1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <drm/drmP.h> 29 #include <drm/drm_vma_manager.h> 30 #include <drm/i915_drm.h> 31 #include "i915_drv.h" 32 #include "i915_gem_clflush.h" 33 #include "i915_vgpu.h" 34 #include "i915_trace.h" 35 #include "intel_drv.h" 36 #include "intel_frontbuffer.h" 37 #include "intel_mocs.h" 38 #include "i915_gemfs.h" 39 #include <linux/dma-fence-array.h> 40 #include <linux/kthread.h> 41 #include <linux/reservation.h> 42 #include <linux/shmem_fs.h> 43 #include <linux/slab.h> 44 #include <linux/stop_machine.h> 45 #include <linux/swap.h> 46 #include <linux/pci.h> 47 #include <linux/dma-buf.h> 48 49 static void i915_gem_flush_free_objects(struct drm_i915_private *i915); 50 51 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj) 52 { 53 if (obj->cache_dirty) 54 return false; 55 56 if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE)) 57 return true; 58 59 return obj->pin_global; /* currently in use by HW, keep flushed */ 60 } 61 62 static int 63 insert_mappable_node(struct i915_ggtt *ggtt, 64 struct drm_mm_node *node, u32 size) 65 { 66 memset(node, 0, sizeof(*node)); 67 return drm_mm_insert_node_in_range(&ggtt->base.mm, node, 68 size, 0, I915_COLOR_UNEVICTABLE, 69 0, ggtt->mappable_end, 70 DRM_MM_INSERT_LOW); 71 } 72 73 static void 74 remove_mappable_node(struct drm_mm_node *node) 75 { 76 drm_mm_remove_node(node); 77 } 78 79 /* some bookkeeping */ 80 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv, 81 u64 size) 82 { 83 spin_lock(&dev_priv->mm.object_stat_lock); 84 dev_priv->mm.object_count++; 85 dev_priv->mm.object_memory += size; 86 spin_unlock(&dev_priv->mm.object_stat_lock); 87 } 88 89 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, 90 u64 size) 91 { 92 spin_lock(&dev_priv->mm.object_stat_lock); 93 dev_priv->mm.object_count--; 94 dev_priv->mm.object_memory -= size; 95 spin_unlock(&dev_priv->mm.object_stat_lock); 96 } 97 98 static int 99 i915_gem_wait_for_error(struct i915_gpu_error *error) 100 { 101 int ret; 102 103 might_sleep(); 104 105 /* 106 * Only wait 10 seconds for the gpu reset to complete to avoid hanging 107 * userspace. If it takes that long something really bad is going on and 108 * we should simply try to bail out and fail as gracefully as possible. 109 */ 110 ret = wait_event_interruptible_timeout(error->reset_queue, 111 !i915_reset_backoff(error), 112 I915_RESET_TIMEOUT); 113 if (ret == 0) { 114 DRM_ERROR("Timed out waiting for the gpu reset to complete\n"); 115 return -EIO; 116 } else if (ret < 0) { 117 return ret; 118 } else { 119 return 0; 120 } 121 } 122 123 int i915_mutex_lock_interruptible(struct drm_device *dev) 124 { 125 struct drm_i915_private *dev_priv = to_i915(dev); 126 int ret; 127 128 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 129 if (ret) 130 return ret; 131 132 ret = mutex_lock_interruptible(&dev->struct_mutex); 133 if (ret) 134 return ret; 135 136 return 0; 137 } 138 139 int 140 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 141 struct drm_file *file) 142 { 143 struct drm_i915_private *dev_priv = to_i915(dev); 144 struct i915_ggtt *ggtt = &dev_priv->ggtt; 145 struct drm_i915_gem_get_aperture *args = data; 146 struct i915_vma *vma; 147 u64 pinned; 148 149 pinned = ggtt->base.reserved; 150 mutex_lock(&dev->struct_mutex); 151 list_for_each_entry(vma, &ggtt->base.active_list, vm_link) 152 if (i915_vma_is_pinned(vma)) 153 pinned += vma->node.size; 154 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link) 155 if (i915_vma_is_pinned(vma)) 156 pinned += vma->node.size; 157 mutex_unlock(&dev->struct_mutex); 158 159 args->aper_size = ggtt->base.total; 160 args->aper_available_size = args->aper_size - pinned; 161 162 return 0; 163 } 164 165 static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj) 166 { 167 struct address_space *mapping = obj->base.filp->f_mapping; 168 drm_dma_handle_t *phys; 169 struct sg_table *st; 170 struct scatterlist *sg; 171 char *vaddr; 172 int i; 173 int err; 174 175 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj))) 176 return -EINVAL; 177 178 /* Always aligning to the object size, allows a single allocation 179 * to handle all possible callers, and given typical object sizes, 180 * the alignment of the buddy allocation will naturally match. 181 */ 182 phys = drm_pci_alloc(obj->base.dev, 183 roundup_pow_of_two(obj->base.size), 184 roundup_pow_of_two(obj->base.size)); 185 if (!phys) 186 return -ENOMEM; 187 188 vaddr = phys->vaddr; 189 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { 190 struct page *page; 191 char *src; 192 193 page = shmem_read_mapping_page(mapping, i); 194 if (IS_ERR(page)) { 195 err = PTR_ERR(page); 196 goto err_phys; 197 } 198 199 src = kmap_atomic(page); 200 memcpy(vaddr, src, PAGE_SIZE); 201 drm_clflush_virt_range(vaddr, PAGE_SIZE); 202 kunmap_atomic(src); 203 204 put_page(page); 205 vaddr += PAGE_SIZE; 206 } 207 208 i915_gem_chipset_flush(to_i915(obj->base.dev)); 209 210 st = kmalloc(sizeof(*st), GFP_KERNEL); 211 if (!st) { 212 err = -ENOMEM; 213 goto err_phys; 214 } 215 216 if (sg_alloc_table(st, 1, GFP_KERNEL)) { 217 kfree(st); 218 err = -ENOMEM; 219 goto err_phys; 220 } 221 222 sg = st->sgl; 223 sg->offset = 0; 224 sg->length = obj->base.size; 225 226 sg_dma_address(sg) = phys->busaddr; 227 sg_dma_len(sg) = obj->base.size; 228 229 obj->phys_handle = phys; 230 231 __i915_gem_object_set_pages(obj, st, sg->length); 232 233 return 0; 234 235 err_phys: 236 drm_pci_free(obj->base.dev, phys); 237 238 return err; 239 } 240 241 static void __start_cpu_write(struct drm_i915_gem_object *obj) 242 { 243 obj->read_domains = I915_GEM_DOMAIN_CPU; 244 obj->write_domain = I915_GEM_DOMAIN_CPU; 245 if (cpu_write_needs_clflush(obj)) 246 obj->cache_dirty = true; 247 } 248 249 static void 250 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj, 251 struct sg_table *pages, 252 bool needs_clflush) 253 { 254 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED); 255 256 if (obj->mm.madv == I915_MADV_DONTNEED) 257 obj->mm.dirty = false; 258 259 if (needs_clflush && 260 (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 && 261 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)) 262 drm_clflush_sg(pages); 263 264 __start_cpu_write(obj); 265 } 266 267 static void 268 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj, 269 struct sg_table *pages) 270 { 271 __i915_gem_object_release_shmem(obj, pages, false); 272 273 if (obj->mm.dirty) { 274 struct address_space *mapping = obj->base.filp->f_mapping; 275 char *vaddr = obj->phys_handle->vaddr; 276 int i; 277 278 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { 279 struct page *page; 280 char *dst; 281 282 page = shmem_read_mapping_page(mapping, i); 283 if (IS_ERR(page)) 284 continue; 285 286 dst = kmap_atomic(page); 287 drm_clflush_virt_range(vaddr, PAGE_SIZE); 288 memcpy(dst, vaddr, PAGE_SIZE); 289 kunmap_atomic(dst); 290 291 set_page_dirty(page); 292 if (obj->mm.madv == I915_MADV_WILLNEED) 293 mark_page_accessed(page); 294 put_page(page); 295 vaddr += PAGE_SIZE; 296 } 297 obj->mm.dirty = false; 298 } 299 300 sg_free_table(pages); 301 kfree(pages); 302 303 drm_pci_free(obj->base.dev, obj->phys_handle); 304 } 305 306 static void 307 i915_gem_object_release_phys(struct drm_i915_gem_object *obj) 308 { 309 i915_gem_object_unpin_pages(obj); 310 } 311 312 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = { 313 .get_pages = i915_gem_object_get_pages_phys, 314 .put_pages = i915_gem_object_put_pages_phys, 315 .release = i915_gem_object_release_phys, 316 }; 317 318 static const struct drm_i915_gem_object_ops i915_gem_object_ops; 319 320 int i915_gem_object_unbind(struct drm_i915_gem_object *obj) 321 { 322 struct i915_vma *vma; 323 LIST_HEAD(still_in_list); 324 int ret; 325 326 lockdep_assert_held(&obj->base.dev->struct_mutex); 327 328 /* Closed vma are removed from the obj->vma_list - but they may 329 * still have an active binding on the object. To remove those we 330 * must wait for all rendering to complete to the object (as unbinding 331 * must anyway), and retire the requests. 332 */ 333 ret = i915_gem_object_set_to_cpu_domain(obj, false); 334 if (ret) 335 return ret; 336 337 while ((vma = list_first_entry_or_null(&obj->vma_list, 338 struct i915_vma, 339 obj_link))) { 340 list_move_tail(&vma->obj_link, &still_in_list); 341 ret = i915_vma_unbind(vma); 342 if (ret) 343 break; 344 } 345 list_splice(&still_in_list, &obj->vma_list); 346 347 return ret; 348 } 349 350 static long 351 i915_gem_object_wait_fence(struct dma_fence *fence, 352 unsigned int flags, 353 long timeout, 354 struct intel_rps_client *rps_client) 355 { 356 struct i915_request *rq; 357 358 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1); 359 360 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 361 return timeout; 362 363 if (!dma_fence_is_i915(fence)) 364 return dma_fence_wait_timeout(fence, 365 flags & I915_WAIT_INTERRUPTIBLE, 366 timeout); 367 368 rq = to_request(fence); 369 if (i915_request_completed(rq)) 370 goto out; 371 372 /* 373 * This client is about to stall waiting for the GPU. In many cases 374 * this is undesirable and limits the throughput of the system, as 375 * many clients cannot continue processing user input/output whilst 376 * blocked. RPS autotuning may take tens of milliseconds to respond 377 * to the GPU load and thus incurs additional latency for the client. 378 * We can circumvent that by promoting the GPU frequency to maximum 379 * before we wait. This makes the GPU throttle up much more quickly 380 * (good for benchmarks and user experience, e.g. window animations), 381 * but at a cost of spending more power processing the workload 382 * (bad for battery). Not all clients even want their results 383 * immediately and for them we should just let the GPU select its own 384 * frequency to maximise efficiency. To prevent a single client from 385 * forcing the clocks too high for the whole system, we only allow 386 * each client to waitboost once in a busy period. 387 */ 388 if (rps_client && !i915_request_started(rq)) { 389 if (INTEL_GEN(rq->i915) >= 6) 390 gen6_rps_boost(rq, rps_client); 391 } 392 393 timeout = i915_request_wait(rq, flags, timeout); 394 395 out: 396 if (flags & I915_WAIT_LOCKED && i915_request_completed(rq)) 397 i915_request_retire_upto(rq); 398 399 return timeout; 400 } 401 402 static long 403 i915_gem_object_wait_reservation(struct reservation_object *resv, 404 unsigned int flags, 405 long timeout, 406 struct intel_rps_client *rps_client) 407 { 408 unsigned int seq = __read_seqcount_begin(&resv->seq); 409 struct dma_fence *excl; 410 bool prune_fences = false; 411 412 if (flags & I915_WAIT_ALL) { 413 struct dma_fence **shared; 414 unsigned int count, i; 415 int ret; 416 417 ret = reservation_object_get_fences_rcu(resv, 418 &excl, &count, &shared); 419 if (ret) 420 return ret; 421 422 for (i = 0; i < count; i++) { 423 timeout = i915_gem_object_wait_fence(shared[i], 424 flags, timeout, 425 rps_client); 426 if (timeout < 0) 427 break; 428 429 dma_fence_put(shared[i]); 430 } 431 432 for (; i < count; i++) 433 dma_fence_put(shared[i]); 434 kfree(shared); 435 436 prune_fences = count && timeout >= 0; 437 } else { 438 excl = reservation_object_get_excl_rcu(resv); 439 } 440 441 if (excl && timeout >= 0) { 442 timeout = i915_gem_object_wait_fence(excl, flags, timeout, 443 rps_client); 444 prune_fences = timeout >= 0; 445 } 446 447 dma_fence_put(excl); 448 449 /* Oportunistically prune the fences iff we know they have *all* been 450 * signaled and that the reservation object has not been changed (i.e. 451 * no new fences have been added). 452 */ 453 if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) { 454 if (reservation_object_trylock(resv)) { 455 if (!__read_seqcount_retry(&resv->seq, seq)) 456 reservation_object_add_excl_fence(resv, NULL); 457 reservation_object_unlock(resv); 458 } 459 } 460 461 return timeout; 462 } 463 464 static void __fence_set_priority(struct dma_fence *fence, int prio) 465 { 466 struct i915_request *rq; 467 struct intel_engine_cs *engine; 468 469 if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence)) 470 return; 471 472 rq = to_request(fence); 473 engine = rq->engine; 474 if (!engine->schedule) 475 return; 476 477 engine->schedule(rq, prio); 478 } 479 480 static void fence_set_priority(struct dma_fence *fence, int prio) 481 { 482 /* Recurse once into a fence-array */ 483 if (dma_fence_is_array(fence)) { 484 struct dma_fence_array *array = to_dma_fence_array(fence); 485 int i; 486 487 for (i = 0; i < array->num_fences; i++) 488 __fence_set_priority(array->fences[i], prio); 489 } else { 490 __fence_set_priority(fence, prio); 491 } 492 } 493 494 int 495 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj, 496 unsigned int flags, 497 int prio) 498 { 499 struct dma_fence *excl; 500 501 if (flags & I915_WAIT_ALL) { 502 struct dma_fence **shared; 503 unsigned int count, i; 504 int ret; 505 506 ret = reservation_object_get_fences_rcu(obj->resv, 507 &excl, &count, &shared); 508 if (ret) 509 return ret; 510 511 for (i = 0; i < count; i++) { 512 fence_set_priority(shared[i], prio); 513 dma_fence_put(shared[i]); 514 } 515 516 kfree(shared); 517 } else { 518 excl = reservation_object_get_excl_rcu(obj->resv); 519 } 520 521 if (excl) { 522 fence_set_priority(excl, prio); 523 dma_fence_put(excl); 524 } 525 return 0; 526 } 527 528 /** 529 * Waits for rendering to the object to be completed 530 * @obj: i915 gem object 531 * @flags: how to wait (under a lock, for all rendering or just for writes etc) 532 * @timeout: how long to wait 533 * @rps_client: client (user process) to charge for any waitboosting 534 */ 535 int 536 i915_gem_object_wait(struct drm_i915_gem_object *obj, 537 unsigned int flags, 538 long timeout, 539 struct intel_rps_client *rps_client) 540 { 541 might_sleep(); 542 #if IS_ENABLED(CONFIG_LOCKDEP) 543 GEM_BUG_ON(debug_locks && 544 !!lockdep_is_held(&obj->base.dev->struct_mutex) != 545 !!(flags & I915_WAIT_LOCKED)); 546 #endif 547 GEM_BUG_ON(timeout < 0); 548 549 timeout = i915_gem_object_wait_reservation(obj->resv, 550 flags, timeout, 551 rps_client); 552 return timeout < 0 ? timeout : 0; 553 } 554 555 static struct intel_rps_client *to_rps_client(struct drm_file *file) 556 { 557 struct drm_i915_file_private *fpriv = file->driver_priv; 558 559 return &fpriv->rps_client; 560 } 561 562 static int 563 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj, 564 struct drm_i915_gem_pwrite *args, 565 struct drm_file *file) 566 { 567 void *vaddr = obj->phys_handle->vaddr + args->offset; 568 char __user *user_data = u64_to_user_ptr(args->data_ptr); 569 570 /* We manually control the domain here and pretend that it 571 * remains coherent i.e. in the GTT domain, like shmem_pwrite. 572 */ 573 intel_fb_obj_invalidate(obj, ORIGIN_CPU); 574 if (copy_from_user(vaddr, user_data, args->size)) 575 return -EFAULT; 576 577 drm_clflush_virt_range(vaddr, args->size); 578 i915_gem_chipset_flush(to_i915(obj->base.dev)); 579 580 intel_fb_obj_flush(obj, ORIGIN_CPU); 581 return 0; 582 } 583 584 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv) 585 { 586 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL); 587 } 588 589 void i915_gem_object_free(struct drm_i915_gem_object *obj) 590 { 591 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 592 kmem_cache_free(dev_priv->objects, obj); 593 } 594 595 static int 596 i915_gem_create(struct drm_file *file, 597 struct drm_i915_private *dev_priv, 598 uint64_t size, 599 uint32_t *handle_p) 600 { 601 struct drm_i915_gem_object *obj; 602 int ret; 603 u32 handle; 604 605 size = roundup(size, PAGE_SIZE); 606 if (size == 0) 607 return -EINVAL; 608 609 /* Allocate the new object */ 610 obj = i915_gem_object_create(dev_priv, size); 611 if (IS_ERR(obj)) 612 return PTR_ERR(obj); 613 614 ret = drm_gem_handle_create(file, &obj->base, &handle); 615 /* drop reference from allocate - handle holds it now */ 616 i915_gem_object_put(obj); 617 if (ret) 618 return ret; 619 620 *handle_p = handle; 621 return 0; 622 } 623 624 int 625 i915_gem_dumb_create(struct drm_file *file, 626 struct drm_device *dev, 627 struct drm_mode_create_dumb *args) 628 { 629 /* have to work out size/pitch and return them */ 630 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64); 631 args->size = args->pitch * args->height; 632 return i915_gem_create(file, to_i915(dev), 633 args->size, &args->handle); 634 } 635 636 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj) 637 { 638 return !(obj->cache_level == I915_CACHE_NONE || 639 obj->cache_level == I915_CACHE_WT); 640 } 641 642 /** 643 * Creates a new mm object and returns a handle to it. 644 * @dev: drm device pointer 645 * @data: ioctl data blob 646 * @file: drm file pointer 647 */ 648 int 649 i915_gem_create_ioctl(struct drm_device *dev, void *data, 650 struct drm_file *file) 651 { 652 struct drm_i915_private *dev_priv = to_i915(dev); 653 struct drm_i915_gem_create *args = data; 654 655 i915_gem_flush_free_objects(dev_priv); 656 657 return i915_gem_create(file, dev_priv, 658 args->size, &args->handle); 659 } 660 661 static inline enum fb_op_origin 662 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain) 663 { 664 return (domain == I915_GEM_DOMAIN_GTT ? 665 obj->frontbuffer_ggtt_origin : ORIGIN_CPU); 666 } 667 668 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv) 669 { 670 /* 671 * No actual flushing is required for the GTT write domain for reads 672 * from the GTT domain. Writes to it "immediately" go to main memory 673 * as far as we know, so there's no chipset flush. It also doesn't 674 * land in the GPU render cache. 675 * 676 * However, we do have to enforce the order so that all writes through 677 * the GTT land before any writes to the device, such as updates to 678 * the GATT itself. 679 * 680 * We also have to wait a bit for the writes to land from the GTT. 681 * An uncached read (i.e. mmio) seems to be ideal for the round-trip 682 * timing. This issue has only been observed when switching quickly 683 * between GTT writes and CPU reads from inside the kernel on recent hw, 684 * and it appears to only affect discrete GTT blocks (i.e. on LLC 685 * system agents we cannot reproduce this behaviour, until Cannonlake 686 * that was!). 687 */ 688 689 wmb(); 690 691 intel_runtime_pm_get(dev_priv); 692 spin_lock_irq(&dev_priv->uncore.lock); 693 694 POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE)); 695 696 spin_unlock_irq(&dev_priv->uncore.lock); 697 intel_runtime_pm_put(dev_priv); 698 } 699 700 static void 701 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains) 702 { 703 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 704 struct i915_vma *vma; 705 706 if (!(obj->write_domain & flush_domains)) 707 return; 708 709 switch (obj->write_domain) { 710 case I915_GEM_DOMAIN_GTT: 711 i915_gem_flush_ggtt_writes(dev_priv); 712 713 intel_fb_obj_flush(obj, 714 fb_write_origin(obj, I915_GEM_DOMAIN_GTT)); 715 716 for_each_ggtt_vma(vma, obj) { 717 if (vma->iomap) 718 continue; 719 720 i915_vma_unset_ggtt_write(vma); 721 } 722 break; 723 724 case I915_GEM_DOMAIN_CPU: 725 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC); 726 break; 727 728 case I915_GEM_DOMAIN_RENDER: 729 if (gpu_write_needs_clflush(obj)) 730 obj->cache_dirty = true; 731 break; 732 } 733 734 obj->write_domain = 0; 735 } 736 737 static inline int 738 __copy_to_user_swizzled(char __user *cpu_vaddr, 739 const char *gpu_vaddr, int gpu_offset, 740 int length) 741 { 742 int ret, cpu_offset = 0; 743 744 while (length > 0) { 745 int cacheline_end = ALIGN(gpu_offset + 1, 64); 746 int this_length = min(cacheline_end - gpu_offset, length); 747 int swizzled_gpu_offset = gpu_offset ^ 64; 748 749 ret = __copy_to_user(cpu_vaddr + cpu_offset, 750 gpu_vaddr + swizzled_gpu_offset, 751 this_length); 752 if (ret) 753 return ret + length; 754 755 cpu_offset += this_length; 756 gpu_offset += this_length; 757 length -= this_length; 758 } 759 760 return 0; 761 } 762 763 static inline int 764 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset, 765 const char __user *cpu_vaddr, 766 int length) 767 { 768 int ret, cpu_offset = 0; 769 770 while (length > 0) { 771 int cacheline_end = ALIGN(gpu_offset + 1, 64); 772 int this_length = min(cacheline_end - gpu_offset, length); 773 int swizzled_gpu_offset = gpu_offset ^ 64; 774 775 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset, 776 cpu_vaddr + cpu_offset, 777 this_length); 778 if (ret) 779 return ret + length; 780 781 cpu_offset += this_length; 782 gpu_offset += this_length; 783 length -= this_length; 784 } 785 786 return 0; 787 } 788 789 /* 790 * Pins the specified object's pages and synchronizes the object with 791 * GPU accesses. Sets needs_clflush to non-zero if the caller should 792 * flush the object from the CPU cache. 793 */ 794 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, 795 unsigned int *needs_clflush) 796 { 797 int ret; 798 799 lockdep_assert_held(&obj->base.dev->struct_mutex); 800 801 *needs_clflush = 0; 802 if (!i915_gem_object_has_struct_page(obj)) 803 return -ENODEV; 804 805 ret = i915_gem_object_wait(obj, 806 I915_WAIT_INTERRUPTIBLE | 807 I915_WAIT_LOCKED, 808 MAX_SCHEDULE_TIMEOUT, 809 NULL); 810 if (ret) 811 return ret; 812 813 ret = i915_gem_object_pin_pages(obj); 814 if (ret) 815 return ret; 816 817 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ || 818 !static_cpu_has(X86_FEATURE_CLFLUSH)) { 819 ret = i915_gem_object_set_to_cpu_domain(obj, false); 820 if (ret) 821 goto err_unpin; 822 else 823 goto out; 824 } 825 826 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); 827 828 /* If we're not in the cpu read domain, set ourself into the gtt 829 * read domain and manually flush cachelines (if required). This 830 * optimizes for the case when the gpu will dirty the data 831 * anyway again before the next pread happens. 832 */ 833 if (!obj->cache_dirty && 834 !(obj->read_domains & I915_GEM_DOMAIN_CPU)) 835 *needs_clflush = CLFLUSH_BEFORE; 836 837 out: 838 /* return with the pages pinned */ 839 return 0; 840 841 err_unpin: 842 i915_gem_object_unpin_pages(obj); 843 return ret; 844 } 845 846 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj, 847 unsigned int *needs_clflush) 848 { 849 int ret; 850 851 lockdep_assert_held(&obj->base.dev->struct_mutex); 852 853 *needs_clflush = 0; 854 if (!i915_gem_object_has_struct_page(obj)) 855 return -ENODEV; 856 857 ret = i915_gem_object_wait(obj, 858 I915_WAIT_INTERRUPTIBLE | 859 I915_WAIT_LOCKED | 860 I915_WAIT_ALL, 861 MAX_SCHEDULE_TIMEOUT, 862 NULL); 863 if (ret) 864 return ret; 865 866 ret = i915_gem_object_pin_pages(obj); 867 if (ret) 868 return ret; 869 870 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE || 871 !static_cpu_has(X86_FEATURE_CLFLUSH)) { 872 ret = i915_gem_object_set_to_cpu_domain(obj, true); 873 if (ret) 874 goto err_unpin; 875 else 876 goto out; 877 } 878 879 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); 880 881 /* If we're not in the cpu write domain, set ourself into the 882 * gtt write domain and manually flush cachelines (as required). 883 * This optimizes for the case when the gpu will use the data 884 * right away and we therefore have to clflush anyway. 885 */ 886 if (!obj->cache_dirty) { 887 *needs_clflush |= CLFLUSH_AFTER; 888 889 /* 890 * Same trick applies to invalidate partially written 891 * cachelines read before writing. 892 */ 893 if (!(obj->read_domains & I915_GEM_DOMAIN_CPU)) 894 *needs_clflush |= CLFLUSH_BEFORE; 895 } 896 897 out: 898 intel_fb_obj_invalidate(obj, ORIGIN_CPU); 899 obj->mm.dirty = true; 900 /* return with the pages pinned */ 901 return 0; 902 903 err_unpin: 904 i915_gem_object_unpin_pages(obj); 905 return ret; 906 } 907 908 static void 909 shmem_clflush_swizzled_range(char *addr, unsigned long length, 910 bool swizzled) 911 { 912 if (unlikely(swizzled)) { 913 unsigned long start = (unsigned long) addr; 914 unsigned long end = (unsigned long) addr + length; 915 916 /* For swizzling simply ensure that we always flush both 917 * channels. Lame, but simple and it works. Swizzled 918 * pwrite/pread is far from a hotpath - current userspace 919 * doesn't use it at all. */ 920 start = round_down(start, 128); 921 end = round_up(end, 128); 922 923 drm_clflush_virt_range((void *)start, end - start); 924 } else { 925 drm_clflush_virt_range(addr, length); 926 } 927 928 } 929 930 /* Only difference to the fast-path function is that this can handle bit17 931 * and uses non-atomic copy and kmap functions. */ 932 static int 933 shmem_pread_slow(struct page *page, int offset, int length, 934 char __user *user_data, 935 bool page_do_bit17_swizzling, bool needs_clflush) 936 { 937 char *vaddr; 938 int ret; 939 940 vaddr = kmap(page); 941 if (needs_clflush) 942 shmem_clflush_swizzled_range(vaddr + offset, length, 943 page_do_bit17_swizzling); 944 945 if (page_do_bit17_swizzling) 946 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length); 947 else 948 ret = __copy_to_user(user_data, vaddr + offset, length); 949 kunmap(page); 950 951 return ret ? - EFAULT : 0; 952 } 953 954 static int 955 shmem_pread(struct page *page, int offset, int length, char __user *user_data, 956 bool page_do_bit17_swizzling, bool needs_clflush) 957 { 958 int ret; 959 960 ret = -ENODEV; 961 if (!page_do_bit17_swizzling) { 962 char *vaddr = kmap_atomic(page); 963 964 if (needs_clflush) 965 drm_clflush_virt_range(vaddr + offset, length); 966 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length); 967 kunmap_atomic(vaddr); 968 } 969 if (ret == 0) 970 return 0; 971 972 return shmem_pread_slow(page, offset, length, user_data, 973 page_do_bit17_swizzling, needs_clflush); 974 } 975 976 static int 977 i915_gem_shmem_pread(struct drm_i915_gem_object *obj, 978 struct drm_i915_gem_pread *args) 979 { 980 char __user *user_data; 981 u64 remain; 982 unsigned int obj_do_bit17_swizzling; 983 unsigned int needs_clflush; 984 unsigned int idx, offset; 985 int ret; 986 987 obj_do_bit17_swizzling = 0; 988 if (i915_gem_object_needs_bit17_swizzle(obj)) 989 obj_do_bit17_swizzling = BIT(17); 990 991 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex); 992 if (ret) 993 return ret; 994 995 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush); 996 mutex_unlock(&obj->base.dev->struct_mutex); 997 if (ret) 998 return ret; 999 1000 remain = args->size; 1001 user_data = u64_to_user_ptr(args->data_ptr); 1002 offset = offset_in_page(args->offset); 1003 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { 1004 struct page *page = i915_gem_object_get_page(obj, idx); 1005 int length; 1006 1007 length = remain; 1008 if (offset + length > PAGE_SIZE) 1009 length = PAGE_SIZE - offset; 1010 1011 ret = shmem_pread(page, offset, length, user_data, 1012 page_to_phys(page) & obj_do_bit17_swizzling, 1013 needs_clflush); 1014 if (ret) 1015 break; 1016 1017 remain -= length; 1018 user_data += length; 1019 offset = 0; 1020 } 1021 1022 i915_gem_obj_finish_shmem_access(obj); 1023 return ret; 1024 } 1025 1026 static inline bool 1027 gtt_user_read(struct io_mapping *mapping, 1028 loff_t base, int offset, 1029 char __user *user_data, int length) 1030 { 1031 void __iomem *vaddr; 1032 unsigned long unwritten; 1033 1034 /* We can use the cpu mem copy function because this is X86. */ 1035 vaddr = io_mapping_map_atomic_wc(mapping, base); 1036 unwritten = __copy_to_user_inatomic(user_data, 1037 (void __force *)vaddr + offset, 1038 length); 1039 io_mapping_unmap_atomic(vaddr); 1040 if (unwritten) { 1041 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE); 1042 unwritten = copy_to_user(user_data, 1043 (void __force *)vaddr + offset, 1044 length); 1045 io_mapping_unmap(vaddr); 1046 } 1047 return unwritten; 1048 } 1049 1050 static int 1051 i915_gem_gtt_pread(struct drm_i915_gem_object *obj, 1052 const struct drm_i915_gem_pread *args) 1053 { 1054 struct drm_i915_private *i915 = to_i915(obj->base.dev); 1055 struct i915_ggtt *ggtt = &i915->ggtt; 1056 struct drm_mm_node node; 1057 struct i915_vma *vma; 1058 void __user *user_data; 1059 u64 remain, offset; 1060 int ret; 1061 1062 ret = mutex_lock_interruptible(&i915->drm.struct_mutex); 1063 if (ret) 1064 return ret; 1065 1066 intel_runtime_pm_get(i915); 1067 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 1068 PIN_MAPPABLE | 1069 PIN_NONFAULT | 1070 PIN_NONBLOCK); 1071 if (!IS_ERR(vma)) { 1072 node.start = i915_ggtt_offset(vma); 1073 node.allocated = false; 1074 ret = i915_vma_put_fence(vma); 1075 if (ret) { 1076 i915_vma_unpin(vma); 1077 vma = ERR_PTR(ret); 1078 } 1079 } 1080 if (IS_ERR(vma)) { 1081 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE); 1082 if (ret) 1083 goto out_unlock; 1084 GEM_BUG_ON(!node.allocated); 1085 } 1086 1087 ret = i915_gem_object_set_to_gtt_domain(obj, false); 1088 if (ret) 1089 goto out_unpin; 1090 1091 mutex_unlock(&i915->drm.struct_mutex); 1092 1093 user_data = u64_to_user_ptr(args->data_ptr); 1094 remain = args->size; 1095 offset = args->offset; 1096 1097 while (remain > 0) { 1098 /* Operation in this page 1099 * 1100 * page_base = page offset within aperture 1101 * page_offset = offset within page 1102 * page_length = bytes to copy for this page 1103 */ 1104 u32 page_base = node.start; 1105 unsigned page_offset = offset_in_page(offset); 1106 unsigned page_length = PAGE_SIZE - page_offset; 1107 page_length = remain < page_length ? remain : page_length; 1108 if (node.allocated) { 1109 wmb(); 1110 ggtt->base.insert_page(&ggtt->base, 1111 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), 1112 node.start, I915_CACHE_NONE, 0); 1113 wmb(); 1114 } else { 1115 page_base += offset & PAGE_MASK; 1116 } 1117 1118 if (gtt_user_read(&ggtt->iomap, page_base, page_offset, 1119 user_data, page_length)) { 1120 ret = -EFAULT; 1121 break; 1122 } 1123 1124 remain -= page_length; 1125 user_data += page_length; 1126 offset += page_length; 1127 } 1128 1129 mutex_lock(&i915->drm.struct_mutex); 1130 out_unpin: 1131 if (node.allocated) { 1132 wmb(); 1133 ggtt->base.clear_range(&ggtt->base, 1134 node.start, node.size); 1135 remove_mappable_node(&node); 1136 } else { 1137 i915_vma_unpin(vma); 1138 } 1139 out_unlock: 1140 intel_runtime_pm_put(i915); 1141 mutex_unlock(&i915->drm.struct_mutex); 1142 1143 return ret; 1144 } 1145 1146 /** 1147 * Reads data from the object referenced by handle. 1148 * @dev: drm device pointer 1149 * @data: ioctl data blob 1150 * @file: drm file pointer 1151 * 1152 * On error, the contents of *data are undefined. 1153 */ 1154 int 1155 i915_gem_pread_ioctl(struct drm_device *dev, void *data, 1156 struct drm_file *file) 1157 { 1158 struct drm_i915_gem_pread *args = data; 1159 struct drm_i915_gem_object *obj; 1160 int ret; 1161 1162 if (args->size == 0) 1163 return 0; 1164 1165 if (!access_ok(VERIFY_WRITE, 1166 u64_to_user_ptr(args->data_ptr), 1167 args->size)) 1168 return -EFAULT; 1169 1170 obj = i915_gem_object_lookup(file, args->handle); 1171 if (!obj) 1172 return -ENOENT; 1173 1174 /* Bounds check source. */ 1175 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) { 1176 ret = -EINVAL; 1177 goto out; 1178 } 1179 1180 trace_i915_gem_object_pread(obj, args->offset, args->size); 1181 1182 ret = i915_gem_object_wait(obj, 1183 I915_WAIT_INTERRUPTIBLE, 1184 MAX_SCHEDULE_TIMEOUT, 1185 to_rps_client(file)); 1186 if (ret) 1187 goto out; 1188 1189 ret = i915_gem_object_pin_pages(obj); 1190 if (ret) 1191 goto out; 1192 1193 ret = i915_gem_shmem_pread(obj, args); 1194 if (ret == -EFAULT || ret == -ENODEV) 1195 ret = i915_gem_gtt_pread(obj, args); 1196 1197 i915_gem_object_unpin_pages(obj); 1198 out: 1199 i915_gem_object_put(obj); 1200 return ret; 1201 } 1202 1203 /* This is the fast write path which cannot handle 1204 * page faults in the source data 1205 */ 1206 1207 static inline bool 1208 ggtt_write(struct io_mapping *mapping, 1209 loff_t base, int offset, 1210 char __user *user_data, int length) 1211 { 1212 void __iomem *vaddr; 1213 unsigned long unwritten; 1214 1215 /* We can use the cpu mem copy function because this is X86. */ 1216 vaddr = io_mapping_map_atomic_wc(mapping, base); 1217 unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset, 1218 user_data, length); 1219 io_mapping_unmap_atomic(vaddr); 1220 if (unwritten) { 1221 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE); 1222 unwritten = copy_from_user((void __force *)vaddr + offset, 1223 user_data, length); 1224 io_mapping_unmap(vaddr); 1225 } 1226 1227 return unwritten; 1228 } 1229 1230 /** 1231 * This is the fast pwrite path, where we copy the data directly from the 1232 * user into the GTT, uncached. 1233 * @obj: i915 GEM object 1234 * @args: pwrite arguments structure 1235 */ 1236 static int 1237 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj, 1238 const struct drm_i915_gem_pwrite *args) 1239 { 1240 struct drm_i915_private *i915 = to_i915(obj->base.dev); 1241 struct i915_ggtt *ggtt = &i915->ggtt; 1242 struct drm_mm_node node; 1243 struct i915_vma *vma; 1244 u64 remain, offset; 1245 void __user *user_data; 1246 int ret; 1247 1248 ret = mutex_lock_interruptible(&i915->drm.struct_mutex); 1249 if (ret) 1250 return ret; 1251 1252 if (i915_gem_object_has_struct_page(obj)) { 1253 /* 1254 * Avoid waking the device up if we can fallback, as 1255 * waking/resuming is very slow (worst-case 10-100 ms 1256 * depending on PCI sleeps and our own resume time). 1257 * This easily dwarfs any performance advantage from 1258 * using the cache bypass of indirect GGTT access. 1259 */ 1260 if (!intel_runtime_pm_get_if_in_use(i915)) { 1261 ret = -EFAULT; 1262 goto out_unlock; 1263 } 1264 } else { 1265 /* No backing pages, no fallback, we must force GGTT access */ 1266 intel_runtime_pm_get(i915); 1267 } 1268 1269 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 1270 PIN_MAPPABLE | 1271 PIN_NONFAULT | 1272 PIN_NONBLOCK); 1273 if (!IS_ERR(vma)) { 1274 node.start = i915_ggtt_offset(vma); 1275 node.allocated = false; 1276 ret = i915_vma_put_fence(vma); 1277 if (ret) { 1278 i915_vma_unpin(vma); 1279 vma = ERR_PTR(ret); 1280 } 1281 } 1282 if (IS_ERR(vma)) { 1283 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE); 1284 if (ret) 1285 goto out_rpm; 1286 GEM_BUG_ON(!node.allocated); 1287 } 1288 1289 ret = i915_gem_object_set_to_gtt_domain(obj, true); 1290 if (ret) 1291 goto out_unpin; 1292 1293 mutex_unlock(&i915->drm.struct_mutex); 1294 1295 intel_fb_obj_invalidate(obj, ORIGIN_CPU); 1296 1297 user_data = u64_to_user_ptr(args->data_ptr); 1298 offset = args->offset; 1299 remain = args->size; 1300 while (remain) { 1301 /* Operation in this page 1302 * 1303 * page_base = page offset within aperture 1304 * page_offset = offset within page 1305 * page_length = bytes to copy for this page 1306 */ 1307 u32 page_base = node.start; 1308 unsigned int page_offset = offset_in_page(offset); 1309 unsigned int page_length = PAGE_SIZE - page_offset; 1310 page_length = remain < page_length ? remain : page_length; 1311 if (node.allocated) { 1312 wmb(); /* flush the write before we modify the GGTT */ 1313 ggtt->base.insert_page(&ggtt->base, 1314 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), 1315 node.start, I915_CACHE_NONE, 0); 1316 wmb(); /* flush modifications to the GGTT (insert_page) */ 1317 } else { 1318 page_base += offset & PAGE_MASK; 1319 } 1320 /* If we get a fault while copying data, then (presumably) our 1321 * source page isn't available. Return the error and we'll 1322 * retry in the slow path. 1323 * If the object is non-shmem backed, we retry again with the 1324 * path that handles page fault. 1325 */ 1326 if (ggtt_write(&ggtt->iomap, page_base, page_offset, 1327 user_data, page_length)) { 1328 ret = -EFAULT; 1329 break; 1330 } 1331 1332 remain -= page_length; 1333 user_data += page_length; 1334 offset += page_length; 1335 } 1336 intel_fb_obj_flush(obj, ORIGIN_CPU); 1337 1338 mutex_lock(&i915->drm.struct_mutex); 1339 out_unpin: 1340 if (node.allocated) { 1341 wmb(); 1342 ggtt->base.clear_range(&ggtt->base, 1343 node.start, node.size); 1344 remove_mappable_node(&node); 1345 } else { 1346 i915_vma_unpin(vma); 1347 } 1348 out_rpm: 1349 intel_runtime_pm_put(i915); 1350 out_unlock: 1351 mutex_unlock(&i915->drm.struct_mutex); 1352 return ret; 1353 } 1354 1355 static int 1356 shmem_pwrite_slow(struct page *page, int offset, int length, 1357 char __user *user_data, 1358 bool page_do_bit17_swizzling, 1359 bool needs_clflush_before, 1360 bool needs_clflush_after) 1361 { 1362 char *vaddr; 1363 int ret; 1364 1365 vaddr = kmap(page); 1366 if (unlikely(needs_clflush_before || page_do_bit17_swizzling)) 1367 shmem_clflush_swizzled_range(vaddr + offset, length, 1368 page_do_bit17_swizzling); 1369 if (page_do_bit17_swizzling) 1370 ret = __copy_from_user_swizzled(vaddr, offset, user_data, 1371 length); 1372 else 1373 ret = __copy_from_user(vaddr + offset, user_data, length); 1374 if (needs_clflush_after) 1375 shmem_clflush_swizzled_range(vaddr + offset, length, 1376 page_do_bit17_swizzling); 1377 kunmap(page); 1378 1379 return ret ? -EFAULT : 0; 1380 } 1381 1382 /* Per-page copy function for the shmem pwrite fastpath. 1383 * Flushes invalid cachelines before writing to the target if 1384 * needs_clflush_before is set and flushes out any written cachelines after 1385 * writing if needs_clflush is set. 1386 */ 1387 static int 1388 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data, 1389 bool page_do_bit17_swizzling, 1390 bool needs_clflush_before, 1391 bool needs_clflush_after) 1392 { 1393 int ret; 1394 1395 ret = -ENODEV; 1396 if (!page_do_bit17_swizzling) { 1397 char *vaddr = kmap_atomic(page); 1398 1399 if (needs_clflush_before) 1400 drm_clflush_virt_range(vaddr + offset, len); 1401 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len); 1402 if (needs_clflush_after) 1403 drm_clflush_virt_range(vaddr + offset, len); 1404 1405 kunmap_atomic(vaddr); 1406 } 1407 if (ret == 0) 1408 return ret; 1409 1410 return shmem_pwrite_slow(page, offset, len, user_data, 1411 page_do_bit17_swizzling, 1412 needs_clflush_before, 1413 needs_clflush_after); 1414 } 1415 1416 static int 1417 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj, 1418 const struct drm_i915_gem_pwrite *args) 1419 { 1420 struct drm_i915_private *i915 = to_i915(obj->base.dev); 1421 void __user *user_data; 1422 u64 remain; 1423 unsigned int obj_do_bit17_swizzling; 1424 unsigned int partial_cacheline_write; 1425 unsigned int needs_clflush; 1426 unsigned int offset, idx; 1427 int ret; 1428 1429 ret = mutex_lock_interruptible(&i915->drm.struct_mutex); 1430 if (ret) 1431 return ret; 1432 1433 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush); 1434 mutex_unlock(&i915->drm.struct_mutex); 1435 if (ret) 1436 return ret; 1437 1438 obj_do_bit17_swizzling = 0; 1439 if (i915_gem_object_needs_bit17_swizzle(obj)) 1440 obj_do_bit17_swizzling = BIT(17); 1441 1442 /* If we don't overwrite a cacheline completely we need to be 1443 * careful to have up-to-date data by first clflushing. Don't 1444 * overcomplicate things and flush the entire patch. 1445 */ 1446 partial_cacheline_write = 0; 1447 if (needs_clflush & CLFLUSH_BEFORE) 1448 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1; 1449 1450 user_data = u64_to_user_ptr(args->data_ptr); 1451 remain = args->size; 1452 offset = offset_in_page(args->offset); 1453 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { 1454 struct page *page = i915_gem_object_get_page(obj, idx); 1455 int length; 1456 1457 length = remain; 1458 if (offset + length > PAGE_SIZE) 1459 length = PAGE_SIZE - offset; 1460 1461 ret = shmem_pwrite(page, offset, length, user_data, 1462 page_to_phys(page) & obj_do_bit17_swizzling, 1463 (offset | length) & partial_cacheline_write, 1464 needs_clflush & CLFLUSH_AFTER); 1465 if (ret) 1466 break; 1467 1468 remain -= length; 1469 user_data += length; 1470 offset = 0; 1471 } 1472 1473 intel_fb_obj_flush(obj, ORIGIN_CPU); 1474 i915_gem_obj_finish_shmem_access(obj); 1475 return ret; 1476 } 1477 1478 /** 1479 * Writes data to the object referenced by handle. 1480 * @dev: drm device 1481 * @data: ioctl data blob 1482 * @file: drm file 1483 * 1484 * On error, the contents of the buffer that were to be modified are undefined. 1485 */ 1486 int 1487 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 1488 struct drm_file *file) 1489 { 1490 struct drm_i915_gem_pwrite *args = data; 1491 struct drm_i915_gem_object *obj; 1492 int ret; 1493 1494 if (args->size == 0) 1495 return 0; 1496 1497 if (!access_ok(VERIFY_READ, 1498 u64_to_user_ptr(args->data_ptr), 1499 args->size)) 1500 return -EFAULT; 1501 1502 obj = i915_gem_object_lookup(file, args->handle); 1503 if (!obj) 1504 return -ENOENT; 1505 1506 /* Bounds check destination. */ 1507 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) { 1508 ret = -EINVAL; 1509 goto err; 1510 } 1511 1512 trace_i915_gem_object_pwrite(obj, args->offset, args->size); 1513 1514 ret = -ENODEV; 1515 if (obj->ops->pwrite) 1516 ret = obj->ops->pwrite(obj, args); 1517 if (ret != -ENODEV) 1518 goto err; 1519 1520 ret = i915_gem_object_wait(obj, 1521 I915_WAIT_INTERRUPTIBLE | 1522 I915_WAIT_ALL, 1523 MAX_SCHEDULE_TIMEOUT, 1524 to_rps_client(file)); 1525 if (ret) 1526 goto err; 1527 1528 ret = i915_gem_object_pin_pages(obj); 1529 if (ret) 1530 goto err; 1531 1532 ret = -EFAULT; 1533 /* We can only do the GTT pwrite on untiled buffers, as otherwise 1534 * it would end up going through the fenced access, and we'll get 1535 * different detiling behavior between reading and writing. 1536 * pread/pwrite currently are reading and writing from the CPU 1537 * perspective, requiring manual detiling by the client. 1538 */ 1539 if (!i915_gem_object_has_struct_page(obj) || 1540 cpu_write_needs_clflush(obj)) 1541 /* Note that the gtt paths might fail with non-page-backed user 1542 * pointers (e.g. gtt mappings when moving data between 1543 * textures). Fallback to the shmem path in that case. 1544 */ 1545 ret = i915_gem_gtt_pwrite_fast(obj, args); 1546 1547 if (ret == -EFAULT || ret == -ENOSPC) { 1548 if (obj->phys_handle) 1549 ret = i915_gem_phys_pwrite(obj, args, file); 1550 else 1551 ret = i915_gem_shmem_pwrite(obj, args); 1552 } 1553 1554 i915_gem_object_unpin_pages(obj); 1555 err: 1556 i915_gem_object_put(obj); 1557 return ret; 1558 } 1559 1560 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj) 1561 { 1562 struct drm_i915_private *i915; 1563 struct list_head *list; 1564 struct i915_vma *vma; 1565 1566 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 1567 1568 for_each_ggtt_vma(vma, obj) { 1569 if (i915_vma_is_active(vma)) 1570 continue; 1571 1572 if (!drm_mm_node_allocated(&vma->node)) 1573 continue; 1574 1575 list_move_tail(&vma->vm_link, &vma->vm->inactive_list); 1576 } 1577 1578 i915 = to_i915(obj->base.dev); 1579 spin_lock(&i915->mm.obj_lock); 1580 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list; 1581 list_move_tail(&obj->mm.link, list); 1582 spin_unlock(&i915->mm.obj_lock); 1583 } 1584 1585 /** 1586 * Called when user space prepares to use an object with the CPU, either 1587 * through the mmap ioctl's mapping or a GTT mapping. 1588 * @dev: drm device 1589 * @data: ioctl data blob 1590 * @file: drm file 1591 */ 1592 int 1593 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 1594 struct drm_file *file) 1595 { 1596 struct drm_i915_gem_set_domain *args = data; 1597 struct drm_i915_gem_object *obj; 1598 uint32_t read_domains = args->read_domains; 1599 uint32_t write_domain = args->write_domain; 1600 int err; 1601 1602 /* Only handle setting domains to types used by the CPU. */ 1603 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS) 1604 return -EINVAL; 1605 1606 /* Having something in the write domain implies it's in the read 1607 * domain, and only that read domain. Enforce that in the request. 1608 */ 1609 if (write_domain != 0 && read_domains != write_domain) 1610 return -EINVAL; 1611 1612 obj = i915_gem_object_lookup(file, args->handle); 1613 if (!obj) 1614 return -ENOENT; 1615 1616 /* Try to flush the object off the GPU without holding the lock. 1617 * We will repeat the flush holding the lock in the normal manner 1618 * to catch cases where we are gazumped. 1619 */ 1620 err = i915_gem_object_wait(obj, 1621 I915_WAIT_INTERRUPTIBLE | 1622 (write_domain ? I915_WAIT_ALL : 0), 1623 MAX_SCHEDULE_TIMEOUT, 1624 to_rps_client(file)); 1625 if (err) 1626 goto out; 1627 1628 /* 1629 * Proxy objects do not control access to the backing storage, ergo 1630 * they cannot be used as a means to manipulate the cache domain 1631 * tracking for that backing storage. The proxy object is always 1632 * considered to be outside of any cache domain. 1633 */ 1634 if (i915_gem_object_is_proxy(obj)) { 1635 err = -ENXIO; 1636 goto out; 1637 } 1638 1639 /* 1640 * Flush and acquire obj->pages so that we are coherent through 1641 * direct access in memory with previous cached writes through 1642 * shmemfs and that our cache domain tracking remains valid. 1643 * For example, if the obj->filp was moved to swap without us 1644 * being notified and releasing the pages, we would mistakenly 1645 * continue to assume that the obj remained out of the CPU cached 1646 * domain. 1647 */ 1648 err = i915_gem_object_pin_pages(obj); 1649 if (err) 1650 goto out; 1651 1652 err = i915_mutex_lock_interruptible(dev); 1653 if (err) 1654 goto out_unpin; 1655 1656 if (read_domains & I915_GEM_DOMAIN_WC) 1657 err = i915_gem_object_set_to_wc_domain(obj, write_domain); 1658 else if (read_domains & I915_GEM_DOMAIN_GTT) 1659 err = i915_gem_object_set_to_gtt_domain(obj, write_domain); 1660 else 1661 err = i915_gem_object_set_to_cpu_domain(obj, write_domain); 1662 1663 /* And bump the LRU for this access */ 1664 i915_gem_object_bump_inactive_ggtt(obj); 1665 1666 mutex_unlock(&dev->struct_mutex); 1667 1668 if (write_domain != 0) 1669 intel_fb_obj_invalidate(obj, 1670 fb_write_origin(obj, write_domain)); 1671 1672 out_unpin: 1673 i915_gem_object_unpin_pages(obj); 1674 out: 1675 i915_gem_object_put(obj); 1676 return err; 1677 } 1678 1679 /** 1680 * Called when user space has done writes to this buffer 1681 * @dev: drm device 1682 * @data: ioctl data blob 1683 * @file: drm file 1684 */ 1685 int 1686 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 1687 struct drm_file *file) 1688 { 1689 struct drm_i915_gem_sw_finish *args = data; 1690 struct drm_i915_gem_object *obj; 1691 1692 obj = i915_gem_object_lookup(file, args->handle); 1693 if (!obj) 1694 return -ENOENT; 1695 1696 /* 1697 * Proxy objects are barred from CPU access, so there is no 1698 * need to ban sw_finish as it is a nop. 1699 */ 1700 1701 /* Pinned buffers may be scanout, so flush the cache */ 1702 i915_gem_object_flush_if_display(obj); 1703 i915_gem_object_put(obj); 1704 1705 return 0; 1706 } 1707 1708 /** 1709 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address 1710 * it is mapped to. 1711 * @dev: drm device 1712 * @data: ioctl data blob 1713 * @file: drm file 1714 * 1715 * While the mapping holds a reference on the contents of the object, it doesn't 1716 * imply a ref on the object itself. 1717 * 1718 * IMPORTANT: 1719 * 1720 * DRM driver writers who look a this function as an example for how to do GEM 1721 * mmap support, please don't implement mmap support like here. The modern way 1722 * to implement DRM mmap support is with an mmap offset ioctl (like 1723 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly. 1724 * That way debug tooling like valgrind will understand what's going on, hiding 1725 * the mmap call in a driver private ioctl will break that. The i915 driver only 1726 * does cpu mmaps this way because we didn't know better. 1727 */ 1728 int 1729 i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 1730 struct drm_file *file) 1731 { 1732 struct drm_i915_gem_mmap *args = data; 1733 struct drm_i915_gem_object *obj; 1734 unsigned long addr; 1735 1736 if (args->flags & ~(I915_MMAP_WC)) 1737 return -EINVAL; 1738 1739 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT)) 1740 return -ENODEV; 1741 1742 obj = i915_gem_object_lookup(file, args->handle); 1743 if (!obj) 1744 return -ENOENT; 1745 1746 /* prime objects have no backing filp to GEM mmap 1747 * pages from. 1748 */ 1749 if (!obj->base.filp) { 1750 i915_gem_object_put(obj); 1751 return -ENXIO; 1752 } 1753 1754 addr = vm_mmap(obj->base.filp, 0, args->size, 1755 PROT_READ | PROT_WRITE, MAP_SHARED, 1756 args->offset); 1757 if (args->flags & I915_MMAP_WC) { 1758 struct mm_struct *mm = current->mm; 1759 struct vm_area_struct *vma; 1760 1761 if (down_write_killable(&mm->mmap_sem)) { 1762 i915_gem_object_put(obj); 1763 return -EINTR; 1764 } 1765 vma = find_vma(mm, addr); 1766 if (vma) 1767 vma->vm_page_prot = 1768 pgprot_writecombine(vm_get_page_prot(vma->vm_flags)); 1769 else 1770 addr = -ENOMEM; 1771 up_write(&mm->mmap_sem); 1772 1773 /* This may race, but that's ok, it only gets set */ 1774 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU); 1775 } 1776 i915_gem_object_put(obj); 1777 if (IS_ERR((void *)addr)) 1778 return addr; 1779 1780 args->addr_ptr = (uint64_t) addr; 1781 1782 return 0; 1783 } 1784 1785 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj) 1786 { 1787 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT; 1788 } 1789 1790 /** 1791 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps 1792 * 1793 * A history of the GTT mmap interface: 1794 * 1795 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to 1796 * aligned and suitable for fencing, and still fit into the available 1797 * mappable space left by the pinned display objects. A classic problem 1798 * we called the page-fault-of-doom where we would ping-pong between 1799 * two objects that could not fit inside the GTT and so the memcpy 1800 * would page one object in at the expense of the other between every 1801 * single byte. 1802 * 1803 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none 1804 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the 1805 * object is too large for the available space (or simply too large 1806 * for the mappable aperture!), a view is created instead and faulted 1807 * into userspace. (This view is aligned and sized appropriately for 1808 * fenced access.) 1809 * 1810 * 2 - Recognise WC as a separate cache domain so that we can flush the 1811 * delayed writes via GTT before performing direct access via WC. 1812 * 1813 * Restrictions: 1814 * 1815 * * snoopable objects cannot be accessed via the GTT. It can cause machine 1816 * hangs on some architectures, corruption on others. An attempt to service 1817 * a GTT page fault from a snoopable object will generate a SIGBUS. 1818 * 1819 * * the object must be able to fit into RAM (physical memory, though no 1820 * limited to the mappable aperture). 1821 * 1822 * 1823 * Caveats: 1824 * 1825 * * a new GTT page fault will synchronize rendering from the GPU and flush 1826 * all data to system memory. Subsequent access will not be synchronized. 1827 * 1828 * * all mappings are revoked on runtime device suspend. 1829 * 1830 * * there are only 8, 16 or 32 fence registers to share between all users 1831 * (older machines require fence register for display and blitter access 1832 * as well). Contention of the fence registers will cause the previous users 1833 * to be unmapped and any new access will generate new page faults. 1834 * 1835 * * running out of memory while servicing a fault may generate a SIGBUS, 1836 * rather than the expected SIGSEGV. 1837 */ 1838 int i915_gem_mmap_gtt_version(void) 1839 { 1840 return 2; 1841 } 1842 1843 static inline struct i915_ggtt_view 1844 compute_partial_view(struct drm_i915_gem_object *obj, 1845 pgoff_t page_offset, 1846 unsigned int chunk) 1847 { 1848 struct i915_ggtt_view view; 1849 1850 if (i915_gem_object_is_tiled(obj)) 1851 chunk = roundup(chunk, tile_row_pages(obj)); 1852 1853 view.type = I915_GGTT_VIEW_PARTIAL; 1854 view.partial.offset = rounddown(page_offset, chunk); 1855 view.partial.size = 1856 min_t(unsigned int, chunk, 1857 (obj->base.size >> PAGE_SHIFT) - view.partial.offset); 1858 1859 /* If the partial covers the entire object, just create a normal VMA. */ 1860 if (chunk >= obj->base.size >> PAGE_SHIFT) 1861 view.type = I915_GGTT_VIEW_NORMAL; 1862 1863 return view; 1864 } 1865 1866 /** 1867 * i915_gem_fault - fault a page into the GTT 1868 * @vmf: fault info 1869 * 1870 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped 1871 * from userspace. The fault handler takes care of binding the object to 1872 * the GTT (if needed), allocating and programming a fence register (again, 1873 * only if needed based on whether the old reg is still valid or the object 1874 * is tiled) and inserting a new PTE into the faulting process. 1875 * 1876 * Note that the faulting process may involve evicting existing objects 1877 * from the GTT and/or fence registers to make room. So performance may 1878 * suffer if the GTT working set is large or there are few fence registers 1879 * left. 1880 * 1881 * The current feature set supported by i915_gem_fault() and thus GTT mmaps 1882 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version). 1883 */ 1884 int i915_gem_fault(struct vm_fault *vmf) 1885 { 1886 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */ 1887 struct vm_area_struct *area = vmf->vma; 1888 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data); 1889 struct drm_device *dev = obj->base.dev; 1890 struct drm_i915_private *dev_priv = to_i915(dev); 1891 struct i915_ggtt *ggtt = &dev_priv->ggtt; 1892 bool write = !!(vmf->flags & FAULT_FLAG_WRITE); 1893 struct i915_vma *vma; 1894 pgoff_t page_offset; 1895 unsigned int flags; 1896 int ret; 1897 1898 /* We don't use vmf->pgoff since that has the fake offset */ 1899 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT; 1900 1901 trace_i915_gem_object_fault(obj, page_offset, true, write); 1902 1903 /* Try to flush the object off the GPU first without holding the lock. 1904 * Upon acquiring the lock, we will perform our sanity checks and then 1905 * repeat the flush holding the lock in the normal manner to catch cases 1906 * where we are gazumped. 1907 */ 1908 ret = i915_gem_object_wait(obj, 1909 I915_WAIT_INTERRUPTIBLE, 1910 MAX_SCHEDULE_TIMEOUT, 1911 NULL); 1912 if (ret) 1913 goto err; 1914 1915 ret = i915_gem_object_pin_pages(obj); 1916 if (ret) 1917 goto err; 1918 1919 intel_runtime_pm_get(dev_priv); 1920 1921 ret = i915_mutex_lock_interruptible(dev); 1922 if (ret) 1923 goto err_rpm; 1924 1925 /* Access to snoopable pages through the GTT is incoherent. */ 1926 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) { 1927 ret = -EFAULT; 1928 goto err_unlock; 1929 } 1930 1931 /* If the object is smaller than a couple of partial vma, it is 1932 * not worth only creating a single partial vma - we may as well 1933 * clear enough space for the full object. 1934 */ 1935 flags = PIN_MAPPABLE; 1936 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT) 1937 flags |= PIN_NONBLOCK | PIN_NONFAULT; 1938 1939 /* Now pin it into the GTT as needed */ 1940 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags); 1941 if (IS_ERR(vma)) { 1942 /* Use a partial view if it is bigger than available space */ 1943 struct i915_ggtt_view view = 1944 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES); 1945 1946 /* Userspace is now writing through an untracked VMA, abandon 1947 * all hope that the hardware is able to track future writes. 1948 */ 1949 obj->frontbuffer_ggtt_origin = ORIGIN_CPU; 1950 1951 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE); 1952 } 1953 if (IS_ERR(vma)) { 1954 ret = PTR_ERR(vma); 1955 goto err_unlock; 1956 } 1957 1958 ret = i915_gem_object_set_to_gtt_domain(obj, write); 1959 if (ret) 1960 goto err_unpin; 1961 1962 ret = i915_vma_pin_fence(vma); 1963 if (ret) 1964 goto err_unpin; 1965 1966 /* Finally, remap it using the new GTT offset */ 1967 ret = remap_io_mapping(area, 1968 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT), 1969 (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT, 1970 min_t(u64, vma->size, area->vm_end - area->vm_start), 1971 &ggtt->iomap); 1972 if (ret) 1973 goto err_fence; 1974 1975 /* Mark as being mmapped into userspace for later revocation */ 1976 assert_rpm_wakelock_held(dev_priv); 1977 if (!i915_vma_set_userfault(vma) && !obj->userfault_count++) 1978 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list); 1979 GEM_BUG_ON(!obj->userfault_count); 1980 1981 i915_vma_set_ggtt_write(vma); 1982 1983 err_fence: 1984 i915_vma_unpin_fence(vma); 1985 err_unpin: 1986 __i915_vma_unpin(vma); 1987 err_unlock: 1988 mutex_unlock(&dev->struct_mutex); 1989 err_rpm: 1990 intel_runtime_pm_put(dev_priv); 1991 i915_gem_object_unpin_pages(obj); 1992 err: 1993 switch (ret) { 1994 case -EIO: 1995 /* 1996 * We eat errors when the gpu is terminally wedged to avoid 1997 * userspace unduly crashing (gl has no provisions for mmaps to 1998 * fail). But any other -EIO isn't ours (e.g. swap in failure) 1999 * and so needs to be reported. 2000 */ 2001 if (!i915_terminally_wedged(&dev_priv->gpu_error)) { 2002 ret = VM_FAULT_SIGBUS; 2003 break; 2004 } 2005 case -EAGAIN: 2006 /* 2007 * EAGAIN means the gpu is hung and we'll wait for the error 2008 * handler to reset everything when re-faulting in 2009 * i915_mutex_lock_interruptible. 2010 */ 2011 case 0: 2012 case -ERESTARTSYS: 2013 case -EINTR: 2014 case -EBUSY: 2015 /* 2016 * EBUSY is ok: this just means that another thread 2017 * already did the job. 2018 */ 2019 ret = VM_FAULT_NOPAGE; 2020 break; 2021 case -ENOMEM: 2022 ret = VM_FAULT_OOM; 2023 break; 2024 case -ENOSPC: 2025 case -EFAULT: 2026 ret = VM_FAULT_SIGBUS; 2027 break; 2028 default: 2029 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret); 2030 ret = VM_FAULT_SIGBUS; 2031 break; 2032 } 2033 return ret; 2034 } 2035 2036 static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj) 2037 { 2038 struct i915_vma *vma; 2039 2040 GEM_BUG_ON(!obj->userfault_count); 2041 2042 obj->userfault_count = 0; 2043 list_del(&obj->userfault_link); 2044 drm_vma_node_unmap(&obj->base.vma_node, 2045 obj->base.dev->anon_inode->i_mapping); 2046 2047 for_each_ggtt_vma(vma, obj) 2048 i915_vma_unset_userfault(vma); 2049 } 2050 2051 /** 2052 * i915_gem_release_mmap - remove physical page mappings 2053 * @obj: obj in question 2054 * 2055 * Preserve the reservation of the mmapping with the DRM core code, but 2056 * relinquish ownership of the pages back to the system. 2057 * 2058 * It is vital that we remove the page mapping if we have mapped a tiled 2059 * object through the GTT and then lose the fence register due to 2060 * resource pressure. Similarly if the object has been moved out of the 2061 * aperture, than pages mapped into userspace must be revoked. Removing the 2062 * mapping will then trigger a page fault on the next user access, allowing 2063 * fixup by i915_gem_fault(). 2064 */ 2065 void 2066 i915_gem_release_mmap(struct drm_i915_gem_object *obj) 2067 { 2068 struct drm_i915_private *i915 = to_i915(obj->base.dev); 2069 2070 /* Serialisation between user GTT access and our code depends upon 2071 * revoking the CPU's PTE whilst the mutex is held. The next user 2072 * pagefault then has to wait until we release the mutex. 2073 * 2074 * Note that RPM complicates somewhat by adding an additional 2075 * requirement that operations to the GGTT be made holding the RPM 2076 * wakeref. 2077 */ 2078 lockdep_assert_held(&i915->drm.struct_mutex); 2079 intel_runtime_pm_get(i915); 2080 2081 if (!obj->userfault_count) 2082 goto out; 2083 2084 __i915_gem_object_release_mmap(obj); 2085 2086 /* Ensure that the CPU's PTE are revoked and there are not outstanding 2087 * memory transactions from userspace before we return. The TLB 2088 * flushing implied above by changing the PTE above *should* be 2089 * sufficient, an extra barrier here just provides us with a bit 2090 * of paranoid documentation about our requirement to serialise 2091 * memory writes before touching registers / GSM. 2092 */ 2093 wmb(); 2094 2095 out: 2096 intel_runtime_pm_put(i915); 2097 } 2098 2099 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv) 2100 { 2101 struct drm_i915_gem_object *obj, *on; 2102 int i; 2103 2104 /* 2105 * Only called during RPM suspend. All users of the userfault_list 2106 * must be holding an RPM wakeref to ensure that this can not 2107 * run concurrently with themselves (and use the struct_mutex for 2108 * protection between themselves). 2109 */ 2110 2111 list_for_each_entry_safe(obj, on, 2112 &dev_priv->mm.userfault_list, userfault_link) 2113 __i915_gem_object_release_mmap(obj); 2114 2115 /* The fence will be lost when the device powers down. If any were 2116 * in use by hardware (i.e. they are pinned), we should not be powering 2117 * down! All other fences will be reacquired by the user upon waking. 2118 */ 2119 for (i = 0; i < dev_priv->num_fence_regs; i++) { 2120 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i]; 2121 2122 /* Ideally we want to assert that the fence register is not 2123 * live at this point (i.e. that no piece of code will be 2124 * trying to write through fence + GTT, as that both violates 2125 * our tracking of activity and associated locking/barriers, 2126 * but also is illegal given that the hw is powered down). 2127 * 2128 * Previously we used reg->pin_count as a "liveness" indicator. 2129 * That is not sufficient, and we need a more fine-grained 2130 * tool if we want to have a sanity check here. 2131 */ 2132 2133 if (!reg->vma) 2134 continue; 2135 2136 GEM_BUG_ON(i915_vma_has_userfault(reg->vma)); 2137 reg->dirty = true; 2138 } 2139 } 2140 2141 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj) 2142 { 2143 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 2144 int err; 2145 2146 err = drm_gem_create_mmap_offset(&obj->base); 2147 if (likely(!err)) 2148 return 0; 2149 2150 /* Attempt to reap some mmap space from dead objects */ 2151 do { 2152 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE); 2153 if (err) 2154 break; 2155 2156 i915_gem_drain_freed_objects(dev_priv); 2157 err = drm_gem_create_mmap_offset(&obj->base); 2158 if (!err) 2159 break; 2160 2161 } while (flush_delayed_work(&dev_priv->gt.retire_work)); 2162 2163 return err; 2164 } 2165 2166 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj) 2167 { 2168 drm_gem_free_mmap_offset(&obj->base); 2169 } 2170 2171 int 2172 i915_gem_mmap_gtt(struct drm_file *file, 2173 struct drm_device *dev, 2174 uint32_t handle, 2175 uint64_t *offset) 2176 { 2177 struct drm_i915_gem_object *obj; 2178 int ret; 2179 2180 obj = i915_gem_object_lookup(file, handle); 2181 if (!obj) 2182 return -ENOENT; 2183 2184 ret = i915_gem_object_create_mmap_offset(obj); 2185 if (ret == 0) 2186 *offset = drm_vma_node_offset_addr(&obj->base.vma_node); 2187 2188 i915_gem_object_put(obj); 2189 return ret; 2190 } 2191 2192 /** 2193 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing 2194 * @dev: DRM device 2195 * @data: GTT mapping ioctl data 2196 * @file: GEM object info 2197 * 2198 * Simply returns the fake offset to userspace so it can mmap it. 2199 * The mmap call will end up in drm_gem_mmap(), which will set things 2200 * up so we can get faults in the handler above. 2201 * 2202 * The fault handler will take care of binding the object into the GTT 2203 * (since it may have been evicted to make room for something), allocating 2204 * a fence register, and mapping the appropriate aperture address into 2205 * userspace. 2206 */ 2207 int 2208 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 2209 struct drm_file *file) 2210 { 2211 struct drm_i915_gem_mmap_gtt *args = data; 2212 2213 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset); 2214 } 2215 2216 /* Immediately discard the backing storage */ 2217 static void 2218 i915_gem_object_truncate(struct drm_i915_gem_object *obj) 2219 { 2220 i915_gem_object_free_mmap_offset(obj); 2221 2222 if (obj->base.filp == NULL) 2223 return; 2224 2225 /* Our goal here is to return as much of the memory as 2226 * is possible back to the system as we are called from OOM. 2227 * To do this we must instruct the shmfs to drop all of its 2228 * backing pages, *now*. 2229 */ 2230 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1); 2231 obj->mm.madv = __I915_MADV_PURGED; 2232 obj->mm.pages = ERR_PTR(-EFAULT); 2233 } 2234 2235 /* Try to discard unwanted pages */ 2236 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj) 2237 { 2238 struct address_space *mapping; 2239 2240 lockdep_assert_held(&obj->mm.lock); 2241 GEM_BUG_ON(i915_gem_object_has_pages(obj)); 2242 2243 switch (obj->mm.madv) { 2244 case I915_MADV_DONTNEED: 2245 i915_gem_object_truncate(obj); 2246 case __I915_MADV_PURGED: 2247 return; 2248 } 2249 2250 if (obj->base.filp == NULL) 2251 return; 2252 2253 mapping = obj->base.filp->f_mapping, 2254 invalidate_mapping_pages(mapping, 0, (loff_t)-1); 2255 } 2256 2257 static void 2258 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj, 2259 struct sg_table *pages) 2260 { 2261 struct sgt_iter sgt_iter; 2262 struct page *page; 2263 2264 __i915_gem_object_release_shmem(obj, pages, true); 2265 2266 i915_gem_gtt_finish_pages(obj, pages); 2267 2268 if (i915_gem_object_needs_bit17_swizzle(obj)) 2269 i915_gem_object_save_bit_17_swizzle(obj, pages); 2270 2271 for_each_sgt_page(page, sgt_iter, pages) { 2272 if (obj->mm.dirty) 2273 set_page_dirty(page); 2274 2275 if (obj->mm.madv == I915_MADV_WILLNEED) 2276 mark_page_accessed(page); 2277 2278 put_page(page); 2279 } 2280 obj->mm.dirty = false; 2281 2282 sg_free_table(pages); 2283 kfree(pages); 2284 } 2285 2286 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj) 2287 { 2288 struct radix_tree_iter iter; 2289 void __rcu **slot; 2290 2291 rcu_read_lock(); 2292 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0) 2293 radix_tree_delete(&obj->mm.get_page.radix, iter.index); 2294 rcu_read_unlock(); 2295 } 2296 2297 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj, 2298 enum i915_mm_subclass subclass) 2299 { 2300 struct drm_i915_private *i915 = to_i915(obj->base.dev); 2301 struct sg_table *pages; 2302 2303 if (i915_gem_object_has_pinned_pages(obj)) 2304 return; 2305 2306 GEM_BUG_ON(obj->bind_count); 2307 if (!i915_gem_object_has_pages(obj)) 2308 return; 2309 2310 /* May be called by shrinker from within get_pages() (on another bo) */ 2311 mutex_lock_nested(&obj->mm.lock, subclass); 2312 if (unlikely(atomic_read(&obj->mm.pages_pin_count))) 2313 goto unlock; 2314 2315 /* ->put_pages might need to allocate memory for the bit17 swizzle 2316 * array, hence protect them from being reaped by removing them from gtt 2317 * lists early. */ 2318 pages = fetch_and_zero(&obj->mm.pages); 2319 GEM_BUG_ON(!pages); 2320 2321 spin_lock(&i915->mm.obj_lock); 2322 list_del(&obj->mm.link); 2323 spin_unlock(&i915->mm.obj_lock); 2324 2325 if (obj->mm.mapping) { 2326 void *ptr; 2327 2328 ptr = page_mask_bits(obj->mm.mapping); 2329 if (is_vmalloc_addr(ptr)) 2330 vunmap(ptr); 2331 else 2332 kunmap(kmap_to_page(ptr)); 2333 2334 obj->mm.mapping = NULL; 2335 } 2336 2337 __i915_gem_object_reset_page_iter(obj); 2338 2339 if (!IS_ERR(pages)) 2340 obj->ops->put_pages(obj, pages); 2341 2342 obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0; 2343 2344 unlock: 2345 mutex_unlock(&obj->mm.lock); 2346 } 2347 2348 static bool i915_sg_trim(struct sg_table *orig_st) 2349 { 2350 struct sg_table new_st; 2351 struct scatterlist *sg, *new_sg; 2352 unsigned int i; 2353 2354 if (orig_st->nents == orig_st->orig_nents) 2355 return false; 2356 2357 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN)) 2358 return false; 2359 2360 new_sg = new_st.sgl; 2361 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) { 2362 sg_set_page(new_sg, sg_page(sg), sg->length, 0); 2363 /* called before being DMA mapped, no need to copy sg->dma_* */ 2364 new_sg = sg_next(new_sg); 2365 } 2366 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */ 2367 2368 sg_free_table(orig_st); 2369 2370 *orig_st = new_st; 2371 return true; 2372 } 2373 2374 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj) 2375 { 2376 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 2377 const unsigned long page_count = obj->base.size / PAGE_SIZE; 2378 unsigned long i; 2379 struct address_space *mapping; 2380 struct sg_table *st; 2381 struct scatterlist *sg; 2382 struct sgt_iter sgt_iter; 2383 struct page *page; 2384 unsigned long last_pfn = 0; /* suppress gcc warning */ 2385 unsigned int max_segment = i915_sg_segment_size(); 2386 unsigned int sg_page_sizes; 2387 gfp_t noreclaim; 2388 int ret; 2389 2390 /* Assert that the object is not currently in any GPU domain. As it 2391 * wasn't in the GTT, there shouldn't be any way it could have been in 2392 * a GPU cache 2393 */ 2394 GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS); 2395 GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS); 2396 2397 st = kmalloc(sizeof(*st), GFP_KERNEL); 2398 if (st == NULL) 2399 return -ENOMEM; 2400 2401 rebuild_st: 2402 if (sg_alloc_table(st, page_count, GFP_KERNEL)) { 2403 kfree(st); 2404 return -ENOMEM; 2405 } 2406 2407 /* Get the list of pages out of our struct file. They'll be pinned 2408 * at this point until we release them. 2409 * 2410 * Fail silently without starting the shrinker 2411 */ 2412 mapping = obj->base.filp->f_mapping; 2413 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM); 2414 noreclaim |= __GFP_NORETRY | __GFP_NOWARN; 2415 2416 sg = st->sgl; 2417 st->nents = 0; 2418 sg_page_sizes = 0; 2419 for (i = 0; i < page_count; i++) { 2420 const unsigned int shrink[] = { 2421 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE, 2422 0, 2423 }, *s = shrink; 2424 gfp_t gfp = noreclaim; 2425 2426 do { 2427 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 2428 if (likely(!IS_ERR(page))) 2429 break; 2430 2431 if (!*s) { 2432 ret = PTR_ERR(page); 2433 goto err_sg; 2434 } 2435 2436 i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++); 2437 cond_resched(); 2438 2439 /* We've tried hard to allocate the memory by reaping 2440 * our own buffer, now let the real VM do its job and 2441 * go down in flames if truly OOM. 2442 * 2443 * However, since graphics tend to be disposable, 2444 * defer the oom here by reporting the ENOMEM back 2445 * to userspace. 2446 */ 2447 if (!*s) { 2448 /* reclaim and warn, but no oom */ 2449 gfp = mapping_gfp_mask(mapping); 2450 2451 /* Our bo are always dirty and so we require 2452 * kswapd to reclaim our pages (direct reclaim 2453 * does not effectively begin pageout of our 2454 * buffers on its own). However, direct reclaim 2455 * only waits for kswapd when under allocation 2456 * congestion. So as a result __GFP_RECLAIM is 2457 * unreliable and fails to actually reclaim our 2458 * dirty pages -- unless you try over and over 2459 * again with !__GFP_NORETRY. However, we still 2460 * want to fail this allocation rather than 2461 * trigger the out-of-memory killer and for 2462 * this we want __GFP_RETRY_MAYFAIL. 2463 */ 2464 gfp |= __GFP_RETRY_MAYFAIL; 2465 } 2466 } while (1); 2467 2468 if (!i || 2469 sg->length >= max_segment || 2470 page_to_pfn(page) != last_pfn + 1) { 2471 if (i) { 2472 sg_page_sizes |= sg->length; 2473 sg = sg_next(sg); 2474 } 2475 st->nents++; 2476 sg_set_page(sg, page, PAGE_SIZE, 0); 2477 } else { 2478 sg->length += PAGE_SIZE; 2479 } 2480 last_pfn = page_to_pfn(page); 2481 2482 /* Check that the i965g/gm workaround works. */ 2483 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL)); 2484 } 2485 if (sg) { /* loop terminated early; short sg table */ 2486 sg_page_sizes |= sg->length; 2487 sg_mark_end(sg); 2488 } 2489 2490 /* Trim unused sg entries to avoid wasting memory. */ 2491 i915_sg_trim(st); 2492 2493 ret = i915_gem_gtt_prepare_pages(obj, st); 2494 if (ret) { 2495 /* DMA remapping failed? One possible cause is that 2496 * it could not reserve enough large entries, asking 2497 * for PAGE_SIZE chunks instead may be helpful. 2498 */ 2499 if (max_segment > PAGE_SIZE) { 2500 for_each_sgt_page(page, sgt_iter, st) 2501 put_page(page); 2502 sg_free_table(st); 2503 2504 max_segment = PAGE_SIZE; 2505 goto rebuild_st; 2506 } else { 2507 dev_warn(&dev_priv->drm.pdev->dev, 2508 "Failed to DMA remap %lu pages\n", 2509 page_count); 2510 goto err_pages; 2511 } 2512 } 2513 2514 if (i915_gem_object_needs_bit17_swizzle(obj)) 2515 i915_gem_object_do_bit_17_swizzle(obj, st); 2516 2517 __i915_gem_object_set_pages(obj, st, sg_page_sizes); 2518 2519 return 0; 2520 2521 err_sg: 2522 sg_mark_end(sg); 2523 err_pages: 2524 for_each_sgt_page(page, sgt_iter, st) 2525 put_page(page); 2526 sg_free_table(st); 2527 kfree(st); 2528 2529 /* shmemfs first checks if there is enough memory to allocate the page 2530 * and reports ENOSPC should there be insufficient, along with the usual 2531 * ENOMEM for a genuine allocation failure. 2532 * 2533 * We use ENOSPC in our driver to mean that we have run out of aperture 2534 * space and so want to translate the error from shmemfs back to our 2535 * usual understanding of ENOMEM. 2536 */ 2537 if (ret == -ENOSPC) 2538 ret = -ENOMEM; 2539 2540 return ret; 2541 } 2542 2543 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj, 2544 struct sg_table *pages, 2545 unsigned int sg_page_sizes) 2546 { 2547 struct drm_i915_private *i915 = to_i915(obj->base.dev); 2548 unsigned long supported = INTEL_INFO(i915)->page_sizes; 2549 int i; 2550 2551 lockdep_assert_held(&obj->mm.lock); 2552 2553 obj->mm.get_page.sg_pos = pages->sgl; 2554 obj->mm.get_page.sg_idx = 0; 2555 2556 obj->mm.pages = pages; 2557 2558 if (i915_gem_object_is_tiled(obj) && 2559 i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) { 2560 GEM_BUG_ON(obj->mm.quirked); 2561 __i915_gem_object_pin_pages(obj); 2562 obj->mm.quirked = true; 2563 } 2564 2565 GEM_BUG_ON(!sg_page_sizes); 2566 obj->mm.page_sizes.phys = sg_page_sizes; 2567 2568 /* 2569 * Calculate the supported page-sizes which fit into the given 2570 * sg_page_sizes. This will give us the page-sizes which we may be able 2571 * to use opportunistically when later inserting into the GTT. For 2572 * example if phys=2G, then in theory we should be able to use 1G, 2M, 2573 * 64K or 4K pages, although in practice this will depend on a number of 2574 * other factors. 2575 */ 2576 obj->mm.page_sizes.sg = 0; 2577 for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) { 2578 if (obj->mm.page_sizes.phys & ~0u << i) 2579 obj->mm.page_sizes.sg |= BIT(i); 2580 } 2581 GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg)); 2582 2583 spin_lock(&i915->mm.obj_lock); 2584 list_add(&obj->mm.link, &i915->mm.unbound_list); 2585 spin_unlock(&i915->mm.obj_lock); 2586 } 2587 2588 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 2589 { 2590 int err; 2591 2592 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) { 2593 DRM_DEBUG("Attempting to obtain a purgeable object\n"); 2594 return -EFAULT; 2595 } 2596 2597 err = obj->ops->get_pages(obj); 2598 GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj)); 2599 2600 return err; 2601 } 2602 2603 /* Ensure that the associated pages are gathered from the backing storage 2604 * and pinned into our object. i915_gem_object_pin_pages() may be called 2605 * multiple times before they are released by a single call to 2606 * i915_gem_object_unpin_pages() - once the pages are no longer referenced 2607 * either as a result of memory pressure (reaping pages under the shrinker) 2608 * or as the object is itself released. 2609 */ 2610 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 2611 { 2612 int err; 2613 2614 err = mutex_lock_interruptible(&obj->mm.lock); 2615 if (err) 2616 return err; 2617 2618 if (unlikely(!i915_gem_object_has_pages(obj))) { 2619 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj)); 2620 2621 err = ____i915_gem_object_get_pages(obj); 2622 if (err) 2623 goto unlock; 2624 2625 smp_mb__before_atomic(); 2626 } 2627 atomic_inc(&obj->mm.pages_pin_count); 2628 2629 unlock: 2630 mutex_unlock(&obj->mm.lock); 2631 return err; 2632 } 2633 2634 /* The 'mapping' part of i915_gem_object_pin_map() below */ 2635 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj, 2636 enum i915_map_type type) 2637 { 2638 unsigned long n_pages = obj->base.size >> PAGE_SHIFT; 2639 struct sg_table *sgt = obj->mm.pages; 2640 struct sgt_iter sgt_iter; 2641 struct page *page; 2642 struct page *stack_pages[32]; 2643 struct page **pages = stack_pages; 2644 unsigned long i = 0; 2645 pgprot_t pgprot; 2646 void *addr; 2647 2648 /* A single page can always be kmapped */ 2649 if (n_pages == 1 && type == I915_MAP_WB) 2650 return kmap(sg_page(sgt->sgl)); 2651 2652 if (n_pages > ARRAY_SIZE(stack_pages)) { 2653 /* Too big for stack -- allocate temporary array instead */ 2654 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL); 2655 if (!pages) 2656 return NULL; 2657 } 2658 2659 for_each_sgt_page(page, sgt_iter, sgt) 2660 pages[i++] = page; 2661 2662 /* Check that we have the expected number of pages */ 2663 GEM_BUG_ON(i != n_pages); 2664 2665 switch (type) { 2666 default: 2667 MISSING_CASE(type); 2668 /* fallthrough to use PAGE_KERNEL anyway */ 2669 case I915_MAP_WB: 2670 pgprot = PAGE_KERNEL; 2671 break; 2672 case I915_MAP_WC: 2673 pgprot = pgprot_writecombine(PAGE_KERNEL_IO); 2674 break; 2675 } 2676 addr = vmap(pages, n_pages, 0, pgprot); 2677 2678 if (pages != stack_pages) 2679 kvfree(pages); 2680 2681 return addr; 2682 } 2683 2684 /* get, pin, and map the pages of the object into kernel space */ 2685 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj, 2686 enum i915_map_type type) 2687 { 2688 enum i915_map_type has_type; 2689 bool pinned; 2690 void *ptr; 2691 int ret; 2692 2693 if (unlikely(!i915_gem_object_has_struct_page(obj))) 2694 return ERR_PTR(-ENXIO); 2695 2696 ret = mutex_lock_interruptible(&obj->mm.lock); 2697 if (ret) 2698 return ERR_PTR(ret); 2699 2700 pinned = !(type & I915_MAP_OVERRIDE); 2701 type &= ~I915_MAP_OVERRIDE; 2702 2703 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) { 2704 if (unlikely(!i915_gem_object_has_pages(obj))) { 2705 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj)); 2706 2707 ret = ____i915_gem_object_get_pages(obj); 2708 if (ret) 2709 goto err_unlock; 2710 2711 smp_mb__before_atomic(); 2712 } 2713 atomic_inc(&obj->mm.pages_pin_count); 2714 pinned = false; 2715 } 2716 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 2717 2718 ptr = page_unpack_bits(obj->mm.mapping, &has_type); 2719 if (ptr && has_type != type) { 2720 if (pinned) { 2721 ret = -EBUSY; 2722 goto err_unpin; 2723 } 2724 2725 if (is_vmalloc_addr(ptr)) 2726 vunmap(ptr); 2727 else 2728 kunmap(kmap_to_page(ptr)); 2729 2730 ptr = obj->mm.mapping = NULL; 2731 } 2732 2733 if (!ptr) { 2734 ptr = i915_gem_object_map(obj, type); 2735 if (!ptr) { 2736 ret = -ENOMEM; 2737 goto err_unpin; 2738 } 2739 2740 obj->mm.mapping = page_pack_bits(ptr, type); 2741 } 2742 2743 out_unlock: 2744 mutex_unlock(&obj->mm.lock); 2745 return ptr; 2746 2747 err_unpin: 2748 atomic_dec(&obj->mm.pages_pin_count); 2749 err_unlock: 2750 ptr = ERR_PTR(ret); 2751 goto out_unlock; 2752 } 2753 2754 static int 2755 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj, 2756 const struct drm_i915_gem_pwrite *arg) 2757 { 2758 struct address_space *mapping = obj->base.filp->f_mapping; 2759 char __user *user_data = u64_to_user_ptr(arg->data_ptr); 2760 u64 remain, offset; 2761 unsigned int pg; 2762 2763 /* Before we instantiate/pin the backing store for our use, we 2764 * can prepopulate the shmemfs filp efficiently using a write into 2765 * the pagecache. We avoid the penalty of instantiating all the 2766 * pages, important if the user is just writing to a few and never 2767 * uses the object on the GPU, and using a direct write into shmemfs 2768 * allows it to avoid the cost of retrieving a page (either swapin 2769 * or clearing-before-use) before it is overwritten. 2770 */ 2771 if (i915_gem_object_has_pages(obj)) 2772 return -ENODEV; 2773 2774 if (obj->mm.madv != I915_MADV_WILLNEED) 2775 return -EFAULT; 2776 2777 /* Before the pages are instantiated the object is treated as being 2778 * in the CPU domain. The pages will be clflushed as required before 2779 * use, and we can freely write into the pages directly. If userspace 2780 * races pwrite with any other operation; corruption will ensue - 2781 * that is userspace's prerogative! 2782 */ 2783 2784 remain = arg->size; 2785 offset = arg->offset; 2786 pg = offset_in_page(offset); 2787 2788 do { 2789 unsigned int len, unwritten; 2790 struct page *page; 2791 void *data, *vaddr; 2792 int err; 2793 2794 len = PAGE_SIZE - pg; 2795 if (len > remain) 2796 len = remain; 2797 2798 err = pagecache_write_begin(obj->base.filp, mapping, 2799 offset, len, 0, 2800 &page, &data); 2801 if (err < 0) 2802 return err; 2803 2804 vaddr = kmap(page); 2805 unwritten = copy_from_user(vaddr + pg, user_data, len); 2806 kunmap(page); 2807 2808 err = pagecache_write_end(obj->base.filp, mapping, 2809 offset, len, len - unwritten, 2810 page, data); 2811 if (err < 0) 2812 return err; 2813 2814 if (unwritten) 2815 return -EFAULT; 2816 2817 remain -= len; 2818 user_data += len; 2819 offset += len; 2820 pg = 0; 2821 } while (remain); 2822 2823 return 0; 2824 } 2825 2826 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx) 2827 { 2828 bool banned; 2829 2830 atomic_inc(&ctx->guilty_count); 2831 2832 banned = false; 2833 if (i915_gem_context_is_bannable(ctx)) { 2834 unsigned int score; 2835 2836 score = atomic_add_return(CONTEXT_SCORE_GUILTY, 2837 &ctx->ban_score); 2838 banned = score >= CONTEXT_SCORE_BAN_THRESHOLD; 2839 2840 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n", 2841 ctx->name, score, yesno(banned)); 2842 } 2843 if (!banned) 2844 return; 2845 2846 i915_gem_context_set_banned(ctx); 2847 if (!IS_ERR_OR_NULL(ctx->file_priv)) { 2848 atomic_inc(&ctx->file_priv->context_bans); 2849 DRM_DEBUG_DRIVER("client %s has had %d context banned\n", 2850 ctx->name, atomic_read(&ctx->file_priv->context_bans)); 2851 } 2852 } 2853 2854 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx) 2855 { 2856 atomic_inc(&ctx->active_count); 2857 } 2858 2859 struct i915_request * 2860 i915_gem_find_active_request(struct intel_engine_cs *engine) 2861 { 2862 struct i915_request *request, *active = NULL; 2863 unsigned long flags; 2864 2865 /* We are called by the error capture and reset at a random 2866 * point in time. In particular, note that neither is crucially 2867 * ordered with an interrupt. After a hang, the GPU is dead and we 2868 * assume that no more writes can happen (we waited long enough for 2869 * all writes that were in transaction to be flushed) - adding an 2870 * extra delay for a recent interrupt is pointless. Hence, we do 2871 * not need an engine->irq_seqno_barrier() before the seqno reads. 2872 */ 2873 spin_lock_irqsave(&engine->timeline->lock, flags); 2874 list_for_each_entry(request, &engine->timeline->requests, link) { 2875 if (__i915_request_completed(request, request->global_seqno)) 2876 continue; 2877 2878 GEM_BUG_ON(request->engine != engine); 2879 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, 2880 &request->fence.flags)); 2881 2882 active = request; 2883 break; 2884 } 2885 spin_unlock_irqrestore(&engine->timeline->lock, flags); 2886 2887 return active; 2888 } 2889 2890 static bool engine_stalled(struct intel_engine_cs *engine) 2891 { 2892 if (!engine->hangcheck.stalled) 2893 return false; 2894 2895 /* Check for possible seqno movement after hang declaration */ 2896 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) { 2897 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name); 2898 return false; 2899 } 2900 2901 return true; 2902 } 2903 2904 /* 2905 * Ensure irq handler finishes, and not run again. 2906 * Also return the active request so that we only search for it once. 2907 */ 2908 struct i915_request * 2909 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine) 2910 { 2911 struct i915_request *request = NULL; 2912 2913 /* 2914 * During the reset sequence, we must prevent the engine from 2915 * entering RC6. As the context state is undefined until we restart 2916 * the engine, if it does enter RC6 during the reset, the state 2917 * written to the powercontext is undefined and so we may lose 2918 * GPU state upon resume, i.e. fail to restart after a reset. 2919 */ 2920 intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL); 2921 2922 /* 2923 * Prevent the signaler thread from updating the request 2924 * state (by calling dma_fence_signal) as we are processing 2925 * the reset. The write from the GPU of the seqno is 2926 * asynchronous and the signaler thread may see a different 2927 * value to us and declare the request complete, even though 2928 * the reset routine have picked that request as the active 2929 * (incomplete) request. This conflict is not handled 2930 * gracefully! 2931 */ 2932 kthread_park(engine->breadcrumbs.signaler); 2933 2934 /* 2935 * Prevent request submission to the hardware until we have 2936 * completed the reset in i915_gem_reset_finish(). If a request 2937 * is completed by one engine, it may then queue a request 2938 * to a second via its execlists->tasklet *just* as we are 2939 * calling engine->init_hw() and also writing the ELSP. 2940 * Turning off the execlists->tasklet until the reset is over 2941 * prevents the race. 2942 */ 2943 tasklet_kill(&engine->execlists.tasklet); 2944 tasklet_disable(&engine->execlists.tasklet); 2945 2946 /* 2947 * We're using worker to queue preemption requests from the tasklet in 2948 * GuC submission mode. 2949 * Even though tasklet was disabled, we may still have a worker queued. 2950 * Let's make sure that all workers scheduled before disabling the 2951 * tasklet are completed before continuing with the reset. 2952 */ 2953 if (engine->i915->guc.preempt_wq) 2954 flush_workqueue(engine->i915->guc.preempt_wq); 2955 2956 if (engine->irq_seqno_barrier) 2957 engine->irq_seqno_barrier(engine); 2958 2959 request = i915_gem_find_active_request(engine); 2960 if (request && request->fence.error == -EIO) 2961 request = ERR_PTR(-EIO); /* Previous reset failed! */ 2962 2963 return request; 2964 } 2965 2966 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv) 2967 { 2968 struct intel_engine_cs *engine; 2969 struct i915_request *request; 2970 enum intel_engine_id id; 2971 int err = 0; 2972 2973 for_each_engine(engine, dev_priv, id) { 2974 request = i915_gem_reset_prepare_engine(engine); 2975 if (IS_ERR(request)) { 2976 err = PTR_ERR(request); 2977 continue; 2978 } 2979 2980 engine->hangcheck.active_request = request; 2981 } 2982 2983 i915_gem_revoke_fences(dev_priv); 2984 2985 return err; 2986 } 2987 2988 static void skip_request(struct i915_request *request) 2989 { 2990 void *vaddr = request->ring->vaddr; 2991 u32 head; 2992 2993 /* As this request likely depends on state from the lost 2994 * context, clear out all the user operations leaving the 2995 * breadcrumb at the end (so we get the fence notifications). 2996 */ 2997 head = request->head; 2998 if (request->postfix < head) { 2999 memset(vaddr + head, 0, request->ring->size - head); 3000 head = 0; 3001 } 3002 memset(vaddr + head, 0, request->postfix - head); 3003 3004 dma_fence_set_error(&request->fence, -EIO); 3005 } 3006 3007 static void engine_skip_context(struct i915_request *request) 3008 { 3009 struct intel_engine_cs *engine = request->engine; 3010 struct i915_gem_context *hung_ctx = request->ctx; 3011 struct intel_timeline *timeline; 3012 unsigned long flags; 3013 3014 timeline = i915_gem_context_lookup_timeline(hung_ctx, engine); 3015 3016 spin_lock_irqsave(&engine->timeline->lock, flags); 3017 spin_lock(&timeline->lock); 3018 3019 list_for_each_entry_continue(request, &engine->timeline->requests, link) 3020 if (request->ctx == hung_ctx) 3021 skip_request(request); 3022 3023 list_for_each_entry(request, &timeline->requests, link) 3024 skip_request(request); 3025 3026 spin_unlock(&timeline->lock); 3027 spin_unlock_irqrestore(&engine->timeline->lock, flags); 3028 } 3029 3030 /* Returns the request if it was guilty of the hang */ 3031 static struct i915_request * 3032 i915_gem_reset_request(struct intel_engine_cs *engine, 3033 struct i915_request *request) 3034 { 3035 /* The guilty request will get skipped on a hung engine. 3036 * 3037 * Users of client default contexts do not rely on logical 3038 * state preserved between batches so it is safe to execute 3039 * queued requests following the hang. Non default contexts 3040 * rely on preserved state, so skipping a batch loses the 3041 * evolution of the state and it needs to be considered corrupted. 3042 * Executing more queued batches on top of corrupted state is 3043 * risky. But we take the risk by trying to advance through 3044 * the queued requests in order to make the client behaviour 3045 * more predictable around resets, by not throwing away random 3046 * amount of batches it has prepared for execution. Sophisticated 3047 * clients can use gem_reset_stats_ioctl and dma fence status 3048 * (exported via sync_file info ioctl on explicit fences) to observe 3049 * when it loses the context state and should rebuild accordingly. 3050 * 3051 * The context ban, and ultimately the client ban, mechanism are safety 3052 * valves if client submission ends up resulting in nothing more than 3053 * subsequent hangs. 3054 */ 3055 3056 if (engine_stalled(engine)) { 3057 i915_gem_context_mark_guilty(request->ctx); 3058 skip_request(request); 3059 3060 /* If this context is now banned, skip all pending requests. */ 3061 if (i915_gem_context_is_banned(request->ctx)) 3062 engine_skip_context(request); 3063 } else { 3064 /* 3065 * Since this is not the hung engine, it may have advanced 3066 * since the hang declaration. Double check by refinding 3067 * the active request at the time of the reset. 3068 */ 3069 request = i915_gem_find_active_request(engine); 3070 if (request) { 3071 i915_gem_context_mark_innocent(request->ctx); 3072 dma_fence_set_error(&request->fence, -EAGAIN); 3073 3074 /* Rewind the engine to replay the incomplete rq */ 3075 spin_lock_irq(&engine->timeline->lock); 3076 request = list_prev_entry(request, link); 3077 if (&request->link == &engine->timeline->requests) 3078 request = NULL; 3079 spin_unlock_irq(&engine->timeline->lock); 3080 } 3081 } 3082 3083 return request; 3084 } 3085 3086 void i915_gem_reset_engine(struct intel_engine_cs *engine, 3087 struct i915_request *request) 3088 { 3089 /* 3090 * Make sure this write is visible before we re-enable the interrupt 3091 * handlers on another CPU, as tasklet_enable() resolves to just 3092 * a compiler barrier which is insufficient for our purpose here. 3093 */ 3094 smp_store_mb(engine->irq_posted, 0); 3095 3096 if (request) 3097 request = i915_gem_reset_request(engine, request); 3098 3099 if (request) { 3100 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n", 3101 engine->name, request->global_seqno); 3102 } 3103 3104 /* Setup the CS to resume from the breadcrumb of the hung request */ 3105 engine->reset_hw(engine, request); 3106 } 3107 3108 void i915_gem_reset(struct drm_i915_private *dev_priv) 3109 { 3110 struct intel_engine_cs *engine; 3111 enum intel_engine_id id; 3112 3113 lockdep_assert_held(&dev_priv->drm.struct_mutex); 3114 3115 i915_retire_requests(dev_priv); 3116 3117 for_each_engine(engine, dev_priv, id) { 3118 struct i915_gem_context *ctx; 3119 3120 i915_gem_reset_engine(engine, engine->hangcheck.active_request); 3121 ctx = fetch_and_zero(&engine->last_retired_context); 3122 if (ctx) 3123 engine->context_unpin(engine, ctx); 3124 3125 /* 3126 * Ostensibily, we always want a context loaded for powersaving, 3127 * so if the engine is idle after the reset, send a request 3128 * to load our scratch kernel_context. 3129 * 3130 * More mysteriously, if we leave the engine idle after a reset, 3131 * the next userspace batch may hang, with what appears to be 3132 * an incoherent read by the CS (presumably stale TLB). An 3133 * empty request appears sufficient to paper over the glitch. 3134 */ 3135 if (intel_engine_is_idle(engine)) { 3136 struct i915_request *rq; 3137 3138 rq = i915_request_alloc(engine, 3139 dev_priv->kernel_context); 3140 if (!IS_ERR(rq)) 3141 __i915_request_add(rq, false); 3142 } 3143 } 3144 3145 i915_gem_restore_fences(dev_priv); 3146 3147 if (dev_priv->gt.awake) { 3148 intel_sanitize_gt_powersave(dev_priv); 3149 intel_enable_gt_powersave(dev_priv); 3150 if (INTEL_GEN(dev_priv) >= 6) 3151 gen6_rps_busy(dev_priv); 3152 } 3153 } 3154 3155 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine) 3156 { 3157 tasklet_enable(&engine->execlists.tasklet); 3158 kthread_unpark(engine->breadcrumbs.signaler); 3159 3160 intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL); 3161 } 3162 3163 void i915_gem_reset_finish(struct drm_i915_private *dev_priv) 3164 { 3165 struct intel_engine_cs *engine; 3166 enum intel_engine_id id; 3167 3168 lockdep_assert_held(&dev_priv->drm.struct_mutex); 3169 3170 for_each_engine(engine, dev_priv, id) { 3171 engine->hangcheck.active_request = NULL; 3172 i915_gem_reset_finish_engine(engine); 3173 } 3174 } 3175 3176 static void nop_submit_request(struct i915_request *request) 3177 { 3178 dma_fence_set_error(&request->fence, -EIO); 3179 3180 i915_request_submit(request); 3181 } 3182 3183 static void nop_complete_submit_request(struct i915_request *request) 3184 { 3185 unsigned long flags; 3186 3187 dma_fence_set_error(&request->fence, -EIO); 3188 3189 spin_lock_irqsave(&request->engine->timeline->lock, flags); 3190 __i915_request_submit(request); 3191 intel_engine_init_global_seqno(request->engine, request->global_seqno); 3192 spin_unlock_irqrestore(&request->engine->timeline->lock, flags); 3193 } 3194 3195 void i915_gem_set_wedged(struct drm_i915_private *i915) 3196 { 3197 struct intel_engine_cs *engine; 3198 enum intel_engine_id id; 3199 3200 if (drm_debug & DRM_UT_DRIVER) { 3201 struct drm_printer p = drm_debug_printer(__func__); 3202 3203 for_each_engine(engine, i915, id) 3204 intel_engine_dump(engine, &p, "%s\n", engine->name); 3205 } 3206 3207 set_bit(I915_WEDGED, &i915->gpu_error.flags); 3208 smp_mb__after_atomic(); 3209 3210 /* 3211 * First, stop submission to hw, but do not yet complete requests by 3212 * rolling the global seqno forward (since this would complete requests 3213 * for which we haven't set the fence error to EIO yet). 3214 */ 3215 for_each_engine(engine, i915, id) { 3216 i915_gem_reset_prepare_engine(engine); 3217 engine->submit_request = nop_submit_request; 3218 } 3219 3220 /* 3221 * Make sure no one is running the old callback before we proceed with 3222 * cancelling requests and resetting the completion tracking. Otherwise 3223 * we might submit a request to the hardware which never completes. 3224 */ 3225 synchronize_rcu(); 3226 3227 for_each_engine(engine, i915, id) { 3228 /* Mark all executing requests as skipped */ 3229 engine->cancel_requests(engine); 3230 3231 /* 3232 * Only once we've force-cancelled all in-flight requests can we 3233 * start to complete all requests. 3234 */ 3235 engine->submit_request = nop_complete_submit_request; 3236 engine->schedule = NULL; 3237 } 3238 3239 i915->caps.scheduler = 0; 3240 3241 /* 3242 * Make sure no request can slip through without getting completed by 3243 * either this call here to intel_engine_init_global_seqno, or the one 3244 * in nop_complete_submit_request. 3245 */ 3246 synchronize_rcu(); 3247 3248 for_each_engine(engine, i915, id) { 3249 unsigned long flags; 3250 3251 /* 3252 * Mark all pending requests as complete so that any concurrent 3253 * (lockless) lookup doesn't try and wait upon the request as we 3254 * reset it. 3255 */ 3256 spin_lock_irqsave(&engine->timeline->lock, flags); 3257 intel_engine_init_global_seqno(engine, 3258 intel_engine_last_submit(engine)); 3259 spin_unlock_irqrestore(&engine->timeline->lock, flags); 3260 3261 i915_gem_reset_finish_engine(engine); 3262 } 3263 3264 wake_up_all(&i915->gpu_error.reset_queue); 3265 } 3266 3267 bool i915_gem_unset_wedged(struct drm_i915_private *i915) 3268 { 3269 struct i915_gem_timeline *tl; 3270 int i; 3271 3272 lockdep_assert_held(&i915->drm.struct_mutex); 3273 if (!test_bit(I915_WEDGED, &i915->gpu_error.flags)) 3274 return true; 3275 3276 /* Before unwedging, make sure that all pending operations 3277 * are flushed and errored out - we may have requests waiting upon 3278 * third party fences. We marked all inflight requests as EIO, and 3279 * every execbuf since returned EIO, for consistency we want all 3280 * the currently pending requests to also be marked as EIO, which 3281 * is done inside our nop_submit_request - and so we must wait. 3282 * 3283 * No more can be submitted until we reset the wedged bit. 3284 */ 3285 list_for_each_entry(tl, &i915->gt.timelines, link) { 3286 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) { 3287 struct i915_request *rq; 3288 3289 rq = i915_gem_active_peek(&tl->engine[i].last_request, 3290 &i915->drm.struct_mutex); 3291 if (!rq) 3292 continue; 3293 3294 /* We can't use our normal waiter as we want to 3295 * avoid recursively trying to handle the current 3296 * reset. The basic dma_fence_default_wait() installs 3297 * a callback for dma_fence_signal(), which is 3298 * triggered by our nop handler (indirectly, the 3299 * callback enables the signaler thread which is 3300 * woken by the nop_submit_request() advancing the seqno 3301 * and when the seqno passes the fence, the signaler 3302 * then signals the fence waking us up). 3303 */ 3304 if (dma_fence_default_wait(&rq->fence, true, 3305 MAX_SCHEDULE_TIMEOUT) < 0) 3306 return false; 3307 } 3308 } 3309 3310 /* Undo nop_submit_request. We prevent all new i915 requests from 3311 * being queued (by disallowing execbuf whilst wedged) so having 3312 * waited for all active requests above, we know the system is idle 3313 * and do not have to worry about a thread being inside 3314 * engine->submit_request() as we swap over. So unlike installing 3315 * the nop_submit_request on reset, we can do this from normal 3316 * context and do not require stop_machine(). 3317 */ 3318 intel_engines_reset_default_submission(i915); 3319 i915_gem_contexts_lost(i915); 3320 3321 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */ 3322 clear_bit(I915_WEDGED, &i915->gpu_error.flags); 3323 3324 return true; 3325 } 3326 3327 static void 3328 i915_gem_retire_work_handler(struct work_struct *work) 3329 { 3330 struct drm_i915_private *dev_priv = 3331 container_of(work, typeof(*dev_priv), gt.retire_work.work); 3332 struct drm_device *dev = &dev_priv->drm; 3333 3334 /* Come back later if the device is busy... */ 3335 if (mutex_trylock(&dev->struct_mutex)) { 3336 i915_retire_requests(dev_priv); 3337 mutex_unlock(&dev->struct_mutex); 3338 } 3339 3340 /* 3341 * Keep the retire handler running until we are finally idle. 3342 * We do not need to do this test under locking as in the worst-case 3343 * we queue the retire worker once too often. 3344 */ 3345 if (READ_ONCE(dev_priv->gt.awake)) 3346 queue_delayed_work(dev_priv->wq, 3347 &dev_priv->gt.retire_work, 3348 round_jiffies_up_relative(HZ)); 3349 } 3350 3351 static void shrink_caches(struct drm_i915_private *i915) 3352 { 3353 /* 3354 * kmem_cache_shrink() discards empty slabs and reorders partially 3355 * filled slabs to prioritise allocating from the mostly full slabs, 3356 * with the aim of reducing fragmentation. 3357 */ 3358 kmem_cache_shrink(i915->priorities); 3359 kmem_cache_shrink(i915->dependencies); 3360 kmem_cache_shrink(i915->requests); 3361 kmem_cache_shrink(i915->luts); 3362 kmem_cache_shrink(i915->vmas); 3363 kmem_cache_shrink(i915->objects); 3364 } 3365 3366 struct sleep_rcu_work { 3367 union { 3368 struct rcu_head rcu; 3369 struct work_struct work; 3370 }; 3371 struct drm_i915_private *i915; 3372 unsigned int epoch; 3373 }; 3374 3375 static inline bool 3376 same_epoch(struct drm_i915_private *i915, unsigned int epoch) 3377 { 3378 /* 3379 * There is a small chance that the epoch wrapped since we started 3380 * sleeping. If we assume that epoch is at least a u32, then it will 3381 * take at least 2^32 * 100ms for it to wrap, or about 326 years. 3382 */ 3383 return epoch == READ_ONCE(i915->gt.epoch); 3384 } 3385 3386 static void __sleep_work(struct work_struct *work) 3387 { 3388 struct sleep_rcu_work *s = container_of(work, typeof(*s), work); 3389 struct drm_i915_private *i915 = s->i915; 3390 unsigned int epoch = s->epoch; 3391 3392 kfree(s); 3393 if (same_epoch(i915, epoch)) 3394 shrink_caches(i915); 3395 } 3396 3397 static void __sleep_rcu(struct rcu_head *rcu) 3398 { 3399 struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu); 3400 struct drm_i915_private *i915 = s->i915; 3401 3402 if (same_epoch(i915, s->epoch)) { 3403 INIT_WORK(&s->work, __sleep_work); 3404 queue_work(i915->wq, &s->work); 3405 } else { 3406 kfree(s); 3407 } 3408 } 3409 3410 static inline bool 3411 new_requests_since_last_retire(const struct drm_i915_private *i915) 3412 { 3413 return (READ_ONCE(i915->gt.active_requests) || 3414 work_pending(&i915->gt.idle_work.work)); 3415 } 3416 3417 static void 3418 i915_gem_idle_work_handler(struct work_struct *work) 3419 { 3420 struct drm_i915_private *dev_priv = 3421 container_of(work, typeof(*dev_priv), gt.idle_work.work); 3422 unsigned int epoch = I915_EPOCH_INVALID; 3423 bool rearm_hangcheck; 3424 3425 if (!READ_ONCE(dev_priv->gt.awake)) 3426 return; 3427 3428 /* 3429 * Wait for last execlists context complete, but bail out in case a 3430 * new request is submitted. As we don't trust the hardware, we 3431 * continue on if the wait times out. This is necessary to allow 3432 * the machine to suspend even if the hardware dies, and we will 3433 * try to recover in resume (after depriving the hardware of power, 3434 * it may be in a better mmod). 3435 */ 3436 __wait_for(if (new_requests_since_last_retire(dev_priv)) return, 3437 intel_engines_are_idle(dev_priv), 3438 I915_IDLE_ENGINES_TIMEOUT * 1000, 3439 10, 500); 3440 3441 rearm_hangcheck = 3442 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work); 3443 3444 if (!mutex_trylock(&dev_priv->drm.struct_mutex)) { 3445 /* Currently busy, come back later */ 3446 mod_delayed_work(dev_priv->wq, 3447 &dev_priv->gt.idle_work, 3448 msecs_to_jiffies(50)); 3449 goto out_rearm; 3450 } 3451 3452 /* 3453 * New request retired after this work handler started, extend active 3454 * period until next instance of the work. 3455 */ 3456 if (new_requests_since_last_retire(dev_priv)) 3457 goto out_unlock; 3458 3459 /* 3460 * Be paranoid and flush a concurrent interrupt to make sure 3461 * we don't reactivate any irq tasklets after parking. 3462 * 3463 * FIXME: Note that even though we have waited for execlists to be idle, 3464 * there may still be an in-flight interrupt even though the CSB 3465 * is now empty. synchronize_irq() makes sure that a residual interrupt 3466 * is completed before we continue, but it doesn't prevent the HW from 3467 * raising a spurious interrupt later. To complete the shield we should 3468 * coordinate disabling the CS irq with flushing the interrupts. 3469 */ 3470 synchronize_irq(dev_priv->drm.irq); 3471 3472 intel_engines_park(dev_priv); 3473 i915_gem_timelines_park(dev_priv); 3474 3475 i915_pmu_gt_parked(dev_priv); 3476 3477 GEM_BUG_ON(!dev_priv->gt.awake); 3478 dev_priv->gt.awake = false; 3479 epoch = dev_priv->gt.epoch; 3480 GEM_BUG_ON(epoch == I915_EPOCH_INVALID); 3481 rearm_hangcheck = false; 3482 3483 if (INTEL_GEN(dev_priv) >= 6) 3484 gen6_rps_idle(dev_priv); 3485 3486 intel_display_power_put(dev_priv, POWER_DOMAIN_GT_IRQ); 3487 3488 intel_runtime_pm_put(dev_priv); 3489 out_unlock: 3490 mutex_unlock(&dev_priv->drm.struct_mutex); 3491 3492 out_rearm: 3493 if (rearm_hangcheck) { 3494 GEM_BUG_ON(!dev_priv->gt.awake); 3495 i915_queue_hangcheck(dev_priv); 3496 } 3497 3498 /* 3499 * When we are idle, it is an opportune time to reap our caches. 3500 * However, we have many objects that utilise RCU and the ordered 3501 * i915->wq that this work is executing on. To try and flush any 3502 * pending frees now we are idle, we first wait for an RCU grace 3503 * period, and then queue a task (that will run last on the wq) to 3504 * shrink and re-optimize the caches. 3505 */ 3506 if (same_epoch(dev_priv, epoch)) { 3507 struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL); 3508 if (s) { 3509 s->i915 = dev_priv; 3510 s->epoch = epoch; 3511 call_rcu(&s->rcu, __sleep_rcu); 3512 } 3513 } 3514 } 3515 3516 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file) 3517 { 3518 struct drm_i915_private *i915 = to_i915(gem->dev); 3519 struct drm_i915_gem_object *obj = to_intel_bo(gem); 3520 struct drm_i915_file_private *fpriv = file->driver_priv; 3521 struct i915_lut_handle *lut, *ln; 3522 3523 mutex_lock(&i915->drm.struct_mutex); 3524 3525 list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) { 3526 struct i915_gem_context *ctx = lut->ctx; 3527 struct i915_vma *vma; 3528 3529 GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF)); 3530 if (ctx->file_priv != fpriv) 3531 continue; 3532 3533 vma = radix_tree_delete(&ctx->handles_vma, lut->handle); 3534 GEM_BUG_ON(vma->obj != obj); 3535 3536 /* We allow the process to have multiple handles to the same 3537 * vma, in the same fd namespace, by virtue of flink/open. 3538 */ 3539 GEM_BUG_ON(!vma->open_count); 3540 if (!--vma->open_count && !i915_vma_is_ggtt(vma)) 3541 i915_vma_close(vma); 3542 3543 list_del(&lut->obj_link); 3544 list_del(&lut->ctx_link); 3545 3546 kmem_cache_free(i915->luts, lut); 3547 __i915_gem_object_release_unless_active(obj); 3548 } 3549 3550 mutex_unlock(&i915->drm.struct_mutex); 3551 } 3552 3553 static unsigned long to_wait_timeout(s64 timeout_ns) 3554 { 3555 if (timeout_ns < 0) 3556 return MAX_SCHEDULE_TIMEOUT; 3557 3558 if (timeout_ns == 0) 3559 return 0; 3560 3561 return nsecs_to_jiffies_timeout(timeout_ns); 3562 } 3563 3564 /** 3565 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT 3566 * @dev: drm device pointer 3567 * @data: ioctl data blob 3568 * @file: drm file pointer 3569 * 3570 * Returns 0 if successful, else an error is returned with the remaining time in 3571 * the timeout parameter. 3572 * -ETIME: object is still busy after timeout 3573 * -ERESTARTSYS: signal interrupted the wait 3574 * -ENONENT: object doesn't exist 3575 * Also possible, but rare: 3576 * -EAGAIN: incomplete, restart syscall 3577 * -ENOMEM: damn 3578 * -ENODEV: Internal IRQ fail 3579 * -E?: The add request failed 3580 * 3581 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any 3582 * non-zero timeout parameter the wait ioctl will wait for the given number of 3583 * nanoseconds on an object becoming unbusy. Since the wait itself does so 3584 * without holding struct_mutex the object may become re-busied before this 3585 * function completes. A similar but shorter * race condition exists in the busy 3586 * ioctl 3587 */ 3588 int 3589 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file) 3590 { 3591 struct drm_i915_gem_wait *args = data; 3592 struct drm_i915_gem_object *obj; 3593 ktime_t start; 3594 long ret; 3595 3596 if (args->flags != 0) 3597 return -EINVAL; 3598 3599 obj = i915_gem_object_lookup(file, args->bo_handle); 3600 if (!obj) 3601 return -ENOENT; 3602 3603 start = ktime_get(); 3604 3605 ret = i915_gem_object_wait(obj, 3606 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL, 3607 to_wait_timeout(args->timeout_ns), 3608 to_rps_client(file)); 3609 3610 if (args->timeout_ns > 0) { 3611 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start)); 3612 if (args->timeout_ns < 0) 3613 args->timeout_ns = 0; 3614 3615 /* 3616 * Apparently ktime isn't accurate enough and occasionally has a 3617 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch 3618 * things up to make the test happy. We allow up to 1 jiffy. 3619 * 3620 * This is a regression from the timespec->ktime conversion. 3621 */ 3622 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns)) 3623 args->timeout_ns = 0; 3624 3625 /* Asked to wait beyond the jiffie/scheduler precision? */ 3626 if (ret == -ETIME && args->timeout_ns) 3627 ret = -EAGAIN; 3628 } 3629 3630 i915_gem_object_put(obj); 3631 return ret; 3632 } 3633 3634 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags) 3635 { 3636 int ret, i; 3637 3638 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) { 3639 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags); 3640 if (ret) 3641 return ret; 3642 } 3643 3644 return 0; 3645 } 3646 3647 static int wait_for_engines(struct drm_i915_private *i915) 3648 { 3649 if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) { 3650 dev_err(i915->drm.dev, 3651 "Failed to idle engines, declaring wedged!\n"); 3652 if (drm_debug & DRM_UT_DRIVER) { 3653 struct drm_printer p = drm_debug_printer(__func__); 3654 struct intel_engine_cs *engine; 3655 enum intel_engine_id id; 3656 3657 for_each_engine(engine, i915, id) 3658 intel_engine_dump(engine, &p, 3659 "%s\n", engine->name); 3660 } 3661 3662 i915_gem_set_wedged(i915); 3663 return -EIO; 3664 } 3665 3666 return 0; 3667 } 3668 3669 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags) 3670 { 3671 int ret; 3672 3673 /* If the device is asleep, we have no requests outstanding */ 3674 if (!READ_ONCE(i915->gt.awake)) 3675 return 0; 3676 3677 if (flags & I915_WAIT_LOCKED) { 3678 struct i915_gem_timeline *tl; 3679 3680 lockdep_assert_held(&i915->drm.struct_mutex); 3681 3682 list_for_each_entry(tl, &i915->gt.timelines, link) { 3683 ret = wait_for_timeline(tl, flags); 3684 if (ret) 3685 return ret; 3686 } 3687 i915_retire_requests(i915); 3688 3689 ret = wait_for_engines(i915); 3690 } else { 3691 ret = wait_for_timeline(&i915->gt.global_timeline, flags); 3692 } 3693 3694 return ret; 3695 } 3696 3697 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj) 3698 { 3699 /* 3700 * We manually flush the CPU domain so that we can override and 3701 * force the flush for the display, and perform it asyncrhonously. 3702 */ 3703 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); 3704 if (obj->cache_dirty) 3705 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE); 3706 obj->write_domain = 0; 3707 } 3708 3709 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj) 3710 { 3711 if (!READ_ONCE(obj->pin_global)) 3712 return; 3713 3714 mutex_lock(&obj->base.dev->struct_mutex); 3715 __i915_gem_object_flush_for_display(obj); 3716 mutex_unlock(&obj->base.dev->struct_mutex); 3717 } 3718 3719 /** 3720 * Moves a single object to the WC read, and possibly write domain. 3721 * @obj: object to act on 3722 * @write: ask for write access or read only 3723 * 3724 * This function returns when the move is complete, including waiting on 3725 * flushes to occur. 3726 */ 3727 int 3728 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write) 3729 { 3730 int ret; 3731 3732 lockdep_assert_held(&obj->base.dev->struct_mutex); 3733 3734 ret = i915_gem_object_wait(obj, 3735 I915_WAIT_INTERRUPTIBLE | 3736 I915_WAIT_LOCKED | 3737 (write ? I915_WAIT_ALL : 0), 3738 MAX_SCHEDULE_TIMEOUT, 3739 NULL); 3740 if (ret) 3741 return ret; 3742 3743 if (obj->write_domain == I915_GEM_DOMAIN_WC) 3744 return 0; 3745 3746 /* Flush and acquire obj->pages so that we are coherent through 3747 * direct access in memory with previous cached writes through 3748 * shmemfs and that our cache domain tracking remains valid. 3749 * For example, if the obj->filp was moved to swap without us 3750 * being notified and releasing the pages, we would mistakenly 3751 * continue to assume that the obj remained out of the CPU cached 3752 * domain. 3753 */ 3754 ret = i915_gem_object_pin_pages(obj); 3755 if (ret) 3756 return ret; 3757 3758 flush_write_domain(obj, ~I915_GEM_DOMAIN_WC); 3759 3760 /* Serialise direct access to this object with the barriers for 3761 * coherent writes from the GPU, by effectively invalidating the 3762 * WC domain upon first access. 3763 */ 3764 if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0) 3765 mb(); 3766 3767 /* It should now be out of any other write domains, and we can update 3768 * the domain values for our changes. 3769 */ 3770 GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0); 3771 obj->read_domains |= I915_GEM_DOMAIN_WC; 3772 if (write) { 3773 obj->read_domains = I915_GEM_DOMAIN_WC; 3774 obj->write_domain = I915_GEM_DOMAIN_WC; 3775 obj->mm.dirty = true; 3776 } 3777 3778 i915_gem_object_unpin_pages(obj); 3779 return 0; 3780 } 3781 3782 /** 3783 * Moves a single object to the GTT read, and possibly write domain. 3784 * @obj: object to act on 3785 * @write: ask for write access or read only 3786 * 3787 * This function returns when the move is complete, including waiting on 3788 * flushes to occur. 3789 */ 3790 int 3791 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write) 3792 { 3793 int ret; 3794 3795 lockdep_assert_held(&obj->base.dev->struct_mutex); 3796 3797 ret = i915_gem_object_wait(obj, 3798 I915_WAIT_INTERRUPTIBLE | 3799 I915_WAIT_LOCKED | 3800 (write ? I915_WAIT_ALL : 0), 3801 MAX_SCHEDULE_TIMEOUT, 3802 NULL); 3803 if (ret) 3804 return ret; 3805 3806 if (obj->write_domain == I915_GEM_DOMAIN_GTT) 3807 return 0; 3808 3809 /* Flush and acquire obj->pages so that we are coherent through 3810 * direct access in memory with previous cached writes through 3811 * shmemfs and that our cache domain tracking remains valid. 3812 * For example, if the obj->filp was moved to swap without us 3813 * being notified and releasing the pages, we would mistakenly 3814 * continue to assume that the obj remained out of the CPU cached 3815 * domain. 3816 */ 3817 ret = i915_gem_object_pin_pages(obj); 3818 if (ret) 3819 return ret; 3820 3821 flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT); 3822 3823 /* Serialise direct access to this object with the barriers for 3824 * coherent writes from the GPU, by effectively invalidating the 3825 * GTT domain upon first access. 3826 */ 3827 if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0) 3828 mb(); 3829 3830 /* It should now be out of any other write domains, and we can update 3831 * the domain values for our changes. 3832 */ 3833 GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0); 3834 obj->read_domains |= I915_GEM_DOMAIN_GTT; 3835 if (write) { 3836 obj->read_domains = I915_GEM_DOMAIN_GTT; 3837 obj->write_domain = I915_GEM_DOMAIN_GTT; 3838 obj->mm.dirty = true; 3839 } 3840 3841 i915_gem_object_unpin_pages(obj); 3842 return 0; 3843 } 3844 3845 /** 3846 * Changes the cache-level of an object across all VMA. 3847 * @obj: object to act on 3848 * @cache_level: new cache level to set for the object 3849 * 3850 * After this function returns, the object will be in the new cache-level 3851 * across all GTT and the contents of the backing storage will be coherent, 3852 * with respect to the new cache-level. In order to keep the backing storage 3853 * coherent for all users, we only allow a single cache level to be set 3854 * globally on the object and prevent it from being changed whilst the 3855 * hardware is reading from the object. That is if the object is currently 3856 * on the scanout it will be set to uncached (or equivalent display 3857 * cache coherency) and all non-MOCS GPU access will also be uncached so 3858 * that all direct access to the scanout remains coherent. 3859 */ 3860 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3861 enum i915_cache_level cache_level) 3862 { 3863 struct i915_vma *vma; 3864 int ret; 3865 3866 lockdep_assert_held(&obj->base.dev->struct_mutex); 3867 3868 if (obj->cache_level == cache_level) 3869 return 0; 3870 3871 /* Inspect the list of currently bound VMA and unbind any that would 3872 * be invalid given the new cache-level. This is principally to 3873 * catch the issue of the CS prefetch crossing page boundaries and 3874 * reading an invalid PTE on older architectures. 3875 */ 3876 restart: 3877 list_for_each_entry(vma, &obj->vma_list, obj_link) { 3878 if (!drm_mm_node_allocated(&vma->node)) 3879 continue; 3880 3881 if (i915_vma_is_pinned(vma)) { 3882 DRM_DEBUG("can not change the cache level of pinned objects\n"); 3883 return -EBUSY; 3884 } 3885 3886 if (!i915_vma_is_closed(vma) && 3887 i915_gem_valid_gtt_space(vma, cache_level)) 3888 continue; 3889 3890 ret = i915_vma_unbind(vma); 3891 if (ret) 3892 return ret; 3893 3894 /* As unbinding may affect other elements in the 3895 * obj->vma_list (due to side-effects from retiring 3896 * an active vma), play safe and restart the iterator. 3897 */ 3898 goto restart; 3899 } 3900 3901 /* We can reuse the existing drm_mm nodes but need to change the 3902 * cache-level on the PTE. We could simply unbind them all and 3903 * rebind with the correct cache-level on next use. However since 3904 * we already have a valid slot, dma mapping, pages etc, we may as 3905 * rewrite the PTE in the belief that doing so tramples upon less 3906 * state and so involves less work. 3907 */ 3908 if (obj->bind_count) { 3909 /* Before we change the PTE, the GPU must not be accessing it. 3910 * If we wait upon the object, we know that all the bound 3911 * VMA are no longer active. 3912 */ 3913 ret = i915_gem_object_wait(obj, 3914 I915_WAIT_INTERRUPTIBLE | 3915 I915_WAIT_LOCKED | 3916 I915_WAIT_ALL, 3917 MAX_SCHEDULE_TIMEOUT, 3918 NULL); 3919 if (ret) 3920 return ret; 3921 3922 if (!HAS_LLC(to_i915(obj->base.dev)) && 3923 cache_level != I915_CACHE_NONE) { 3924 /* Access to snoopable pages through the GTT is 3925 * incoherent and on some machines causes a hard 3926 * lockup. Relinquish the CPU mmaping to force 3927 * userspace to refault in the pages and we can 3928 * then double check if the GTT mapping is still 3929 * valid for that pointer access. 3930 */ 3931 i915_gem_release_mmap(obj); 3932 3933 /* As we no longer need a fence for GTT access, 3934 * we can relinquish it now (and so prevent having 3935 * to steal a fence from someone else on the next 3936 * fence request). Note GPU activity would have 3937 * dropped the fence as all snoopable access is 3938 * supposed to be linear. 3939 */ 3940 for_each_ggtt_vma(vma, obj) { 3941 ret = i915_vma_put_fence(vma); 3942 if (ret) 3943 return ret; 3944 } 3945 } else { 3946 /* We either have incoherent backing store and 3947 * so no GTT access or the architecture is fully 3948 * coherent. In such cases, existing GTT mmaps 3949 * ignore the cache bit in the PTE and we can 3950 * rewrite it without confusing the GPU or having 3951 * to force userspace to fault back in its mmaps. 3952 */ 3953 } 3954 3955 list_for_each_entry(vma, &obj->vma_list, obj_link) { 3956 if (!drm_mm_node_allocated(&vma->node)) 3957 continue; 3958 3959 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE); 3960 if (ret) 3961 return ret; 3962 } 3963 } 3964 3965 list_for_each_entry(vma, &obj->vma_list, obj_link) 3966 vma->node.color = cache_level; 3967 i915_gem_object_set_cache_coherency(obj, cache_level); 3968 obj->cache_dirty = true; /* Always invalidate stale cachelines */ 3969 3970 return 0; 3971 } 3972 3973 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 3974 struct drm_file *file) 3975 { 3976 struct drm_i915_gem_caching *args = data; 3977 struct drm_i915_gem_object *obj; 3978 int err = 0; 3979 3980 rcu_read_lock(); 3981 obj = i915_gem_object_lookup_rcu(file, args->handle); 3982 if (!obj) { 3983 err = -ENOENT; 3984 goto out; 3985 } 3986 3987 switch (obj->cache_level) { 3988 case I915_CACHE_LLC: 3989 case I915_CACHE_L3_LLC: 3990 args->caching = I915_CACHING_CACHED; 3991 break; 3992 3993 case I915_CACHE_WT: 3994 args->caching = I915_CACHING_DISPLAY; 3995 break; 3996 3997 default: 3998 args->caching = I915_CACHING_NONE; 3999 break; 4000 } 4001 out: 4002 rcu_read_unlock(); 4003 return err; 4004 } 4005 4006 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 4007 struct drm_file *file) 4008 { 4009 struct drm_i915_private *i915 = to_i915(dev); 4010 struct drm_i915_gem_caching *args = data; 4011 struct drm_i915_gem_object *obj; 4012 enum i915_cache_level level; 4013 int ret = 0; 4014 4015 switch (args->caching) { 4016 case I915_CACHING_NONE: 4017 level = I915_CACHE_NONE; 4018 break; 4019 case I915_CACHING_CACHED: 4020 /* 4021 * Due to a HW issue on BXT A stepping, GPU stores via a 4022 * snooped mapping may leave stale data in a corresponding CPU 4023 * cacheline, whereas normally such cachelines would get 4024 * invalidated. 4025 */ 4026 if (!HAS_LLC(i915) && !HAS_SNOOP(i915)) 4027 return -ENODEV; 4028 4029 level = I915_CACHE_LLC; 4030 break; 4031 case I915_CACHING_DISPLAY: 4032 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE; 4033 break; 4034 default: 4035 return -EINVAL; 4036 } 4037 4038 obj = i915_gem_object_lookup(file, args->handle); 4039 if (!obj) 4040 return -ENOENT; 4041 4042 /* 4043 * The caching mode of proxy object is handled by its generator, and 4044 * not allowed to be changed by userspace. 4045 */ 4046 if (i915_gem_object_is_proxy(obj)) { 4047 ret = -ENXIO; 4048 goto out; 4049 } 4050 4051 if (obj->cache_level == level) 4052 goto out; 4053 4054 ret = i915_gem_object_wait(obj, 4055 I915_WAIT_INTERRUPTIBLE, 4056 MAX_SCHEDULE_TIMEOUT, 4057 to_rps_client(file)); 4058 if (ret) 4059 goto out; 4060 4061 ret = i915_mutex_lock_interruptible(dev); 4062 if (ret) 4063 goto out; 4064 4065 ret = i915_gem_object_set_cache_level(obj, level); 4066 mutex_unlock(&dev->struct_mutex); 4067 4068 out: 4069 i915_gem_object_put(obj); 4070 return ret; 4071 } 4072 4073 /* 4074 * Prepare buffer for display plane (scanout, cursors, etc). 4075 * Can be called from an uninterruptible phase (modesetting) and allows 4076 * any flushes to be pipelined (for pageflips). 4077 */ 4078 struct i915_vma * 4079 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 4080 u32 alignment, 4081 const struct i915_ggtt_view *view, 4082 unsigned int flags) 4083 { 4084 struct i915_vma *vma; 4085 int ret; 4086 4087 lockdep_assert_held(&obj->base.dev->struct_mutex); 4088 4089 /* Mark the global pin early so that we account for the 4090 * display coherency whilst setting up the cache domains. 4091 */ 4092 obj->pin_global++; 4093 4094 /* The display engine is not coherent with the LLC cache on gen6. As 4095 * a result, we make sure that the pinning that is about to occur is 4096 * done with uncached PTEs. This is lowest common denominator for all 4097 * chipsets. 4098 * 4099 * However for gen6+, we could do better by using the GFDT bit instead 4100 * of uncaching, which would allow us to flush all the LLC-cached data 4101 * with that bit in the PTE to main memory with just one PIPE_CONTROL. 4102 */ 4103 ret = i915_gem_object_set_cache_level(obj, 4104 HAS_WT(to_i915(obj->base.dev)) ? 4105 I915_CACHE_WT : I915_CACHE_NONE); 4106 if (ret) { 4107 vma = ERR_PTR(ret); 4108 goto err_unpin_global; 4109 } 4110 4111 /* As the user may map the buffer once pinned in the display plane 4112 * (e.g. libkms for the bootup splash), we have to ensure that we 4113 * always use map_and_fenceable for all scanout buffers. However, 4114 * it may simply be too big to fit into mappable, in which case 4115 * put it anyway and hope that userspace can cope (but always first 4116 * try to preserve the existing ABI). 4117 */ 4118 vma = ERR_PTR(-ENOSPC); 4119 if ((flags & PIN_MAPPABLE) == 0 && 4120 (!view || view->type == I915_GGTT_VIEW_NORMAL)) 4121 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, 4122 flags | 4123 PIN_MAPPABLE | 4124 PIN_NONBLOCK); 4125 if (IS_ERR(vma)) 4126 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags); 4127 if (IS_ERR(vma)) 4128 goto err_unpin_global; 4129 4130 vma->display_alignment = max_t(u64, vma->display_alignment, alignment); 4131 4132 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */ 4133 __i915_gem_object_flush_for_display(obj); 4134 intel_fb_obj_flush(obj, ORIGIN_DIRTYFB); 4135 4136 /* It should now be out of any other write domains, and we can update 4137 * the domain values for our changes. 4138 */ 4139 obj->read_domains |= I915_GEM_DOMAIN_GTT; 4140 4141 return vma; 4142 4143 err_unpin_global: 4144 obj->pin_global--; 4145 return vma; 4146 } 4147 4148 void 4149 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma) 4150 { 4151 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex); 4152 4153 if (WARN_ON(vma->obj->pin_global == 0)) 4154 return; 4155 4156 if (--vma->obj->pin_global == 0) 4157 vma->display_alignment = I915_GTT_MIN_ALIGNMENT; 4158 4159 /* Bump the LRU to try and avoid premature eviction whilst flipping */ 4160 i915_gem_object_bump_inactive_ggtt(vma->obj); 4161 4162 i915_vma_unpin(vma); 4163 } 4164 4165 /** 4166 * Moves a single object to the CPU read, and possibly write domain. 4167 * @obj: object to act on 4168 * @write: requesting write or read-only access 4169 * 4170 * This function returns when the move is complete, including waiting on 4171 * flushes to occur. 4172 */ 4173 int 4174 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write) 4175 { 4176 int ret; 4177 4178 lockdep_assert_held(&obj->base.dev->struct_mutex); 4179 4180 ret = i915_gem_object_wait(obj, 4181 I915_WAIT_INTERRUPTIBLE | 4182 I915_WAIT_LOCKED | 4183 (write ? I915_WAIT_ALL : 0), 4184 MAX_SCHEDULE_TIMEOUT, 4185 NULL); 4186 if (ret) 4187 return ret; 4188 4189 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); 4190 4191 /* Flush the CPU cache if it's still invalid. */ 4192 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) { 4193 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC); 4194 obj->read_domains |= I915_GEM_DOMAIN_CPU; 4195 } 4196 4197 /* It should now be out of any other write domains, and we can update 4198 * the domain values for our changes. 4199 */ 4200 GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU); 4201 4202 /* If we're writing through the CPU, then the GPU read domains will 4203 * need to be invalidated at next use. 4204 */ 4205 if (write) 4206 __start_cpu_write(obj); 4207 4208 return 0; 4209 } 4210 4211 /* Throttle our rendering by waiting until the ring has completed our requests 4212 * emitted over 20 msec ago. 4213 * 4214 * Note that if we were to use the current jiffies each time around the loop, 4215 * we wouldn't escape the function with any frames outstanding if the time to 4216 * render a frame was over 20ms. 4217 * 4218 * This should get us reasonable parallelism between CPU and GPU but also 4219 * relatively low latency when blocking on a particular request to finish. 4220 */ 4221 static int 4222 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file) 4223 { 4224 struct drm_i915_private *dev_priv = to_i915(dev); 4225 struct drm_i915_file_private *file_priv = file->driver_priv; 4226 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES; 4227 struct i915_request *request, *target = NULL; 4228 long ret; 4229 4230 /* ABI: return -EIO if already wedged */ 4231 if (i915_terminally_wedged(&dev_priv->gpu_error)) 4232 return -EIO; 4233 4234 spin_lock(&file_priv->mm.lock); 4235 list_for_each_entry(request, &file_priv->mm.request_list, client_link) { 4236 if (time_after_eq(request->emitted_jiffies, recent_enough)) 4237 break; 4238 4239 if (target) { 4240 list_del(&target->client_link); 4241 target->file_priv = NULL; 4242 } 4243 4244 target = request; 4245 } 4246 if (target) 4247 i915_request_get(target); 4248 spin_unlock(&file_priv->mm.lock); 4249 4250 if (target == NULL) 4251 return 0; 4252 4253 ret = i915_request_wait(target, 4254 I915_WAIT_INTERRUPTIBLE, 4255 MAX_SCHEDULE_TIMEOUT); 4256 i915_request_put(target); 4257 4258 return ret < 0 ? ret : 0; 4259 } 4260 4261 struct i915_vma * 4262 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, 4263 const struct i915_ggtt_view *view, 4264 u64 size, 4265 u64 alignment, 4266 u64 flags) 4267 { 4268 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 4269 struct i915_address_space *vm = &dev_priv->ggtt.base; 4270 struct i915_vma *vma; 4271 int ret; 4272 4273 lockdep_assert_held(&obj->base.dev->struct_mutex); 4274 4275 if (flags & PIN_MAPPABLE && 4276 (!view || view->type == I915_GGTT_VIEW_NORMAL)) { 4277 /* If the required space is larger than the available 4278 * aperture, we will not able to find a slot for the 4279 * object and unbinding the object now will be in 4280 * vain. Worse, doing so may cause us to ping-pong 4281 * the object in and out of the Global GTT and 4282 * waste a lot of cycles under the mutex. 4283 */ 4284 if (obj->base.size > dev_priv->ggtt.mappable_end) 4285 return ERR_PTR(-E2BIG); 4286 4287 /* If NONBLOCK is set the caller is optimistically 4288 * trying to cache the full object within the mappable 4289 * aperture, and *must* have a fallback in place for 4290 * situations where we cannot bind the object. We 4291 * can be a little more lax here and use the fallback 4292 * more often to avoid costly migrations of ourselves 4293 * and other objects within the aperture. 4294 * 4295 * Half-the-aperture is used as a simple heuristic. 4296 * More interesting would to do search for a free 4297 * block prior to making the commitment to unbind. 4298 * That caters for the self-harm case, and with a 4299 * little more heuristics (e.g. NOFAULT, NOEVICT) 4300 * we could try to minimise harm to others. 4301 */ 4302 if (flags & PIN_NONBLOCK && 4303 obj->base.size > dev_priv->ggtt.mappable_end / 2) 4304 return ERR_PTR(-ENOSPC); 4305 } 4306 4307 vma = i915_vma_instance(obj, vm, view); 4308 if (unlikely(IS_ERR(vma))) 4309 return vma; 4310 4311 if (i915_vma_misplaced(vma, size, alignment, flags)) { 4312 if (flags & PIN_NONBLOCK) { 4313 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) 4314 return ERR_PTR(-ENOSPC); 4315 4316 if (flags & PIN_MAPPABLE && 4317 vma->fence_size > dev_priv->ggtt.mappable_end / 2) 4318 return ERR_PTR(-ENOSPC); 4319 } 4320 4321 WARN(i915_vma_is_pinned(vma), 4322 "bo is already pinned in ggtt with incorrect alignment:" 4323 " offset=%08x, req.alignment=%llx," 4324 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n", 4325 i915_ggtt_offset(vma), alignment, 4326 !!(flags & PIN_MAPPABLE), 4327 i915_vma_is_map_and_fenceable(vma)); 4328 ret = i915_vma_unbind(vma); 4329 if (ret) 4330 return ERR_PTR(ret); 4331 } 4332 4333 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL); 4334 if (ret) 4335 return ERR_PTR(ret); 4336 4337 return vma; 4338 } 4339 4340 static __always_inline unsigned int __busy_read_flag(unsigned int id) 4341 { 4342 /* Note that we could alias engines in the execbuf API, but 4343 * that would be very unwise as it prevents userspace from 4344 * fine control over engine selection. Ahem. 4345 * 4346 * This should be something like EXEC_MAX_ENGINE instead of 4347 * I915_NUM_ENGINES. 4348 */ 4349 BUILD_BUG_ON(I915_NUM_ENGINES > 16); 4350 return 0x10000 << id; 4351 } 4352 4353 static __always_inline unsigned int __busy_write_id(unsigned int id) 4354 { 4355 /* The uABI guarantees an active writer is also amongst the read 4356 * engines. This would be true if we accessed the activity tracking 4357 * under the lock, but as we perform the lookup of the object and 4358 * its activity locklessly we can not guarantee that the last_write 4359 * being active implies that we have set the same engine flag from 4360 * last_read - hence we always set both read and write busy for 4361 * last_write. 4362 */ 4363 return id | __busy_read_flag(id); 4364 } 4365 4366 static __always_inline unsigned int 4367 __busy_set_if_active(const struct dma_fence *fence, 4368 unsigned int (*flag)(unsigned int id)) 4369 { 4370 struct i915_request *rq; 4371 4372 /* We have to check the current hw status of the fence as the uABI 4373 * guarantees forward progress. We could rely on the idle worker 4374 * to eventually flush us, but to minimise latency just ask the 4375 * hardware. 4376 * 4377 * Note we only report on the status of native fences. 4378 */ 4379 if (!dma_fence_is_i915(fence)) 4380 return 0; 4381 4382 /* opencode to_request() in order to avoid const warnings */ 4383 rq = container_of(fence, struct i915_request, fence); 4384 if (i915_request_completed(rq)) 4385 return 0; 4386 4387 return flag(rq->engine->uabi_id); 4388 } 4389 4390 static __always_inline unsigned int 4391 busy_check_reader(const struct dma_fence *fence) 4392 { 4393 return __busy_set_if_active(fence, __busy_read_flag); 4394 } 4395 4396 static __always_inline unsigned int 4397 busy_check_writer(const struct dma_fence *fence) 4398 { 4399 if (!fence) 4400 return 0; 4401 4402 return __busy_set_if_active(fence, __busy_write_id); 4403 } 4404 4405 int 4406 i915_gem_busy_ioctl(struct drm_device *dev, void *data, 4407 struct drm_file *file) 4408 { 4409 struct drm_i915_gem_busy *args = data; 4410 struct drm_i915_gem_object *obj; 4411 struct reservation_object_list *list; 4412 unsigned int seq; 4413 int err; 4414 4415 err = -ENOENT; 4416 rcu_read_lock(); 4417 obj = i915_gem_object_lookup_rcu(file, args->handle); 4418 if (!obj) 4419 goto out; 4420 4421 /* A discrepancy here is that we do not report the status of 4422 * non-i915 fences, i.e. even though we may report the object as idle, 4423 * a call to set-domain may still stall waiting for foreign rendering. 4424 * This also means that wait-ioctl may report an object as busy, 4425 * where busy-ioctl considers it idle. 4426 * 4427 * We trade the ability to warn of foreign fences to report on which 4428 * i915 engines are active for the object. 4429 * 4430 * Alternatively, we can trade that extra information on read/write 4431 * activity with 4432 * args->busy = 4433 * !reservation_object_test_signaled_rcu(obj->resv, true); 4434 * to report the overall busyness. This is what the wait-ioctl does. 4435 * 4436 */ 4437 retry: 4438 seq = raw_read_seqcount(&obj->resv->seq); 4439 4440 /* Translate the exclusive fence to the READ *and* WRITE engine */ 4441 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl)); 4442 4443 /* Translate shared fences to READ set of engines */ 4444 list = rcu_dereference(obj->resv->fence); 4445 if (list) { 4446 unsigned int shared_count = list->shared_count, i; 4447 4448 for (i = 0; i < shared_count; ++i) { 4449 struct dma_fence *fence = 4450 rcu_dereference(list->shared[i]); 4451 4452 args->busy |= busy_check_reader(fence); 4453 } 4454 } 4455 4456 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq)) 4457 goto retry; 4458 4459 err = 0; 4460 out: 4461 rcu_read_unlock(); 4462 return err; 4463 } 4464 4465 int 4466 i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 4467 struct drm_file *file_priv) 4468 { 4469 return i915_gem_ring_throttle(dev, file_priv); 4470 } 4471 4472 int 4473 i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 4474 struct drm_file *file_priv) 4475 { 4476 struct drm_i915_private *dev_priv = to_i915(dev); 4477 struct drm_i915_gem_madvise *args = data; 4478 struct drm_i915_gem_object *obj; 4479 int err; 4480 4481 switch (args->madv) { 4482 case I915_MADV_DONTNEED: 4483 case I915_MADV_WILLNEED: 4484 break; 4485 default: 4486 return -EINVAL; 4487 } 4488 4489 obj = i915_gem_object_lookup(file_priv, args->handle); 4490 if (!obj) 4491 return -ENOENT; 4492 4493 err = mutex_lock_interruptible(&obj->mm.lock); 4494 if (err) 4495 goto out; 4496 4497 if (i915_gem_object_has_pages(obj) && 4498 i915_gem_object_is_tiled(obj) && 4499 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) { 4500 if (obj->mm.madv == I915_MADV_WILLNEED) { 4501 GEM_BUG_ON(!obj->mm.quirked); 4502 __i915_gem_object_unpin_pages(obj); 4503 obj->mm.quirked = false; 4504 } 4505 if (args->madv == I915_MADV_WILLNEED) { 4506 GEM_BUG_ON(obj->mm.quirked); 4507 __i915_gem_object_pin_pages(obj); 4508 obj->mm.quirked = true; 4509 } 4510 } 4511 4512 if (obj->mm.madv != __I915_MADV_PURGED) 4513 obj->mm.madv = args->madv; 4514 4515 /* if the object is no longer attached, discard its backing storage */ 4516 if (obj->mm.madv == I915_MADV_DONTNEED && 4517 !i915_gem_object_has_pages(obj)) 4518 i915_gem_object_truncate(obj); 4519 4520 args->retained = obj->mm.madv != __I915_MADV_PURGED; 4521 mutex_unlock(&obj->mm.lock); 4522 4523 out: 4524 i915_gem_object_put(obj); 4525 return err; 4526 } 4527 4528 static void 4529 frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request) 4530 { 4531 struct drm_i915_gem_object *obj = 4532 container_of(active, typeof(*obj), frontbuffer_write); 4533 4534 intel_fb_obj_flush(obj, ORIGIN_CS); 4535 } 4536 4537 void i915_gem_object_init(struct drm_i915_gem_object *obj, 4538 const struct drm_i915_gem_object_ops *ops) 4539 { 4540 mutex_init(&obj->mm.lock); 4541 4542 INIT_LIST_HEAD(&obj->vma_list); 4543 INIT_LIST_HEAD(&obj->lut_list); 4544 INIT_LIST_HEAD(&obj->batch_pool_link); 4545 4546 obj->ops = ops; 4547 4548 reservation_object_init(&obj->__builtin_resv); 4549 obj->resv = &obj->__builtin_resv; 4550 4551 obj->frontbuffer_ggtt_origin = ORIGIN_GTT; 4552 init_request_active(&obj->frontbuffer_write, frontbuffer_retire); 4553 4554 obj->mm.madv = I915_MADV_WILLNEED; 4555 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN); 4556 mutex_init(&obj->mm.get_page.lock); 4557 4558 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size); 4559 } 4560 4561 static const struct drm_i915_gem_object_ops i915_gem_object_ops = { 4562 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE | 4563 I915_GEM_OBJECT_IS_SHRINKABLE, 4564 4565 .get_pages = i915_gem_object_get_pages_gtt, 4566 .put_pages = i915_gem_object_put_pages_gtt, 4567 4568 .pwrite = i915_gem_object_pwrite_gtt, 4569 }; 4570 4571 static int i915_gem_object_create_shmem(struct drm_device *dev, 4572 struct drm_gem_object *obj, 4573 size_t size) 4574 { 4575 struct drm_i915_private *i915 = to_i915(dev); 4576 unsigned long flags = VM_NORESERVE; 4577 struct file *filp; 4578 4579 drm_gem_private_object_init(dev, obj, size); 4580 4581 if (i915->mm.gemfs) 4582 filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size, 4583 flags); 4584 else 4585 filp = shmem_file_setup("i915", size, flags); 4586 4587 if (IS_ERR(filp)) 4588 return PTR_ERR(filp); 4589 4590 obj->filp = filp; 4591 4592 return 0; 4593 } 4594 4595 struct drm_i915_gem_object * 4596 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size) 4597 { 4598 struct drm_i915_gem_object *obj; 4599 struct address_space *mapping; 4600 unsigned int cache_level; 4601 gfp_t mask; 4602 int ret; 4603 4604 /* There is a prevalence of the assumption that we fit the object's 4605 * page count inside a 32bit _signed_ variable. Let's document this and 4606 * catch if we ever need to fix it. In the meantime, if you do spot 4607 * such a local variable, please consider fixing! 4608 */ 4609 if (size >> PAGE_SHIFT > INT_MAX) 4610 return ERR_PTR(-E2BIG); 4611 4612 if (overflows_type(size, obj->base.size)) 4613 return ERR_PTR(-E2BIG); 4614 4615 obj = i915_gem_object_alloc(dev_priv); 4616 if (obj == NULL) 4617 return ERR_PTR(-ENOMEM); 4618 4619 ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size); 4620 if (ret) 4621 goto fail; 4622 4623 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; 4624 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) { 4625 /* 965gm cannot relocate objects above 4GiB. */ 4626 mask &= ~__GFP_HIGHMEM; 4627 mask |= __GFP_DMA32; 4628 } 4629 4630 mapping = obj->base.filp->f_mapping; 4631 mapping_set_gfp_mask(mapping, mask); 4632 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM)); 4633 4634 i915_gem_object_init(obj, &i915_gem_object_ops); 4635 4636 obj->write_domain = I915_GEM_DOMAIN_CPU; 4637 obj->read_domains = I915_GEM_DOMAIN_CPU; 4638 4639 if (HAS_LLC(dev_priv)) 4640 /* On some devices, we can have the GPU use the LLC (the CPU 4641 * cache) for about a 10% performance improvement 4642 * compared to uncached. Graphics requests other than 4643 * display scanout are coherent with the CPU in 4644 * accessing this cache. This means in this mode we 4645 * don't need to clflush on the CPU side, and on the 4646 * GPU side we only need to flush internal caches to 4647 * get data visible to the CPU. 4648 * 4649 * However, we maintain the display planes as UC, and so 4650 * need to rebind when first used as such. 4651 */ 4652 cache_level = I915_CACHE_LLC; 4653 else 4654 cache_level = I915_CACHE_NONE; 4655 4656 i915_gem_object_set_cache_coherency(obj, cache_level); 4657 4658 trace_i915_gem_object_create(obj); 4659 4660 return obj; 4661 4662 fail: 4663 i915_gem_object_free(obj); 4664 return ERR_PTR(ret); 4665 } 4666 4667 static bool discard_backing_storage(struct drm_i915_gem_object *obj) 4668 { 4669 /* If we are the last user of the backing storage (be it shmemfs 4670 * pages or stolen etc), we know that the pages are going to be 4671 * immediately released. In this case, we can then skip copying 4672 * back the contents from the GPU. 4673 */ 4674 4675 if (obj->mm.madv != I915_MADV_WILLNEED) 4676 return false; 4677 4678 if (obj->base.filp == NULL) 4679 return true; 4680 4681 /* At first glance, this looks racy, but then again so would be 4682 * userspace racing mmap against close. However, the first external 4683 * reference to the filp can only be obtained through the 4684 * i915_gem_mmap_ioctl() which safeguards us against the user 4685 * acquiring such a reference whilst we are in the middle of 4686 * freeing the object. 4687 */ 4688 return atomic_long_read(&obj->base.filp->f_count) == 1; 4689 } 4690 4691 static void __i915_gem_free_objects(struct drm_i915_private *i915, 4692 struct llist_node *freed) 4693 { 4694 struct drm_i915_gem_object *obj, *on; 4695 4696 intel_runtime_pm_get(i915); 4697 llist_for_each_entry_safe(obj, on, freed, freed) { 4698 struct i915_vma *vma, *vn; 4699 4700 trace_i915_gem_object_destroy(obj); 4701 4702 mutex_lock(&i915->drm.struct_mutex); 4703 4704 GEM_BUG_ON(i915_gem_object_is_active(obj)); 4705 list_for_each_entry_safe(vma, vn, 4706 &obj->vma_list, obj_link) { 4707 GEM_BUG_ON(i915_vma_is_active(vma)); 4708 vma->flags &= ~I915_VMA_PIN_MASK; 4709 i915_vma_close(vma); 4710 } 4711 GEM_BUG_ON(!list_empty(&obj->vma_list)); 4712 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree)); 4713 4714 /* This serializes freeing with the shrinker. Since the free 4715 * is delayed, first by RCU then by the workqueue, we want the 4716 * shrinker to be able to free pages of unreferenced objects, 4717 * or else we may oom whilst there are plenty of deferred 4718 * freed objects. 4719 */ 4720 if (i915_gem_object_has_pages(obj)) { 4721 spin_lock(&i915->mm.obj_lock); 4722 list_del_init(&obj->mm.link); 4723 spin_unlock(&i915->mm.obj_lock); 4724 } 4725 4726 mutex_unlock(&i915->drm.struct_mutex); 4727 4728 GEM_BUG_ON(obj->bind_count); 4729 GEM_BUG_ON(obj->userfault_count); 4730 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits)); 4731 GEM_BUG_ON(!list_empty(&obj->lut_list)); 4732 4733 if (obj->ops->release) 4734 obj->ops->release(obj); 4735 4736 if (WARN_ON(i915_gem_object_has_pinned_pages(obj))) 4737 atomic_set(&obj->mm.pages_pin_count, 0); 4738 __i915_gem_object_put_pages(obj, I915_MM_NORMAL); 4739 GEM_BUG_ON(i915_gem_object_has_pages(obj)); 4740 4741 if (obj->base.import_attach) 4742 drm_prime_gem_destroy(&obj->base, NULL); 4743 4744 reservation_object_fini(&obj->__builtin_resv); 4745 drm_gem_object_release(&obj->base); 4746 i915_gem_info_remove_obj(i915, obj->base.size); 4747 4748 kfree(obj->bit_17); 4749 i915_gem_object_free(obj); 4750 4751 GEM_BUG_ON(!atomic_read(&i915->mm.free_count)); 4752 atomic_dec(&i915->mm.free_count); 4753 4754 if (on) 4755 cond_resched(); 4756 } 4757 intel_runtime_pm_put(i915); 4758 } 4759 4760 static void i915_gem_flush_free_objects(struct drm_i915_private *i915) 4761 { 4762 struct llist_node *freed; 4763 4764 /* Free the oldest, most stale object to keep the free_list short */ 4765 freed = NULL; 4766 if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */ 4767 /* Only one consumer of llist_del_first() allowed */ 4768 spin_lock(&i915->mm.free_lock); 4769 freed = llist_del_first(&i915->mm.free_list); 4770 spin_unlock(&i915->mm.free_lock); 4771 } 4772 if (unlikely(freed)) { 4773 freed->next = NULL; 4774 __i915_gem_free_objects(i915, freed); 4775 } 4776 } 4777 4778 static void __i915_gem_free_work(struct work_struct *work) 4779 { 4780 struct drm_i915_private *i915 = 4781 container_of(work, struct drm_i915_private, mm.free_work); 4782 struct llist_node *freed; 4783 4784 /* 4785 * All file-owned VMA should have been released by this point through 4786 * i915_gem_close_object(), or earlier by i915_gem_context_close(). 4787 * However, the object may also be bound into the global GTT (e.g. 4788 * older GPUs without per-process support, or for direct access through 4789 * the GTT either for the user or for scanout). Those VMA still need to 4790 * unbound now. 4791 */ 4792 4793 spin_lock(&i915->mm.free_lock); 4794 while ((freed = llist_del_all(&i915->mm.free_list))) { 4795 spin_unlock(&i915->mm.free_lock); 4796 4797 __i915_gem_free_objects(i915, freed); 4798 if (need_resched()) 4799 return; 4800 4801 spin_lock(&i915->mm.free_lock); 4802 } 4803 spin_unlock(&i915->mm.free_lock); 4804 } 4805 4806 static void __i915_gem_free_object_rcu(struct rcu_head *head) 4807 { 4808 struct drm_i915_gem_object *obj = 4809 container_of(head, typeof(*obj), rcu); 4810 struct drm_i915_private *i915 = to_i915(obj->base.dev); 4811 4812 /* 4813 * Since we require blocking on struct_mutex to unbind the freed 4814 * object from the GPU before releasing resources back to the 4815 * system, we can not do that directly from the RCU callback (which may 4816 * be a softirq context), but must instead then defer that work onto a 4817 * kthread. We use the RCU callback rather than move the freed object 4818 * directly onto the work queue so that we can mix between using the 4819 * worker and performing frees directly from subsequent allocations for 4820 * crude but effective memory throttling. 4821 */ 4822 if (llist_add(&obj->freed, &i915->mm.free_list)) 4823 queue_work(i915->wq, &i915->mm.free_work); 4824 } 4825 4826 void i915_gem_free_object(struct drm_gem_object *gem_obj) 4827 { 4828 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); 4829 4830 if (obj->mm.quirked) 4831 __i915_gem_object_unpin_pages(obj); 4832 4833 if (discard_backing_storage(obj)) 4834 obj->mm.madv = I915_MADV_DONTNEED; 4835 4836 /* 4837 * Before we free the object, make sure any pure RCU-only 4838 * read-side critical sections are complete, e.g. 4839 * i915_gem_busy_ioctl(). For the corresponding synchronized 4840 * lookup see i915_gem_object_lookup_rcu(). 4841 */ 4842 atomic_inc(&to_i915(obj->base.dev)->mm.free_count); 4843 call_rcu(&obj->rcu, __i915_gem_free_object_rcu); 4844 } 4845 4846 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj) 4847 { 4848 lockdep_assert_held(&obj->base.dev->struct_mutex); 4849 4850 if (!i915_gem_object_has_active_reference(obj) && 4851 i915_gem_object_is_active(obj)) 4852 i915_gem_object_set_active_reference(obj); 4853 else 4854 i915_gem_object_put(obj); 4855 } 4856 4857 static void assert_kernel_context_is_current(struct drm_i915_private *i915) 4858 { 4859 struct i915_gem_context *kernel_context = i915->kernel_context; 4860 struct intel_engine_cs *engine; 4861 enum intel_engine_id id; 4862 4863 for_each_engine(engine, i915, id) { 4864 GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline->last_request)); 4865 GEM_BUG_ON(engine->last_retired_context != kernel_context); 4866 } 4867 } 4868 4869 void i915_gem_sanitize(struct drm_i915_private *i915) 4870 { 4871 if (i915_terminally_wedged(&i915->gpu_error)) { 4872 mutex_lock(&i915->drm.struct_mutex); 4873 i915_gem_unset_wedged(i915); 4874 mutex_unlock(&i915->drm.struct_mutex); 4875 } 4876 4877 /* 4878 * If we inherit context state from the BIOS or earlier occupants 4879 * of the GPU, the GPU may be in an inconsistent state when we 4880 * try to take over. The only way to remove the earlier state 4881 * is by resetting. However, resetting on earlier gen is tricky as 4882 * it may impact the display and we are uncertain about the stability 4883 * of the reset, so this could be applied to even earlier gen. 4884 */ 4885 if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915)) 4886 WARN_ON(intel_gpu_reset(i915, ALL_ENGINES)); 4887 } 4888 4889 int i915_gem_suspend(struct drm_i915_private *dev_priv) 4890 { 4891 struct drm_device *dev = &dev_priv->drm; 4892 int ret; 4893 4894 intel_runtime_pm_get(dev_priv); 4895 intel_suspend_gt_powersave(dev_priv); 4896 4897 mutex_lock(&dev->struct_mutex); 4898 4899 /* We have to flush all the executing contexts to main memory so 4900 * that they can saved in the hibernation image. To ensure the last 4901 * context image is coherent, we have to switch away from it. That 4902 * leaves the dev_priv->kernel_context still active when 4903 * we actually suspend, and its image in memory may not match the GPU 4904 * state. Fortunately, the kernel_context is disposable and we do 4905 * not rely on its state. 4906 */ 4907 if (!i915_terminally_wedged(&dev_priv->gpu_error)) { 4908 ret = i915_gem_switch_to_kernel_context(dev_priv); 4909 if (ret) 4910 goto err_unlock; 4911 4912 ret = i915_gem_wait_for_idle(dev_priv, 4913 I915_WAIT_INTERRUPTIBLE | 4914 I915_WAIT_LOCKED); 4915 if (ret && ret != -EIO) 4916 goto err_unlock; 4917 4918 assert_kernel_context_is_current(dev_priv); 4919 } 4920 i915_gem_contexts_lost(dev_priv); 4921 mutex_unlock(&dev->struct_mutex); 4922 4923 intel_uc_suspend(dev_priv); 4924 4925 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work); 4926 cancel_delayed_work_sync(&dev_priv->gt.retire_work); 4927 4928 /* As the idle_work is rearming if it detects a race, play safe and 4929 * repeat the flush until it is definitely idle. 4930 */ 4931 drain_delayed_work(&dev_priv->gt.idle_work); 4932 4933 /* Assert that we sucessfully flushed all the work and 4934 * reset the GPU back to its idle, low power state. 4935 */ 4936 WARN_ON(dev_priv->gt.awake); 4937 if (WARN_ON(!intel_engines_are_idle(dev_priv))) 4938 i915_gem_set_wedged(dev_priv); /* no hope, discard everything */ 4939 4940 /* 4941 * Neither the BIOS, ourselves or any other kernel 4942 * expects the system to be in execlists mode on startup, 4943 * so we need to reset the GPU back to legacy mode. And the only 4944 * known way to disable logical contexts is through a GPU reset. 4945 * 4946 * So in order to leave the system in a known default configuration, 4947 * always reset the GPU upon unload and suspend. Afterwards we then 4948 * clean up the GEM state tracking, flushing off the requests and 4949 * leaving the system in a known idle state. 4950 * 4951 * Note that is of the upmost importance that the GPU is idle and 4952 * all stray writes are flushed *before* we dismantle the backing 4953 * storage for the pinned objects. 4954 * 4955 * However, since we are uncertain that resetting the GPU on older 4956 * machines is a good idea, we don't - just in case it leaves the 4957 * machine in an unusable condition. 4958 */ 4959 i915_gem_sanitize(dev_priv); 4960 4961 intel_runtime_pm_put(dev_priv); 4962 return 0; 4963 4964 err_unlock: 4965 mutex_unlock(&dev->struct_mutex); 4966 intel_runtime_pm_put(dev_priv); 4967 return ret; 4968 } 4969 4970 void i915_gem_resume(struct drm_i915_private *i915) 4971 { 4972 WARN_ON(i915->gt.awake); 4973 4974 mutex_lock(&i915->drm.struct_mutex); 4975 intel_uncore_forcewake_get(i915, FORCEWAKE_ALL); 4976 4977 i915_gem_restore_gtt_mappings(i915); 4978 i915_gem_restore_fences(i915); 4979 4980 /* 4981 * As we didn't flush the kernel context before suspend, we cannot 4982 * guarantee that the context image is complete. So let's just reset 4983 * it and start again. 4984 */ 4985 i915->gt.resume(i915); 4986 4987 if (i915_gem_init_hw(i915)) 4988 goto err_wedged; 4989 4990 intel_uc_resume(i915); 4991 4992 /* Always reload a context for powersaving. */ 4993 if (i915_gem_switch_to_kernel_context(i915)) 4994 goto err_wedged; 4995 4996 out_unlock: 4997 intel_uncore_forcewake_put(i915, FORCEWAKE_ALL); 4998 mutex_unlock(&i915->drm.struct_mutex); 4999 return; 5000 5001 err_wedged: 5002 if (!i915_terminally_wedged(&i915->gpu_error)) { 5003 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n"); 5004 i915_gem_set_wedged(i915); 5005 } 5006 goto out_unlock; 5007 } 5008 5009 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv) 5010 { 5011 if (INTEL_GEN(dev_priv) < 5 || 5012 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) 5013 return; 5014 5015 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | 5016 DISP_TILE_SURFACE_SWIZZLING); 5017 5018 if (IS_GEN5(dev_priv)) 5019 return; 5020 5021 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL); 5022 if (IS_GEN6(dev_priv)) 5023 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); 5024 else if (IS_GEN7(dev_priv)) 5025 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); 5026 else if (IS_GEN8(dev_priv)) 5027 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW)); 5028 else 5029 BUG(); 5030 } 5031 5032 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base) 5033 { 5034 I915_WRITE(RING_CTL(base), 0); 5035 I915_WRITE(RING_HEAD(base), 0); 5036 I915_WRITE(RING_TAIL(base), 0); 5037 I915_WRITE(RING_START(base), 0); 5038 } 5039 5040 static void init_unused_rings(struct drm_i915_private *dev_priv) 5041 { 5042 if (IS_I830(dev_priv)) { 5043 init_unused_ring(dev_priv, PRB1_BASE); 5044 init_unused_ring(dev_priv, SRB0_BASE); 5045 init_unused_ring(dev_priv, SRB1_BASE); 5046 init_unused_ring(dev_priv, SRB2_BASE); 5047 init_unused_ring(dev_priv, SRB3_BASE); 5048 } else if (IS_GEN2(dev_priv)) { 5049 init_unused_ring(dev_priv, SRB0_BASE); 5050 init_unused_ring(dev_priv, SRB1_BASE); 5051 } else if (IS_GEN3(dev_priv)) { 5052 init_unused_ring(dev_priv, PRB1_BASE); 5053 init_unused_ring(dev_priv, PRB2_BASE); 5054 } 5055 } 5056 5057 static int __i915_gem_restart_engines(void *data) 5058 { 5059 struct drm_i915_private *i915 = data; 5060 struct intel_engine_cs *engine; 5061 enum intel_engine_id id; 5062 int err; 5063 5064 for_each_engine(engine, i915, id) { 5065 err = engine->init_hw(engine); 5066 if (err) { 5067 DRM_ERROR("Failed to restart %s (%d)\n", 5068 engine->name, err); 5069 return err; 5070 } 5071 } 5072 5073 return 0; 5074 } 5075 5076 int i915_gem_init_hw(struct drm_i915_private *dev_priv) 5077 { 5078 int ret; 5079 5080 dev_priv->gt.last_init_time = ktime_get(); 5081 5082 /* Double layer security blanket, see i915_gem_init() */ 5083 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); 5084 5085 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9) 5086 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf)); 5087 5088 if (IS_HASWELL(dev_priv)) 5089 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ? 5090 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); 5091 5092 if (HAS_PCH_NOP(dev_priv)) { 5093 if (IS_IVYBRIDGE(dev_priv)) { 5094 u32 temp = I915_READ(GEN7_MSG_CTL); 5095 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK); 5096 I915_WRITE(GEN7_MSG_CTL, temp); 5097 } else if (INTEL_GEN(dev_priv) >= 7) { 5098 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT); 5099 temp &= ~RESET_PCH_HANDSHAKE_ENABLE; 5100 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp); 5101 } 5102 } 5103 5104 i915_gem_init_swizzling(dev_priv); 5105 5106 /* 5107 * At least 830 can leave some of the unused rings 5108 * "active" (ie. head != tail) after resume which 5109 * will prevent c3 entry. Makes sure all unused rings 5110 * are totally idle. 5111 */ 5112 init_unused_rings(dev_priv); 5113 5114 BUG_ON(!dev_priv->kernel_context); 5115 if (i915_terminally_wedged(&dev_priv->gpu_error)) { 5116 ret = -EIO; 5117 goto out; 5118 } 5119 5120 ret = i915_ppgtt_init_hw(dev_priv); 5121 if (ret) { 5122 DRM_ERROR("Enabling PPGTT failed (%d)\n", ret); 5123 goto out; 5124 } 5125 5126 /* We can't enable contexts until all firmware is loaded */ 5127 ret = intel_uc_init_hw(dev_priv); 5128 if (ret) { 5129 DRM_ERROR("Enabling uc failed (%d)\n", ret); 5130 goto out; 5131 } 5132 5133 intel_mocs_init_l3cc_table(dev_priv); 5134 5135 /* Only when the HW is re-initialised, can we replay the requests */ 5136 ret = __i915_gem_restart_engines(dev_priv); 5137 out: 5138 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 5139 return ret; 5140 } 5141 5142 static int __intel_engines_record_defaults(struct drm_i915_private *i915) 5143 { 5144 struct i915_gem_context *ctx; 5145 struct intel_engine_cs *engine; 5146 enum intel_engine_id id; 5147 int err; 5148 5149 /* 5150 * As we reset the gpu during very early sanitisation, the current 5151 * register state on the GPU should reflect its defaults values. 5152 * We load a context onto the hw (with restore-inhibit), then switch 5153 * over to a second context to save that default register state. We 5154 * can then prime every new context with that state so they all start 5155 * from the same default HW values. 5156 */ 5157 5158 ctx = i915_gem_context_create_kernel(i915, 0); 5159 if (IS_ERR(ctx)) 5160 return PTR_ERR(ctx); 5161 5162 for_each_engine(engine, i915, id) { 5163 struct i915_request *rq; 5164 5165 rq = i915_request_alloc(engine, ctx); 5166 if (IS_ERR(rq)) { 5167 err = PTR_ERR(rq); 5168 goto out_ctx; 5169 } 5170 5171 err = 0; 5172 if (engine->init_context) 5173 err = engine->init_context(rq); 5174 5175 __i915_request_add(rq, true); 5176 if (err) 5177 goto err_active; 5178 } 5179 5180 err = i915_gem_switch_to_kernel_context(i915); 5181 if (err) 5182 goto err_active; 5183 5184 err = i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED); 5185 if (err) 5186 goto err_active; 5187 5188 assert_kernel_context_is_current(i915); 5189 5190 for_each_engine(engine, i915, id) { 5191 struct i915_vma *state; 5192 5193 state = ctx->engine[id].state; 5194 if (!state) 5195 continue; 5196 5197 /* 5198 * As we will hold a reference to the logical state, it will 5199 * not be torn down with the context, and importantly the 5200 * object will hold onto its vma (making it possible for a 5201 * stray GTT write to corrupt our defaults). Unmap the vma 5202 * from the GTT to prevent such accidents and reclaim the 5203 * space. 5204 */ 5205 err = i915_vma_unbind(state); 5206 if (err) 5207 goto err_active; 5208 5209 err = i915_gem_object_set_to_cpu_domain(state->obj, false); 5210 if (err) 5211 goto err_active; 5212 5213 engine->default_state = i915_gem_object_get(state->obj); 5214 } 5215 5216 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) { 5217 unsigned int found = intel_engines_has_context_isolation(i915); 5218 5219 /* 5220 * Make sure that classes with multiple engine instances all 5221 * share the same basic configuration. 5222 */ 5223 for_each_engine(engine, i915, id) { 5224 unsigned int bit = BIT(engine->uabi_class); 5225 unsigned int expected = engine->default_state ? bit : 0; 5226 5227 if ((found & bit) != expected) { 5228 DRM_ERROR("mismatching default context state for class %d on engine %s\n", 5229 engine->uabi_class, engine->name); 5230 } 5231 } 5232 } 5233 5234 out_ctx: 5235 i915_gem_context_set_closed(ctx); 5236 i915_gem_context_put(ctx); 5237 return err; 5238 5239 err_active: 5240 /* 5241 * If we have to abandon now, we expect the engines to be idle 5242 * and ready to be torn-down. First try to flush any remaining 5243 * request, ensure we are pointing at the kernel context and 5244 * then remove it. 5245 */ 5246 if (WARN_ON(i915_gem_switch_to_kernel_context(i915))) 5247 goto out_ctx; 5248 5249 if (WARN_ON(i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED))) 5250 goto out_ctx; 5251 5252 i915_gem_contexts_lost(i915); 5253 goto out_ctx; 5254 } 5255 5256 int i915_gem_init(struct drm_i915_private *dev_priv) 5257 { 5258 int ret; 5259 5260 /* 5261 * We need to fallback to 4K pages since gvt gtt handling doesn't 5262 * support huge page entries - we will need to check either hypervisor 5263 * mm can support huge guest page or just do emulation in gvt. 5264 */ 5265 if (intel_vgpu_active(dev_priv)) 5266 mkwrite_device_info(dev_priv)->page_sizes = 5267 I915_GTT_PAGE_SIZE_4K; 5268 5269 dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1); 5270 5271 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) { 5272 dev_priv->gt.resume = intel_lr_context_resume; 5273 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup; 5274 } else { 5275 dev_priv->gt.resume = intel_legacy_submission_resume; 5276 dev_priv->gt.cleanup_engine = intel_engine_cleanup; 5277 } 5278 5279 ret = i915_gem_init_userptr(dev_priv); 5280 if (ret) 5281 return ret; 5282 5283 ret = intel_uc_init_misc(dev_priv); 5284 if (ret) 5285 return ret; 5286 5287 /* This is just a security blanket to placate dragons. 5288 * On some systems, we very sporadically observe that the first TLBs 5289 * used by the CS may be stale, despite us poking the TLB reset. If 5290 * we hold the forcewake during initialisation these problems 5291 * just magically go away. 5292 */ 5293 mutex_lock(&dev_priv->drm.struct_mutex); 5294 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); 5295 5296 ret = i915_gem_init_ggtt(dev_priv); 5297 if (ret) { 5298 GEM_BUG_ON(ret == -EIO); 5299 goto err_unlock; 5300 } 5301 5302 ret = i915_gem_contexts_init(dev_priv); 5303 if (ret) { 5304 GEM_BUG_ON(ret == -EIO); 5305 goto err_ggtt; 5306 } 5307 5308 ret = intel_engines_init(dev_priv); 5309 if (ret) { 5310 GEM_BUG_ON(ret == -EIO); 5311 goto err_context; 5312 } 5313 5314 intel_init_gt_powersave(dev_priv); 5315 5316 ret = intel_uc_init(dev_priv); 5317 if (ret) 5318 goto err_pm; 5319 5320 ret = i915_gem_init_hw(dev_priv); 5321 if (ret) 5322 goto err_uc_init; 5323 5324 /* 5325 * Despite its name intel_init_clock_gating applies both display 5326 * clock gating workarounds; GT mmio workarounds and the occasional 5327 * GT power context workaround. Worse, sometimes it includes a context 5328 * register workaround which we need to apply before we record the 5329 * default HW state for all contexts. 5330 * 5331 * FIXME: break up the workarounds and apply them at the right time! 5332 */ 5333 intel_init_clock_gating(dev_priv); 5334 5335 ret = __intel_engines_record_defaults(dev_priv); 5336 if (ret) 5337 goto err_init_hw; 5338 5339 if (i915_inject_load_failure()) { 5340 ret = -ENODEV; 5341 goto err_init_hw; 5342 } 5343 5344 if (i915_inject_load_failure()) { 5345 ret = -EIO; 5346 goto err_init_hw; 5347 } 5348 5349 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 5350 mutex_unlock(&dev_priv->drm.struct_mutex); 5351 5352 return 0; 5353 5354 /* 5355 * Unwinding is complicated by that we want to handle -EIO to mean 5356 * disable GPU submission but keep KMS alive. We want to mark the 5357 * HW as irrevisibly wedged, but keep enough state around that the 5358 * driver doesn't explode during runtime. 5359 */ 5360 err_init_hw: 5361 i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED); 5362 i915_gem_contexts_lost(dev_priv); 5363 intel_uc_fini_hw(dev_priv); 5364 err_uc_init: 5365 intel_uc_fini(dev_priv); 5366 err_pm: 5367 if (ret != -EIO) { 5368 intel_cleanup_gt_powersave(dev_priv); 5369 i915_gem_cleanup_engines(dev_priv); 5370 } 5371 err_context: 5372 if (ret != -EIO) 5373 i915_gem_contexts_fini(dev_priv); 5374 err_ggtt: 5375 err_unlock: 5376 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 5377 mutex_unlock(&dev_priv->drm.struct_mutex); 5378 5379 intel_uc_fini_misc(dev_priv); 5380 5381 if (ret != -EIO) 5382 i915_gem_cleanup_userptr(dev_priv); 5383 5384 if (ret == -EIO) { 5385 /* 5386 * Allow engine initialisation to fail by marking the GPU as 5387 * wedged. But we only want to do this where the GPU is angry, 5388 * for all other failure, such as an allocation failure, bail. 5389 */ 5390 if (!i915_terminally_wedged(&dev_priv->gpu_error)) { 5391 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n"); 5392 i915_gem_set_wedged(dev_priv); 5393 } 5394 ret = 0; 5395 } 5396 5397 i915_gem_drain_freed_objects(dev_priv); 5398 return ret; 5399 } 5400 5401 void i915_gem_init_mmio(struct drm_i915_private *i915) 5402 { 5403 i915_gem_sanitize(i915); 5404 } 5405 5406 void 5407 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv) 5408 { 5409 struct intel_engine_cs *engine; 5410 enum intel_engine_id id; 5411 5412 for_each_engine(engine, dev_priv, id) 5413 dev_priv->gt.cleanup_engine(engine); 5414 } 5415 5416 void 5417 i915_gem_load_init_fences(struct drm_i915_private *dev_priv) 5418 { 5419 int i; 5420 5421 if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) && 5422 !IS_CHERRYVIEW(dev_priv)) 5423 dev_priv->num_fence_regs = 32; 5424 else if (INTEL_GEN(dev_priv) >= 4 || 5425 IS_I945G(dev_priv) || IS_I945GM(dev_priv) || 5426 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) 5427 dev_priv->num_fence_regs = 16; 5428 else 5429 dev_priv->num_fence_regs = 8; 5430 5431 if (intel_vgpu_active(dev_priv)) 5432 dev_priv->num_fence_regs = 5433 I915_READ(vgtif_reg(avail_rs.fence_num)); 5434 5435 /* Initialize fence registers to zero */ 5436 for (i = 0; i < dev_priv->num_fence_regs; i++) { 5437 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i]; 5438 5439 fence->i915 = dev_priv; 5440 fence->id = i; 5441 list_add_tail(&fence->link, &dev_priv->mm.fence_list); 5442 } 5443 i915_gem_restore_fences(dev_priv); 5444 5445 i915_gem_detect_bit_6_swizzle(dev_priv); 5446 } 5447 5448 static void i915_gem_init__mm(struct drm_i915_private *i915) 5449 { 5450 spin_lock_init(&i915->mm.object_stat_lock); 5451 spin_lock_init(&i915->mm.obj_lock); 5452 spin_lock_init(&i915->mm.free_lock); 5453 5454 init_llist_head(&i915->mm.free_list); 5455 5456 INIT_LIST_HEAD(&i915->mm.unbound_list); 5457 INIT_LIST_HEAD(&i915->mm.bound_list); 5458 INIT_LIST_HEAD(&i915->mm.fence_list); 5459 INIT_LIST_HEAD(&i915->mm.userfault_list); 5460 5461 INIT_WORK(&i915->mm.free_work, __i915_gem_free_work); 5462 } 5463 5464 int 5465 i915_gem_load_init(struct drm_i915_private *dev_priv) 5466 { 5467 int err = -ENOMEM; 5468 5469 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN); 5470 if (!dev_priv->objects) 5471 goto err_out; 5472 5473 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN); 5474 if (!dev_priv->vmas) 5475 goto err_objects; 5476 5477 dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0); 5478 if (!dev_priv->luts) 5479 goto err_vmas; 5480 5481 dev_priv->requests = KMEM_CACHE(i915_request, 5482 SLAB_HWCACHE_ALIGN | 5483 SLAB_RECLAIM_ACCOUNT | 5484 SLAB_TYPESAFE_BY_RCU); 5485 if (!dev_priv->requests) 5486 goto err_luts; 5487 5488 dev_priv->dependencies = KMEM_CACHE(i915_dependency, 5489 SLAB_HWCACHE_ALIGN | 5490 SLAB_RECLAIM_ACCOUNT); 5491 if (!dev_priv->dependencies) 5492 goto err_requests; 5493 5494 dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN); 5495 if (!dev_priv->priorities) 5496 goto err_dependencies; 5497 5498 mutex_lock(&dev_priv->drm.struct_mutex); 5499 INIT_LIST_HEAD(&dev_priv->gt.timelines); 5500 err = i915_gem_timeline_init__global(dev_priv); 5501 mutex_unlock(&dev_priv->drm.struct_mutex); 5502 if (err) 5503 goto err_priorities; 5504 5505 i915_gem_init__mm(dev_priv); 5506 5507 INIT_DELAYED_WORK(&dev_priv->gt.retire_work, 5508 i915_gem_retire_work_handler); 5509 INIT_DELAYED_WORK(&dev_priv->gt.idle_work, 5510 i915_gem_idle_work_handler); 5511 init_waitqueue_head(&dev_priv->gpu_error.wait_queue); 5512 init_waitqueue_head(&dev_priv->gpu_error.reset_queue); 5513 5514 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0); 5515 5516 spin_lock_init(&dev_priv->fb_tracking.lock); 5517 5518 err = i915_gemfs_init(dev_priv); 5519 if (err) 5520 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err); 5521 5522 return 0; 5523 5524 err_priorities: 5525 kmem_cache_destroy(dev_priv->priorities); 5526 err_dependencies: 5527 kmem_cache_destroy(dev_priv->dependencies); 5528 err_requests: 5529 kmem_cache_destroy(dev_priv->requests); 5530 err_luts: 5531 kmem_cache_destroy(dev_priv->luts); 5532 err_vmas: 5533 kmem_cache_destroy(dev_priv->vmas); 5534 err_objects: 5535 kmem_cache_destroy(dev_priv->objects); 5536 err_out: 5537 return err; 5538 } 5539 5540 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv) 5541 { 5542 i915_gem_drain_freed_objects(dev_priv); 5543 GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list)); 5544 GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count)); 5545 WARN_ON(dev_priv->mm.object_count); 5546 5547 mutex_lock(&dev_priv->drm.struct_mutex); 5548 i915_gem_timeline_fini(&dev_priv->gt.global_timeline); 5549 WARN_ON(!list_empty(&dev_priv->gt.timelines)); 5550 mutex_unlock(&dev_priv->drm.struct_mutex); 5551 5552 kmem_cache_destroy(dev_priv->priorities); 5553 kmem_cache_destroy(dev_priv->dependencies); 5554 kmem_cache_destroy(dev_priv->requests); 5555 kmem_cache_destroy(dev_priv->luts); 5556 kmem_cache_destroy(dev_priv->vmas); 5557 kmem_cache_destroy(dev_priv->objects); 5558 5559 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */ 5560 rcu_barrier(); 5561 5562 i915_gemfs_fini(dev_priv); 5563 } 5564 5565 int i915_gem_freeze(struct drm_i915_private *dev_priv) 5566 { 5567 /* Discard all purgeable objects, let userspace recover those as 5568 * required after resuming. 5569 */ 5570 i915_gem_shrink_all(dev_priv); 5571 5572 return 0; 5573 } 5574 5575 int i915_gem_freeze_late(struct drm_i915_private *dev_priv) 5576 { 5577 struct drm_i915_gem_object *obj; 5578 struct list_head *phases[] = { 5579 &dev_priv->mm.unbound_list, 5580 &dev_priv->mm.bound_list, 5581 NULL 5582 }, **p; 5583 5584 /* Called just before we write the hibernation image. 5585 * 5586 * We need to update the domain tracking to reflect that the CPU 5587 * will be accessing all the pages to create and restore from the 5588 * hibernation, and so upon restoration those pages will be in the 5589 * CPU domain. 5590 * 5591 * To make sure the hibernation image contains the latest state, 5592 * we update that state just before writing out the image. 5593 * 5594 * To try and reduce the hibernation image, we manually shrink 5595 * the objects as well, see i915_gem_freeze() 5596 */ 5597 5598 i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND); 5599 i915_gem_drain_freed_objects(dev_priv); 5600 5601 spin_lock(&dev_priv->mm.obj_lock); 5602 for (p = phases; *p; p++) { 5603 list_for_each_entry(obj, *p, mm.link) 5604 __start_cpu_write(obj); 5605 } 5606 spin_unlock(&dev_priv->mm.obj_lock); 5607 5608 return 0; 5609 } 5610 5611 void i915_gem_release(struct drm_device *dev, struct drm_file *file) 5612 { 5613 struct drm_i915_file_private *file_priv = file->driver_priv; 5614 struct i915_request *request; 5615 5616 /* Clean up our request list when the client is going away, so that 5617 * later retire_requests won't dereference our soon-to-be-gone 5618 * file_priv. 5619 */ 5620 spin_lock(&file_priv->mm.lock); 5621 list_for_each_entry(request, &file_priv->mm.request_list, client_link) 5622 request->file_priv = NULL; 5623 spin_unlock(&file_priv->mm.lock); 5624 } 5625 5626 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file) 5627 { 5628 struct drm_i915_file_private *file_priv; 5629 int ret; 5630 5631 DRM_DEBUG("\n"); 5632 5633 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL); 5634 if (!file_priv) 5635 return -ENOMEM; 5636 5637 file->driver_priv = file_priv; 5638 file_priv->dev_priv = i915; 5639 file_priv->file = file; 5640 5641 spin_lock_init(&file_priv->mm.lock); 5642 INIT_LIST_HEAD(&file_priv->mm.request_list); 5643 5644 file_priv->bsd_engine = -1; 5645 5646 ret = i915_gem_context_open(i915, file); 5647 if (ret) 5648 kfree(file_priv); 5649 5650 return ret; 5651 } 5652 5653 /** 5654 * i915_gem_track_fb - update frontbuffer tracking 5655 * @old: current GEM buffer for the frontbuffer slots 5656 * @new: new GEM buffer for the frontbuffer slots 5657 * @frontbuffer_bits: bitmask of frontbuffer slots 5658 * 5659 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them 5660 * from @old and setting them in @new. Both @old and @new can be NULL. 5661 */ 5662 void i915_gem_track_fb(struct drm_i915_gem_object *old, 5663 struct drm_i915_gem_object *new, 5664 unsigned frontbuffer_bits) 5665 { 5666 /* Control of individual bits within the mask are guarded by 5667 * the owning plane->mutex, i.e. we can never see concurrent 5668 * manipulation of individual bits. But since the bitfield as a whole 5669 * is updated using RMW, we need to use atomics in order to update 5670 * the bits. 5671 */ 5672 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 5673 sizeof(atomic_t) * BITS_PER_BYTE); 5674 5675 if (old) { 5676 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits)); 5677 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits); 5678 } 5679 5680 if (new) { 5681 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits); 5682 atomic_or(frontbuffer_bits, &new->frontbuffer_bits); 5683 } 5684 } 5685 5686 /* Allocate a new GEM object and fill it with the supplied data */ 5687 struct drm_i915_gem_object * 5688 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv, 5689 const void *data, size_t size) 5690 { 5691 struct drm_i915_gem_object *obj; 5692 struct file *file; 5693 size_t offset; 5694 int err; 5695 5696 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE)); 5697 if (IS_ERR(obj)) 5698 return obj; 5699 5700 GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU); 5701 5702 file = obj->base.filp; 5703 offset = 0; 5704 do { 5705 unsigned int len = min_t(typeof(size), size, PAGE_SIZE); 5706 struct page *page; 5707 void *pgdata, *vaddr; 5708 5709 err = pagecache_write_begin(file, file->f_mapping, 5710 offset, len, 0, 5711 &page, &pgdata); 5712 if (err < 0) 5713 goto fail; 5714 5715 vaddr = kmap(page); 5716 memcpy(vaddr, data, len); 5717 kunmap(page); 5718 5719 err = pagecache_write_end(file, file->f_mapping, 5720 offset, len, len, 5721 page, pgdata); 5722 if (err < 0) 5723 goto fail; 5724 5725 size -= len; 5726 data += len; 5727 offset += len; 5728 } while (size); 5729 5730 return obj; 5731 5732 fail: 5733 i915_gem_object_put(obj); 5734 return ERR_PTR(err); 5735 } 5736 5737 struct scatterlist * 5738 i915_gem_object_get_sg(struct drm_i915_gem_object *obj, 5739 unsigned int n, 5740 unsigned int *offset) 5741 { 5742 struct i915_gem_object_page_iter *iter = &obj->mm.get_page; 5743 struct scatterlist *sg; 5744 unsigned int idx, count; 5745 5746 might_sleep(); 5747 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT); 5748 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 5749 5750 /* As we iterate forward through the sg, we record each entry in a 5751 * radixtree for quick repeated (backwards) lookups. If we have seen 5752 * this index previously, we will have an entry for it. 5753 * 5754 * Initial lookup is O(N), but this is amortized to O(1) for 5755 * sequential page access (where each new request is consecutive 5756 * to the previous one). Repeated lookups are O(lg(obj->base.size)), 5757 * i.e. O(1) with a large constant! 5758 */ 5759 if (n < READ_ONCE(iter->sg_idx)) 5760 goto lookup; 5761 5762 mutex_lock(&iter->lock); 5763 5764 /* We prefer to reuse the last sg so that repeated lookup of this 5765 * (or the subsequent) sg are fast - comparing against the last 5766 * sg is faster than going through the radixtree. 5767 */ 5768 5769 sg = iter->sg_pos; 5770 idx = iter->sg_idx; 5771 count = __sg_page_count(sg); 5772 5773 while (idx + count <= n) { 5774 unsigned long exception, i; 5775 int ret; 5776 5777 /* If we cannot allocate and insert this entry, or the 5778 * individual pages from this range, cancel updating the 5779 * sg_idx so that on this lookup we are forced to linearly 5780 * scan onwards, but on future lookups we will try the 5781 * insertion again (in which case we need to be careful of 5782 * the error return reporting that we have already inserted 5783 * this index). 5784 */ 5785 ret = radix_tree_insert(&iter->radix, idx, sg); 5786 if (ret && ret != -EEXIST) 5787 goto scan; 5788 5789 exception = 5790 RADIX_TREE_EXCEPTIONAL_ENTRY | 5791 idx << RADIX_TREE_EXCEPTIONAL_SHIFT; 5792 for (i = 1; i < count; i++) { 5793 ret = radix_tree_insert(&iter->radix, idx + i, 5794 (void *)exception); 5795 if (ret && ret != -EEXIST) 5796 goto scan; 5797 } 5798 5799 idx += count; 5800 sg = ____sg_next(sg); 5801 count = __sg_page_count(sg); 5802 } 5803 5804 scan: 5805 iter->sg_pos = sg; 5806 iter->sg_idx = idx; 5807 5808 mutex_unlock(&iter->lock); 5809 5810 if (unlikely(n < idx)) /* insertion completed by another thread */ 5811 goto lookup; 5812 5813 /* In case we failed to insert the entry into the radixtree, we need 5814 * to look beyond the current sg. 5815 */ 5816 while (idx + count <= n) { 5817 idx += count; 5818 sg = ____sg_next(sg); 5819 count = __sg_page_count(sg); 5820 } 5821 5822 *offset = n - idx; 5823 return sg; 5824 5825 lookup: 5826 rcu_read_lock(); 5827 5828 sg = radix_tree_lookup(&iter->radix, n); 5829 GEM_BUG_ON(!sg); 5830 5831 /* If this index is in the middle of multi-page sg entry, 5832 * the radixtree will contain an exceptional entry that points 5833 * to the start of that range. We will return the pointer to 5834 * the base page and the offset of this page within the 5835 * sg entry's range. 5836 */ 5837 *offset = 0; 5838 if (unlikely(radix_tree_exception(sg))) { 5839 unsigned long base = 5840 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT; 5841 5842 sg = radix_tree_lookup(&iter->radix, base); 5843 GEM_BUG_ON(!sg); 5844 5845 *offset = n - base; 5846 } 5847 5848 rcu_read_unlock(); 5849 5850 return sg; 5851 } 5852 5853 struct page * 5854 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n) 5855 { 5856 struct scatterlist *sg; 5857 unsigned int offset; 5858 5859 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj)); 5860 5861 sg = i915_gem_object_get_sg(obj, n, &offset); 5862 return nth_page(sg_page(sg), offset); 5863 } 5864 5865 /* Like i915_gem_object_get_page(), but mark the returned page dirty */ 5866 struct page * 5867 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, 5868 unsigned int n) 5869 { 5870 struct page *page; 5871 5872 page = i915_gem_object_get_page(obj, n); 5873 if (!obj->mm.dirty) 5874 set_page_dirty(page); 5875 5876 return page; 5877 } 5878 5879 dma_addr_t 5880 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, 5881 unsigned long n) 5882 { 5883 struct scatterlist *sg; 5884 unsigned int offset; 5885 5886 sg = i915_gem_object_get_sg(obj, n, &offset); 5887 return sg_dma_address(sg) + (offset << PAGE_SHIFT); 5888 } 5889 5890 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align) 5891 { 5892 struct sg_table *pages; 5893 int err; 5894 5895 if (align > obj->base.size) 5896 return -EINVAL; 5897 5898 if (obj->ops == &i915_gem_phys_ops) 5899 return 0; 5900 5901 if (obj->ops != &i915_gem_object_ops) 5902 return -EINVAL; 5903 5904 err = i915_gem_object_unbind(obj); 5905 if (err) 5906 return err; 5907 5908 mutex_lock(&obj->mm.lock); 5909 5910 if (obj->mm.madv != I915_MADV_WILLNEED) { 5911 err = -EFAULT; 5912 goto err_unlock; 5913 } 5914 5915 if (obj->mm.quirked) { 5916 err = -EFAULT; 5917 goto err_unlock; 5918 } 5919 5920 if (obj->mm.mapping) { 5921 err = -EBUSY; 5922 goto err_unlock; 5923 } 5924 5925 pages = fetch_and_zero(&obj->mm.pages); 5926 if (pages) { 5927 struct drm_i915_private *i915 = to_i915(obj->base.dev); 5928 5929 __i915_gem_object_reset_page_iter(obj); 5930 5931 spin_lock(&i915->mm.obj_lock); 5932 list_del(&obj->mm.link); 5933 spin_unlock(&i915->mm.obj_lock); 5934 } 5935 5936 obj->ops = &i915_gem_phys_ops; 5937 5938 err = ____i915_gem_object_get_pages(obj); 5939 if (err) 5940 goto err_xfer; 5941 5942 /* Perma-pin (until release) the physical set of pages */ 5943 __i915_gem_object_pin_pages(obj); 5944 5945 if (!IS_ERR_OR_NULL(pages)) 5946 i915_gem_object_ops.put_pages(obj, pages); 5947 mutex_unlock(&obj->mm.lock); 5948 return 0; 5949 5950 err_xfer: 5951 obj->ops = &i915_gem_object_ops; 5952 obj->mm.pages = pages; 5953 err_unlock: 5954 mutex_unlock(&obj->mm.lock); 5955 return err; 5956 } 5957 5958 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 5959 #include "selftests/scatterlist.c" 5960 #include "selftests/mock_gem_device.c" 5961 #include "selftests/huge_gem_object.c" 5962 #include "selftests/huge_pages.c" 5963 #include "selftests/i915_gem_object.c" 5964 #include "selftests/i915_gem_coherency.c" 5965 #endif 5966