xref: /linux/drivers/gpu/drm/i915/i915_gem.c (revision 19f2e267a5d0d26282a64f8f788c482852c95324)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include "intel_workarounds.h"
39 #include "i915_gemfs.h"
40 #include <linux/dma-fence-array.h>
41 #include <linux/kthread.h>
42 #include <linux/reservation.h>
43 #include <linux/shmem_fs.h>
44 #include <linux/slab.h>
45 #include <linux/stop_machine.h>
46 #include <linux/swap.h>
47 #include <linux/pci.h>
48 #include <linux/dma-buf.h>
49 
50 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
51 
52 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
53 {
54 	if (obj->cache_dirty)
55 		return false;
56 
57 	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
58 		return true;
59 
60 	return obj->pin_global; /* currently in use by HW, keep flushed */
61 }
62 
63 static int
64 insert_mappable_node(struct i915_ggtt *ggtt,
65                      struct drm_mm_node *node, u32 size)
66 {
67 	memset(node, 0, sizeof(*node));
68 	return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
69 					   size, 0, I915_COLOR_UNEVICTABLE,
70 					   0, ggtt->mappable_end,
71 					   DRM_MM_INSERT_LOW);
72 }
73 
74 static void
75 remove_mappable_node(struct drm_mm_node *node)
76 {
77 	drm_mm_remove_node(node);
78 }
79 
80 /* some bookkeeping */
81 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82 				  u64 size)
83 {
84 	spin_lock(&dev_priv->mm.object_stat_lock);
85 	dev_priv->mm.object_count++;
86 	dev_priv->mm.object_memory += size;
87 	spin_unlock(&dev_priv->mm.object_stat_lock);
88 }
89 
90 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91 				     u64 size)
92 {
93 	spin_lock(&dev_priv->mm.object_stat_lock);
94 	dev_priv->mm.object_count--;
95 	dev_priv->mm.object_memory -= size;
96 	spin_unlock(&dev_priv->mm.object_stat_lock);
97 }
98 
99 static int
100 i915_gem_wait_for_error(struct i915_gpu_error *error)
101 {
102 	int ret;
103 
104 	might_sleep();
105 
106 	/*
107 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
108 	 * userspace. If it takes that long something really bad is going on and
109 	 * we should simply try to bail out and fail as gracefully as possible.
110 	 */
111 	ret = wait_event_interruptible_timeout(error->reset_queue,
112 					       !i915_reset_backoff(error),
113 					       I915_RESET_TIMEOUT);
114 	if (ret == 0) {
115 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
116 		return -EIO;
117 	} else if (ret < 0) {
118 		return ret;
119 	} else {
120 		return 0;
121 	}
122 }
123 
124 int i915_mutex_lock_interruptible(struct drm_device *dev)
125 {
126 	struct drm_i915_private *dev_priv = to_i915(dev);
127 	int ret;
128 
129 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130 	if (ret)
131 		return ret;
132 
133 	ret = mutex_lock_interruptible(&dev->struct_mutex);
134 	if (ret)
135 		return ret;
136 
137 	return 0;
138 }
139 
140 static u32 __i915_gem_park(struct drm_i915_private *i915)
141 {
142 	GEM_TRACE("\n");
143 
144 	lockdep_assert_held(&i915->drm.struct_mutex);
145 	GEM_BUG_ON(i915->gt.active_requests);
146 	GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
147 
148 	if (!i915->gt.awake)
149 		return I915_EPOCH_INVALID;
150 
151 	GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);
152 
153 	/*
154 	 * Be paranoid and flush a concurrent interrupt to make sure
155 	 * we don't reactivate any irq tasklets after parking.
156 	 *
157 	 * FIXME: Note that even though we have waited for execlists to be idle,
158 	 * there may still be an in-flight interrupt even though the CSB
159 	 * is now empty. synchronize_irq() makes sure that a residual interrupt
160 	 * is completed before we continue, but it doesn't prevent the HW from
161 	 * raising a spurious interrupt later. To complete the shield we should
162 	 * coordinate disabling the CS irq with flushing the interrupts.
163 	 */
164 	synchronize_irq(i915->drm.irq);
165 
166 	intel_engines_park(i915);
167 	i915_timelines_park(i915);
168 
169 	i915_pmu_gt_parked(i915);
170 	i915_vma_parked(i915);
171 
172 	i915->gt.awake = false;
173 
174 	if (INTEL_GEN(i915) >= 6)
175 		gen6_rps_idle(i915);
176 
177 	intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ);
178 
179 	intel_runtime_pm_put(i915);
180 
181 	return i915->gt.epoch;
182 }
183 
184 void i915_gem_park(struct drm_i915_private *i915)
185 {
186 	GEM_TRACE("\n");
187 
188 	lockdep_assert_held(&i915->drm.struct_mutex);
189 	GEM_BUG_ON(i915->gt.active_requests);
190 
191 	if (!i915->gt.awake)
192 		return;
193 
194 	/* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
195 	mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
196 }
197 
198 void i915_gem_unpark(struct drm_i915_private *i915)
199 {
200 	GEM_TRACE("\n");
201 
202 	lockdep_assert_held(&i915->drm.struct_mutex);
203 	GEM_BUG_ON(!i915->gt.active_requests);
204 
205 	if (i915->gt.awake)
206 		return;
207 
208 	intel_runtime_pm_get_noresume(i915);
209 
210 	/*
211 	 * It seems that the DMC likes to transition between the DC states a lot
212 	 * when there are no connected displays (no active power domains) during
213 	 * command submission.
214 	 *
215 	 * This activity has negative impact on the performance of the chip with
216 	 * huge latencies observed in the interrupt handler and elsewhere.
217 	 *
218 	 * Work around it by grabbing a GT IRQ power domain whilst there is any
219 	 * GT activity, preventing any DC state transitions.
220 	 */
221 	intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);
222 
223 	i915->gt.awake = true;
224 	if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
225 		i915->gt.epoch = 1;
226 
227 	intel_enable_gt_powersave(i915);
228 	i915_update_gfx_val(i915);
229 	if (INTEL_GEN(i915) >= 6)
230 		gen6_rps_busy(i915);
231 	i915_pmu_gt_unparked(i915);
232 
233 	intel_engines_unpark(i915);
234 
235 	i915_queue_hangcheck(i915);
236 
237 	queue_delayed_work(i915->wq,
238 			   &i915->gt.retire_work,
239 			   round_jiffies_up_relative(HZ));
240 }
241 
242 int
243 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
244 			    struct drm_file *file)
245 {
246 	struct drm_i915_private *dev_priv = to_i915(dev);
247 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
248 	struct drm_i915_gem_get_aperture *args = data;
249 	struct i915_vma *vma;
250 	u64 pinned;
251 
252 	pinned = ggtt->vm.reserved;
253 	mutex_lock(&dev->struct_mutex);
254 	list_for_each_entry(vma, &ggtt->vm.active_list, vm_link)
255 		if (i915_vma_is_pinned(vma))
256 			pinned += vma->node.size;
257 	list_for_each_entry(vma, &ggtt->vm.inactive_list, vm_link)
258 		if (i915_vma_is_pinned(vma))
259 			pinned += vma->node.size;
260 	mutex_unlock(&dev->struct_mutex);
261 
262 	args->aper_size = ggtt->vm.total;
263 	args->aper_available_size = args->aper_size - pinned;
264 
265 	return 0;
266 }
267 
268 static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
269 {
270 	struct address_space *mapping = obj->base.filp->f_mapping;
271 	drm_dma_handle_t *phys;
272 	struct sg_table *st;
273 	struct scatterlist *sg;
274 	char *vaddr;
275 	int i;
276 	int err;
277 
278 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
279 		return -EINVAL;
280 
281 	/* Always aligning to the object size, allows a single allocation
282 	 * to handle all possible callers, and given typical object sizes,
283 	 * the alignment of the buddy allocation will naturally match.
284 	 */
285 	phys = drm_pci_alloc(obj->base.dev,
286 			     roundup_pow_of_two(obj->base.size),
287 			     roundup_pow_of_two(obj->base.size));
288 	if (!phys)
289 		return -ENOMEM;
290 
291 	vaddr = phys->vaddr;
292 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
293 		struct page *page;
294 		char *src;
295 
296 		page = shmem_read_mapping_page(mapping, i);
297 		if (IS_ERR(page)) {
298 			err = PTR_ERR(page);
299 			goto err_phys;
300 		}
301 
302 		src = kmap_atomic(page);
303 		memcpy(vaddr, src, PAGE_SIZE);
304 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
305 		kunmap_atomic(src);
306 
307 		put_page(page);
308 		vaddr += PAGE_SIZE;
309 	}
310 
311 	i915_gem_chipset_flush(to_i915(obj->base.dev));
312 
313 	st = kmalloc(sizeof(*st), GFP_KERNEL);
314 	if (!st) {
315 		err = -ENOMEM;
316 		goto err_phys;
317 	}
318 
319 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
320 		kfree(st);
321 		err = -ENOMEM;
322 		goto err_phys;
323 	}
324 
325 	sg = st->sgl;
326 	sg->offset = 0;
327 	sg->length = obj->base.size;
328 
329 	sg_dma_address(sg) = phys->busaddr;
330 	sg_dma_len(sg) = obj->base.size;
331 
332 	obj->phys_handle = phys;
333 
334 	__i915_gem_object_set_pages(obj, st, sg->length);
335 
336 	return 0;
337 
338 err_phys:
339 	drm_pci_free(obj->base.dev, phys);
340 
341 	return err;
342 }
343 
344 static void __start_cpu_write(struct drm_i915_gem_object *obj)
345 {
346 	obj->read_domains = I915_GEM_DOMAIN_CPU;
347 	obj->write_domain = I915_GEM_DOMAIN_CPU;
348 	if (cpu_write_needs_clflush(obj))
349 		obj->cache_dirty = true;
350 }
351 
352 static void
353 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
354 				struct sg_table *pages,
355 				bool needs_clflush)
356 {
357 	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
358 
359 	if (obj->mm.madv == I915_MADV_DONTNEED)
360 		obj->mm.dirty = false;
361 
362 	if (needs_clflush &&
363 	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
364 	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
365 		drm_clflush_sg(pages);
366 
367 	__start_cpu_write(obj);
368 }
369 
370 static void
371 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
372 			       struct sg_table *pages)
373 {
374 	__i915_gem_object_release_shmem(obj, pages, false);
375 
376 	if (obj->mm.dirty) {
377 		struct address_space *mapping = obj->base.filp->f_mapping;
378 		char *vaddr = obj->phys_handle->vaddr;
379 		int i;
380 
381 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
382 			struct page *page;
383 			char *dst;
384 
385 			page = shmem_read_mapping_page(mapping, i);
386 			if (IS_ERR(page))
387 				continue;
388 
389 			dst = kmap_atomic(page);
390 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
391 			memcpy(dst, vaddr, PAGE_SIZE);
392 			kunmap_atomic(dst);
393 
394 			set_page_dirty(page);
395 			if (obj->mm.madv == I915_MADV_WILLNEED)
396 				mark_page_accessed(page);
397 			put_page(page);
398 			vaddr += PAGE_SIZE;
399 		}
400 		obj->mm.dirty = false;
401 	}
402 
403 	sg_free_table(pages);
404 	kfree(pages);
405 
406 	drm_pci_free(obj->base.dev, obj->phys_handle);
407 }
408 
409 static void
410 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
411 {
412 	i915_gem_object_unpin_pages(obj);
413 }
414 
415 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
416 	.get_pages = i915_gem_object_get_pages_phys,
417 	.put_pages = i915_gem_object_put_pages_phys,
418 	.release = i915_gem_object_release_phys,
419 };
420 
421 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
422 
423 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
424 {
425 	struct i915_vma *vma;
426 	LIST_HEAD(still_in_list);
427 	int ret;
428 
429 	lockdep_assert_held(&obj->base.dev->struct_mutex);
430 
431 	/* Closed vma are removed from the obj->vma_list - but they may
432 	 * still have an active binding on the object. To remove those we
433 	 * must wait for all rendering to complete to the object (as unbinding
434 	 * must anyway), and retire the requests.
435 	 */
436 	ret = i915_gem_object_set_to_cpu_domain(obj, false);
437 	if (ret)
438 		return ret;
439 
440 	while ((vma = list_first_entry_or_null(&obj->vma_list,
441 					       struct i915_vma,
442 					       obj_link))) {
443 		list_move_tail(&vma->obj_link, &still_in_list);
444 		ret = i915_vma_unbind(vma);
445 		if (ret)
446 			break;
447 	}
448 	list_splice(&still_in_list, &obj->vma_list);
449 
450 	return ret;
451 }
452 
453 static long
454 i915_gem_object_wait_fence(struct dma_fence *fence,
455 			   unsigned int flags,
456 			   long timeout,
457 			   struct intel_rps_client *rps_client)
458 {
459 	struct i915_request *rq;
460 
461 	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
462 
463 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
464 		return timeout;
465 
466 	if (!dma_fence_is_i915(fence))
467 		return dma_fence_wait_timeout(fence,
468 					      flags & I915_WAIT_INTERRUPTIBLE,
469 					      timeout);
470 
471 	rq = to_request(fence);
472 	if (i915_request_completed(rq))
473 		goto out;
474 
475 	/*
476 	 * This client is about to stall waiting for the GPU. In many cases
477 	 * this is undesirable and limits the throughput of the system, as
478 	 * many clients cannot continue processing user input/output whilst
479 	 * blocked. RPS autotuning may take tens of milliseconds to respond
480 	 * to the GPU load and thus incurs additional latency for the client.
481 	 * We can circumvent that by promoting the GPU frequency to maximum
482 	 * before we wait. This makes the GPU throttle up much more quickly
483 	 * (good for benchmarks and user experience, e.g. window animations),
484 	 * but at a cost of spending more power processing the workload
485 	 * (bad for battery). Not all clients even want their results
486 	 * immediately and for them we should just let the GPU select its own
487 	 * frequency to maximise efficiency. To prevent a single client from
488 	 * forcing the clocks too high for the whole system, we only allow
489 	 * each client to waitboost once in a busy period.
490 	 */
491 	if (rps_client && !i915_request_started(rq)) {
492 		if (INTEL_GEN(rq->i915) >= 6)
493 			gen6_rps_boost(rq, rps_client);
494 	}
495 
496 	timeout = i915_request_wait(rq, flags, timeout);
497 
498 out:
499 	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
500 		i915_request_retire_upto(rq);
501 
502 	return timeout;
503 }
504 
505 static long
506 i915_gem_object_wait_reservation(struct reservation_object *resv,
507 				 unsigned int flags,
508 				 long timeout,
509 				 struct intel_rps_client *rps_client)
510 {
511 	unsigned int seq = __read_seqcount_begin(&resv->seq);
512 	struct dma_fence *excl;
513 	bool prune_fences = false;
514 
515 	if (flags & I915_WAIT_ALL) {
516 		struct dma_fence **shared;
517 		unsigned int count, i;
518 		int ret;
519 
520 		ret = reservation_object_get_fences_rcu(resv,
521 							&excl, &count, &shared);
522 		if (ret)
523 			return ret;
524 
525 		for (i = 0; i < count; i++) {
526 			timeout = i915_gem_object_wait_fence(shared[i],
527 							     flags, timeout,
528 							     rps_client);
529 			if (timeout < 0)
530 				break;
531 
532 			dma_fence_put(shared[i]);
533 		}
534 
535 		for (; i < count; i++)
536 			dma_fence_put(shared[i]);
537 		kfree(shared);
538 
539 		/*
540 		 * If both shared fences and an exclusive fence exist,
541 		 * then by construction the shared fences must be later
542 		 * than the exclusive fence. If we successfully wait for
543 		 * all the shared fences, we know that the exclusive fence
544 		 * must all be signaled. If all the shared fences are
545 		 * signaled, we can prune the array and recover the
546 		 * floating references on the fences/requests.
547 		 */
548 		prune_fences = count && timeout >= 0;
549 	} else {
550 		excl = reservation_object_get_excl_rcu(resv);
551 	}
552 
553 	if (excl && timeout >= 0)
554 		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
555 						     rps_client);
556 
557 	dma_fence_put(excl);
558 
559 	/*
560 	 * Opportunistically prune the fences iff we know they have *all* been
561 	 * signaled and that the reservation object has not been changed (i.e.
562 	 * no new fences have been added).
563 	 */
564 	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
565 		if (reservation_object_trylock(resv)) {
566 			if (!__read_seqcount_retry(&resv->seq, seq))
567 				reservation_object_add_excl_fence(resv, NULL);
568 			reservation_object_unlock(resv);
569 		}
570 	}
571 
572 	return timeout;
573 }
574 
575 static void __fence_set_priority(struct dma_fence *fence,
576 				 const struct i915_sched_attr *attr)
577 {
578 	struct i915_request *rq;
579 	struct intel_engine_cs *engine;
580 
581 	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
582 		return;
583 
584 	rq = to_request(fence);
585 	engine = rq->engine;
586 
587 	local_bh_disable();
588 	rcu_read_lock(); /* RCU serialisation for set-wedged protection */
589 	if (engine->schedule)
590 		engine->schedule(rq, attr);
591 	rcu_read_unlock();
592 	local_bh_enable(); /* kick the tasklets if queues were reprioritised */
593 }
594 
595 static void fence_set_priority(struct dma_fence *fence,
596 			       const struct i915_sched_attr *attr)
597 {
598 	/* Recurse once into a fence-array */
599 	if (dma_fence_is_array(fence)) {
600 		struct dma_fence_array *array = to_dma_fence_array(fence);
601 		int i;
602 
603 		for (i = 0; i < array->num_fences; i++)
604 			__fence_set_priority(array->fences[i], attr);
605 	} else {
606 		__fence_set_priority(fence, attr);
607 	}
608 }
609 
610 int
611 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
612 			      unsigned int flags,
613 			      const struct i915_sched_attr *attr)
614 {
615 	struct dma_fence *excl;
616 
617 	if (flags & I915_WAIT_ALL) {
618 		struct dma_fence **shared;
619 		unsigned int count, i;
620 		int ret;
621 
622 		ret = reservation_object_get_fences_rcu(obj->resv,
623 							&excl, &count, &shared);
624 		if (ret)
625 			return ret;
626 
627 		for (i = 0; i < count; i++) {
628 			fence_set_priority(shared[i], attr);
629 			dma_fence_put(shared[i]);
630 		}
631 
632 		kfree(shared);
633 	} else {
634 		excl = reservation_object_get_excl_rcu(obj->resv);
635 	}
636 
637 	if (excl) {
638 		fence_set_priority(excl, attr);
639 		dma_fence_put(excl);
640 	}
641 	return 0;
642 }
643 
644 /**
645  * Waits for rendering to the object to be completed
646  * @obj: i915 gem object
647  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
648  * @timeout: how long to wait
649  * @rps_client: client (user process) to charge for any waitboosting
650  */
651 int
652 i915_gem_object_wait(struct drm_i915_gem_object *obj,
653 		     unsigned int flags,
654 		     long timeout,
655 		     struct intel_rps_client *rps_client)
656 {
657 	might_sleep();
658 #if IS_ENABLED(CONFIG_LOCKDEP)
659 	GEM_BUG_ON(debug_locks &&
660 		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
661 		   !!(flags & I915_WAIT_LOCKED));
662 #endif
663 	GEM_BUG_ON(timeout < 0);
664 
665 	timeout = i915_gem_object_wait_reservation(obj->resv,
666 						   flags, timeout,
667 						   rps_client);
668 	return timeout < 0 ? timeout : 0;
669 }
670 
671 static struct intel_rps_client *to_rps_client(struct drm_file *file)
672 {
673 	struct drm_i915_file_private *fpriv = file->driver_priv;
674 
675 	return &fpriv->rps_client;
676 }
677 
678 static int
679 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
680 		     struct drm_i915_gem_pwrite *args,
681 		     struct drm_file *file)
682 {
683 	void *vaddr = obj->phys_handle->vaddr + args->offset;
684 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
685 
686 	/* We manually control the domain here and pretend that it
687 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
688 	 */
689 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
690 	if (copy_from_user(vaddr, user_data, args->size))
691 		return -EFAULT;
692 
693 	drm_clflush_virt_range(vaddr, args->size);
694 	i915_gem_chipset_flush(to_i915(obj->base.dev));
695 
696 	intel_fb_obj_flush(obj, ORIGIN_CPU);
697 	return 0;
698 }
699 
700 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
701 {
702 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
703 }
704 
705 void i915_gem_object_free(struct drm_i915_gem_object *obj)
706 {
707 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
708 	kmem_cache_free(dev_priv->objects, obj);
709 }
710 
711 static int
712 i915_gem_create(struct drm_file *file,
713 		struct drm_i915_private *dev_priv,
714 		uint64_t size,
715 		uint32_t *handle_p)
716 {
717 	struct drm_i915_gem_object *obj;
718 	int ret;
719 	u32 handle;
720 
721 	size = roundup(size, PAGE_SIZE);
722 	if (size == 0)
723 		return -EINVAL;
724 
725 	/* Allocate the new object */
726 	obj = i915_gem_object_create(dev_priv, size);
727 	if (IS_ERR(obj))
728 		return PTR_ERR(obj);
729 
730 	ret = drm_gem_handle_create(file, &obj->base, &handle);
731 	/* drop reference from allocate - handle holds it now */
732 	i915_gem_object_put(obj);
733 	if (ret)
734 		return ret;
735 
736 	*handle_p = handle;
737 	return 0;
738 }
739 
740 int
741 i915_gem_dumb_create(struct drm_file *file,
742 		     struct drm_device *dev,
743 		     struct drm_mode_create_dumb *args)
744 {
745 	/* have to work out size/pitch and return them */
746 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
747 	args->size = args->pitch * args->height;
748 	return i915_gem_create(file, to_i915(dev),
749 			       args->size, &args->handle);
750 }
751 
752 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
753 {
754 	return !(obj->cache_level == I915_CACHE_NONE ||
755 		 obj->cache_level == I915_CACHE_WT);
756 }
757 
758 /**
759  * Creates a new mm object and returns a handle to it.
760  * @dev: drm device pointer
761  * @data: ioctl data blob
762  * @file: drm file pointer
763  */
764 int
765 i915_gem_create_ioctl(struct drm_device *dev, void *data,
766 		      struct drm_file *file)
767 {
768 	struct drm_i915_private *dev_priv = to_i915(dev);
769 	struct drm_i915_gem_create *args = data;
770 
771 	i915_gem_flush_free_objects(dev_priv);
772 
773 	return i915_gem_create(file, dev_priv,
774 			       args->size, &args->handle);
775 }
776 
777 static inline enum fb_op_origin
778 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
779 {
780 	return (domain == I915_GEM_DOMAIN_GTT ?
781 		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
782 }
783 
784 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
785 {
786 	/*
787 	 * No actual flushing is required for the GTT write domain for reads
788 	 * from the GTT domain. Writes to it "immediately" go to main memory
789 	 * as far as we know, so there's no chipset flush. It also doesn't
790 	 * land in the GPU render cache.
791 	 *
792 	 * However, we do have to enforce the order so that all writes through
793 	 * the GTT land before any writes to the device, such as updates to
794 	 * the GATT itself.
795 	 *
796 	 * We also have to wait a bit for the writes to land from the GTT.
797 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
798 	 * timing. This issue has only been observed when switching quickly
799 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
800 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
801 	 * system agents we cannot reproduce this behaviour, until Cannonlake
802 	 * that was!).
803 	 */
804 
805 	wmb();
806 
807 	if (INTEL_INFO(dev_priv)->has_coherent_ggtt)
808 		return;
809 
810 	i915_gem_chipset_flush(dev_priv);
811 
812 	intel_runtime_pm_get(dev_priv);
813 	spin_lock_irq(&dev_priv->uncore.lock);
814 
815 	POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
816 
817 	spin_unlock_irq(&dev_priv->uncore.lock);
818 	intel_runtime_pm_put(dev_priv);
819 }
820 
821 static void
822 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
823 {
824 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
825 	struct i915_vma *vma;
826 
827 	if (!(obj->write_domain & flush_domains))
828 		return;
829 
830 	switch (obj->write_domain) {
831 	case I915_GEM_DOMAIN_GTT:
832 		i915_gem_flush_ggtt_writes(dev_priv);
833 
834 		intel_fb_obj_flush(obj,
835 				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
836 
837 		for_each_ggtt_vma(vma, obj) {
838 			if (vma->iomap)
839 				continue;
840 
841 			i915_vma_unset_ggtt_write(vma);
842 		}
843 		break;
844 
845 	case I915_GEM_DOMAIN_WC:
846 		wmb();
847 		break;
848 
849 	case I915_GEM_DOMAIN_CPU:
850 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
851 		break;
852 
853 	case I915_GEM_DOMAIN_RENDER:
854 		if (gpu_write_needs_clflush(obj))
855 			obj->cache_dirty = true;
856 		break;
857 	}
858 
859 	obj->write_domain = 0;
860 }
861 
862 static inline int
863 __copy_to_user_swizzled(char __user *cpu_vaddr,
864 			const char *gpu_vaddr, int gpu_offset,
865 			int length)
866 {
867 	int ret, cpu_offset = 0;
868 
869 	while (length > 0) {
870 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
871 		int this_length = min(cacheline_end - gpu_offset, length);
872 		int swizzled_gpu_offset = gpu_offset ^ 64;
873 
874 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
875 				     gpu_vaddr + swizzled_gpu_offset,
876 				     this_length);
877 		if (ret)
878 			return ret + length;
879 
880 		cpu_offset += this_length;
881 		gpu_offset += this_length;
882 		length -= this_length;
883 	}
884 
885 	return 0;
886 }
887 
888 static inline int
889 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
890 			  const char __user *cpu_vaddr,
891 			  int length)
892 {
893 	int ret, cpu_offset = 0;
894 
895 	while (length > 0) {
896 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
897 		int this_length = min(cacheline_end - gpu_offset, length);
898 		int swizzled_gpu_offset = gpu_offset ^ 64;
899 
900 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
901 				       cpu_vaddr + cpu_offset,
902 				       this_length);
903 		if (ret)
904 			return ret + length;
905 
906 		cpu_offset += this_length;
907 		gpu_offset += this_length;
908 		length -= this_length;
909 	}
910 
911 	return 0;
912 }
913 
914 /*
915  * Pins the specified object's pages and synchronizes the object with
916  * GPU accesses. Sets needs_clflush to non-zero if the caller should
917  * flush the object from the CPU cache.
918  */
919 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
920 				    unsigned int *needs_clflush)
921 {
922 	int ret;
923 
924 	lockdep_assert_held(&obj->base.dev->struct_mutex);
925 
926 	*needs_clflush = 0;
927 	if (!i915_gem_object_has_struct_page(obj))
928 		return -ENODEV;
929 
930 	ret = i915_gem_object_wait(obj,
931 				   I915_WAIT_INTERRUPTIBLE |
932 				   I915_WAIT_LOCKED,
933 				   MAX_SCHEDULE_TIMEOUT,
934 				   NULL);
935 	if (ret)
936 		return ret;
937 
938 	ret = i915_gem_object_pin_pages(obj);
939 	if (ret)
940 		return ret;
941 
942 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
943 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
944 		ret = i915_gem_object_set_to_cpu_domain(obj, false);
945 		if (ret)
946 			goto err_unpin;
947 		else
948 			goto out;
949 	}
950 
951 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
952 
953 	/* If we're not in the cpu read domain, set ourself into the gtt
954 	 * read domain and manually flush cachelines (if required). This
955 	 * optimizes for the case when the gpu will dirty the data
956 	 * anyway again before the next pread happens.
957 	 */
958 	if (!obj->cache_dirty &&
959 	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
960 		*needs_clflush = CLFLUSH_BEFORE;
961 
962 out:
963 	/* return with the pages pinned */
964 	return 0;
965 
966 err_unpin:
967 	i915_gem_object_unpin_pages(obj);
968 	return ret;
969 }
970 
971 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
972 				     unsigned int *needs_clflush)
973 {
974 	int ret;
975 
976 	lockdep_assert_held(&obj->base.dev->struct_mutex);
977 
978 	*needs_clflush = 0;
979 	if (!i915_gem_object_has_struct_page(obj))
980 		return -ENODEV;
981 
982 	ret = i915_gem_object_wait(obj,
983 				   I915_WAIT_INTERRUPTIBLE |
984 				   I915_WAIT_LOCKED |
985 				   I915_WAIT_ALL,
986 				   MAX_SCHEDULE_TIMEOUT,
987 				   NULL);
988 	if (ret)
989 		return ret;
990 
991 	ret = i915_gem_object_pin_pages(obj);
992 	if (ret)
993 		return ret;
994 
995 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
996 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
997 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
998 		if (ret)
999 			goto err_unpin;
1000 		else
1001 			goto out;
1002 	}
1003 
1004 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
1005 
1006 	/* If we're not in the cpu write domain, set ourself into the
1007 	 * gtt write domain and manually flush cachelines (as required).
1008 	 * This optimizes for the case when the gpu will use the data
1009 	 * right away and we therefore have to clflush anyway.
1010 	 */
1011 	if (!obj->cache_dirty) {
1012 		*needs_clflush |= CLFLUSH_AFTER;
1013 
1014 		/*
1015 		 * Same trick applies to invalidate partially written
1016 		 * cachelines read before writing.
1017 		 */
1018 		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
1019 			*needs_clflush |= CLFLUSH_BEFORE;
1020 	}
1021 
1022 out:
1023 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1024 	obj->mm.dirty = true;
1025 	/* return with the pages pinned */
1026 	return 0;
1027 
1028 err_unpin:
1029 	i915_gem_object_unpin_pages(obj);
1030 	return ret;
1031 }
1032 
1033 static void
1034 shmem_clflush_swizzled_range(char *addr, unsigned long length,
1035 			     bool swizzled)
1036 {
1037 	if (unlikely(swizzled)) {
1038 		unsigned long start = (unsigned long) addr;
1039 		unsigned long end = (unsigned long) addr + length;
1040 
1041 		/* For swizzling simply ensure that we always flush both
1042 		 * channels. Lame, but simple and it works. Swizzled
1043 		 * pwrite/pread is far from a hotpath - current userspace
1044 		 * doesn't use it at all. */
1045 		start = round_down(start, 128);
1046 		end = round_up(end, 128);
1047 
1048 		drm_clflush_virt_range((void *)start, end - start);
1049 	} else {
1050 		drm_clflush_virt_range(addr, length);
1051 	}
1052 
1053 }
1054 
1055 /* Only difference to the fast-path function is that this can handle bit17
1056  * and uses non-atomic copy and kmap functions. */
1057 static int
1058 shmem_pread_slow(struct page *page, int offset, int length,
1059 		 char __user *user_data,
1060 		 bool page_do_bit17_swizzling, bool needs_clflush)
1061 {
1062 	char *vaddr;
1063 	int ret;
1064 
1065 	vaddr = kmap(page);
1066 	if (needs_clflush)
1067 		shmem_clflush_swizzled_range(vaddr + offset, length,
1068 					     page_do_bit17_swizzling);
1069 
1070 	if (page_do_bit17_swizzling)
1071 		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
1072 	else
1073 		ret = __copy_to_user(user_data, vaddr + offset, length);
1074 	kunmap(page);
1075 
1076 	return ret ? - EFAULT : 0;
1077 }
1078 
1079 static int
1080 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
1081 	    bool page_do_bit17_swizzling, bool needs_clflush)
1082 {
1083 	int ret;
1084 
1085 	ret = -ENODEV;
1086 	if (!page_do_bit17_swizzling) {
1087 		char *vaddr = kmap_atomic(page);
1088 
1089 		if (needs_clflush)
1090 			drm_clflush_virt_range(vaddr + offset, length);
1091 		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1092 		kunmap_atomic(vaddr);
1093 	}
1094 	if (ret == 0)
1095 		return 0;
1096 
1097 	return shmem_pread_slow(page, offset, length, user_data,
1098 				page_do_bit17_swizzling, needs_clflush);
1099 }
1100 
1101 static int
1102 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
1103 		     struct drm_i915_gem_pread *args)
1104 {
1105 	char __user *user_data;
1106 	u64 remain;
1107 	unsigned int obj_do_bit17_swizzling;
1108 	unsigned int needs_clflush;
1109 	unsigned int idx, offset;
1110 	int ret;
1111 
1112 	obj_do_bit17_swizzling = 0;
1113 	if (i915_gem_object_needs_bit17_swizzle(obj))
1114 		obj_do_bit17_swizzling = BIT(17);
1115 
1116 	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
1117 	if (ret)
1118 		return ret;
1119 
1120 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1121 	mutex_unlock(&obj->base.dev->struct_mutex);
1122 	if (ret)
1123 		return ret;
1124 
1125 	remain = args->size;
1126 	user_data = u64_to_user_ptr(args->data_ptr);
1127 	offset = offset_in_page(args->offset);
1128 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1129 		struct page *page = i915_gem_object_get_page(obj, idx);
1130 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1131 
1132 		ret = shmem_pread(page, offset, length, user_data,
1133 				  page_to_phys(page) & obj_do_bit17_swizzling,
1134 				  needs_clflush);
1135 		if (ret)
1136 			break;
1137 
1138 		remain -= length;
1139 		user_data += length;
1140 		offset = 0;
1141 	}
1142 
1143 	i915_gem_obj_finish_shmem_access(obj);
1144 	return ret;
1145 }
1146 
1147 static inline bool
1148 gtt_user_read(struct io_mapping *mapping,
1149 	      loff_t base, int offset,
1150 	      char __user *user_data, int length)
1151 {
1152 	void __iomem *vaddr;
1153 	unsigned long unwritten;
1154 
1155 	/* We can use the cpu mem copy function because this is X86. */
1156 	vaddr = io_mapping_map_atomic_wc(mapping, base);
1157 	unwritten = __copy_to_user_inatomic(user_data,
1158 					    (void __force *)vaddr + offset,
1159 					    length);
1160 	io_mapping_unmap_atomic(vaddr);
1161 	if (unwritten) {
1162 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1163 		unwritten = copy_to_user(user_data,
1164 					 (void __force *)vaddr + offset,
1165 					 length);
1166 		io_mapping_unmap(vaddr);
1167 	}
1168 	return unwritten;
1169 }
1170 
1171 static int
1172 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1173 		   const struct drm_i915_gem_pread *args)
1174 {
1175 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1176 	struct i915_ggtt *ggtt = &i915->ggtt;
1177 	struct drm_mm_node node;
1178 	struct i915_vma *vma;
1179 	void __user *user_data;
1180 	u64 remain, offset;
1181 	int ret;
1182 
1183 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1184 	if (ret)
1185 		return ret;
1186 
1187 	intel_runtime_pm_get(i915);
1188 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1189 				       PIN_MAPPABLE |
1190 				       PIN_NONFAULT |
1191 				       PIN_NONBLOCK);
1192 	if (!IS_ERR(vma)) {
1193 		node.start = i915_ggtt_offset(vma);
1194 		node.allocated = false;
1195 		ret = i915_vma_put_fence(vma);
1196 		if (ret) {
1197 			i915_vma_unpin(vma);
1198 			vma = ERR_PTR(ret);
1199 		}
1200 	}
1201 	if (IS_ERR(vma)) {
1202 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1203 		if (ret)
1204 			goto out_unlock;
1205 		GEM_BUG_ON(!node.allocated);
1206 	}
1207 
1208 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
1209 	if (ret)
1210 		goto out_unpin;
1211 
1212 	mutex_unlock(&i915->drm.struct_mutex);
1213 
1214 	user_data = u64_to_user_ptr(args->data_ptr);
1215 	remain = args->size;
1216 	offset = args->offset;
1217 
1218 	while (remain > 0) {
1219 		/* Operation in this page
1220 		 *
1221 		 * page_base = page offset within aperture
1222 		 * page_offset = offset within page
1223 		 * page_length = bytes to copy for this page
1224 		 */
1225 		u32 page_base = node.start;
1226 		unsigned page_offset = offset_in_page(offset);
1227 		unsigned page_length = PAGE_SIZE - page_offset;
1228 		page_length = remain < page_length ? remain : page_length;
1229 		if (node.allocated) {
1230 			wmb();
1231 			ggtt->vm.insert_page(&ggtt->vm,
1232 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1233 					     node.start, I915_CACHE_NONE, 0);
1234 			wmb();
1235 		} else {
1236 			page_base += offset & PAGE_MASK;
1237 		}
1238 
1239 		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1240 				  user_data, page_length)) {
1241 			ret = -EFAULT;
1242 			break;
1243 		}
1244 
1245 		remain -= page_length;
1246 		user_data += page_length;
1247 		offset += page_length;
1248 	}
1249 
1250 	mutex_lock(&i915->drm.struct_mutex);
1251 out_unpin:
1252 	if (node.allocated) {
1253 		wmb();
1254 		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1255 		remove_mappable_node(&node);
1256 	} else {
1257 		i915_vma_unpin(vma);
1258 	}
1259 out_unlock:
1260 	intel_runtime_pm_put(i915);
1261 	mutex_unlock(&i915->drm.struct_mutex);
1262 
1263 	return ret;
1264 }
1265 
1266 /**
1267  * Reads data from the object referenced by handle.
1268  * @dev: drm device pointer
1269  * @data: ioctl data blob
1270  * @file: drm file pointer
1271  *
1272  * On error, the contents of *data are undefined.
1273  */
1274 int
1275 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1276 		     struct drm_file *file)
1277 {
1278 	struct drm_i915_gem_pread *args = data;
1279 	struct drm_i915_gem_object *obj;
1280 	int ret;
1281 
1282 	if (args->size == 0)
1283 		return 0;
1284 
1285 	if (!access_ok(VERIFY_WRITE,
1286 		       u64_to_user_ptr(args->data_ptr),
1287 		       args->size))
1288 		return -EFAULT;
1289 
1290 	obj = i915_gem_object_lookup(file, args->handle);
1291 	if (!obj)
1292 		return -ENOENT;
1293 
1294 	/* Bounds check source.  */
1295 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1296 		ret = -EINVAL;
1297 		goto out;
1298 	}
1299 
1300 	trace_i915_gem_object_pread(obj, args->offset, args->size);
1301 
1302 	ret = i915_gem_object_wait(obj,
1303 				   I915_WAIT_INTERRUPTIBLE,
1304 				   MAX_SCHEDULE_TIMEOUT,
1305 				   to_rps_client(file));
1306 	if (ret)
1307 		goto out;
1308 
1309 	ret = i915_gem_object_pin_pages(obj);
1310 	if (ret)
1311 		goto out;
1312 
1313 	ret = i915_gem_shmem_pread(obj, args);
1314 	if (ret == -EFAULT || ret == -ENODEV)
1315 		ret = i915_gem_gtt_pread(obj, args);
1316 
1317 	i915_gem_object_unpin_pages(obj);
1318 out:
1319 	i915_gem_object_put(obj);
1320 	return ret;
1321 }
1322 
1323 /* This is the fast write path which cannot handle
1324  * page faults in the source data
1325  */
1326 
1327 static inline bool
1328 ggtt_write(struct io_mapping *mapping,
1329 	   loff_t base, int offset,
1330 	   char __user *user_data, int length)
1331 {
1332 	void __iomem *vaddr;
1333 	unsigned long unwritten;
1334 
1335 	/* We can use the cpu mem copy function because this is X86. */
1336 	vaddr = io_mapping_map_atomic_wc(mapping, base);
1337 	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1338 						      user_data, length);
1339 	io_mapping_unmap_atomic(vaddr);
1340 	if (unwritten) {
1341 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1342 		unwritten = copy_from_user((void __force *)vaddr + offset,
1343 					   user_data, length);
1344 		io_mapping_unmap(vaddr);
1345 	}
1346 
1347 	return unwritten;
1348 }
1349 
1350 /**
1351  * This is the fast pwrite path, where we copy the data directly from the
1352  * user into the GTT, uncached.
1353  * @obj: i915 GEM object
1354  * @args: pwrite arguments structure
1355  */
1356 static int
1357 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1358 			 const struct drm_i915_gem_pwrite *args)
1359 {
1360 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1361 	struct i915_ggtt *ggtt = &i915->ggtt;
1362 	struct drm_mm_node node;
1363 	struct i915_vma *vma;
1364 	u64 remain, offset;
1365 	void __user *user_data;
1366 	int ret;
1367 
1368 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1369 	if (ret)
1370 		return ret;
1371 
1372 	if (i915_gem_object_has_struct_page(obj)) {
1373 		/*
1374 		 * Avoid waking the device up if we can fallback, as
1375 		 * waking/resuming is very slow (worst-case 10-100 ms
1376 		 * depending on PCI sleeps and our own resume time).
1377 		 * This easily dwarfs any performance advantage from
1378 		 * using the cache bypass of indirect GGTT access.
1379 		 */
1380 		if (!intel_runtime_pm_get_if_in_use(i915)) {
1381 			ret = -EFAULT;
1382 			goto out_unlock;
1383 		}
1384 	} else {
1385 		/* No backing pages, no fallback, we must force GGTT access */
1386 		intel_runtime_pm_get(i915);
1387 	}
1388 
1389 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1390 				       PIN_MAPPABLE |
1391 				       PIN_NONFAULT |
1392 				       PIN_NONBLOCK);
1393 	if (!IS_ERR(vma)) {
1394 		node.start = i915_ggtt_offset(vma);
1395 		node.allocated = false;
1396 		ret = i915_vma_put_fence(vma);
1397 		if (ret) {
1398 			i915_vma_unpin(vma);
1399 			vma = ERR_PTR(ret);
1400 		}
1401 	}
1402 	if (IS_ERR(vma)) {
1403 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1404 		if (ret)
1405 			goto out_rpm;
1406 		GEM_BUG_ON(!node.allocated);
1407 	}
1408 
1409 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1410 	if (ret)
1411 		goto out_unpin;
1412 
1413 	mutex_unlock(&i915->drm.struct_mutex);
1414 
1415 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1416 
1417 	user_data = u64_to_user_ptr(args->data_ptr);
1418 	offset = args->offset;
1419 	remain = args->size;
1420 	while (remain) {
1421 		/* Operation in this page
1422 		 *
1423 		 * page_base = page offset within aperture
1424 		 * page_offset = offset within page
1425 		 * page_length = bytes to copy for this page
1426 		 */
1427 		u32 page_base = node.start;
1428 		unsigned int page_offset = offset_in_page(offset);
1429 		unsigned int page_length = PAGE_SIZE - page_offset;
1430 		page_length = remain < page_length ? remain : page_length;
1431 		if (node.allocated) {
1432 			wmb(); /* flush the write before we modify the GGTT */
1433 			ggtt->vm.insert_page(&ggtt->vm,
1434 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1435 					     node.start, I915_CACHE_NONE, 0);
1436 			wmb(); /* flush modifications to the GGTT (insert_page) */
1437 		} else {
1438 			page_base += offset & PAGE_MASK;
1439 		}
1440 		/* If we get a fault while copying data, then (presumably) our
1441 		 * source page isn't available.  Return the error and we'll
1442 		 * retry in the slow path.
1443 		 * If the object is non-shmem backed, we retry again with the
1444 		 * path that handles page fault.
1445 		 */
1446 		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1447 			       user_data, page_length)) {
1448 			ret = -EFAULT;
1449 			break;
1450 		}
1451 
1452 		remain -= page_length;
1453 		user_data += page_length;
1454 		offset += page_length;
1455 	}
1456 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1457 
1458 	mutex_lock(&i915->drm.struct_mutex);
1459 out_unpin:
1460 	if (node.allocated) {
1461 		wmb();
1462 		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1463 		remove_mappable_node(&node);
1464 	} else {
1465 		i915_vma_unpin(vma);
1466 	}
1467 out_rpm:
1468 	intel_runtime_pm_put(i915);
1469 out_unlock:
1470 	mutex_unlock(&i915->drm.struct_mutex);
1471 	return ret;
1472 }
1473 
1474 static int
1475 shmem_pwrite_slow(struct page *page, int offset, int length,
1476 		  char __user *user_data,
1477 		  bool page_do_bit17_swizzling,
1478 		  bool needs_clflush_before,
1479 		  bool needs_clflush_after)
1480 {
1481 	char *vaddr;
1482 	int ret;
1483 
1484 	vaddr = kmap(page);
1485 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1486 		shmem_clflush_swizzled_range(vaddr + offset, length,
1487 					     page_do_bit17_swizzling);
1488 	if (page_do_bit17_swizzling)
1489 		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1490 						length);
1491 	else
1492 		ret = __copy_from_user(vaddr + offset, user_data, length);
1493 	if (needs_clflush_after)
1494 		shmem_clflush_swizzled_range(vaddr + offset, length,
1495 					     page_do_bit17_swizzling);
1496 	kunmap(page);
1497 
1498 	return ret ? -EFAULT : 0;
1499 }
1500 
1501 /* Per-page copy function for the shmem pwrite fastpath.
1502  * Flushes invalid cachelines before writing to the target if
1503  * needs_clflush_before is set and flushes out any written cachelines after
1504  * writing if needs_clflush is set.
1505  */
1506 static int
1507 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1508 	     bool page_do_bit17_swizzling,
1509 	     bool needs_clflush_before,
1510 	     bool needs_clflush_after)
1511 {
1512 	int ret;
1513 
1514 	ret = -ENODEV;
1515 	if (!page_do_bit17_swizzling) {
1516 		char *vaddr = kmap_atomic(page);
1517 
1518 		if (needs_clflush_before)
1519 			drm_clflush_virt_range(vaddr + offset, len);
1520 		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1521 		if (needs_clflush_after)
1522 			drm_clflush_virt_range(vaddr + offset, len);
1523 
1524 		kunmap_atomic(vaddr);
1525 	}
1526 	if (ret == 0)
1527 		return ret;
1528 
1529 	return shmem_pwrite_slow(page, offset, len, user_data,
1530 				 page_do_bit17_swizzling,
1531 				 needs_clflush_before,
1532 				 needs_clflush_after);
1533 }
1534 
1535 static int
1536 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1537 		      const struct drm_i915_gem_pwrite *args)
1538 {
1539 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1540 	void __user *user_data;
1541 	u64 remain;
1542 	unsigned int obj_do_bit17_swizzling;
1543 	unsigned int partial_cacheline_write;
1544 	unsigned int needs_clflush;
1545 	unsigned int offset, idx;
1546 	int ret;
1547 
1548 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1549 	if (ret)
1550 		return ret;
1551 
1552 	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1553 	mutex_unlock(&i915->drm.struct_mutex);
1554 	if (ret)
1555 		return ret;
1556 
1557 	obj_do_bit17_swizzling = 0;
1558 	if (i915_gem_object_needs_bit17_swizzle(obj))
1559 		obj_do_bit17_swizzling = BIT(17);
1560 
1561 	/* If we don't overwrite a cacheline completely we need to be
1562 	 * careful to have up-to-date data by first clflushing. Don't
1563 	 * overcomplicate things and flush the entire patch.
1564 	 */
1565 	partial_cacheline_write = 0;
1566 	if (needs_clflush & CLFLUSH_BEFORE)
1567 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1568 
1569 	user_data = u64_to_user_ptr(args->data_ptr);
1570 	remain = args->size;
1571 	offset = offset_in_page(args->offset);
1572 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1573 		struct page *page = i915_gem_object_get_page(obj, idx);
1574 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1575 
1576 		ret = shmem_pwrite(page, offset, length, user_data,
1577 				   page_to_phys(page) & obj_do_bit17_swizzling,
1578 				   (offset | length) & partial_cacheline_write,
1579 				   needs_clflush & CLFLUSH_AFTER);
1580 		if (ret)
1581 			break;
1582 
1583 		remain -= length;
1584 		user_data += length;
1585 		offset = 0;
1586 	}
1587 
1588 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1589 	i915_gem_obj_finish_shmem_access(obj);
1590 	return ret;
1591 }
1592 
1593 /**
1594  * Writes data to the object referenced by handle.
1595  * @dev: drm device
1596  * @data: ioctl data blob
1597  * @file: drm file
1598  *
1599  * On error, the contents of the buffer that were to be modified are undefined.
1600  */
1601 int
1602 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1603 		      struct drm_file *file)
1604 {
1605 	struct drm_i915_gem_pwrite *args = data;
1606 	struct drm_i915_gem_object *obj;
1607 	int ret;
1608 
1609 	if (args->size == 0)
1610 		return 0;
1611 
1612 	if (!access_ok(VERIFY_READ,
1613 		       u64_to_user_ptr(args->data_ptr),
1614 		       args->size))
1615 		return -EFAULT;
1616 
1617 	obj = i915_gem_object_lookup(file, args->handle);
1618 	if (!obj)
1619 		return -ENOENT;
1620 
1621 	/* Bounds check destination. */
1622 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1623 		ret = -EINVAL;
1624 		goto err;
1625 	}
1626 
1627 	/* Writes not allowed into this read-only object */
1628 	if (i915_gem_object_is_readonly(obj)) {
1629 		ret = -EINVAL;
1630 		goto err;
1631 	}
1632 
1633 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1634 
1635 	ret = -ENODEV;
1636 	if (obj->ops->pwrite)
1637 		ret = obj->ops->pwrite(obj, args);
1638 	if (ret != -ENODEV)
1639 		goto err;
1640 
1641 	ret = i915_gem_object_wait(obj,
1642 				   I915_WAIT_INTERRUPTIBLE |
1643 				   I915_WAIT_ALL,
1644 				   MAX_SCHEDULE_TIMEOUT,
1645 				   to_rps_client(file));
1646 	if (ret)
1647 		goto err;
1648 
1649 	ret = i915_gem_object_pin_pages(obj);
1650 	if (ret)
1651 		goto err;
1652 
1653 	ret = -EFAULT;
1654 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1655 	 * it would end up going through the fenced access, and we'll get
1656 	 * different detiling behavior between reading and writing.
1657 	 * pread/pwrite currently are reading and writing from the CPU
1658 	 * perspective, requiring manual detiling by the client.
1659 	 */
1660 	if (!i915_gem_object_has_struct_page(obj) ||
1661 	    cpu_write_needs_clflush(obj))
1662 		/* Note that the gtt paths might fail with non-page-backed user
1663 		 * pointers (e.g. gtt mappings when moving data between
1664 		 * textures). Fallback to the shmem path in that case.
1665 		 */
1666 		ret = i915_gem_gtt_pwrite_fast(obj, args);
1667 
1668 	if (ret == -EFAULT || ret == -ENOSPC) {
1669 		if (obj->phys_handle)
1670 			ret = i915_gem_phys_pwrite(obj, args, file);
1671 		else
1672 			ret = i915_gem_shmem_pwrite(obj, args);
1673 	}
1674 
1675 	i915_gem_object_unpin_pages(obj);
1676 err:
1677 	i915_gem_object_put(obj);
1678 	return ret;
1679 }
1680 
1681 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1682 {
1683 	struct drm_i915_private *i915;
1684 	struct list_head *list;
1685 	struct i915_vma *vma;
1686 
1687 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
1688 
1689 	for_each_ggtt_vma(vma, obj) {
1690 		if (i915_vma_is_active(vma))
1691 			continue;
1692 
1693 		if (!drm_mm_node_allocated(&vma->node))
1694 			continue;
1695 
1696 		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1697 	}
1698 
1699 	i915 = to_i915(obj->base.dev);
1700 	spin_lock(&i915->mm.obj_lock);
1701 	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1702 	list_move_tail(&obj->mm.link, list);
1703 	spin_unlock(&i915->mm.obj_lock);
1704 }
1705 
1706 /**
1707  * Called when user space prepares to use an object with the CPU, either
1708  * through the mmap ioctl's mapping or a GTT mapping.
1709  * @dev: drm device
1710  * @data: ioctl data blob
1711  * @file: drm file
1712  */
1713 int
1714 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1715 			  struct drm_file *file)
1716 {
1717 	struct drm_i915_gem_set_domain *args = data;
1718 	struct drm_i915_gem_object *obj;
1719 	uint32_t read_domains = args->read_domains;
1720 	uint32_t write_domain = args->write_domain;
1721 	int err;
1722 
1723 	/* Only handle setting domains to types used by the CPU. */
1724 	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1725 		return -EINVAL;
1726 
1727 	/* Having something in the write domain implies it's in the read
1728 	 * domain, and only that read domain.  Enforce that in the request.
1729 	 */
1730 	if (write_domain != 0 && read_domains != write_domain)
1731 		return -EINVAL;
1732 
1733 	obj = i915_gem_object_lookup(file, args->handle);
1734 	if (!obj)
1735 		return -ENOENT;
1736 
1737 	/* Try to flush the object off the GPU without holding the lock.
1738 	 * We will repeat the flush holding the lock in the normal manner
1739 	 * to catch cases where we are gazumped.
1740 	 */
1741 	err = i915_gem_object_wait(obj,
1742 				   I915_WAIT_INTERRUPTIBLE |
1743 				   I915_WAIT_PRIORITY |
1744 				   (write_domain ? I915_WAIT_ALL : 0),
1745 				   MAX_SCHEDULE_TIMEOUT,
1746 				   to_rps_client(file));
1747 	if (err)
1748 		goto out;
1749 
1750 	/*
1751 	 * Proxy objects do not control access to the backing storage, ergo
1752 	 * they cannot be used as a means to manipulate the cache domain
1753 	 * tracking for that backing storage. The proxy object is always
1754 	 * considered to be outside of any cache domain.
1755 	 */
1756 	if (i915_gem_object_is_proxy(obj)) {
1757 		err = -ENXIO;
1758 		goto out;
1759 	}
1760 
1761 	/*
1762 	 * Flush and acquire obj->pages so that we are coherent through
1763 	 * direct access in memory with previous cached writes through
1764 	 * shmemfs and that our cache domain tracking remains valid.
1765 	 * For example, if the obj->filp was moved to swap without us
1766 	 * being notified and releasing the pages, we would mistakenly
1767 	 * continue to assume that the obj remained out of the CPU cached
1768 	 * domain.
1769 	 */
1770 	err = i915_gem_object_pin_pages(obj);
1771 	if (err)
1772 		goto out;
1773 
1774 	err = i915_mutex_lock_interruptible(dev);
1775 	if (err)
1776 		goto out_unpin;
1777 
1778 	if (read_domains & I915_GEM_DOMAIN_WC)
1779 		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1780 	else if (read_domains & I915_GEM_DOMAIN_GTT)
1781 		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1782 	else
1783 		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1784 
1785 	/* And bump the LRU for this access */
1786 	i915_gem_object_bump_inactive_ggtt(obj);
1787 
1788 	mutex_unlock(&dev->struct_mutex);
1789 
1790 	if (write_domain != 0)
1791 		intel_fb_obj_invalidate(obj,
1792 					fb_write_origin(obj, write_domain));
1793 
1794 out_unpin:
1795 	i915_gem_object_unpin_pages(obj);
1796 out:
1797 	i915_gem_object_put(obj);
1798 	return err;
1799 }
1800 
1801 /**
1802  * Called when user space has done writes to this buffer
1803  * @dev: drm device
1804  * @data: ioctl data blob
1805  * @file: drm file
1806  */
1807 int
1808 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1809 			 struct drm_file *file)
1810 {
1811 	struct drm_i915_gem_sw_finish *args = data;
1812 	struct drm_i915_gem_object *obj;
1813 
1814 	obj = i915_gem_object_lookup(file, args->handle);
1815 	if (!obj)
1816 		return -ENOENT;
1817 
1818 	/*
1819 	 * Proxy objects are barred from CPU access, so there is no
1820 	 * need to ban sw_finish as it is a nop.
1821 	 */
1822 
1823 	/* Pinned buffers may be scanout, so flush the cache */
1824 	i915_gem_object_flush_if_display(obj);
1825 	i915_gem_object_put(obj);
1826 
1827 	return 0;
1828 }
1829 
1830 /**
1831  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1832  *			 it is mapped to.
1833  * @dev: drm device
1834  * @data: ioctl data blob
1835  * @file: drm file
1836  *
1837  * While the mapping holds a reference on the contents of the object, it doesn't
1838  * imply a ref on the object itself.
1839  *
1840  * IMPORTANT:
1841  *
1842  * DRM driver writers who look a this function as an example for how to do GEM
1843  * mmap support, please don't implement mmap support like here. The modern way
1844  * to implement DRM mmap support is with an mmap offset ioctl (like
1845  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1846  * That way debug tooling like valgrind will understand what's going on, hiding
1847  * the mmap call in a driver private ioctl will break that. The i915 driver only
1848  * does cpu mmaps this way because we didn't know better.
1849  */
1850 int
1851 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1852 		    struct drm_file *file)
1853 {
1854 	struct drm_i915_gem_mmap *args = data;
1855 	struct drm_i915_gem_object *obj;
1856 	unsigned long addr;
1857 
1858 	if (args->flags & ~(I915_MMAP_WC))
1859 		return -EINVAL;
1860 
1861 	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1862 		return -ENODEV;
1863 
1864 	obj = i915_gem_object_lookup(file, args->handle);
1865 	if (!obj)
1866 		return -ENOENT;
1867 
1868 	/* prime objects have no backing filp to GEM mmap
1869 	 * pages from.
1870 	 */
1871 	if (!obj->base.filp) {
1872 		i915_gem_object_put(obj);
1873 		return -ENXIO;
1874 	}
1875 
1876 	addr = vm_mmap(obj->base.filp, 0, args->size,
1877 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1878 		       args->offset);
1879 	if (args->flags & I915_MMAP_WC) {
1880 		struct mm_struct *mm = current->mm;
1881 		struct vm_area_struct *vma;
1882 
1883 		if (down_write_killable(&mm->mmap_sem)) {
1884 			i915_gem_object_put(obj);
1885 			return -EINTR;
1886 		}
1887 		vma = find_vma(mm, addr);
1888 		if (vma)
1889 			vma->vm_page_prot =
1890 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1891 		else
1892 			addr = -ENOMEM;
1893 		up_write(&mm->mmap_sem);
1894 
1895 		/* This may race, but that's ok, it only gets set */
1896 		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1897 	}
1898 	i915_gem_object_put(obj);
1899 	if (IS_ERR((void *)addr))
1900 		return addr;
1901 
1902 	args->addr_ptr = (uint64_t) addr;
1903 
1904 	return 0;
1905 }
1906 
1907 static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
1908 {
1909 	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1910 }
1911 
1912 /**
1913  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1914  *
1915  * A history of the GTT mmap interface:
1916  *
1917  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1918  *     aligned and suitable for fencing, and still fit into the available
1919  *     mappable space left by the pinned display objects. A classic problem
1920  *     we called the page-fault-of-doom where we would ping-pong between
1921  *     two objects that could not fit inside the GTT and so the memcpy
1922  *     would page one object in at the expense of the other between every
1923  *     single byte.
1924  *
1925  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1926  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1927  *     object is too large for the available space (or simply too large
1928  *     for the mappable aperture!), a view is created instead and faulted
1929  *     into userspace. (This view is aligned and sized appropriately for
1930  *     fenced access.)
1931  *
1932  * 2 - Recognise WC as a separate cache domain so that we can flush the
1933  *     delayed writes via GTT before performing direct access via WC.
1934  *
1935  * Restrictions:
1936  *
1937  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1938  *    hangs on some architectures, corruption on others. An attempt to service
1939  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1940  *
1941  *  * the object must be able to fit into RAM (physical memory, though no
1942  *    limited to the mappable aperture).
1943  *
1944  *
1945  * Caveats:
1946  *
1947  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1948  *    all data to system memory. Subsequent access will not be synchronized.
1949  *
1950  *  * all mappings are revoked on runtime device suspend.
1951  *
1952  *  * there are only 8, 16 or 32 fence registers to share between all users
1953  *    (older machines require fence register for display and blitter access
1954  *    as well). Contention of the fence registers will cause the previous users
1955  *    to be unmapped and any new access will generate new page faults.
1956  *
1957  *  * running out of memory while servicing a fault may generate a SIGBUS,
1958  *    rather than the expected SIGSEGV.
1959  */
1960 int i915_gem_mmap_gtt_version(void)
1961 {
1962 	return 2;
1963 }
1964 
1965 static inline struct i915_ggtt_view
1966 compute_partial_view(const struct drm_i915_gem_object *obj,
1967 		     pgoff_t page_offset,
1968 		     unsigned int chunk)
1969 {
1970 	struct i915_ggtt_view view;
1971 
1972 	if (i915_gem_object_is_tiled(obj))
1973 		chunk = roundup(chunk, tile_row_pages(obj));
1974 
1975 	view.type = I915_GGTT_VIEW_PARTIAL;
1976 	view.partial.offset = rounddown(page_offset, chunk);
1977 	view.partial.size =
1978 		min_t(unsigned int, chunk,
1979 		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1980 
1981 	/* If the partial covers the entire object, just create a normal VMA. */
1982 	if (chunk >= obj->base.size >> PAGE_SHIFT)
1983 		view.type = I915_GGTT_VIEW_NORMAL;
1984 
1985 	return view;
1986 }
1987 
1988 /**
1989  * i915_gem_fault - fault a page into the GTT
1990  * @vmf: fault info
1991  *
1992  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1993  * from userspace.  The fault handler takes care of binding the object to
1994  * the GTT (if needed), allocating and programming a fence register (again,
1995  * only if needed based on whether the old reg is still valid or the object
1996  * is tiled) and inserting a new PTE into the faulting process.
1997  *
1998  * Note that the faulting process may involve evicting existing objects
1999  * from the GTT and/or fence registers to make room.  So performance may
2000  * suffer if the GTT working set is large or there are few fence registers
2001  * left.
2002  *
2003  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
2004  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
2005  */
2006 vm_fault_t i915_gem_fault(struct vm_fault *vmf)
2007 {
2008 #define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
2009 	struct vm_area_struct *area = vmf->vma;
2010 	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
2011 	struct drm_device *dev = obj->base.dev;
2012 	struct drm_i915_private *dev_priv = to_i915(dev);
2013 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2014 	bool write = area->vm_flags & VM_WRITE;
2015 	struct i915_vma *vma;
2016 	pgoff_t page_offset;
2017 	int ret;
2018 
2019 	/* Sanity check that we allow writing into this object */
2020 	if (i915_gem_object_is_readonly(obj) && write)
2021 		return VM_FAULT_SIGBUS;
2022 
2023 	/* We don't use vmf->pgoff since that has the fake offset */
2024 	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
2025 
2026 	trace_i915_gem_object_fault(obj, page_offset, true, write);
2027 
2028 	/* Try to flush the object off the GPU first without holding the lock.
2029 	 * Upon acquiring the lock, we will perform our sanity checks and then
2030 	 * repeat the flush holding the lock in the normal manner to catch cases
2031 	 * where we are gazumped.
2032 	 */
2033 	ret = i915_gem_object_wait(obj,
2034 				   I915_WAIT_INTERRUPTIBLE,
2035 				   MAX_SCHEDULE_TIMEOUT,
2036 				   NULL);
2037 	if (ret)
2038 		goto err;
2039 
2040 	ret = i915_gem_object_pin_pages(obj);
2041 	if (ret)
2042 		goto err;
2043 
2044 	intel_runtime_pm_get(dev_priv);
2045 
2046 	ret = i915_mutex_lock_interruptible(dev);
2047 	if (ret)
2048 		goto err_rpm;
2049 
2050 	/* Access to snoopable pages through the GTT is incoherent. */
2051 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
2052 		ret = -EFAULT;
2053 		goto err_unlock;
2054 	}
2055 
2056 
2057 	/* Now pin it into the GTT as needed */
2058 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
2059 				       PIN_MAPPABLE |
2060 				       PIN_NONBLOCK |
2061 				       PIN_NONFAULT);
2062 	if (IS_ERR(vma)) {
2063 		/* Use a partial view if it is bigger than available space */
2064 		struct i915_ggtt_view view =
2065 			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
2066 		unsigned int flags;
2067 
2068 		flags = PIN_MAPPABLE;
2069 		if (view.type == I915_GGTT_VIEW_NORMAL)
2070 			flags |= PIN_NONBLOCK; /* avoid warnings for pinned */
2071 
2072 		/*
2073 		 * Userspace is now writing through an untracked VMA, abandon
2074 		 * all hope that the hardware is able to track future writes.
2075 		 */
2076 		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
2077 
2078 		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
2079 		if (IS_ERR(vma) && !view.type) {
2080 			flags = PIN_MAPPABLE;
2081 			view.type = I915_GGTT_VIEW_PARTIAL;
2082 			vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
2083 		}
2084 	}
2085 	if (IS_ERR(vma)) {
2086 		ret = PTR_ERR(vma);
2087 		goto err_unlock;
2088 	}
2089 
2090 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
2091 	if (ret)
2092 		goto err_unpin;
2093 
2094 	ret = i915_vma_pin_fence(vma);
2095 	if (ret)
2096 		goto err_unpin;
2097 
2098 	/* Finally, remap it using the new GTT offset */
2099 	ret = remap_io_mapping(area,
2100 			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
2101 			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
2102 			       min_t(u64, vma->size, area->vm_end - area->vm_start),
2103 			       &ggtt->iomap);
2104 	if (ret)
2105 		goto err_fence;
2106 
2107 	/* Mark as being mmapped into userspace for later revocation */
2108 	assert_rpm_wakelock_held(dev_priv);
2109 	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
2110 		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
2111 	GEM_BUG_ON(!obj->userfault_count);
2112 
2113 	i915_vma_set_ggtt_write(vma);
2114 
2115 err_fence:
2116 	i915_vma_unpin_fence(vma);
2117 err_unpin:
2118 	__i915_vma_unpin(vma);
2119 err_unlock:
2120 	mutex_unlock(&dev->struct_mutex);
2121 err_rpm:
2122 	intel_runtime_pm_put(dev_priv);
2123 	i915_gem_object_unpin_pages(obj);
2124 err:
2125 	switch (ret) {
2126 	case -EIO:
2127 		/*
2128 		 * We eat errors when the gpu is terminally wedged to avoid
2129 		 * userspace unduly crashing (gl has no provisions for mmaps to
2130 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2131 		 * and so needs to be reported.
2132 		 */
2133 		if (!i915_terminally_wedged(&dev_priv->gpu_error))
2134 			return VM_FAULT_SIGBUS;
2135 		/* else: fall through */
2136 	case -EAGAIN:
2137 		/*
2138 		 * EAGAIN means the gpu is hung and we'll wait for the error
2139 		 * handler to reset everything when re-faulting in
2140 		 * i915_mutex_lock_interruptible.
2141 		 */
2142 	case 0:
2143 	case -ERESTARTSYS:
2144 	case -EINTR:
2145 	case -EBUSY:
2146 		/*
2147 		 * EBUSY is ok: this just means that another thread
2148 		 * already did the job.
2149 		 */
2150 		return VM_FAULT_NOPAGE;
2151 	case -ENOMEM:
2152 		return VM_FAULT_OOM;
2153 	case -ENOSPC:
2154 	case -EFAULT:
2155 		return VM_FAULT_SIGBUS;
2156 	default:
2157 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2158 		return VM_FAULT_SIGBUS;
2159 	}
2160 }
2161 
2162 static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
2163 {
2164 	struct i915_vma *vma;
2165 
2166 	GEM_BUG_ON(!obj->userfault_count);
2167 
2168 	obj->userfault_count = 0;
2169 	list_del(&obj->userfault_link);
2170 	drm_vma_node_unmap(&obj->base.vma_node,
2171 			   obj->base.dev->anon_inode->i_mapping);
2172 
2173 	for_each_ggtt_vma(vma, obj)
2174 		i915_vma_unset_userfault(vma);
2175 }
2176 
2177 /**
2178  * i915_gem_release_mmap - remove physical page mappings
2179  * @obj: obj in question
2180  *
2181  * Preserve the reservation of the mmapping with the DRM core code, but
2182  * relinquish ownership of the pages back to the system.
2183  *
2184  * It is vital that we remove the page mapping if we have mapped a tiled
2185  * object through the GTT and then lose the fence register due to
2186  * resource pressure. Similarly if the object has been moved out of the
2187  * aperture, than pages mapped into userspace must be revoked. Removing the
2188  * mapping will then trigger a page fault on the next user access, allowing
2189  * fixup by i915_gem_fault().
2190  */
2191 void
2192 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2193 {
2194 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2195 
2196 	/* Serialisation between user GTT access and our code depends upon
2197 	 * revoking the CPU's PTE whilst the mutex is held. The next user
2198 	 * pagefault then has to wait until we release the mutex.
2199 	 *
2200 	 * Note that RPM complicates somewhat by adding an additional
2201 	 * requirement that operations to the GGTT be made holding the RPM
2202 	 * wakeref.
2203 	 */
2204 	lockdep_assert_held(&i915->drm.struct_mutex);
2205 	intel_runtime_pm_get(i915);
2206 
2207 	if (!obj->userfault_count)
2208 		goto out;
2209 
2210 	__i915_gem_object_release_mmap(obj);
2211 
2212 	/* Ensure that the CPU's PTE are revoked and there are not outstanding
2213 	 * memory transactions from userspace before we return. The TLB
2214 	 * flushing implied above by changing the PTE above *should* be
2215 	 * sufficient, an extra barrier here just provides us with a bit
2216 	 * of paranoid documentation about our requirement to serialise
2217 	 * memory writes before touching registers / GSM.
2218 	 */
2219 	wmb();
2220 
2221 out:
2222 	intel_runtime_pm_put(i915);
2223 }
2224 
2225 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2226 {
2227 	struct drm_i915_gem_object *obj, *on;
2228 	int i;
2229 
2230 	/*
2231 	 * Only called during RPM suspend. All users of the userfault_list
2232 	 * must be holding an RPM wakeref to ensure that this can not
2233 	 * run concurrently with themselves (and use the struct_mutex for
2234 	 * protection between themselves).
2235 	 */
2236 
2237 	list_for_each_entry_safe(obj, on,
2238 				 &dev_priv->mm.userfault_list, userfault_link)
2239 		__i915_gem_object_release_mmap(obj);
2240 
2241 	/* The fence will be lost when the device powers down. If any were
2242 	 * in use by hardware (i.e. they are pinned), we should not be powering
2243 	 * down! All other fences will be reacquired by the user upon waking.
2244 	 */
2245 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2246 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2247 
2248 		/* Ideally we want to assert that the fence register is not
2249 		 * live at this point (i.e. that no piece of code will be
2250 		 * trying to write through fence + GTT, as that both violates
2251 		 * our tracking of activity and associated locking/barriers,
2252 		 * but also is illegal given that the hw is powered down).
2253 		 *
2254 		 * Previously we used reg->pin_count as a "liveness" indicator.
2255 		 * That is not sufficient, and we need a more fine-grained
2256 		 * tool if we want to have a sanity check here.
2257 		 */
2258 
2259 		if (!reg->vma)
2260 			continue;
2261 
2262 		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2263 		reg->dirty = true;
2264 	}
2265 }
2266 
2267 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2268 {
2269 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2270 	int err;
2271 
2272 	err = drm_gem_create_mmap_offset(&obj->base);
2273 	if (likely(!err))
2274 		return 0;
2275 
2276 	/* Attempt to reap some mmap space from dead objects */
2277 	do {
2278 		err = i915_gem_wait_for_idle(dev_priv,
2279 					     I915_WAIT_INTERRUPTIBLE,
2280 					     MAX_SCHEDULE_TIMEOUT);
2281 		if (err)
2282 			break;
2283 
2284 		i915_gem_drain_freed_objects(dev_priv);
2285 		err = drm_gem_create_mmap_offset(&obj->base);
2286 		if (!err)
2287 			break;
2288 
2289 	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2290 
2291 	return err;
2292 }
2293 
2294 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2295 {
2296 	drm_gem_free_mmap_offset(&obj->base);
2297 }
2298 
2299 int
2300 i915_gem_mmap_gtt(struct drm_file *file,
2301 		  struct drm_device *dev,
2302 		  uint32_t handle,
2303 		  uint64_t *offset)
2304 {
2305 	struct drm_i915_gem_object *obj;
2306 	int ret;
2307 
2308 	obj = i915_gem_object_lookup(file, handle);
2309 	if (!obj)
2310 		return -ENOENT;
2311 
2312 	ret = i915_gem_object_create_mmap_offset(obj);
2313 	if (ret == 0)
2314 		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2315 
2316 	i915_gem_object_put(obj);
2317 	return ret;
2318 }
2319 
2320 /**
2321  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2322  * @dev: DRM device
2323  * @data: GTT mapping ioctl data
2324  * @file: GEM object info
2325  *
2326  * Simply returns the fake offset to userspace so it can mmap it.
2327  * The mmap call will end up in drm_gem_mmap(), which will set things
2328  * up so we can get faults in the handler above.
2329  *
2330  * The fault handler will take care of binding the object into the GTT
2331  * (since it may have been evicted to make room for something), allocating
2332  * a fence register, and mapping the appropriate aperture address into
2333  * userspace.
2334  */
2335 int
2336 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2337 			struct drm_file *file)
2338 {
2339 	struct drm_i915_gem_mmap_gtt *args = data;
2340 
2341 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2342 }
2343 
2344 /* Immediately discard the backing storage */
2345 static void
2346 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2347 {
2348 	i915_gem_object_free_mmap_offset(obj);
2349 
2350 	if (obj->base.filp == NULL)
2351 		return;
2352 
2353 	/* Our goal here is to return as much of the memory as
2354 	 * is possible back to the system as we are called from OOM.
2355 	 * To do this we must instruct the shmfs to drop all of its
2356 	 * backing pages, *now*.
2357 	 */
2358 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2359 	obj->mm.madv = __I915_MADV_PURGED;
2360 	obj->mm.pages = ERR_PTR(-EFAULT);
2361 }
2362 
2363 /* Try to discard unwanted pages */
2364 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2365 {
2366 	struct address_space *mapping;
2367 
2368 	lockdep_assert_held(&obj->mm.lock);
2369 	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2370 
2371 	switch (obj->mm.madv) {
2372 	case I915_MADV_DONTNEED:
2373 		i915_gem_object_truncate(obj);
2374 	case __I915_MADV_PURGED:
2375 		return;
2376 	}
2377 
2378 	if (obj->base.filp == NULL)
2379 		return;
2380 
2381 	mapping = obj->base.filp->f_mapping,
2382 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2383 }
2384 
2385 /*
2386  * Move pages to appropriate lru and release the pagevec, decrementing the
2387  * ref count of those pages.
2388  */
2389 static void check_release_pagevec(struct pagevec *pvec)
2390 {
2391 	check_move_unevictable_pages(pvec);
2392 	__pagevec_release(pvec);
2393 	cond_resched();
2394 }
2395 
2396 static void
2397 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2398 			      struct sg_table *pages)
2399 {
2400 	struct sgt_iter sgt_iter;
2401 	struct pagevec pvec;
2402 	struct page *page;
2403 
2404 	__i915_gem_object_release_shmem(obj, pages, true);
2405 
2406 	i915_gem_gtt_finish_pages(obj, pages);
2407 
2408 	if (i915_gem_object_needs_bit17_swizzle(obj))
2409 		i915_gem_object_save_bit_17_swizzle(obj, pages);
2410 
2411 	mapping_clear_unevictable(file_inode(obj->base.filp)->i_mapping);
2412 
2413 	pagevec_init(&pvec);
2414 	for_each_sgt_page(page, sgt_iter, pages) {
2415 		if (obj->mm.dirty)
2416 			set_page_dirty(page);
2417 
2418 		if (obj->mm.madv == I915_MADV_WILLNEED)
2419 			mark_page_accessed(page);
2420 
2421 		if (!pagevec_add(&pvec, page))
2422 			check_release_pagevec(&pvec);
2423 	}
2424 	if (pagevec_count(&pvec))
2425 		check_release_pagevec(&pvec);
2426 	obj->mm.dirty = false;
2427 
2428 	sg_free_table(pages);
2429 	kfree(pages);
2430 }
2431 
2432 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2433 {
2434 	struct radix_tree_iter iter;
2435 	void __rcu **slot;
2436 
2437 	rcu_read_lock();
2438 	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2439 		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2440 	rcu_read_unlock();
2441 }
2442 
2443 static struct sg_table *
2444 __i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
2445 {
2446 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2447 	struct sg_table *pages;
2448 
2449 	pages = fetch_and_zero(&obj->mm.pages);
2450 	if (!pages)
2451 		return NULL;
2452 
2453 	spin_lock(&i915->mm.obj_lock);
2454 	list_del(&obj->mm.link);
2455 	spin_unlock(&i915->mm.obj_lock);
2456 
2457 	if (obj->mm.mapping) {
2458 		void *ptr;
2459 
2460 		ptr = page_mask_bits(obj->mm.mapping);
2461 		if (is_vmalloc_addr(ptr))
2462 			vunmap(ptr);
2463 		else
2464 			kunmap(kmap_to_page(ptr));
2465 
2466 		obj->mm.mapping = NULL;
2467 	}
2468 
2469 	__i915_gem_object_reset_page_iter(obj);
2470 	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2471 
2472 	return pages;
2473 }
2474 
2475 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2476 				 enum i915_mm_subclass subclass)
2477 {
2478 	struct sg_table *pages;
2479 
2480 	if (i915_gem_object_has_pinned_pages(obj))
2481 		return;
2482 
2483 	GEM_BUG_ON(obj->bind_count);
2484 	if (!i915_gem_object_has_pages(obj))
2485 		return;
2486 
2487 	/* May be called by shrinker from within get_pages() (on another bo) */
2488 	mutex_lock_nested(&obj->mm.lock, subclass);
2489 	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2490 		goto unlock;
2491 
2492 	/*
2493 	 * ->put_pages might need to allocate memory for the bit17 swizzle
2494 	 * array, hence protect them from being reaped by removing them from gtt
2495 	 * lists early.
2496 	 */
2497 	pages = __i915_gem_object_unset_pages(obj);
2498 	if (!IS_ERR(pages))
2499 		obj->ops->put_pages(obj, pages);
2500 
2501 unlock:
2502 	mutex_unlock(&obj->mm.lock);
2503 }
2504 
2505 bool i915_sg_trim(struct sg_table *orig_st)
2506 {
2507 	struct sg_table new_st;
2508 	struct scatterlist *sg, *new_sg;
2509 	unsigned int i;
2510 
2511 	if (orig_st->nents == orig_st->orig_nents)
2512 		return false;
2513 
2514 	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2515 		return false;
2516 
2517 	new_sg = new_st.sgl;
2518 	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2519 		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2520 		sg_dma_address(new_sg) = sg_dma_address(sg);
2521 		sg_dma_len(new_sg) = sg_dma_len(sg);
2522 
2523 		new_sg = sg_next(new_sg);
2524 	}
2525 	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2526 
2527 	sg_free_table(orig_st);
2528 
2529 	*orig_st = new_st;
2530 	return true;
2531 }
2532 
2533 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2534 {
2535 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2536 	const unsigned long page_count = obj->base.size / PAGE_SIZE;
2537 	unsigned long i;
2538 	struct address_space *mapping;
2539 	struct sg_table *st;
2540 	struct scatterlist *sg;
2541 	struct sgt_iter sgt_iter;
2542 	struct page *page;
2543 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2544 	unsigned int max_segment = i915_sg_segment_size();
2545 	unsigned int sg_page_sizes;
2546 	struct pagevec pvec;
2547 	gfp_t noreclaim;
2548 	int ret;
2549 
2550 	/*
2551 	 * Assert that the object is not currently in any GPU domain. As it
2552 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2553 	 * a GPU cache
2554 	 */
2555 	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2556 	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2557 
2558 	/*
2559 	 * If there's no chance of allocating enough pages for the whole
2560 	 * object, bail early.
2561 	 */
2562 	if (page_count > totalram_pages())
2563 		return -ENOMEM;
2564 
2565 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2566 	if (st == NULL)
2567 		return -ENOMEM;
2568 
2569 rebuild_st:
2570 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2571 		kfree(st);
2572 		return -ENOMEM;
2573 	}
2574 
2575 	/*
2576 	 * Get the list of pages out of our struct file.  They'll be pinned
2577 	 * at this point until we release them.
2578 	 *
2579 	 * Fail silently without starting the shrinker
2580 	 */
2581 	mapping = obj->base.filp->f_mapping;
2582 	mapping_set_unevictable(mapping);
2583 	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2584 	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2585 
2586 	sg = st->sgl;
2587 	st->nents = 0;
2588 	sg_page_sizes = 0;
2589 	for (i = 0; i < page_count; i++) {
2590 		const unsigned int shrink[] = {
2591 			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2592 			0,
2593 		}, *s = shrink;
2594 		gfp_t gfp = noreclaim;
2595 
2596 		do {
2597 			cond_resched();
2598 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2599 			if (likely(!IS_ERR(page)))
2600 				break;
2601 
2602 			if (!*s) {
2603 				ret = PTR_ERR(page);
2604 				goto err_sg;
2605 			}
2606 
2607 			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2608 
2609 			/*
2610 			 * We've tried hard to allocate the memory by reaping
2611 			 * our own buffer, now let the real VM do its job and
2612 			 * go down in flames if truly OOM.
2613 			 *
2614 			 * However, since graphics tend to be disposable,
2615 			 * defer the oom here by reporting the ENOMEM back
2616 			 * to userspace.
2617 			 */
2618 			if (!*s) {
2619 				/* reclaim and warn, but no oom */
2620 				gfp = mapping_gfp_mask(mapping);
2621 
2622 				/*
2623 				 * Our bo are always dirty and so we require
2624 				 * kswapd to reclaim our pages (direct reclaim
2625 				 * does not effectively begin pageout of our
2626 				 * buffers on its own). However, direct reclaim
2627 				 * only waits for kswapd when under allocation
2628 				 * congestion. So as a result __GFP_RECLAIM is
2629 				 * unreliable and fails to actually reclaim our
2630 				 * dirty pages -- unless you try over and over
2631 				 * again with !__GFP_NORETRY. However, we still
2632 				 * want to fail this allocation rather than
2633 				 * trigger the out-of-memory killer and for
2634 				 * this we want __GFP_RETRY_MAYFAIL.
2635 				 */
2636 				gfp |= __GFP_RETRY_MAYFAIL;
2637 			}
2638 		} while (1);
2639 
2640 		if (!i ||
2641 		    sg->length >= max_segment ||
2642 		    page_to_pfn(page) != last_pfn + 1) {
2643 			if (i) {
2644 				sg_page_sizes |= sg->length;
2645 				sg = sg_next(sg);
2646 			}
2647 			st->nents++;
2648 			sg_set_page(sg, page, PAGE_SIZE, 0);
2649 		} else {
2650 			sg->length += PAGE_SIZE;
2651 		}
2652 		last_pfn = page_to_pfn(page);
2653 
2654 		/* Check that the i965g/gm workaround works. */
2655 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2656 	}
2657 	if (sg) { /* loop terminated early; short sg table */
2658 		sg_page_sizes |= sg->length;
2659 		sg_mark_end(sg);
2660 	}
2661 
2662 	/* Trim unused sg entries to avoid wasting memory. */
2663 	i915_sg_trim(st);
2664 
2665 	ret = i915_gem_gtt_prepare_pages(obj, st);
2666 	if (ret) {
2667 		/*
2668 		 * DMA remapping failed? One possible cause is that
2669 		 * it could not reserve enough large entries, asking
2670 		 * for PAGE_SIZE chunks instead may be helpful.
2671 		 */
2672 		if (max_segment > PAGE_SIZE) {
2673 			for_each_sgt_page(page, sgt_iter, st)
2674 				put_page(page);
2675 			sg_free_table(st);
2676 
2677 			max_segment = PAGE_SIZE;
2678 			goto rebuild_st;
2679 		} else {
2680 			dev_warn(&dev_priv->drm.pdev->dev,
2681 				 "Failed to DMA remap %lu pages\n",
2682 				 page_count);
2683 			goto err_pages;
2684 		}
2685 	}
2686 
2687 	if (i915_gem_object_needs_bit17_swizzle(obj))
2688 		i915_gem_object_do_bit_17_swizzle(obj, st);
2689 
2690 	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2691 
2692 	return 0;
2693 
2694 err_sg:
2695 	sg_mark_end(sg);
2696 err_pages:
2697 	mapping_clear_unevictable(mapping);
2698 	pagevec_init(&pvec);
2699 	for_each_sgt_page(page, sgt_iter, st) {
2700 		if (!pagevec_add(&pvec, page))
2701 			check_release_pagevec(&pvec);
2702 	}
2703 	if (pagevec_count(&pvec))
2704 		check_release_pagevec(&pvec);
2705 	sg_free_table(st);
2706 	kfree(st);
2707 
2708 	/*
2709 	 * shmemfs first checks if there is enough memory to allocate the page
2710 	 * and reports ENOSPC should there be insufficient, along with the usual
2711 	 * ENOMEM for a genuine allocation failure.
2712 	 *
2713 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2714 	 * space and so want to translate the error from shmemfs back to our
2715 	 * usual understanding of ENOMEM.
2716 	 */
2717 	if (ret == -ENOSPC)
2718 		ret = -ENOMEM;
2719 
2720 	return ret;
2721 }
2722 
2723 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2724 				 struct sg_table *pages,
2725 				 unsigned int sg_page_sizes)
2726 {
2727 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2728 	unsigned long supported = INTEL_INFO(i915)->page_sizes;
2729 	int i;
2730 
2731 	lockdep_assert_held(&obj->mm.lock);
2732 
2733 	obj->mm.get_page.sg_pos = pages->sgl;
2734 	obj->mm.get_page.sg_idx = 0;
2735 
2736 	obj->mm.pages = pages;
2737 
2738 	if (i915_gem_object_is_tiled(obj) &&
2739 	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2740 		GEM_BUG_ON(obj->mm.quirked);
2741 		__i915_gem_object_pin_pages(obj);
2742 		obj->mm.quirked = true;
2743 	}
2744 
2745 	GEM_BUG_ON(!sg_page_sizes);
2746 	obj->mm.page_sizes.phys = sg_page_sizes;
2747 
2748 	/*
2749 	 * Calculate the supported page-sizes which fit into the given
2750 	 * sg_page_sizes. This will give us the page-sizes which we may be able
2751 	 * to use opportunistically when later inserting into the GTT. For
2752 	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
2753 	 * 64K or 4K pages, although in practice this will depend on a number of
2754 	 * other factors.
2755 	 */
2756 	obj->mm.page_sizes.sg = 0;
2757 	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2758 		if (obj->mm.page_sizes.phys & ~0u << i)
2759 			obj->mm.page_sizes.sg |= BIT(i);
2760 	}
2761 	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2762 
2763 	spin_lock(&i915->mm.obj_lock);
2764 	list_add(&obj->mm.link, &i915->mm.unbound_list);
2765 	spin_unlock(&i915->mm.obj_lock);
2766 }
2767 
2768 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2769 {
2770 	int err;
2771 
2772 	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2773 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2774 		return -EFAULT;
2775 	}
2776 
2777 	err = obj->ops->get_pages(obj);
2778 	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2779 
2780 	return err;
2781 }
2782 
2783 /* Ensure that the associated pages are gathered from the backing storage
2784  * and pinned into our object. i915_gem_object_pin_pages() may be called
2785  * multiple times before they are released by a single call to
2786  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2787  * either as a result of memory pressure (reaping pages under the shrinker)
2788  * or as the object is itself released.
2789  */
2790 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2791 {
2792 	int err;
2793 
2794 	err = mutex_lock_interruptible(&obj->mm.lock);
2795 	if (err)
2796 		return err;
2797 
2798 	if (unlikely(!i915_gem_object_has_pages(obj))) {
2799 		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2800 
2801 		err = ____i915_gem_object_get_pages(obj);
2802 		if (err)
2803 			goto unlock;
2804 
2805 		smp_mb__before_atomic();
2806 	}
2807 	atomic_inc(&obj->mm.pages_pin_count);
2808 
2809 unlock:
2810 	mutex_unlock(&obj->mm.lock);
2811 	return err;
2812 }
2813 
2814 /* The 'mapping' part of i915_gem_object_pin_map() below */
2815 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2816 				 enum i915_map_type type)
2817 {
2818 	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2819 	struct sg_table *sgt = obj->mm.pages;
2820 	struct sgt_iter sgt_iter;
2821 	struct page *page;
2822 	struct page *stack_pages[32];
2823 	struct page **pages = stack_pages;
2824 	unsigned long i = 0;
2825 	pgprot_t pgprot;
2826 	void *addr;
2827 
2828 	/* A single page can always be kmapped */
2829 	if (n_pages == 1 && type == I915_MAP_WB)
2830 		return kmap(sg_page(sgt->sgl));
2831 
2832 	if (n_pages > ARRAY_SIZE(stack_pages)) {
2833 		/* Too big for stack -- allocate temporary array instead */
2834 		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2835 		if (!pages)
2836 			return NULL;
2837 	}
2838 
2839 	for_each_sgt_page(page, sgt_iter, sgt)
2840 		pages[i++] = page;
2841 
2842 	/* Check that we have the expected number of pages */
2843 	GEM_BUG_ON(i != n_pages);
2844 
2845 	switch (type) {
2846 	default:
2847 		MISSING_CASE(type);
2848 		/* fallthrough to use PAGE_KERNEL anyway */
2849 	case I915_MAP_WB:
2850 		pgprot = PAGE_KERNEL;
2851 		break;
2852 	case I915_MAP_WC:
2853 		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2854 		break;
2855 	}
2856 	addr = vmap(pages, n_pages, 0, pgprot);
2857 
2858 	if (pages != stack_pages)
2859 		kvfree(pages);
2860 
2861 	return addr;
2862 }
2863 
2864 /* get, pin, and map the pages of the object into kernel space */
2865 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2866 			      enum i915_map_type type)
2867 {
2868 	enum i915_map_type has_type;
2869 	bool pinned;
2870 	void *ptr;
2871 	int ret;
2872 
2873 	if (unlikely(!i915_gem_object_has_struct_page(obj)))
2874 		return ERR_PTR(-ENXIO);
2875 
2876 	ret = mutex_lock_interruptible(&obj->mm.lock);
2877 	if (ret)
2878 		return ERR_PTR(ret);
2879 
2880 	pinned = !(type & I915_MAP_OVERRIDE);
2881 	type &= ~I915_MAP_OVERRIDE;
2882 
2883 	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2884 		if (unlikely(!i915_gem_object_has_pages(obj))) {
2885 			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2886 
2887 			ret = ____i915_gem_object_get_pages(obj);
2888 			if (ret)
2889 				goto err_unlock;
2890 
2891 			smp_mb__before_atomic();
2892 		}
2893 		atomic_inc(&obj->mm.pages_pin_count);
2894 		pinned = false;
2895 	}
2896 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2897 
2898 	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2899 	if (ptr && has_type != type) {
2900 		if (pinned) {
2901 			ret = -EBUSY;
2902 			goto err_unpin;
2903 		}
2904 
2905 		if (is_vmalloc_addr(ptr))
2906 			vunmap(ptr);
2907 		else
2908 			kunmap(kmap_to_page(ptr));
2909 
2910 		ptr = obj->mm.mapping = NULL;
2911 	}
2912 
2913 	if (!ptr) {
2914 		ptr = i915_gem_object_map(obj, type);
2915 		if (!ptr) {
2916 			ret = -ENOMEM;
2917 			goto err_unpin;
2918 		}
2919 
2920 		obj->mm.mapping = page_pack_bits(ptr, type);
2921 	}
2922 
2923 out_unlock:
2924 	mutex_unlock(&obj->mm.lock);
2925 	return ptr;
2926 
2927 err_unpin:
2928 	atomic_dec(&obj->mm.pages_pin_count);
2929 err_unlock:
2930 	ptr = ERR_PTR(ret);
2931 	goto out_unlock;
2932 }
2933 
2934 static int
2935 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2936 			   const struct drm_i915_gem_pwrite *arg)
2937 {
2938 	struct address_space *mapping = obj->base.filp->f_mapping;
2939 	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2940 	u64 remain, offset;
2941 	unsigned int pg;
2942 
2943 	/* Before we instantiate/pin the backing store for our use, we
2944 	 * can prepopulate the shmemfs filp efficiently using a write into
2945 	 * the pagecache. We avoid the penalty of instantiating all the
2946 	 * pages, important if the user is just writing to a few and never
2947 	 * uses the object on the GPU, and using a direct write into shmemfs
2948 	 * allows it to avoid the cost of retrieving a page (either swapin
2949 	 * or clearing-before-use) before it is overwritten.
2950 	 */
2951 	if (i915_gem_object_has_pages(obj))
2952 		return -ENODEV;
2953 
2954 	if (obj->mm.madv != I915_MADV_WILLNEED)
2955 		return -EFAULT;
2956 
2957 	/* Before the pages are instantiated the object is treated as being
2958 	 * in the CPU domain. The pages will be clflushed as required before
2959 	 * use, and we can freely write into the pages directly. If userspace
2960 	 * races pwrite with any other operation; corruption will ensue -
2961 	 * that is userspace's prerogative!
2962 	 */
2963 
2964 	remain = arg->size;
2965 	offset = arg->offset;
2966 	pg = offset_in_page(offset);
2967 
2968 	do {
2969 		unsigned int len, unwritten;
2970 		struct page *page;
2971 		void *data, *vaddr;
2972 		int err;
2973 
2974 		len = PAGE_SIZE - pg;
2975 		if (len > remain)
2976 			len = remain;
2977 
2978 		err = pagecache_write_begin(obj->base.filp, mapping,
2979 					    offset, len, 0,
2980 					    &page, &data);
2981 		if (err < 0)
2982 			return err;
2983 
2984 		vaddr = kmap(page);
2985 		unwritten = copy_from_user(vaddr + pg, user_data, len);
2986 		kunmap(page);
2987 
2988 		err = pagecache_write_end(obj->base.filp, mapping,
2989 					  offset, len, len - unwritten,
2990 					  page, data);
2991 		if (err < 0)
2992 			return err;
2993 
2994 		if (unwritten)
2995 			return -EFAULT;
2996 
2997 		remain -= len;
2998 		user_data += len;
2999 		offset += len;
3000 		pg = 0;
3001 	} while (remain);
3002 
3003 	return 0;
3004 }
3005 
3006 static void i915_gem_client_mark_guilty(struct drm_i915_file_private *file_priv,
3007 					const struct i915_gem_context *ctx)
3008 {
3009 	unsigned int score;
3010 	unsigned long prev_hang;
3011 
3012 	if (i915_gem_context_is_banned(ctx))
3013 		score = I915_CLIENT_SCORE_CONTEXT_BAN;
3014 	else
3015 		score = 0;
3016 
3017 	prev_hang = xchg(&file_priv->hang_timestamp, jiffies);
3018 	if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES))
3019 		score += I915_CLIENT_SCORE_HANG_FAST;
3020 
3021 	if (score) {
3022 		atomic_add(score, &file_priv->ban_score);
3023 
3024 		DRM_DEBUG_DRIVER("client %s: gained %u ban score, now %u\n",
3025 				 ctx->name, score,
3026 				 atomic_read(&file_priv->ban_score));
3027 	}
3028 }
3029 
3030 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
3031 {
3032 	unsigned int score;
3033 	bool banned, bannable;
3034 
3035 	atomic_inc(&ctx->guilty_count);
3036 
3037 	bannable = i915_gem_context_is_bannable(ctx);
3038 	score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
3039 	banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;
3040 
3041 	/* Cool contexts don't accumulate client ban score */
3042 	if (!bannable)
3043 		return;
3044 
3045 	if (banned) {
3046 		DRM_DEBUG_DRIVER("context %s: guilty %d, score %u, banned\n",
3047 				 ctx->name, atomic_read(&ctx->guilty_count),
3048 				 score);
3049 		i915_gem_context_set_banned(ctx);
3050 	}
3051 
3052 	if (!IS_ERR_OR_NULL(ctx->file_priv))
3053 		i915_gem_client_mark_guilty(ctx->file_priv, ctx);
3054 }
3055 
3056 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
3057 {
3058 	atomic_inc(&ctx->active_count);
3059 }
3060 
3061 struct i915_request *
3062 i915_gem_find_active_request(struct intel_engine_cs *engine)
3063 {
3064 	struct i915_request *request, *active = NULL;
3065 	unsigned long flags;
3066 
3067 	/*
3068 	 * We are called by the error capture, reset and to dump engine
3069 	 * state at random points in time. In particular, note that neither is
3070 	 * crucially ordered with an interrupt. After a hang, the GPU is dead
3071 	 * and we assume that no more writes can happen (we waited long enough
3072 	 * for all writes that were in transaction to be flushed) - adding an
3073 	 * extra delay for a recent interrupt is pointless. Hence, we do
3074 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
3075 	 * At all other times, we must assume the GPU is still running, but
3076 	 * we only care about the snapshot of this moment.
3077 	 */
3078 	spin_lock_irqsave(&engine->timeline.lock, flags);
3079 	list_for_each_entry(request, &engine->timeline.requests, link) {
3080 		if (__i915_request_completed(request, request->global_seqno))
3081 			continue;
3082 
3083 		active = request;
3084 		break;
3085 	}
3086 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3087 
3088 	return active;
3089 }
3090 
3091 /*
3092  * Ensure irq handler finishes, and not run again.
3093  * Also return the active request so that we only search for it once.
3094  */
3095 struct i915_request *
3096 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
3097 {
3098 	struct i915_request *request;
3099 
3100 	/*
3101 	 * During the reset sequence, we must prevent the engine from
3102 	 * entering RC6. As the context state is undefined until we restart
3103 	 * the engine, if it does enter RC6 during the reset, the state
3104 	 * written to the powercontext is undefined and so we may lose
3105 	 * GPU state upon resume, i.e. fail to restart after a reset.
3106 	 */
3107 	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
3108 
3109 	request = engine->reset.prepare(engine);
3110 	if (request && request->fence.error == -EIO)
3111 		request = ERR_PTR(-EIO); /* Previous reset failed! */
3112 
3113 	return request;
3114 }
3115 
3116 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
3117 {
3118 	struct intel_engine_cs *engine;
3119 	struct i915_request *request;
3120 	enum intel_engine_id id;
3121 	int err = 0;
3122 
3123 	for_each_engine(engine, dev_priv, id) {
3124 		request = i915_gem_reset_prepare_engine(engine);
3125 		if (IS_ERR(request)) {
3126 			err = PTR_ERR(request);
3127 			continue;
3128 		}
3129 
3130 		engine->hangcheck.active_request = request;
3131 	}
3132 
3133 	i915_gem_revoke_fences(dev_priv);
3134 	intel_uc_sanitize(dev_priv);
3135 
3136 	return err;
3137 }
3138 
3139 static void engine_skip_context(struct i915_request *request)
3140 {
3141 	struct intel_engine_cs *engine = request->engine;
3142 	struct i915_gem_context *hung_ctx = request->gem_context;
3143 	struct i915_timeline *timeline = request->timeline;
3144 	unsigned long flags;
3145 
3146 	GEM_BUG_ON(timeline == &engine->timeline);
3147 
3148 	spin_lock_irqsave(&engine->timeline.lock, flags);
3149 	spin_lock(&timeline->lock);
3150 
3151 	list_for_each_entry_continue(request, &engine->timeline.requests, link)
3152 		if (request->gem_context == hung_ctx)
3153 			i915_request_skip(request, -EIO);
3154 
3155 	list_for_each_entry(request, &timeline->requests, link)
3156 		i915_request_skip(request, -EIO);
3157 
3158 	spin_unlock(&timeline->lock);
3159 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3160 }
3161 
3162 /* Returns the request if it was guilty of the hang */
3163 static struct i915_request *
3164 i915_gem_reset_request(struct intel_engine_cs *engine,
3165 		       struct i915_request *request,
3166 		       bool stalled)
3167 {
3168 	/* The guilty request will get skipped on a hung engine.
3169 	 *
3170 	 * Users of client default contexts do not rely on logical
3171 	 * state preserved between batches so it is safe to execute
3172 	 * queued requests following the hang. Non default contexts
3173 	 * rely on preserved state, so skipping a batch loses the
3174 	 * evolution of the state and it needs to be considered corrupted.
3175 	 * Executing more queued batches on top of corrupted state is
3176 	 * risky. But we take the risk by trying to advance through
3177 	 * the queued requests in order to make the client behaviour
3178 	 * more predictable around resets, by not throwing away random
3179 	 * amount of batches it has prepared for execution. Sophisticated
3180 	 * clients can use gem_reset_stats_ioctl and dma fence status
3181 	 * (exported via sync_file info ioctl on explicit fences) to observe
3182 	 * when it loses the context state and should rebuild accordingly.
3183 	 *
3184 	 * The context ban, and ultimately the client ban, mechanism are safety
3185 	 * valves if client submission ends up resulting in nothing more than
3186 	 * subsequent hangs.
3187 	 */
3188 
3189 	if (i915_request_completed(request)) {
3190 		GEM_TRACE("%s pardoned global=%d (fence %llx:%d), current %d\n",
3191 			  engine->name, request->global_seqno,
3192 			  request->fence.context, request->fence.seqno,
3193 			  intel_engine_get_seqno(engine));
3194 		stalled = false;
3195 	}
3196 
3197 	if (stalled) {
3198 		i915_gem_context_mark_guilty(request->gem_context);
3199 		i915_request_skip(request, -EIO);
3200 
3201 		/* If this context is now banned, skip all pending requests. */
3202 		if (i915_gem_context_is_banned(request->gem_context))
3203 			engine_skip_context(request);
3204 	} else {
3205 		/*
3206 		 * Since this is not the hung engine, it may have advanced
3207 		 * since the hang declaration. Double check by refinding
3208 		 * the active request at the time of the reset.
3209 		 */
3210 		request = i915_gem_find_active_request(engine);
3211 		if (request) {
3212 			unsigned long flags;
3213 
3214 			i915_gem_context_mark_innocent(request->gem_context);
3215 			dma_fence_set_error(&request->fence, -EAGAIN);
3216 
3217 			/* Rewind the engine to replay the incomplete rq */
3218 			spin_lock_irqsave(&engine->timeline.lock, flags);
3219 			request = list_prev_entry(request, link);
3220 			if (&request->link == &engine->timeline.requests)
3221 				request = NULL;
3222 			spin_unlock_irqrestore(&engine->timeline.lock, flags);
3223 		}
3224 	}
3225 
3226 	return request;
3227 }
3228 
3229 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3230 			   struct i915_request *request,
3231 			   bool stalled)
3232 {
3233 	/*
3234 	 * Make sure this write is visible before we re-enable the interrupt
3235 	 * handlers on another CPU, as tasklet_enable() resolves to just
3236 	 * a compiler barrier which is insufficient for our purpose here.
3237 	 */
3238 	smp_store_mb(engine->irq_posted, 0);
3239 
3240 	if (request)
3241 		request = i915_gem_reset_request(engine, request, stalled);
3242 
3243 	/* Setup the CS to resume from the breadcrumb of the hung request */
3244 	engine->reset.reset(engine, request);
3245 }
3246 
3247 void i915_gem_reset(struct drm_i915_private *dev_priv,
3248 		    unsigned int stalled_mask)
3249 {
3250 	struct intel_engine_cs *engine;
3251 	enum intel_engine_id id;
3252 
3253 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3254 
3255 	i915_retire_requests(dev_priv);
3256 
3257 	for_each_engine(engine, dev_priv, id) {
3258 		struct intel_context *ce;
3259 
3260 		i915_gem_reset_engine(engine,
3261 				      engine->hangcheck.active_request,
3262 				      stalled_mask & ENGINE_MASK(id));
3263 		ce = fetch_and_zero(&engine->last_retired_context);
3264 		if (ce)
3265 			intel_context_unpin(ce);
3266 
3267 		/*
3268 		 * Ostensibily, we always want a context loaded for powersaving,
3269 		 * so if the engine is idle after the reset, send a request
3270 		 * to load our scratch kernel_context.
3271 		 *
3272 		 * More mysteriously, if we leave the engine idle after a reset,
3273 		 * the next userspace batch may hang, with what appears to be
3274 		 * an incoherent read by the CS (presumably stale TLB). An
3275 		 * empty request appears sufficient to paper over the glitch.
3276 		 */
3277 		if (intel_engine_is_idle(engine)) {
3278 			struct i915_request *rq;
3279 
3280 			rq = i915_request_alloc(engine,
3281 						dev_priv->kernel_context);
3282 			if (!IS_ERR(rq))
3283 				i915_request_add(rq);
3284 		}
3285 	}
3286 
3287 	i915_gem_restore_fences(dev_priv);
3288 }
3289 
3290 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3291 {
3292 	engine->reset.finish(engine);
3293 
3294 	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3295 }
3296 
3297 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3298 {
3299 	struct intel_engine_cs *engine;
3300 	enum intel_engine_id id;
3301 
3302 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3303 
3304 	for_each_engine(engine, dev_priv, id) {
3305 		engine->hangcheck.active_request = NULL;
3306 		i915_gem_reset_finish_engine(engine);
3307 	}
3308 }
3309 
3310 static void nop_submit_request(struct i915_request *request)
3311 {
3312 	unsigned long flags;
3313 
3314 	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
3315 		  request->engine->name,
3316 		  request->fence.context, request->fence.seqno);
3317 	dma_fence_set_error(&request->fence, -EIO);
3318 
3319 	spin_lock_irqsave(&request->engine->timeline.lock, flags);
3320 	__i915_request_submit(request);
3321 	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3322 	spin_unlock_irqrestore(&request->engine->timeline.lock, flags);
3323 }
3324 
3325 void i915_gem_set_wedged(struct drm_i915_private *i915)
3326 {
3327 	struct intel_engine_cs *engine;
3328 	enum intel_engine_id id;
3329 
3330 	GEM_TRACE("start\n");
3331 
3332 	if (GEM_SHOW_DEBUG()) {
3333 		struct drm_printer p = drm_debug_printer(__func__);
3334 
3335 		for_each_engine(engine, i915, id)
3336 			intel_engine_dump(engine, &p, "%s\n", engine->name);
3337 	}
3338 
3339 	if (test_and_set_bit(I915_WEDGED, &i915->gpu_error.flags))
3340 		goto out;
3341 
3342 	/*
3343 	 * First, stop submission to hw, but do not yet complete requests by
3344 	 * rolling the global seqno forward (since this would complete requests
3345 	 * for which we haven't set the fence error to EIO yet).
3346 	 */
3347 	for_each_engine(engine, i915, id)
3348 		i915_gem_reset_prepare_engine(engine);
3349 
3350 	/* Even if the GPU reset fails, it should still stop the engines */
3351 	if (INTEL_GEN(i915) >= 5)
3352 		intel_gpu_reset(i915, ALL_ENGINES);
3353 
3354 	for_each_engine(engine, i915, id) {
3355 		engine->submit_request = nop_submit_request;
3356 		engine->schedule = NULL;
3357 	}
3358 	i915->caps.scheduler = 0;
3359 
3360 	/*
3361 	 * Make sure no request can slip through without getting completed by
3362 	 * either this call here to intel_engine_init_global_seqno, or the one
3363 	 * in nop_submit_request.
3364 	 */
3365 	synchronize_rcu();
3366 
3367 	/* Mark all executing requests as skipped */
3368 	for_each_engine(engine, i915, id)
3369 		engine->cancel_requests(engine);
3370 
3371 	for_each_engine(engine, i915, id) {
3372 		i915_gem_reset_finish_engine(engine);
3373 		intel_engine_wakeup(engine);
3374 	}
3375 
3376 out:
3377 	GEM_TRACE("end\n");
3378 
3379 	wake_up_all(&i915->gpu_error.reset_queue);
3380 }
3381 
3382 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3383 {
3384 	struct i915_timeline *tl;
3385 
3386 	lockdep_assert_held(&i915->drm.struct_mutex);
3387 	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3388 		return true;
3389 
3390 	GEM_TRACE("start\n");
3391 
3392 	/*
3393 	 * Before unwedging, make sure that all pending operations
3394 	 * are flushed and errored out - we may have requests waiting upon
3395 	 * third party fences. We marked all inflight requests as EIO, and
3396 	 * every execbuf since returned EIO, for consistency we want all
3397 	 * the currently pending requests to also be marked as EIO, which
3398 	 * is done inside our nop_submit_request - and so we must wait.
3399 	 *
3400 	 * No more can be submitted until we reset the wedged bit.
3401 	 */
3402 	list_for_each_entry(tl, &i915->gt.timelines, link) {
3403 		struct i915_request *rq;
3404 
3405 		rq = i915_gem_active_peek(&tl->last_request,
3406 					  &i915->drm.struct_mutex);
3407 		if (!rq)
3408 			continue;
3409 
3410 		/*
3411 		 * We can't use our normal waiter as we want to
3412 		 * avoid recursively trying to handle the current
3413 		 * reset. The basic dma_fence_default_wait() installs
3414 		 * a callback for dma_fence_signal(), which is
3415 		 * triggered by our nop handler (indirectly, the
3416 		 * callback enables the signaler thread which is
3417 		 * woken by the nop_submit_request() advancing the seqno
3418 		 * and when the seqno passes the fence, the signaler
3419 		 * then signals the fence waking us up).
3420 		 */
3421 		if (dma_fence_default_wait(&rq->fence, true,
3422 					   MAX_SCHEDULE_TIMEOUT) < 0)
3423 			return false;
3424 	}
3425 	i915_retire_requests(i915);
3426 	GEM_BUG_ON(i915->gt.active_requests);
3427 
3428 	if (!intel_gpu_reset(i915, ALL_ENGINES))
3429 		intel_engines_sanitize(i915);
3430 
3431 	/*
3432 	 * Undo nop_submit_request. We prevent all new i915 requests from
3433 	 * being queued (by disallowing execbuf whilst wedged) so having
3434 	 * waited for all active requests above, we know the system is idle
3435 	 * and do not have to worry about a thread being inside
3436 	 * engine->submit_request() as we swap over. So unlike installing
3437 	 * the nop_submit_request on reset, we can do this from normal
3438 	 * context and do not require stop_machine().
3439 	 */
3440 	intel_engines_reset_default_submission(i915);
3441 	i915_gem_contexts_lost(i915);
3442 
3443 	GEM_TRACE("end\n");
3444 
3445 	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3446 	clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3447 
3448 	return true;
3449 }
3450 
3451 static void
3452 i915_gem_retire_work_handler(struct work_struct *work)
3453 {
3454 	struct drm_i915_private *dev_priv =
3455 		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3456 	struct drm_device *dev = &dev_priv->drm;
3457 
3458 	/* Come back later if the device is busy... */
3459 	if (mutex_trylock(&dev->struct_mutex)) {
3460 		i915_retire_requests(dev_priv);
3461 		mutex_unlock(&dev->struct_mutex);
3462 	}
3463 
3464 	/*
3465 	 * Keep the retire handler running until we are finally idle.
3466 	 * We do not need to do this test under locking as in the worst-case
3467 	 * we queue the retire worker once too often.
3468 	 */
3469 	if (READ_ONCE(dev_priv->gt.awake))
3470 		queue_delayed_work(dev_priv->wq,
3471 				   &dev_priv->gt.retire_work,
3472 				   round_jiffies_up_relative(HZ));
3473 }
3474 
3475 static void shrink_caches(struct drm_i915_private *i915)
3476 {
3477 	/*
3478 	 * kmem_cache_shrink() discards empty slabs and reorders partially
3479 	 * filled slabs to prioritise allocating from the mostly full slabs,
3480 	 * with the aim of reducing fragmentation.
3481 	 */
3482 	kmem_cache_shrink(i915->priorities);
3483 	kmem_cache_shrink(i915->dependencies);
3484 	kmem_cache_shrink(i915->requests);
3485 	kmem_cache_shrink(i915->luts);
3486 	kmem_cache_shrink(i915->vmas);
3487 	kmem_cache_shrink(i915->objects);
3488 }
3489 
3490 struct sleep_rcu_work {
3491 	union {
3492 		struct rcu_head rcu;
3493 		struct work_struct work;
3494 	};
3495 	struct drm_i915_private *i915;
3496 	unsigned int epoch;
3497 };
3498 
3499 static inline bool
3500 same_epoch(struct drm_i915_private *i915, unsigned int epoch)
3501 {
3502 	/*
3503 	 * There is a small chance that the epoch wrapped since we started
3504 	 * sleeping. If we assume that epoch is at least a u32, then it will
3505 	 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
3506 	 */
3507 	return epoch == READ_ONCE(i915->gt.epoch);
3508 }
3509 
3510 static void __sleep_work(struct work_struct *work)
3511 {
3512 	struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
3513 	struct drm_i915_private *i915 = s->i915;
3514 	unsigned int epoch = s->epoch;
3515 
3516 	kfree(s);
3517 	if (same_epoch(i915, epoch))
3518 		shrink_caches(i915);
3519 }
3520 
3521 static void __sleep_rcu(struct rcu_head *rcu)
3522 {
3523 	struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
3524 	struct drm_i915_private *i915 = s->i915;
3525 
3526 	destroy_rcu_head(&s->rcu);
3527 
3528 	if (same_epoch(i915, s->epoch)) {
3529 		INIT_WORK(&s->work, __sleep_work);
3530 		queue_work(i915->wq, &s->work);
3531 	} else {
3532 		kfree(s);
3533 	}
3534 }
3535 
3536 static inline bool
3537 new_requests_since_last_retire(const struct drm_i915_private *i915)
3538 {
3539 	return (READ_ONCE(i915->gt.active_requests) ||
3540 		work_pending(&i915->gt.idle_work.work));
3541 }
3542 
3543 static void assert_kernel_context_is_current(struct drm_i915_private *i915)
3544 {
3545 	struct intel_engine_cs *engine;
3546 	enum intel_engine_id id;
3547 
3548 	if (i915_terminally_wedged(&i915->gpu_error))
3549 		return;
3550 
3551 	GEM_BUG_ON(i915->gt.active_requests);
3552 	for_each_engine(engine, i915, id) {
3553 		GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline.last_request));
3554 		GEM_BUG_ON(engine->last_retired_context !=
3555 			   to_intel_context(i915->kernel_context, engine));
3556 	}
3557 }
3558 
3559 static void
3560 i915_gem_idle_work_handler(struct work_struct *work)
3561 {
3562 	struct drm_i915_private *dev_priv =
3563 		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3564 	unsigned int epoch = I915_EPOCH_INVALID;
3565 	bool rearm_hangcheck;
3566 
3567 	if (!READ_ONCE(dev_priv->gt.awake))
3568 		return;
3569 
3570 	if (READ_ONCE(dev_priv->gt.active_requests))
3571 		return;
3572 
3573 	/*
3574 	 * Flush out the last user context, leaving only the pinned
3575 	 * kernel context resident. When we are idling on the kernel_context,
3576 	 * no more new requests (with a context switch) are emitted and we
3577 	 * can finally rest. A consequence is that the idle work handler is
3578 	 * always called at least twice before idling (and if the system is
3579 	 * idle that implies a round trip through the retire worker).
3580 	 */
3581 	mutex_lock(&dev_priv->drm.struct_mutex);
3582 	i915_gem_switch_to_kernel_context(dev_priv);
3583 	mutex_unlock(&dev_priv->drm.struct_mutex);
3584 
3585 	GEM_TRACE("active_requests=%d (after switch-to-kernel-context)\n",
3586 		  READ_ONCE(dev_priv->gt.active_requests));
3587 
3588 	/*
3589 	 * Wait for last execlists context complete, but bail out in case a
3590 	 * new request is submitted. As we don't trust the hardware, we
3591 	 * continue on if the wait times out. This is necessary to allow
3592 	 * the machine to suspend even if the hardware dies, and we will
3593 	 * try to recover in resume (after depriving the hardware of power,
3594 	 * it may be in a better mmod).
3595 	 */
3596 	__wait_for(if (new_requests_since_last_retire(dev_priv)) return,
3597 		   intel_engines_are_idle(dev_priv),
3598 		   I915_IDLE_ENGINES_TIMEOUT * 1000,
3599 		   10, 500);
3600 
3601 	rearm_hangcheck =
3602 		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3603 
3604 	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3605 		/* Currently busy, come back later */
3606 		mod_delayed_work(dev_priv->wq,
3607 				 &dev_priv->gt.idle_work,
3608 				 msecs_to_jiffies(50));
3609 		goto out_rearm;
3610 	}
3611 
3612 	/*
3613 	 * New request retired after this work handler started, extend active
3614 	 * period until next instance of the work.
3615 	 */
3616 	if (new_requests_since_last_retire(dev_priv))
3617 		goto out_unlock;
3618 
3619 	epoch = __i915_gem_park(dev_priv);
3620 
3621 	assert_kernel_context_is_current(dev_priv);
3622 
3623 	rearm_hangcheck = false;
3624 out_unlock:
3625 	mutex_unlock(&dev_priv->drm.struct_mutex);
3626 
3627 out_rearm:
3628 	if (rearm_hangcheck) {
3629 		GEM_BUG_ON(!dev_priv->gt.awake);
3630 		i915_queue_hangcheck(dev_priv);
3631 	}
3632 
3633 	/*
3634 	 * When we are idle, it is an opportune time to reap our caches.
3635 	 * However, we have many objects that utilise RCU and the ordered
3636 	 * i915->wq that this work is executing on. To try and flush any
3637 	 * pending frees now we are idle, we first wait for an RCU grace
3638 	 * period, and then queue a task (that will run last on the wq) to
3639 	 * shrink and re-optimize the caches.
3640 	 */
3641 	if (same_epoch(dev_priv, epoch)) {
3642 		struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
3643 		if (s) {
3644 			init_rcu_head(&s->rcu);
3645 			s->i915 = dev_priv;
3646 			s->epoch = epoch;
3647 			call_rcu(&s->rcu, __sleep_rcu);
3648 		}
3649 	}
3650 }
3651 
3652 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3653 {
3654 	struct drm_i915_private *i915 = to_i915(gem->dev);
3655 	struct drm_i915_gem_object *obj = to_intel_bo(gem);
3656 	struct drm_i915_file_private *fpriv = file->driver_priv;
3657 	struct i915_lut_handle *lut, *ln;
3658 
3659 	mutex_lock(&i915->drm.struct_mutex);
3660 
3661 	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3662 		struct i915_gem_context *ctx = lut->ctx;
3663 		struct i915_vma *vma;
3664 
3665 		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3666 		if (ctx->file_priv != fpriv)
3667 			continue;
3668 
3669 		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3670 		GEM_BUG_ON(vma->obj != obj);
3671 
3672 		/* We allow the process to have multiple handles to the same
3673 		 * vma, in the same fd namespace, by virtue of flink/open.
3674 		 */
3675 		GEM_BUG_ON(!vma->open_count);
3676 		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3677 			i915_vma_close(vma);
3678 
3679 		list_del(&lut->obj_link);
3680 		list_del(&lut->ctx_link);
3681 
3682 		kmem_cache_free(i915->luts, lut);
3683 		__i915_gem_object_release_unless_active(obj);
3684 	}
3685 
3686 	mutex_unlock(&i915->drm.struct_mutex);
3687 }
3688 
3689 static unsigned long to_wait_timeout(s64 timeout_ns)
3690 {
3691 	if (timeout_ns < 0)
3692 		return MAX_SCHEDULE_TIMEOUT;
3693 
3694 	if (timeout_ns == 0)
3695 		return 0;
3696 
3697 	return nsecs_to_jiffies_timeout(timeout_ns);
3698 }
3699 
3700 /**
3701  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3702  * @dev: drm device pointer
3703  * @data: ioctl data blob
3704  * @file: drm file pointer
3705  *
3706  * Returns 0 if successful, else an error is returned with the remaining time in
3707  * the timeout parameter.
3708  *  -ETIME: object is still busy after timeout
3709  *  -ERESTARTSYS: signal interrupted the wait
3710  *  -ENONENT: object doesn't exist
3711  * Also possible, but rare:
3712  *  -EAGAIN: incomplete, restart syscall
3713  *  -ENOMEM: damn
3714  *  -ENODEV: Internal IRQ fail
3715  *  -E?: The add request failed
3716  *
3717  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3718  * non-zero timeout parameter the wait ioctl will wait for the given number of
3719  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3720  * without holding struct_mutex the object may become re-busied before this
3721  * function completes. A similar but shorter * race condition exists in the busy
3722  * ioctl
3723  */
3724 int
3725 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3726 {
3727 	struct drm_i915_gem_wait *args = data;
3728 	struct drm_i915_gem_object *obj;
3729 	ktime_t start;
3730 	long ret;
3731 
3732 	if (args->flags != 0)
3733 		return -EINVAL;
3734 
3735 	obj = i915_gem_object_lookup(file, args->bo_handle);
3736 	if (!obj)
3737 		return -ENOENT;
3738 
3739 	start = ktime_get();
3740 
3741 	ret = i915_gem_object_wait(obj,
3742 				   I915_WAIT_INTERRUPTIBLE |
3743 				   I915_WAIT_PRIORITY |
3744 				   I915_WAIT_ALL,
3745 				   to_wait_timeout(args->timeout_ns),
3746 				   to_rps_client(file));
3747 
3748 	if (args->timeout_ns > 0) {
3749 		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3750 		if (args->timeout_ns < 0)
3751 			args->timeout_ns = 0;
3752 
3753 		/*
3754 		 * Apparently ktime isn't accurate enough and occasionally has a
3755 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3756 		 * things up to make the test happy. We allow up to 1 jiffy.
3757 		 *
3758 		 * This is a regression from the timespec->ktime conversion.
3759 		 */
3760 		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3761 			args->timeout_ns = 0;
3762 
3763 		/* Asked to wait beyond the jiffie/scheduler precision? */
3764 		if (ret == -ETIME && args->timeout_ns)
3765 			ret = -EAGAIN;
3766 	}
3767 
3768 	i915_gem_object_put(obj);
3769 	return ret;
3770 }
3771 
3772 static long wait_for_timeline(struct i915_timeline *tl,
3773 			      unsigned int flags, long timeout)
3774 {
3775 	struct i915_request *rq;
3776 
3777 	rq = i915_gem_active_get_unlocked(&tl->last_request);
3778 	if (!rq)
3779 		return timeout;
3780 
3781 	/*
3782 	 * "Race-to-idle".
3783 	 *
3784 	 * Switching to the kernel context is often used a synchronous
3785 	 * step prior to idling, e.g. in suspend for flushing all
3786 	 * current operations to memory before sleeping. These we
3787 	 * want to complete as quickly as possible to avoid prolonged
3788 	 * stalls, so allow the gpu to boost to maximum clocks.
3789 	 */
3790 	if (flags & I915_WAIT_FOR_IDLE_BOOST)
3791 		gen6_rps_boost(rq, NULL);
3792 
3793 	timeout = i915_request_wait(rq, flags, timeout);
3794 	i915_request_put(rq);
3795 
3796 	return timeout;
3797 }
3798 
3799 static int wait_for_engines(struct drm_i915_private *i915)
3800 {
3801 	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3802 		dev_err(i915->drm.dev,
3803 			"Failed to idle engines, declaring wedged!\n");
3804 		GEM_TRACE_DUMP();
3805 		i915_gem_set_wedged(i915);
3806 		return -EIO;
3807 	}
3808 
3809 	return 0;
3810 }
3811 
3812 int i915_gem_wait_for_idle(struct drm_i915_private *i915,
3813 			   unsigned int flags, long timeout)
3814 {
3815 	GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
3816 		  flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
3817 		  timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
3818 
3819 	/* If the device is asleep, we have no requests outstanding */
3820 	if (!READ_ONCE(i915->gt.awake))
3821 		return 0;
3822 
3823 	if (flags & I915_WAIT_LOCKED) {
3824 		struct i915_timeline *tl;
3825 		int err;
3826 
3827 		lockdep_assert_held(&i915->drm.struct_mutex);
3828 
3829 		list_for_each_entry(tl, &i915->gt.timelines, link) {
3830 			timeout = wait_for_timeline(tl, flags, timeout);
3831 			if (timeout < 0)
3832 				return timeout;
3833 		}
3834 		if (GEM_SHOW_DEBUG() && !timeout) {
3835 			/* Presume that timeout was non-zero to begin with! */
3836 			dev_warn(&i915->drm.pdev->dev,
3837 				 "Missed idle-completion interrupt!\n");
3838 			GEM_TRACE_DUMP();
3839 		}
3840 
3841 		err = wait_for_engines(i915);
3842 		if (err)
3843 			return err;
3844 
3845 		i915_retire_requests(i915);
3846 		GEM_BUG_ON(i915->gt.active_requests);
3847 	} else {
3848 		struct intel_engine_cs *engine;
3849 		enum intel_engine_id id;
3850 
3851 		for_each_engine(engine, i915, id) {
3852 			struct i915_timeline *tl = &engine->timeline;
3853 
3854 			timeout = wait_for_timeline(tl, flags, timeout);
3855 			if (timeout < 0)
3856 				return timeout;
3857 		}
3858 	}
3859 
3860 	return 0;
3861 }
3862 
3863 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3864 {
3865 	/*
3866 	 * We manually flush the CPU domain so that we can override and
3867 	 * force the flush for the display, and perform it asyncrhonously.
3868 	 */
3869 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3870 	if (obj->cache_dirty)
3871 		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3872 	obj->write_domain = 0;
3873 }
3874 
3875 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3876 {
3877 	if (!READ_ONCE(obj->pin_global))
3878 		return;
3879 
3880 	mutex_lock(&obj->base.dev->struct_mutex);
3881 	__i915_gem_object_flush_for_display(obj);
3882 	mutex_unlock(&obj->base.dev->struct_mutex);
3883 }
3884 
3885 /**
3886  * Moves a single object to the WC read, and possibly write domain.
3887  * @obj: object to act on
3888  * @write: ask for write access or read only
3889  *
3890  * This function returns when the move is complete, including waiting on
3891  * flushes to occur.
3892  */
3893 int
3894 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3895 {
3896 	int ret;
3897 
3898 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3899 
3900 	ret = i915_gem_object_wait(obj,
3901 				   I915_WAIT_INTERRUPTIBLE |
3902 				   I915_WAIT_LOCKED |
3903 				   (write ? I915_WAIT_ALL : 0),
3904 				   MAX_SCHEDULE_TIMEOUT,
3905 				   NULL);
3906 	if (ret)
3907 		return ret;
3908 
3909 	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3910 		return 0;
3911 
3912 	/* Flush and acquire obj->pages so that we are coherent through
3913 	 * direct access in memory with previous cached writes through
3914 	 * shmemfs and that our cache domain tracking remains valid.
3915 	 * For example, if the obj->filp was moved to swap without us
3916 	 * being notified and releasing the pages, we would mistakenly
3917 	 * continue to assume that the obj remained out of the CPU cached
3918 	 * domain.
3919 	 */
3920 	ret = i915_gem_object_pin_pages(obj);
3921 	if (ret)
3922 		return ret;
3923 
3924 	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3925 
3926 	/* Serialise direct access to this object with the barriers for
3927 	 * coherent writes from the GPU, by effectively invalidating the
3928 	 * WC domain upon first access.
3929 	 */
3930 	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3931 		mb();
3932 
3933 	/* It should now be out of any other write domains, and we can update
3934 	 * the domain values for our changes.
3935 	 */
3936 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3937 	obj->read_domains |= I915_GEM_DOMAIN_WC;
3938 	if (write) {
3939 		obj->read_domains = I915_GEM_DOMAIN_WC;
3940 		obj->write_domain = I915_GEM_DOMAIN_WC;
3941 		obj->mm.dirty = true;
3942 	}
3943 
3944 	i915_gem_object_unpin_pages(obj);
3945 	return 0;
3946 }
3947 
3948 /**
3949  * Moves a single object to the GTT read, and possibly write domain.
3950  * @obj: object to act on
3951  * @write: ask for write access or read only
3952  *
3953  * This function returns when the move is complete, including waiting on
3954  * flushes to occur.
3955  */
3956 int
3957 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3958 {
3959 	int ret;
3960 
3961 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3962 
3963 	ret = i915_gem_object_wait(obj,
3964 				   I915_WAIT_INTERRUPTIBLE |
3965 				   I915_WAIT_LOCKED |
3966 				   (write ? I915_WAIT_ALL : 0),
3967 				   MAX_SCHEDULE_TIMEOUT,
3968 				   NULL);
3969 	if (ret)
3970 		return ret;
3971 
3972 	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3973 		return 0;
3974 
3975 	/* Flush and acquire obj->pages so that we are coherent through
3976 	 * direct access in memory with previous cached writes through
3977 	 * shmemfs and that our cache domain tracking remains valid.
3978 	 * For example, if the obj->filp was moved to swap without us
3979 	 * being notified and releasing the pages, we would mistakenly
3980 	 * continue to assume that the obj remained out of the CPU cached
3981 	 * domain.
3982 	 */
3983 	ret = i915_gem_object_pin_pages(obj);
3984 	if (ret)
3985 		return ret;
3986 
3987 	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3988 
3989 	/* Serialise direct access to this object with the barriers for
3990 	 * coherent writes from the GPU, by effectively invalidating the
3991 	 * GTT domain upon first access.
3992 	 */
3993 	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3994 		mb();
3995 
3996 	/* It should now be out of any other write domains, and we can update
3997 	 * the domain values for our changes.
3998 	 */
3999 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4000 	obj->read_domains |= I915_GEM_DOMAIN_GTT;
4001 	if (write) {
4002 		obj->read_domains = I915_GEM_DOMAIN_GTT;
4003 		obj->write_domain = I915_GEM_DOMAIN_GTT;
4004 		obj->mm.dirty = true;
4005 	}
4006 
4007 	i915_gem_object_unpin_pages(obj);
4008 	return 0;
4009 }
4010 
4011 /**
4012  * Changes the cache-level of an object across all VMA.
4013  * @obj: object to act on
4014  * @cache_level: new cache level to set for the object
4015  *
4016  * After this function returns, the object will be in the new cache-level
4017  * across all GTT and the contents of the backing storage will be coherent,
4018  * with respect to the new cache-level. In order to keep the backing storage
4019  * coherent for all users, we only allow a single cache level to be set
4020  * globally on the object and prevent it from being changed whilst the
4021  * hardware is reading from the object. That is if the object is currently
4022  * on the scanout it will be set to uncached (or equivalent display
4023  * cache coherency) and all non-MOCS GPU access will also be uncached so
4024  * that all direct access to the scanout remains coherent.
4025  */
4026 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4027 				    enum i915_cache_level cache_level)
4028 {
4029 	struct i915_vma *vma;
4030 	int ret;
4031 
4032 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4033 
4034 	if (obj->cache_level == cache_level)
4035 		return 0;
4036 
4037 	/* Inspect the list of currently bound VMA and unbind any that would
4038 	 * be invalid given the new cache-level. This is principally to
4039 	 * catch the issue of the CS prefetch crossing page boundaries and
4040 	 * reading an invalid PTE on older architectures.
4041 	 */
4042 restart:
4043 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4044 		if (!drm_mm_node_allocated(&vma->node))
4045 			continue;
4046 
4047 		if (i915_vma_is_pinned(vma)) {
4048 			DRM_DEBUG("can not change the cache level of pinned objects\n");
4049 			return -EBUSY;
4050 		}
4051 
4052 		if (!i915_vma_is_closed(vma) &&
4053 		    i915_gem_valid_gtt_space(vma, cache_level))
4054 			continue;
4055 
4056 		ret = i915_vma_unbind(vma);
4057 		if (ret)
4058 			return ret;
4059 
4060 		/* As unbinding may affect other elements in the
4061 		 * obj->vma_list (due to side-effects from retiring
4062 		 * an active vma), play safe and restart the iterator.
4063 		 */
4064 		goto restart;
4065 	}
4066 
4067 	/* We can reuse the existing drm_mm nodes but need to change the
4068 	 * cache-level on the PTE. We could simply unbind them all and
4069 	 * rebind with the correct cache-level on next use. However since
4070 	 * we already have a valid slot, dma mapping, pages etc, we may as
4071 	 * rewrite the PTE in the belief that doing so tramples upon less
4072 	 * state and so involves less work.
4073 	 */
4074 	if (obj->bind_count) {
4075 		/* Before we change the PTE, the GPU must not be accessing it.
4076 		 * If we wait upon the object, we know that all the bound
4077 		 * VMA are no longer active.
4078 		 */
4079 		ret = i915_gem_object_wait(obj,
4080 					   I915_WAIT_INTERRUPTIBLE |
4081 					   I915_WAIT_LOCKED |
4082 					   I915_WAIT_ALL,
4083 					   MAX_SCHEDULE_TIMEOUT,
4084 					   NULL);
4085 		if (ret)
4086 			return ret;
4087 
4088 		if (!HAS_LLC(to_i915(obj->base.dev)) &&
4089 		    cache_level != I915_CACHE_NONE) {
4090 			/* Access to snoopable pages through the GTT is
4091 			 * incoherent and on some machines causes a hard
4092 			 * lockup. Relinquish the CPU mmaping to force
4093 			 * userspace to refault in the pages and we can
4094 			 * then double check if the GTT mapping is still
4095 			 * valid for that pointer access.
4096 			 */
4097 			i915_gem_release_mmap(obj);
4098 
4099 			/* As we no longer need a fence for GTT access,
4100 			 * we can relinquish it now (and so prevent having
4101 			 * to steal a fence from someone else on the next
4102 			 * fence request). Note GPU activity would have
4103 			 * dropped the fence as all snoopable access is
4104 			 * supposed to be linear.
4105 			 */
4106 			for_each_ggtt_vma(vma, obj) {
4107 				ret = i915_vma_put_fence(vma);
4108 				if (ret)
4109 					return ret;
4110 			}
4111 		} else {
4112 			/* We either have incoherent backing store and
4113 			 * so no GTT access or the architecture is fully
4114 			 * coherent. In such cases, existing GTT mmaps
4115 			 * ignore the cache bit in the PTE and we can
4116 			 * rewrite it without confusing the GPU or having
4117 			 * to force userspace to fault back in its mmaps.
4118 			 */
4119 		}
4120 
4121 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
4122 			if (!drm_mm_node_allocated(&vma->node))
4123 				continue;
4124 
4125 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4126 			if (ret)
4127 				return ret;
4128 		}
4129 	}
4130 
4131 	list_for_each_entry(vma, &obj->vma_list, obj_link)
4132 		vma->node.color = cache_level;
4133 	i915_gem_object_set_cache_coherency(obj, cache_level);
4134 	obj->cache_dirty = true; /* Always invalidate stale cachelines */
4135 
4136 	return 0;
4137 }
4138 
4139 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4140 			       struct drm_file *file)
4141 {
4142 	struct drm_i915_gem_caching *args = data;
4143 	struct drm_i915_gem_object *obj;
4144 	int err = 0;
4145 
4146 	rcu_read_lock();
4147 	obj = i915_gem_object_lookup_rcu(file, args->handle);
4148 	if (!obj) {
4149 		err = -ENOENT;
4150 		goto out;
4151 	}
4152 
4153 	switch (obj->cache_level) {
4154 	case I915_CACHE_LLC:
4155 	case I915_CACHE_L3_LLC:
4156 		args->caching = I915_CACHING_CACHED;
4157 		break;
4158 
4159 	case I915_CACHE_WT:
4160 		args->caching = I915_CACHING_DISPLAY;
4161 		break;
4162 
4163 	default:
4164 		args->caching = I915_CACHING_NONE;
4165 		break;
4166 	}
4167 out:
4168 	rcu_read_unlock();
4169 	return err;
4170 }
4171 
4172 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4173 			       struct drm_file *file)
4174 {
4175 	struct drm_i915_private *i915 = to_i915(dev);
4176 	struct drm_i915_gem_caching *args = data;
4177 	struct drm_i915_gem_object *obj;
4178 	enum i915_cache_level level;
4179 	int ret = 0;
4180 
4181 	switch (args->caching) {
4182 	case I915_CACHING_NONE:
4183 		level = I915_CACHE_NONE;
4184 		break;
4185 	case I915_CACHING_CACHED:
4186 		/*
4187 		 * Due to a HW issue on BXT A stepping, GPU stores via a
4188 		 * snooped mapping may leave stale data in a corresponding CPU
4189 		 * cacheline, whereas normally such cachelines would get
4190 		 * invalidated.
4191 		 */
4192 		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4193 			return -ENODEV;
4194 
4195 		level = I915_CACHE_LLC;
4196 		break;
4197 	case I915_CACHING_DISPLAY:
4198 		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4199 		break;
4200 	default:
4201 		return -EINVAL;
4202 	}
4203 
4204 	obj = i915_gem_object_lookup(file, args->handle);
4205 	if (!obj)
4206 		return -ENOENT;
4207 
4208 	/*
4209 	 * The caching mode of proxy object is handled by its generator, and
4210 	 * not allowed to be changed by userspace.
4211 	 */
4212 	if (i915_gem_object_is_proxy(obj)) {
4213 		ret = -ENXIO;
4214 		goto out;
4215 	}
4216 
4217 	if (obj->cache_level == level)
4218 		goto out;
4219 
4220 	ret = i915_gem_object_wait(obj,
4221 				   I915_WAIT_INTERRUPTIBLE,
4222 				   MAX_SCHEDULE_TIMEOUT,
4223 				   to_rps_client(file));
4224 	if (ret)
4225 		goto out;
4226 
4227 	ret = i915_mutex_lock_interruptible(dev);
4228 	if (ret)
4229 		goto out;
4230 
4231 	ret = i915_gem_object_set_cache_level(obj, level);
4232 	mutex_unlock(&dev->struct_mutex);
4233 
4234 out:
4235 	i915_gem_object_put(obj);
4236 	return ret;
4237 }
4238 
4239 /*
4240  * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
4241  * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
4242  * (for pageflips). We only flush the caches while preparing the buffer for
4243  * display, the callers are responsible for frontbuffer flush.
4244  */
4245 struct i915_vma *
4246 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4247 				     u32 alignment,
4248 				     const struct i915_ggtt_view *view,
4249 				     unsigned int flags)
4250 {
4251 	struct i915_vma *vma;
4252 	int ret;
4253 
4254 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4255 
4256 	/* Mark the global pin early so that we account for the
4257 	 * display coherency whilst setting up the cache domains.
4258 	 */
4259 	obj->pin_global++;
4260 
4261 	/* The display engine is not coherent with the LLC cache on gen6.  As
4262 	 * a result, we make sure that the pinning that is about to occur is
4263 	 * done with uncached PTEs. This is lowest common denominator for all
4264 	 * chipsets.
4265 	 *
4266 	 * However for gen6+, we could do better by using the GFDT bit instead
4267 	 * of uncaching, which would allow us to flush all the LLC-cached data
4268 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4269 	 */
4270 	ret = i915_gem_object_set_cache_level(obj,
4271 					      HAS_WT(to_i915(obj->base.dev)) ?
4272 					      I915_CACHE_WT : I915_CACHE_NONE);
4273 	if (ret) {
4274 		vma = ERR_PTR(ret);
4275 		goto err_unpin_global;
4276 	}
4277 
4278 	/* As the user may map the buffer once pinned in the display plane
4279 	 * (e.g. libkms for the bootup splash), we have to ensure that we
4280 	 * always use map_and_fenceable for all scanout buffers. However,
4281 	 * it may simply be too big to fit into mappable, in which case
4282 	 * put it anyway and hope that userspace can cope (but always first
4283 	 * try to preserve the existing ABI).
4284 	 */
4285 	vma = ERR_PTR(-ENOSPC);
4286 	if ((flags & PIN_MAPPABLE) == 0 &&
4287 	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
4288 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4289 					       flags |
4290 					       PIN_MAPPABLE |
4291 					       PIN_NONBLOCK);
4292 	if (IS_ERR(vma))
4293 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
4294 	if (IS_ERR(vma))
4295 		goto err_unpin_global;
4296 
4297 	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
4298 
4299 	__i915_gem_object_flush_for_display(obj);
4300 
4301 	/* It should now be out of any other write domains, and we can update
4302 	 * the domain values for our changes.
4303 	 */
4304 	obj->read_domains |= I915_GEM_DOMAIN_GTT;
4305 
4306 	return vma;
4307 
4308 err_unpin_global:
4309 	obj->pin_global--;
4310 	return vma;
4311 }
4312 
4313 void
4314 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4315 {
4316 	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4317 
4318 	if (WARN_ON(vma->obj->pin_global == 0))
4319 		return;
4320 
4321 	if (--vma->obj->pin_global == 0)
4322 		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4323 
4324 	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
4325 	i915_gem_object_bump_inactive_ggtt(vma->obj);
4326 
4327 	i915_vma_unpin(vma);
4328 }
4329 
4330 /**
4331  * Moves a single object to the CPU read, and possibly write domain.
4332  * @obj: object to act on
4333  * @write: requesting write or read-only access
4334  *
4335  * This function returns when the move is complete, including waiting on
4336  * flushes to occur.
4337  */
4338 int
4339 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4340 {
4341 	int ret;
4342 
4343 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4344 
4345 	ret = i915_gem_object_wait(obj,
4346 				   I915_WAIT_INTERRUPTIBLE |
4347 				   I915_WAIT_LOCKED |
4348 				   (write ? I915_WAIT_ALL : 0),
4349 				   MAX_SCHEDULE_TIMEOUT,
4350 				   NULL);
4351 	if (ret)
4352 		return ret;
4353 
4354 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4355 
4356 	/* Flush the CPU cache if it's still invalid. */
4357 	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4358 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4359 		obj->read_domains |= I915_GEM_DOMAIN_CPU;
4360 	}
4361 
4362 	/* It should now be out of any other write domains, and we can update
4363 	 * the domain values for our changes.
4364 	 */
4365 	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4366 
4367 	/* If we're writing through the CPU, then the GPU read domains will
4368 	 * need to be invalidated at next use.
4369 	 */
4370 	if (write)
4371 		__start_cpu_write(obj);
4372 
4373 	return 0;
4374 }
4375 
4376 /* Throttle our rendering by waiting until the ring has completed our requests
4377  * emitted over 20 msec ago.
4378  *
4379  * Note that if we were to use the current jiffies each time around the loop,
4380  * we wouldn't escape the function with any frames outstanding if the time to
4381  * render a frame was over 20ms.
4382  *
4383  * This should get us reasonable parallelism between CPU and GPU but also
4384  * relatively low latency when blocking on a particular request to finish.
4385  */
4386 static int
4387 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4388 {
4389 	struct drm_i915_private *dev_priv = to_i915(dev);
4390 	struct drm_i915_file_private *file_priv = file->driver_priv;
4391 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4392 	struct i915_request *request, *target = NULL;
4393 	long ret;
4394 
4395 	/* ABI: return -EIO if already wedged */
4396 	if (i915_terminally_wedged(&dev_priv->gpu_error))
4397 		return -EIO;
4398 
4399 	spin_lock(&file_priv->mm.lock);
4400 	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4401 		if (time_after_eq(request->emitted_jiffies, recent_enough))
4402 			break;
4403 
4404 		if (target) {
4405 			list_del(&target->client_link);
4406 			target->file_priv = NULL;
4407 		}
4408 
4409 		target = request;
4410 	}
4411 	if (target)
4412 		i915_request_get(target);
4413 	spin_unlock(&file_priv->mm.lock);
4414 
4415 	if (target == NULL)
4416 		return 0;
4417 
4418 	ret = i915_request_wait(target,
4419 				I915_WAIT_INTERRUPTIBLE,
4420 				MAX_SCHEDULE_TIMEOUT);
4421 	i915_request_put(target);
4422 
4423 	return ret < 0 ? ret : 0;
4424 }
4425 
4426 struct i915_vma *
4427 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4428 			 const struct i915_ggtt_view *view,
4429 			 u64 size,
4430 			 u64 alignment,
4431 			 u64 flags)
4432 {
4433 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4434 	struct i915_address_space *vm = &dev_priv->ggtt.vm;
4435 	struct i915_vma *vma;
4436 	int ret;
4437 
4438 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4439 
4440 	if (flags & PIN_MAPPABLE &&
4441 	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4442 		/* If the required space is larger than the available
4443 		 * aperture, we will not able to find a slot for the
4444 		 * object and unbinding the object now will be in
4445 		 * vain. Worse, doing so may cause us to ping-pong
4446 		 * the object in and out of the Global GTT and
4447 		 * waste a lot of cycles under the mutex.
4448 		 */
4449 		if (obj->base.size > dev_priv->ggtt.mappable_end)
4450 			return ERR_PTR(-E2BIG);
4451 
4452 		/* If NONBLOCK is set the caller is optimistically
4453 		 * trying to cache the full object within the mappable
4454 		 * aperture, and *must* have a fallback in place for
4455 		 * situations where we cannot bind the object. We
4456 		 * can be a little more lax here and use the fallback
4457 		 * more often to avoid costly migrations of ourselves
4458 		 * and other objects within the aperture.
4459 		 *
4460 		 * Half-the-aperture is used as a simple heuristic.
4461 		 * More interesting would to do search for a free
4462 		 * block prior to making the commitment to unbind.
4463 		 * That caters for the self-harm case, and with a
4464 		 * little more heuristics (e.g. NOFAULT, NOEVICT)
4465 		 * we could try to minimise harm to others.
4466 		 */
4467 		if (flags & PIN_NONBLOCK &&
4468 		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
4469 			return ERR_PTR(-ENOSPC);
4470 	}
4471 
4472 	vma = i915_vma_instance(obj, vm, view);
4473 	if (unlikely(IS_ERR(vma)))
4474 		return vma;
4475 
4476 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4477 		if (flags & PIN_NONBLOCK) {
4478 			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4479 				return ERR_PTR(-ENOSPC);
4480 
4481 			if (flags & PIN_MAPPABLE &&
4482 			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4483 				return ERR_PTR(-ENOSPC);
4484 		}
4485 
4486 		WARN(i915_vma_is_pinned(vma),
4487 		     "bo is already pinned in ggtt with incorrect alignment:"
4488 		     " offset=%08x, req.alignment=%llx,"
4489 		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4490 		     i915_ggtt_offset(vma), alignment,
4491 		     !!(flags & PIN_MAPPABLE),
4492 		     i915_vma_is_map_and_fenceable(vma));
4493 		ret = i915_vma_unbind(vma);
4494 		if (ret)
4495 			return ERR_PTR(ret);
4496 	}
4497 
4498 	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4499 	if (ret)
4500 		return ERR_PTR(ret);
4501 
4502 	return vma;
4503 }
4504 
4505 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4506 {
4507 	/* Note that we could alias engines in the execbuf API, but
4508 	 * that would be very unwise as it prevents userspace from
4509 	 * fine control over engine selection. Ahem.
4510 	 *
4511 	 * This should be something like EXEC_MAX_ENGINE instead of
4512 	 * I915_NUM_ENGINES.
4513 	 */
4514 	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4515 	return 0x10000 << id;
4516 }
4517 
4518 static __always_inline unsigned int __busy_write_id(unsigned int id)
4519 {
4520 	/* The uABI guarantees an active writer is also amongst the read
4521 	 * engines. This would be true if we accessed the activity tracking
4522 	 * under the lock, but as we perform the lookup of the object and
4523 	 * its activity locklessly we can not guarantee that the last_write
4524 	 * being active implies that we have set the same engine flag from
4525 	 * last_read - hence we always set both read and write busy for
4526 	 * last_write.
4527 	 */
4528 	return id | __busy_read_flag(id);
4529 }
4530 
4531 static __always_inline unsigned int
4532 __busy_set_if_active(const struct dma_fence *fence,
4533 		     unsigned int (*flag)(unsigned int id))
4534 {
4535 	struct i915_request *rq;
4536 
4537 	/* We have to check the current hw status of the fence as the uABI
4538 	 * guarantees forward progress. We could rely on the idle worker
4539 	 * to eventually flush us, but to minimise latency just ask the
4540 	 * hardware.
4541 	 *
4542 	 * Note we only report on the status of native fences.
4543 	 */
4544 	if (!dma_fence_is_i915(fence))
4545 		return 0;
4546 
4547 	/* opencode to_request() in order to avoid const warnings */
4548 	rq = container_of(fence, struct i915_request, fence);
4549 	if (i915_request_completed(rq))
4550 		return 0;
4551 
4552 	return flag(rq->engine->uabi_id);
4553 }
4554 
4555 static __always_inline unsigned int
4556 busy_check_reader(const struct dma_fence *fence)
4557 {
4558 	return __busy_set_if_active(fence, __busy_read_flag);
4559 }
4560 
4561 static __always_inline unsigned int
4562 busy_check_writer(const struct dma_fence *fence)
4563 {
4564 	if (!fence)
4565 		return 0;
4566 
4567 	return __busy_set_if_active(fence, __busy_write_id);
4568 }
4569 
4570 int
4571 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4572 		    struct drm_file *file)
4573 {
4574 	struct drm_i915_gem_busy *args = data;
4575 	struct drm_i915_gem_object *obj;
4576 	struct reservation_object_list *list;
4577 	unsigned int seq;
4578 	int err;
4579 
4580 	err = -ENOENT;
4581 	rcu_read_lock();
4582 	obj = i915_gem_object_lookup_rcu(file, args->handle);
4583 	if (!obj)
4584 		goto out;
4585 
4586 	/* A discrepancy here is that we do not report the status of
4587 	 * non-i915 fences, i.e. even though we may report the object as idle,
4588 	 * a call to set-domain may still stall waiting for foreign rendering.
4589 	 * This also means that wait-ioctl may report an object as busy,
4590 	 * where busy-ioctl considers it idle.
4591 	 *
4592 	 * We trade the ability to warn of foreign fences to report on which
4593 	 * i915 engines are active for the object.
4594 	 *
4595 	 * Alternatively, we can trade that extra information on read/write
4596 	 * activity with
4597 	 *	args->busy =
4598 	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
4599 	 * to report the overall busyness. This is what the wait-ioctl does.
4600 	 *
4601 	 */
4602 retry:
4603 	seq = raw_read_seqcount(&obj->resv->seq);
4604 
4605 	/* Translate the exclusive fence to the READ *and* WRITE engine */
4606 	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4607 
4608 	/* Translate shared fences to READ set of engines */
4609 	list = rcu_dereference(obj->resv->fence);
4610 	if (list) {
4611 		unsigned int shared_count = list->shared_count, i;
4612 
4613 		for (i = 0; i < shared_count; ++i) {
4614 			struct dma_fence *fence =
4615 				rcu_dereference(list->shared[i]);
4616 
4617 			args->busy |= busy_check_reader(fence);
4618 		}
4619 	}
4620 
4621 	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4622 		goto retry;
4623 
4624 	err = 0;
4625 out:
4626 	rcu_read_unlock();
4627 	return err;
4628 }
4629 
4630 int
4631 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4632 			struct drm_file *file_priv)
4633 {
4634 	return i915_gem_ring_throttle(dev, file_priv);
4635 }
4636 
4637 int
4638 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4639 		       struct drm_file *file_priv)
4640 {
4641 	struct drm_i915_private *dev_priv = to_i915(dev);
4642 	struct drm_i915_gem_madvise *args = data;
4643 	struct drm_i915_gem_object *obj;
4644 	int err;
4645 
4646 	switch (args->madv) {
4647 	case I915_MADV_DONTNEED:
4648 	case I915_MADV_WILLNEED:
4649 	    break;
4650 	default:
4651 	    return -EINVAL;
4652 	}
4653 
4654 	obj = i915_gem_object_lookup(file_priv, args->handle);
4655 	if (!obj)
4656 		return -ENOENT;
4657 
4658 	err = mutex_lock_interruptible(&obj->mm.lock);
4659 	if (err)
4660 		goto out;
4661 
4662 	if (i915_gem_object_has_pages(obj) &&
4663 	    i915_gem_object_is_tiled(obj) &&
4664 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4665 		if (obj->mm.madv == I915_MADV_WILLNEED) {
4666 			GEM_BUG_ON(!obj->mm.quirked);
4667 			__i915_gem_object_unpin_pages(obj);
4668 			obj->mm.quirked = false;
4669 		}
4670 		if (args->madv == I915_MADV_WILLNEED) {
4671 			GEM_BUG_ON(obj->mm.quirked);
4672 			__i915_gem_object_pin_pages(obj);
4673 			obj->mm.quirked = true;
4674 		}
4675 	}
4676 
4677 	if (obj->mm.madv != __I915_MADV_PURGED)
4678 		obj->mm.madv = args->madv;
4679 
4680 	/* if the object is no longer attached, discard its backing storage */
4681 	if (obj->mm.madv == I915_MADV_DONTNEED &&
4682 	    !i915_gem_object_has_pages(obj))
4683 		i915_gem_object_truncate(obj);
4684 
4685 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4686 	mutex_unlock(&obj->mm.lock);
4687 
4688 out:
4689 	i915_gem_object_put(obj);
4690 	return err;
4691 }
4692 
4693 static void
4694 frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4695 {
4696 	struct drm_i915_gem_object *obj =
4697 		container_of(active, typeof(*obj), frontbuffer_write);
4698 
4699 	intel_fb_obj_flush(obj, ORIGIN_CS);
4700 }
4701 
4702 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4703 			  const struct drm_i915_gem_object_ops *ops)
4704 {
4705 	mutex_init(&obj->mm.lock);
4706 
4707 	INIT_LIST_HEAD(&obj->vma_list);
4708 	INIT_LIST_HEAD(&obj->lut_list);
4709 	INIT_LIST_HEAD(&obj->batch_pool_link);
4710 
4711 	init_rcu_head(&obj->rcu);
4712 
4713 	obj->ops = ops;
4714 
4715 	reservation_object_init(&obj->__builtin_resv);
4716 	obj->resv = &obj->__builtin_resv;
4717 
4718 	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4719 	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4720 
4721 	obj->mm.madv = I915_MADV_WILLNEED;
4722 	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4723 	mutex_init(&obj->mm.get_page.lock);
4724 
4725 	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4726 }
4727 
4728 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4729 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4730 		 I915_GEM_OBJECT_IS_SHRINKABLE,
4731 
4732 	.get_pages = i915_gem_object_get_pages_gtt,
4733 	.put_pages = i915_gem_object_put_pages_gtt,
4734 
4735 	.pwrite = i915_gem_object_pwrite_gtt,
4736 };
4737 
4738 static int i915_gem_object_create_shmem(struct drm_device *dev,
4739 					struct drm_gem_object *obj,
4740 					size_t size)
4741 {
4742 	struct drm_i915_private *i915 = to_i915(dev);
4743 	unsigned long flags = VM_NORESERVE;
4744 	struct file *filp;
4745 
4746 	drm_gem_private_object_init(dev, obj, size);
4747 
4748 	if (i915->mm.gemfs)
4749 		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4750 						 flags);
4751 	else
4752 		filp = shmem_file_setup("i915", size, flags);
4753 
4754 	if (IS_ERR(filp))
4755 		return PTR_ERR(filp);
4756 
4757 	obj->filp = filp;
4758 
4759 	return 0;
4760 }
4761 
4762 struct drm_i915_gem_object *
4763 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4764 {
4765 	struct drm_i915_gem_object *obj;
4766 	struct address_space *mapping;
4767 	unsigned int cache_level;
4768 	gfp_t mask;
4769 	int ret;
4770 
4771 	/* There is a prevalence of the assumption that we fit the object's
4772 	 * page count inside a 32bit _signed_ variable. Let's document this and
4773 	 * catch if we ever need to fix it. In the meantime, if you do spot
4774 	 * such a local variable, please consider fixing!
4775 	 */
4776 	if (size >> PAGE_SHIFT > INT_MAX)
4777 		return ERR_PTR(-E2BIG);
4778 
4779 	if (overflows_type(size, obj->base.size))
4780 		return ERR_PTR(-E2BIG);
4781 
4782 	obj = i915_gem_object_alloc(dev_priv);
4783 	if (obj == NULL)
4784 		return ERR_PTR(-ENOMEM);
4785 
4786 	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4787 	if (ret)
4788 		goto fail;
4789 
4790 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4791 	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4792 		/* 965gm cannot relocate objects above 4GiB. */
4793 		mask &= ~__GFP_HIGHMEM;
4794 		mask |= __GFP_DMA32;
4795 	}
4796 
4797 	mapping = obj->base.filp->f_mapping;
4798 	mapping_set_gfp_mask(mapping, mask);
4799 	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4800 
4801 	i915_gem_object_init(obj, &i915_gem_object_ops);
4802 
4803 	obj->write_domain = I915_GEM_DOMAIN_CPU;
4804 	obj->read_domains = I915_GEM_DOMAIN_CPU;
4805 
4806 	if (HAS_LLC(dev_priv))
4807 		/* On some devices, we can have the GPU use the LLC (the CPU
4808 		 * cache) for about a 10% performance improvement
4809 		 * compared to uncached.  Graphics requests other than
4810 		 * display scanout are coherent with the CPU in
4811 		 * accessing this cache.  This means in this mode we
4812 		 * don't need to clflush on the CPU side, and on the
4813 		 * GPU side we only need to flush internal caches to
4814 		 * get data visible to the CPU.
4815 		 *
4816 		 * However, we maintain the display planes as UC, and so
4817 		 * need to rebind when first used as such.
4818 		 */
4819 		cache_level = I915_CACHE_LLC;
4820 	else
4821 		cache_level = I915_CACHE_NONE;
4822 
4823 	i915_gem_object_set_cache_coherency(obj, cache_level);
4824 
4825 	trace_i915_gem_object_create(obj);
4826 
4827 	return obj;
4828 
4829 fail:
4830 	i915_gem_object_free(obj);
4831 	return ERR_PTR(ret);
4832 }
4833 
4834 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4835 {
4836 	/* If we are the last user of the backing storage (be it shmemfs
4837 	 * pages or stolen etc), we know that the pages are going to be
4838 	 * immediately released. In this case, we can then skip copying
4839 	 * back the contents from the GPU.
4840 	 */
4841 
4842 	if (obj->mm.madv != I915_MADV_WILLNEED)
4843 		return false;
4844 
4845 	if (obj->base.filp == NULL)
4846 		return true;
4847 
4848 	/* At first glance, this looks racy, but then again so would be
4849 	 * userspace racing mmap against close. However, the first external
4850 	 * reference to the filp can only be obtained through the
4851 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4852 	 * acquiring such a reference whilst we are in the middle of
4853 	 * freeing the object.
4854 	 */
4855 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4856 }
4857 
4858 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4859 				    struct llist_node *freed)
4860 {
4861 	struct drm_i915_gem_object *obj, *on;
4862 
4863 	intel_runtime_pm_get(i915);
4864 	llist_for_each_entry_safe(obj, on, freed, freed) {
4865 		struct i915_vma *vma, *vn;
4866 
4867 		trace_i915_gem_object_destroy(obj);
4868 
4869 		mutex_lock(&i915->drm.struct_mutex);
4870 
4871 		GEM_BUG_ON(i915_gem_object_is_active(obj));
4872 		list_for_each_entry_safe(vma, vn,
4873 					 &obj->vma_list, obj_link) {
4874 			GEM_BUG_ON(i915_vma_is_active(vma));
4875 			vma->flags &= ~I915_VMA_PIN_MASK;
4876 			i915_vma_destroy(vma);
4877 		}
4878 		GEM_BUG_ON(!list_empty(&obj->vma_list));
4879 		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4880 
4881 		/* This serializes freeing with the shrinker. Since the free
4882 		 * is delayed, first by RCU then by the workqueue, we want the
4883 		 * shrinker to be able to free pages of unreferenced objects,
4884 		 * or else we may oom whilst there are plenty of deferred
4885 		 * freed objects.
4886 		 */
4887 		if (i915_gem_object_has_pages(obj)) {
4888 			spin_lock(&i915->mm.obj_lock);
4889 			list_del_init(&obj->mm.link);
4890 			spin_unlock(&i915->mm.obj_lock);
4891 		}
4892 
4893 		mutex_unlock(&i915->drm.struct_mutex);
4894 
4895 		GEM_BUG_ON(obj->bind_count);
4896 		GEM_BUG_ON(obj->userfault_count);
4897 		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4898 		GEM_BUG_ON(!list_empty(&obj->lut_list));
4899 
4900 		if (obj->ops->release)
4901 			obj->ops->release(obj);
4902 
4903 		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4904 			atomic_set(&obj->mm.pages_pin_count, 0);
4905 		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4906 		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4907 
4908 		if (obj->base.import_attach)
4909 			drm_prime_gem_destroy(&obj->base, NULL);
4910 
4911 		reservation_object_fini(&obj->__builtin_resv);
4912 		drm_gem_object_release(&obj->base);
4913 		i915_gem_info_remove_obj(i915, obj->base.size);
4914 
4915 		kfree(obj->bit_17);
4916 		i915_gem_object_free(obj);
4917 
4918 		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
4919 		atomic_dec(&i915->mm.free_count);
4920 
4921 		if (on)
4922 			cond_resched();
4923 	}
4924 	intel_runtime_pm_put(i915);
4925 }
4926 
4927 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4928 {
4929 	struct llist_node *freed;
4930 
4931 	/* Free the oldest, most stale object to keep the free_list short */
4932 	freed = NULL;
4933 	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
4934 		/* Only one consumer of llist_del_first() allowed */
4935 		spin_lock(&i915->mm.free_lock);
4936 		freed = llist_del_first(&i915->mm.free_list);
4937 		spin_unlock(&i915->mm.free_lock);
4938 	}
4939 	if (unlikely(freed)) {
4940 		freed->next = NULL;
4941 		__i915_gem_free_objects(i915, freed);
4942 	}
4943 }
4944 
4945 static void __i915_gem_free_work(struct work_struct *work)
4946 {
4947 	struct drm_i915_private *i915 =
4948 		container_of(work, struct drm_i915_private, mm.free_work);
4949 	struct llist_node *freed;
4950 
4951 	/*
4952 	 * All file-owned VMA should have been released by this point through
4953 	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4954 	 * However, the object may also be bound into the global GTT (e.g.
4955 	 * older GPUs without per-process support, or for direct access through
4956 	 * the GTT either for the user or for scanout). Those VMA still need to
4957 	 * unbound now.
4958 	 */
4959 
4960 	spin_lock(&i915->mm.free_lock);
4961 	while ((freed = llist_del_all(&i915->mm.free_list))) {
4962 		spin_unlock(&i915->mm.free_lock);
4963 
4964 		__i915_gem_free_objects(i915, freed);
4965 		if (need_resched())
4966 			return;
4967 
4968 		spin_lock(&i915->mm.free_lock);
4969 	}
4970 	spin_unlock(&i915->mm.free_lock);
4971 }
4972 
4973 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4974 {
4975 	struct drm_i915_gem_object *obj =
4976 		container_of(head, typeof(*obj), rcu);
4977 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4978 
4979 	/*
4980 	 * We reuse obj->rcu for the freed list, so we had better not treat
4981 	 * it like a rcu_head from this point forwards. And we expect all
4982 	 * objects to be freed via this path.
4983 	 */
4984 	destroy_rcu_head(&obj->rcu);
4985 
4986 	/*
4987 	 * Since we require blocking on struct_mutex to unbind the freed
4988 	 * object from the GPU before releasing resources back to the
4989 	 * system, we can not do that directly from the RCU callback (which may
4990 	 * be a softirq context), but must instead then defer that work onto a
4991 	 * kthread. We use the RCU callback rather than move the freed object
4992 	 * directly onto the work queue so that we can mix between using the
4993 	 * worker and performing frees directly from subsequent allocations for
4994 	 * crude but effective memory throttling.
4995 	 */
4996 	if (llist_add(&obj->freed, &i915->mm.free_list))
4997 		queue_work(i915->wq, &i915->mm.free_work);
4998 }
4999 
5000 void i915_gem_free_object(struct drm_gem_object *gem_obj)
5001 {
5002 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
5003 
5004 	if (obj->mm.quirked)
5005 		__i915_gem_object_unpin_pages(obj);
5006 
5007 	if (discard_backing_storage(obj))
5008 		obj->mm.madv = I915_MADV_DONTNEED;
5009 
5010 	/*
5011 	 * Before we free the object, make sure any pure RCU-only
5012 	 * read-side critical sections are complete, e.g.
5013 	 * i915_gem_busy_ioctl(). For the corresponding synchronized
5014 	 * lookup see i915_gem_object_lookup_rcu().
5015 	 */
5016 	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
5017 	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
5018 }
5019 
5020 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
5021 {
5022 	lockdep_assert_held(&obj->base.dev->struct_mutex);
5023 
5024 	if (!i915_gem_object_has_active_reference(obj) &&
5025 	    i915_gem_object_is_active(obj))
5026 		i915_gem_object_set_active_reference(obj);
5027 	else
5028 		i915_gem_object_put(obj);
5029 }
5030 
5031 void i915_gem_sanitize(struct drm_i915_private *i915)
5032 {
5033 	int err;
5034 
5035 	GEM_TRACE("\n");
5036 
5037 	mutex_lock(&i915->drm.struct_mutex);
5038 
5039 	intel_runtime_pm_get(i915);
5040 	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5041 
5042 	/*
5043 	 * As we have just resumed the machine and woken the device up from
5044 	 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
5045 	 * back to defaults, recovering from whatever wedged state we left it
5046 	 * in and so worth trying to use the device once more.
5047 	 */
5048 	if (i915_terminally_wedged(&i915->gpu_error))
5049 		i915_gem_unset_wedged(i915);
5050 
5051 	/*
5052 	 * If we inherit context state from the BIOS or earlier occupants
5053 	 * of the GPU, the GPU may be in an inconsistent state when we
5054 	 * try to take over. The only way to remove the earlier state
5055 	 * is by resetting. However, resetting on earlier gen is tricky as
5056 	 * it may impact the display and we are uncertain about the stability
5057 	 * of the reset, so this could be applied to even earlier gen.
5058 	 */
5059 	err = -ENODEV;
5060 	if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
5061 		err = WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
5062 	if (!err)
5063 		intel_engines_sanitize(i915);
5064 
5065 	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5066 	intel_runtime_pm_put(i915);
5067 
5068 	i915_gem_contexts_lost(i915);
5069 	mutex_unlock(&i915->drm.struct_mutex);
5070 }
5071 
5072 int i915_gem_suspend(struct drm_i915_private *i915)
5073 {
5074 	int ret;
5075 
5076 	GEM_TRACE("\n");
5077 
5078 	intel_runtime_pm_get(i915);
5079 	intel_suspend_gt_powersave(i915);
5080 
5081 	mutex_lock(&i915->drm.struct_mutex);
5082 
5083 	/*
5084 	 * We have to flush all the executing contexts to main memory so
5085 	 * that they can saved in the hibernation image. To ensure the last
5086 	 * context image is coherent, we have to switch away from it. That
5087 	 * leaves the i915->kernel_context still active when
5088 	 * we actually suspend, and its image in memory may not match the GPU
5089 	 * state. Fortunately, the kernel_context is disposable and we do
5090 	 * not rely on its state.
5091 	 */
5092 	if (!i915_terminally_wedged(&i915->gpu_error)) {
5093 		ret = i915_gem_switch_to_kernel_context(i915);
5094 		if (ret)
5095 			goto err_unlock;
5096 
5097 		ret = i915_gem_wait_for_idle(i915,
5098 					     I915_WAIT_INTERRUPTIBLE |
5099 					     I915_WAIT_LOCKED |
5100 					     I915_WAIT_FOR_IDLE_BOOST,
5101 					     MAX_SCHEDULE_TIMEOUT);
5102 		if (ret && ret != -EIO)
5103 			goto err_unlock;
5104 
5105 		assert_kernel_context_is_current(i915);
5106 	}
5107 	i915_retire_requests(i915); /* ensure we flush after wedging */
5108 
5109 	mutex_unlock(&i915->drm.struct_mutex);
5110 
5111 	intel_uc_suspend(i915);
5112 
5113 	cancel_delayed_work_sync(&i915->gpu_error.hangcheck_work);
5114 	cancel_delayed_work_sync(&i915->gt.retire_work);
5115 
5116 	/*
5117 	 * As the idle_work is rearming if it detects a race, play safe and
5118 	 * repeat the flush until it is definitely idle.
5119 	 */
5120 	drain_delayed_work(&i915->gt.idle_work);
5121 
5122 	/*
5123 	 * Assert that we successfully flushed all the work and
5124 	 * reset the GPU back to its idle, low power state.
5125 	 */
5126 	WARN_ON(i915->gt.awake);
5127 	if (WARN_ON(!intel_engines_are_idle(i915)))
5128 		i915_gem_set_wedged(i915); /* no hope, discard everything */
5129 
5130 	intel_runtime_pm_put(i915);
5131 	return 0;
5132 
5133 err_unlock:
5134 	mutex_unlock(&i915->drm.struct_mutex);
5135 	intel_runtime_pm_put(i915);
5136 	return ret;
5137 }
5138 
5139 void i915_gem_suspend_late(struct drm_i915_private *i915)
5140 {
5141 	struct drm_i915_gem_object *obj;
5142 	struct list_head *phases[] = {
5143 		&i915->mm.unbound_list,
5144 		&i915->mm.bound_list,
5145 		NULL
5146 	}, **phase;
5147 
5148 	/*
5149 	 * Neither the BIOS, ourselves or any other kernel
5150 	 * expects the system to be in execlists mode on startup,
5151 	 * so we need to reset the GPU back to legacy mode. And the only
5152 	 * known way to disable logical contexts is through a GPU reset.
5153 	 *
5154 	 * So in order to leave the system in a known default configuration,
5155 	 * always reset the GPU upon unload and suspend. Afterwards we then
5156 	 * clean up the GEM state tracking, flushing off the requests and
5157 	 * leaving the system in a known idle state.
5158 	 *
5159 	 * Note that is of the upmost importance that the GPU is idle and
5160 	 * all stray writes are flushed *before* we dismantle the backing
5161 	 * storage for the pinned objects.
5162 	 *
5163 	 * However, since we are uncertain that resetting the GPU on older
5164 	 * machines is a good idea, we don't - just in case it leaves the
5165 	 * machine in an unusable condition.
5166 	 */
5167 
5168 	mutex_lock(&i915->drm.struct_mutex);
5169 	for (phase = phases; *phase; phase++) {
5170 		list_for_each_entry(obj, *phase, mm.link)
5171 			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
5172 	}
5173 	mutex_unlock(&i915->drm.struct_mutex);
5174 
5175 	intel_uc_sanitize(i915);
5176 	i915_gem_sanitize(i915);
5177 }
5178 
5179 void i915_gem_resume(struct drm_i915_private *i915)
5180 {
5181 	GEM_TRACE("\n");
5182 
5183 	WARN_ON(i915->gt.awake);
5184 
5185 	mutex_lock(&i915->drm.struct_mutex);
5186 	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5187 
5188 	i915_gem_restore_gtt_mappings(i915);
5189 	i915_gem_restore_fences(i915);
5190 
5191 	/*
5192 	 * As we didn't flush the kernel context before suspend, we cannot
5193 	 * guarantee that the context image is complete. So let's just reset
5194 	 * it and start again.
5195 	 */
5196 	i915->gt.resume(i915);
5197 
5198 	if (i915_gem_init_hw(i915))
5199 		goto err_wedged;
5200 
5201 	intel_uc_resume(i915);
5202 
5203 	/* Always reload a context for powersaving. */
5204 	if (i915_gem_switch_to_kernel_context(i915))
5205 		goto err_wedged;
5206 
5207 out_unlock:
5208 	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5209 	mutex_unlock(&i915->drm.struct_mutex);
5210 	return;
5211 
5212 err_wedged:
5213 	if (!i915_terminally_wedged(&i915->gpu_error)) {
5214 		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
5215 		i915_gem_set_wedged(i915);
5216 	}
5217 	goto out_unlock;
5218 }
5219 
5220 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5221 {
5222 	if (INTEL_GEN(dev_priv) < 5 ||
5223 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5224 		return;
5225 
5226 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5227 				 DISP_TILE_SURFACE_SWIZZLING);
5228 
5229 	if (IS_GEN5(dev_priv))
5230 		return;
5231 
5232 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5233 	if (IS_GEN6(dev_priv))
5234 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5235 	else if (IS_GEN7(dev_priv))
5236 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5237 	else if (IS_GEN8(dev_priv))
5238 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5239 	else
5240 		BUG();
5241 }
5242 
5243 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5244 {
5245 	I915_WRITE(RING_CTL(base), 0);
5246 	I915_WRITE(RING_HEAD(base), 0);
5247 	I915_WRITE(RING_TAIL(base), 0);
5248 	I915_WRITE(RING_START(base), 0);
5249 }
5250 
5251 static void init_unused_rings(struct drm_i915_private *dev_priv)
5252 {
5253 	if (IS_I830(dev_priv)) {
5254 		init_unused_ring(dev_priv, PRB1_BASE);
5255 		init_unused_ring(dev_priv, SRB0_BASE);
5256 		init_unused_ring(dev_priv, SRB1_BASE);
5257 		init_unused_ring(dev_priv, SRB2_BASE);
5258 		init_unused_ring(dev_priv, SRB3_BASE);
5259 	} else if (IS_GEN2(dev_priv)) {
5260 		init_unused_ring(dev_priv, SRB0_BASE);
5261 		init_unused_ring(dev_priv, SRB1_BASE);
5262 	} else if (IS_GEN3(dev_priv)) {
5263 		init_unused_ring(dev_priv, PRB1_BASE);
5264 		init_unused_ring(dev_priv, PRB2_BASE);
5265 	}
5266 }
5267 
5268 static int __i915_gem_restart_engines(void *data)
5269 {
5270 	struct drm_i915_private *i915 = data;
5271 	struct intel_engine_cs *engine;
5272 	enum intel_engine_id id;
5273 	int err;
5274 
5275 	for_each_engine(engine, i915, id) {
5276 		err = engine->init_hw(engine);
5277 		if (err) {
5278 			DRM_ERROR("Failed to restart %s (%d)\n",
5279 				  engine->name, err);
5280 			return err;
5281 		}
5282 	}
5283 
5284 	return 0;
5285 }
5286 
5287 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
5288 {
5289 	int ret;
5290 
5291 	dev_priv->gt.last_init_time = ktime_get();
5292 
5293 	/* Double layer security blanket, see i915_gem_init() */
5294 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5295 
5296 	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5297 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5298 
5299 	if (IS_HASWELL(dev_priv))
5300 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5301 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5302 
5303 	/* Apply the GT workarounds... */
5304 	intel_gt_apply_workarounds(dev_priv);
5305 	/* ...and determine whether they are sticking. */
5306 	intel_gt_verify_workarounds(dev_priv, "init");
5307 
5308 	i915_gem_init_swizzling(dev_priv);
5309 
5310 	/*
5311 	 * At least 830 can leave some of the unused rings
5312 	 * "active" (ie. head != tail) after resume which
5313 	 * will prevent c3 entry. Makes sure all unused rings
5314 	 * are totally idle.
5315 	 */
5316 	init_unused_rings(dev_priv);
5317 
5318 	BUG_ON(!dev_priv->kernel_context);
5319 	if (i915_terminally_wedged(&dev_priv->gpu_error)) {
5320 		ret = -EIO;
5321 		goto out;
5322 	}
5323 
5324 	ret = i915_ppgtt_init_hw(dev_priv);
5325 	if (ret) {
5326 		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5327 		goto out;
5328 	}
5329 
5330 	ret = intel_wopcm_init_hw(&dev_priv->wopcm);
5331 	if (ret) {
5332 		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
5333 		goto out;
5334 	}
5335 
5336 	/* We can't enable contexts until all firmware is loaded */
5337 	ret = intel_uc_init_hw(dev_priv);
5338 	if (ret) {
5339 		DRM_ERROR("Enabling uc failed (%d)\n", ret);
5340 		goto out;
5341 	}
5342 
5343 	intel_mocs_init_l3cc_table(dev_priv);
5344 
5345 	/* Only when the HW is re-initialised, can we replay the requests */
5346 	ret = __i915_gem_restart_engines(dev_priv);
5347 	if (ret)
5348 		goto cleanup_uc;
5349 
5350 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5351 
5352 	return 0;
5353 
5354 cleanup_uc:
5355 	intel_uc_fini_hw(dev_priv);
5356 out:
5357 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5358 
5359 	return ret;
5360 }
5361 
5362 static int __intel_engines_record_defaults(struct drm_i915_private *i915)
5363 {
5364 	struct i915_gem_context *ctx;
5365 	struct intel_engine_cs *engine;
5366 	enum intel_engine_id id;
5367 	int err;
5368 
5369 	/*
5370 	 * As we reset the gpu during very early sanitisation, the current
5371 	 * register state on the GPU should reflect its defaults values.
5372 	 * We load a context onto the hw (with restore-inhibit), then switch
5373 	 * over to a second context to save that default register state. We
5374 	 * can then prime every new context with that state so they all start
5375 	 * from the same default HW values.
5376 	 */
5377 
5378 	ctx = i915_gem_context_create_kernel(i915, 0);
5379 	if (IS_ERR(ctx))
5380 		return PTR_ERR(ctx);
5381 
5382 	for_each_engine(engine, i915, id) {
5383 		struct i915_request *rq;
5384 
5385 		rq = i915_request_alloc(engine, ctx);
5386 		if (IS_ERR(rq)) {
5387 			err = PTR_ERR(rq);
5388 			goto out_ctx;
5389 		}
5390 
5391 		err = 0;
5392 		if (engine->init_context)
5393 			err = engine->init_context(rq);
5394 
5395 		i915_request_add(rq);
5396 		if (err)
5397 			goto err_active;
5398 	}
5399 
5400 	err = i915_gem_switch_to_kernel_context(i915);
5401 	if (err)
5402 		goto err_active;
5403 
5404 	if (i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED, HZ / 5)) {
5405 		i915_gem_set_wedged(i915);
5406 		err = -EIO; /* Caller will declare us wedged */
5407 		goto err_active;
5408 	}
5409 
5410 	assert_kernel_context_is_current(i915);
5411 
5412 	/*
5413 	 * Immediately park the GPU so that we enable powersaving and
5414 	 * treat it as idle. The next time we issue a request, we will
5415 	 * unpark and start using the engine->pinned_default_state, otherwise
5416 	 * it is in limbo and an early reset may fail.
5417 	 */
5418 	__i915_gem_park(i915);
5419 
5420 	for_each_engine(engine, i915, id) {
5421 		struct i915_vma *state;
5422 		void *vaddr;
5423 
5424 		GEM_BUG_ON(to_intel_context(ctx, engine)->pin_count);
5425 
5426 		state = to_intel_context(ctx, engine)->state;
5427 		if (!state)
5428 			continue;
5429 
5430 		/*
5431 		 * As we will hold a reference to the logical state, it will
5432 		 * not be torn down with the context, and importantly the
5433 		 * object will hold onto its vma (making it possible for a
5434 		 * stray GTT write to corrupt our defaults). Unmap the vma
5435 		 * from the GTT to prevent such accidents and reclaim the
5436 		 * space.
5437 		 */
5438 		err = i915_vma_unbind(state);
5439 		if (err)
5440 			goto err_active;
5441 
5442 		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
5443 		if (err)
5444 			goto err_active;
5445 
5446 		engine->default_state = i915_gem_object_get(state->obj);
5447 
5448 		/* Check we can acquire the image of the context state */
5449 		vaddr = i915_gem_object_pin_map(engine->default_state,
5450 						I915_MAP_FORCE_WB);
5451 		if (IS_ERR(vaddr)) {
5452 			err = PTR_ERR(vaddr);
5453 			goto err_active;
5454 		}
5455 
5456 		i915_gem_object_unpin_map(engine->default_state);
5457 	}
5458 
5459 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
5460 		unsigned int found = intel_engines_has_context_isolation(i915);
5461 
5462 		/*
5463 		 * Make sure that classes with multiple engine instances all
5464 		 * share the same basic configuration.
5465 		 */
5466 		for_each_engine(engine, i915, id) {
5467 			unsigned int bit = BIT(engine->uabi_class);
5468 			unsigned int expected = engine->default_state ? bit : 0;
5469 
5470 			if ((found & bit) != expected) {
5471 				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
5472 					  engine->uabi_class, engine->name);
5473 			}
5474 		}
5475 	}
5476 
5477 out_ctx:
5478 	i915_gem_context_set_closed(ctx);
5479 	i915_gem_context_put(ctx);
5480 	return err;
5481 
5482 err_active:
5483 	/*
5484 	 * If we have to abandon now, we expect the engines to be idle
5485 	 * and ready to be torn-down. First try to flush any remaining
5486 	 * request, ensure we are pointing at the kernel context and
5487 	 * then remove it.
5488 	 */
5489 	if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
5490 		goto out_ctx;
5491 
5492 	if (WARN_ON(i915_gem_wait_for_idle(i915,
5493 					   I915_WAIT_LOCKED,
5494 					   MAX_SCHEDULE_TIMEOUT)))
5495 		goto out_ctx;
5496 
5497 	i915_gem_contexts_lost(i915);
5498 	goto out_ctx;
5499 }
5500 
5501 static int
5502 i915_gem_init_scratch(struct drm_i915_private *i915, unsigned int size)
5503 {
5504 	struct drm_i915_gem_object *obj;
5505 	struct i915_vma *vma;
5506 	int ret;
5507 
5508 	obj = i915_gem_object_create_stolen(i915, size);
5509 	if (!obj)
5510 		obj = i915_gem_object_create_internal(i915, size);
5511 	if (IS_ERR(obj)) {
5512 		DRM_ERROR("Failed to allocate scratch page\n");
5513 		return PTR_ERR(obj);
5514 	}
5515 
5516 	vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
5517 	if (IS_ERR(vma)) {
5518 		ret = PTR_ERR(vma);
5519 		goto err_unref;
5520 	}
5521 
5522 	ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
5523 	if (ret)
5524 		goto err_unref;
5525 
5526 	i915->gt.scratch = vma;
5527 	return 0;
5528 
5529 err_unref:
5530 	i915_gem_object_put(obj);
5531 	return ret;
5532 }
5533 
5534 static void i915_gem_fini_scratch(struct drm_i915_private *i915)
5535 {
5536 	i915_vma_unpin_and_release(&i915->gt.scratch, 0);
5537 }
5538 
5539 int i915_gem_init(struct drm_i915_private *dev_priv)
5540 {
5541 	int ret;
5542 
5543 	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
5544 	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
5545 		mkwrite_device_info(dev_priv)->page_sizes =
5546 			I915_GTT_PAGE_SIZE_4K;
5547 
5548 	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5549 
5550 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5551 		dev_priv->gt.resume = intel_lr_context_resume;
5552 		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5553 	} else {
5554 		dev_priv->gt.resume = intel_legacy_submission_resume;
5555 		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5556 	}
5557 
5558 	ret = i915_gem_init_userptr(dev_priv);
5559 	if (ret)
5560 		return ret;
5561 
5562 	ret = intel_uc_init_misc(dev_priv);
5563 	if (ret)
5564 		return ret;
5565 
5566 	ret = intel_wopcm_init(&dev_priv->wopcm);
5567 	if (ret)
5568 		goto err_uc_misc;
5569 
5570 	/* This is just a security blanket to placate dragons.
5571 	 * On some systems, we very sporadically observe that the first TLBs
5572 	 * used by the CS may be stale, despite us poking the TLB reset. If
5573 	 * we hold the forcewake during initialisation these problems
5574 	 * just magically go away.
5575 	 */
5576 	mutex_lock(&dev_priv->drm.struct_mutex);
5577 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5578 
5579 	ret = i915_gem_init_ggtt(dev_priv);
5580 	if (ret) {
5581 		GEM_BUG_ON(ret == -EIO);
5582 		goto err_unlock;
5583 	}
5584 
5585 	ret = i915_gem_init_scratch(dev_priv,
5586 				    IS_GEN2(dev_priv) ? SZ_256K : PAGE_SIZE);
5587 	if (ret) {
5588 		GEM_BUG_ON(ret == -EIO);
5589 		goto err_ggtt;
5590 	}
5591 
5592 	ret = i915_gem_contexts_init(dev_priv);
5593 	if (ret) {
5594 		GEM_BUG_ON(ret == -EIO);
5595 		goto err_scratch;
5596 	}
5597 
5598 	ret = intel_engines_init(dev_priv);
5599 	if (ret) {
5600 		GEM_BUG_ON(ret == -EIO);
5601 		goto err_context;
5602 	}
5603 
5604 	intel_init_gt_powersave(dev_priv);
5605 
5606 	ret = intel_uc_init(dev_priv);
5607 	if (ret)
5608 		goto err_pm;
5609 
5610 	ret = i915_gem_init_hw(dev_priv);
5611 	if (ret)
5612 		goto err_uc_init;
5613 
5614 	/*
5615 	 * Despite its name intel_init_clock_gating applies both display
5616 	 * clock gating workarounds; GT mmio workarounds and the occasional
5617 	 * GT power context workaround. Worse, sometimes it includes a context
5618 	 * register workaround which we need to apply before we record the
5619 	 * default HW state for all contexts.
5620 	 *
5621 	 * FIXME: break up the workarounds and apply them at the right time!
5622 	 */
5623 	intel_init_clock_gating(dev_priv);
5624 
5625 	ret = __intel_engines_record_defaults(dev_priv);
5626 	if (ret)
5627 		goto err_init_hw;
5628 
5629 	if (i915_inject_load_failure()) {
5630 		ret = -ENODEV;
5631 		goto err_init_hw;
5632 	}
5633 
5634 	if (i915_inject_load_failure()) {
5635 		ret = -EIO;
5636 		goto err_init_hw;
5637 	}
5638 
5639 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5640 	mutex_unlock(&dev_priv->drm.struct_mutex);
5641 
5642 	return 0;
5643 
5644 	/*
5645 	 * Unwinding is complicated by that we want to handle -EIO to mean
5646 	 * disable GPU submission but keep KMS alive. We want to mark the
5647 	 * HW as irrevisibly wedged, but keep enough state around that the
5648 	 * driver doesn't explode during runtime.
5649 	 */
5650 err_init_hw:
5651 	mutex_unlock(&dev_priv->drm.struct_mutex);
5652 
5653 	WARN_ON(i915_gem_suspend(dev_priv));
5654 	i915_gem_suspend_late(dev_priv);
5655 
5656 	i915_gem_drain_workqueue(dev_priv);
5657 
5658 	mutex_lock(&dev_priv->drm.struct_mutex);
5659 	intel_uc_fini_hw(dev_priv);
5660 err_uc_init:
5661 	intel_uc_fini(dev_priv);
5662 err_pm:
5663 	if (ret != -EIO) {
5664 		intel_cleanup_gt_powersave(dev_priv);
5665 		i915_gem_cleanup_engines(dev_priv);
5666 	}
5667 err_context:
5668 	if (ret != -EIO)
5669 		i915_gem_contexts_fini(dev_priv);
5670 err_scratch:
5671 	i915_gem_fini_scratch(dev_priv);
5672 err_ggtt:
5673 err_unlock:
5674 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5675 	mutex_unlock(&dev_priv->drm.struct_mutex);
5676 
5677 err_uc_misc:
5678 	intel_uc_fini_misc(dev_priv);
5679 
5680 	if (ret != -EIO)
5681 		i915_gem_cleanup_userptr(dev_priv);
5682 
5683 	if (ret == -EIO) {
5684 		mutex_lock(&dev_priv->drm.struct_mutex);
5685 
5686 		/*
5687 		 * Allow engine initialisation to fail by marking the GPU as
5688 		 * wedged. But we only want to do this where the GPU is angry,
5689 		 * for all other failure, such as an allocation failure, bail.
5690 		 */
5691 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5692 			i915_load_error(dev_priv,
5693 					"Failed to initialize GPU, declaring it wedged!\n");
5694 			i915_gem_set_wedged(dev_priv);
5695 		}
5696 
5697 		/* Minimal basic recovery for KMS */
5698 		ret = i915_ggtt_enable_hw(dev_priv);
5699 		i915_gem_restore_gtt_mappings(dev_priv);
5700 		i915_gem_restore_fences(dev_priv);
5701 		intel_init_clock_gating(dev_priv);
5702 
5703 		mutex_unlock(&dev_priv->drm.struct_mutex);
5704 	}
5705 
5706 	i915_gem_drain_freed_objects(dev_priv);
5707 	return ret;
5708 }
5709 
5710 void i915_gem_fini(struct drm_i915_private *dev_priv)
5711 {
5712 	i915_gem_suspend_late(dev_priv);
5713 	intel_disable_gt_powersave(dev_priv);
5714 
5715 	/* Flush any outstanding unpin_work. */
5716 	i915_gem_drain_workqueue(dev_priv);
5717 
5718 	mutex_lock(&dev_priv->drm.struct_mutex);
5719 	intel_uc_fini_hw(dev_priv);
5720 	intel_uc_fini(dev_priv);
5721 	i915_gem_cleanup_engines(dev_priv);
5722 	i915_gem_contexts_fini(dev_priv);
5723 	i915_gem_fini_scratch(dev_priv);
5724 	mutex_unlock(&dev_priv->drm.struct_mutex);
5725 
5726 	intel_wa_list_free(&dev_priv->gt_wa_list);
5727 
5728 	intel_cleanup_gt_powersave(dev_priv);
5729 
5730 	intel_uc_fini_misc(dev_priv);
5731 	i915_gem_cleanup_userptr(dev_priv);
5732 
5733 	i915_gem_drain_freed_objects(dev_priv);
5734 
5735 	WARN_ON(!list_empty(&dev_priv->contexts.list));
5736 }
5737 
5738 void i915_gem_init_mmio(struct drm_i915_private *i915)
5739 {
5740 	i915_gem_sanitize(i915);
5741 }
5742 
5743 void
5744 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5745 {
5746 	struct intel_engine_cs *engine;
5747 	enum intel_engine_id id;
5748 
5749 	for_each_engine(engine, dev_priv, id)
5750 		dev_priv->gt.cleanup_engine(engine);
5751 }
5752 
5753 void
5754 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5755 {
5756 	int i;
5757 
5758 	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5759 	    !IS_CHERRYVIEW(dev_priv))
5760 		dev_priv->num_fence_regs = 32;
5761 	else if (INTEL_GEN(dev_priv) >= 4 ||
5762 		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
5763 		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5764 		dev_priv->num_fence_regs = 16;
5765 	else
5766 		dev_priv->num_fence_regs = 8;
5767 
5768 	if (intel_vgpu_active(dev_priv))
5769 		dev_priv->num_fence_regs =
5770 				I915_READ(vgtif_reg(avail_rs.fence_num));
5771 
5772 	/* Initialize fence registers to zero */
5773 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
5774 		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
5775 
5776 		fence->i915 = dev_priv;
5777 		fence->id = i;
5778 		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
5779 	}
5780 	i915_gem_restore_fences(dev_priv);
5781 
5782 	i915_gem_detect_bit_6_swizzle(dev_priv);
5783 }
5784 
5785 static void i915_gem_init__mm(struct drm_i915_private *i915)
5786 {
5787 	spin_lock_init(&i915->mm.object_stat_lock);
5788 	spin_lock_init(&i915->mm.obj_lock);
5789 	spin_lock_init(&i915->mm.free_lock);
5790 
5791 	init_llist_head(&i915->mm.free_list);
5792 
5793 	INIT_LIST_HEAD(&i915->mm.unbound_list);
5794 	INIT_LIST_HEAD(&i915->mm.bound_list);
5795 	INIT_LIST_HEAD(&i915->mm.fence_list);
5796 	INIT_LIST_HEAD(&i915->mm.userfault_list);
5797 
5798 	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
5799 }
5800 
5801 int i915_gem_init_early(struct drm_i915_private *dev_priv)
5802 {
5803 	int err = -ENOMEM;
5804 
5805 	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5806 	if (!dev_priv->objects)
5807 		goto err_out;
5808 
5809 	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5810 	if (!dev_priv->vmas)
5811 		goto err_objects;
5812 
5813 	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5814 	if (!dev_priv->luts)
5815 		goto err_vmas;
5816 
5817 	dev_priv->requests = KMEM_CACHE(i915_request,
5818 					SLAB_HWCACHE_ALIGN |
5819 					SLAB_RECLAIM_ACCOUNT |
5820 					SLAB_TYPESAFE_BY_RCU);
5821 	if (!dev_priv->requests)
5822 		goto err_luts;
5823 
5824 	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5825 					    SLAB_HWCACHE_ALIGN |
5826 					    SLAB_RECLAIM_ACCOUNT);
5827 	if (!dev_priv->dependencies)
5828 		goto err_requests;
5829 
5830 	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5831 	if (!dev_priv->priorities)
5832 		goto err_dependencies;
5833 
5834 	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5835 	INIT_LIST_HEAD(&dev_priv->gt.active_rings);
5836 	INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
5837 
5838 	i915_gem_init__mm(dev_priv);
5839 
5840 	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5841 			  i915_gem_retire_work_handler);
5842 	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5843 			  i915_gem_idle_work_handler);
5844 	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5845 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5846 
5847 	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5848 
5849 	spin_lock_init(&dev_priv->fb_tracking.lock);
5850 
5851 	err = i915_gemfs_init(dev_priv);
5852 	if (err)
5853 		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
5854 
5855 	return 0;
5856 
5857 err_dependencies:
5858 	kmem_cache_destroy(dev_priv->dependencies);
5859 err_requests:
5860 	kmem_cache_destroy(dev_priv->requests);
5861 err_luts:
5862 	kmem_cache_destroy(dev_priv->luts);
5863 err_vmas:
5864 	kmem_cache_destroy(dev_priv->vmas);
5865 err_objects:
5866 	kmem_cache_destroy(dev_priv->objects);
5867 err_out:
5868 	return err;
5869 }
5870 
5871 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5872 {
5873 	i915_gem_drain_freed_objects(dev_priv);
5874 	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
5875 	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5876 	WARN_ON(dev_priv->mm.object_count);
5877 	WARN_ON(!list_empty(&dev_priv->gt.timelines));
5878 
5879 	kmem_cache_destroy(dev_priv->priorities);
5880 	kmem_cache_destroy(dev_priv->dependencies);
5881 	kmem_cache_destroy(dev_priv->requests);
5882 	kmem_cache_destroy(dev_priv->luts);
5883 	kmem_cache_destroy(dev_priv->vmas);
5884 	kmem_cache_destroy(dev_priv->objects);
5885 
5886 	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5887 	rcu_barrier();
5888 
5889 	i915_gemfs_fini(dev_priv);
5890 }
5891 
5892 int i915_gem_freeze(struct drm_i915_private *dev_priv)
5893 {
5894 	/* Discard all purgeable objects, let userspace recover those as
5895 	 * required after resuming.
5896 	 */
5897 	i915_gem_shrink_all(dev_priv);
5898 
5899 	return 0;
5900 }
5901 
5902 int i915_gem_freeze_late(struct drm_i915_private *i915)
5903 {
5904 	struct drm_i915_gem_object *obj;
5905 	struct list_head *phases[] = {
5906 		&i915->mm.unbound_list,
5907 		&i915->mm.bound_list,
5908 		NULL
5909 	}, **phase;
5910 
5911 	/*
5912 	 * Called just before we write the hibernation image.
5913 	 *
5914 	 * We need to update the domain tracking to reflect that the CPU
5915 	 * will be accessing all the pages to create and restore from the
5916 	 * hibernation, and so upon restoration those pages will be in the
5917 	 * CPU domain.
5918 	 *
5919 	 * To make sure the hibernation image contains the latest state,
5920 	 * we update that state just before writing out the image.
5921 	 *
5922 	 * To try and reduce the hibernation image, we manually shrink
5923 	 * the objects as well, see i915_gem_freeze()
5924 	 */
5925 
5926 	i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
5927 	i915_gem_drain_freed_objects(i915);
5928 
5929 	mutex_lock(&i915->drm.struct_mutex);
5930 	for (phase = phases; *phase; phase++) {
5931 		list_for_each_entry(obj, *phase, mm.link)
5932 			WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
5933 	}
5934 	mutex_unlock(&i915->drm.struct_mutex);
5935 
5936 	return 0;
5937 }
5938 
5939 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5940 {
5941 	struct drm_i915_file_private *file_priv = file->driver_priv;
5942 	struct i915_request *request;
5943 
5944 	/* Clean up our request list when the client is going away, so that
5945 	 * later retire_requests won't dereference our soon-to-be-gone
5946 	 * file_priv.
5947 	 */
5948 	spin_lock(&file_priv->mm.lock);
5949 	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5950 		request->file_priv = NULL;
5951 	spin_unlock(&file_priv->mm.lock);
5952 }
5953 
5954 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5955 {
5956 	struct drm_i915_file_private *file_priv;
5957 	int ret;
5958 
5959 	DRM_DEBUG("\n");
5960 
5961 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5962 	if (!file_priv)
5963 		return -ENOMEM;
5964 
5965 	file->driver_priv = file_priv;
5966 	file_priv->dev_priv = i915;
5967 	file_priv->file = file;
5968 
5969 	spin_lock_init(&file_priv->mm.lock);
5970 	INIT_LIST_HEAD(&file_priv->mm.request_list);
5971 
5972 	file_priv->bsd_engine = -1;
5973 	file_priv->hang_timestamp = jiffies;
5974 
5975 	ret = i915_gem_context_open(i915, file);
5976 	if (ret)
5977 		kfree(file_priv);
5978 
5979 	return ret;
5980 }
5981 
5982 /**
5983  * i915_gem_track_fb - update frontbuffer tracking
5984  * @old: current GEM buffer for the frontbuffer slots
5985  * @new: new GEM buffer for the frontbuffer slots
5986  * @frontbuffer_bits: bitmask of frontbuffer slots
5987  *
5988  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5989  * from @old and setting them in @new. Both @old and @new can be NULL.
5990  */
5991 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5992 		       struct drm_i915_gem_object *new,
5993 		       unsigned frontbuffer_bits)
5994 {
5995 	/* Control of individual bits within the mask are guarded by
5996 	 * the owning plane->mutex, i.e. we can never see concurrent
5997 	 * manipulation of individual bits. But since the bitfield as a whole
5998 	 * is updated using RMW, we need to use atomics in order to update
5999 	 * the bits.
6000 	 */
6001 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
6002 		     BITS_PER_TYPE(atomic_t));
6003 
6004 	if (old) {
6005 		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
6006 		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
6007 	}
6008 
6009 	if (new) {
6010 		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
6011 		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
6012 	}
6013 }
6014 
6015 /* Allocate a new GEM object and fill it with the supplied data */
6016 struct drm_i915_gem_object *
6017 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
6018 			         const void *data, size_t size)
6019 {
6020 	struct drm_i915_gem_object *obj;
6021 	struct file *file;
6022 	size_t offset;
6023 	int err;
6024 
6025 	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
6026 	if (IS_ERR(obj))
6027 		return obj;
6028 
6029 	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
6030 
6031 	file = obj->base.filp;
6032 	offset = 0;
6033 	do {
6034 		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
6035 		struct page *page;
6036 		void *pgdata, *vaddr;
6037 
6038 		err = pagecache_write_begin(file, file->f_mapping,
6039 					    offset, len, 0,
6040 					    &page, &pgdata);
6041 		if (err < 0)
6042 			goto fail;
6043 
6044 		vaddr = kmap(page);
6045 		memcpy(vaddr, data, len);
6046 		kunmap(page);
6047 
6048 		err = pagecache_write_end(file, file->f_mapping,
6049 					  offset, len, len,
6050 					  page, pgdata);
6051 		if (err < 0)
6052 			goto fail;
6053 
6054 		size -= len;
6055 		data += len;
6056 		offset += len;
6057 	} while (size);
6058 
6059 	return obj;
6060 
6061 fail:
6062 	i915_gem_object_put(obj);
6063 	return ERR_PTR(err);
6064 }
6065 
6066 struct scatterlist *
6067 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
6068 		       unsigned int n,
6069 		       unsigned int *offset)
6070 {
6071 	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
6072 	struct scatterlist *sg;
6073 	unsigned int idx, count;
6074 
6075 	might_sleep();
6076 	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
6077 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
6078 
6079 	/* As we iterate forward through the sg, we record each entry in a
6080 	 * radixtree for quick repeated (backwards) lookups. If we have seen
6081 	 * this index previously, we will have an entry for it.
6082 	 *
6083 	 * Initial lookup is O(N), but this is amortized to O(1) for
6084 	 * sequential page access (where each new request is consecutive
6085 	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
6086 	 * i.e. O(1) with a large constant!
6087 	 */
6088 	if (n < READ_ONCE(iter->sg_idx))
6089 		goto lookup;
6090 
6091 	mutex_lock(&iter->lock);
6092 
6093 	/* We prefer to reuse the last sg so that repeated lookup of this
6094 	 * (or the subsequent) sg are fast - comparing against the last
6095 	 * sg is faster than going through the radixtree.
6096 	 */
6097 
6098 	sg = iter->sg_pos;
6099 	idx = iter->sg_idx;
6100 	count = __sg_page_count(sg);
6101 
6102 	while (idx + count <= n) {
6103 		void *entry;
6104 		unsigned long i;
6105 		int ret;
6106 
6107 		/* If we cannot allocate and insert this entry, or the
6108 		 * individual pages from this range, cancel updating the
6109 		 * sg_idx so that on this lookup we are forced to linearly
6110 		 * scan onwards, but on future lookups we will try the
6111 		 * insertion again (in which case we need to be careful of
6112 		 * the error return reporting that we have already inserted
6113 		 * this index).
6114 		 */
6115 		ret = radix_tree_insert(&iter->radix, idx, sg);
6116 		if (ret && ret != -EEXIST)
6117 			goto scan;
6118 
6119 		entry = xa_mk_value(idx);
6120 		for (i = 1; i < count; i++) {
6121 			ret = radix_tree_insert(&iter->radix, idx + i, entry);
6122 			if (ret && ret != -EEXIST)
6123 				goto scan;
6124 		}
6125 
6126 		idx += count;
6127 		sg = ____sg_next(sg);
6128 		count = __sg_page_count(sg);
6129 	}
6130 
6131 scan:
6132 	iter->sg_pos = sg;
6133 	iter->sg_idx = idx;
6134 
6135 	mutex_unlock(&iter->lock);
6136 
6137 	if (unlikely(n < idx)) /* insertion completed by another thread */
6138 		goto lookup;
6139 
6140 	/* In case we failed to insert the entry into the radixtree, we need
6141 	 * to look beyond the current sg.
6142 	 */
6143 	while (idx + count <= n) {
6144 		idx += count;
6145 		sg = ____sg_next(sg);
6146 		count = __sg_page_count(sg);
6147 	}
6148 
6149 	*offset = n - idx;
6150 	return sg;
6151 
6152 lookup:
6153 	rcu_read_lock();
6154 
6155 	sg = radix_tree_lookup(&iter->radix, n);
6156 	GEM_BUG_ON(!sg);
6157 
6158 	/* If this index is in the middle of multi-page sg entry,
6159 	 * the radix tree will contain a value entry that points
6160 	 * to the start of that range. We will return the pointer to
6161 	 * the base page and the offset of this page within the
6162 	 * sg entry's range.
6163 	 */
6164 	*offset = 0;
6165 	if (unlikely(xa_is_value(sg))) {
6166 		unsigned long base = xa_to_value(sg);
6167 
6168 		sg = radix_tree_lookup(&iter->radix, base);
6169 		GEM_BUG_ON(!sg);
6170 
6171 		*offset = n - base;
6172 	}
6173 
6174 	rcu_read_unlock();
6175 
6176 	return sg;
6177 }
6178 
6179 struct page *
6180 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
6181 {
6182 	struct scatterlist *sg;
6183 	unsigned int offset;
6184 
6185 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
6186 
6187 	sg = i915_gem_object_get_sg(obj, n, &offset);
6188 	return nth_page(sg_page(sg), offset);
6189 }
6190 
6191 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
6192 struct page *
6193 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
6194 			       unsigned int n)
6195 {
6196 	struct page *page;
6197 
6198 	page = i915_gem_object_get_page(obj, n);
6199 	if (!obj->mm.dirty)
6200 		set_page_dirty(page);
6201 
6202 	return page;
6203 }
6204 
6205 dma_addr_t
6206 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
6207 				unsigned long n)
6208 {
6209 	struct scatterlist *sg;
6210 	unsigned int offset;
6211 
6212 	sg = i915_gem_object_get_sg(obj, n, &offset);
6213 	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
6214 }
6215 
6216 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
6217 {
6218 	struct sg_table *pages;
6219 	int err;
6220 
6221 	if (align > obj->base.size)
6222 		return -EINVAL;
6223 
6224 	if (obj->ops == &i915_gem_phys_ops)
6225 		return 0;
6226 
6227 	if (obj->ops != &i915_gem_object_ops)
6228 		return -EINVAL;
6229 
6230 	err = i915_gem_object_unbind(obj);
6231 	if (err)
6232 		return err;
6233 
6234 	mutex_lock(&obj->mm.lock);
6235 
6236 	if (obj->mm.madv != I915_MADV_WILLNEED) {
6237 		err = -EFAULT;
6238 		goto err_unlock;
6239 	}
6240 
6241 	if (obj->mm.quirked) {
6242 		err = -EFAULT;
6243 		goto err_unlock;
6244 	}
6245 
6246 	if (obj->mm.mapping) {
6247 		err = -EBUSY;
6248 		goto err_unlock;
6249 	}
6250 
6251 	pages = __i915_gem_object_unset_pages(obj);
6252 
6253 	obj->ops = &i915_gem_phys_ops;
6254 
6255 	err = ____i915_gem_object_get_pages(obj);
6256 	if (err)
6257 		goto err_xfer;
6258 
6259 	/* Perma-pin (until release) the physical set of pages */
6260 	__i915_gem_object_pin_pages(obj);
6261 
6262 	if (!IS_ERR_OR_NULL(pages))
6263 		i915_gem_object_ops.put_pages(obj, pages);
6264 	mutex_unlock(&obj->mm.lock);
6265 	return 0;
6266 
6267 err_xfer:
6268 	obj->ops = &i915_gem_object_ops;
6269 	if (!IS_ERR_OR_NULL(pages)) {
6270 		unsigned int sg_page_sizes = i915_sg_page_sizes(pages->sgl);
6271 
6272 		__i915_gem_object_set_pages(obj, pages, sg_page_sizes);
6273 	}
6274 err_unlock:
6275 	mutex_unlock(&obj->mm.lock);
6276 	return err;
6277 }
6278 
6279 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
6280 #include "selftests/scatterlist.c"
6281 #include "selftests/mock_gem_device.c"
6282 #include "selftests/huge_gem_object.c"
6283 #include "selftests/huge_pages.c"
6284 #include "selftests/i915_gem_object.c"
6285 #include "selftests/i915_gem_coherency.c"
6286 #include "selftests/i915_gem.c"
6287 #endif
6288