233 		i915_gem_reset_prepare_engine(engine);
3234 
3235 		engine->submit_request = nop_submit_request;
3236 		engine->schedule = NULL;
3237 	}
3238 	i915->caps.scheduler = 0;
3239 
3240 	/*
3241 	 * Make sure no one is running the old callback before we proceed with
3242 	 * cancelling requests and resetting the completion tracking. Otherwise
3243 	 * we might submit a request to the hardware which never completes.
3244 	 */
3245 	synchronize_rcu();
3246 
3247 	for_each_engine(engine, i915, id) {
3248 		/* Mark all executing requests as skipped */
3249 		engine->cancel_requests(engine);
3250 
3251 		/*
3252 		 * Only once we've force-cancelled all in-flight requests can we
3253 		 * start to complete all requests.
3254 		 */
3255 		engine->submit_request = nop_complete_submit_request;
3256 	}
3257 
3258 	/*
3259 	 * Make sure no request can slip through without getting completed by
3260 	 * either this call here to intel_engine_init_global_seqno, or the one
3261 	 * in nop_complete_submit_request.
3262 	 */
3263 	synchronize_rcu();
3264 
3265 	for_each_engine(engine, i915, id) {
3266 		unsigned long flags;
3267 
3268 		/*
3269 		 * Mark all pending requests as complete so that any concurrent
3270 		 * (lockless) lookup doesn't try and wait upon the request as we
3271 		 * reset it.
3272 		 */
3273 		spin_lock_irqsave(&engine->timeline->lock, flags);
3274 		intel_engine_init_global_seqno(engine,
3275 					       intel_engine_last_submit(engine));
3276 		spin_unlock_irqrestore(&engine->timeline->lock, flags);
3277 
3278 		i915_gem_reset_finish_engine(engine);
3279 	}
3280 
3281 	wake_up_all(&i915->gpu_error.reset_queue);
3282 }
3283 
3284 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3285 {
3286 	struct i915_gem_timeline *tl;
3287 	int i;
3288 
3289 	lockdep_assert_held(&i915->drm.struct_mutex);
3290 	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3291 		return true;
3292 
3293 	/* Before unwedging, make sure that all pending operations
3294 	 * are flushed and errored out - we may have requests waiting upon
3295 	 * third party fences. We marked all inflight requests as EIO, and
3296 	 * every execbuf since returned EIO, for consistency we want all
3297 	 * the currently pending requests to also be marked as EIO, which
3298 	 * is done inside our nop_submit_request - and so we must wait.
3299 	 *
3300 	 * No more can be submitted until we reset the wedged bit.
3301 	 */
3302 	list_for_each_entry(tl, &i915->gt.timelines, link) {
3303 		for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3304 			struct i915_request *rq;
3305 
3306 			rq = i915_gem_active_peek(&tl->engine[i].last_request,
3307 						  &i915->drm.struct_mutex);
3308 			if (!rq)
3309 				continue;
3310 
3311 			/* We can't use our normal waiter as we want to
3312 			 * avoid recursively trying to handle the current
3313 			 * reset. The basic dma_fence_default_wait() installs
3314 			 * a callback for dma_fence_signal(), which is
3315 			 * triggered by our nop handler (indirectly, the
3316 			 * callback enables the signaler thread which is
3317 			 * woken by the nop_submit_request() advancing the seqno
3318 			 * and when the seqno passes the fence, the signaler
3319 			 * then signals the fence waking us up).
3320 			 */
3321 			if (dma_fence_default_wait(&rq->fence, true,
3322 						   MAX_SCHEDULE_TIMEOUT) < 0)
3323 				return false;
3324 		}
3325 	}
3326 
3327 	/* Undo nop_submit_request. We prevent all new i915 requests from
3328 	 * being queued (by disallowing execbuf whilst wedged) so having
3329 	 * waited for all active requests above, we know the system is idle
3330 	 * and do not have to worry about a thread being inside
3331 	 * engine->submit_request() as we swap over. So unlike installing
3332 	 * the nop_submit_request on reset, we can do this from normal
3333 	 * context and do not require stop_machine().
3334 	 */
3335 	intel_engines_reset_default_submission(i915);
3336 	i915_gem_contexts_lost(i915);
3337 
3338 	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3339 	clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3340 
3341 	return true;
3342 }
3343 
3344 static void
3345 i915_gem_retire_work_handler(struct work_struct *work)
3346 {
3347 	struct drm_i915_private *dev_priv =
3348 		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3349 	struct drm_device *dev = &dev_priv->drm;
3350 
3351 	/* Come back later if the device is busy... */
3352 	if (mutex_trylock(&dev->struct_mutex)) {
3353 		i915_retire_requests(dev_priv);
3354 		mutex_unlock(&dev->struct_mutex);
3355 	}
3356 
3357 	/*
3358 	 * Keep the retire handler running until we are finally idle.
3359 	 * We do not need to do this test under locking as in the worst-case
3360 	 * we queue the retire worker once too often.
3361 	 */
3362 	if (READ_ONCE(dev_priv->gt.awake))
3363 		queue_delayed_work(dev_priv->wq,
3364 				   &dev_priv->gt.retire_work,
3365 				   round_jiffies_up_relative(HZ));
3366 }
3367 
3368 static void shrink_caches(struct drm_i915_private *i915)
3369 {
3370 	/*
3371 	 * kmem_cache_shrink() discards empty slabs and reorders partially
3372 	 * filled slabs to prioritise allocating from the mostly full slabs,
3373 	 * with the aim of reducing fragmentation.
3374 	 */
3375 	kmem_cache_shrink(i915->priorities);
3376 	kmem_cache_shrink(i915->dependencies);
3377 	kmem_cache_shrink(i915->requests);
3378 	kmem_cache_shrink(i915->luts);
3379 	kmem_cache_shrink(i915->vmas);
3380 	kmem_cache_shrink(i915->objects);
3381 }
3382 
3383 struct sleep_rcu_work {
3384 	union {
3385 		struct rcu_head rcu;
3386 		struct work_struct work;
3387 	};
3388 	struct drm_i915_private *i915;
3389 	unsigned int epoch;
3390 };
3391 
3392 static inline bool
3393 same_epoch(struct drm_i915_private *i915, unsigned int epoch)
3394 {
3395 	/*
3396 	 * There is a small chance that the epoch wrapped since we started
3397 	 * sleeping. If we assume that epoch is at least a u32, then it will
3398 	 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
3399 	 */
3400 	return epoch == READ_ONCE(i915->gt.epoch);
3401 }
3402 
3403 static void __sleep_work(struct work_struct *work)
3404 {
3405 	struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
3406 	struct drm_i915_private *i915 = s->i915;
3407 	unsigned int epoch = s->epoch;
3408 
3409 	kfree(s);
3410 	if (same_epoch(i915, epoch))
3411 		shrink_caches(i915);
3412 }
3413 
3414 static void __sleep_rcu(struct rcu_head *rcu)
3415 {
3416 	struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
3417 	struct drm_i915_private *i915 = s->i915;
3418 
3419 	if (same_epoch(i915, s->epoch)) {
3420 		INIT_WORK(&s->work, __sleep_work);
3421 		queue_work(i915->wq, &s->work);
3422 	} else {
3423 		kfree(s);
3424 	}
3425 }
3426 
3427 static inline bool
3428 new_requests_since_last_retire(const struct drm_i915_private *i915)
3429 {
3430 	return (READ_ONCE(i915->gt.active_requests) ||
3431 		work_pending(&i915->gt.idle_work.work));
3432 }
3433 
3434 static void
3435 i915_gem_idle_work_handler(struct work_struct *work)
3436 {
3437 	struct drm_i915_private *dev_priv =
3438 		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3439 	unsigned int epoch = I915_EPOCH_INVALID;
3440 	bool rearm_hangcheck;
3441 
3442 	if (!READ_ONCE(dev_priv->gt.awake))
3443 		return;
3444 
3445 	/*
3446 	 * Wait for last execlists context complete, but bail out in case a
3447 	 * new request is submitted. As we don't trust the hardware, we
3448 	 * continue on if the wait times out. This is necessary to allow
3449 	 * the machine to suspend even if the hardware dies, and we will
3450 	 * try to recover in resume (after depriving the hardware of power,
3451 	 * it may be in a better mmod).
3452 	 */
3453 	__wait_for(if (new_requests_since_last_retire(dev_priv)) return,
3454 		   intel_engines_are_idle(dev_priv),
3455 		   I915_IDLE_ENGINES_TIMEOUT * 1000,
3456 		   10, 500);
3457 
3458 	rearm_hangcheck =
3459 		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3460 
3461 	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3462 		/* Currently busy, come back later */
3463 		mod_delayed_work(dev_priv->wq,
3464 				 &dev_priv->gt.idle_work,
3465 				 msecs_to_jiffies(50));
3466 		goto out_rearm;
3467 	}
3468 
3469 	/*
3470 	 * New request retired after this work handler started, extend active
3471 	 * period until next instance of the work.
3472 	 */
3473 	if (new_requests_since_last_retire(dev_priv))
3474 		goto out_unlock;
3475 
3476 	/*
3477 	 * Be paranoid and flush a concurrent interrupt to make sure
3478 	 * we don't reactivate any irq tasklets after parking.
3479 	 *
3480 	 * FIXME: Note that even though we have waited for execlists to be idle,
3481 	 * there may still be an in-flight interrupt even though the CSB
3482 	 * is now empty. synchronize_irq() makes sure that a residual interrupt
3483 	 * is completed before we continue, but it doesn't prevent the HW from
3484 	 * raising a spurious interrupt later. To complete the shield we should
3485 	 * coordinate disabling the CS irq with flushing the interrupts.
3486 	 */
3487 	synchronize_irq(dev_priv->drm.irq);
3488 
3489 	intel_engines_park(dev_priv);
3490 	i915_gem_timelines_park(dev_priv);
3491 
3492 	i915_pmu_gt_parked(dev_priv);
3493 
3494 	GEM_BUG_ON(!dev_priv->gt.awake);
3495 	dev_priv->gt.awake = false;
3496 	epoch = dev_priv->gt.epoch;
3497 	GEM_BUG_ON(epoch == I915_EPOCH_INVALID);
3498 	rearm_hangcheck = false;
3499 
3500 	if (INTEL_GEN(dev_priv) >= 6)
3501 		gen6_rps_idle(dev_priv);
3502 
3503 	intel_display_power_put(dev_priv, POWER_DOMAIN_GT_IRQ);
3504 
3505 	intel_runtime_pm_put(dev_priv);
3506 out_unlock:
3507 	mutex_unlock(&dev_priv->drm.struct_mutex);
3508 
3509 out_rearm:
3510 	if (rearm_hangcheck) {
3511 		GEM_BUG_ON(!dev_priv->gt.awake);
3512 		i915_queue_hangcheck(dev_priv);
3513 	}
3514 
3515 	/*
3516 	 * When we are idle, it is an opportune time to reap our caches.
3517 	 * However, we have many objects that utilise RCU and the ordered
3518 	 * i915->wq that this work is executing on. To try and flush any
3519 	 * pending frees now we are idle, we first wait for an RCU grace
3520 	 * period, and then queue a task (that will run last on the wq) to
3521 	 * shrink and re-optimize the caches.
3522 	 */
3523 	if (same_epoch(dev_priv, epoch)) {
3524 		struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
3525 		if (s) {
3526 			s->i915 = dev_priv;
3527 			s->epoch = epoch;
3528 			call_rcu(&s->rcu, __sleep_rcu);
3529 		}
3530 	}
3531 }
3532 
3533 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3534 {
3535 	struct drm_i915_private *i915 = to_i915(gem->dev);
3536 	struct drm_i915_gem_object *obj = to_intel_bo(gem);
3537 	struct drm_i915_file_private *fpriv = file->driver_priv;
3538 	struct i915_lut_handle *lut, *ln;
3539 
3540 	mutex_lock(&i915->drm.struct_mutex);
3541 
3542 	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3543 		struct i915_gem_context *ctx = lut->ctx;
3544 		struct i915_vma *vma;
3545 
3546 		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3547 		if (ctx->file_priv != fpriv)
3548 			continue;
3549 
3550 		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3551 		GEM_BUG_ON(vma->obj != obj);
3552 
3553 		/* We allow the process to have multiple handles to the same
3554 		 * vma, in the same fd namespace, by virtue of flink/open.
3555 		 */
3556 		GEM_BUG_ON(!vma->open_count);
3557 		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3558 			i915_vma_close(vma);
3559 
3560 		list_del(&lut->obj_link);
3561 		list_del(&lut->ctx_link);
3562 
3563 		kmem_cache_free(i915->luts, lut);
3564 		__i915_gem_object_release_unless_active(obj);
3565 	}
3566 
3567 	mutex_unlock(&i915->drm.struct_mutex);
3568 }
3569 
3570 static unsigned long to_wait_timeout(s64 timeout_ns)
3571 {
3572 	if (timeout_ns < 0)
3573 		return MAX_SCHEDULE_TIMEOUT;
3574 
3575 	if (timeout_ns == 0)
3576 		return 0;
3577 
3578 	return nsecs_to_jiffies_timeout(timeout_ns);
3579 }
3580 
3581 /**
3582  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3583  * @dev: drm device pointer
3584  * @data: ioctl data blob
3585  * @file: drm file pointer
3586  *
3587  * Returns 0 if successful, else an error is returned with the remaining time in
3588  * the timeout parameter.
3589  *  -ETIME: object is still busy after timeout
3590  *  -ERESTARTSYS: signal interrupted the wait
3591  *  -ENONENT: object doesn't exist
3592  * Also possible, but rare:
3593  *  -EAGAIN: incomplete, restart syscall
3594  *  -ENOMEM: damn
3595  *  -ENODEV: Internal IRQ fail
3596  *  -E?: The add request failed
3597  *
3598  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3599  * non-zero timeout parameter the wait ioctl will wait for the given number of
3600  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3601  * without holding struct_mutex the object may become re-busied before this
3602  * function completes. A similar but shorter * race condition exists in the busy
3603  * ioctl
3604  */
3605 int
3606 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3607 {
3608 	struct drm_i915_gem_wait *args = data;
3609 	struct drm_i915_gem_object *obj;
3610 	ktime_t start;
3611 	long ret;
3612 
3613 	if (args->flags != 0)
3614 		return -EINVAL;
3615 
3616 	obj = i915_gem_object_lookup(file, args->bo_handle);
3617 	if (!obj)
3618 		return -ENOENT;
3619 
3620 	start = ktime_get();
3621 
3622 	ret = i915_gem_object_wait(obj,
3623 				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3624 				   to_wait_timeout(args->timeout_ns),
3625 				   to_rps_client(file));
3626 
3627 	if (args->timeout_ns > 0) {
3628 		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3629 		if (args->timeout_ns < 0)
3630 			args->timeout_ns = 0;
3631 
3632 		/*
3633 		 * Apparently ktime isn't accurate enough and occasionally has a
3634 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3635 		 * things up to make the test happy. We allow up to 1 jiffy.
3636 		 *
3637 		 * This is a regression from the timespec->ktime conversion.
3638 		 */
3639 		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3640 			args->timeout_ns = 0;
3641 
3642 		/* Asked to wait beyond the jiffie/scheduler precision? */
3643 		if (ret == -ETIME && args->timeout_ns)
3644 			ret = -EAGAIN;
3645 	}
3646 
3647 	i915_gem_object_put(obj);
3648 	return ret;
3649 }
3650 
3651 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3652 {
3653 	int ret, i;
3654 
3655 	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3656 		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3657 		if (ret)
3658 			return ret;
3659 	}
3660 
3661 	return 0;
3662 }
3663 
3664 static int wait_for_engines(struct drm_i915_private *i915)
3665 {
3666 	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3667 		dev_err(i915->drm.dev,
3668 			"Failed to idle engines, declaring wedged!\n");
3669 		if (drm_debug & DRM_UT_DRIVER) {
3670 			struct drm_printer p = drm_debug_printer(__func__);
3671 			struct intel_engine_cs *engine;
3672 			enum intel_engine_id id;
3673 
3674 			for_each_engine(engine, i915, id)
3675 				intel_engine_dump(engine, &p,
3676 						  "%s\n", engine->name);
3677 		}
3678 
3679 		i915_gem_set_wedged(i915);
3680 		return -EIO;
3681 	}
3682 
3683 	return 0;
3684 }
3685 
3686 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3687 {
3688 	int ret;
3689 
3690 	/* If the device is asleep, we have no requests outstanding */
3691 	if (!READ_ONCE(i915->gt.awake))
3692 		return 0;
3693 
3694 	if (flags & I915_WAIT_LOCKED) {
3695 		struct i915_gem_timeline *tl;
3696 
3697 		lockdep_assert_held(&i915->drm.struct_mutex);
3698 
3699 		list_for_each_entry(tl, &i915->gt.timelines, link) {
3700 			ret = wait_for_timeline(tl, flags);
3701 			if (ret)
3702 				return ret;
3703 		}
3704 		i915_retire_requests(i915);
3705 
3706 		ret = wait_for_engines(i915);
3707 	} else {
3708 		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3709 	}
3710 
3711 	return ret;
3712 }
3713 
3714 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3715 {
3716 	/*
3717 	 * We manually flush the CPU domain so that we can override and
3718 	 * force the flush for the display, and perform it asyncrhonously.
3719 	 */
3720 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3721 	if (obj->cache_dirty)
3722 		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3723 	obj->write_domain = 0;
3724 }
3725 
3726 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3727 {
3728 	if (!READ_ONCE(obj->pin_global))
3729 		return;
3730 
3731 	mutex_lock(&obj->base.dev->struct_mutex);
3732 	__i915_gem_object_flush_for_display(obj);
3733 	mutex_unlock(&obj->base.dev->struct_mutex);
3734 }
3735 
3736 /**
3737  * Moves a single object to the WC read, and possibly write domain.
3738  * @obj: object to act on
3739  * @write: ask for write access or read only
3740  *
3741  * This function returns when the move is complete, including waiting on
3742  * flushes to occur.
3743  */
3744 int
3745 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3746 {
3747 	int ret;
3748 
3749 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3750 
3751 	ret = i915_gem_object_wait(obj,
3752 				   I915_WAIT_INTERRUPTIBLE |
3753 				   I915_WAIT_LOCKED |
3754 				   (write ? I915_WAIT_ALL : 0),
3755 				   MAX_SCHEDULE_TIMEOUT,
3756 				   NULL);
3757 	if (ret)
3758 		return ret;
3759 
3760 	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3761 		return 0;
3762 
3763 	/* Flush and acquire obj->pages so that we are coherent through
3764 	 * direct access in memory with previous cached writes through
3765 	 * shmemfs and that our cache domain tracking remains valid.
3766 	 * For example, if the obj->filp was moved to swap without us
3767 	 * being notified and releasing the pages, we would mistakenly
3768 	 * continue to assume that the obj remained out of the CPU cached
3769 	 * domain.
3770 	 */
3771 	ret = i915_gem_object_pin_pages(obj);
3772 	if (ret)
3773 		return ret;
3774 
3775 	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3776 
3777 	/* Serialise direct access to this object with the barriers for
3778 	 * coherent writes from the GPU, by effectively invalidating the
3779 	 * WC domain upon first access.
3780 	 */
3781 	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3782 		mb();
3783 
3784 	/* It should now be out of any other write domains, and we can update
3785 	 * the domain values for our changes.
3786 	 */
3787 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3788 	obj->read_domains |= I915_GEM_DOMAIN_WC;
3789 	if (write) {
3790 		obj->read_domains = I915_GEM_DOMAIN_WC;
3791 		obj->write_domain = I915_GEM_DOMAIN_WC;
3792 		obj->mm.dirty = true;
3793 	}
3794 
3795 	i915_gem_object_unpin_pages(obj);
3796 	return 0;
3797 }
3798 
3799 /**
3800  * Moves a single object to the GTT read, and possibly write domain.
3801  * @obj: object to act on
3802  * @write: ask for write access or read only
3803  *
3804  * This function returns when the move is complete, including waiting on
3805  * flushes to occur.
3806  */
3807 int
3808 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3809 {
3810 	int ret;
3811 
3812 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3813 
3814 	ret = i915_gem_object_wait(obj,
3815 				   I915_WAIT_INTERRUPTIBLE |
3816 				   I915_WAIT_LOCKED |
3817 				   (write ? I915_WAIT_ALL : 0),
3818 				   MAX_SCHEDULE_TIMEOUT,
3819 				   NULL);
3820 	if (ret)
3821 		return ret;
3822 
3823 	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3824 		return 0;
3825 
3826 	/* Flush and acquire obj->pages so that we are coherent through
3827 	 * direct access in memory with previous cached writes through
3828 	 * shmemfs and that our cache domain tracking remains valid.
3829 	 * For example, if the obj->filp was moved to swap without us
3830 	 * being notified and releasing the pages, we would mistakenly
3831 	 * continue to assume that the obj remained out of the CPU cached
3832 	 * domain.
3833 	 */
3834 	ret = i915_gem_object_pin_pages(obj);
3835 	if (ret)
3836 		return ret;
3837 
3838 	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3839 
3840 	/* Serialise direct access to this object with the barriers for
3841 	 * coherent writes from the GPU, by effectively invalidating the
3842 	 * GTT domain upon first access.
3843 	 */
3844 	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3845 		mb();
3846 
3847 	/* It should now be out of any other write domains, and we can update
3848 	 * the domain values for our changes.
3849 	 */
3850 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3851 	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3852 	if (write) {
3853 		obj->read_domains = I915_GEM_DOMAIN_GTT;
3854 		obj->write_domain = I915_GEM_DOMAIN_GTT;
3855 		obj->mm.dirty = true;
3856 	}
3857 
3858 	i915_gem_object_unpin_pages(obj);
3859 	return 0;
3860 }
3861 
3862 /**
3863  * Changes the cache-level of an object across all VMA.
3864  * @obj: object to act on
3865  * @cache_level: new cache level to set for the object
3866  *
3867  * After this function returns, the object will be in the new cache-level
3868  * across all GTT and the contents of the backing storage will be coherent,
3869  * with respect to the new cache-level. In order to keep the backing storage
3870  * coherent for all users, we only allow a single cache level to be set
3871  * globally on the object and prevent it from being changed whilst the
3872  * hardware is reading from the object. That is if the object is currently
3873  * on the scanout it will be set to uncached (or equivalent display
3874  * cache coherency) and all non-MOCS GPU access will also be uncached so
3875  * that all direct access to the scanout remains coherent.
3876  */
3877 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3878 				    enum i915_cache_level cache_level)
3879 {
3880 	struct i915_vma *vma;
3881 	int ret;
3882 
3883 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3884 
3885 	if (obj->cache_level == cache_level)
3886 		return 0;
3887 
3888 	/* Inspect the list of currently bound VMA and unbind any that would
3889 	 * be invalid given the new cache-level. This is principally to
3890 	 * catch the issue of the CS prefetch crossing page boundaries and
3891 	 * reading an invalid PTE on older architectures.
3892 	 */
3893 restart:
3894 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3895 		if (!drm_mm_node_allocated(&vma->node))
3896 			continue;
3897 
3898 		if (i915_vma_is_pinned(vma)) {
3899 			DRM_DEBUG("can not change the cache level of pinned objects\n");
3900 			return -EBUSY;
3901 		}
3902 
3903 		if (!i915_vma_is_closed(vma) &&
3904 		    i915_gem_valid_gtt_space(vma, cache_level))
3905 			continue;
3906 
3907 		ret = i915_vma_unbind(vma);
3908 		if (ret)
3909 			return ret;
3910 
3911 		/* As unbinding may affect other elements in the
3912 		 * obj->vma_list (due to side-effects from retiring
3913 		 * an active vma), play safe and restart the iterator.
3914 		 */
3915 		goto restart;
3916 	}
3917 
3918 	/* We can reuse the existing drm_mm nodes but need to change the
3919 	 * cache-level on the PTE. We could simply unbind them all and
3920 	 * rebind with the correct cache-level on next use. However since
3921 	 * we already have a valid slot, dma mapping, pages etc, we may as
3922 	 * rewrite the PTE in the belief that doing so tramples upon less
3923 	 * state and so involves less work.
3924 	 */
3925 	if (obj->bind_count) {
3926 		/* Before we change the PTE, the GPU must not be accessing it.
3927 		 * If we wait upon the object, we know that all the bound
3928 		 * VMA are no longer active.
3929 		 */
3930 		ret = i915_gem_object_wait(obj,
3931 					   I915_WAIT_INTERRUPTIBLE |
3932 					   I915_WAIT_LOCKED |
3933 					   I915_WAIT_ALL,
3934 					   MAX_SCHEDULE_TIMEOUT,
3935 					   NULL);
3936 		if (ret)
3937 			return ret;
3938 
3939 		if (!HAS_LLC(to_i915(obj->base.dev)) &&
3940 		    cache_level != I915_CACHE_NONE) {
3941 			/* Access to snoopable pages through the GTT is
3942 			 * incoherent and on some machines causes a hard
3943 			 * lockup. Relinquish the CPU mmaping to force
3944 			 * userspace to refault in the pages and we can
3945 			 * then double check if the GTT mapping is still
3946 			 * valid for that pointer access.
3947 			 */
3948 			i915_gem_release_mmap(obj);
3949 
3950 			/* As we no longer need a fence for GTT access,
3951 			 * we can relinquish it now (and so prevent having
3952 			 * to steal a fence from someone else on the next
3953 			 * fence request). Note GPU activity would have
3954 			 * dropped the fence as all snoopable access is
3955 			 * supposed to be linear.
3956 			 */
3957 			for_each_ggtt_vma(vma, obj) {
3958 				ret = i915_vma_put_fence(vma);
3959 				if (ret)
3960 					return ret;
3961 			}
3962 		} else {
3963 			/* We either have incoherent backing store and
3964 			 * so no GTT access or the architecture is fully
3965 			 * coherent. In such cases, existing GTT mmaps
3966 			 * ignore the cache bit in the PTE and we can
3967 			 * rewrite it without confusing the GPU or having
3968 			 * to force userspace to fault back in its mmaps.
3969 			 */
3970 		}
3971 
3972 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3973 			if (!drm_mm_node_allocated(&vma->node))
3974 				continue;
3975 
3976 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3977 			if (ret)
3978 				return ret;
3979 		}
3980 	}
3981 
3982 	list_for_each_entry(vma, &obj->vma_list, obj_link)
3983 		vma->node.color = cache_level;
3984 	i915_gem_object_set_cache_coherency(obj, cache_level);
3985 	obj->cache_dirty = true; /* Always invalidate stale cachelines */
3986 
3987 	return 0;
3988 }
3989 
3990 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3991 			       struct drm_file *file)
3992 {
3993 	struct drm_i915_gem_caching *args = data;
3994 	struct drm_i915_gem_object *obj;
3995 	int err = 0;
3996 
3997 	rcu_read_lock();
3998 	obj = i915_gem_object_lookup_rcu(file, args->handle);
3999 	if (!obj) {
4000 		err = -ENOENT;
4001 		goto out;
4002 	}
4003 
4004 	switch (obj->cache_level) {
4005 	case I915_CACHE_LLC:
4006 	case I915_CACHE_L3_LLC:
4007 		args->caching = I915_CACHING_CACHED;
4008 		break;
4009 
4010 	case I915_CACHE_WT:
4011 		args->caching = I915_CACHING_DISPLAY;
4012 		break;
4013 
4014 	default:
4015 		args->caching = I915_CACHING_NONE;
4016 		break;
4017 	}
4018 out:
4019 	rcu_read_unlock();
4020 	return err;
4021 }
4022 
4023 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4024 			       struct drm_file *file)
4025 {
4026 	struct drm_i915_private *i915 = to_i915(dev);
4027 	struct drm_i915_gem_caching *args = data;
4028 	struct drm_i915_gem_object *obj;
4029 	enum i915_cache_level level;
4030 	int ret = 0;
4031 
4032 	switch (args->caching) {
4033 	case I915_CACHING_NONE:
4034 		level = I915_CACHE_NONE;
4035 		break;
4036 	case I915_CACHING_CACHED:
4037 		/*
4038 		 * Due to a HW issue on BXT A stepping, GPU stores via a
4039 		 * snooped mapping may leave stale data in a corresponding CPU
4040 		 * cacheline, whereas normally such cachelines would get
4041 		 * invalidated.
4042 		 */
4043 		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4044 			return -ENODEV;
4045 
4046 		level = I915_CACHE_LLC;
4047 		break;
4048 	case I915_CACHING_DISPLAY:
4049 		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4050 		break;
4051 	default:
4052 		return -EINVAL;
4053 	}
4054 
4055 	obj = i915_gem_object_lookup(file, args->handle);
4056 	if (!obj)
4057 		return -ENOENT;
4058 
4059 	/*
4060 	 * The caching mode of proxy object is handled by its generator, and
4061 	 * not allowed to be changed by userspace.
4062 	 */
4063 	if (i915_gem_object_is_proxy(obj)) {
4064 		ret = -ENXIO;
4065 		goto out;
4066 	}
4067 
4068 	if (obj->cache_level == level)
4069 		goto out;
4070 
4071 	ret = i915_gem_object_wait(obj,
4072 				   I915_WAIT_INTERRUPTIBLE,
4073 				   MAX_SCHEDULE_TIMEOUT,
4074 				   to_rps_client(file));
4075 	if (ret)
4076 		goto out;
4077 
4078 	ret = i915_mutex_lock_interruptible(dev);
4079 	if (ret)
4080 		goto out;
4081 
4082 	ret = i915_gem_object_set_cache_level(obj, level);
4083 	mutex_unlock(&dev->struct_mutex);
4084 
4085 out:
4086 	i915_gem_object_put(obj);
4087 	return ret;
4088 }
4089 
4090 /*
4091  * Prepare buffer for display plane (scanout, cursors, etc).
4092  * Can be called from an uninterruptible phase (modesetting) and allows
4093  * any flushes to be pipelined (for pageflips).
4094  */
4095 struct i915_vma *
4096 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4097 				     u32 alignment,
4098 				     const struct i915_ggtt_view *view,
4099 				     unsigned int flags)
4100 {
4101 	struct i915_vma *vma;
4102 	int ret;
4103 
4104 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4105 
4106 	/* Mark the global pin early so that we account for the
4107 	 * display coherency whilst setting up the cache domains.
4108 	 */
4109 	obj->pin_global++;
4110 
4111 	/* The display engine is not coherent with the LLC cache on gen6.  As
4112 	 * a result, we make sure that the pinning that is about to occur is
4113 	 * done with uncached PTEs. This is lowest common denominator for all
4114 	 * chipsets.
4115 	 *
4116 	 * However for gen6+, we could do better by using the GFDT bit instead
4117 	 * of uncaching, which would allow us to flush all the LLC-cached data
4118 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4119 	 */
4120 	ret = i915_gem_object_set_cache_level(obj,
4121 					      HAS_WT(to_i915(obj->base.dev)) ?
4122 					      I915_CACHE_WT : I915_CACHE_NONE);
4123 	if (ret) {
4124 		vma = ERR_PTR(ret);
4125 		goto err_unpin_global;
4126 	}
4127 
4128 	/* As the user may map the buffer once pinned in the display plane
4129 	 * (e.g. libkms for the bootup splash), we have to ensure that we
4130 	 * always use map_and_fenceable for all scanout buffers. However,
4131 	 * it may simply be too big to fit into mappable, in which case
4132 	 * put it anyway and hope that userspace can cope (but always first
4133 	 * try to preserve the existing ABI).
4134 	 */
4135 	vma = ERR_PTR(-ENOSPC);
4136 	if ((flags & PIN_MAPPABLE) == 0 &&
4137 	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
4138 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4139 					       flags |
4140 					       PIN_MAPPABLE |
4141 					       PIN_NONBLOCK);
4142 	if (IS_ERR(vma))
4143 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
4144 	if (IS_ERR(vma))
4145 		goto err_unpin_global;
4146 
4147 	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
4148 
4149 	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
4150 	__i915_gem_object_flush_for_display(obj);
4151 	intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
4152 
4153 	/* It should now be out of any other write domains, and we can update
4154 	 * the domain values for our changes.
4155 	 */
4156 	obj->read_domains |= I915_GEM_DOMAIN_GTT;
4157 
4158 	return vma;
4159 
4160 err_unpin_global:
4161 	obj->pin_global--;
4162 	return vma;
4163 }
4164 
4165 void
4166 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4167 {
4168 	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4169 
4170 	if (WARN_ON(vma->obj->pin_global == 0))
4171 		return;
4172 
4173 	if (--vma->obj->pin_global == 0)
4174 		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4175 
4176 	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
4177 	i915_gem_object_bump_inactive_ggtt(vma->obj);
4178 
4179 	i915_vma_unpin(vma);
4180 }
4181 
4182 /**
4183  * Moves a single object to the CPU read, and possibly write domain.
4184  * @obj: object to act on
4185  * @write: requesting write or read-only access
4186  *
4187  * This function returns when the move is complete, including waiting on
4188  * flushes to occur.
4189  */
4190 int
4191 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4192 {
4193 	int ret;
4194 
4195 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4196 
4197 	ret = i915_gem_object_wait(obj,
4198 				   I915_WAIT_INTERRUPTIBLE |
4199 				   I915_WAIT_LOCKED |
4200 				   (write ? I915_WAIT_ALL : 0),
4201 				   MAX_SCHEDULE_TIMEOUT,
4202 				   NULL);
4203 	if (ret)
4204 		return ret;
4205 
4206 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4207 
4208 	/* Flush the CPU cache if it's still invalid. */
4209 	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4210 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4211 		obj->read_domains |= I915_GEM_DOMAIN_CPU;
4212 	}
4213 
4214 	/* It should now be out of any other write domains, and we can update
4215 	 * the domain values for our changes.
4216 	 */
4217 	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4218 
4219 	/* If we're writing through the CPU, then the GPU read domains will
4220 	 * need to be invalidated at next use.
4221 	 */
4222 	if (write)
4223 		__start_cpu_write(obj);
4224 
4225 	return 0;
4226 }
4227 
4228 /* Throttle our rendering by waiting until the ring has completed our requests
4229  * emitted over 20 msec ago.
4230  *
4231  * Note that if we were to use the current jiffies each time around the loop,
4232  * we wouldn't escape the function with any frames outstanding if the time to
4233  * render a frame was over 20ms.
4234  *
4235  * This should get us reasonable parallelism between CPU and GPU but also
4236  * relatively low latency when blocking on a particular request to finish.
4237  */
4238 static int
4239 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4240 {
4241 	struct drm_i915_private *dev_priv = to_i915(dev);
4242 	struct drm_i915_file_private *file_priv = file->driver_priv;
4243 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4244 	struct i915_request *request, *target = NULL;
4245 	long ret;
4246 
4247 	/* ABI: return -EIO if already wedged */
4248 	if (i915_terminally_wedged(&dev_priv->gpu_error))
4249 		return -EIO;
4250 
4251 	spin_lock(&file_priv->mm.lock);
4252 	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4253 		if (time_after_eq(request->emitted_jiffies, recent_enough))
4254 			break;
4255 
4256 		if (target) {
4257 			list_del(&target->client_link);
4258 			target->file_priv = NULL;
4259 		}
4260 
4261 		target = request;
4262 	}
4263 	if (target)
4264 		i915_request_get(target);
4265 	spin_unlock(&file_priv->mm.lock);
4266 
4267 	if (target == NULL)
4268 		return 0;
4269 
4270 	ret = i915_request_wait(target,
4271 				I915_WAIT_INTERRUPTIBLE,
4272 				MAX_SCHEDULE_TIMEOUT);
4273 	i915_request_put(target);
4274 
4275 	return ret < 0 ? ret : 0;
4276 }
4277 
4278 struct i915_vma *
4279 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4280 			 const struct i915_ggtt_view *view,
4281 			 u64 size,
4282 			 u64 alignment,
4283 			 u64 flags)
4284 {
4285 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4286 	struct i915_address_space *vm = &dev_priv->ggtt.base;
4287 	struct i915_vma *vma;
4288 	int ret;
4289 
4290 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4291 
4292 	if (flags & PIN_MAPPABLE &&
4293 	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4294 		/* If the required space is larger than the available
4295 		 * aperture, we will not able to find a slot for the
4296 		 * object and unbinding the object now will be in
4297 		 * vain. Worse, doing so may cause us to ping-pong
4298 		 * the object in and out of the Global GTT and
4299 		 * waste a lot of cycles under the mutex.
4300 		 */
4301 		if (obj->base.size > dev_priv->ggtt.mappable_end)
4302 			return ERR_PTR(-E2BIG);
4303 
4304 		/* If NONBLOCK is set the caller is optimistically
4305 		 * trying to cache the full object within the mappable
4306 		 * aperture, and *must* have a fallback in place for
4307 		 * situations where we cannot bind the object. We
4308 		 * can be a little more lax here and use the fallback
4309 		 * more often to avoid costly migrations of ourselves
4310 		 * and other objects within the aperture.
4311 		 *
4312 		 * Half-the-aperture is used as a simple heuristic.
4313 		 * More interesting would to do search for a free
4314 		 * block prior to making the commitment to unbind.
4315 		 * That caters for the self-harm case, and with a
4316 		 * little more heuristics (e.g. NOFAULT, NOEVICT)
4317 		 * we could try to minimise harm to others.
4318 		 */
4319 		if (flags & PIN_NONBLOCK &&
4320 		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
4321 			return ERR_PTR(-ENOSPC);
4322 	}
4323 
4324 	vma = i915_vma_instance(obj, vm, view);
4325 	if (unlikely(IS_ERR(vma)))
4326 		return vma;
4327 
4328 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4329 		if (flags & PIN_NONBLOCK) {
4330 			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4331 				return ERR_PTR(-ENOSPC);
4332 
4333 			if (flags & PIN_MAPPABLE &&
4334 			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4335 				return ERR_PTR(-ENOSPC);
4336 		}
4337 
4338 		WARN(i915_vma_is_pinned(vma),
4339 		     "bo is already pinned in ggtt with incorrect alignment:"
4340 		     " offset=%08x, req.alignment=%llx,"
4341 		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4342 		     i915_ggtt_offset(vma), alignment,
4343 		     !!(flags & PIN_MAPPABLE),
4344 		     i915_vma_is_map_and_fenceable(vma));
4345 		ret = i915_vma_unbind(vma);
4346 		if (ret)
4347 			return ERR_PTR(ret);
4348 	}
4349 
4350 	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4351 	if (ret)
4352 		return ERR_PTR(ret);
4353 
4354 	return vma;
4355 }
4356 
4357 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4358 {
4359 	/* Note that we could alias engines in the execbuf API, but
4360 	 * that would be very unwise as it prevents userspace from
4361 	 * fine control over engine selection. Ahem.
4362 	 *
4363 	 * This should be something like EXEC_MAX_ENGINE instead of
4364 	 * I915_NUM_ENGINES.
4365 	 */
4366 	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4367 	return 0x10000 << id;
4368 }
4369 
4370 static __always_inline unsigned int __busy_write_id(unsigned int id)
4371 {
4372 	/* The uABI guarantees an active writer is also amongst the read
4373 	 * engines. This would be true if we accessed the activity tracking
4374 	 * under the lock, but as we perform the lookup of the object and
4375 	 * its activity locklessly we can not guarantee that the last_write
4376 	 * being active implies that we have set the same engine flag from
4377 	 * last_read - hence we always set both read and write busy for
4378 	 * last_write.
4379 	 */
4380 	return id | __busy_read_flag(id);
4381 }
4382 
4383 static __always_inline unsigned int
4384 __busy_set_if_active(const struct dma_fence *fence,
4385 		     unsigned int (*flag)(unsigned int id))
4386 {
4387 	struct i915_request *rq;
4388 
4389 	/* We have to check the current hw status of the fence as the uABI
4390 	 * guarantees forward progress. We could rely on the idle worker
4391 	 * to eventually flush us, but to minimise latency just ask the
4392 	 * hardware.
4393 	 *
4394 	 * Note we only report on the status of native fences.
4395 	 */
4396 	if (!dma_fence_is_i915(fence))
4397 		return 0;
4398 
4399 	/* opencode to_request() in order to avoid const warnings */
4400 	rq = container_of(fence, struct i915_request, fence);
4401 	if (i915_request_completed(rq))
4402 		return 0;
4403 
4404 	return flag(rq->engine->uabi_id);
4405 }
4406 
4407 static __always_inline unsigned int
4408 busy_check_reader(const struct dma_fence *fence)
4409 {
4410 	return __busy_set_if_active(fence, __busy_read_flag);
4411 }
4412 
4413 static __always_inline unsigned int
4414 busy_check_writer(const struct dma_fence *fence)
4415 {
4416 	if (!fence)
4417 		return 0;
4418 
4419 	return __busy_set_if_active(fence, __busy_write_id);
4420 }
4421 
4422 int
4423 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4424 		    struct drm_file *file)
4425 {
4426 	struct drm_i915_gem_busy *args = data;
4427 	struct drm_i915_gem_object *obj;
4428 	struct reservation_object_list *list;
4429 	unsigned int seq;
4430 	int err;
4431 
4432 	err = -ENOENT;
4433 	rcu_read_lock();
4434 	obj = i915_gem_object_lookup_rcu(file, args->handle);
4435 	if (!obj)
4436 		goto out;
4437 
4438 	/* A discrepancy here is that we do not report the status of
4439 	 * non-i915 fences, i.e. even though we may report the object as idle,
4440 	 * a call to set-domain may still stall waiting for foreign rendering.
4441 	 * This also means that wait-ioctl may report an object as busy,
4442 	 * where busy-ioctl considers it idle.
4443 	 *
4444 	 * We trade the ability to warn of foreign fences to report on which
4445 	 * i915 engines are active for the object.
4446 	 *
4447 	 * Alternatively, we can trade that extra information on read/write
4448 	 * activity with
4449 	 *	args->busy =
4450 	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
4451 	 * to report the overall busyness. This is what the wait-ioctl does.
4452 	 *
4453 	 */
4454 retry:
4455 	seq = raw_read_seqcount(&obj->resv->seq);
4456 
4457 	/* Translate the exclusive fence to the READ *and* WRITE engine */
4458 	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4459 
4460 	/* Translate shared fences to READ set of engines */
4461 	list = rcu_dereference(obj->resv->fence);
4462 	if (list) {
4463 		unsigned int shared_count = list->shared_count, i;
4464 
4465 		for (i = 0; i < shared_count; ++i) {
4466 			struct dma_fence *fence =
4467 				rcu_dereference(list->shared[i]);
4468 
4469 			args->busy |= busy_check_reader(fence);
4470 		}
4471 	}
4472 
4473 	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4474 		goto retry;
4475 
4476 	err = 0;
4477 out:
4478 	rcu_read_unlock();
4479 	return err;
4480 }
4481 
4482 int
4483 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4484 			struct drm_file *file_priv)
4485 {
4486 	return i915_gem_ring_throttle(dev, file_priv);
4487 }
4488 
4489 int
4490 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4491 		       struct drm_file *file_priv)
4492 {
4493 	struct drm_i915_private *dev_priv = to_i915(dev);
4494 	struct drm_i915_gem_madvise *args = data;
4495 	struct drm_i915_gem_object *obj;
4496 	int err;
4497 
4498 	switch (args->madv) {
4499 	case I915_MADV_DONTNEED:
4500 	case I915_MADV_WILLNEED:
4501 	    break;
4502 	default:
4503 	    return -EINVAL;
4504 	}
4505 
4506 	obj = i915_gem_object_lookup(file_priv, args->handle);
4507 	if (!obj)
4508 		return -ENOENT;
4509 
4510 	err = mutex_lock_interruptible(&obj->mm.lock);
4511 	if (err)
4512 		goto out;
4513 
4514 	if (i915_gem_object_has_pages(obj) &&
4515 	    i915_gem_object_is_tiled(obj) &&
4516 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4517 		if (obj->mm.madv == I915_MADV_WILLNEED) {
4518 			GEM_BUG_ON(!obj->mm.quirked);
4519 			__i915_gem_object_unpin_pages(obj);
4520 			obj->mm.quirked = false;
4521 		}
4522 		if (args->madv == I915_MADV_WILLNEED) {
4523 			GEM_BUG_ON(obj->mm.quirked);
4524 			__i915_gem_object_pin_pages(obj);
4525 			obj->mm.quirked = true;
4526 		}
4527 	}
4528 
4529 	if (obj->mm.madv != __I915_MADV_PURGED)
4530 		obj->mm.madv = args->madv;
4531 
4532 	/* if the object is no longer attached, discard its backing storage */
4533 	if (obj->mm.madv == I915_MADV_DONTNEED &&
4534 	    !i915_gem_object_has_pages(obj))
4535 		i915_gem_object_truncate(obj);
4536 
4537 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4538 	mutex_unlock(&obj->mm.lock);
4539 
4540 out:
4541 	i915_gem_object_put(obj);
4542 	return err;
4543 }
4544 
4545 static void
4546 frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4547 {
4548 	struct drm_i915_gem_object *obj =
4549 		container_of(active, typeof(*obj), frontbuffer_write);
4550 
4551 	intel_fb_obj_flush(obj, ORIGIN_CS);
4552 }
4553 
4554 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4555 			  const struct drm_i915_gem_object_ops *ops)
4556 {
4557 	mutex_init(&obj->mm.lock);
4558 
4559 	INIT_LIST_HEAD(&obj->vma_list);
4560 	INIT_LIST_HEAD(&obj->lut_list);
4561 	INIT_LIST_HEAD(&obj->batch_pool_link);
4562 
4563 	obj->ops = ops;
4564 
4565 	reservation_object_init(&obj->__builtin_resv);
4566 	obj->resv = &obj->__builtin_resv;
4567 
4568 	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4569 	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4570 
4571 	obj->mm.madv = I915_MADV_WILLNEED;
4572 	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4573 	mutex_init(&obj->mm.get_page.lock);
4574 
4575 	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4576 }
4577 
4578 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4579 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4580 		 I915_GEM_OBJECT_IS_SHRINKABLE,
4581 
4582 	.get_pages = i915_gem_object_get_pages_gtt,
4583 	.put_pages = i915_gem_object_put_pages_gtt,
4584 
4585 	.pwrite = i915_gem_object_pwrite_gtt,
4586 };
4587 
4588 static int i915_gem_object_create_shmem(struct drm_device *dev,
4589 					struct drm_gem_object *obj,
4590 					size_t size)
4591 {
4592 	struct drm_i915_private *i915 = to_i915(dev);
4593 	unsigned long flags = VM_NORESERVE;
4594 	struct file *filp;
4595 
4596 	drm_gem_private_object_init(dev, obj, size);
4597 
4598 	if (i915->mm.gemfs)
4599 		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4600 						 flags);
4601 	else
4602 		filp = shmem_file_setup("i915", size, flags);
4603 
4604 	if (IS_ERR(filp))
4605 		return PTR_ERR(filp);
4606 
4607 	obj->filp = filp;
4608 
4609 	return 0;
4610 }
4611 
4612 struct drm_i915_gem_object *
4613 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4614 {
4615 	struct drm_i915_gem_object *obj;
4616 	struct address_space *mapping;
4617 	unsigned int cache_level;
4618 	gfp_t mask;
4619 	int ret;
4620 
4621 	/* There is a prevalence of the assumption that we fit the object's
4622 	 * page count inside a 32bit _signed_ variable. Let's document this and
4623 	 * catch if we ever need to fix it. In the meantime, if you do spot
4624 	 * such a local variable, please consider fixing!
4625 	 */
4626 	if (size >> PAGE_SHIFT > INT_MAX)
4627 		return ERR_PTR(-E2BIG);
4628 
4629 	if (overflows_type(size, obj->base.size))
4630 		return ERR_PTR(-E2BIG);
4631 
4632 	obj = i915_gem_object_alloc(dev_priv);
4633 	if (obj == NULL)
4634 		return ERR_PTR(-ENOMEM);
4635 
4636 	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4637 	if (ret)
4638 		goto fail;
4639 
4640 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4641 	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4642 		/* 965gm cannot relocate objects above 4GiB. */
4643 		mask &= ~__GFP_HIGHMEM;
4644 		mask |= __GFP_DMA32;
4645 	}
4646 
4647 	mapping = obj->base.filp->f_mapping;
4648 	mapping_set_gfp_mask(mapping, mask);
4649 	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4650 
4651 	i915_gem_object_init(obj, &i915_gem_object_ops);
4652 
4653 	obj->write_domain = I915_GEM_DOMAIN_CPU;
4654 	obj->read_domains = I915_GEM_DOMAIN_CPU;
4655 
4656 	if (HAS_LLC(dev_priv))
4657 		/* On some devices, we can have the GPU use the LLC (the CPU
4658 		 * cache) for about a 10% performance improvement
4659 		 * compared to uncached.  Graphics requests other than
4660 		 * display scanout are coherent with the CPU in
4661 		 * accessing this cache.  This means in this mode we
4662 		 * don't need to clflush on the CPU side, and on the
4663 		 * GPU side we only need to flush internal caches to
4664 		 * get data visible to the CPU.
4665 		 *
4666 		 * However, we maintain the display planes as UC, and so
4667 		 * need to rebind when first used as such.
4668 		 */
4669 		cache_level = I915_CACHE_LLC;
4670 	else
4671 		cache_level = I915_CACHE_NONE;
4672 
4673 	i915_gem_object_set_cache_coherency(obj, cache_level);
4674 
4675 	trace_i915_gem_object_create(obj);
4676 
4677 	return obj;
4678 
4679 fail:
4680 	i915_gem_object_free(obj);
4681 	return ERR_PTR(ret);
4682 }
4683 
4684 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4685 {
4686 	/* If we are the last user of the backing storage (be it shmemfs
4687 	 * pages or stolen etc), we know that the pages are going to be
4688 	 * immediately released. In this case, we can then skip copying
4689 	 * back the contents from the GPU.
4690 	 */
4691 
4692 	if (obj->mm.madv != I915_MADV_WILLNEED)
4693 		return false;
4694 
4695 	if (obj->base.filp == NULL)
4696 		return true;
4697 
4698 	/* At first glance, this looks racy, but then again so would be
4699 	 * userspace racing mmap against close. However, the first external
4700 	 * reference to the filp can only be obtained through the
4701 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4702 	 * acquiring such a reference whilst we are in the middle of
4703 	 * freeing the object.
4704 	 */
4705 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4706 }
4707 
4708 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4709 				    struct llist_node *freed)
4710 {
4711 	struct drm_i915_gem_object *obj, *on;
4712 
4713 	intel_runtime_pm_get(i915);
4714 	llist_for_each_entry_safe(obj, on, freed, freed) {
4715 		struct i915_vma *vma, *vn;
4716 
4717 		trace_i915_gem_object_destroy(obj);
4718 
4719 		mutex_lock(&i915->drm.struct_mutex);
4720 
4721 		GEM_BUG_ON(i915_gem_object_is_active(obj));
4722 		list_for_each_entry_safe(vma, vn,
4723 					 &obj->vma_list, obj_link) {
4724 			GEM_BUG_ON(i915_vma_is_active(vma));
4725 			vma->flags &= ~I915_VMA_PIN_MASK;
4726 			i915_vma_close(vma);
4727 		}
4728 		GEM_BUG_ON(!list_empty(&obj->vma_list));
4729 		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4730 
4731 		/* This serializes freeing with the shrinker. Since the free
4732 		 * is delayed, first by RCU then by the workqueue, we want the
4733 		 * shrinker to be able to free pages of unreferenced objects,
4734 		 * or else we may oom whilst there are plenty of deferred
4735 		 * freed objects.
4736 		 */
4737 		if (i915_gem_object_has_pages(obj)) {
4738 			spin_lock(&i915->mm.obj_lock);
4739 			list_del_init(&obj->mm.link);
4740 			spin_unlock(&i915->mm.obj_lock);
4741 		}
4742 
4743 		mutex_unlock(&i915->drm.struct_mutex);
4744 
4745 		GEM_BUG_ON(obj->bind_count);
4746 		GEM_BUG_ON(obj->userfault_count);
4747 		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4748 		GEM_BUG_ON(!list_empty(&obj->lut_list));
4749 
4750 		if (obj->ops->release)
4751 			obj->ops->release(obj);
4752 
4753 		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4754 			atomic_set(&obj->mm.pages_pin_count, 0);
4755 		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4756 		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4757 
4758 		if (obj->base.import_attach)
4759 			drm_prime_gem_destroy(&obj->base, NULL);
4760 
4761 		reservation_object_fini(&obj->__builtin_resv);
4762 		drm_gem_object_release(&obj->base);
4763 		i915_gem_info_remove_obj(i915, obj->base.size);
4764 
4765 		kfree(obj->bit_17);
4766 		i915_gem_object_free(obj);
4767 
4768 		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
4769 		atomic_dec(&i915->mm.free_count);
4770 
4771 		if (on)
4772 			cond_resched();
4773 	}
4774 	intel_runtime_pm_put(i915);
4775 }
4776 
4777 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4778 {
4779 	struct llist_node *freed;
4780 
4781 	/* Free the oldest, most stale object to keep the free_list short */
4782 	freed = NULL;
4783 	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
4784 		/* Only one consumer of llist_del_first() allowed */
4785 		spin_lock(&i915->mm.free_lock);
4786 		freed = llist_del_first(&i915->mm.free_list);
4787 		spin_unlock(&i915->mm.free_lock);
4788 	}
4789 	if (unlikely(freed)) {
4790 		freed->next = NULL;
4791 		__i915_gem_free_objects(i915, freed);
4792 	}
4793 }
4794 
4795 static void __i915_gem_free_work(struct work_struct *work)
4796 {
4797 	struct drm_i915_private *i915 =
4798 		container_of(work, struct drm_i915_private, mm.free_work);
4799 	struct llist_node *freed;
4800 
4801 	/*
4802 	 * All file-owned VMA should have been released by this point through
4803 	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4804 	 * However, the object may also be bound into the global GTT (e.g.
4805 	 * older GPUs without per-process support, or for direct access through
4806 	 * the GTT either for the user or for scanout). Those VMA still need to
4807 	 * unbound now.
4808 	 */
4809 
4810 	spin_lock(&i915->mm.free_lock);
4811 	while ((freed = llist_del_all(&i915->mm.free_list))) {
4812 		spin_unlock(&i915->mm.free_lock);
4813 
4814 		__i915_gem_free_objects(i915, freed);
4815 		if (need_resched())
4816 			return;
4817 
4818 		spin_lock(&i915->mm.free_lock);
4819 	}
4820 	spin_unlock(&i915->mm.free_lock);
4821 }
4822 
4823 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4824 {
4825 	struct drm_i915_gem_object *obj =
4826 		container_of(head, typeof(*obj), rcu);
4827 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4828 
4829 	/*
4830 	 * Since we require blocking on struct_mutex to unbind the freed
4831 	 * object from the GPU before releasing resources back to the
4832 	 * system, we can not do that directly from the RCU callback (which may
4833 	 * be a softirq context), but must instead then defer that work onto a
4834 	 * kthread. We use the RCU callback rather than move the freed object
4835 	 * directly onto the work queue so that we can mix between using the
4836 	 * worker and performing frees directly from subsequent allocations for
4837 	 * crude but effective memory throttling.
4838 	 */
4839 	if (llist_add(&obj->freed, &i915->mm.free_list))
4840 		queue_work(i915->wq, &i915->mm.free_work);
4841 }
4842 
4843 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4844 {
4845 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4846 
4847 	if (obj->mm.quirked)
4848 		__i915_gem_object_unpin_pages(obj);
4849 
4850 	if (discard_backing_storage(obj))
4851 		obj->mm.madv = I915_MADV_DONTNEED;
4852 
4853 	/*
4854 	 * Before we free the object, make sure any pure RCU-only
4855 	 * read-side critical sections are complete, e.g.
4856 	 * i915_gem_busy_ioctl(). For the corresponding synchronized
4857 	 * lookup see i915_gem_object_lookup_rcu().
4858 	 */
4859 	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
4860 	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4861 }
4862 
4863 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4864 {
4865 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4866 
4867 	if (!i915_gem_object_has_active_reference(obj) &&
4868 	    i915_gem_object_is_active(obj))
4869 		i915_gem_object_set_active_reference(obj);
4870 	else
4871 		i915_gem_object_put(obj);
4872 }
4873 
4874 static void assert_kernel_context_is_current(struct drm_i915_private *i915)
4875 {
4876 	struct i915_gem_context *kernel_context = i915->kernel_context;
4877 	struct intel_engine_cs *engine;
4878 	enum intel_engine_id id;
4879 
4880 	for_each_engine(engine, i915, id) {
4881 		GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline->last_request));
4882 		GEM_BUG_ON(engine->last_retired_context != kernel_context);
4883 	}
4884 }
4885 
4886 void i915_gem_sanitize(struct drm_i915_private *i915)
4887 {
4888 	if (i915_terminally_wedged(&i915->gpu_error)) {
4889 		mutex_lock(&i915->drm.struct_mutex);
4890 		i915_gem_unset_wedged(i915);
4891 		mutex_unlock(&i915->drm.struct_mutex);
4892 	}
4893 
4894 	/*
4895 	 * If we inherit context state from the BIOS or earlier occupants
4896 	 * of the GPU, the GPU may be in an inconsistent state when we
4897 	 * try to take over. The only way to remove the earlier state
4898 	 * is by resetting. However, resetting on earlier gen is tricky as
4899 	 * it may impact the display and we are uncertain about the stability
4900 	 * of the reset, so this could be applied to even earlier gen.
4901 	 */
4902 	if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
4903 		WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
4904 }
4905 
4906 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4907 {
4908 	struct drm_device *dev = &dev_priv->drm;
4909 	int ret;
4910 
4911 	intel_runtime_pm_get(dev_priv);
4912 	intel_suspend_gt_powersave(dev_priv);
4913 
4914 	mutex_lock(&dev->struct_mutex);
4915 
4916 	/* We have to flush all the executing contexts to main memory so
4917 	 * that they can saved in the hibernation image. To ensure the last
4918 	 * context image is coherent, we have to switch away from it. That
4919 	 * leaves the dev_priv->kernel_context still active when
4920 	 * we actually suspend, and its image in memory may not match the GPU
4921 	 * state. Fortunately, the kernel_context is disposable and we do
4922 	 * not rely on its state.
4923 	 */
4924 	if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
4925 		ret = i915_gem_switch_to_kernel_context(dev_priv);
4926 		if (ret)
4927 			goto err_unlock;
4928 
4929 		ret = i915_gem_wait_for_idle(dev_priv,
4930 					     I915_WAIT_INTERRUPTIBLE |
4931 					     I915_WAIT_LOCKED);
4932 		if (ret && ret != -EIO)
4933 			goto err_unlock;
4934 
4935 		assert_kernel_context_is_current(dev_priv);
4936 	}
4937 	i915_gem_contexts_lost(dev_priv);
4938 	mutex_unlock(&dev->struct_mutex);
4939 
4940 	intel_uc_suspend(dev_priv);
4941 
4942 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4943 	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4944 
4945 	/* As the idle_work is rearming if it detects a race, play safe and
4946 	 * repeat the flush until it is definitely idle.
4947 	 */
4948 	drain_delayed_work(&dev_priv->gt.idle_work);
4949 
4950 	/* Assert that we sucessfully flushed all the work and
4951 	 * reset the GPU back to its idle, low power state.
4952 	 */
4953 	WARN_ON(dev_priv->gt.awake);
4954 	if (WARN_ON(!intel_engines_are_idle(dev_priv)))
4955 		i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
4956 
4957 	/*
4958 	 * Neither the BIOS, ourselves or any other kernel
4959 	 * expects the system to be in execlists mode on startup,
4960 	 * so we need to reset the GPU back to legacy mode. And the only
4961 	 * known way to disable logical contexts is through a GPU reset.
4962 	 *
4963 	 * So in order to leave the system in a known default configuration,
4964 	 * always reset the GPU upon unload and suspend. Afterwards we then
4965 	 * clean up the GEM state tracking, flushing off the requests and
4966 	 * leaving the system in a known idle state.
4967 	 *
4968 	 * Note that is of the upmost importance that the GPU is idle and
4969 	 * all stray writes are flushed *before* we dismantle the backing
4970 	 * storage for the pinned objects.
4971 	 *
4972 	 * However, since we are uncertain that resetting the GPU on older
4973 	 * machines is a good idea, we don't - just in case it leaves the
4974 	 * machine in an unusable condition.
4975 	 */
4976 	i915_gem_sanitize(dev_priv);
4977 
4978 	intel_runtime_pm_put(dev_priv);
4979 	return 0;
4980 
4981 err_unlock:
4982 	mutex_unlock(&dev->struct_mutex);
4983 	intel_runtime_pm_put(dev_priv);
4984 	return ret;
4985 }
4986 
4987 void i915_gem_resume(struct drm_i915_private *i915)
4988 {
4989 	WARN_ON(i915->gt.awake);
4990 
4991 	mutex_lock(&i915->drm.struct_mutex);
4992 	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
4993 
4994 	i915_gem_restore_gtt_mappings(i915);
4995 	i915_gem_restore_fences(i915);
4996 
4997 	/*
4998 	 * As we didn't flush the kernel context before suspend, we cannot
4999 	 * guarantee that the context image is complete. So let's just reset
5000 	 * it and start again.
5001 	 */
5002 	i915->gt.resume(i915);
5003 
5004 	if (i915_gem_init_hw(i915))
5005 		goto err_wedged;
5006 
5007 	intel_uc_resume(i915);
5008 
5009 	/* Always reload a context for powersaving. */
5010 	if (i915_gem_switch_to_kernel_context(i915))
5011 		goto err_wedged;
5012 
5013 out_unlock:
5014 	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5015 	mutex_unlock(&i915->drm.struct_mutex);
5016 	return;
5017 
5018 err_wedged:
5019 	if (!i915_terminally_wedged(&i915->gpu_error)) {
5020 		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
5021 		i915_gem_set_wedged(i915);
5022 	}
5023 	goto out_unlock;
5024 }
5025 
5026 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5027 {
5028 	if (INTEL_GEN(dev_priv) < 5 ||
5029 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5030 		return;
5031 
5032 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5033 				 DISP_TILE_SURFACE_SWIZZLING);
5034 
5035 	if (IS_GEN5(dev_priv))
5036 		return;
5037 
5038 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5039 	if (IS_GEN6(dev_priv))
5040 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5041 	else if (IS_GEN7(dev_priv))
5042 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5043 	else if (IS_GEN8(dev_priv))
5044 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5045 	else
5046 		BUG();
5047 }
5048 
5049 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5050 {
5051 	I915_WRITE(RING_CTL(base), 0);
5052 	I915_WRITE(RING_HEAD(base), 0);
5053 	I915_WRITE(RING_TAIL(base), 0);
5054 	I915_WRITE(RING_START(base), 0);
5055 }
5056 
5057 static void init_unused_rings(struct drm_i915_private *dev_priv)
5058 {
5059 	if (IS_I830(dev_priv)) {
5060 		init_unused_ring(dev_priv, PRB1_BASE);
5061 		init_unused_ring(dev_priv, SRB0_BASE);
5062 		init_unused_ring(dev_priv, SRB1_BASE);
5063 		init_unused_ring(dev_priv, SRB2_BASE);
5064 		init_unused_ring(dev_priv, SRB3_BASE);
5065 	} else if (IS_GEN2(dev_priv)) {
5066 		init_unused_ring(dev_priv, SRB0_BASE);
5067 		init_unused_ring(dev_priv, SRB1_BASE);
5068 	} else if (IS_GEN3(dev_priv)) {
5069 		init_unused_ring(dev_priv, PRB1_BASE);
5070 		init_unused_ring(dev_priv, PRB2_BASE);
5071 	}
5072 }
5073 
5074 static int __i915_gem_restart_engines(void *data)
5075 {
5076 	struct drm_i915_private *i915 = data;
5077 	struct intel_engine_cs *engine;
5078 	enum intel_engine_id id;
5079 	int err;
5080 
5081 	for_each_engine(engine, i915, id) {
5082 		err = engine->init_hw(engine);
5083 		if (err) {
5084 			DRM_ERROR("Failed to restart %s (%d)\n",
5085 				  engine->name, err);
5086 			return err;
5087 		}
5088 	}
5089 
5090 	return 0;
5091 }
5092 
5093 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
5094 {
5095 	int ret;
5096 
5097 	dev_priv->gt.last_init_time = ktime_get();
5098 
5099 	/* Double layer security blanket, see i915_gem_init() */
5100 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5101 
5102 	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5103 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5104 
5105 	if (IS_HASWELL(dev_priv))
5106 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5107 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5108 
5109 	if (HAS_PCH_NOP(dev_priv)) {
5110 		if (IS_IVYBRIDGE(dev_priv)) {
5111 			u32 temp = I915_READ(GEN7_MSG_CTL);
5112 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5113 			I915_WRITE(GEN7_MSG_CTL, temp);
5114 		} else if (INTEL_GEN(dev_priv) >= 7) {
5115 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5116 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5117 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5118 		}
5119 	}
5120 
5121 	i915_gem_init_swizzling(dev_priv);
5122 
5123 	/*
5124 	 * At least 830 can leave some of the unused rings
5125 	 * "active" (ie. head != tail) after resume which
5126 	 * will prevent c3 entry. Makes sure all unused rings
5127 	 * are totally idle.
5128 	 */
5129 	init_unused_rings(dev_priv);
5130 
5131 	BUG_ON(!dev_priv->kernel_context);
5132 	if (i915_terminally_wedged(&dev_priv->gpu_error)) {
5133 		ret = -EIO;
5134 		goto out;
5135 	}
5136 
5137 	ret = i915_ppgtt_init_hw(dev_priv);
5138 	if (ret) {
5139 		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5140 		goto out;
5141 	}
5142 
5143 	/* We can't enable contexts until all firmware is loaded */
5144 	ret = intel_uc_init_hw(dev_priv);
5145 	if (ret) {
5146 		DRM_ERROR("Enabling uc failed (%d)\n", ret);
5147 		goto out;
5148 	}
5149 
5150 	intel_mocs_init_l3cc_table(dev_priv);
5151 
5152 	/* Only when the HW is re-initialised, can we replay the requests */
5153 	ret = __i915_gem_restart_engines(dev_priv);
5154 out:
5155 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5156 	return ret;
5157 }
5158 
5159 static int __intel_engines_record_defaults(struct drm_i915_private *i915)
5160 {
5161 	struct i915_gem_context *ctx;
5162 	struct intel_engine_cs *engine;
5163 	enum intel_engine_id id;
5164 	int err;
5165 
5166 	/*
5167 	 * As we reset the gpu during very early sanitisation, the current
5168 	 * register state on the GPU should reflect its defaults values.
5169 	 * We load a context onto the hw (with restore-inhibit), then switch
5170 	 * over to a second context to save that default register state. We
5171 	 * can then prime every new context with that state so they all start
5172 	 * from the same default HW values.
5173 	 */
5174 
5175 	ctx = i915_gem_context_create_kernel(i915, 0);
5176 	if (IS_ERR(ctx))
5177 		return PTR_ERR(ctx);
5178 
5179 	for_each_engine(engine, i915, id) {
5180 		struct i915_request *rq;
5181 
5182 		rq = i915_request_alloc(engine, ctx);
5183 		if (IS_ERR(rq)) {
5184 			err = PTR_ERR(rq);
5185 			goto out_ctx;
5186 		}
5187 
5188 		err = 0;
5189 		if (engine->init_context)
5190 			err = engine->init_context(rq);
5191 
5192 		__i915_request_add(rq, true);
5193 		if (err)
5194 			goto err_active;
5195 	}
5196 
5197 	err = i915_gem_switch_to_kernel_context(i915);
5198 	if (err)
5199 		goto err_active;
5200 
5201 	err = i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED);
5202 	if (err)
5203 		goto err_active;
5204 
5205 	assert_kernel_context_is_current(i915);
5206 
5207 	for_each_engine(engine, i915, id) {
5208 		struct i915_vma *state;
5209 
5210 		state = ctx->engine[id].state;
5211 		if (!state)
5212 			continue;
5213 
5214 		/*
5215 		 * As we will hold a reference to the logical state, it will
5216 		 * not be torn down with the context, and importantly the
5217 		 * object will hold onto its vma (making it possible for a
5218 		 * stray GTT write to corrupt our defaults). Unmap the vma
5219 		 * from the GTT to prevent such accidents and reclaim the
5220 		 * space.
5221 		 */
5222 		err = i915_vma_unbind(state);
5223 		if (err)
5224 			goto err_active;
5225 
5226 		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
5227 		if (err)
5228 			goto err_active;
5229 
5230 		engine->default_state = i915_gem_object_get(state->obj);
5231 	}
5232 
5233 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
5234 		unsigned int found = intel_engines_has_context_isolation(i915);
5235 
5236 		/*
5237 		 * Make sure that classes with multiple engine instances all
5238 		 * share the same basic configuration.
5239 		 */
5240 		for_each_engine(engine, i915, id) {
5241 			unsigned int bit = BIT(engine->uabi_class);
5242 			unsigned int expected = engine->default_state ? bit : 0;
5243 
5244 			if ((found & bit) != expected) {
5245 				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
5246 					  engine->uabi_class, engine->name);
5247 			}
5248 		}
5249 	}
5250 
5251 out_ctx:
5252 	i915_gem_context_set_closed(ctx);
5253 	i915_gem_context_put(ctx);
5254 	return err;
5255 
5256 err_active:
5257 	/*
5258 	 * If we have to abandon now, we expect the engines to be idle
5259 	 * and ready to be torn-down. First try to flush any remaining
5260 	 * request, ensure we are pointing at the kernel context and
5261 	 * then remove it.
5262 	 */
5263 	if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
5264 		goto out_ctx;
5265 
5266 	if (WARN_ON(i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED)))
5267 		goto out_ctx;
5268 
5269 	i915_gem_contexts_lost(i915);
5270 	goto out_ctx;
5271 }
5272 
5273 int i915_gem_init(struct drm_i915_private *dev_priv)
5274 {
5275 	int ret;
5276 
5277 	/*
5278 	 * We need to fallback to 4K pages since gvt gtt handling doesn't
5279 	 * support huge page entries - we will need to check either hypervisor
5280 	 * mm can support huge guest page or just do emulation in gvt.
5281 	 */
5282 	if (intel_vgpu_active(dev_priv))
5283 		mkwrite_device_info(dev_priv)->page_sizes =
5284 			I915_GTT_PAGE_SIZE_4K;
5285 
5286 	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5287 
5288 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5289 		dev_priv->gt.resume = intel_lr_context_resume;
5290 		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5291 	} else {
5292 		dev_priv->gt.resume = intel_legacy_submission_resume;
5293 		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5294 	}
5295 
5296 	ret = i915_gem_init_userptr(dev_priv);
5297 	if (ret)
5298 		return ret;
5299 
5300 	ret = intel_uc_init_misc(dev_priv);
5301 	if (ret)
5302 		return ret;
5303 
5304 	/* This is just a security blanket to placate dragons.
5305 	 * On some systems, we very sporadically observe that the first TLBs
5306 	 * used by the CS may be stale, despite us poking the TLB reset. If
5307 	 * we hold the forcewake during initialisation these problems
5308 	 * just magically go away.
5309 	 */
5310 	mutex_lock(&dev_priv->drm.struct_mutex);
5311 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5312 
5313 	ret = i915_gem_init_ggtt(dev_priv);
5314 	if (ret) {
5315 		GEM_BUG_ON(ret == -EIO);
5316 		goto err_unlock;
5317 	}
5318 
5319 	ret = i915_gem_contexts_init(dev_priv);
5320 	if (ret) {
5321 		GEM_BUG_ON(ret == -EIO);
5322 		goto err_ggtt;
5323 	}
5324 
5325 	ret = intel_engines_init(dev_priv);
5326 	if (ret) {
5327 		GEM_BUG_ON(ret == -EIO);
5328 		goto err_context;
5329 	}
5330 
5331 	intel_init_gt_powersave(dev_priv);
5332 
5333 	ret = intel_uc_init(dev_priv);
5334 	if (ret)
5335 		goto err_pm;
5336 
5337 	ret = i915_gem_init_hw(dev_priv);
5338 	if (ret)
5339 		goto err_uc_init;
5340 
5341 	/*
5342 	 * Despite its name intel_init_clock_gating applies both display
5343 	 * clock gating workarounds; GT mmio workarounds and the occasional
5344 	 * GT power context workaround. Worse, sometimes it includes a context
5345 	 * register workaround which we need to apply before we record the
5346 	 * default HW state for all contexts.
5347 	 *
5348 	 * FIXME: break up the workarounds and apply them at the right time!
5349 	 */
5350 	intel_init_clock_gating(dev_priv);
5351 
5352 	ret = __intel_engines_record_defaults(dev_priv);
5353 	if (ret)
5354 		goto err_init_hw;
5355 
5356 	if (i915_inject_load_failure()) {
5357 		ret = -ENODEV;
5358 		goto err_init_hw;
5359 	}
5360 
5361 	if (i915_inject_load_failure()) {
5362 		ret = -EIO;
5363 		goto err_init_hw;
5364 	}
5365 
5366 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5367 	mutex_unlock(&dev_priv->drm.struct_mutex);
5368 
5369 	return 0;
5370 
5371 	/*
5372 	 * Unwinding is complicated by that we want to handle -EIO to mean
5373 	 * disable GPU submission but keep KMS alive. We want to mark the
5374 	 * HW as irrevisibly wedged, but keep enough state around that the
5375 	 * driver doesn't explode during runtime.
5376 	 */
5377 err_init_hw:
5378 	i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED);
5379 	i915_gem_contexts_lost(dev_priv);
5380 	intel_uc_fini_hw(dev_priv);
5381 err_uc_init:
5382 	intel_uc_fini(dev_priv);
5383 err_pm:
5384 	if (ret != -EIO) {
5385 		intel_cleanup_gt_powersave(dev_priv);
5386 		i915_gem_cleanup_engines(dev_priv);
5387 	}
5388 err_context:
5389 	if (ret != -EIO)
5390 		i915_gem_contexts_fini(dev_priv);
5391 err_ggtt:
5392 err_unlock:
5393 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5394 	mutex_unlock(&dev_priv->drm.struct_mutex);
5395 
5396 	intel_uc_fini_misc(dev_priv);
5397 
5398 	if (ret != -EIO)
5399 		i915_gem_cleanup_userptr(dev_priv);
5400 
5401 	if (ret == -EIO) {
5402 		/*
5403 		 * Allow engine initialisation to fail by marking the GPU as
5404 		 * wedged. But we only want to do this where the GPU is angry,
5405 		 * for all other failure, such as an allocation failure, bail.
5406 		 */
5407 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5408 			DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5409 			i915_gem_set_wedged(dev_priv);
5410 		}
5411 		ret = 0;
5412 	}
5413 
5414 	i915_gem_drain_freed_objects(dev_priv);
5415 	return ret;
5416 }
5417 
5418 void i915_gem_init_mmio(struct drm_i915_private *i915)
5419 {
5420 	i915_gem_sanitize(i915);
5421 }
5422 
5423 void
5424 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5425 {
5426 	struct intel_engine_cs *engine;
5427 	enum intel_engine_id id;
5428 
5429 	for_each_engine(engine, dev_priv, id)
5430 		dev_priv->gt.cleanup_engine(engine);
5431 }
5432 
5433 void
5434 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5435 {
5436 	int i;
5437 
5438 	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5439 	    !IS_CHERRYVIEW(dev_priv))
5440 		dev_priv->num_fence_regs = 32;
5441 	else if (INTEL_GEN(dev_priv) >= 4 ||
5442 		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
5443 		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5444 		dev_priv->num_fence_regs = 16;
5445 	else
5446 		dev_priv->num_fence_regs = 8;
5447 
5448 	if (intel_vgpu_active(dev_priv))
5449 		dev_priv->num_fence_regs =
5450 				I915_READ(vgtif_reg(avail_rs.fence_num));
5451 
5452 	/* Initialize fence registers to zero */
5453 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
5454 		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
5455 
5456 		fence->i915 = dev_priv;
5457 		fence->id = i;
5458 		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
5459 	}
5460 	i915_gem_restore_fences(dev_priv);
5461 
5462 	i915_gem_detect_bit_6_swizzle(dev_priv);
5463 }
5464 
5465 static void i915_gem_init__mm(struct drm_i915_private *i915)
5466 {
5467 	spin_lock_init(&i915->mm.object_stat_lock);
5468 	spin_lock_init(&i915->mm.obj_lock);
5469 	spin_lock_init(&i915->mm.free_lock);
5470 
5471 	init_llist_head(&i915->mm.free_list);
5472 
5473 	INIT_LIST_HEAD(&i915->mm.unbound_list);
5474 	INIT_LIST_HEAD(&i915->mm.bound_list);
5475 	INIT_LIST_HEAD(&i915->mm.fence_list);
5476 	INIT_LIST_HEAD(&i915->mm.userfault_list);
5477 
5478 	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
5479 }
5480 
5481 int
5482 i915_gem_load_init(struct drm_i915_private *dev_priv)
5483 {
5484 	int err = -ENOMEM;
5485 
5486 	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5487 	if (!dev_priv->objects)
5488 		goto err_out;
5489 
5490 	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5491 	if (!dev_priv->vmas)
5492 		goto err_objects;
5493 
5494 	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5495 	if (!dev_priv->luts)
5496 		goto err_vmas;
5497 
5498 	dev_priv->requests = KMEM_CACHE(i915_request,
5499 					SLAB_HWCACHE_ALIGN |
5500 					SLAB_RECLAIM_ACCOUNT |
5501 					SLAB_TYPESAFE_BY_RCU);
5502 	if (!dev_priv->requests)
5503 		goto err_luts;
5504 
5505 	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5506 					    SLAB_HWCACHE_ALIGN |
5507 					    SLAB_RECLAIM_ACCOUNT);
5508 	if (!dev_priv->dependencies)
5509 		goto err_requests;
5510 
5511 	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5512 	if (!dev_priv->priorities)
5513 		goto err_dependencies;
5514 
5515 	mutex_lock(&dev_priv->drm.struct_mutex);
5516 	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5517 	err = i915_gem_timeline_init__global(dev_priv);
5518 	mutex_unlock(&dev_priv->drm.struct_mutex);
5519 	if (err)
5520 		goto err_priorities;
5521 
5522 	i915_gem_init__mm(dev_priv);
5523 
5524 	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5525 			  i915_gem_retire_work_handler);
5526 	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5527 			  i915_gem_idle_work_handler);
5528 	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5529 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5530 
5531 	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5532 
5533 	spin_lock_init(&dev_priv->fb_tracking.lock);
5534 
5535 	err = i915_gemfs_init(dev_priv);
5536 	if (err)
5537 		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
5538 
5539 	return 0;
5540 
5541 err_priorities:
5542 	kmem_cache_destroy(dev_priv->priorities);
5543 err_dependencies:
5544 	kmem_cache_destroy(dev_priv->dependencies);
5545 err_requests:
5546 	kmem_cache_destroy(dev_priv->requests);
5547 err_luts:
5548 	kmem_cache_destroy(dev_priv->luts);
5549 err_vmas:
5550 	kmem_cache_destroy(dev_priv->vmas);
5551 err_objects:
5552 	kmem_cache_destroy(dev_priv->objects);
5553 err_out:
5554 	return err;
5555 }
5556 
5557 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
5558 {
5559 	i915_gem_drain_freed_objects(dev_priv);
5560 	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
5561 	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5562 	WARN_ON(dev_priv->mm.object_count);
5563 
5564 	mutex_lock(&dev_priv->drm.struct_mutex);
5565 	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
5566 	WARN_ON(!list_empty(&dev_priv->gt.timelines));
5567 	mutex_unlock(&dev_priv->drm.struct_mutex);
5568 
5569 	kmem_cache_destroy(dev_priv->priorities);
5570 	kmem_cache_destroy(dev_priv->dependencies);
5571 	kmem_cache_destroy(dev_priv->requests);
5572 	kmem_cache_destroy(dev_priv->luts);
5573 	kmem_cache_destroy(dev_priv->vmas);
5574 	kmem_cache_destroy(dev_priv->objects);
5575 
5576 	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5577 	rcu_barrier();
5578 
5579 	i915_gemfs_fini(dev_priv);
5580 }
5581 
5582 int i915_gem_freeze(struct drm_i915_private *dev_priv)
5583 {
5584 	/* Discard all purgeable objects, let userspace recover those as
5585 	 * required after resuming.
5586 	 */
5587 	i915_gem_shrink_all(dev_priv);
5588 
5589 	return 0;
5590 }
5591 
5592 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5593 {
5594 	struct drm_i915_gem_object *obj;
5595 	struct list_head *phases[] = {
5596 		&dev_priv->mm.unbound_list,
5597 		&dev_priv->mm.bound_list,
5598 		NULL
5599 	}, **p;
5600 
5601 	/* Called just before we write the hibernation image.
5602 	 *
5603 	 * We need to update the domain tracking to reflect that the CPU
5604 	 * will be accessing all the pages to create and restore from the
5605 	 * hibernation, and so upon restoration those pages will be in the
5606 	 * CPU domain.
5607 	 *
5608 	 * To make sure the hibernation image contains the latest state,
5609 	 * we update that state just before writing out the image.
5610 	 *
5611 	 * To try and reduce the hibernation image, we manually shrink
5612 	 * the objects as well, see i915_gem_freeze()
5613 	 */
5614 
5615 	i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
5616 	i915_gem_drain_freed_objects(dev_priv);
5617 
5618 	spin_lock(&dev_priv->mm.obj_lock);
5619 	for (p = phases; *p; p++) {
5620 		list_for_each_entry(obj, *p, mm.link)
5621 			__start_cpu_write(obj);
5622 	}
5623 	spin_unlock(&dev_priv->mm.obj_lock);
5624 
5625 	return 0;
5626 }
5627 
5628 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5629 {
5630 	struct drm_i915_file_private *file_priv = file->driver_priv;
5631 	struct i915_request *request;
5632 
5633 	/* Clean up our request list when the client is going away, so that
5634 	 * later retire_requests won't dereference our soon-to-be-gone
5635 	 * file_priv.
5636 	 */
5637 	spin_lock(&file_priv->mm.lock);
5638 	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5639 		request->file_priv = NULL;
5640 	spin_unlock(&file_priv->mm.lock);
5641 }
5642 
5643 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5644 {
5645 	struct drm_i915_file_private *file_priv;
5646 	int ret;
5647 
5648 	DRM_DEBUG("\n");
5649 
5650 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5651 	if (!file_priv)
5652 		return -ENOMEM;
5653 
5654 	file->driver_priv = file_priv;
5655 	file_priv->dev_priv = i915;
5656 	file_priv->file = file;
5657 
5658 	spin_lock_init(&file_priv->mm.lock);
5659 	INIT_LIST_HEAD(&file_priv->mm.request_list);
5660 
5661 	file_priv->bsd_engine = -1;
5662 
5663 	ret = i915_gem_context_open(i915, file);
5664 	if (ret)
5665 		kfree(file_priv);
5666 
5667 	return ret;
5668 }
5669 
5670 /**
5671  * i915_gem_track_fb - update frontbuffer tracking
5672  * @old: current GEM buffer for the frontbuffer slots
5673  * @new: new GEM buffer for the frontbuffer slots
5674  * @frontbuffer_bits: bitmask of frontbuffer slots
5675  *
5676  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5677  * from @old and setting them in @new. Both @old and @new can be NULL.
5678  */
5679 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5680 		       struct drm_i915_gem_object *new,
5681 		       unsigned frontbuffer_bits)
5682 {
5683 	/* Control of individual bits within the mask are guarded by
5684 	 * the owning plane->mutex, i.e. we can never see concurrent
5685 	 * manipulation of individual bits. But since the bitfield as a whole
5686 	 * is updated using RMW, we need to use atomics in order to update
5687 	 * the bits.
5688 	 */
5689 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5690 		     sizeof(atomic_t) * BITS_PER_BYTE);
5691 
5692 	if (old) {
5693 		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5694 		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5695 	}
5696 
5697 	if (new) {
5698 		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5699 		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5700 	}
5701 }
5702 
5703 /* Allocate a new GEM object and fill it with the supplied data */
5704 struct drm_i915_gem_object *
5705 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5706 			         const void *data, size_t size)
5707 {
5708 	struct drm_i915_gem_object *obj;
5709 	struct file *file;
5710 	size_t offset;
5711 	int err;
5712 
5713 	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5714 	if (IS_ERR(obj))
5715 		return obj;
5716 
5717 	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5718 
5719 	file = obj->base.filp;
5720 	offset = 0;
5721 	do {
5722 		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5723 		struct page *page;
5724 		void *pgdata, *vaddr;
5725 
5726 		err = pagecache_write_begin(file, file->f_mapping,
5727 					    offset, len, 0,
5728 					    &page, &pgdata);
5729 		if (err < 0)
5730 			goto fail;
5731 
5732 		vaddr = kmap(page);
5733 		memcpy(vaddr, data, len);
5734 		kunmap(page);
5735 
5736 		err = pagecache_write_end(file, file->f_mapping,
5737 					  offset, len, len,
5738 					  page, pgdata);
5739 		if (err < 0)
5740 			goto fail;
5741 
5742 		size -= len;
5743 		data += len;
5744 		offset += len;
5745 	} while (size);
5746 
5747 	return obj;
5748 
5749 fail:
5750 	i915_gem_object_put(obj);
5751 	return ERR_PTR(err);
5752 }
5753 
5754 struct scatterlist *
5755 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5756 		       unsigned int n,
5757 		       unsigned int *offset)
5758 {
5759 	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5760 	struct scatterlist *sg;
5761 	unsigned int idx, count;
5762 
5763 	might_sleep();
5764 	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5765 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5766 
5767 	/* As we iterate forward through the sg, we record each entry in a
5768 	 * radixtree for quick repeated (backwards) lookups. If we have seen
5769 	 * this index previously, we will have an entry for it.
5770 	 *
5771 	 * Initial lookup is O(N), but this is amortized to O(1) for
5772 	 * sequential page access (where each new request is consecutive
5773 	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5774 	 * i.e. O(1) with a large constant!
5775 	 */
5776 	if (n < READ_ONCE(iter->sg_idx))
5777 		goto lookup;
5778 
5779 	mutex_lock(&iter->lock);
5780 
5781 	/* We prefer to reuse the last sg so that repeated lookup of this
5782 	 * (or the subsequent) sg are fast - comparing against the last
5783 	 * sg is faster than going through the radixtree.
5784 	 */
5785 
5786 	sg = iter->sg_pos;
5787 	idx = iter->sg_idx;
5788 	count = __sg_page_count(sg);
5789 
5790 	while (idx + count <= n) {
5791 		unsigned long exception, i;
5792 		int ret;
5793 
5794 		/* If we cannot allocate and insert this entry, or the
5795 		 * individual pages from this range, cancel updating the
5796 		 * sg_idx so that on this lookup we are forced to linearly
5797 		 * scan onwards, but on future lookups we will try the
5798 		 * insertion again (in which case we need to be careful of
5799 		 * the error return reporting that we have already inserted
5800 		 * this index).
5801 		 */
5802 		ret = radix_tree_insert(&iter->radix, idx, sg);
5803 		if (ret && ret != -EEXIST)
5804 			goto scan;
5805 
5806 		exception =
5807 			RADIX_TREE_EXCEPTIONAL_ENTRY |
5808 			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5809 		for (i = 1; i < count; i++) {
5810 			ret = radix_tree_insert(&iter->radix, idx + i,
5811 						(void *)exception);
5812 			if (ret && ret != -EEXIST)
5813 				goto scan;
5814 		}
5815 
5816 		idx += count;
5817 		sg = ____sg_next(sg);
5818 		count = __sg_page_count(sg);
5819 	}
5820 
5821 scan:
5822 	iter->sg_pos = sg;
5823 	iter->sg_idx = idx;
5824 
5825 	mutex_unlock(&iter->lock);
5826 
5827 	if (unlikely(n < idx)) /* insertion completed by another thread */
5828 		goto lookup;
5829 
5830 	/* In case we failed to insert the entry into the radixtree, we need
5831 	 * to look beyond the current sg.
5832 	 */
5833 	while (idx + count <= n) {
5834 		idx += count;
5835 		sg = ____sg_next(sg);
5836 		count = __sg_page_count(sg);
5837 	}
5838 
5839 	*offset = n - idx;
5840 	return sg;
5841 
5842 lookup:
5843 	rcu_read_lock();
5844 
5845 	sg = radix_tree_lookup(&iter->radix, n);
5846 	GEM_BUG_ON(!sg);
5847 
5848 	/* If this index is in the middle of multi-page sg entry,
5849 	 * the radixtree will contain an exceptional entry that points
5850 	 * to the start of that range. We will return the pointer to
5851 	 * the base page and the offset of this page within the
5852 	 * sg entry's range.
5853 	 */
5854 	*offset = 0;
5855 	if (unlikely(radix_tree_exception(sg))) {
5856 		unsigned long base =
5857 			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5858 
5859 		sg = radix_tree_lookup(&iter->radix, base);
5860 		GEM_BUG_ON(!sg);
5861 
5862 		*offset = n - base;
5863 	}
5864 
5865 	rcu_read_unlock();
5866 
5867 	return sg;
5868 }
5869 
5870 struct page *
5871 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5872 {
5873 	struct scatterlist *sg;
5874 	unsigned int offset;
5875 
5876 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5877 
5878 	sg = i915_gem_object_get_sg(obj, n, &offset);
5879 	return nth_page(sg_page(sg), offset);
5880 }
5881 
5882 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5883 struct page *
5884 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5885 			       unsigned int n)
5886 {
5887 	struct page *page;
5888 
5889 	page = i915_gem_object_get_page(obj, n);
5890 	if (!obj->mm.dirty)
5891 		set_page_dirty(page);
5892 
5893 	return page;
5894 }
5895 
5896 dma_addr_t
5897 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5898 				unsigned long n)
5899 {
5900 	struct scatterlist *sg;
5901 	unsigned int offset;
5902 
5903 	sg = i915_gem_object_get_sg(obj, n, &offset);
5904 	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5905 }
5906 
5907 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
5908 {
5909 	struct sg_table *pages;
5910 	int err;
5911 
5912 	if (align > obj->base.size)
5913 		return -EINVAL;
5914 
5915 	if (obj->ops == &i915_gem_phys_ops)
5916 		return 0;
5917 
5918 	if (obj->ops != &i915_gem_object_ops)
5919 		return -EINVAL;
5920 
5921 	err = i915_gem_object_unbind(obj);
5922 	if (err)
5923 		return err;
5924 
5925 	mutex_lock(&obj->mm.lock);
5926 
5927 	if (obj->mm.madv != I915_MADV_WILLNEED) {
5928 		err = -EFAULT;
5929 		goto err_unlock;
5930 	}
5931 
5932 	if (obj->mm.quirked) {
5933 		err = -EFAULT;
5934 		goto err_unlock;
5935 	}
5936 
5937 	if (obj->mm.mapping) {
5938 		err = -EBUSY;
5939 		goto err_unlock;
5940 	}
5941 
5942 	pages = fetch_and_zero(&obj->mm.pages);
5943 	if (pages) {
5944 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
5945 
5946 		__i915_gem_object_reset_page_iter(obj);
5947 
5948 		spin_lock(&i915->mm.obj_lock);
5949 		list_del(&obj->mm.link);
5950 		spin_unlock(&i915->mm.obj_lock);
5951 	}
5952 
5953 	obj->ops = &i915_gem_phys_ops;
5954 
5955 	err = ____i915_gem_object_get_pages(obj);
5956 	if (err)
5957 		goto err_xfer;
5958 
5959 	/* Perma-pin (until release) the physical set of pages */
5960 	__i915_gem_object_pin_pages(obj);
5961 
5962 	if (!IS_ERR_OR_NULL(pages))
5963 		i915_gem_object_ops.put_pages(obj, pages);
5964 	mutex_unlock(&obj->mm.lock);
5965 	return 0;
5966 
5967 err_xfer:
5968 	obj->ops = &i915_gem_object_ops;
5969 	obj->mm.pages = pages;
5970 err_unlock:
5971 	mutex_unlock(&obj->mm.lock);
5972 	return err;
5973 }
5974 
5975 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5976 #include "selftests/scatterlist.c"
5977 #include "selftests/mock_gem_device.c"
5978 #include "selftests/huge_gem_object.c"
5979 #include "selftests/huge_pages.c"
5980 #include "selftests/i915_gem_object.c"
5981 #include "selftests/i915_gem_coherency.c"
5982 #endif
5983