xref: /linux/drivers/gpu/drm/i915/i915_gem.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40 
41 #define RQ_BUG_ON(expr)
42 
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49 
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51 				  enum i915_cache_level level)
52 {
53 	return HAS_LLC(dev) || level != I915_CACHE_NONE;
54 }
55 
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 		return true;
60 
61 	return obj->pin_display;
62 }
63 
64 /* some bookkeeping */
65 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66 				  size_t size)
67 {
68 	spin_lock(&dev_priv->mm.object_stat_lock);
69 	dev_priv->mm.object_count++;
70 	dev_priv->mm.object_memory += size;
71 	spin_unlock(&dev_priv->mm.object_stat_lock);
72 }
73 
74 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 				     size_t size)
76 {
77 	spin_lock(&dev_priv->mm.object_stat_lock);
78 	dev_priv->mm.object_count--;
79 	dev_priv->mm.object_memory -= size;
80 	spin_unlock(&dev_priv->mm.object_stat_lock);
81 }
82 
83 static int
84 i915_gem_wait_for_error(struct i915_gpu_error *error)
85 {
86 	int ret;
87 
88 #define EXIT_COND (!i915_reset_in_progress(error) || \
89 		   i915_terminally_wedged(error))
90 	if (EXIT_COND)
91 		return 0;
92 
93 	/*
94 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95 	 * userspace. If it takes that long something really bad is going on and
96 	 * we should simply try to bail out and fail as gracefully as possible.
97 	 */
98 	ret = wait_event_interruptible_timeout(error->reset_queue,
99 					       EXIT_COND,
100 					       10*HZ);
101 	if (ret == 0) {
102 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103 		return -EIO;
104 	} else if (ret < 0) {
105 		return ret;
106 	}
107 #undef EXIT_COND
108 
109 	return 0;
110 }
111 
112 int i915_mutex_lock_interruptible(struct drm_device *dev)
113 {
114 	struct drm_i915_private *dev_priv = dev->dev_private;
115 	int ret;
116 
117 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118 	if (ret)
119 		return ret;
120 
121 	ret = mutex_lock_interruptible(&dev->struct_mutex);
122 	if (ret)
123 		return ret;
124 
125 	WARN_ON(i915_verify_lists(dev));
126 	return 0;
127 }
128 
129 int
130 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131 			    struct drm_file *file)
132 {
133 	struct drm_i915_private *dev_priv = to_i915(dev);
134 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
135 	struct drm_i915_gem_get_aperture *args = data;
136 	struct i915_vma *vma;
137 	size_t pinned;
138 
139 	pinned = 0;
140 	mutex_lock(&dev->struct_mutex);
141 	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
142 		if (vma->pin_count)
143 			pinned += vma->node.size;
144 	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
145 		if (vma->pin_count)
146 			pinned += vma->node.size;
147 	mutex_unlock(&dev->struct_mutex);
148 
149 	args->aper_size = ggtt->base.total;
150 	args->aper_available_size = args->aper_size - pinned;
151 
152 	return 0;
153 }
154 
155 static int
156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157 {
158 	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 	char *vaddr = obj->phys_handle->vaddr;
160 	struct sg_table *st;
161 	struct scatterlist *sg;
162 	int i;
163 
164 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 		return -EINVAL;
166 
167 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 		struct page *page;
169 		char *src;
170 
171 		page = shmem_read_mapping_page(mapping, i);
172 		if (IS_ERR(page))
173 			return PTR_ERR(page);
174 
175 		src = kmap_atomic(page);
176 		memcpy(vaddr, src, PAGE_SIZE);
177 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 		kunmap_atomic(src);
179 
180 		put_page(page);
181 		vaddr += PAGE_SIZE;
182 	}
183 
184 	i915_gem_chipset_flush(obj->base.dev);
185 
186 	st = kmalloc(sizeof(*st), GFP_KERNEL);
187 	if (st == NULL)
188 		return -ENOMEM;
189 
190 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 		kfree(st);
192 		return -ENOMEM;
193 	}
194 
195 	sg = st->sgl;
196 	sg->offset = 0;
197 	sg->length = obj->base.size;
198 
199 	sg_dma_address(sg) = obj->phys_handle->busaddr;
200 	sg_dma_len(sg) = obj->base.size;
201 
202 	obj->pages = st;
203 	return 0;
204 }
205 
206 static void
207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208 {
209 	int ret;
210 
211 	BUG_ON(obj->madv == __I915_MADV_PURGED);
212 
213 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 	if (ret) {
215 		/* In the event of a disaster, abandon all caches and
216 		 * hope for the best.
217 		 */
218 		WARN_ON(ret != -EIO);
219 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 	}
221 
222 	if (obj->madv == I915_MADV_DONTNEED)
223 		obj->dirty = 0;
224 
225 	if (obj->dirty) {
226 		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227 		char *vaddr = obj->phys_handle->vaddr;
228 		int i;
229 
230 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231 			struct page *page;
232 			char *dst;
233 
234 			page = shmem_read_mapping_page(mapping, i);
235 			if (IS_ERR(page))
236 				continue;
237 
238 			dst = kmap_atomic(page);
239 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 			memcpy(dst, vaddr, PAGE_SIZE);
241 			kunmap_atomic(dst);
242 
243 			set_page_dirty(page);
244 			if (obj->madv == I915_MADV_WILLNEED)
245 				mark_page_accessed(page);
246 			put_page(page);
247 			vaddr += PAGE_SIZE;
248 		}
249 		obj->dirty = 0;
250 	}
251 
252 	sg_free_table(obj->pages);
253 	kfree(obj->pages);
254 }
255 
256 static void
257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258 {
259 	drm_pci_free(obj->base.dev, obj->phys_handle);
260 }
261 
262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 	.get_pages = i915_gem_object_get_pages_phys,
264 	.put_pages = i915_gem_object_put_pages_phys,
265 	.release = i915_gem_object_release_phys,
266 };
267 
268 static int
269 drop_pages(struct drm_i915_gem_object *obj)
270 {
271 	struct i915_vma *vma, *next;
272 	int ret;
273 
274 	drm_gem_object_reference(&obj->base);
275 	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
276 		if (i915_vma_unbind(vma))
277 			break;
278 
279 	ret = i915_gem_object_put_pages(obj);
280 	drm_gem_object_unreference(&obj->base);
281 
282 	return ret;
283 }
284 
285 int
286 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287 			    int align)
288 {
289 	drm_dma_handle_t *phys;
290 	int ret;
291 
292 	if (obj->phys_handle) {
293 		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294 			return -EBUSY;
295 
296 		return 0;
297 	}
298 
299 	if (obj->madv != I915_MADV_WILLNEED)
300 		return -EFAULT;
301 
302 	if (obj->base.filp == NULL)
303 		return -EINVAL;
304 
305 	ret = drop_pages(obj);
306 	if (ret)
307 		return ret;
308 
309 	/* create a new object */
310 	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311 	if (!phys)
312 		return -ENOMEM;
313 
314 	obj->phys_handle = phys;
315 	obj->ops = &i915_gem_phys_ops;
316 
317 	return i915_gem_object_get_pages(obj);
318 }
319 
320 static int
321 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322 		     struct drm_i915_gem_pwrite *args,
323 		     struct drm_file *file_priv)
324 {
325 	struct drm_device *dev = obj->base.dev;
326 	void *vaddr = obj->phys_handle->vaddr + args->offset;
327 	char __user *user_data = to_user_ptr(args->data_ptr);
328 	int ret = 0;
329 
330 	/* We manually control the domain here and pretend that it
331 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332 	 */
333 	ret = i915_gem_object_wait_rendering(obj, false);
334 	if (ret)
335 		return ret;
336 
337 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339 		unsigned long unwritten;
340 
341 		/* The physical object once assigned is fixed for the lifetime
342 		 * of the obj, so we can safely drop the lock and continue
343 		 * to access vaddr.
344 		 */
345 		mutex_unlock(&dev->struct_mutex);
346 		unwritten = copy_from_user(vaddr, user_data, args->size);
347 		mutex_lock(&dev->struct_mutex);
348 		if (unwritten) {
349 			ret = -EFAULT;
350 			goto out;
351 		}
352 	}
353 
354 	drm_clflush_virt_range(vaddr, args->size);
355 	i915_gem_chipset_flush(dev);
356 
357 out:
358 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359 	return ret;
360 }
361 
362 void *i915_gem_object_alloc(struct drm_device *dev)
363 {
364 	struct drm_i915_private *dev_priv = dev->dev_private;
365 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 }
367 
368 void i915_gem_object_free(struct drm_i915_gem_object *obj)
369 {
370 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371 	kmem_cache_free(dev_priv->objects, obj);
372 }
373 
374 static int
375 i915_gem_create(struct drm_file *file,
376 		struct drm_device *dev,
377 		uint64_t size,
378 		uint32_t *handle_p)
379 {
380 	struct drm_i915_gem_object *obj;
381 	int ret;
382 	u32 handle;
383 
384 	size = roundup(size, PAGE_SIZE);
385 	if (size == 0)
386 		return -EINVAL;
387 
388 	/* Allocate the new object */
389 	obj = i915_gem_alloc_object(dev, size);
390 	if (obj == NULL)
391 		return -ENOMEM;
392 
393 	ret = drm_gem_handle_create(file, &obj->base, &handle);
394 	/* drop reference from allocate - handle holds it now */
395 	drm_gem_object_unreference_unlocked(&obj->base);
396 	if (ret)
397 		return ret;
398 
399 	*handle_p = handle;
400 	return 0;
401 }
402 
403 int
404 i915_gem_dumb_create(struct drm_file *file,
405 		     struct drm_device *dev,
406 		     struct drm_mode_create_dumb *args)
407 {
408 	/* have to work out size/pitch and return them */
409 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410 	args->size = args->pitch * args->height;
411 	return i915_gem_create(file, dev,
412 			       args->size, &args->handle);
413 }
414 
415 /**
416  * Creates a new mm object and returns a handle to it.
417  */
418 int
419 i915_gem_create_ioctl(struct drm_device *dev, void *data,
420 		      struct drm_file *file)
421 {
422 	struct drm_i915_gem_create *args = data;
423 
424 	return i915_gem_create(file, dev,
425 			       args->size, &args->handle);
426 }
427 
428 static inline int
429 __copy_to_user_swizzled(char __user *cpu_vaddr,
430 			const char *gpu_vaddr, int gpu_offset,
431 			int length)
432 {
433 	int ret, cpu_offset = 0;
434 
435 	while (length > 0) {
436 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
437 		int this_length = min(cacheline_end - gpu_offset, length);
438 		int swizzled_gpu_offset = gpu_offset ^ 64;
439 
440 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
441 				     gpu_vaddr + swizzled_gpu_offset,
442 				     this_length);
443 		if (ret)
444 			return ret + length;
445 
446 		cpu_offset += this_length;
447 		gpu_offset += this_length;
448 		length -= this_length;
449 	}
450 
451 	return 0;
452 }
453 
454 static inline int
455 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456 			  const char __user *cpu_vaddr,
457 			  int length)
458 {
459 	int ret, cpu_offset = 0;
460 
461 	while (length > 0) {
462 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 		int this_length = min(cacheline_end - gpu_offset, length);
464 		int swizzled_gpu_offset = gpu_offset ^ 64;
465 
466 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467 				       cpu_vaddr + cpu_offset,
468 				       this_length);
469 		if (ret)
470 			return ret + length;
471 
472 		cpu_offset += this_length;
473 		gpu_offset += this_length;
474 		length -= this_length;
475 	}
476 
477 	return 0;
478 }
479 
480 /*
481  * Pins the specified object's pages and synchronizes the object with
482  * GPU accesses. Sets needs_clflush to non-zero if the caller should
483  * flush the object from the CPU cache.
484  */
485 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486 				    int *needs_clflush)
487 {
488 	int ret;
489 
490 	*needs_clflush = 0;
491 
492 	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
493 		return -EINVAL;
494 
495 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496 		/* If we're not in the cpu read domain, set ourself into the gtt
497 		 * read domain and manually flush cachelines (if required). This
498 		 * optimizes for the case when the gpu will dirty the data
499 		 * anyway again before the next pread happens. */
500 		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501 							obj->cache_level);
502 		ret = i915_gem_object_wait_rendering(obj, true);
503 		if (ret)
504 			return ret;
505 	}
506 
507 	ret = i915_gem_object_get_pages(obj);
508 	if (ret)
509 		return ret;
510 
511 	i915_gem_object_pin_pages(obj);
512 
513 	return ret;
514 }
515 
516 /* Per-page copy function for the shmem pread fastpath.
517  * Flushes invalid cachelines before reading the target if
518  * needs_clflush is set. */
519 static int
520 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521 		 char __user *user_data,
522 		 bool page_do_bit17_swizzling, bool needs_clflush)
523 {
524 	char *vaddr;
525 	int ret;
526 
527 	if (unlikely(page_do_bit17_swizzling))
528 		return -EINVAL;
529 
530 	vaddr = kmap_atomic(page);
531 	if (needs_clflush)
532 		drm_clflush_virt_range(vaddr + shmem_page_offset,
533 				       page_length);
534 	ret = __copy_to_user_inatomic(user_data,
535 				      vaddr + shmem_page_offset,
536 				      page_length);
537 	kunmap_atomic(vaddr);
538 
539 	return ret ? -EFAULT : 0;
540 }
541 
542 static void
543 shmem_clflush_swizzled_range(char *addr, unsigned long length,
544 			     bool swizzled)
545 {
546 	if (unlikely(swizzled)) {
547 		unsigned long start = (unsigned long) addr;
548 		unsigned long end = (unsigned long) addr + length;
549 
550 		/* For swizzling simply ensure that we always flush both
551 		 * channels. Lame, but simple and it works. Swizzled
552 		 * pwrite/pread is far from a hotpath - current userspace
553 		 * doesn't use it at all. */
554 		start = round_down(start, 128);
555 		end = round_up(end, 128);
556 
557 		drm_clflush_virt_range((void *)start, end - start);
558 	} else {
559 		drm_clflush_virt_range(addr, length);
560 	}
561 
562 }
563 
564 /* Only difference to the fast-path function is that this can handle bit17
565  * and uses non-atomic copy and kmap functions. */
566 static int
567 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568 		 char __user *user_data,
569 		 bool page_do_bit17_swizzling, bool needs_clflush)
570 {
571 	char *vaddr;
572 	int ret;
573 
574 	vaddr = kmap(page);
575 	if (needs_clflush)
576 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577 					     page_length,
578 					     page_do_bit17_swizzling);
579 
580 	if (page_do_bit17_swizzling)
581 		ret = __copy_to_user_swizzled(user_data,
582 					      vaddr, shmem_page_offset,
583 					      page_length);
584 	else
585 		ret = __copy_to_user(user_data,
586 				     vaddr + shmem_page_offset,
587 				     page_length);
588 	kunmap(page);
589 
590 	return ret ? - EFAULT : 0;
591 }
592 
593 static int
594 i915_gem_shmem_pread(struct drm_device *dev,
595 		     struct drm_i915_gem_object *obj,
596 		     struct drm_i915_gem_pread *args,
597 		     struct drm_file *file)
598 {
599 	char __user *user_data;
600 	ssize_t remain;
601 	loff_t offset;
602 	int shmem_page_offset, page_length, ret = 0;
603 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604 	int prefaulted = 0;
605 	int needs_clflush = 0;
606 	struct sg_page_iter sg_iter;
607 
608 	user_data = to_user_ptr(args->data_ptr);
609 	remain = args->size;
610 
611 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612 
613 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614 	if (ret)
615 		return ret;
616 
617 	offset = args->offset;
618 
619 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620 			 offset >> PAGE_SHIFT) {
621 		struct page *page = sg_page_iter_page(&sg_iter);
622 
623 		if (remain <= 0)
624 			break;
625 
626 		/* Operation in this page
627 		 *
628 		 * shmem_page_offset = offset within page in shmem file
629 		 * page_length = bytes to copy for this page
630 		 */
631 		shmem_page_offset = offset_in_page(offset);
632 		page_length = remain;
633 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
634 			page_length = PAGE_SIZE - shmem_page_offset;
635 
636 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637 			(page_to_phys(page) & (1 << 17)) != 0;
638 
639 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640 				       user_data, page_do_bit17_swizzling,
641 				       needs_clflush);
642 		if (ret == 0)
643 			goto next_page;
644 
645 		mutex_unlock(&dev->struct_mutex);
646 
647 		if (likely(!i915.prefault_disable) && !prefaulted) {
648 			ret = fault_in_multipages_writeable(user_data, remain);
649 			/* Userspace is tricking us, but we've already clobbered
650 			 * its pages with the prefault and promised to write the
651 			 * data up to the first fault. Hence ignore any errors
652 			 * and just continue. */
653 			(void)ret;
654 			prefaulted = 1;
655 		}
656 
657 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658 				       user_data, page_do_bit17_swizzling,
659 				       needs_clflush);
660 
661 		mutex_lock(&dev->struct_mutex);
662 
663 		if (ret)
664 			goto out;
665 
666 next_page:
667 		remain -= page_length;
668 		user_data += page_length;
669 		offset += page_length;
670 	}
671 
672 out:
673 	i915_gem_object_unpin_pages(obj);
674 
675 	return ret;
676 }
677 
678 /**
679  * Reads data from the object referenced by handle.
680  *
681  * On error, the contents of *data are undefined.
682  */
683 int
684 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685 		     struct drm_file *file)
686 {
687 	struct drm_i915_gem_pread *args = data;
688 	struct drm_i915_gem_object *obj;
689 	int ret = 0;
690 
691 	if (args->size == 0)
692 		return 0;
693 
694 	if (!access_ok(VERIFY_WRITE,
695 		       to_user_ptr(args->data_ptr),
696 		       args->size))
697 		return -EFAULT;
698 
699 	ret = i915_mutex_lock_interruptible(dev);
700 	if (ret)
701 		return ret;
702 
703 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704 	if (&obj->base == NULL) {
705 		ret = -ENOENT;
706 		goto unlock;
707 	}
708 
709 	/* Bounds check source.  */
710 	if (args->offset > obj->base.size ||
711 	    args->size > obj->base.size - args->offset) {
712 		ret = -EINVAL;
713 		goto out;
714 	}
715 
716 	/* prime objects have no backing filp to GEM pread/pwrite
717 	 * pages from.
718 	 */
719 	if (!obj->base.filp) {
720 		ret = -EINVAL;
721 		goto out;
722 	}
723 
724 	trace_i915_gem_object_pread(obj, args->offset, args->size);
725 
726 	ret = i915_gem_shmem_pread(dev, obj, args, file);
727 
728 out:
729 	drm_gem_object_unreference(&obj->base);
730 unlock:
731 	mutex_unlock(&dev->struct_mutex);
732 	return ret;
733 }
734 
735 /* This is the fast write path which cannot handle
736  * page faults in the source data
737  */
738 
739 static inline int
740 fast_user_write(struct io_mapping *mapping,
741 		loff_t page_base, int page_offset,
742 		char __user *user_data,
743 		int length)
744 {
745 	void __iomem *vaddr_atomic;
746 	void *vaddr;
747 	unsigned long unwritten;
748 
749 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750 	/* We can use the cpu mem copy function because this is X86. */
751 	vaddr = (void __force*)vaddr_atomic + page_offset;
752 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
753 						      user_data, length);
754 	io_mapping_unmap_atomic(vaddr_atomic);
755 	return unwritten;
756 }
757 
758 /**
759  * This is the fast pwrite path, where we copy the data directly from the
760  * user into the GTT, uncached.
761  */
762 static int
763 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764 			 struct drm_i915_gem_object *obj,
765 			 struct drm_i915_gem_pwrite *args,
766 			 struct drm_file *file)
767 {
768 	struct drm_i915_private *dev_priv = to_i915(dev);
769 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
770 	ssize_t remain;
771 	loff_t offset, page_base;
772 	char __user *user_data;
773 	int page_offset, page_length, ret;
774 
775 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
776 	if (ret)
777 		goto out;
778 
779 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
780 	if (ret)
781 		goto out_unpin;
782 
783 	ret = i915_gem_object_put_fence(obj);
784 	if (ret)
785 		goto out_unpin;
786 
787 	user_data = to_user_ptr(args->data_ptr);
788 	remain = args->size;
789 
790 	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
791 
792 	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
793 
794 	while (remain > 0) {
795 		/* Operation in this page
796 		 *
797 		 * page_base = page offset within aperture
798 		 * page_offset = offset within page
799 		 * page_length = bytes to copy for this page
800 		 */
801 		page_base = offset & PAGE_MASK;
802 		page_offset = offset_in_page(offset);
803 		page_length = remain;
804 		if ((page_offset + remain) > PAGE_SIZE)
805 			page_length = PAGE_SIZE - page_offset;
806 
807 		/* If we get a fault while copying data, then (presumably) our
808 		 * source page isn't available.  Return the error and we'll
809 		 * retry in the slow path.
810 		 */
811 		if (fast_user_write(ggtt->mappable, page_base,
812 				    page_offset, user_data, page_length)) {
813 			ret = -EFAULT;
814 			goto out_flush;
815 		}
816 
817 		remain -= page_length;
818 		user_data += page_length;
819 		offset += page_length;
820 	}
821 
822 out_flush:
823 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
824 out_unpin:
825 	i915_gem_object_ggtt_unpin(obj);
826 out:
827 	return ret;
828 }
829 
830 /* Per-page copy function for the shmem pwrite fastpath.
831  * Flushes invalid cachelines before writing to the target if
832  * needs_clflush_before is set and flushes out any written cachelines after
833  * writing if needs_clflush is set. */
834 static int
835 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
836 		  char __user *user_data,
837 		  bool page_do_bit17_swizzling,
838 		  bool needs_clflush_before,
839 		  bool needs_clflush_after)
840 {
841 	char *vaddr;
842 	int ret;
843 
844 	if (unlikely(page_do_bit17_swizzling))
845 		return -EINVAL;
846 
847 	vaddr = kmap_atomic(page);
848 	if (needs_clflush_before)
849 		drm_clflush_virt_range(vaddr + shmem_page_offset,
850 				       page_length);
851 	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
852 					user_data, page_length);
853 	if (needs_clflush_after)
854 		drm_clflush_virt_range(vaddr + shmem_page_offset,
855 				       page_length);
856 	kunmap_atomic(vaddr);
857 
858 	return ret ? -EFAULT : 0;
859 }
860 
861 /* Only difference to the fast-path function is that this can handle bit17
862  * and uses non-atomic copy and kmap functions. */
863 static int
864 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
865 		  char __user *user_data,
866 		  bool page_do_bit17_swizzling,
867 		  bool needs_clflush_before,
868 		  bool needs_clflush_after)
869 {
870 	char *vaddr;
871 	int ret;
872 
873 	vaddr = kmap(page);
874 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
875 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
876 					     page_length,
877 					     page_do_bit17_swizzling);
878 	if (page_do_bit17_swizzling)
879 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
880 						user_data,
881 						page_length);
882 	else
883 		ret = __copy_from_user(vaddr + shmem_page_offset,
884 				       user_data,
885 				       page_length);
886 	if (needs_clflush_after)
887 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
888 					     page_length,
889 					     page_do_bit17_swizzling);
890 	kunmap(page);
891 
892 	return ret ? -EFAULT : 0;
893 }
894 
895 static int
896 i915_gem_shmem_pwrite(struct drm_device *dev,
897 		      struct drm_i915_gem_object *obj,
898 		      struct drm_i915_gem_pwrite *args,
899 		      struct drm_file *file)
900 {
901 	ssize_t remain;
902 	loff_t offset;
903 	char __user *user_data;
904 	int shmem_page_offset, page_length, ret = 0;
905 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
906 	int hit_slowpath = 0;
907 	int needs_clflush_after = 0;
908 	int needs_clflush_before = 0;
909 	struct sg_page_iter sg_iter;
910 
911 	user_data = to_user_ptr(args->data_ptr);
912 	remain = args->size;
913 
914 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
915 
916 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
917 		/* If we're not in the cpu write domain, set ourself into the gtt
918 		 * write domain and manually flush cachelines (if required). This
919 		 * optimizes for the case when the gpu will use the data
920 		 * right away and we therefore have to clflush anyway. */
921 		needs_clflush_after = cpu_write_needs_clflush(obj);
922 		ret = i915_gem_object_wait_rendering(obj, false);
923 		if (ret)
924 			return ret;
925 	}
926 	/* Same trick applies to invalidate partially written cachelines read
927 	 * before writing. */
928 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
929 		needs_clflush_before =
930 			!cpu_cache_is_coherent(dev, obj->cache_level);
931 
932 	ret = i915_gem_object_get_pages(obj);
933 	if (ret)
934 		return ret;
935 
936 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
937 
938 	i915_gem_object_pin_pages(obj);
939 
940 	offset = args->offset;
941 	obj->dirty = 1;
942 
943 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
944 			 offset >> PAGE_SHIFT) {
945 		struct page *page = sg_page_iter_page(&sg_iter);
946 		int partial_cacheline_write;
947 
948 		if (remain <= 0)
949 			break;
950 
951 		/* Operation in this page
952 		 *
953 		 * shmem_page_offset = offset within page in shmem file
954 		 * page_length = bytes to copy for this page
955 		 */
956 		shmem_page_offset = offset_in_page(offset);
957 
958 		page_length = remain;
959 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
960 			page_length = PAGE_SIZE - shmem_page_offset;
961 
962 		/* If we don't overwrite a cacheline completely we need to be
963 		 * careful to have up-to-date data by first clflushing. Don't
964 		 * overcomplicate things and flush the entire patch. */
965 		partial_cacheline_write = needs_clflush_before &&
966 			((shmem_page_offset | page_length)
967 				& (boot_cpu_data.x86_clflush_size - 1));
968 
969 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
970 			(page_to_phys(page) & (1 << 17)) != 0;
971 
972 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
973 					user_data, page_do_bit17_swizzling,
974 					partial_cacheline_write,
975 					needs_clflush_after);
976 		if (ret == 0)
977 			goto next_page;
978 
979 		hit_slowpath = 1;
980 		mutex_unlock(&dev->struct_mutex);
981 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
982 					user_data, page_do_bit17_swizzling,
983 					partial_cacheline_write,
984 					needs_clflush_after);
985 
986 		mutex_lock(&dev->struct_mutex);
987 
988 		if (ret)
989 			goto out;
990 
991 next_page:
992 		remain -= page_length;
993 		user_data += page_length;
994 		offset += page_length;
995 	}
996 
997 out:
998 	i915_gem_object_unpin_pages(obj);
999 
1000 	if (hit_slowpath) {
1001 		/*
1002 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
1003 		 * cachelines in-line while writing and the object moved
1004 		 * out of the cpu write domain while we've dropped the lock.
1005 		 */
1006 		if (!needs_clflush_after &&
1007 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1008 			if (i915_gem_clflush_object(obj, obj->pin_display))
1009 				needs_clflush_after = true;
1010 		}
1011 	}
1012 
1013 	if (needs_clflush_after)
1014 		i915_gem_chipset_flush(dev);
1015 	else
1016 		obj->cache_dirty = true;
1017 
1018 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1019 	return ret;
1020 }
1021 
1022 /**
1023  * Writes data to the object referenced by handle.
1024  *
1025  * On error, the contents of the buffer that were to be modified are undefined.
1026  */
1027 int
1028 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1029 		      struct drm_file *file)
1030 {
1031 	struct drm_i915_private *dev_priv = dev->dev_private;
1032 	struct drm_i915_gem_pwrite *args = data;
1033 	struct drm_i915_gem_object *obj;
1034 	int ret;
1035 
1036 	if (args->size == 0)
1037 		return 0;
1038 
1039 	if (!access_ok(VERIFY_READ,
1040 		       to_user_ptr(args->data_ptr),
1041 		       args->size))
1042 		return -EFAULT;
1043 
1044 	if (likely(!i915.prefault_disable)) {
1045 		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1046 						   args->size);
1047 		if (ret)
1048 			return -EFAULT;
1049 	}
1050 
1051 	intel_runtime_pm_get(dev_priv);
1052 
1053 	ret = i915_mutex_lock_interruptible(dev);
1054 	if (ret)
1055 		goto put_rpm;
1056 
1057 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1058 	if (&obj->base == NULL) {
1059 		ret = -ENOENT;
1060 		goto unlock;
1061 	}
1062 
1063 	/* Bounds check destination. */
1064 	if (args->offset > obj->base.size ||
1065 	    args->size > obj->base.size - args->offset) {
1066 		ret = -EINVAL;
1067 		goto out;
1068 	}
1069 
1070 	/* prime objects have no backing filp to GEM pread/pwrite
1071 	 * pages from.
1072 	 */
1073 	if (!obj->base.filp) {
1074 		ret = -EINVAL;
1075 		goto out;
1076 	}
1077 
1078 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1079 
1080 	ret = -EFAULT;
1081 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1082 	 * it would end up going through the fenced access, and we'll get
1083 	 * different detiling behavior between reading and writing.
1084 	 * pread/pwrite currently are reading and writing from the CPU
1085 	 * perspective, requiring manual detiling by the client.
1086 	 */
1087 	if (obj->tiling_mode == I915_TILING_NONE &&
1088 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1089 	    cpu_write_needs_clflush(obj)) {
1090 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1091 		/* Note that the gtt paths might fail with non-page-backed user
1092 		 * pointers (e.g. gtt mappings when moving data between
1093 		 * textures). Fallback to the shmem path in that case. */
1094 	}
1095 
1096 	if (ret == -EFAULT || ret == -ENOSPC) {
1097 		if (obj->phys_handle)
1098 			ret = i915_gem_phys_pwrite(obj, args, file);
1099 		else
1100 			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1101 	}
1102 
1103 out:
1104 	drm_gem_object_unreference(&obj->base);
1105 unlock:
1106 	mutex_unlock(&dev->struct_mutex);
1107 put_rpm:
1108 	intel_runtime_pm_put(dev_priv);
1109 
1110 	return ret;
1111 }
1112 
1113 int
1114 i915_gem_check_wedge(struct i915_gpu_error *error,
1115 		     bool interruptible)
1116 {
1117 	if (i915_reset_in_progress(error)) {
1118 		/* Non-interruptible callers can't handle -EAGAIN, hence return
1119 		 * -EIO unconditionally for these. */
1120 		if (!interruptible)
1121 			return -EIO;
1122 
1123 		/* Recovery complete, but the reset failed ... */
1124 		if (i915_terminally_wedged(error))
1125 			return -EIO;
1126 
1127 		/*
1128 		 * Check if GPU Reset is in progress - we need intel_ring_begin
1129 		 * to work properly to reinit the hw state while the gpu is
1130 		 * still marked as reset-in-progress. Handle this with a flag.
1131 		 */
1132 		if (!error->reload_in_reset)
1133 			return -EAGAIN;
1134 	}
1135 
1136 	return 0;
1137 }
1138 
1139 static void fake_irq(unsigned long data)
1140 {
1141 	wake_up_process((struct task_struct *)data);
1142 }
1143 
1144 static bool missed_irq(struct drm_i915_private *dev_priv,
1145 		       struct intel_engine_cs *engine)
1146 {
1147 	return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
1148 }
1149 
1150 static unsigned long local_clock_us(unsigned *cpu)
1151 {
1152 	unsigned long t;
1153 
1154 	/* Cheaply and approximately convert from nanoseconds to microseconds.
1155 	 * The result and subsequent calculations are also defined in the same
1156 	 * approximate microseconds units. The principal source of timing
1157 	 * error here is from the simple truncation.
1158 	 *
1159 	 * Note that local_clock() is only defined wrt to the current CPU;
1160 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1161 	 * blocking preemption for the entire busywait, we can detect the CPU
1162 	 * switch and use that as indicator of system load and a reason to
1163 	 * stop busywaiting, see busywait_stop().
1164 	 */
1165 	*cpu = get_cpu();
1166 	t = local_clock() >> 10;
1167 	put_cpu();
1168 
1169 	return t;
1170 }
1171 
1172 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1173 {
1174 	unsigned this_cpu;
1175 
1176 	if (time_after(local_clock_us(&this_cpu), timeout))
1177 		return true;
1178 
1179 	return this_cpu != cpu;
1180 }
1181 
1182 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1183 {
1184 	unsigned long timeout;
1185 	unsigned cpu;
1186 
1187 	/* When waiting for high frequency requests, e.g. during synchronous
1188 	 * rendering split between the CPU and GPU, the finite amount of time
1189 	 * required to set up the irq and wait upon it limits the response
1190 	 * rate. By busywaiting on the request completion for a short while we
1191 	 * can service the high frequency waits as quick as possible. However,
1192 	 * if it is a slow request, we want to sleep as quickly as possible.
1193 	 * The tradeoff between waiting and sleeping is roughly the time it
1194 	 * takes to sleep on a request, on the order of a microsecond.
1195 	 */
1196 
1197 	if (req->engine->irq_refcount)
1198 		return -EBUSY;
1199 
1200 	/* Only spin if we know the GPU is processing this request */
1201 	if (!i915_gem_request_started(req, true))
1202 		return -EAGAIN;
1203 
1204 	timeout = local_clock_us(&cpu) + 5;
1205 	while (!need_resched()) {
1206 		if (i915_gem_request_completed(req, true))
1207 			return 0;
1208 
1209 		if (signal_pending_state(state, current))
1210 			break;
1211 
1212 		if (busywait_stop(timeout, cpu))
1213 			break;
1214 
1215 		cpu_relax_lowlatency();
1216 	}
1217 
1218 	if (i915_gem_request_completed(req, false))
1219 		return 0;
1220 
1221 	return -EAGAIN;
1222 }
1223 
1224 /**
1225  * __i915_wait_request - wait until execution of request has finished
1226  * @req: duh!
1227  * @reset_counter: reset sequence associated with the given request
1228  * @interruptible: do an interruptible wait (normally yes)
1229  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1230  *
1231  * Note: It is of utmost importance that the passed in seqno and reset_counter
1232  * values have been read by the caller in an smp safe manner. Where read-side
1233  * locks are involved, it is sufficient to read the reset_counter before
1234  * unlocking the lock that protects the seqno. For lockless tricks, the
1235  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1236  * inserted.
1237  *
1238  * Returns 0 if the request was found within the alloted time. Else returns the
1239  * errno with remaining time filled in timeout argument.
1240  */
1241 int __i915_wait_request(struct drm_i915_gem_request *req,
1242 			unsigned reset_counter,
1243 			bool interruptible,
1244 			s64 *timeout,
1245 			struct intel_rps_client *rps)
1246 {
1247 	struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
1248 	struct drm_device *dev = engine->dev;
1249 	struct drm_i915_private *dev_priv = dev->dev_private;
1250 	const bool irq_test_in_progress =
1251 		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
1252 	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1253 	DEFINE_WAIT(wait);
1254 	unsigned long timeout_expire;
1255 	s64 before = 0; /* Only to silence a compiler warning. */
1256 	int ret;
1257 
1258 	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1259 
1260 	if (list_empty(&req->list))
1261 		return 0;
1262 
1263 	if (i915_gem_request_completed(req, true))
1264 		return 0;
1265 
1266 	timeout_expire = 0;
1267 	if (timeout) {
1268 		if (WARN_ON(*timeout < 0))
1269 			return -EINVAL;
1270 
1271 		if (*timeout == 0)
1272 			return -ETIME;
1273 
1274 		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1275 
1276 		/*
1277 		 * Record current time in case interrupted by signal, or wedged.
1278 		 */
1279 		before = ktime_get_raw_ns();
1280 	}
1281 
1282 	if (INTEL_INFO(dev_priv)->gen >= 6)
1283 		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1284 
1285 	trace_i915_gem_request_wait_begin(req);
1286 
1287 	/* Optimistic spin for the next jiffie before touching IRQs */
1288 	ret = __i915_spin_request(req, state);
1289 	if (ret == 0)
1290 		goto out;
1291 
1292 	if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
1293 		ret = -ENODEV;
1294 		goto out;
1295 	}
1296 
1297 	for (;;) {
1298 		struct timer_list timer;
1299 
1300 		prepare_to_wait(&engine->irq_queue, &wait, state);
1301 
1302 		/* We need to check whether any gpu reset happened in between
1303 		 * the caller grabbing the seqno and now ... */
1304 		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1305 			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
1306 			 * is truely gone. */
1307 			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1308 			if (ret == 0)
1309 				ret = -EAGAIN;
1310 			break;
1311 		}
1312 
1313 		if (i915_gem_request_completed(req, false)) {
1314 			ret = 0;
1315 			break;
1316 		}
1317 
1318 		if (signal_pending_state(state, current)) {
1319 			ret = -ERESTARTSYS;
1320 			break;
1321 		}
1322 
1323 		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1324 			ret = -ETIME;
1325 			break;
1326 		}
1327 
1328 		timer.function = NULL;
1329 		if (timeout || missed_irq(dev_priv, engine)) {
1330 			unsigned long expire;
1331 
1332 			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1333 			expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
1334 			mod_timer(&timer, expire);
1335 		}
1336 
1337 		io_schedule();
1338 
1339 		if (timer.function) {
1340 			del_singleshot_timer_sync(&timer);
1341 			destroy_timer_on_stack(&timer);
1342 		}
1343 	}
1344 	if (!irq_test_in_progress)
1345 		engine->irq_put(engine);
1346 
1347 	finish_wait(&engine->irq_queue, &wait);
1348 
1349 out:
1350 	trace_i915_gem_request_wait_end(req);
1351 
1352 	if (timeout) {
1353 		s64 tres = *timeout - (ktime_get_raw_ns() - before);
1354 
1355 		*timeout = tres < 0 ? 0 : tres;
1356 
1357 		/*
1358 		 * Apparently ktime isn't accurate enough and occasionally has a
1359 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1360 		 * things up to make the test happy. We allow up to 1 jiffy.
1361 		 *
1362 		 * This is a regrssion from the timespec->ktime conversion.
1363 		 */
1364 		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1365 			*timeout = 0;
1366 	}
1367 
1368 	return ret;
1369 }
1370 
1371 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1372 				   struct drm_file *file)
1373 {
1374 	struct drm_i915_file_private *file_priv;
1375 
1376 	WARN_ON(!req || !file || req->file_priv);
1377 
1378 	if (!req || !file)
1379 		return -EINVAL;
1380 
1381 	if (req->file_priv)
1382 		return -EINVAL;
1383 
1384 	file_priv = file->driver_priv;
1385 
1386 	spin_lock(&file_priv->mm.lock);
1387 	req->file_priv = file_priv;
1388 	list_add_tail(&req->client_list, &file_priv->mm.request_list);
1389 	spin_unlock(&file_priv->mm.lock);
1390 
1391 	req->pid = get_pid(task_pid(current));
1392 
1393 	return 0;
1394 }
1395 
1396 static inline void
1397 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1398 {
1399 	struct drm_i915_file_private *file_priv = request->file_priv;
1400 
1401 	if (!file_priv)
1402 		return;
1403 
1404 	spin_lock(&file_priv->mm.lock);
1405 	list_del(&request->client_list);
1406 	request->file_priv = NULL;
1407 	spin_unlock(&file_priv->mm.lock);
1408 
1409 	put_pid(request->pid);
1410 	request->pid = NULL;
1411 }
1412 
1413 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1414 {
1415 	trace_i915_gem_request_retire(request);
1416 
1417 	/* We know the GPU must have read the request to have
1418 	 * sent us the seqno + interrupt, so use the position
1419 	 * of tail of the request to update the last known position
1420 	 * of the GPU head.
1421 	 *
1422 	 * Note this requires that we are always called in request
1423 	 * completion order.
1424 	 */
1425 	request->ringbuf->last_retired_head = request->postfix;
1426 
1427 	list_del_init(&request->list);
1428 	i915_gem_request_remove_from_client(request);
1429 
1430 	i915_gem_request_unreference(request);
1431 }
1432 
1433 static void
1434 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1435 {
1436 	struct intel_engine_cs *engine = req->engine;
1437 	struct drm_i915_gem_request *tmp;
1438 
1439 	lockdep_assert_held(&engine->dev->struct_mutex);
1440 
1441 	if (list_empty(&req->list))
1442 		return;
1443 
1444 	do {
1445 		tmp = list_first_entry(&engine->request_list,
1446 				       typeof(*tmp), list);
1447 
1448 		i915_gem_request_retire(tmp);
1449 	} while (tmp != req);
1450 
1451 	WARN_ON(i915_verify_lists(engine->dev));
1452 }
1453 
1454 /**
1455  * Waits for a request to be signaled, and cleans up the
1456  * request and object lists appropriately for that event.
1457  */
1458 int
1459 i915_wait_request(struct drm_i915_gem_request *req)
1460 {
1461 	struct drm_device *dev;
1462 	struct drm_i915_private *dev_priv;
1463 	bool interruptible;
1464 	int ret;
1465 
1466 	BUG_ON(req == NULL);
1467 
1468 	dev = req->engine->dev;
1469 	dev_priv = dev->dev_private;
1470 	interruptible = dev_priv->mm.interruptible;
1471 
1472 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1473 
1474 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1475 	if (ret)
1476 		return ret;
1477 
1478 	ret = __i915_wait_request(req,
1479 				  atomic_read(&dev_priv->gpu_error.reset_counter),
1480 				  interruptible, NULL, NULL);
1481 	if (ret)
1482 		return ret;
1483 
1484 	__i915_gem_request_retire__upto(req);
1485 	return 0;
1486 }
1487 
1488 /**
1489  * Ensures that all rendering to the object has completed and the object is
1490  * safe to unbind from the GTT or access from the CPU.
1491  */
1492 int
1493 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1494 			       bool readonly)
1495 {
1496 	int ret, i;
1497 
1498 	if (!obj->active)
1499 		return 0;
1500 
1501 	if (readonly) {
1502 		if (obj->last_write_req != NULL) {
1503 			ret = i915_wait_request(obj->last_write_req);
1504 			if (ret)
1505 				return ret;
1506 
1507 			i = obj->last_write_req->engine->id;
1508 			if (obj->last_read_req[i] == obj->last_write_req)
1509 				i915_gem_object_retire__read(obj, i);
1510 			else
1511 				i915_gem_object_retire__write(obj);
1512 		}
1513 	} else {
1514 		for (i = 0; i < I915_NUM_ENGINES; i++) {
1515 			if (obj->last_read_req[i] == NULL)
1516 				continue;
1517 
1518 			ret = i915_wait_request(obj->last_read_req[i]);
1519 			if (ret)
1520 				return ret;
1521 
1522 			i915_gem_object_retire__read(obj, i);
1523 		}
1524 		RQ_BUG_ON(obj->active);
1525 	}
1526 
1527 	return 0;
1528 }
1529 
1530 static void
1531 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1532 			       struct drm_i915_gem_request *req)
1533 {
1534 	int ring = req->engine->id;
1535 
1536 	if (obj->last_read_req[ring] == req)
1537 		i915_gem_object_retire__read(obj, ring);
1538 	else if (obj->last_write_req == req)
1539 		i915_gem_object_retire__write(obj);
1540 
1541 	__i915_gem_request_retire__upto(req);
1542 }
1543 
1544 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1545  * as the object state may change during this call.
1546  */
1547 static __must_check int
1548 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1549 					    struct intel_rps_client *rps,
1550 					    bool readonly)
1551 {
1552 	struct drm_device *dev = obj->base.dev;
1553 	struct drm_i915_private *dev_priv = dev->dev_private;
1554 	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1555 	unsigned reset_counter;
1556 	int ret, i, n = 0;
1557 
1558 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1559 	BUG_ON(!dev_priv->mm.interruptible);
1560 
1561 	if (!obj->active)
1562 		return 0;
1563 
1564 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1565 	if (ret)
1566 		return ret;
1567 
1568 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1569 
1570 	if (readonly) {
1571 		struct drm_i915_gem_request *req;
1572 
1573 		req = obj->last_write_req;
1574 		if (req == NULL)
1575 			return 0;
1576 
1577 		requests[n++] = i915_gem_request_reference(req);
1578 	} else {
1579 		for (i = 0; i < I915_NUM_ENGINES; i++) {
1580 			struct drm_i915_gem_request *req;
1581 
1582 			req = obj->last_read_req[i];
1583 			if (req == NULL)
1584 				continue;
1585 
1586 			requests[n++] = i915_gem_request_reference(req);
1587 		}
1588 	}
1589 
1590 	mutex_unlock(&dev->struct_mutex);
1591 	for (i = 0; ret == 0 && i < n; i++)
1592 		ret = __i915_wait_request(requests[i], reset_counter, true,
1593 					  NULL, rps);
1594 	mutex_lock(&dev->struct_mutex);
1595 
1596 	for (i = 0; i < n; i++) {
1597 		if (ret == 0)
1598 			i915_gem_object_retire_request(obj, requests[i]);
1599 		i915_gem_request_unreference(requests[i]);
1600 	}
1601 
1602 	return ret;
1603 }
1604 
1605 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1606 {
1607 	struct drm_i915_file_private *fpriv = file->driver_priv;
1608 	return &fpriv->rps;
1609 }
1610 
1611 /**
1612  * Called when user space prepares to use an object with the CPU, either
1613  * through the mmap ioctl's mapping or a GTT mapping.
1614  */
1615 int
1616 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1617 			  struct drm_file *file)
1618 {
1619 	struct drm_i915_gem_set_domain *args = data;
1620 	struct drm_i915_gem_object *obj;
1621 	uint32_t read_domains = args->read_domains;
1622 	uint32_t write_domain = args->write_domain;
1623 	int ret;
1624 
1625 	/* Only handle setting domains to types used by the CPU. */
1626 	if (write_domain & I915_GEM_GPU_DOMAINS)
1627 		return -EINVAL;
1628 
1629 	if (read_domains & I915_GEM_GPU_DOMAINS)
1630 		return -EINVAL;
1631 
1632 	/* Having something in the write domain implies it's in the read
1633 	 * domain, and only that read domain.  Enforce that in the request.
1634 	 */
1635 	if (write_domain != 0 && read_domains != write_domain)
1636 		return -EINVAL;
1637 
1638 	ret = i915_mutex_lock_interruptible(dev);
1639 	if (ret)
1640 		return ret;
1641 
1642 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1643 	if (&obj->base == NULL) {
1644 		ret = -ENOENT;
1645 		goto unlock;
1646 	}
1647 
1648 	/* Try to flush the object off the GPU without holding the lock.
1649 	 * We will repeat the flush holding the lock in the normal manner
1650 	 * to catch cases where we are gazumped.
1651 	 */
1652 	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1653 							  to_rps_client(file),
1654 							  !write_domain);
1655 	if (ret)
1656 		goto unref;
1657 
1658 	if (read_domains & I915_GEM_DOMAIN_GTT)
1659 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1660 	else
1661 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1662 
1663 	if (write_domain != 0)
1664 		intel_fb_obj_invalidate(obj,
1665 					write_domain == I915_GEM_DOMAIN_GTT ?
1666 					ORIGIN_GTT : ORIGIN_CPU);
1667 
1668 unref:
1669 	drm_gem_object_unreference(&obj->base);
1670 unlock:
1671 	mutex_unlock(&dev->struct_mutex);
1672 	return ret;
1673 }
1674 
1675 /**
1676  * Called when user space has done writes to this buffer
1677  */
1678 int
1679 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1680 			 struct drm_file *file)
1681 {
1682 	struct drm_i915_gem_sw_finish *args = data;
1683 	struct drm_i915_gem_object *obj;
1684 	int ret = 0;
1685 
1686 	ret = i915_mutex_lock_interruptible(dev);
1687 	if (ret)
1688 		return ret;
1689 
1690 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1691 	if (&obj->base == NULL) {
1692 		ret = -ENOENT;
1693 		goto unlock;
1694 	}
1695 
1696 	/* Pinned buffers may be scanout, so flush the cache */
1697 	if (obj->pin_display)
1698 		i915_gem_object_flush_cpu_write_domain(obj);
1699 
1700 	drm_gem_object_unreference(&obj->base);
1701 unlock:
1702 	mutex_unlock(&dev->struct_mutex);
1703 	return ret;
1704 }
1705 
1706 /**
1707  * Maps the contents of an object, returning the address it is mapped
1708  * into.
1709  *
1710  * While the mapping holds a reference on the contents of the object, it doesn't
1711  * imply a ref on the object itself.
1712  *
1713  * IMPORTANT:
1714  *
1715  * DRM driver writers who look a this function as an example for how to do GEM
1716  * mmap support, please don't implement mmap support like here. The modern way
1717  * to implement DRM mmap support is with an mmap offset ioctl (like
1718  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1719  * That way debug tooling like valgrind will understand what's going on, hiding
1720  * the mmap call in a driver private ioctl will break that. The i915 driver only
1721  * does cpu mmaps this way because we didn't know better.
1722  */
1723 int
1724 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1725 		    struct drm_file *file)
1726 {
1727 	struct drm_i915_gem_mmap *args = data;
1728 	struct drm_gem_object *obj;
1729 	unsigned long addr;
1730 
1731 	if (args->flags & ~(I915_MMAP_WC))
1732 		return -EINVAL;
1733 
1734 	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1735 		return -ENODEV;
1736 
1737 	obj = drm_gem_object_lookup(dev, file, args->handle);
1738 	if (obj == NULL)
1739 		return -ENOENT;
1740 
1741 	/* prime objects have no backing filp to GEM mmap
1742 	 * pages from.
1743 	 */
1744 	if (!obj->filp) {
1745 		drm_gem_object_unreference_unlocked(obj);
1746 		return -EINVAL;
1747 	}
1748 
1749 	addr = vm_mmap(obj->filp, 0, args->size,
1750 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1751 		       args->offset);
1752 	if (args->flags & I915_MMAP_WC) {
1753 		struct mm_struct *mm = current->mm;
1754 		struct vm_area_struct *vma;
1755 
1756 		down_write(&mm->mmap_sem);
1757 		vma = find_vma(mm, addr);
1758 		if (vma)
1759 			vma->vm_page_prot =
1760 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1761 		else
1762 			addr = -ENOMEM;
1763 		up_write(&mm->mmap_sem);
1764 	}
1765 	drm_gem_object_unreference_unlocked(obj);
1766 	if (IS_ERR((void *)addr))
1767 		return addr;
1768 
1769 	args->addr_ptr = (uint64_t) addr;
1770 
1771 	return 0;
1772 }
1773 
1774 /**
1775  * i915_gem_fault - fault a page into the GTT
1776  * @vma: VMA in question
1777  * @vmf: fault info
1778  *
1779  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1780  * from userspace.  The fault handler takes care of binding the object to
1781  * the GTT (if needed), allocating and programming a fence register (again,
1782  * only if needed based on whether the old reg is still valid or the object
1783  * is tiled) and inserting a new PTE into the faulting process.
1784  *
1785  * Note that the faulting process may involve evicting existing objects
1786  * from the GTT and/or fence registers to make room.  So performance may
1787  * suffer if the GTT working set is large or there are few fence registers
1788  * left.
1789  */
1790 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1791 {
1792 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1793 	struct drm_device *dev = obj->base.dev;
1794 	struct drm_i915_private *dev_priv = to_i915(dev);
1795 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1796 	struct i915_ggtt_view view = i915_ggtt_view_normal;
1797 	pgoff_t page_offset;
1798 	unsigned long pfn;
1799 	int ret = 0;
1800 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1801 
1802 	intel_runtime_pm_get(dev_priv);
1803 
1804 	/* We don't use vmf->pgoff since that has the fake offset */
1805 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1806 		PAGE_SHIFT;
1807 
1808 	ret = i915_mutex_lock_interruptible(dev);
1809 	if (ret)
1810 		goto out;
1811 
1812 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1813 
1814 	/* Try to flush the object off the GPU first without holding the lock.
1815 	 * Upon reacquiring the lock, we will perform our sanity checks and then
1816 	 * repeat the flush holding the lock in the normal manner to catch cases
1817 	 * where we are gazumped.
1818 	 */
1819 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1820 	if (ret)
1821 		goto unlock;
1822 
1823 	/* Access to snoopable pages through the GTT is incoherent. */
1824 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1825 		ret = -EFAULT;
1826 		goto unlock;
1827 	}
1828 
1829 	/* Use a partial view if the object is bigger than the aperture. */
1830 	if (obj->base.size >= ggtt->mappable_end &&
1831 	    obj->tiling_mode == I915_TILING_NONE) {
1832 		static const unsigned int chunk_size = 256; // 1 MiB
1833 
1834 		memset(&view, 0, sizeof(view));
1835 		view.type = I915_GGTT_VIEW_PARTIAL;
1836 		view.params.partial.offset = rounddown(page_offset, chunk_size);
1837 		view.params.partial.size =
1838 			min_t(unsigned int,
1839 			      chunk_size,
1840 			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1841 			      view.params.partial.offset);
1842 	}
1843 
1844 	/* Now pin it into the GTT if needed */
1845 	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1846 	if (ret)
1847 		goto unlock;
1848 
1849 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1850 	if (ret)
1851 		goto unpin;
1852 
1853 	ret = i915_gem_object_get_fence(obj);
1854 	if (ret)
1855 		goto unpin;
1856 
1857 	/* Finally, remap it using the new GTT offset */
1858 	pfn = ggtt->mappable_base +
1859 		i915_gem_obj_ggtt_offset_view(obj, &view);
1860 	pfn >>= PAGE_SHIFT;
1861 
1862 	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1863 		/* Overriding existing pages in partial view does not cause
1864 		 * us any trouble as TLBs are still valid because the fault
1865 		 * is due to userspace losing part of the mapping or never
1866 		 * having accessed it before (at this partials' range).
1867 		 */
1868 		unsigned long base = vma->vm_start +
1869 				     (view.params.partial.offset << PAGE_SHIFT);
1870 		unsigned int i;
1871 
1872 		for (i = 0; i < view.params.partial.size; i++) {
1873 			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1874 			if (ret)
1875 				break;
1876 		}
1877 
1878 		obj->fault_mappable = true;
1879 	} else {
1880 		if (!obj->fault_mappable) {
1881 			unsigned long size = min_t(unsigned long,
1882 						   vma->vm_end - vma->vm_start,
1883 						   obj->base.size);
1884 			int i;
1885 
1886 			for (i = 0; i < size >> PAGE_SHIFT; i++) {
1887 				ret = vm_insert_pfn(vma,
1888 						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
1889 						    pfn + i);
1890 				if (ret)
1891 					break;
1892 			}
1893 
1894 			obj->fault_mappable = true;
1895 		} else
1896 			ret = vm_insert_pfn(vma,
1897 					    (unsigned long)vmf->virtual_address,
1898 					    pfn + page_offset);
1899 	}
1900 unpin:
1901 	i915_gem_object_ggtt_unpin_view(obj, &view);
1902 unlock:
1903 	mutex_unlock(&dev->struct_mutex);
1904 out:
1905 	switch (ret) {
1906 	case -EIO:
1907 		/*
1908 		 * We eat errors when the gpu is terminally wedged to avoid
1909 		 * userspace unduly crashing (gl has no provisions for mmaps to
1910 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1911 		 * and so needs to be reported.
1912 		 */
1913 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1914 			ret = VM_FAULT_SIGBUS;
1915 			break;
1916 		}
1917 	case -EAGAIN:
1918 		/*
1919 		 * EAGAIN means the gpu is hung and we'll wait for the error
1920 		 * handler to reset everything when re-faulting in
1921 		 * i915_mutex_lock_interruptible.
1922 		 */
1923 	case 0:
1924 	case -ERESTARTSYS:
1925 	case -EINTR:
1926 	case -EBUSY:
1927 		/*
1928 		 * EBUSY is ok: this just means that another thread
1929 		 * already did the job.
1930 		 */
1931 		ret = VM_FAULT_NOPAGE;
1932 		break;
1933 	case -ENOMEM:
1934 		ret = VM_FAULT_OOM;
1935 		break;
1936 	case -ENOSPC:
1937 	case -EFAULT:
1938 		ret = VM_FAULT_SIGBUS;
1939 		break;
1940 	default:
1941 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1942 		ret = VM_FAULT_SIGBUS;
1943 		break;
1944 	}
1945 
1946 	intel_runtime_pm_put(dev_priv);
1947 	return ret;
1948 }
1949 
1950 /**
1951  * i915_gem_release_mmap - remove physical page mappings
1952  * @obj: obj in question
1953  *
1954  * Preserve the reservation of the mmapping with the DRM core code, but
1955  * relinquish ownership of the pages back to the system.
1956  *
1957  * It is vital that we remove the page mapping if we have mapped a tiled
1958  * object through the GTT and then lose the fence register due to
1959  * resource pressure. Similarly if the object has been moved out of the
1960  * aperture, than pages mapped into userspace must be revoked. Removing the
1961  * mapping will then trigger a page fault on the next user access, allowing
1962  * fixup by i915_gem_fault().
1963  */
1964 void
1965 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1966 {
1967 	if (!obj->fault_mappable)
1968 		return;
1969 
1970 	drm_vma_node_unmap(&obj->base.vma_node,
1971 			   obj->base.dev->anon_inode->i_mapping);
1972 	obj->fault_mappable = false;
1973 }
1974 
1975 void
1976 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1977 {
1978 	struct drm_i915_gem_object *obj;
1979 
1980 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1981 		i915_gem_release_mmap(obj);
1982 }
1983 
1984 uint32_t
1985 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1986 {
1987 	uint32_t gtt_size;
1988 
1989 	if (INTEL_INFO(dev)->gen >= 4 ||
1990 	    tiling_mode == I915_TILING_NONE)
1991 		return size;
1992 
1993 	/* Previous chips need a power-of-two fence region when tiling */
1994 	if (INTEL_INFO(dev)->gen == 3)
1995 		gtt_size = 1024*1024;
1996 	else
1997 		gtt_size = 512*1024;
1998 
1999 	while (gtt_size < size)
2000 		gtt_size <<= 1;
2001 
2002 	return gtt_size;
2003 }
2004 
2005 /**
2006  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2007  * @obj: object to check
2008  *
2009  * Return the required GTT alignment for an object, taking into account
2010  * potential fence register mapping.
2011  */
2012 uint32_t
2013 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2014 			   int tiling_mode, bool fenced)
2015 {
2016 	/*
2017 	 * Minimum alignment is 4k (GTT page size), but might be greater
2018 	 * if a fence register is needed for the object.
2019 	 */
2020 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2021 	    tiling_mode == I915_TILING_NONE)
2022 		return 4096;
2023 
2024 	/*
2025 	 * Previous chips need to be aligned to the size of the smallest
2026 	 * fence register that can contain the object.
2027 	 */
2028 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2029 }
2030 
2031 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2032 {
2033 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2034 	int ret;
2035 
2036 	dev_priv->mm.shrinker_no_lock_stealing = true;
2037 
2038 	ret = drm_gem_create_mmap_offset(&obj->base);
2039 	if (ret != -ENOSPC)
2040 		goto out;
2041 
2042 	/* Badly fragmented mmap space? The only way we can recover
2043 	 * space is by destroying unwanted objects. We can't randomly release
2044 	 * mmap_offsets as userspace expects them to be persistent for the
2045 	 * lifetime of the objects. The closest we can is to release the
2046 	 * offsets on purgeable objects by truncating it and marking it purged,
2047 	 * which prevents userspace from ever using that object again.
2048 	 */
2049 	i915_gem_shrink(dev_priv,
2050 			obj->base.size >> PAGE_SHIFT,
2051 			I915_SHRINK_BOUND |
2052 			I915_SHRINK_UNBOUND |
2053 			I915_SHRINK_PURGEABLE);
2054 	ret = drm_gem_create_mmap_offset(&obj->base);
2055 	if (ret != -ENOSPC)
2056 		goto out;
2057 
2058 	i915_gem_shrink_all(dev_priv);
2059 	ret = drm_gem_create_mmap_offset(&obj->base);
2060 out:
2061 	dev_priv->mm.shrinker_no_lock_stealing = false;
2062 
2063 	return ret;
2064 }
2065 
2066 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2067 {
2068 	drm_gem_free_mmap_offset(&obj->base);
2069 }
2070 
2071 int
2072 i915_gem_mmap_gtt(struct drm_file *file,
2073 		  struct drm_device *dev,
2074 		  uint32_t handle,
2075 		  uint64_t *offset)
2076 {
2077 	struct drm_i915_gem_object *obj;
2078 	int ret;
2079 
2080 	ret = i915_mutex_lock_interruptible(dev);
2081 	if (ret)
2082 		return ret;
2083 
2084 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2085 	if (&obj->base == NULL) {
2086 		ret = -ENOENT;
2087 		goto unlock;
2088 	}
2089 
2090 	if (obj->madv != I915_MADV_WILLNEED) {
2091 		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2092 		ret = -EFAULT;
2093 		goto out;
2094 	}
2095 
2096 	ret = i915_gem_object_create_mmap_offset(obj);
2097 	if (ret)
2098 		goto out;
2099 
2100 	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2101 
2102 out:
2103 	drm_gem_object_unreference(&obj->base);
2104 unlock:
2105 	mutex_unlock(&dev->struct_mutex);
2106 	return ret;
2107 }
2108 
2109 /**
2110  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2111  * @dev: DRM device
2112  * @data: GTT mapping ioctl data
2113  * @file: GEM object info
2114  *
2115  * Simply returns the fake offset to userspace so it can mmap it.
2116  * The mmap call will end up in drm_gem_mmap(), which will set things
2117  * up so we can get faults in the handler above.
2118  *
2119  * The fault handler will take care of binding the object into the GTT
2120  * (since it may have been evicted to make room for something), allocating
2121  * a fence register, and mapping the appropriate aperture address into
2122  * userspace.
2123  */
2124 int
2125 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2126 			struct drm_file *file)
2127 {
2128 	struct drm_i915_gem_mmap_gtt *args = data;
2129 
2130 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2131 }
2132 
2133 /* Immediately discard the backing storage */
2134 static void
2135 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2136 {
2137 	i915_gem_object_free_mmap_offset(obj);
2138 
2139 	if (obj->base.filp == NULL)
2140 		return;
2141 
2142 	/* Our goal here is to return as much of the memory as
2143 	 * is possible back to the system as we are called from OOM.
2144 	 * To do this we must instruct the shmfs to drop all of its
2145 	 * backing pages, *now*.
2146 	 */
2147 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2148 	obj->madv = __I915_MADV_PURGED;
2149 }
2150 
2151 /* Try to discard unwanted pages */
2152 static void
2153 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2154 {
2155 	struct address_space *mapping;
2156 
2157 	switch (obj->madv) {
2158 	case I915_MADV_DONTNEED:
2159 		i915_gem_object_truncate(obj);
2160 	case __I915_MADV_PURGED:
2161 		return;
2162 	}
2163 
2164 	if (obj->base.filp == NULL)
2165 		return;
2166 
2167 	mapping = file_inode(obj->base.filp)->i_mapping,
2168 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2169 }
2170 
2171 static void
2172 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2173 {
2174 	struct sg_page_iter sg_iter;
2175 	int ret;
2176 
2177 	BUG_ON(obj->madv == __I915_MADV_PURGED);
2178 
2179 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2180 	if (ret) {
2181 		/* In the event of a disaster, abandon all caches and
2182 		 * hope for the best.
2183 		 */
2184 		WARN_ON(ret != -EIO);
2185 		i915_gem_clflush_object(obj, true);
2186 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2187 	}
2188 
2189 	i915_gem_gtt_finish_object(obj);
2190 
2191 	if (i915_gem_object_needs_bit17_swizzle(obj))
2192 		i915_gem_object_save_bit_17_swizzle(obj);
2193 
2194 	if (obj->madv == I915_MADV_DONTNEED)
2195 		obj->dirty = 0;
2196 
2197 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2198 		struct page *page = sg_page_iter_page(&sg_iter);
2199 
2200 		if (obj->dirty)
2201 			set_page_dirty(page);
2202 
2203 		if (obj->madv == I915_MADV_WILLNEED)
2204 			mark_page_accessed(page);
2205 
2206 		put_page(page);
2207 	}
2208 	obj->dirty = 0;
2209 
2210 	sg_free_table(obj->pages);
2211 	kfree(obj->pages);
2212 }
2213 
2214 int
2215 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2216 {
2217 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2218 
2219 	if (obj->pages == NULL)
2220 		return 0;
2221 
2222 	if (obj->pages_pin_count)
2223 		return -EBUSY;
2224 
2225 	BUG_ON(i915_gem_obj_bound_any(obj));
2226 
2227 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2228 	 * array, hence protect them from being reaped by removing them from gtt
2229 	 * lists early. */
2230 	list_del(&obj->global_list);
2231 
2232 	if (obj->mapping) {
2233 		if (is_vmalloc_addr(obj->mapping))
2234 			vunmap(obj->mapping);
2235 		else
2236 			kunmap(kmap_to_page(obj->mapping));
2237 		obj->mapping = NULL;
2238 	}
2239 
2240 	ops->put_pages(obj);
2241 	obj->pages = NULL;
2242 
2243 	i915_gem_object_invalidate(obj);
2244 
2245 	return 0;
2246 }
2247 
2248 static int
2249 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2250 {
2251 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2252 	int page_count, i;
2253 	struct address_space *mapping;
2254 	struct sg_table *st;
2255 	struct scatterlist *sg;
2256 	struct sg_page_iter sg_iter;
2257 	struct page *page;
2258 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2259 	int ret;
2260 	gfp_t gfp;
2261 
2262 	/* Assert that the object is not currently in any GPU domain. As it
2263 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2264 	 * a GPU cache
2265 	 */
2266 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2267 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2268 
2269 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2270 	if (st == NULL)
2271 		return -ENOMEM;
2272 
2273 	page_count = obj->base.size / PAGE_SIZE;
2274 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2275 		kfree(st);
2276 		return -ENOMEM;
2277 	}
2278 
2279 	/* Get the list of pages out of our struct file.  They'll be pinned
2280 	 * at this point until we release them.
2281 	 *
2282 	 * Fail silently without starting the shrinker
2283 	 */
2284 	mapping = file_inode(obj->base.filp)->i_mapping;
2285 	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2286 	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2287 	sg = st->sgl;
2288 	st->nents = 0;
2289 	for (i = 0; i < page_count; i++) {
2290 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2291 		if (IS_ERR(page)) {
2292 			i915_gem_shrink(dev_priv,
2293 					page_count,
2294 					I915_SHRINK_BOUND |
2295 					I915_SHRINK_UNBOUND |
2296 					I915_SHRINK_PURGEABLE);
2297 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2298 		}
2299 		if (IS_ERR(page)) {
2300 			/* We've tried hard to allocate the memory by reaping
2301 			 * our own buffer, now let the real VM do its job and
2302 			 * go down in flames if truly OOM.
2303 			 */
2304 			i915_gem_shrink_all(dev_priv);
2305 			page = shmem_read_mapping_page(mapping, i);
2306 			if (IS_ERR(page)) {
2307 				ret = PTR_ERR(page);
2308 				goto err_pages;
2309 			}
2310 		}
2311 #ifdef CONFIG_SWIOTLB
2312 		if (swiotlb_nr_tbl()) {
2313 			st->nents++;
2314 			sg_set_page(sg, page, PAGE_SIZE, 0);
2315 			sg = sg_next(sg);
2316 			continue;
2317 		}
2318 #endif
2319 		if (!i || page_to_pfn(page) != last_pfn + 1) {
2320 			if (i)
2321 				sg = sg_next(sg);
2322 			st->nents++;
2323 			sg_set_page(sg, page, PAGE_SIZE, 0);
2324 		} else {
2325 			sg->length += PAGE_SIZE;
2326 		}
2327 		last_pfn = page_to_pfn(page);
2328 
2329 		/* Check that the i965g/gm workaround works. */
2330 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2331 	}
2332 #ifdef CONFIG_SWIOTLB
2333 	if (!swiotlb_nr_tbl())
2334 #endif
2335 		sg_mark_end(sg);
2336 	obj->pages = st;
2337 
2338 	ret = i915_gem_gtt_prepare_object(obj);
2339 	if (ret)
2340 		goto err_pages;
2341 
2342 	if (i915_gem_object_needs_bit17_swizzle(obj))
2343 		i915_gem_object_do_bit_17_swizzle(obj);
2344 
2345 	if (obj->tiling_mode != I915_TILING_NONE &&
2346 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2347 		i915_gem_object_pin_pages(obj);
2348 
2349 	return 0;
2350 
2351 err_pages:
2352 	sg_mark_end(sg);
2353 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2354 		put_page(sg_page_iter_page(&sg_iter));
2355 	sg_free_table(st);
2356 	kfree(st);
2357 
2358 	/* shmemfs first checks if there is enough memory to allocate the page
2359 	 * and reports ENOSPC should there be insufficient, along with the usual
2360 	 * ENOMEM for a genuine allocation failure.
2361 	 *
2362 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2363 	 * space and so want to translate the error from shmemfs back to our
2364 	 * usual understanding of ENOMEM.
2365 	 */
2366 	if (ret == -ENOSPC)
2367 		ret = -ENOMEM;
2368 
2369 	return ret;
2370 }
2371 
2372 /* Ensure that the associated pages are gathered from the backing storage
2373  * and pinned into our object. i915_gem_object_get_pages() may be called
2374  * multiple times before they are released by a single call to
2375  * i915_gem_object_put_pages() - once the pages are no longer referenced
2376  * either as a result of memory pressure (reaping pages under the shrinker)
2377  * or as the object is itself released.
2378  */
2379 int
2380 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2381 {
2382 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2383 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2384 	int ret;
2385 
2386 	if (obj->pages)
2387 		return 0;
2388 
2389 	if (obj->madv != I915_MADV_WILLNEED) {
2390 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2391 		return -EFAULT;
2392 	}
2393 
2394 	BUG_ON(obj->pages_pin_count);
2395 
2396 	ret = ops->get_pages(obj);
2397 	if (ret)
2398 		return ret;
2399 
2400 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2401 
2402 	obj->get_page.sg = obj->pages->sgl;
2403 	obj->get_page.last = 0;
2404 
2405 	return 0;
2406 }
2407 
2408 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2409 {
2410 	int ret;
2411 
2412 	lockdep_assert_held(&obj->base.dev->struct_mutex);
2413 
2414 	ret = i915_gem_object_get_pages(obj);
2415 	if (ret)
2416 		return ERR_PTR(ret);
2417 
2418 	i915_gem_object_pin_pages(obj);
2419 
2420 	if (obj->mapping == NULL) {
2421 		struct page **pages;
2422 
2423 		pages = NULL;
2424 		if (obj->base.size == PAGE_SIZE)
2425 			obj->mapping = kmap(sg_page(obj->pages->sgl));
2426 		else
2427 			pages = drm_malloc_gfp(obj->base.size >> PAGE_SHIFT,
2428 					       sizeof(*pages),
2429 					       GFP_TEMPORARY);
2430 		if (pages != NULL) {
2431 			struct sg_page_iter sg_iter;
2432 			int n;
2433 
2434 			n = 0;
2435 			for_each_sg_page(obj->pages->sgl, &sg_iter,
2436 					 obj->pages->nents, 0)
2437 				pages[n++] = sg_page_iter_page(&sg_iter);
2438 
2439 			obj->mapping = vmap(pages, n, 0, PAGE_KERNEL);
2440 			drm_free_large(pages);
2441 		}
2442 		if (obj->mapping == NULL) {
2443 			i915_gem_object_unpin_pages(obj);
2444 			return ERR_PTR(-ENOMEM);
2445 		}
2446 	}
2447 
2448 	return obj->mapping;
2449 }
2450 
2451 void i915_vma_move_to_active(struct i915_vma *vma,
2452 			     struct drm_i915_gem_request *req)
2453 {
2454 	struct drm_i915_gem_object *obj = vma->obj;
2455 	struct intel_engine_cs *engine;
2456 
2457 	engine = i915_gem_request_get_engine(req);
2458 
2459 	/* Add a reference if we're newly entering the active list. */
2460 	if (obj->active == 0)
2461 		drm_gem_object_reference(&obj->base);
2462 	obj->active |= intel_engine_flag(engine);
2463 
2464 	list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2465 	i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2466 
2467 	list_move_tail(&vma->vm_link, &vma->vm->active_list);
2468 }
2469 
2470 static void
2471 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2472 {
2473 	RQ_BUG_ON(obj->last_write_req == NULL);
2474 	RQ_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2475 
2476 	i915_gem_request_assign(&obj->last_write_req, NULL);
2477 	intel_fb_obj_flush(obj, true, ORIGIN_CS);
2478 }
2479 
2480 static void
2481 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2482 {
2483 	struct i915_vma *vma;
2484 
2485 	RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2486 	RQ_BUG_ON(!(obj->active & (1 << ring)));
2487 
2488 	list_del_init(&obj->engine_list[ring]);
2489 	i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2490 
2491 	if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2492 		i915_gem_object_retire__write(obj);
2493 
2494 	obj->active &= ~(1 << ring);
2495 	if (obj->active)
2496 		return;
2497 
2498 	/* Bump our place on the bound list to keep it roughly in LRU order
2499 	 * so that we don't steal from recently used but inactive objects
2500 	 * (unless we are forced to ofc!)
2501 	 */
2502 	list_move_tail(&obj->global_list,
2503 		       &to_i915(obj->base.dev)->mm.bound_list);
2504 
2505 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
2506 		if (!list_empty(&vma->vm_link))
2507 			list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2508 	}
2509 
2510 	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2511 	drm_gem_object_unreference(&obj->base);
2512 }
2513 
2514 static int
2515 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2516 {
2517 	struct drm_i915_private *dev_priv = dev->dev_private;
2518 	struct intel_engine_cs *engine;
2519 	int ret;
2520 
2521 	/* Carefully retire all requests without writing to the rings */
2522 	for_each_engine(engine, dev_priv) {
2523 		ret = intel_engine_idle(engine);
2524 		if (ret)
2525 			return ret;
2526 	}
2527 	i915_gem_retire_requests(dev);
2528 
2529 	/* Finally reset hw state */
2530 	for_each_engine(engine, dev_priv)
2531 		intel_ring_init_seqno(engine, seqno);
2532 
2533 	return 0;
2534 }
2535 
2536 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2537 {
2538 	struct drm_i915_private *dev_priv = dev->dev_private;
2539 	int ret;
2540 
2541 	if (seqno == 0)
2542 		return -EINVAL;
2543 
2544 	/* HWS page needs to be set less than what we
2545 	 * will inject to ring
2546 	 */
2547 	ret = i915_gem_init_seqno(dev, seqno - 1);
2548 	if (ret)
2549 		return ret;
2550 
2551 	/* Carefully set the last_seqno value so that wrap
2552 	 * detection still works
2553 	 */
2554 	dev_priv->next_seqno = seqno;
2555 	dev_priv->last_seqno = seqno - 1;
2556 	if (dev_priv->last_seqno == 0)
2557 		dev_priv->last_seqno--;
2558 
2559 	return 0;
2560 }
2561 
2562 int
2563 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2564 {
2565 	struct drm_i915_private *dev_priv = dev->dev_private;
2566 
2567 	/* reserve 0 for non-seqno */
2568 	if (dev_priv->next_seqno == 0) {
2569 		int ret = i915_gem_init_seqno(dev, 0);
2570 		if (ret)
2571 			return ret;
2572 
2573 		dev_priv->next_seqno = 1;
2574 	}
2575 
2576 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2577 	return 0;
2578 }
2579 
2580 /*
2581  * NB: This function is not allowed to fail. Doing so would mean the the
2582  * request is not being tracked for completion but the work itself is
2583  * going to happen on the hardware. This would be a Bad Thing(tm).
2584  */
2585 void __i915_add_request(struct drm_i915_gem_request *request,
2586 			struct drm_i915_gem_object *obj,
2587 			bool flush_caches)
2588 {
2589 	struct intel_engine_cs *engine;
2590 	struct drm_i915_private *dev_priv;
2591 	struct intel_ringbuffer *ringbuf;
2592 	u32 request_start;
2593 	int ret;
2594 
2595 	if (WARN_ON(request == NULL))
2596 		return;
2597 
2598 	engine = request->engine;
2599 	dev_priv = request->i915;
2600 	ringbuf = request->ringbuf;
2601 
2602 	/*
2603 	 * To ensure that this call will not fail, space for its emissions
2604 	 * should already have been reserved in the ring buffer. Let the ring
2605 	 * know that it is time to use that space up.
2606 	 */
2607 	intel_ring_reserved_space_use(ringbuf);
2608 
2609 	request_start = intel_ring_get_tail(ringbuf);
2610 	/*
2611 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
2612 	 * after having emitted the batchbuffer command. Hence we need to fix
2613 	 * things up similar to emitting the lazy request. The difference here
2614 	 * is that the flush _must_ happen before the next request, no matter
2615 	 * what.
2616 	 */
2617 	if (flush_caches) {
2618 		if (i915.enable_execlists)
2619 			ret = logical_ring_flush_all_caches(request);
2620 		else
2621 			ret = intel_ring_flush_all_caches(request);
2622 		/* Not allowed to fail! */
2623 		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2624 	}
2625 
2626 	trace_i915_gem_request_add(request);
2627 
2628 	request->head = request_start;
2629 
2630 	/* Whilst this request exists, batch_obj will be on the
2631 	 * active_list, and so will hold the active reference. Only when this
2632 	 * request is retired will the the batch_obj be moved onto the
2633 	 * inactive_list and lose its active reference. Hence we do not need
2634 	 * to explicitly hold another reference here.
2635 	 */
2636 	request->batch_obj = obj;
2637 
2638 	/* Seal the request and mark it as pending execution. Note that
2639 	 * we may inspect this state, without holding any locks, during
2640 	 * hangcheck. Hence we apply the barrier to ensure that we do not
2641 	 * see a more recent value in the hws than we are tracking.
2642 	 */
2643 	request->emitted_jiffies = jiffies;
2644 	request->previous_seqno = engine->last_submitted_seqno;
2645 	smp_store_mb(engine->last_submitted_seqno, request->seqno);
2646 	list_add_tail(&request->list, &engine->request_list);
2647 
2648 	/* Record the position of the start of the request so that
2649 	 * should we detect the updated seqno part-way through the
2650 	 * GPU processing the request, we never over-estimate the
2651 	 * position of the head.
2652 	 */
2653 	request->postfix = intel_ring_get_tail(ringbuf);
2654 
2655 	if (i915.enable_execlists)
2656 		ret = engine->emit_request(request);
2657 	else {
2658 		ret = engine->add_request(request);
2659 
2660 		request->tail = intel_ring_get_tail(ringbuf);
2661 	}
2662 	/* Not allowed to fail! */
2663 	WARN(ret, "emit|add_request failed: %d!\n", ret);
2664 
2665 	i915_queue_hangcheck(engine->dev);
2666 
2667 	queue_delayed_work(dev_priv->wq,
2668 			   &dev_priv->mm.retire_work,
2669 			   round_jiffies_up_relative(HZ));
2670 	intel_mark_busy(dev_priv->dev);
2671 
2672 	/* Sanity check that the reserved size was large enough. */
2673 	intel_ring_reserved_space_end(ringbuf);
2674 }
2675 
2676 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2677 				   const struct intel_context *ctx)
2678 {
2679 	unsigned long elapsed;
2680 
2681 	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2682 
2683 	if (ctx->hang_stats.banned)
2684 		return true;
2685 
2686 	if (ctx->hang_stats.ban_period_seconds &&
2687 	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2688 		if (!i915_gem_context_is_default(ctx)) {
2689 			DRM_DEBUG("context hanging too fast, banning!\n");
2690 			return true;
2691 		} else if (i915_stop_ring_allow_ban(dev_priv)) {
2692 			if (i915_stop_ring_allow_warn(dev_priv))
2693 				DRM_ERROR("gpu hanging too fast, banning!\n");
2694 			return true;
2695 		}
2696 	}
2697 
2698 	return false;
2699 }
2700 
2701 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2702 				  struct intel_context *ctx,
2703 				  const bool guilty)
2704 {
2705 	struct i915_ctx_hang_stats *hs;
2706 
2707 	if (WARN_ON(!ctx))
2708 		return;
2709 
2710 	hs = &ctx->hang_stats;
2711 
2712 	if (guilty) {
2713 		hs->banned = i915_context_is_banned(dev_priv, ctx);
2714 		hs->batch_active++;
2715 		hs->guilty_ts = get_seconds();
2716 	} else {
2717 		hs->batch_pending++;
2718 	}
2719 }
2720 
2721 void i915_gem_request_free(struct kref *req_ref)
2722 {
2723 	struct drm_i915_gem_request *req = container_of(req_ref,
2724 						 typeof(*req), ref);
2725 	struct intel_context *ctx = req->ctx;
2726 
2727 	if (req->file_priv)
2728 		i915_gem_request_remove_from_client(req);
2729 
2730 	if (ctx) {
2731 		if (i915.enable_execlists && ctx != req->i915->kernel_context)
2732 			intel_lr_context_unpin(ctx, req->engine);
2733 
2734 		i915_gem_context_unreference(ctx);
2735 	}
2736 
2737 	kmem_cache_free(req->i915->requests, req);
2738 }
2739 
2740 static inline int
2741 __i915_gem_request_alloc(struct intel_engine_cs *engine,
2742 			 struct intel_context *ctx,
2743 			 struct drm_i915_gem_request **req_out)
2744 {
2745 	struct drm_i915_private *dev_priv = to_i915(engine->dev);
2746 	struct drm_i915_gem_request *req;
2747 	int ret;
2748 
2749 	if (!req_out)
2750 		return -EINVAL;
2751 
2752 	*req_out = NULL;
2753 
2754 	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2755 	if (req == NULL)
2756 		return -ENOMEM;
2757 
2758 	ret = i915_gem_get_seqno(engine->dev, &req->seqno);
2759 	if (ret)
2760 		goto err;
2761 
2762 	kref_init(&req->ref);
2763 	req->i915 = dev_priv;
2764 	req->engine = engine;
2765 	req->ctx  = ctx;
2766 	i915_gem_context_reference(req->ctx);
2767 
2768 	if (i915.enable_execlists)
2769 		ret = intel_logical_ring_alloc_request_extras(req);
2770 	else
2771 		ret = intel_ring_alloc_request_extras(req);
2772 	if (ret) {
2773 		i915_gem_context_unreference(req->ctx);
2774 		goto err;
2775 	}
2776 
2777 	/*
2778 	 * Reserve space in the ring buffer for all the commands required to
2779 	 * eventually emit this request. This is to guarantee that the
2780 	 * i915_add_request() call can't fail. Note that the reserve may need
2781 	 * to be redone if the request is not actually submitted straight
2782 	 * away, e.g. because a GPU scheduler has deferred it.
2783 	 */
2784 	if (i915.enable_execlists)
2785 		ret = intel_logical_ring_reserve_space(req);
2786 	else
2787 		ret = intel_ring_reserve_space(req);
2788 	if (ret) {
2789 		/*
2790 		 * At this point, the request is fully allocated even if not
2791 		 * fully prepared. Thus it can be cleaned up using the proper
2792 		 * free code.
2793 		 */
2794 		i915_gem_request_cancel(req);
2795 		return ret;
2796 	}
2797 
2798 	*req_out = req;
2799 	return 0;
2800 
2801 err:
2802 	kmem_cache_free(dev_priv->requests, req);
2803 	return ret;
2804 }
2805 
2806 /**
2807  * i915_gem_request_alloc - allocate a request structure
2808  *
2809  * @engine: engine that we wish to issue the request on.
2810  * @ctx: context that the request will be associated with.
2811  *       This can be NULL if the request is not directly related to
2812  *       any specific user context, in which case this function will
2813  *       choose an appropriate context to use.
2814  *
2815  * Returns a pointer to the allocated request if successful,
2816  * or an error code if not.
2817  */
2818 struct drm_i915_gem_request *
2819 i915_gem_request_alloc(struct intel_engine_cs *engine,
2820 		       struct intel_context *ctx)
2821 {
2822 	struct drm_i915_gem_request *req;
2823 	int err;
2824 
2825 	if (ctx == NULL)
2826 		ctx = to_i915(engine->dev)->kernel_context;
2827 	err = __i915_gem_request_alloc(engine, ctx, &req);
2828 	return err ? ERR_PTR(err) : req;
2829 }
2830 
2831 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2832 {
2833 	intel_ring_reserved_space_cancel(req->ringbuf);
2834 
2835 	i915_gem_request_unreference(req);
2836 }
2837 
2838 struct drm_i915_gem_request *
2839 i915_gem_find_active_request(struct intel_engine_cs *engine)
2840 {
2841 	struct drm_i915_gem_request *request;
2842 
2843 	list_for_each_entry(request, &engine->request_list, list) {
2844 		if (i915_gem_request_completed(request, false))
2845 			continue;
2846 
2847 		return request;
2848 	}
2849 
2850 	return NULL;
2851 }
2852 
2853 static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
2854 				       struct intel_engine_cs *engine)
2855 {
2856 	struct drm_i915_gem_request *request;
2857 	bool ring_hung;
2858 
2859 	request = i915_gem_find_active_request(engine);
2860 
2861 	if (request == NULL)
2862 		return;
2863 
2864 	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2865 
2866 	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2867 
2868 	list_for_each_entry_continue(request, &engine->request_list, list)
2869 		i915_set_reset_status(dev_priv, request->ctx, false);
2870 }
2871 
2872 static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
2873 					struct intel_engine_cs *engine)
2874 {
2875 	struct intel_ringbuffer *buffer;
2876 
2877 	while (!list_empty(&engine->active_list)) {
2878 		struct drm_i915_gem_object *obj;
2879 
2880 		obj = list_first_entry(&engine->active_list,
2881 				       struct drm_i915_gem_object,
2882 				       engine_list[engine->id]);
2883 
2884 		i915_gem_object_retire__read(obj, engine->id);
2885 	}
2886 
2887 	/*
2888 	 * Clear the execlists queue up before freeing the requests, as those
2889 	 * are the ones that keep the context and ringbuffer backing objects
2890 	 * pinned in place.
2891 	 */
2892 
2893 	if (i915.enable_execlists) {
2894 		/* Ensure irq handler finishes or is cancelled. */
2895 		tasklet_kill(&engine->irq_tasklet);
2896 
2897 		spin_lock_bh(&engine->execlist_lock);
2898 		/* list_splice_tail_init checks for empty lists */
2899 		list_splice_tail_init(&engine->execlist_queue,
2900 				      &engine->execlist_retired_req_list);
2901 		spin_unlock_bh(&engine->execlist_lock);
2902 
2903 		intel_execlists_retire_requests(engine);
2904 	}
2905 
2906 	/*
2907 	 * We must free the requests after all the corresponding objects have
2908 	 * been moved off active lists. Which is the same order as the normal
2909 	 * retire_requests function does. This is important if object hold
2910 	 * implicit references on things like e.g. ppgtt address spaces through
2911 	 * the request.
2912 	 */
2913 	while (!list_empty(&engine->request_list)) {
2914 		struct drm_i915_gem_request *request;
2915 
2916 		request = list_first_entry(&engine->request_list,
2917 					   struct drm_i915_gem_request,
2918 					   list);
2919 
2920 		i915_gem_request_retire(request);
2921 	}
2922 
2923 	/* Having flushed all requests from all queues, we know that all
2924 	 * ringbuffers must now be empty. However, since we do not reclaim
2925 	 * all space when retiring the request (to prevent HEADs colliding
2926 	 * with rapid ringbuffer wraparound) the amount of available space
2927 	 * upon reset is less than when we start. Do one more pass over
2928 	 * all the ringbuffers to reset last_retired_head.
2929 	 */
2930 	list_for_each_entry(buffer, &engine->buffers, link) {
2931 		buffer->last_retired_head = buffer->tail;
2932 		intel_ring_update_space(buffer);
2933 	}
2934 
2935 	intel_ring_init_seqno(engine, engine->last_submitted_seqno);
2936 }
2937 
2938 void i915_gem_reset(struct drm_device *dev)
2939 {
2940 	struct drm_i915_private *dev_priv = dev->dev_private;
2941 	struct intel_engine_cs *engine;
2942 
2943 	/*
2944 	 * Before we free the objects from the requests, we need to inspect
2945 	 * them for finding the guilty party. As the requests only borrow
2946 	 * their reference to the objects, the inspection must be done first.
2947 	 */
2948 	for_each_engine(engine, dev_priv)
2949 		i915_gem_reset_engine_status(dev_priv, engine);
2950 
2951 	for_each_engine(engine, dev_priv)
2952 		i915_gem_reset_engine_cleanup(dev_priv, engine);
2953 
2954 	i915_gem_context_reset(dev);
2955 
2956 	i915_gem_restore_fences(dev);
2957 
2958 	WARN_ON(i915_verify_lists(dev));
2959 }
2960 
2961 /**
2962  * This function clears the request list as sequence numbers are passed.
2963  */
2964 void
2965 i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
2966 {
2967 	WARN_ON(i915_verify_lists(engine->dev));
2968 
2969 	/* Retire requests first as we use it above for the early return.
2970 	 * If we retire requests last, we may use a later seqno and so clear
2971 	 * the requests lists without clearing the active list, leading to
2972 	 * confusion.
2973 	 */
2974 	while (!list_empty(&engine->request_list)) {
2975 		struct drm_i915_gem_request *request;
2976 
2977 		request = list_first_entry(&engine->request_list,
2978 					   struct drm_i915_gem_request,
2979 					   list);
2980 
2981 		if (!i915_gem_request_completed(request, true))
2982 			break;
2983 
2984 		i915_gem_request_retire(request);
2985 	}
2986 
2987 	/* Move any buffers on the active list that are no longer referenced
2988 	 * by the ringbuffer to the flushing/inactive lists as appropriate,
2989 	 * before we free the context associated with the requests.
2990 	 */
2991 	while (!list_empty(&engine->active_list)) {
2992 		struct drm_i915_gem_object *obj;
2993 
2994 		obj = list_first_entry(&engine->active_list,
2995 				       struct drm_i915_gem_object,
2996 				       engine_list[engine->id]);
2997 
2998 		if (!list_empty(&obj->last_read_req[engine->id]->list))
2999 			break;
3000 
3001 		i915_gem_object_retire__read(obj, engine->id);
3002 	}
3003 
3004 	if (unlikely(engine->trace_irq_req &&
3005 		     i915_gem_request_completed(engine->trace_irq_req, true))) {
3006 		engine->irq_put(engine);
3007 		i915_gem_request_assign(&engine->trace_irq_req, NULL);
3008 	}
3009 
3010 	WARN_ON(i915_verify_lists(engine->dev));
3011 }
3012 
3013 bool
3014 i915_gem_retire_requests(struct drm_device *dev)
3015 {
3016 	struct drm_i915_private *dev_priv = dev->dev_private;
3017 	struct intel_engine_cs *engine;
3018 	bool idle = true;
3019 
3020 	for_each_engine(engine, dev_priv) {
3021 		i915_gem_retire_requests_ring(engine);
3022 		idle &= list_empty(&engine->request_list);
3023 		if (i915.enable_execlists) {
3024 			spin_lock_bh(&engine->execlist_lock);
3025 			idle &= list_empty(&engine->execlist_queue);
3026 			spin_unlock_bh(&engine->execlist_lock);
3027 
3028 			intel_execlists_retire_requests(engine);
3029 		}
3030 	}
3031 
3032 	if (idle)
3033 		mod_delayed_work(dev_priv->wq,
3034 				   &dev_priv->mm.idle_work,
3035 				   msecs_to_jiffies(100));
3036 
3037 	return idle;
3038 }
3039 
3040 static void
3041 i915_gem_retire_work_handler(struct work_struct *work)
3042 {
3043 	struct drm_i915_private *dev_priv =
3044 		container_of(work, typeof(*dev_priv), mm.retire_work.work);
3045 	struct drm_device *dev = dev_priv->dev;
3046 	bool idle;
3047 
3048 	/* Come back later if the device is busy... */
3049 	idle = false;
3050 	if (mutex_trylock(&dev->struct_mutex)) {
3051 		idle = i915_gem_retire_requests(dev);
3052 		mutex_unlock(&dev->struct_mutex);
3053 	}
3054 	if (!idle)
3055 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3056 				   round_jiffies_up_relative(HZ));
3057 }
3058 
3059 static void
3060 i915_gem_idle_work_handler(struct work_struct *work)
3061 {
3062 	struct drm_i915_private *dev_priv =
3063 		container_of(work, typeof(*dev_priv), mm.idle_work.work);
3064 	struct drm_device *dev = dev_priv->dev;
3065 	struct intel_engine_cs *engine;
3066 
3067 	for_each_engine(engine, dev_priv)
3068 		if (!list_empty(&engine->request_list))
3069 			return;
3070 
3071 	/* we probably should sync with hangcheck here, using cancel_work_sync.
3072 	 * Also locking seems to be fubar here, engine->request_list is protected
3073 	 * by dev->struct_mutex. */
3074 
3075 	intel_mark_idle(dev);
3076 
3077 	if (mutex_trylock(&dev->struct_mutex)) {
3078 		for_each_engine(engine, dev_priv)
3079 			i915_gem_batch_pool_fini(&engine->batch_pool);
3080 
3081 		mutex_unlock(&dev->struct_mutex);
3082 	}
3083 }
3084 
3085 /**
3086  * Ensures that an object will eventually get non-busy by flushing any required
3087  * write domains, emitting any outstanding lazy request and retiring and
3088  * completed requests.
3089  */
3090 static int
3091 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3092 {
3093 	int i;
3094 
3095 	if (!obj->active)
3096 		return 0;
3097 
3098 	for (i = 0; i < I915_NUM_ENGINES; i++) {
3099 		struct drm_i915_gem_request *req;
3100 
3101 		req = obj->last_read_req[i];
3102 		if (req == NULL)
3103 			continue;
3104 
3105 		if (list_empty(&req->list))
3106 			goto retire;
3107 
3108 		if (i915_gem_request_completed(req, true)) {
3109 			__i915_gem_request_retire__upto(req);
3110 retire:
3111 			i915_gem_object_retire__read(obj, i);
3112 		}
3113 	}
3114 
3115 	return 0;
3116 }
3117 
3118 /**
3119  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3120  * @DRM_IOCTL_ARGS: standard ioctl arguments
3121  *
3122  * Returns 0 if successful, else an error is returned with the remaining time in
3123  * the timeout parameter.
3124  *  -ETIME: object is still busy after timeout
3125  *  -ERESTARTSYS: signal interrupted the wait
3126  *  -ENONENT: object doesn't exist
3127  * Also possible, but rare:
3128  *  -EAGAIN: GPU wedged
3129  *  -ENOMEM: damn
3130  *  -ENODEV: Internal IRQ fail
3131  *  -E?: The add request failed
3132  *
3133  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3134  * non-zero timeout parameter the wait ioctl will wait for the given number of
3135  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3136  * without holding struct_mutex the object may become re-busied before this
3137  * function completes. A similar but shorter * race condition exists in the busy
3138  * ioctl
3139  */
3140 int
3141 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3142 {
3143 	struct drm_i915_private *dev_priv = dev->dev_private;
3144 	struct drm_i915_gem_wait *args = data;
3145 	struct drm_i915_gem_object *obj;
3146 	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3147 	unsigned reset_counter;
3148 	int i, n = 0;
3149 	int ret;
3150 
3151 	if (args->flags != 0)
3152 		return -EINVAL;
3153 
3154 	ret = i915_mutex_lock_interruptible(dev);
3155 	if (ret)
3156 		return ret;
3157 
3158 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3159 	if (&obj->base == NULL) {
3160 		mutex_unlock(&dev->struct_mutex);
3161 		return -ENOENT;
3162 	}
3163 
3164 	/* Need to make sure the object gets inactive eventually. */
3165 	ret = i915_gem_object_flush_active(obj);
3166 	if (ret)
3167 		goto out;
3168 
3169 	if (!obj->active)
3170 		goto out;
3171 
3172 	/* Do this after OLR check to make sure we make forward progress polling
3173 	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3174 	 */
3175 	if (args->timeout_ns == 0) {
3176 		ret = -ETIME;
3177 		goto out;
3178 	}
3179 
3180 	drm_gem_object_unreference(&obj->base);
3181 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3182 
3183 	for (i = 0; i < I915_NUM_ENGINES; i++) {
3184 		if (obj->last_read_req[i] == NULL)
3185 			continue;
3186 
3187 		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3188 	}
3189 
3190 	mutex_unlock(&dev->struct_mutex);
3191 
3192 	for (i = 0; i < n; i++) {
3193 		if (ret == 0)
3194 			ret = __i915_wait_request(req[i], reset_counter, true,
3195 						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3196 						  to_rps_client(file));
3197 		i915_gem_request_unreference__unlocked(req[i]);
3198 	}
3199 	return ret;
3200 
3201 out:
3202 	drm_gem_object_unreference(&obj->base);
3203 	mutex_unlock(&dev->struct_mutex);
3204 	return ret;
3205 }
3206 
3207 static int
3208 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3209 		       struct intel_engine_cs *to,
3210 		       struct drm_i915_gem_request *from_req,
3211 		       struct drm_i915_gem_request **to_req)
3212 {
3213 	struct intel_engine_cs *from;
3214 	int ret;
3215 
3216 	from = i915_gem_request_get_engine(from_req);
3217 	if (to == from)
3218 		return 0;
3219 
3220 	if (i915_gem_request_completed(from_req, true))
3221 		return 0;
3222 
3223 	if (!i915_semaphore_is_enabled(obj->base.dev)) {
3224 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3225 		ret = __i915_wait_request(from_req,
3226 					  atomic_read(&i915->gpu_error.reset_counter),
3227 					  i915->mm.interruptible,
3228 					  NULL,
3229 					  &i915->rps.semaphores);
3230 		if (ret)
3231 			return ret;
3232 
3233 		i915_gem_object_retire_request(obj, from_req);
3234 	} else {
3235 		int idx = intel_ring_sync_index(from, to);
3236 		u32 seqno = i915_gem_request_get_seqno(from_req);
3237 
3238 		WARN_ON(!to_req);
3239 
3240 		if (seqno <= from->semaphore.sync_seqno[idx])
3241 			return 0;
3242 
3243 		if (*to_req == NULL) {
3244 			struct drm_i915_gem_request *req;
3245 
3246 			req = i915_gem_request_alloc(to, NULL);
3247 			if (IS_ERR(req))
3248 				return PTR_ERR(req);
3249 
3250 			*to_req = req;
3251 		}
3252 
3253 		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3254 		ret = to->semaphore.sync_to(*to_req, from, seqno);
3255 		if (ret)
3256 			return ret;
3257 
3258 		/* We use last_read_req because sync_to()
3259 		 * might have just caused seqno wrap under
3260 		 * the radar.
3261 		 */
3262 		from->semaphore.sync_seqno[idx] =
3263 			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3264 	}
3265 
3266 	return 0;
3267 }
3268 
3269 /**
3270  * i915_gem_object_sync - sync an object to a ring.
3271  *
3272  * @obj: object which may be in use on another ring.
3273  * @to: ring we wish to use the object on. May be NULL.
3274  * @to_req: request we wish to use the object for. See below.
3275  *          This will be allocated and returned if a request is
3276  *          required but not passed in.
3277  *
3278  * This code is meant to abstract object synchronization with the GPU.
3279  * Calling with NULL implies synchronizing the object with the CPU
3280  * rather than a particular GPU ring. Conceptually we serialise writes
3281  * between engines inside the GPU. We only allow one engine to write
3282  * into a buffer at any time, but multiple readers. To ensure each has
3283  * a coherent view of memory, we must:
3284  *
3285  * - If there is an outstanding write request to the object, the new
3286  *   request must wait for it to complete (either CPU or in hw, requests
3287  *   on the same ring will be naturally ordered).
3288  *
3289  * - If we are a write request (pending_write_domain is set), the new
3290  *   request must wait for outstanding read requests to complete.
3291  *
3292  * For CPU synchronisation (NULL to) no request is required. For syncing with
3293  * rings to_req must be non-NULL. However, a request does not have to be
3294  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3295  * request will be allocated automatically and returned through *to_req. Note
3296  * that it is not guaranteed that commands will be emitted (because the system
3297  * might already be idle). Hence there is no need to create a request that
3298  * might never have any work submitted. Note further that if a request is
3299  * returned in *to_req, it is the responsibility of the caller to submit
3300  * that request (after potentially adding more work to it).
3301  *
3302  * Returns 0 if successful, else propagates up the lower layer error.
3303  */
3304 int
3305 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3306 		     struct intel_engine_cs *to,
3307 		     struct drm_i915_gem_request **to_req)
3308 {
3309 	const bool readonly = obj->base.pending_write_domain == 0;
3310 	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3311 	int ret, i, n;
3312 
3313 	if (!obj->active)
3314 		return 0;
3315 
3316 	if (to == NULL)
3317 		return i915_gem_object_wait_rendering(obj, readonly);
3318 
3319 	n = 0;
3320 	if (readonly) {
3321 		if (obj->last_write_req)
3322 			req[n++] = obj->last_write_req;
3323 	} else {
3324 		for (i = 0; i < I915_NUM_ENGINES; i++)
3325 			if (obj->last_read_req[i])
3326 				req[n++] = obj->last_read_req[i];
3327 	}
3328 	for (i = 0; i < n; i++) {
3329 		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3330 		if (ret)
3331 			return ret;
3332 	}
3333 
3334 	return 0;
3335 }
3336 
3337 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3338 {
3339 	u32 old_write_domain, old_read_domains;
3340 
3341 	/* Force a pagefault for domain tracking on next user access */
3342 	i915_gem_release_mmap(obj);
3343 
3344 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3345 		return;
3346 
3347 	/* Wait for any direct GTT access to complete */
3348 	mb();
3349 
3350 	old_read_domains = obj->base.read_domains;
3351 	old_write_domain = obj->base.write_domain;
3352 
3353 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3354 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3355 
3356 	trace_i915_gem_object_change_domain(obj,
3357 					    old_read_domains,
3358 					    old_write_domain);
3359 }
3360 
3361 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3362 {
3363 	struct drm_i915_gem_object *obj = vma->obj;
3364 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3365 	int ret;
3366 
3367 	if (list_empty(&vma->obj_link))
3368 		return 0;
3369 
3370 	if (!drm_mm_node_allocated(&vma->node)) {
3371 		i915_gem_vma_destroy(vma);
3372 		return 0;
3373 	}
3374 
3375 	if (vma->pin_count)
3376 		return -EBUSY;
3377 
3378 	BUG_ON(obj->pages == NULL);
3379 
3380 	if (wait) {
3381 		ret = i915_gem_object_wait_rendering(obj, false);
3382 		if (ret)
3383 			return ret;
3384 	}
3385 
3386 	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3387 		i915_gem_object_finish_gtt(obj);
3388 
3389 		/* release the fence reg _after_ flushing */
3390 		ret = i915_gem_object_put_fence(obj);
3391 		if (ret)
3392 			return ret;
3393 	}
3394 
3395 	trace_i915_vma_unbind(vma);
3396 
3397 	vma->vm->unbind_vma(vma);
3398 	vma->bound = 0;
3399 
3400 	list_del_init(&vma->vm_link);
3401 	if (vma->is_ggtt) {
3402 		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3403 			obj->map_and_fenceable = false;
3404 		} else if (vma->ggtt_view.pages) {
3405 			sg_free_table(vma->ggtt_view.pages);
3406 			kfree(vma->ggtt_view.pages);
3407 		}
3408 		vma->ggtt_view.pages = NULL;
3409 	}
3410 
3411 	drm_mm_remove_node(&vma->node);
3412 	i915_gem_vma_destroy(vma);
3413 
3414 	/* Since the unbound list is global, only move to that list if
3415 	 * no more VMAs exist. */
3416 	if (list_empty(&obj->vma_list))
3417 		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3418 
3419 	/* And finally now the object is completely decoupled from this vma,
3420 	 * we can drop its hold on the backing storage and allow it to be
3421 	 * reaped by the shrinker.
3422 	 */
3423 	i915_gem_object_unpin_pages(obj);
3424 
3425 	return 0;
3426 }
3427 
3428 int i915_vma_unbind(struct i915_vma *vma)
3429 {
3430 	return __i915_vma_unbind(vma, true);
3431 }
3432 
3433 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3434 {
3435 	return __i915_vma_unbind(vma, false);
3436 }
3437 
3438 int i915_gpu_idle(struct drm_device *dev)
3439 {
3440 	struct drm_i915_private *dev_priv = dev->dev_private;
3441 	struct intel_engine_cs *engine;
3442 	int ret;
3443 
3444 	/* Flush everything onto the inactive list. */
3445 	for_each_engine(engine, dev_priv) {
3446 		if (!i915.enable_execlists) {
3447 			struct drm_i915_gem_request *req;
3448 
3449 			req = i915_gem_request_alloc(engine, NULL);
3450 			if (IS_ERR(req))
3451 				return PTR_ERR(req);
3452 
3453 			ret = i915_switch_context(req);
3454 			if (ret) {
3455 				i915_gem_request_cancel(req);
3456 				return ret;
3457 			}
3458 
3459 			i915_add_request_no_flush(req);
3460 		}
3461 
3462 		ret = intel_engine_idle(engine);
3463 		if (ret)
3464 			return ret;
3465 	}
3466 
3467 	WARN_ON(i915_verify_lists(dev));
3468 	return 0;
3469 }
3470 
3471 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3472 				     unsigned long cache_level)
3473 {
3474 	struct drm_mm_node *gtt_space = &vma->node;
3475 	struct drm_mm_node *other;
3476 
3477 	/*
3478 	 * On some machines we have to be careful when putting differing types
3479 	 * of snoopable memory together to avoid the prefetcher crossing memory
3480 	 * domains and dying. During vm initialisation, we decide whether or not
3481 	 * these constraints apply and set the drm_mm.color_adjust
3482 	 * appropriately.
3483 	 */
3484 	if (vma->vm->mm.color_adjust == NULL)
3485 		return true;
3486 
3487 	if (!drm_mm_node_allocated(gtt_space))
3488 		return true;
3489 
3490 	if (list_empty(&gtt_space->node_list))
3491 		return true;
3492 
3493 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3494 	if (other->allocated && !other->hole_follows && other->color != cache_level)
3495 		return false;
3496 
3497 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3498 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3499 		return false;
3500 
3501 	return true;
3502 }
3503 
3504 /**
3505  * Finds free space in the GTT aperture and binds the object or a view of it
3506  * there.
3507  */
3508 static struct i915_vma *
3509 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3510 			   struct i915_address_space *vm,
3511 			   const struct i915_ggtt_view *ggtt_view,
3512 			   unsigned alignment,
3513 			   uint64_t flags)
3514 {
3515 	struct drm_device *dev = obj->base.dev;
3516 	struct drm_i915_private *dev_priv = to_i915(dev);
3517 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3518 	u32 fence_alignment, unfenced_alignment;
3519 	u32 search_flag, alloc_flag;
3520 	u64 start, end;
3521 	u64 size, fence_size;
3522 	struct i915_vma *vma;
3523 	int ret;
3524 
3525 	if (i915_is_ggtt(vm)) {
3526 		u32 view_size;
3527 
3528 		if (WARN_ON(!ggtt_view))
3529 			return ERR_PTR(-EINVAL);
3530 
3531 		view_size = i915_ggtt_view_size(obj, ggtt_view);
3532 
3533 		fence_size = i915_gem_get_gtt_size(dev,
3534 						   view_size,
3535 						   obj->tiling_mode);
3536 		fence_alignment = i915_gem_get_gtt_alignment(dev,
3537 							     view_size,
3538 							     obj->tiling_mode,
3539 							     true);
3540 		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3541 								view_size,
3542 								obj->tiling_mode,
3543 								false);
3544 		size = flags & PIN_MAPPABLE ? fence_size : view_size;
3545 	} else {
3546 		fence_size = i915_gem_get_gtt_size(dev,
3547 						   obj->base.size,
3548 						   obj->tiling_mode);
3549 		fence_alignment = i915_gem_get_gtt_alignment(dev,
3550 							     obj->base.size,
3551 							     obj->tiling_mode,
3552 							     true);
3553 		unfenced_alignment =
3554 			i915_gem_get_gtt_alignment(dev,
3555 						   obj->base.size,
3556 						   obj->tiling_mode,
3557 						   false);
3558 		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3559 	}
3560 
3561 	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3562 	end = vm->total;
3563 	if (flags & PIN_MAPPABLE)
3564 		end = min_t(u64, end, ggtt->mappable_end);
3565 	if (flags & PIN_ZONE_4G)
3566 		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3567 
3568 	if (alignment == 0)
3569 		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3570 						unfenced_alignment;
3571 	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3572 		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3573 			  ggtt_view ? ggtt_view->type : 0,
3574 			  alignment);
3575 		return ERR_PTR(-EINVAL);
3576 	}
3577 
3578 	/* If binding the object/GGTT view requires more space than the entire
3579 	 * aperture has, reject it early before evicting everything in a vain
3580 	 * attempt to find space.
3581 	 */
3582 	if (size > end) {
3583 		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3584 			  ggtt_view ? ggtt_view->type : 0,
3585 			  size,
3586 			  flags & PIN_MAPPABLE ? "mappable" : "total",
3587 			  end);
3588 		return ERR_PTR(-E2BIG);
3589 	}
3590 
3591 	ret = i915_gem_object_get_pages(obj);
3592 	if (ret)
3593 		return ERR_PTR(ret);
3594 
3595 	i915_gem_object_pin_pages(obj);
3596 
3597 	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3598 			  i915_gem_obj_lookup_or_create_vma(obj, vm);
3599 
3600 	if (IS_ERR(vma))
3601 		goto err_unpin;
3602 
3603 	if (flags & PIN_OFFSET_FIXED) {
3604 		uint64_t offset = flags & PIN_OFFSET_MASK;
3605 
3606 		if (offset & (alignment - 1) || offset + size > end) {
3607 			ret = -EINVAL;
3608 			goto err_free_vma;
3609 		}
3610 		vma->node.start = offset;
3611 		vma->node.size = size;
3612 		vma->node.color = obj->cache_level;
3613 		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3614 		if (ret) {
3615 			ret = i915_gem_evict_for_vma(vma);
3616 			if (ret == 0)
3617 				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3618 		}
3619 		if (ret)
3620 			goto err_free_vma;
3621 	} else {
3622 		if (flags & PIN_HIGH) {
3623 			search_flag = DRM_MM_SEARCH_BELOW;
3624 			alloc_flag = DRM_MM_CREATE_TOP;
3625 		} else {
3626 			search_flag = DRM_MM_SEARCH_DEFAULT;
3627 			alloc_flag = DRM_MM_CREATE_DEFAULT;
3628 		}
3629 
3630 search_free:
3631 		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3632 							  size, alignment,
3633 							  obj->cache_level,
3634 							  start, end,
3635 							  search_flag,
3636 							  alloc_flag);
3637 		if (ret) {
3638 			ret = i915_gem_evict_something(dev, vm, size, alignment,
3639 						       obj->cache_level,
3640 						       start, end,
3641 						       flags);
3642 			if (ret == 0)
3643 				goto search_free;
3644 
3645 			goto err_free_vma;
3646 		}
3647 	}
3648 	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3649 		ret = -EINVAL;
3650 		goto err_remove_node;
3651 	}
3652 
3653 	trace_i915_vma_bind(vma, flags);
3654 	ret = i915_vma_bind(vma, obj->cache_level, flags);
3655 	if (ret)
3656 		goto err_remove_node;
3657 
3658 	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3659 	list_add_tail(&vma->vm_link, &vm->inactive_list);
3660 
3661 	return vma;
3662 
3663 err_remove_node:
3664 	drm_mm_remove_node(&vma->node);
3665 err_free_vma:
3666 	i915_gem_vma_destroy(vma);
3667 	vma = ERR_PTR(ret);
3668 err_unpin:
3669 	i915_gem_object_unpin_pages(obj);
3670 	return vma;
3671 }
3672 
3673 bool
3674 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3675 			bool force)
3676 {
3677 	/* If we don't have a page list set up, then we're not pinned
3678 	 * to GPU, and we can ignore the cache flush because it'll happen
3679 	 * again at bind time.
3680 	 */
3681 	if (obj->pages == NULL)
3682 		return false;
3683 
3684 	/*
3685 	 * Stolen memory is always coherent with the GPU as it is explicitly
3686 	 * marked as wc by the system, or the system is cache-coherent.
3687 	 */
3688 	if (obj->stolen || obj->phys_handle)
3689 		return false;
3690 
3691 	/* If the GPU is snooping the contents of the CPU cache,
3692 	 * we do not need to manually clear the CPU cache lines.  However,
3693 	 * the caches are only snooped when the render cache is
3694 	 * flushed/invalidated.  As we always have to emit invalidations
3695 	 * and flushes when moving into and out of the RENDER domain, correct
3696 	 * snooping behaviour occurs naturally as the result of our domain
3697 	 * tracking.
3698 	 */
3699 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3700 		obj->cache_dirty = true;
3701 		return false;
3702 	}
3703 
3704 	trace_i915_gem_object_clflush(obj);
3705 	drm_clflush_sg(obj->pages);
3706 	obj->cache_dirty = false;
3707 
3708 	return true;
3709 }
3710 
3711 /** Flushes the GTT write domain for the object if it's dirty. */
3712 static void
3713 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3714 {
3715 	uint32_t old_write_domain;
3716 
3717 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3718 		return;
3719 
3720 	/* No actual flushing is required for the GTT write domain.  Writes
3721 	 * to it immediately go to main memory as far as we know, so there's
3722 	 * no chipset flush.  It also doesn't land in render cache.
3723 	 *
3724 	 * However, we do have to enforce the order so that all writes through
3725 	 * the GTT land before any writes to the device, such as updates to
3726 	 * the GATT itself.
3727 	 */
3728 	wmb();
3729 
3730 	old_write_domain = obj->base.write_domain;
3731 	obj->base.write_domain = 0;
3732 
3733 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3734 
3735 	trace_i915_gem_object_change_domain(obj,
3736 					    obj->base.read_domains,
3737 					    old_write_domain);
3738 }
3739 
3740 /** Flushes the CPU write domain for the object if it's dirty. */
3741 static void
3742 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3743 {
3744 	uint32_t old_write_domain;
3745 
3746 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3747 		return;
3748 
3749 	if (i915_gem_clflush_object(obj, obj->pin_display))
3750 		i915_gem_chipset_flush(obj->base.dev);
3751 
3752 	old_write_domain = obj->base.write_domain;
3753 	obj->base.write_domain = 0;
3754 
3755 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3756 
3757 	trace_i915_gem_object_change_domain(obj,
3758 					    obj->base.read_domains,
3759 					    old_write_domain);
3760 }
3761 
3762 /**
3763  * Moves a single object to the GTT read, and possibly write domain.
3764  *
3765  * This function returns when the move is complete, including waiting on
3766  * flushes to occur.
3767  */
3768 int
3769 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3770 {
3771 	struct drm_device *dev = obj->base.dev;
3772 	struct drm_i915_private *dev_priv = to_i915(dev);
3773 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3774 	uint32_t old_write_domain, old_read_domains;
3775 	struct i915_vma *vma;
3776 	int ret;
3777 
3778 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3779 		return 0;
3780 
3781 	ret = i915_gem_object_wait_rendering(obj, !write);
3782 	if (ret)
3783 		return ret;
3784 
3785 	/* Flush and acquire obj->pages so that we are coherent through
3786 	 * direct access in memory with previous cached writes through
3787 	 * shmemfs and that our cache domain tracking remains valid.
3788 	 * For example, if the obj->filp was moved to swap without us
3789 	 * being notified and releasing the pages, we would mistakenly
3790 	 * continue to assume that the obj remained out of the CPU cached
3791 	 * domain.
3792 	 */
3793 	ret = i915_gem_object_get_pages(obj);
3794 	if (ret)
3795 		return ret;
3796 
3797 	i915_gem_object_flush_cpu_write_domain(obj);
3798 
3799 	/* Serialise direct access to this object with the barriers for
3800 	 * coherent writes from the GPU, by effectively invalidating the
3801 	 * GTT domain upon first access.
3802 	 */
3803 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3804 		mb();
3805 
3806 	old_write_domain = obj->base.write_domain;
3807 	old_read_domains = obj->base.read_domains;
3808 
3809 	/* It should now be out of any other write domains, and we can update
3810 	 * the domain values for our changes.
3811 	 */
3812 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3813 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3814 	if (write) {
3815 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3816 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3817 		obj->dirty = 1;
3818 	}
3819 
3820 	trace_i915_gem_object_change_domain(obj,
3821 					    old_read_domains,
3822 					    old_write_domain);
3823 
3824 	/* And bump the LRU for this access */
3825 	vma = i915_gem_obj_to_ggtt(obj);
3826 	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3827 		list_move_tail(&vma->vm_link,
3828 			       &ggtt->base.inactive_list);
3829 
3830 	return 0;
3831 }
3832 
3833 /**
3834  * Changes the cache-level of an object across all VMA.
3835  *
3836  * After this function returns, the object will be in the new cache-level
3837  * across all GTT and the contents of the backing storage will be coherent,
3838  * with respect to the new cache-level. In order to keep the backing storage
3839  * coherent for all users, we only allow a single cache level to be set
3840  * globally on the object and prevent it from being changed whilst the
3841  * hardware is reading from the object. That is if the object is currently
3842  * on the scanout it will be set to uncached (or equivalent display
3843  * cache coherency) and all non-MOCS GPU access will also be uncached so
3844  * that all direct access to the scanout remains coherent.
3845  */
3846 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3847 				    enum i915_cache_level cache_level)
3848 {
3849 	struct drm_device *dev = obj->base.dev;
3850 	struct i915_vma *vma, *next;
3851 	bool bound = false;
3852 	int ret = 0;
3853 
3854 	if (obj->cache_level == cache_level)
3855 		goto out;
3856 
3857 	/* Inspect the list of currently bound VMA and unbind any that would
3858 	 * be invalid given the new cache-level. This is principally to
3859 	 * catch the issue of the CS prefetch crossing page boundaries and
3860 	 * reading an invalid PTE on older architectures.
3861 	 */
3862 	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3863 		if (!drm_mm_node_allocated(&vma->node))
3864 			continue;
3865 
3866 		if (vma->pin_count) {
3867 			DRM_DEBUG("can not change the cache level of pinned objects\n");
3868 			return -EBUSY;
3869 		}
3870 
3871 		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3872 			ret = i915_vma_unbind(vma);
3873 			if (ret)
3874 				return ret;
3875 		} else
3876 			bound = true;
3877 	}
3878 
3879 	/* We can reuse the existing drm_mm nodes but need to change the
3880 	 * cache-level on the PTE. We could simply unbind them all and
3881 	 * rebind with the correct cache-level on next use. However since
3882 	 * we already have a valid slot, dma mapping, pages etc, we may as
3883 	 * rewrite the PTE in the belief that doing so tramples upon less
3884 	 * state and so involves less work.
3885 	 */
3886 	if (bound) {
3887 		/* Before we change the PTE, the GPU must not be accessing it.
3888 		 * If we wait upon the object, we know that all the bound
3889 		 * VMA are no longer active.
3890 		 */
3891 		ret = i915_gem_object_wait_rendering(obj, false);
3892 		if (ret)
3893 			return ret;
3894 
3895 		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3896 			/* Access to snoopable pages through the GTT is
3897 			 * incoherent and on some machines causes a hard
3898 			 * lockup. Relinquish the CPU mmaping to force
3899 			 * userspace to refault in the pages and we can
3900 			 * then double check if the GTT mapping is still
3901 			 * valid for that pointer access.
3902 			 */
3903 			i915_gem_release_mmap(obj);
3904 
3905 			/* As we no longer need a fence for GTT access,
3906 			 * we can relinquish it now (and so prevent having
3907 			 * to steal a fence from someone else on the next
3908 			 * fence request). Note GPU activity would have
3909 			 * dropped the fence as all snoopable access is
3910 			 * supposed to be linear.
3911 			 */
3912 			ret = i915_gem_object_put_fence(obj);
3913 			if (ret)
3914 				return ret;
3915 		} else {
3916 			/* We either have incoherent backing store and
3917 			 * so no GTT access or the architecture is fully
3918 			 * coherent. In such cases, existing GTT mmaps
3919 			 * ignore the cache bit in the PTE and we can
3920 			 * rewrite it without confusing the GPU or having
3921 			 * to force userspace to fault back in its mmaps.
3922 			 */
3923 		}
3924 
3925 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3926 			if (!drm_mm_node_allocated(&vma->node))
3927 				continue;
3928 
3929 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3930 			if (ret)
3931 				return ret;
3932 		}
3933 	}
3934 
3935 	list_for_each_entry(vma, &obj->vma_list, obj_link)
3936 		vma->node.color = cache_level;
3937 	obj->cache_level = cache_level;
3938 
3939 out:
3940 	/* Flush the dirty CPU caches to the backing storage so that the
3941 	 * object is now coherent at its new cache level (with respect
3942 	 * to the access domain).
3943 	 */
3944 	if (obj->cache_dirty &&
3945 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3946 	    cpu_write_needs_clflush(obj)) {
3947 		if (i915_gem_clflush_object(obj, true))
3948 			i915_gem_chipset_flush(obj->base.dev);
3949 	}
3950 
3951 	return 0;
3952 }
3953 
3954 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3955 			       struct drm_file *file)
3956 {
3957 	struct drm_i915_gem_caching *args = data;
3958 	struct drm_i915_gem_object *obj;
3959 
3960 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3961 	if (&obj->base == NULL)
3962 		return -ENOENT;
3963 
3964 	switch (obj->cache_level) {
3965 	case I915_CACHE_LLC:
3966 	case I915_CACHE_L3_LLC:
3967 		args->caching = I915_CACHING_CACHED;
3968 		break;
3969 
3970 	case I915_CACHE_WT:
3971 		args->caching = I915_CACHING_DISPLAY;
3972 		break;
3973 
3974 	default:
3975 		args->caching = I915_CACHING_NONE;
3976 		break;
3977 	}
3978 
3979 	drm_gem_object_unreference_unlocked(&obj->base);
3980 	return 0;
3981 }
3982 
3983 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3984 			       struct drm_file *file)
3985 {
3986 	struct drm_i915_private *dev_priv = dev->dev_private;
3987 	struct drm_i915_gem_caching *args = data;
3988 	struct drm_i915_gem_object *obj;
3989 	enum i915_cache_level level;
3990 	int ret;
3991 
3992 	switch (args->caching) {
3993 	case I915_CACHING_NONE:
3994 		level = I915_CACHE_NONE;
3995 		break;
3996 	case I915_CACHING_CACHED:
3997 		/*
3998 		 * Due to a HW issue on BXT A stepping, GPU stores via a
3999 		 * snooped mapping may leave stale data in a corresponding CPU
4000 		 * cacheline, whereas normally such cachelines would get
4001 		 * invalidated.
4002 		 */
4003 		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
4004 			return -ENODEV;
4005 
4006 		level = I915_CACHE_LLC;
4007 		break;
4008 	case I915_CACHING_DISPLAY:
4009 		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4010 		break;
4011 	default:
4012 		return -EINVAL;
4013 	}
4014 
4015 	intel_runtime_pm_get(dev_priv);
4016 
4017 	ret = i915_mutex_lock_interruptible(dev);
4018 	if (ret)
4019 		goto rpm_put;
4020 
4021 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4022 	if (&obj->base == NULL) {
4023 		ret = -ENOENT;
4024 		goto unlock;
4025 	}
4026 
4027 	ret = i915_gem_object_set_cache_level(obj, level);
4028 
4029 	drm_gem_object_unreference(&obj->base);
4030 unlock:
4031 	mutex_unlock(&dev->struct_mutex);
4032 rpm_put:
4033 	intel_runtime_pm_put(dev_priv);
4034 
4035 	return ret;
4036 }
4037 
4038 /*
4039  * Prepare buffer for display plane (scanout, cursors, etc).
4040  * Can be called from an uninterruptible phase (modesetting) and allows
4041  * any flushes to be pipelined (for pageflips).
4042  */
4043 int
4044 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4045 				     u32 alignment,
4046 				     const struct i915_ggtt_view *view)
4047 {
4048 	u32 old_read_domains, old_write_domain;
4049 	int ret;
4050 
4051 	/* Mark the pin_display early so that we account for the
4052 	 * display coherency whilst setting up the cache domains.
4053 	 */
4054 	obj->pin_display++;
4055 
4056 	/* The display engine is not coherent with the LLC cache on gen6.  As
4057 	 * a result, we make sure that the pinning that is about to occur is
4058 	 * done with uncached PTEs. This is lowest common denominator for all
4059 	 * chipsets.
4060 	 *
4061 	 * However for gen6+, we could do better by using the GFDT bit instead
4062 	 * of uncaching, which would allow us to flush all the LLC-cached data
4063 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4064 	 */
4065 	ret = i915_gem_object_set_cache_level(obj,
4066 					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4067 	if (ret)
4068 		goto err_unpin_display;
4069 
4070 	/* As the user may map the buffer once pinned in the display plane
4071 	 * (e.g. libkms for the bootup splash), we have to ensure that we
4072 	 * always use map_and_fenceable for all scanout buffers.
4073 	 */
4074 	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4075 				       view->type == I915_GGTT_VIEW_NORMAL ?
4076 				       PIN_MAPPABLE : 0);
4077 	if (ret)
4078 		goto err_unpin_display;
4079 
4080 	i915_gem_object_flush_cpu_write_domain(obj);
4081 
4082 	old_write_domain = obj->base.write_domain;
4083 	old_read_domains = obj->base.read_domains;
4084 
4085 	/* It should now be out of any other write domains, and we can update
4086 	 * the domain values for our changes.
4087 	 */
4088 	obj->base.write_domain = 0;
4089 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4090 
4091 	trace_i915_gem_object_change_domain(obj,
4092 					    old_read_domains,
4093 					    old_write_domain);
4094 
4095 	return 0;
4096 
4097 err_unpin_display:
4098 	obj->pin_display--;
4099 	return ret;
4100 }
4101 
4102 void
4103 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4104 					 const struct i915_ggtt_view *view)
4105 {
4106 	if (WARN_ON(obj->pin_display == 0))
4107 		return;
4108 
4109 	i915_gem_object_ggtt_unpin_view(obj, view);
4110 
4111 	obj->pin_display--;
4112 }
4113 
4114 /**
4115  * Moves a single object to the CPU read, and possibly write domain.
4116  *
4117  * This function returns when the move is complete, including waiting on
4118  * flushes to occur.
4119  */
4120 int
4121 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4122 {
4123 	uint32_t old_write_domain, old_read_domains;
4124 	int ret;
4125 
4126 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4127 		return 0;
4128 
4129 	ret = i915_gem_object_wait_rendering(obj, !write);
4130 	if (ret)
4131 		return ret;
4132 
4133 	i915_gem_object_flush_gtt_write_domain(obj);
4134 
4135 	old_write_domain = obj->base.write_domain;
4136 	old_read_domains = obj->base.read_domains;
4137 
4138 	/* Flush the CPU cache if it's still invalid. */
4139 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4140 		i915_gem_clflush_object(obj, false);
4141 
4142 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4143 	}
4144 
4145 	/* It should now be out of any other write domains, and we can update
4146 	 * the domain values for our changes.
4147 	 */
4148 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4149 
4150 	/* If we're writing through the CPU, then the GPU read domains will
4151 	 * need to be invalidated at next use.
4152 	 */
4153 	if (write) {
4154 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4155 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4156 	}
4157 
4158 	trace_i915_gem_object_change_domain(obj,
4159 					    old_read_domains,
4160 					    old_write_domain);
4161 
4162 	return 0;
4163 }
4164 
4165 /* Throttle our rendering by waiting until the ring has completed our requests
4166  * emitted over 20 msec ago.
4167  *
4168  * Note that if we were to use the current jiffies each time around the loop,
4169  * we wouldn't escape the function with any frames outstanding if the time to
4170  * render a frame was over 20ms.
4171  *
4172  * This should get us reasonable parallelism between CPU and GPU but also
4173  * relatively low latency when blocking on a particular request to finish.
4174  */
4175 static int
4176 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4177 {
4178 	struct drm_i915_private *dev_priv = dev->dev_private;
4179 	struct drm_i915_file_private *file_priv = file->driver_priv;
4180 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4181 	struct drm_i915_gem_request *request, *target = NULL;
4182 	unsigned reset_counter;
4183 	int ret;
4184 
4185 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4186 	if (ret)
4187 		return ret;
4188 
4189 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4190 	if (ret)
4191 		return ret;
4192 
4193 	spin_lock(&file_priv->mm.lock);
4194 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4195 		if (time_after_eq(request->emitted_jiffies, recent_enough))
4196 			break;
4197 
4198 		/*
4199 		 * Note that the request might not have been submitted yet.
4200 		 * In which case emitted_jiffies will be zero.
4201 		 */
4202 		if (!request->emitted_jiffies)
4203 			continue;
4204 
4205 		target = request;
4206 	}
4207 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4208 	if (target)
4209 		i915_gem_request_reference(target);
4210 	spin_unlock(&file_priv->mm.lock);
4211 
4212 	if (target == NULL)
4213 		return 0;
4214 
4215 	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4216 	if (ret == 0)
4217 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4218 
4219 	i915_gem_request_unreference__unlocked(target);
4220 
4221 	return ret;
4222 }
4223 
4224 static bool
4225 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4226 {
4227 	struct drm_i915_gem_object *obj = vma->obj;
4228 
4229 	if (alignment &&
4230 	    vma->node.start & (alignment - 1))
4231 		return true;
4232 
4233 	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4234 		return true;
4235 
4236 	if (flags & PIN_OFFSET_BIAS &&
4237 	    vma->node.start < (flags & PIN_OFFSET_MASK))
4238 		return true;
4239 
4240 	if (flags & PIN_OFFSET_FIXED &&
4241 	    vma->node.start != (flags & PIN_OFFSET_MASK))
4242 		return true;
4243 
4244 	return false;
4245 }
4246 
4247 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4248 {
4249 	struct drm_i915_gem_object *obj = vma->obj;
4250 	bool mappable, fenceable;
4251 	u32 fence_size, fence_alignment;
4252 
4253 	fence_size = i915_gem_get_gtt_size(obj->base.dev,
4254 					   obj->base.size,
4255 					   obj->tiling_mode);
4256 	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4257 						     obj->base.size,
4258 						     obj->tiling_mode,
4259 						     true);
4260 
4261 	fenceable = (vma->node.size == fence_size &&
4262 		     (vma->node.start & (fence_alignment - 1)) == 0);
4263 
4264 	mappable = (vma->node.start + fence_size <=
4265 		    to_i915(obj->base.dev)->ggtt.mappable_end);
4266 
4267 	obj->map_and_fenceable = mappable && fenceable;
4268 }
4269 
4270 static int
4271 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4272 		       struct i915_address_space *vm,
4273 		       const struct i915_ggtt_view *ggtt_view,
4274 		       uint32_t alignment,
4275 		       uint64_t flags)
4276 {
4277 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4278 	struct i915_vma *vma;
4279 	unsigned bound;
4280 	int ret;
4281 
4282 	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4283 		return -ENODEV;
4284 
4285 	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4286 		return -EINVAL;
4287 
4288 	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4289 		return -EINVAL;
4290 
4291 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4292 		return -EINVAL;
4293 
4294 	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4295 			  i915_gem_obj_to_vma(obj, vm);
4296 
4297 	if (vma) {
4298 		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4299 			return -EBUSY;
4300 
4301 		if (i915_vma_misplaced(vma, alignment, flags)) {
4302 			WARN(vma->pin_count,
4303 			     "bo is already pinned in %s with incorrect alignment:"
4304 			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4305 			     " obj->map_and_fenceable=%d\n",
4306 			     ggtt_view ? "ggtt" : "ppgtt",
4307 			     upper_32_bits(vma->node.start),
4308 			     lower_32_bits(vma->node.start),
4309 			     alignment,
4310 			     !!(flags & PIN_MAPPABLE),
4311 			     obj->map_and_fenceable);
4312 			ret = i915_vma_unbind(vma);
4313 			if (ret)
4314 				return ret;
4315 
4316 			vma = NULL;
4317 		}
4318 	}
4319 
4320 	bound = vma ? vma->bound : 0;
4321 	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4322 		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4323 						 flags);
4324 		if (IS_ERR(vma))
4325 			return PTR_ERR(vma);
4326 	} else {
4327 		ret = i915_vma_bind(vma, obj->cache_level, flags);
4328 		if (ret)
4329 			return ret;
4330 	}
4331 
4332 	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4333 	    (bound ^ vma->bound) & GLOBAL_BIND) {
4334 		__i915_vma_set_map_and_fenceable(vma);
4335 		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4336 	}
4337 
4338 	vma->pin_count++;
4339 	return 0;
4340 }
4341 
4342 int
4343 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4344 		    struct i915_address_space *vm,
4345 		    uint32_t alignment,
4346 		    uint64_t flags)
4347 {
4348 	return i915_gem_object_do_pin(obj, vm,
4349 				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4350 				      alignment, flags);
4351 }
4352 
4353 int
4354 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4355 			 const struct i915_ggtt_view *view,
4356 			 uint32_t alignment,
4357 			 uint64_t flags)
4358 {
4359 	struct drm_device *dev = obj->base.dev;
4360 	struct drm_i915_private *dev_priv = to_i915(dev);
4361 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
4362 
4363 	BUG_ON(!view);
4364 
4365 	return i915_gem_object_do_pin(obj, &ggtt->base, view,
4366 				      alignment, flags | PIN_GLOBAL);
4367 }
4368 
4369 void
4370 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4371 				const struct i915_ggtt_view *view)
4372 {
4373 	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4374 
4375 	BUG_ON(!vma);
4376 	WARN_ON(vma->pin_count == 0);
4377 	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4378 
4379 	--vma->pin_count;
4380 }
4381 
4382 int
4383 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4384 		    struct drm_file *file)
4385 {
4386 	struct drm_i915_gem_busy *args = data;
4387 	struct drm_i915_gem_object *obj;
4388 	int ret;
4389 
4390 	ret = i915_mutex_lock_interruptible(dev);
4391 	if (ret)
4392 		return ret;
4393 
4394 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4395 	if (&obj->base == NULL) {
4396 		ret = -ENOENT;
4397 		goto unlock;
4398 	}
4399 
4400 	/* Count all active objects as busy, even if they are currently not used
4401 	 * by the gpu. Users of this interface expect objects to eventually
4402 	 * become non-busy without any further actions, therefore emit any
4403 	 * necessary flushes here.
4404 	 */
4405 	ret = i915_gem_object_flush_active(obj);
4406 	if (ret)
4407 		goto unref;
4408 
4409 	args->busy = 0;
4410 	if (obj->active) {
4411 		int i;
4412 
4413 		for (i = 0; i < I915_NUM_ENGINES; i++) {
4414 			struct drm_i915_gem_request *req;
4415 
4416 			req = obj->last_read_req[i];
4417 			if (req)
4418 				args->busy |= 1 << (16 + req->engine->exec_id);
4419 		}
4420 		if (obj->last_write_req)
4421 			args->busy |= obj->last_write_req->engine->exec_id;
4422 	}
4423 
4424 unref:
4425 	drm_gem_object_unreference(&obj->base);
4426 unlock:
4427 	mutex_unlock(&dev->struct_mutex);
4428 	return ret;
4429 }
4430 
4431 int
4432 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4433 			struct drm_file *file_priv)
4434 {
4435 	return i915_gem_ring_throttle(dev, file_priv);
4436 }
4437 
4438 int
4439 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4440 		       struct drm_file *file_priv)
4441 {
4442 	struct drm_i915_private *dev_priv = dev->dev_private;
4443 	struct drm_i915_gem_madvise *args = data;
4444 	struct drm_i915_gem_object *obj;
4445 	int ret;
4446 
4447 	switch (args->madv) {
4448 	case I915_MADV_DONTNEED:
4449 	case I915_MADV_WILLNEED:
4450 	    break;
4451 	default:
4452 	    return -EINVAL;
4453 	}
4454 
4455 	ret = i915_mutex_lock_interruptible(dev);
4456 	if (ret)
4457 		return ret;
4458 
4459 	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4460 	if (&obj->base == NULL) {
4461 		ret = -ENOENT;
4462 		goto unlock;
4463 	}
4464 
4465 	if (i915_gem_obj_is_pinned(obj)) {
4466 		ret = -EINVAL;
4467 		goto out;
4468 	}
4469 
4470 	if (obj->pages &&
4471 	    obj->tiling_mode != I915_TILING_NONE &&
4472 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4473 		if (obj->madv == I915_MADV_WILLNEED)
4474 			i915_gem_object_unpin_pages(obj);
4475 		if (args->madv == I915_MADV_WILLNEED)
4476 			i915_gem_object_pin_pages(obj);
4477 	}
4478 
4479 	if (obj->madv != __I915_MADV_PURGED)
4480 		obj->madv = args->madv;
4481 
4482 	/* if the object is no longer attached, discard its backing storage */
4483 	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4484 		i915_gem_object_truncate(obj);
4485 
4486 	args->retained = obj->madv != __I915_MADV_PURGED;
4487 
4488 out:
4489 	drm_gem_object_unreference(&obj->base);
4490 unlock:
4491 	mutex_unlock(&dev->struct_mutex);
4492 	return ret;
4493 }
4494 
4495 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4496 			  const struct drm_i915_gem_object_ops *ops)
4497 {
4498 	int i;
4499 
4500 	INIT_LIST_HEAD(&obj->global_list);
4501 	for (i = 0; i < I915_NUM_ENGINES; i++)
4502 		INIT_LIST_HEAD(&obj->engine_list[i]);
4503 	INIT_LIST_HEAD(&obj->obj_exec_link);
4504 	INIT_LIST_HEAD(&obj->vma_list);
4505 	INIT_LIST_HEAD(&obj->batch_pool_link);
4506 
4507 	obj->ops = ops;
4508 
4509 	obj->fence_reg = I915_FENCE_REG_NONE;
4510 	obj->madv = I915_MADV_WILLNEED;
4511 
4512 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4513 }
4514 
4515 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4516 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4517 	.get_pages = i915_gem_object_get_pages_gtt,
4518 	.put_pages = i915_gem_object_put_pages_gtt,
4519 };
4520 
4521 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4522 						  size_t size)
4523 {
4524 	struct drm_i915_gem_object *obj;
4525 	struct address_space *mapping;
4526 	gfp_t mask;
4527 
4528 	obj = i915_gem_object_alloc(dev);
4529 	if (obj == NULL)
4530 		return NULL;
4531 
4532 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4533 		i915_gem_object_free(obj);
4534 		return NULL;
4535 	}
4536 
4537 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4538 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4539 		/* 965gm cannot relocate objects above 4GiB. */
4540 		mask &= ~__GFP_HIGHMEM;
4541 		mask |= __GFP_DMA32;
4542 	}
4543 
4544 	mapping = file_inode(obj->base.filp)->i_mapping;
4545 	mapping_set_gfp_mask(mapping, mask);
4546 
4547 	i915_gem_object_init(obj, &i915_gem_object_ops);
4548 
4549 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4550 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4551 
4552 	if (HAS_LLC(dev)) {
4553 		/* On some devices, we can have the GPU use the LLC (the CPU
4554 		 * cache) for about a 10% performance improvement
4555 		 * compared to uncached.  Graphics requests other than
4556 		 * display scanout are coherent with the CPU in
4557 		 * accessing this cache.  This means in this mode we
4558 		 * don't need to clflush on the CPU side, and on the
4559 		 * GPU side we only need to flush internal caches to
4560 		 * get data visible to the CPU.
4561 		 *
4562 		 * However, we maintain the display planes as UC, and so
4563 		 * need to rebind when first used as such.
4564 		 */
4565 		obj->cache_level = I915_CACHE_LLC;
4566 	} else
4567 		obj->cache_level = I915_CACHE_NONE;
4568 
4569 	trace_i915_gem_object_create(obj);
4570 
4571 	return obj;
4572 }
4573 
4574 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4575 {
4576 	/* If we are the last user of the backing storage (be it shmemfs
4577 	 * pages or stolen etc), we know that the pages are going to be
4578 	 * immediately released. In this case, we can then skip copying
4579 	 * back the contents from the GPU.
4580 	 */
4581 
4582 	if (obj->madv != I915_MADV_WILLNEED)
4583 		return false;
4584 
4585 	if (obj->base.filp == NULL)
4586 		return true;
4587 
4588 	/* At first glance, this looks racy, but then again so would be
4589 	 * userspace racing mmap against close. However, the first external
4590 	 * reference to the filp can only be obtained through the
4591 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4592 	 * acquiring such a reference whilst we are in the middle of
4593 	 * freeing the object.
4594 	 */
4595 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4596 }
4597 
4598 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4599 {
4600 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4601 	struct drm_device *dev = obj->base.dev;
4602 	struct drm_i915_private *dev_priv = dev->dev_private;
4603 	struct i915_vma *vma, *next;
4604 
4605 	intel_runtime_pm_get(dev_priv);
4606 
4607 	trace_i915_gem_object_destroy(obj);
4608 
4609 	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4610 		int ret;
4611 
4612 		vma->pin_count = 0;
4613 		ret = i915_vma_unbind(vma);
4614 		if (WARN_ON(ret == -ERESTARTSYS)) {
4615 			bool was_interruptible;
4616 
4617 			was_interruptible = dev_priv->mm.interruptible;
4618 			dev_priv->mm.interruptible = false;
4619 
4620 			WARN_ON(i915_vma_unbind(vma));
4621 
4622 			dev_priv->mm.interruptible = was_interruptible;
4623 		}
4624 	}
4625 
4626 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4627 	 * before progressing. */
4628 	if (obj->stolen)
4629 		i915_gem_object_unpin_pages(obj);
4630 
4631 	WARN_ON(obj->frontbuffer_bits);
4632 
4633 	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4634 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4635 	    obj->tiling_mode != I915_TILING_NONE)
4636 		i915_gem_object_unpin_pages(obj);
4637 
4638 	if (WARN_ON(obj->pages_pin_count))
4639 		obj->pages_pin_count = 0;
4640 	if (discard_backing_storage(obj))
4641 		obj->madv = I915_MADV_DONTNEED;
4642 	i915_gem_object_put_pages(obj);
4643 	i915_gem_object_free_mmap_offset(obj);
4644 
4645 	BUG_ON(obj->pages);
4646 
4647 	if (obj->base.import_attach)
4648 		drm_prime_gem_destroy(&obj->base, NULL);
4649 
4650 	if (obj->ops->release)
4651 		obj->ops->release(obj);
4652 
4653 	drm_gem_object_release(&obj->base);
4654 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4655 
4656 	kfree(obj->bit_17);
4657 	i915_gem_object_free(obj);
4658 
4659 	intel_runtime_pm_put(dev_priv);
4660 }
4661 
4662 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4663 				     struct i915_address_space *vm)
4664 {
4665 	struct i915_vma *vma;
4666 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4667 		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4668 		    vma->vm == vm)
4669 			return vma;
4670 	}
4671 	return NULL;
4672 }
4673 
4674 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4675 					   const struct i915_ggtt_view *view)
4676 {
4677 	struct drm_device *dev = obj->base.dev;
4678 	struct drm_i915_private *dev_priv = to_i915(dev);
4679 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
4680 	struct i915_vma *vma;
4681 
4682 	BUG_ON(!view);
4683 
4684 	list_for_each_entry(vma, &obj->vma_list, obj_link)
4685 		if (vma->vm == &ggtt->base &&
4686 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4687 			return vma;
4688 	return NULL;
4689 }
4690 
4691 void i915_gem_vma_destroy(struct i915_vma *vma)
4692 {
4693 	WARN_ON(vma->node.allocated);
4694 
4695 	/* Keep the vma as a placeholder in the execbuffer reservation lists */
4696 	if (!list_empty(&vma->exec_list))
4697 		return;
4698 
4699 	if (!vma->is_ggtt)
4700 		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4701 
4702 	list_del(&vma->obj_link);
4703 
4704 	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4705 }
4706 
4707 static void
4708 i915_gem_stop_engines(struct drm_device *dev)
4709 {
4710 	struct drm_i915_private *dev_priv = dev->dev_private;
4711 	struct intel_engine_cs *engine;
4712 
4713 	for_each_engine(engine, dev_priv)
4714 		dev_priv->gt.stop_engine(engine);
4715 }
4716 
4717 int
4718 i915_gem_suspend(struct drm_device *dev)
4719 {
4720 	struct drm_i915_private *dev_priv = dev->dev_private;
4721 	int ret = 0;
4722 
4723 	mutex_lock(&dev->struct_mutex);
4724 	ret = i915_gpu_idle(dev);
4725 	if (ret)
4726 		goto err;
4727 
4728 	i915_gem_retire_requests(dev);
4729 
4730 	i915_gem_stop_engines(dev);
4731 	mutex_unlock(&dev->struct_mutex);
4732 
4733 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4734 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4735 	flush_delayed_work(&dev_priv->mm.idle_work);
4736 
4737 	/* Assert that we sucessfully flushed all the work and
4738 	 * reset the GPU back to its idle, low power state.
4739 	 */
4740 	WARN_ON(dev_priv->mm.busy);
4741 
4742 	return 0;
4743 
4744 err:
4745 	mutex_unlock(&dev->struct_mutex);
4746 	return ret;
4747 }
4748 
4749 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4750 {
4751 	struct intel_engine_cs *engine = req->engine;
4752 	struct drm_device *dev = engine->dev;
4753 	struct drm_i915_private *dev_priv = dev->dev_private;
4754 	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4755 	int i, ret;
4756 
4757 	if (!HAS_L3_DPF(dev) || !remap_info)
4758 		return 0;
4759 
4760 	ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4761 	if (ret)
4762 		return ret;
4763 
4764 	/*
4765 	 * Note: We do not worry about the concurrent register cacheline hang
4766 	 * here because no other code should access these registers other than
4767 	 * at initialization time.
4768 	 */
4769 	for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4770 		intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
4771 		intel_ring_emit_reg(engine, GEN7_L3LOG(slice, i));
4772 		intel_ring_emit(engine, remap_info[i]);
4773 	}
4774 
4775 	intel_ring_advance(engine);
4776 
4777 	return ret;
4778 }
4779 
4780 void i915_gem_init_swizzling(struct drm_device *dev)
4781 {
4782 	struct drm_i915_private *dev_priv = dev->dev_private;
4783 
4784 	if (INTEL_INFO(dev)->gen < 5 ||
4785 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4786 		return;
4787 
4788 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4789 				 DISP_TILE_SURFACE_SWIZZLING);
4790 
4791 	if (IS_GEN5(dev))
4792 		return;
4793 
4794 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4795 	if (IS_GEN6(dev))
4796 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4797 	else if (IS_GEN7(dev))
4798 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4799 	else if (IS_GEN8(dev))
4800 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4801 	else
4802 		BUG();
4803 }
4804 
4805 static void init_unused_ring(struct drm_device *dev, u32 base)
4806 {
4807 	struct drm_i915_private *dev_priv = dev->dev_private;
4808 
4809 	I915_WRITE(RING_CTL(base), 0);
4810 	I915_WRITE(RING_HEAD(base), 0);
4811 	I915_WRITE(RING_TAIL(base), 0);
4812 	I915_WRITE(RING_START(base), 0);
4813 }
4814 
4815 static void init_unused_rings(struct drm_device *dev)
4816 {
4817 	if (IS_I830(dev)) {
4818 		init_unused_ring(dev, PRB1_BASE);
4819 		init_unused_ring(dev, SRB0_BASE);
4820 		init_unused_ring(dev, SRB1_BASE);
4821 		init_unused_ring(dev, SRB2_BASE);
4822 		init_unused_ring(dev, SRB3_BASE);
4823 	} else if (IS_GEN2(dev)) {
4824 		init_unused_ring(dev, SRB0_BASE);
4825 		init_unused_ring(dev, SRB1_BASE);
4826 	} else if (IS_GEN3(dev)) {
4827 		init_unused_ring(dev, PRB1_BASE);
4828 		init_unused_ring(dev, PRB2_BASE);
4829 	}
4830 }
4831 
4832 int i915_gem_init_engines(struct drm_device *dev)
4833 {
4834 	struct drm_i915_private *dev_priv = dev->dev_private;
4835 	int ret;
4836 
4837 	ret = intel_init_render_ring_buffer(dev);
4838 	if (ret)
4839 		return ret;
4840 
4841 	if (HAS_BSD(dev)) {
4842 		ret = intel_init_bsd_ring_buffer(dev);
4843 		if (ret)
4844 			goto cleanup_render_ring;
4845 	}
4846 
4847 	if (HAS_BLT(dev)) {
4848 		ret = intel_init_blt_ring_buffer(dev);
4849 		if (ret)
4850 			goto cleanup_bsd_ring;
4851 	}
4852 
4853 	if (HAS_VEBOX(dev)) {
4854 		ret = intel_init_vebox_ring_buffer(dev);
4855 		if (ret)
4856 			goto cleanup_blt_ring;
4857 	}
4858 
4859 	if (HAS_BSD2(dev)) {
4860 		ret = intel_init_bsd2_ring_buffer(dev);
4861 		if (ret)
4862 			goto cleanup_vebox_ring;
4863 	}
4864 
4865 	return 0;
4866 
4867 cleanup_vebox_ring:
4868 	intel_cleanup_engine(&dev_priv->engine[VECS]);
4869 cleanup_blt_ring:
4870 	intel_cleanup_engine(&dev_priv->engine[BCS]);
4871 cleanup_bsd_ring:
4872 	intel_cleanup_engine(&dev_priv->engine[VCS]);
4873 cleanup_render_ring:
4874 	intel_cleanup_engine(&dev_priv->engine[RCS]);
4875 
4876 	return ret;
4877 }
4878 
4879 int
4880 i915_gem_init_hw(struct drm_device *dev)
4881 {
4882 	struct drm_i915_private *dev_priv = dev->dev_private;
4883 	struct intel_engine_cs *engine;
4884 	int ret, j;
4885 
4886 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4887 		return -EIO;
4888 
4889 	/* Double layer security blanket, see i915_gem_init() */
4890 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4891 
4892 	if (dev_priv->ellc_size)
4893 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4894 
4895 	if (IS_HASWELL(dev))
4896 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4897 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4898 
4899 	if (HAS_PCH_NOP(dev)) {
4900 		if (IS_IVYBRIDGE(dev)) {
4901 			u32 temp = I915_READ(GEN7_MSG_CTL);
4902 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4903 			I915_WRITE(GEN7_MSG_CTL, temp);
4904 		} else if (INTEL_INFO(dev)->gen >= 7) {
4905 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4906 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4907 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4908 		}
4909 	}
4910 
4911 	i915_gem_init_swizzling(dev);
4912 
4913 	/*
4914 	 * At least 830 can leave some of the unused rings
4915 	 * "active" (ie. head != tail) after resume which
4916 	 * will prevent c3 entry. Makes sure all unused rings
4917 	 * are totally idle.
4918 	 */
4919 	init_unused_rings(dev);
4920 
4921 	BUG_ON(!dev_priv->kernel_context);
4922 
4923 	ret = i915_ppgtt_init_hw(dev);
4924 	if (ret) {
4925 		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4926 		goto out;
4927 	}
4928 
4929 	/* Need to do basic initialisation of all rings first: */
4930 	for_each_engine(engine, dev_priv) {
4931 		ret = engine->init_hw(engine);
4932 		if (ret)
4933 			goto out;
4934 	}
4935 
4936 	/* We can't enable contexts until all firmware is loaded */
4937 	if (HAS_GUC_UCODE(dev)) {
4938 		ret = intel_guc_ucode_load(dev);
4939 		if (ret) {
4940 			DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4941 			ret = -EIO;
4942 			goto out;
4943 		}
4944 	}
4945 
4946 	/*
4947 	 * Increment the next seqno by 0x100 so we have a visible break
4948 	 * on re-initialisation
4949 	 */
4950 	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4951 	if (ret)
4952 		goto out;
4953 
4954 	/* Now it is safe to go back round and do everything else: */
4955 	for_each_engine(engine, dev_priv) {
4956 		struct drm_i915_gem_request *req;
4957 
4958 		req = i915_gem_request_alloc(engine, NULL);
4959 		if (IS_ERR(req)) {
4960 			ret = PTR_ERR(req);
4961 			i915_gem_cleanup_engines(dev);
4962 			goto out;
4963 		}
4964 
4965 		if (engine->id == RCS) {
4966 			for (j = 0; j < NUM_L3_SLICES(dev); j++)
4967 				i915_gem_l3_remap(req, j);
4968 		}
4969 
4970 		ret = i915_ppgtt_init_ring(req);
4971 		if (ret && ret != -EIO) {
4972 			DRM_ERROR("PPGTT enable %s failed %d\n",
4973 				  engine->name, ret);
4974 			i915_gem_request_cancel(req);
4975 			i915_gem_cleanup_engines(dev);
4976 			goto out;
4977 		}
4978 
4979 		ret = i915_gem_context_enable(req);
4980 		if (ret && ret != -EIO) {
4981 			DRM_ERROR("Context enable %s failed %d\n",
4982 				  engine->name, ret);
4983 			i915_gem_request_cancel(req);
4984 			i915_gem_cleanup_engines(dev);
4985 			goto out;
4986 		}
4987 
4988 		i915_add_request_no_flush(req);
4989 	}
4990 
4991 out:
4992 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4993 	return ret;
4994 }
4995 
4996 int i915_gem_init(struct drm_device *dev)
4997 {
4998 	struct drm_i915_private *dev_priv = dev->dev_private;
4999 	int ret;
5000 
5001 	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
5002 			i915.enable_execlists);
5003 
5004 	mutex_lock(&dev->struct_mutex);
5005 
5006 	if (!i915.enable_execlists) {
5007 		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5008 		dev_priv->gt.init_engines = i915_gem_init_engines;
5009 		dev_priv->gt.cleanup_engine = intel_cleanup_engine;
5010 		dev_priv->gt.stop_engine = intel_stop_engine;
5011 	} else {
5012 		dev_priv->gt.execbuf_submit = intel_execlists_submission;
5013 		dev_priv->gt.init_engines = intel_logical_rings_init;
5014 		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5015 		dev_priv->gt.stop_engine = intel_logical_ring_stop;
5016 	}
5017 
5018 	/* This is just a security blanket to placate dragons.
5019 	 * On some systems, we very sporadically observe that the first TLBs
5020 	 * used by the CS may be stale, despite us poking the TLB reset. If
5021 	 * we hold the forcewake during initialisation these problems
5022 	 * just magically go away.
5023 	 */
5024 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5025 
5026 	ret = i915_gem_init_userptr(dev);
5027 	if (ret)
5028 		goto out_unlock;
5029 
5030 	i915_gem_init_ggtt(dev);
5031 
5032 	ret = i915_gem_context_init(dev);
5033 	if (ret)
5034 		goto out_unlock;
5035 
5036 	ret = dev_priv->gt.init_engines(dev);
5037 	if (ret)
5038 		goto out_unlock;
5039 
5040 	ret = i915_gem_init_hw(dev);
5041 	if (ret == -EIO) {
5042 		/* Allow ring initialisation to fail by marking the GPU as
5043 		 * wedged. But we only want to do this where the GPU is angry,
5044 		 * for all other failure, such as an allocation failure, bail.
5045 		 */
5046 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5047 		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5048 		ret = 0;
5049 	}
5050 
5051 out_unlock:
5052 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5053 	mutex_unlock(&dev->struct_mutex);
5054 
5055 	return ret;
5056 }
5057 
5058 void
5059 i915_gem_cleanup_engines(struct drm_device *dev)
5060 {
5061 	struct drm_i915_private *dev_priv = dev->dev_private;
5062 	struct intel_engine_cs *engine;
5063 
5064 	for_each_engine(engine, dev_priv)
5065 		dev_priv->gt.cleanup_engine(engine);
5066 
5067 	if (i915.enable_execlists)
5068 		/*
5069 		 * Neither the BIOS, ourselves or any other kernel
5070 		 * expects the system to be in execlists mode on startup,
5071 		 * so we need to reset the GPU back to legacy mode.
5072 		 */
5073 		intel_gpu_reset(dev, ALL_ENGINES);
5074 }
5075 
5076 static void
5077 init_engine_lists(struct intel_engine_cs *engine)
5078 {
5079 	INIT_LIST_HEAD(&engine->active_list);
5080 	INIT_LIST_HEAD(&engine->request_list);
5081 }
5082 
5083 void
5084 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5085 {
5086 	struct drm_device *dev = dev_priv->dev;
5087 
5088 	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5089 	    !IS_CHERRYVIEW(dev_priv))
5090 		dev_priv->num_fence_regs = 32;
5091 	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
5092 		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
5093 		dev_priv->num_fence_regs = 16;
5094 	else
5095 		dev_priv->num_fence_regs = 8;
5096 
5097 	if (intel_vgpu_active(dev))
5098 		dev_priv->num_fence_regs =
5099 				I915_READ(vgtif_reg(avail_rs.fence_num));
5100 
5101 	/* Initialize fence registers to zero */
5102 	i915_gem_restore_fences(dev);
5103 
5104 	i915_gem_detect_bit_6_swizzle(dev);
5105 }
5106 
5107 void
5108 i915_gem_load_init(struct drm_device *dev)
5109 {
5110 	struct drm_i915_private *dev_priv = dev->dev_private;
5111 	int i;
5112 
5113 	dev_priv->objects =
5114 		kmem_cache_create("i915_gem_object",
5115 				  sizeof(struct drm_i915_gem_object), 0,
5116 				  SLAB_HWCACHE_ALIGN,
5117 				  NULL);
5118 	dev_priv->vmas =
5119 		kmem_cache_create("i915_gem_vma",
5120 				  sizeof(struct i915_vma), 0,
5121 				  SLAB_HWCACHE_ALIGN,
5122 				  NULL);
5123 	dev_priv->requests =
5124 		kmem_cache_create("i915_gem_request",
5125 				  sizeof(struct drm_i915_gem_request), 0,
5126 				  SLAB_HWCACHE_ALIGN,
5127 				  NULL);
5128 
5129 	INIT_LIST_HEAD(&dev_priv->vm_list);
5130 	INIT_LIST_HEAD(&dev_priv->context_list);
5131 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5132 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5133 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5134 	for (i = 0; i < I915_NUM_ENGINES; i++)
5135 		init_engine_lists(&dev_priv->engine[i]);
5136 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5137 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5138 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5139 			  i915_gem_retire_work_handler);
5140 	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5141 			  i915_gem_idle_work_handler);
5142 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5143 
5144 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5145 
5146 	/*
5147 	 * Set initial sequence number for requests.
5148 	 * Using this number allows the wraparound to happen early,
5149 	 * catching any obvious problems.
5150 	 */
5151 	dev_priv->next_seqno = ((u32)~0 - 0x1100);
5152 	dev_priv->last_seqno = ((u32)~0 - 0x1101);
5153 
5154 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5155 
5156 	init_waitqueue_head(&dev_priv->pending_flip_queue);
5157 
5158 	dev_priv->mm.interruptible = true;
5159 
5160 	mutex_init(&dev_priv->fb_tracking.lock);
5161 }
5162 
5163 void i915_gem_load_cleanup(struct drm_device *dev)
5164 {
5165 	struct drm_i915_private *dev_priv = to_i915(dev);
5166 
5167 	kmem_cache_destroy(dev_priv->requests);
5168 	kmem_cache_destroy(dev_priv->vmas);
5169 	kmem_cache_destroy(dev_priv->objects);
5170 }
5171 
5172 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5173 {
5174 	struct drm_i915_file_private *file_priv = file->driver_priv;
5175 
5176 	/* Clean up our request list when the client is going away, so that
5177 	 * later retire_requests won't dereference our soon-to-be-gone
5178 	 * file_priv.
5179 	 */
5180 	spin_lock(&file_priv->mm.lock);
5181 	while (!list_empty(&file_priv->mm.request_list)) {
5182 		struct drm_i915_gem_request *request;
5183 
5184 		request = list_first_entry(&file_priv->mm.request_list,
5185 					   struct drm_i915_gem_request,
5186 					   client_list);
5187 		list_del(&request->client_list);
5188 		request->file_priv = NULL;
5189 	}
5190 	spin_unlock(&file_priv->mm.lock);
5191 
5192 	if (!list_empty(&file_priv->rps.link)) {
5193 		spin_lock(&to_i915(dev)->rps.client_lock);
5194 		list_del(&file_priv->rps.link);
5195 		spin_unlock(&to_i915(dev)->rps.client_lock);
5196 	}
5197 }
5198 
5199 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5200 {
5201 	struct drm_i915_file_private *file_priv;
5202 	int ret;
5203 
5204 	DRM_DEBUG_DRIVER("\n");
5205 
5206 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5207 	if (!file_priv)
5208 		return -ENOMEM;
5209 
5210 	file->driver_priv = file_priv;
5211 	file_priv->dev_priv = dev->dev_private;
5212 	file_priv->file = file;
5213 	INIT_LIST_HEAD(&file_priv->rps.link);
5214 
5215 	spin_lock_init(&file_priv->mm.lock);
5216 	INIT_LIST_HEAD(&file_priv->mm.request_list);
5217 
5218 	file_priv->bsd_ring = -1;
5219 
5220 	ret = i915_gem_context_open(dev, file);
5221 	if (ret)
5222 		kfree(file_priv);
5223 
5224 	return ret;
5225 }
5226 
5227 /**
5228  * i915_gem_track_fb - update frontbuffer tracking
5229  * @old: current GEM buffer for the frontbuffer slots
5230  * @new: new GEM buffer for the frontbuffer slots
5231  * @frontbuffer_bits: bitmask of frontbuffer slots
5232  *
5233  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5234  * from @old and setting them in @new. Both @old and @new can be NULL.
5235  */
5236 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5237 		       struct drm_i915_gem_object *new,
5238 		       unsigned frontbuffer_bits)
5239 {
5240 	if (old) {
5241 		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5242 		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5243 		old->frontbuffer_bits &= ~frontbuffer_bits;
5244 	}
5245 
5246 	if (new) {
5247 		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5248 		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5249 		new->frontbuffer_bits |= frontbuffer_bits;
5250 	}
5251 }
5252 
5253 /* All the new VM stuff */
5254 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5255 			struct i915_address_space *vm)
5256 {
5257 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5258 	struct i915_vma *vma;
5259 
5260 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5261 
5262 	list_for_each_entry(vma, &o->vma_list, obj_link) {
5263 		if (vma->is_ggtt &&
5264 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5265 			continue;
5266 		if (vma->vm == vm)
5267 			return vma->node.start;
5268 	}
5269 
5270 	WARN(1, "%s vma for this object not found.\n",
5271 	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5272 	return -1;
5273 }
5274 
5275 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5276 				  const struct i915_ggtt_view *view)
5277 {
5278 	struct drm_i915_private *dev_priv = to_i915(o->base.dev);
5279 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5280 	struct i915_vma *vma;
5281 
5282 	list_for_each_entry(vma, &o->vma_list, obj_link)
5283 		if (vma->vm == &ggtt->base &&
5284 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5285 			return vma->node.start;
5286 
5287 	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5288 	return -1;
5289 }
5290 
5291 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5292 			struct i915_address_space *vm)
5293 {
5294 	struct i915_vma *vma;
5295 
5296 	list_for_each_entry(vma, &o->vma_list, obj_link) {
5297 		if (vma->is_ggtt &&
5298 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5299 			continue;
5300 		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5301 			return true;
5302 	}
5303 
5304 	return false;
5305 }
5306 
5307 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5308 				  const struct i915_ggtt_view *view)
5309 {
5310 	struct drm_i915_private *dev_priv = to_i915(o->base.dev);
5311 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5312 	struct i915_vma *vma;
5313 
5314 	list_for_each_entry(vma, &o->vma_list, obj_link)
5315 		if (vma->vm == &ggtt->base &&
5316 		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5317 		    drm_mm_node_allocated(&vma->node))
5318 			return true;
5319 
5320 	return false;
5321 }
5322 
5323 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5324 {
5325 	struct i915_vma *vma;
5326 
5327 	list_for_each_entry(vma, &o->vma_list, obj_link)
5328 		if (drm_mm_node_allocated(&vma->node))
5329 			return true;
5330 
5331 	return false;
5332 }
5333 
5334 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5335 				struct i915_address_space *vm)
5336 {
5337 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5338 	struct i915_vma *vma;
5339 
5340 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5341 
5342 	BUG_ON(list_empty(&o->vma_list));
5343 
5344 	list_for_each_entry(vma, &o->vma_list, obj_link) {
5345 		if (vma->is_ggtt &&
5346 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5347 			continue;
5348 		if (vma->vm == vm)
5349 			return vma->node.size;
5350 	}
5351 	return 0;
5352 }
5353 
5354 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5355 {
5356 	struct i915_vma *vma;
5357 	list_for_each_entry(vma, &obj->vma_list, obj_link)
5358 		if (vma->pin_count > 0)
5359 			return true;
5360 
5361 	return false;
5362 }
5363 
5364 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5365 struct page *
5366 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5367 {
5368 	struct page *page;
5369 
5370 	/* Only default objects have per-page dirty tracking */
5371 	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5372 		return NULL;
5373 
5374 	page = i915_gem_object_get_page(obj, n);
5375 	set_page_dirty(page);
5376 	return page;
5377 }
5378 
5379 /* Allocate a new GEM object and fill it with the supplied data */
5380 struct drm_i915_gem_object *
5381 i915_gem_object_create_from_data(struct drm_device *dev,
5382 			         const void *data, size_t size)
5383 {
5384 	struct drm_i915_gem_object *obj;
5385 	struct sg_table *sg;
5386 	size_t bytes;
5387 	int ret;
5388 
5389 	obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5390 	if (IS_ERR_OR_NULL(obj))
5391 		return obj;
5392 
5393 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
5394 	if (ret)
5395 		goto fail;
5396 
5397 	ret = i915_gem_object_get_pages(obj);
5398 	if (ret)
5399 		goto fail;
5400 
5401 	i915_gem_object_pin_pages(obj);
5402 	sg = obj->pages;
5403 	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5404 	obj->dirty = 1;		/* Backing store is now out of date */
5405 	i915_gem_object_unpin_pages(obj);
5406 
5407 	if (WARN_ON(bytes != size)) {
5408 		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5409 		ret = -EFAULT;
5410 		goto fail;
5411 	}
5412 
5413 	return obj;
5414 
5415 fail:
5416 	drm_gem_object_unreference(&obj->base);
5417 	return ERR_PTR(ret);
5418 }
5419