xref: /linux/drivers/gpu/drm/i915/i915_gem.c (revision 0c93ea4064a209cdc36de8a9a3003d43d08f46f7)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include <linux/swap.h>
33 #include <linux/pci.h>
34 
35 #define I915_GEM_GPU_DOMAINS	(~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
36 
37 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
38 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
39 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
40 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
41 					     int write);
42 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
43 						     uint64_t offset,
44 						     uint64_t size);
45 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
46 static int i915_gem_object_get_page_list(struct drm_gem_object *obj);
47 static void i915_gem_object_free_page_list(struct drm_gem_object *obj);
48 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
49 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
50 					   unsigned alignment);
51 static int i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write);
52 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
53 static int i915_gem_evict_something(struct drm_device *dev);
54 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
55 				struct drm_i915_gem_pwrite *args,
56 				struct drm_file *file_priv);
57 
58 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
59 		     unsigned long end)
60 {
61 	drm_i915_private_t *dev_priv = dev->dev_private;
62 
63 	if (start >= end ||
64 	    (start & (PAGE_SIZE - 1)) != 0 ||
65 	    (end & (PAGE_SIZE - 1)) != 0) {
66 		return -EINVAL;
67 	}
68 
69 	drm_mm_init(&dev_priv->mm.gtt_space, start,
70 		    end - start);
71 
72 	dev->gtt_total = (uint32_t) (end - start);
73 
74 	return 0;
75 }
76 
77 int
78 i915_gem_init_ioctl(struct drm_device *dev, void *data,
79 		    struct drm_file *file_priv)
80 {
81 	struct drm_i915_gem_init *args = data;
82 	int ret;
83 
84 	mutex_lock(&dev->struct_mutex);
85 	ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
86 	mutex_unlock(&dev->struct_mutex);
87 
88 	return ret;
89 }
90 
91 int
92 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
93 			    struct drm_file *file_priv)
94 {
95 	struct drm_i915_gem_get_aperture *args = data;
96 
97 	if (!(dev->driver->driver_features & DRIVER_GEM))
98 		return -ENODEV;
99 
100 	args->aper_size = dev->gtt_total;
101 	args->aper_available_size = (args->aper_size -
102 				     atomic_read(&dev->pin_memory));
103 
104 	return 0;
105 }
106 
107 
108 /**
109  * Creates a new mm object and returns a handle to it.
110  */
111 int
112 i915_gem_create_ioctl(struct drm_device *dev, void *data,
113 		      struct drm_file *file_priv)
114 {
115 	struct drm_i915_gem_create *args = data;
116 	struct drm_gem_object *obj;
117 	int handle, ret;
118 
119 	args->size = roundup(args->size, PAGE_SIZE);
120 
121 	/* Allocate the new object */
122 	obj = drm_gem_object_alloc(dev, args->size);
123 	if (obj == NULL)
124 		return -ENOMEM;
125 
126 	ret = drm_gem_handle_create(file_priv, obj, &handle);
127 	mutex_lock(&dev->struct_mutex);
128 	drm_gem_object_handle_unreference(obj);
129 	mutex_unlock(&dev->struct_mutex);
130 
131 	if (ret)
132 		return ret;
133 
134 	args->handle = handle;
135 
136 	return 0;
137 }
138 
139 /**
140  * Reads data from the object referenced by handle.
141  *
142  * On error, the contents of *data are undefined.
143  */
144 int
145 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
146 		     struct drm_file *file_priv)
147 {
148 	struct drm_i915_gem_pread *args = data;
149 	struct drm_gem_object *obj;
150 	struct drm_i915_gem_object *obj_priv;
151 	ssize_t read;
152 	loff_t offset;
153 	int ret;
154 
155 	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
156 	if (obj == NULL)
157 		return -EBADF;
158 	obj_priv = obj->driver_private;
159 
160 	/* Bounds check source.
161 	 *
162 	 * XXX: This could use review for overflow issues...
163 	 */
164 	if (args->offset > obj->size || args->size > obj->size ||
165 	    args->offset + args->size > obj->size) {
166 		drm_gem_object_unreference(obj);
167 		return -EINVAL;
168 	}
169 
170 	mutex_lock(&dev->struct_mutex);
171 
172 	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
173 							args->size);
174 	if (ret != 0) {
175 		drm_gem_object_unreference(obj);
176 		mutex_unlock(&dev->struct_mutex);
177 		return ret;
178 	}
179 
180 	offset = args->offset;
181 
182 	read = vfs_read(obj->filp, (char __user *)(uintptr_t)args->data_ptr,
183 			args->size, &offset);
184 	if (read != args->size) {
185 		drm_gem_object_unreference(obj);
186 		mutex_unlock(&dev->struct_mutex);
187 		if (read < 0)
188 			return read;
189 		else
190 			return -EINVAL;
191 	}
192 
193 	drm_gem_object_unreference(obj);
194 	mutex_unlock(&dev->struct_mutex);
195 
196 	return 0;
197 }
198 
199 /* This is the fast write path which cannot handle
200  * page faults in the source data
201  */
202 
203 static inline int
204 fast_user_write(struct io_mapping *mapping,
205 		loff_t page_base, int page_offset,
206 		char __user *user_data,
207 		int length)
208 {
209 	char *vaddr_atomic;
210 	unsigned long unwritten;
211 
212 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
213 	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
214 						      user_data, length);
215 	io_mapping_unmap_atomic(vaddr_atomic);
216 	if (unwritten)
217 		return -EFAULT;
218 	return 0;
219 }
220 
221 /* Here's the write path which can sleep for
222  * page faults
223  */
224 
225 static inline int
226 slow_user_write(struct io_mapping *mapping,
227 		loff_t page_base, int page_offset,
228 		char __user *user_data,
229 		int length)
230 {
231 	char __iomem *vaddr;
232 	unsigned long unwritten;
233 
234 	vaddr = io_mapping_map_wc(mapping, page_base);
235 	if (vaddr == NULL)
236 		return -EFAULT;
237 	unwritten = __copy_from_user(vaddr + page_offset,
238 				     user_data, length);
239 	io_mapping_unmap(vaddr);
240 	if (unwritten)
241 		return -EFAULT;
242 	return 0;
243 }
244 
245 static int
246 i915_gem_gtt_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
247 		    struct drm_i915_gem_pwrite *args,
248 		    struct drm_file *file_priv)
249 {
250 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
251 	drm_i915_private_t *dev_priv = dev->dev_private;
252 	ssize_t remain;
253 	loff_t offset, page_base;
254 	char __user *user_data;
255 	int page_offset, page_length;
256 	int ret;
257 
258 	user_data = (char __user *) (uintptr_t) args->data_ptr;
259 	remain = args->size;
260 	if (!access_ok(VERIFY_READ, user_data, remain))
261 		return -EFAULT;
262 
263 
264 	mutex_lock(&dev->struct_mutex);
265 	ret = i915_gem_object_pin(obj, 0);
266 	if (ret) {
267 		mutex_unlock(&dev->struct_mutex);
268 		return ret;
269 	}
270 	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
271 	if (ret)
272 		goto fail;
273 
274 	obj_priv = obj->driver_private;
275 	offset = obj_priv->gtt_offset + args->offset;
276 	obj_priv->dirty = 1;
277 
278 	while (remain > 0) {
279 		/* Operation in this page
280 		 *
281 		 * page_base = page offset within aperture
282 		 * page_offset = offset within page
283 		 * page_length = bytes to copy for this page
284 		 */
285 		page_base = (offset & ~(PAGE_SIZE-1));
286 		page_offset = offset & (PAGE_SIZE-1);
287 		page_length = remain;
288 		if ((page_offset + remain) > PAGE_SIZE)
289 			page_length = PAGE_SIZE - page_offset;
290 
291 		ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
292 				       page_offset, user_data, page_length);
293 
294 		/* If we get a fault while copying data, then (presumably) our
295 		 * source page isn't available. In this case, use the
296 		 * non-atomic function
297 		 */
298 		if (ret) {
299 			ret = slow_user_write (dev_priv->mm.gtt_mapping,
300 					       page_base, page_offset,
301 					       user_data, page_length);
302 			if (ret)
303 				goto fail;
304 		}
305 
306 		remain -= page_length;
307 		user_data += page_length;
308 		offset += page_length;
309 	}
310 
311 fail:
312 	i915_gem_object_unpin(obj);
313 	mutex_unlock(&dev->struct_mutex);
314 
315 	return ret;
316 }
317 
318 static int
319 i915_gem_shmem_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
320 		      struct drm_i915_gem_pwrite *args,
321 		      struct drm_file *file_priv)
322 {
323 	int ret;
324 	loff_t offset;
325 	ssize_t written;
326 
327 	mutex_lock(&dev->struct_mutex);
328 
329 	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
330 	if (ret) {
331 		mutex_unlock(&dev->struct_mutex);
332 		return ret;
333 	}
334 
335 	offset = args->offset;
336 
337 	written = vfs_write(obj->filp,
338 			    (char __user *)(uintptr_t) args->data_ptr,
339 			    args->size, &offset);
340 	if (written != args->size) {
341 		mutex_unlock(&dev->struct_mutex);
342 		if (written < 0)
343 			return written;
344 		else
345 			return -EINVAL;
346 	}
347 
348 	mutex_unlock(&dev->struct_mutex);
349 
350 	return 0;
351 }
352 
353 /**
354  * Writes data to the object referenced by handle.
355  *
356  * On error, the contents of the buffer that were to be modified are undefined.
357  */
358 int
359 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
360 		      struct drm_file *file_priv)
361 {
362 	struct drm_i915_gem_pwrite *args = data;
363 	struct drm_gem_object *obj;
364 	struct drm_i915_gem_object *obj_priv;
365 	int ret = 0;
366 
367 	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
368 	if (obj == NULL)
369 		return -EBADF;
370 	obj_priv = obj->driver_private;
371 
372 	/* Bounds check destination.
373 	 *
374 	 * XXX: This could use review for overflow issues...
375 	 */
376 	if (args->offset > obj->size || args->size > obj->size ||
377 	    args->offset + args->size > obj->size) {
378 		drm_gem_object_unreference(obj);
379 		return -EINVAL;
380 	}
381 
382 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
383 	 * it would end up going through the fenced access, and we'll get
384 	 * different detiling behavior between reading and writing.
385 	 * pread/pwrite currently are reading and writing from the CPU
386 	 * perspective, requiring manual detiling by the client.
387 	 */
388 	if (obj_priv->phys_obj)
389 		ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
390 	else if (obj_priv->tiling_mode == I915_TILING_NONE &&
391 		 dev->gtt_total != 0)
392 		ret = i915_gem_gtt_pwrite(dev, obj, args, file_priv);
393 	else
394 		ret = i915_gem_shmem_pwrite(dev, obj, args, file_priv);
395 
396 #if WATCH_PWRITE
397 	if (ret)
398 		DRM_INFO("pwrite failed %d\n", ret);
399 #endif
400 
401 	drm_gem_object_unreference(obj);
402 
403 	return ret;
404 }
405 
406 /**
407  * Called when user space prepares to use an object with the CPU, either
408  * through the mmap ioctl's mapping or a GTT mapping.
409  */
410 int
411 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
412 			  struct drm_file *file_priv)
413 {
414 	struct drm_i915_gem_set_domain *args = data;
415 	struct drm_gem_object *obj;
416 	uint32_t read_domains = args->read_domains;
417 	uint32_t write_domain = args->write_domain;
418 	int ret;
419 
420 	if (!(dev->driver->driver_features & DRIVER_GEM))
421 		return -ENODEV;
422 
423 	/* Only handle setting domains to types used by the CPU. */
424 	if (write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
425 		return -EINVAL;
426 
427 	if (read_domains & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
428 		return -EINVAL;
429 
430 	/* Having something in the write domain implies it's in the read
431 	 * domain, and only that read domain.  Enforce that in the request.
432 	 */
433 	if (write_domain != 0 && read_domains != write_domain)
434 		return -EINVAL;
435 
436 	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
437 	if (obj == NULL)
438 		return -EBADF;
439 
440 	mutex_lock(&dev->struct_mutex);
441 #if WATCH_BUF
442 	DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
443 		 obj, obj->size, read_domains, write_domain);
444 #endif
445 	if (read_domains & I915_GEM_DOMAIN_GTT) {
446 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
447 
448 		/* Silently promote "you're not bound, there was nothing to do"
449 		 * to success, since the client was just asking us to
450 		 * make sure everything was done.
451 		 */
452 		if (ret == -EINVAL)
453 			ret = 0;
454 	} else {
455 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
456 	}
457 
458 	drm_gem_object_unreference(obj);
459 	mutex_unlock(&dev->struct_mutex);
460 	return ret;
461 }
462 
463 /**
464  * Called when user space has done writes to this buffer
465  */
466 int
467 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
468 		      struct drm_file *file_priv)
469 {
470 	struct drm_i915_gem_sw_finish *args = data;
471 	struct drm_gem_object *obj;
472 	struct drm_i915_gem_object *obj_priv;
473 	int ret = 0;
474 
475 	if (!(dev->driver->driver_features & DRIVER_GEM))
476 		return -ENODEV;
477 
478 	mutex_lock(&dev->struct_mutex);
479 	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
480 	if (obj == NULL) {
481 		mutex_unlock(&dev->struct_mutex);
482 		return -EBADF;
483 	}
484 
485 #if WATCH_BUF
486 	DRM_INFO("%s: sw_finish %d (%p %d)\n",
487 		 __func__, args->handle, obj, obj->size);
488 #endif
489 	obj_priv = obj->driver_private;
490 
491 	/* Pinned buffers may be scanout, so flush the cache */
492 	if (obj_priv->pin_count)
493 		i915_gem_object_flush_cpu_write_domain(obj);
494 
495 	drm_gem_object_unreference(obj);
496 	mutex_unlock(&dev->struct_mutex);
497 	return ret;
498 }
499 
500 /**
501  * Maps the contents of an object, returning the address it is mapped
502  * into.
503  *
504  * While the mapping holds a reference on the contents of the object, it doesn't
505  * imply a ref on the object itself.
506  */
507 int
508 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
509 		   struct drm_file *file_priv)
510 {
511 	struct drm_i915_gem_mmap *args = data;
512 	struct drm_gem_object *obj;
513 	loff_t offset;
514 	unsigned long addr;
515 
516 	if (!(dev->driver->driver_features & DRIVER_GEM))
517 		return -ENODEV;
518 
519 	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
520 	if (obj == NULL)
521 		return -EBADF;
522 
523 	offset = args->offset;
524 
525 	down_write(&current->mm->mmap_sem);
526 	addr = do_mmap(obj->filp, 0, args->size,
527 		       PROT_READ | PROT_WRITE, MAP_SHARED,
528 		       args->offset);
529 	up_write(&current->mm->mmap_sem);
530 	mutex_lock(&dev->struct_mutex);
531 	drm_gem_object_unreference(obj);
532 	mutex_unlock(&dev->struct_mutex);
533 	if (IS_ERR((void *)addr))
534 		return addr;
535 
536 	args->addr_ptr = (uint64_t) addr;
537 
538 	return 0;
539 }
540 
541 /**
542  * i915_gem_fault - fault a page into the GTT
543  * vma: VMA in question
544  * vmf: fault info
545  *
546  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
547  * from userspace.  The fault handler takes care of binding the object to
548  * the GTT (if needed), allocating and programming a fence register (again,
549  * only if needed based on whether the old reg is still valid or the object
550  * is tiled) and inserting a new PTE into the faulting process.
551  *
552  * Note that the faulting process may involve evicting existing objects
553  * from the GTT and/or fence registers to make room.  So performance may
554  * suffer if the GTT working set is large or there are few fence registers
555  * left.
556  */
557 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
558 {
559 	struct drm_gem_object *obj = vma->vm_private_data;
560 	struct drm_device *dev = obj->dev;
561 	struct drm_i915_private *dev_priv = dev->dev_private;
562 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
563 	pgoff_t page_offset;
564 	unsigned long pfn;
565 	int ret = 0;
566 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
567 
568 	/* We don't use vmf->pgoff since that has the fake offset */
569 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
570 		PAGE_SHIFT;
571 
572 	/* Now bind it into the GTT if needed */
573 	mutex_lock(&dev->struct_mutex);
574 	if (!obj_priv->gtt_space) {
575 		ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
576 		if (ret) {
577 			mutex_unlock(&dev->struct_mutex);
578 			return VM_FAULT_SIGBUS;
579 		}
580 		list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
581 	}
582 
583 	/* Need a new fence register? */
584 	if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
585 	    obj_priv->tiling_mode != I915_TILING_NONE) {
586 		ret = i915_gem_object_get_fence_reg(obj, write);
587 		if (ret) {
588 			mutex_unlock(&dev->struct_mutex);
589 			return VM_FAULT_SIGBUS;
590 		}
591 	}
592 
593 	pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
594 		page_offset;
595 
596 	/* Finally, remap it using the new GTT offset */
597 	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
598 
599 	mutex_unlock(&dev->struct_mutex);
600 
601 	switch (ret) {
602 	case -ENOMEM:
603 	case -EAGAIN:
604 		return VM_FAULT_OOM;
605 	case -EFAULT:
606 		return VM_FAULT_SIGBUS;
607 	default:
608 		return VM_FAULT_NOPAGE;
609 	}
610 }
611 
612 /**
613  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
614  * @obj: obj in question
615  *
616  * GEM memory mapping works by handing back to userspace a fake mmap offset
617  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
618  * up the object based on the offset and sets up the various memory mapping
619  * structures.
620  *
621  * This routine allocates and attaches a fake offset for @obj.
622  */
623 static int
624 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
625 {
626 	struct drm_device *dev = obj->dev;
627 	struct drm_gem_mm *mm = dev->mm_private;
628 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
629 	struct drm_map_list *list;
630 	struct drm_map *map;
631 	int ret = 0;
632 
633 	/* Set the object up for mmap'ing */
634 	list = &obj->map_list;
635 	list->map = drm_calloc(1, sizeof(struct drm_map_list),
636 			       DRM_MEM_DRIVER);
637 	if (!list->map)
638 		return -ENOMEM;
639 
640 	map = list->map;
641 	map->type = _DRM_GEM;
642 	map->size = obj->size;
643 	map->handle = obj;
644 
645 	/* Get a DRM GEM mmap offset allocated... */
646 	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
647 						    obj->size / PAGE_SIZE, 0, 0);
648 	if (!list->file_offset_node) {
649 		DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
650 		ret = -ENOMEM;
651 		goto out_free_list;
652 	}
653 
654 	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
655 						  obj->size / PAGE_SIZE, 0);
656 	if (!list->file_offset_node) {
657 		ret = -ENOMEM;
658 		goto out_free_list;
659 	}
660 
661 	list->hash.key = list->file_offset_node->start;
662 	if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
663 		DRM_ERROR("failed to add to map hash\n");
664 		goto out_free_mm;
665 	}
666 
667 	/* By now we should be all set, any drm_mmap request on the offset
668 	 * below will get to our mmap & fault handler */
669 	obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
670 
671 	return 0;
672 
673 out_free_mm:
674 	drm_mm_put_block(list->file_offset_node);
675 out_free_list:
676 	drm_free(list->map, sizeof(struct drm_map_list), DRM_MEM_DRIVER);
677 
678 	return ret;
679 }
680 
681 static void
682 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
683 {
684 	struct drm_device *dev = obj->dev;
685 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
686 	struct drm_gem_mm *mm = dev->mm_private;
687 	struct drm_map_list *list;
688 
689 	list = &obj->map_list;
690 	drm_ht_remove_item(&mm->offset_hash, &list->hash);
691 
692 	if (list->file_offset_node) {
693 		drm_mm_put_block(list->file_offset_node);
694 		list->file_offset_node = NULL;
695 	}
696 
697 	if (list->map) {
698 		drm_free(list->map, sizeof(struct drm_map), DRM_MEM_DRIVER);
699 		list->map = NULL;
700 	}
701 
702 	obj_priv->mmap_offset = 0;
703 }
704 
705 /**
706  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
707  * @obj: object to check
708  *
709  * Return the required GTT alignment for an object, taking into account
710  * potential fence register mapping if needed.
711  */
712 static uint32_t
713 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
714 {
715 	struct drm_device *dev = obj->dev;
716 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
717 	int start, i;
718 
719 	/*
720 	 * Minimum alignment is 4k (GTT page size), but might be greater
721 	 * if a fence register is needed for the object.
722 	 */
723 	if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
724 		return 4096;
725 
726 	/*
727 	 * Previous chips need to be aligned to the size of the smallest
728 	 * fence register that can contain the object.
729 	 */
730 	if (IS_I9XX(dev))
731 		start = 1024*1024;
732 	else
733 		start = 512*1024;
734 
735 	for (i = start; i < obj->size; i <<= 1)
736 		;
737 
738 	return i;
739 }
740 
741 /**
742  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
743  * @dev: DRM device
744  * @data: GTT mapping ioctl data
745  * @file_priv: GEM object info
746  *
747  * Simply returns the fake offset to userspace so it can mmap it.
748  * The mmap call will end up in drm_gem_mmap(), which will set things
749  * up so we can get faults in the handler above.
750  *
751  * The fault handler will take care of binding the object into the GTT
752  * (since it may have been evicted to make room for something), allocating
753  * a fence register, and mapping the appropriate aperture address into
754  * userspace.
755  */
756 int
757 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
758 			struct drm_file *file_priv)
759 {
760 	struct drm_i915_gem_mmap_gtt *args = data;
761 	struct drm_i915_private *dev_priv = dev->dev_private;
762 	struct drm_gem_object *obj;
763 	struct drm_i915_gem_object *obj_priv;
764 	int ret;
765 
766 	if (!(dev->driver->driver_features & DRIVER_GEM))
767 		return -ENODEV;
768 
769 	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
770 	if (obj == NULL)
771 		return -EBADF;
772 
773 	mutex_lock(&dev->struct_mutex);
774 
775 	obj_priv = obj->driver_private;
776 
777 	if (!obj_priv->mmap_offset) {
778 		ret = i915_gem_create_mmap_offset(obj);
779 		if (ret) {
780 			drm_gem_object_unreference(obj);
781 			mutex_unlock(&dev->struct_mutex);
782 			return ret;
783 		}
784 	}
785 
786 	args->offset = obj_priv->mmap_offset;
787 
788 	obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
789 
790 	/* Make sure the alignment is correct for fence regs etc */
791 	if (obj_priv->agp_mem &&
792 	    (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
793 		drm_gem_object_unreference(obj);
794 		mutex_unlock(&dev->struct_mutex);
795 		return -EINVAL;
796 	}
797 
798 	/*
799 	 * Pull it into the GTT so that we have a page list (makes the
800 	 * initial fault faster and any subsequent flushing possible).
801 	 */
802 	if (!obj_priv->agp_mem) {
803 		ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
804 		if (ret) {
805 			drm_gem_object_unreference(obj);
806 			mutex_unlock(&dev->struct_mutex);
807 			return ret;
808 		}
809 		list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
810 	}
811 
812 	drm_gem_object_unreference(obj);
813 	mutex_unlock(&dev->struct_mutex);
814 
815 	return 0;
816 }
817 
818 static void
819 i915_gem_object_free_page_list(struct drm_gem_object *obj)
820 {
821 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
822 	int page_count = obj->size / PAGE_SIZE;
823 	int i;
824 
825 	if (obj_priv->page_list == NULL)
826 		return;
827 
828 
829 	for (i = 0; i < page_count; i++)
830 		if (obj_priv->page_list[i] != NULL) {
831 			if (obj_priv->dirty)
832 				set_page_dirty(obj_priv->page_list[i]);
833 			mark_page_accessed(obj_priv->page_list[i]);
834 			page_cache_release(obj_priv->page_list[i]);
835 		}
836 	obj_priv->dirty = 0;
837 
838 	drm_free(obj_priv->page_list,
839 		 page_count * sizeof(struct page *),
840 		 DRM_MEM_DRIVER);
841 	obj_priv->page_list = NULL;
842 }
843 
844 static void
845 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
846 {
847 	struct drm_device *dev = obj->dev;
848 	drm_i915_private_t *dev_priv = dev->dev_private;
849 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
850 
851 	/* Add a reference if we're newly entering the active list. */
852 	if (!obj_priv->active) {
853 		drm_gem_object_reference(obj);
854 		obj_priv->active = 1;
855 	}
856 	/* Move from whatever list we were on to the tail of execution. */
857 	list_move_tail(&obj_priv->list,
858 		       &dev_priv->mm.active_list);
859 	obj_priv->last_rendering_seqno = seqno;
860 }
861 
862 static void
863 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
864 {
865 	struct drm_device *dev = obj->dev;
866 	drm_i915_private_t *dev_priv = dev->dev_private;
867 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
868 
869 	BUG_ON(!obj_priv->active);
870 	list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
871 	obj_priv->last_rendering_seqno = 0;
872 }
873 
874 static void
875 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
876 {
877 	struct drm_device *dev = obj->dev;
878 	drm_i915_private_t *dev_priv = dev->dev_private;
879 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
880 
881 	i915_verify_inactive(dev, __FILE__, __LINE__);
882 	if (obj_priv->pin_count != 0)
883 		list_del_init(&obj_priv->list);
884 	else
885 		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
886 
887 	obj_priv->last_rendering_seqno = 0;
888 	if (obj_priv->active) {
889 		obj_priv->active = 0;
890 		drm_gem_object_unreference(obj);
891 	}
892 	i915_verify_inactive(dev, __FILE__, __LINE__);
893 }
894 
895 /**
896  * Creates a new sequence number, emitting a write of it to the status page
897  * plus an interrupt, which will trigger i915_user_interrupt_handler.
898  *
899  * Must be called with struct_lock held.
900  *
901  * Returned sequence numbers are nonzero on success.
902  */
903 static uint32_t
904 i915_add_request(struct drm_device *dev, uint32_t flush_domains)
905 {
906 	drm_i915_private_t *dev_priv = dev->dev_private;
907 	struct drm_i915_gem_request *request;
908 	uint32_t seqno;
909 	int was_empty;
910 	RING_LOCALS;
911 
912 	request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
913 	if (request == NULL)
914 		return 0;
915 
916 	/* Grab the seqno we're going to make this request be, and bump the
917 	 * next (skipping 0 so it can be the reserved no-seqno value).
918 	 */
919 	seqno = dev_priv->mm.next_gem_seqno;
920 	dev_priv->mm.next_gem_seqno++;
921 	if (dev_priv->mm.next_gem_seqno == 0)
922 		dev_priv->mm.next_gem_seqno++;
923 
924 	BEGIN_LP_RING(4);
925 	OUT_RING(MI_STORE_DWORD_INDEX);
926 	OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
927 	OUT_RING(seqno);
928 
929 	OUT_RING(MI_USER_INTERRUPT);
930 	ADVANCE_LP_RING();
931 
932 	DRM_DEBUG("%d\n", seqno);
933 
934 	request->seqno = seqno;
935 	request->emitted_jiffies = jiffies;
936 	was_empty = list_empty(&dev_priv->mm.request_list);
937 	list_add_tail(&request->list, &dev_priv->mm.request_list);
938 
939 	/* Associate any objects on the flushing list matching the write
940 	 * domain we're flushing with our flush.
941 	 */
942 	if (flush_domains != 0) {
943 		struct drm_i915_gem_object *obj_priv, *next;
944 
945 		list_for_each_entry_safe(obj_priv, next,
946 					 &dev_priv->mm.flushing_list, list) {
947 			struct drm_gem_object *obj = obj_priv->obj;
948 
949 			if ((obj->write_domain & flush_domains) ==
950 			    obj->write_domain) {
951 				obj->write_domain = 0;
952 				i915_gem_object_move_to_active(obj, seqno);
953 			}
954 		}
955 
956 	}
957 
958 	if (was_empty && !dev_priv->mm.suspended)
959 		schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
960 	return seqno;
961 }
962 
963 /**
964  * Command execution barrier
965  *
966  * Ensures that all commands in the ring are finished
967  * before signalling the CPU
968  */
969 static uint32_t
970 i915_retire_commands(struct drm_device *dev)
971 {
972 	drm_i915_private_t *dev_priv = dev->dev_private;
973 	uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
974 	uint32_t flush_domains = 0;
975 	RING_LOCALS;
976 
977 	/* The sampler always gets flushed on i965 (sigh) */
978 	if (IS_I965G(dev))
979 		flush_domains |= I915_GEM_DOMAIN_SAMPLER;
980 	BEGIN_LP_RING(2);
981 	OUT_RING(cmd);
982 	OUT_RING(0); /* noop */
983 	ADVANCE_LP_RING();
984 	return flush_domains;
985 }
986 
987 /**
988  * Moves buffers associated only with the given active seqno from the active
989  * to inactive list, potentially freeing them.
990  */
991 static void
992 i915_gem_retire_request(struct drm_device *dev,
993 			struct drm_i915_gem_request *request)
994 {
995 	drm_i915_private_t *dev_priv = dev->dev_private;
996 
997 	/* Move any buffers on the active list that are no longer referenced
998 	 * by the ringbuffer to the flushing/inactive lists as appropriate.
999 	 */
1000 	while (!list_empty(&dev_priv->mm.active_list)) {
1001 		struct drm_gem_object *obj;
1002 		struct drm_i915_gem_object *obj_priv;
1003 
1004 		obj_priv = list_first_entry(&dev_priv->mm.active_list,
1005 					    struct drm_i915_gem_object,
1006 					    list);
1007 		obj = obj_priv->obj;
1008 
1009 		/* If the seqno being retired doesn't match the oldest in the
1010 		 * list, then the oldest in the list must still be newer than
1011 		 * this seqno.
1012 		 */
1013 		if (obj_priv->last_rendering_seqno != request->seqno)
1014 			return;
1015 
1016 #if WATCH_LRU
1017 		DRM_INFO("%s: retire %d moves to inactive list %p\n",
1018 			 __func__, request->seqno, obj);
1019 #endif
1020 
1021 		if (obj->write_domain != 0)
1022 			i915_gem_object_move_to_flushing(obj);
1023 		else
1024 			i915_gem_object_move_to_inactive(obj);
1025 	}
1026 }
1027 
1028 /**
1029  * Returns true if seq1 is later than seq2.
1030  */
1031 static int
1032 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1033 {
1034 	return (int32_t)(seq1 - seq2) >= 0;
1035 }
1036 
1037 uint32_t
1038 i915_get_gem_seqno(struct drm_device *dev)
1039 {
1040 	drm_i915_private_t *dev_priv = dev->dev_private;
1041 
1042 	return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1043 }
1044 
1045 /**
1046  * This function clears the request list as sequence numbers are passed.
1047  */
1048 void
1049 i915_gem_retire_requests(struct drm_device *dev)
1050 {
1051 	drm_i915_private_t *dev_priv = dev->dev_private;
1052 	uint32_t seqno;
1053 
1054 	if (!dev_priv->hw_status_page)
1055 		return;
1056 
1057 	seqno = i915_get_gem_seqno(dev);
1058 
1059 	while (!list_empty(&dev_priv->mm.request_list)) {
1060 		struct drm_i915_gem_request *request;
1061 		uint32_t retiring_seqno;
1062 
1063 		request = list_first_entry(&dev_priv->mm.request_list,
1064 					   struct drm_i915_gem_request,
1065 					   list);
1066 		retiring_seqno = request->seqno;
1067 
1068 		if (i915_seqno_passed(seqno, retiring_seqno) ||
1069 		    dev_priv->mm.wedged) {
1070 			i915_gem_retire_request(dev, request);
1071 
1072 			list_del(&request->list);
1073 			drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
1074 		} else
1075 			break;
1076 	}
1077 }
1078 
1079 void
1080 i915_gem_retire_work_handler(struct work_struct *work)
1081 {
1082 	drm_i915_private_t *dev_priv;
1083 	struct drm_device *dev;
1084 
1085 	dev_priv = container_of(work, drm_i915_private_t,
1086 				mm.retire_work.work);
1087 	dev = dev_priv->dev;
1088 
1089 	mutex_lock(&dev->struct_mutex);
1090 	i915_gem_retire_requests(dev);
1091 	if (!dev_priv->mm.suspended &&
1092 	    !list_empty(&dev_priv->mm.request_list))
1093 		schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1094 	mutex_unlock(&dev->struct_mutex);
1095 }
1096 
1097 /**
1098  * Waits for a sequence number to be signaled, and cleans up the
1099  * request and object lists appropriately for that event.
1100  */
1101 static int
1102 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1103 {
1104 	drm_i915_private_t *dev_priv = dev->dev_private;
1105 	int ret = 0;
1106 
1107 	BUG_ON(seqno == 0);
1108 
1109 	if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1110 		dev_priv->mm.waiting_gem_seqno = seqno;
1111 		i915_user_irq_get(dev);
1112 		ret = wait_event_interruptible(dev_priv->irq_queue,
1113 					       i915_seqno_passed(i915_get_gem_seqno(dev),
1114 								 seqno) ||
1115 					       dev_priv->mm.wedged);
1116 		i915_user_irq_put(dev);
1117 		dev_priv->mm.waiting_gem_seqno = 0;
1118 	}
1119 	if (dev_priv->mm.wedged)
1120 		ret = -EIO;
1121 
1122 	if (ret && ret != -ERESTARTSYS)
1123 		DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1124 			  __func__, ret, seqno, i915_get_gem_seqno(dev));
1125 
1126 	/* Directly dispatch request retiring.  While we have the work queue
1127 	 * to handle this, the waiter on a request often wants an associated
1128 	 * buffer to have made it to the inactive list, and we would need
1129 	 * a separate wait queue to handle that.
1130 	 */
1131 	if (ret == 0)
1132 		i915_gem_retire_requests(dev);
1133 
1134 	return ret;
1135 }
1136 
1137 static void
1138 i915_gem_flush(struct drm_device *dev,
1139 	       uint32_t invalidate_domains,
1140 	       uint32_t flush_domains)
1141 {
1142 	drm_i915_private_t *dev_priv = dev->dev_private;
1143 	uint32_t cmd;
1144 	RING_LOCALS;
1145 
1146 #if WATCH_EXEC
1147 	DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1148 		  invalidate_domains, flush_domains);
1149 #endif
1150 
1151 	if (flush_domains & I915_GEM_DOMAIN_CPU)
1152 		drm_agp_chipset_flush(dev);
1153 
1154 	if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
1155 						     I915_GEM_DOMAIN_GTT)) {
1156 		/*
1157 		 * read/write caches:
1158 		 *
1159 		 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1160 		 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
1161 		 * also flushed at 2d versus 3d pipeline switches.
1162 		 *
1163 		 * read-only caches:
1164 		 *
1165 		 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1166 		 * MI_READ_FLUSH is set, and is always flushed on 965.
1167 		 *
1168 		 * I915_GEM_DOMAIN_COMMAND may not exist?
1169 		 *
1170 		 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1171 		 * invalidated when MI_EXE_FLUSH is set.
1172 		 *
1173 		 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1174 		 * invalidated with every MI_FLUSH.
1175 		 *
1176 		 * TLBs:
1177 		 *
1178 		 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1179 		 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1180 		 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1181 		 * are flushed at any MI_FLUSH.
1182 		 */
1183 
1184 		cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1185 		if ((invalidate_domains|flush_domains) &
1186 		    I915_GEM_DOMAIN_RENDER)
1187 			cmd &= ~MI_NO_WRITE_FLUSH;
1188 		if (!IS_I965G(dev)) {
1189 			/*
1190 			 * On the 965, the sampler cache always gets flushed
1191 			 * and this bit is reserved.
1192 			 */
1193 			if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1194 				cmd |= MI_READ_FLUSH;
1195 		}
1196 		if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1197 			cmd |= MI_EXE_FLUSH;
1198 
1199 #if WATCH_EXEC
1200 		DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1201 #endif
1202 		BEGIN_LP_RING(2);
1203 		OUT_RING(cmd);
1204 		OUT_RING(0); /* noop */
1205 		ADVANCE_LP_RING();
1206 	}
1207 }
1208 
1209 /**
1210  * Ensures that all rendering to the object has completed and the object is
1211  * safe to unbind from the GTT or access from the CPU.
1212  */
1213 static int
1214 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1215 {
1216 	struct drm_device *dev = obj->dev;
1217 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
1218 	int ret;
1219 
1220 	/* This function only exists to support waiting for existing rendering,
1221 	 * not for emitting required flushes.
1222 	 */
1223 	BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1224 
1225 	/* If there is rendering queued on the buffer being evicted, wait for
1226 	 * it.
1227 	 */
1228 	if (obj_priv->active) {
1229 #if WATCH_BUF
1230 		DRM_INFO("%s: object %p wait for seqno %08x\n",
1231 			  __func__, obj, obj_priv->last_rendering_seqno);
1232 #endif
1233 		ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1234 		if (ret != 0)
1235 			return ret;
1236 	}
1237 
1238 	return 0;
1239 }
1240 
1241 /**
1242  * Unbinds an object from the GTT aperture.
1243  */
1244 int
1245 i915_gem_object_unbind(struct drm_gem_object *obj)
1246 {
1247 	struct drm_device *dev = obj->dev;
1248 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
1249 	loff_t offset;
1250 	int ret = 0;
1251 
1252 #if WATCH_BUF
1253 	DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1254 	DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1255 #endif
1256 	if (obj_priv->gtt_space == NULL)
1257 		return 0;
1258 
1259 	if (obj_priv->pin_count != 0) {
1260 		DRM_ERROR("Attempting to unbind pinned buffer\n");
1261 		return -EINVAL;
1262 	}
1263 
1264 	/* Move the object to the CPU domain to ensure that
1265 	 * any possible CPU writes while it's not in the GTT
1266 	 * are flushed when we go to remap it. This will
1267 	 * also ensure that all pending GPU writes are finished
1268 	 * before we unbind.
1269 	 */
1270 	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1271 	if (ret) {
1272 		if (ret != -ERESTARTSYS)
1273 			DRM_ERROR("set_domain failed: %d\n", ret);
1274 		return ret;
1275 	}
1276 
1277 	if (obj_priv->agp_mem != NULL) {
1278 		drm_unbind_agp(obj_priv->agp_mem);
1279 		drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1280 		obj_priv->agp_mem = NULL;
1281 	}
1282 
1283 	BUG_ON(obj_priv->active);
1284 
1285 	/* blow away mappings if mapped through GTT */
1286 	offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT;
1287 	if (dev->dev_mapping)
1288 		unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1);
1289 
1290 	if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1291 		i915_gem_clear_fence_reg(obj);
1292 
1293 	i915_gem_object_free_page_list(obj);
1294 
1295 	if (obj_priv->gtt_space) {
1296 		atomic_dec(&dev->gtt_count);
1297 		atomic_sub(obj->size, &dev->gtt_memory);
1298 
1299 		drm_mm_put_block(obj_priv->gtt_space);
1300 		obj_priv->gtt_space = NULL;
1301 	}
1302 
1303 	/* Remove ourselves from the LRU list if present. */
1304 	if (!list_empty(&obj_priv->list))
1305 		list_del_init(&obj_priv->list);
1306 
1307 	return 0;
1308 }
1309 
1310 static int
1311 i915_gem_evict_something(struct drm_device *dev)
1312 {
1313 	drm_i915_private_t *dev_priv = dev->dev_private;
1314 	struct drm_gem_object *obj;
1315 	struct drm_i915_gem_object *obj_priv;
1316 	int ret = 0;
1317 
1318 	for (;;) {
1319 		/* If there's an inactive buffer available now, grab it
1320 		 * and be done.
1321 		 */
1322 		if (!list_empty(&dev_priv->mm.inactive_list)) {
1323 			obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1324 						    struct drm_i915_gem_object,
1325 						    list);
1326 			obj = obj_priv->obj;
1327 			BUG_ON(obj_priv->pin_count != 0);
1328 #if WATCH_LRU
1329 			DRM_INFO("%s: evicting %p\n", __func__, obj);
1330 #endif
1331 			BUG_ON(obj_priv->active);
1332 
1333 			/* Wait on the rendering and unbind the buffer. */
1334 			ret = i915_gem_object_unbind(obj);
1335 			break;
1336 		}
1337 
1338 		/* If we didn't get anything, but the ring is still processing
1339 		 * things, wait for one of those things to finish and hopefully
1340 		 * leave us a buffer to evict.
1341 		 */
1342 		if (!list_empty(&dev_priv->mm.request_list)) {
1343 			struct drm_i915_gem_request *request;
1344 
1345 			request = list_first_entry(&dev_priv->mm.request_list,
1346 						   struct drm_i915_gem_request,
1347 						   list);
1348 
1349 			ret = i915_wait_request(dev, request->seqno);
1350 			if (ret)
1351 				break;
1352 
1353 			/* if waiting caused an object to become inactive,
1354 			 * then loop around and wait for it. Otherwise, we
1355 			 * assume that waiting freed and unbound something,
1356 			 * so there should now be some space in the GTT
1357 			 */
1358 			if (!list_empty(&dev_priv->mm.inactive_list))
1359 				continue;
1360 			break;
1361 		}
1362 
1363 		/* If we didn't have anything on the request list but there
1364 		 * are buffers awaiting a flush, emit one and try again.
1365 		 * When we wait on it, those buffers waiting for that flush
1366 		 * will get moved to inactive.
1367 		 */
1368 		if (!list_empty(&dev_priv->mm.flushing_list)) {
1369 			obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1370 						    struct drm_i915_gem_object,
1371 						    list);
1372 			obj = obj_priv->obj;
1373 
1374 			i915_gem_flush(dev,
1375 				       obj->write_domain,
1376 				       obj->write_domain);
1377 			i915_add_request(dev, obj->write_domain);
1378 
1379 			obj = NULL;
1380 			continue;
1381 		}
1382 
1383 		DRM_ERROR("inactive empty %d request empty %d "
1384 			  "flushing empty %d\n",
1385 			  list_empty(&dev_priv->mm.inactive_list),
1386 			  list_empty(&dev_priv->mm.request_list),
1387 			  list_empty(&dev_priv->mm.flushing_list));
1388 		/* If we didn't do any of the above, there's nothing to be done
1389 		 * and we just can't fit it in.
1390 		 */
1391 		return -ENOMEM;
1392 	}
1393 	return ret;
1394 }
1395 
1396 static int
1397 i915_gem_evict_everything(struct drm_device *dev)
1398 {
1399 	int ret;
1400 
1401 	for (;;) {
1402 		ret = i915_gem_evict_something(dev);
1403 		if (ret != 0)
1404 			break;
1405 	}
1406 	if (ret == -ENOMEM)
1407 		return 0;
1408 	return ret;
1409 }
1410 
1411 static int
1412 i915_gem_object_get_page_list(struct drm_gem_object *obj)
1413 {
1414 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
1415 	int page_count, i;
1416 	struct address_space *mapping;
1417 	struct inode *inode;
1418 	struct page *page;
1419 	int ret;
1420 
1421 	if (obj_priv->page_list)
1422 		return 0;
1423 
1424 	/* Get the list of pages out of our struct file.  They'll be pinned
1425 	 * at this point until we release them.
1426 	 */
1427 	page_count = obj->size / PAGE_SIZE;
1428 	BUG_ON(obj_priv->page_list != NULL);
1429 	obj_priv->page_list = drm_calloc(page_count, sizeof(struct page *),
1430 					 DRM_MEM_DRIVER);
1431 	if (obj_priv->page_list == NULL) {
1432 		DRM_ERROR("Faled to allocate page list\n");
1433 		return -ENOMEM;
1434 	}
1435 
1436 	inode = obj->filp->f_path.dentry->d_inode;
1437 	mapping = inode->i_mapping;
1438 	for (i = 0; i < page_count; i++) {
1439 		page = read_mapping_page(mapping, i, NULL);
1440 		if (IS_ERR(page)) {
1441 			ret = PTR_ERR(page);
1442 			DRM_ERROR("read_mapping_page failed: %d\n", ret);
1443 			i915_gem_object_free_page_list(obj);
1444 			return ret;
1445 		}
1446 		obj_priv->page_list[i] = page;
1447 	}
1448 	return 0;
1449 }
1450 
1451 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
1452 {
1453 	struct drm_gem_object *obj = reg->obj;
1454 	struct drm_device *dev = obj->dev;
1455 	drm_i915_private_t *dev_priv = dev->dev_private;
1456 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
1457 	int regnum = obj_priv->fence_reg;
1458 	uint64_t val;
1459 
1460 	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
1461 		    0xfffff000) << 32;
1462 	val |= obj_priv->gtt_offset & 0xfffff000;
1463 	val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
1464 	if (obj_priv->tiling_mode == I915_TILING_Y)
1465 		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
1466 	val |= I965_FENCE_REG_VALID;
1467 
1468 	I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
1469 }
1470 
1471 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
1472 {
1473 	struct drm_gem_object *obj = reg->obj;
1474 	struct drm_device *dev = obj->dev;
1475 	drm_i915_private_t *dev_priv = dev->dev_private;
1476 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
1477 	int regnum = obj_priv->fence_reg;
1478 	int tile_width;
1479 	uint32_t fence_reg, val;
1480 	uint32_t pitch_val;
1481 
1482 	if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
1483 	    (obj_priv->gtt_offset & (obj->size - 1))) {
1484 		WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
1485 		     __func__, obj_priv->gtt_offset, obj->size);
1486 		return;
1487 	}
1488 
1489 	if (obj_priv->tiling_mode == I915_TILING_Y &&
1490 	    HAS_128_BYTE_Y_TILING(dev))
1491 		tile_width = 128;
1492 	else
1493 		tile_width = 512;
1494 
1495 	/* Note: pitch better be a power of two tile widths */
1496 	pitch_val = obj_priv->stride / tile_width;
1497 	pitch_val = ffs(pitch_val) - 1;
1498 
1499 	val = obj_priv->gtt_offset;
1500 	if (obj_priv->tiling_mode == I915_TILING_Y)
1501 		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
1502 	val |= I915_FENCE_SIZE_BITS(obj->size);
1503 	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
1504 	val |= I830_FENCE_REG_VALID;
1505 
1506 	if (regnum < 8)
1507 		fence_reg = FENCE_REG_830_0 + (regnum * 4);
1508 	else
1509 		fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
1510 	I915_WRITE(fence_reg, val);
1511 }
1512 
1513 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
1514 {
1515 	struct drm_gem_object *obj = reg->obj;
1516 	struct drm_device *dev = obj->dev;
1517 	drm_i915_private_t *dev_priv = dev->dev_private;
1518 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
1519 	int regnum = obj_priv->fence_reg;
1520 	uint32_t val;
1521 	uint32_t pitch_val;
1522 
1523 	if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
1524 	    (obj_priv->gtt_offset & (obj->size - 1))) {
1525 		WARN(1, "%s: object 0x%08x not 1M or size aligned\n",
1526 		     __func__, obj_priv->gtt_offset);
1527 		return;
1528 	}
1529 
1530 	pitch_val = (obj_priv->stride / 128) - 1;
1531 
1532 	val = obj_priv->gtt_offset;
1533 	if (obj_priv->tiling_mode == I915_TILING_Y)
1534 		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
1535 	val |= I830_FENCE_SIZE_BITS(obj->size);
1536 	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
1537 	val |= I830_FENCE_REG_VALID;
1538 
1539 	I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
1540 
1541 }
1542 
1543 /**
1544  * i915_gem_object_get_fence_reg - set up a fence reg for an object
1545  * @obj: object to map through a fence reg
1546  * @write: object is about to be written
1547  *
1548  * When mapping objects through the GTT, userspace wants to be able to write
1549  * to them without having to worry about swizzling if the object is tiled.
1550  *
1551  * This function walks the fence regs looking for a free one for @obj,
1552  * stealing one if it can't find any.
1553  *
1554  * It then sets up the reg based on the object's properties: address, pitch
1555  * and tiling format.
1556  */
1557 static int
1558 i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write)
1559 {
1560 	struct drm_device *dev = obj->dev;
1561 	struct drm_i915_private *dev_priv = dev->dev_private;
1562 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
1563 	struct drm_i915_fence_reg *reg = NULL;
1564 	struct drm_i915_gem_object *old_obj_priv = NULL;
1565 	int i, ret, avail;
1566 
1567 	switch (obj_priv->tiling_mode) {
1568 	case I915_TILING_NONE:
1569 		WARN(1, "allocating a fence for non-tiled object?\n");
1570 		break;
1571 	case I915_TILING_X:
1572 		if (!obj_priv->stride)
1573 			return -EINVAL;
1574 		WARN((obj_priv->stride & (512 - 1)),
1575 		     "object 0x%08x is X tiled but has non-512B pitch\n",
1576 		     obj_priv->gtt_offset);
1577 		break;
1578 	case I915_TILING_Y:
1579 		if (!obj_priv->stride)
1580 			return -EINVAL;
1581 		WARN((obj_priv->stride & (128 - 1)),
1582 		     "object 0x%08x is Y tiled but has non-128B pitch\n",
1583 		     obj_priv->gtt_offset);
1584 		break;
1585 	}
1586 
1587 	/* First try to find a free reg */
1588 try_again:
1589 	avail = 0;
1590 	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
1591 		reg = &dev_priv->fence_regs[i];
1592 		if (!reg->obj)
1593 			break;
1594 
1595 		old_obj_priv = reg->obj->driver_private;
1596 		if (!old_obj_priv->pin_count)
1597 		    avail++;
1598 	}
1599 
1600 	/* None available, try to steal one or wait for a user to finish */
1601 	if (i == dev_priv->num_fence_regs) {
1602 		uint32_t seqno = dev_priv->mm.next_gem_seqno;
1603 		loff_t offset;
1604 
1605 		if (avail == 0)
1606 			return -ENOMEM;
1607 
1608 		for (i = dev_priv->fence_reg_start;
1609 		     i < dev_priv->num_fence_regs; i++) {
1610 			uint32_t this_seqno;
1611 
1612 			reg = &dev_priv->fence_regs[i];
1613 			old_obj_priv = reg->obj->driver_private;
1614 
1615 			if (old_obj_priv->pin_count)
1616 				continue;
1617 
1618 			/* i915 uses fences for GPU access to tiled buffers */
1619 			if (IS_I965G(dev) || !old_obj_priv->active)
1620 				break;
1621 
1622 			/* find the seqno of the first available fence */
1623 			this_seqno = old_obj_priv->last_rendering_seqno;
1624 			if (this_seqno != 0 &&
1625 			    reg->obj->write_domain == 0 &&
1626 			    i915_seqno_passed(seqno, this_seqno))
1627 				seqno = this_seqno;
1628 		}
1629 
1630 		/*
1631 		 * Now things get ugly... we have to wait for one of the
1632 		 * objects to finish before trying again.
1633 		 */
1634 		if (i == dev_priv->num_fence_regs) {
1635 			if (seqno == dev_priv->mm.next_gem_seqno) {
1636 				i915_gem_flush(dev,
1637 					       I915_GEM_GPU_DOMAINS,
1638 					       I915_GEM_GPU_DOMAINS);
1639 				seqno = i915_add_request(dev,
1640 							 I915_GEM_GPU_DOMAINS);
1641 				if (seqno == 0)
1642 					return -ENOMEM;
1643 			}
1644 
1645 			ret = i915_wait_request(dev, seqno);
1646 			if (ret)
1647 				return ret;
1648 			goto try_again;
1649 		}
1650 
1651 		BUG_ON(old_obj_priv->active ||
1652 		       (reg->obj->write_domain & I915_GEM_GPU_DOMAINS));
1653 
1654 		/*
1655 		 * Zap this virtual mapping so we can set up a fence again
1656 		 * for this object next time we need it.
1657 		 */
1658 		offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT;
1659 		if (dev->dev_mapping)
1660 			unmap_mapping_range(dev->dev_mapping, offset,
1661 					    reg->obj->size, 1);
1662 		old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
1663 	}
1664 
1665 	obj_priv->fence_reg = i;
1666 	reg->obj = obj;
1667 
1668 	if (IS_I965G(dev))
1669 		i965_write_fence_reg(reg);
1670 	else if (IS_I9XX(dev))
1671 		i915_write_fence_reg(reg);
1672 	else
1673 		i830_write_fence_reg(reg);
1674 
1675 	return 0;
1676 }
1677 
1678 /**
1679  * i915_gem_clear_fence_reg - clear out fence register info
1680  * @obj: object to clear
1681  *
1682  * Zeroes out the fence register itself and clears out the associated
1683  * data structures in dev_priv and obj_priv.
1684  */
1685 static void
1686 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
1687 {
1688 	struct drm_device *dev = obj->dev;
1689 	drm_i915_private_t *dev_priv = dev->dev_private;
1690 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
1691 
1692 	if (IS_I965G(dev))
1693 		I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
1694 	else {
1695 		uint32_t fence_reg;
1696 
1697 		if (obj_priv->fence_reg < 8)
1698 			fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
1699 		else
1700 			fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
1701 						       8) * 4;
1702 
1703 		I915_WRITE(fence_reg, 0);
1704 	}
1705 
1706 	dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
1707 	obj_priv->fence_reg = I915_FENCE_REG_NONE;
1708 }
1709 
1710 /**
1711  * Finds free space in the GTT aperture and binds the object there.
1712  */
1713 static int
1714 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
1715 {
1716 	struct drm_device *dev = obj->dev;
1717 	drm_i915_private_t *dev_priv = dev->dev_private;
1718 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
1719 	struct drm_mm_node *free_space;
1720 	int page_count, ret;
1721 
1722 	if (dev_priv->mm.suspended)
1723 		return -EBUSY;
1724 	if (alignment == 0)
1725 		alignment = i915_gem_get_gtt_alignment(obj);
1726 	if (alignment & (PAGE_SIZE - 1)) {
1727 		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
1728 		return -EINVAL;
1729 	}
1730 
1731  search_free:
1732 	free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
1733 					obj->size, alignment, 0);
1734 	if (free_space != NULL) {
1735 		obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
1736 						       alignment);
1737 		if (obj_priv->gtt_space != NULL) {
1738 			obj_priv->gtt_space->private = obj;
1739 			obj_priv->gtt_offset = obj_priv->gtt_space->start;
1740 		}
1741 	}
1742 	if (obj_priv->gtt_space == NULL) {
1743 		/* If the gtt is empty and we're still having trouble
1744 		 * fitting our object in, we're out of memory.
1745 		 */
1746 #if WATCH_LRU
1747 		DRM_INFO("%s: GTT full, evicting something\n", __func__);
1748 #endif
1749 		if (list_empty(&dev_priv->mm.inactive_list) &&
1750 		    list_empty(&dev_priv->mm.flushing_list) &&
1751 		    list_empty(&dev_priv->mm.active_list)) {
1752 			DRM_ERROR("GTT full, but LRU list empty\n");
1753 			return -ENOMEM;
1754 		}
1755 
1756 		ret = i915_gem_evict_something(dev);
1757 		if (ret != 0) {
1758 			if (ret != -ERESTARTSYS)
1759 				DRM_ERROR("Failed to evict a buffer %d\n", ret);
1760 			return ret;
1761 		}
1762 		goto search_free;
1763 	}
1764 
1765 #if WATCH_BUF
1766 	DRM_INFO("Binding object of size %d at 0x%08x\n",
1767 		 obj->size, obj_priv->gtt_offset);
1768 #endif
1769 	ret = i915_gem_object_get_page_list(obj);
1770 	if (ret) {
1771 		drm_mm_put_block(obj_priv->gtt_space);
1772 		obj_priv->gtt_space = NULL;
1773 		return ret;
1774 	}
1775 
1776 	page_count = obj->size / PAGE_SIZE;
1777 	/* Create an AGP memory structure pointing at our pages, and bind it
1778 	 * into the GTT.
1779 	 */
1780 	obj_priv->agp_mem = drm_agp_bind_pages(dev,
1781 					       obj_priv->page_list,
1782 					       page_count,
1783 					       obj_priv->gtt_offset,
1784 					       obj_priv->agp_type);
1785 	if (obj_priv->agp_mem == NULL) {
1786 		i915_gem_object_free_page_list(obj);
1787 		drm_mm_put_block(obj_priv->gtt_space);
1788 		obj_priv->gtt_space = NULL;
1789 		return -ENOMEM;
1790 	}
1791 	atomic_inc(&dev->gtt_count);
1792 	atomic_add(obj->size, &dev->gtt_memory);
1793 
1794 	/* Assert that the object is not currently in any GPU domain. As it
1795 	 * wasn't in the GTT, there shouldn't be any way it could have been in
1796 	 * a GPU cache
1797 	 */
1798 	BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1799 	BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1800 
1801 	return 0;
1802 }
1803 
1804 void
1805 i915_gem_clflush_object(struct drm_gem_object *obj)
1806 {
1807 	struct drm_i915_gem_object	*obj_priv = obj->driver_private;
1808 
1809 	/* If we don't have a page list set up, then we're not pinned
1810 	 * to GPU, and we can ignore the cache flush because it'll happen
1811 	 * again at bind time.
1812 	 */
1813 	if (obj_priv->page_list == NULL)
1814 		return;
1815 
1816 	drm_clflush_pages(obj_priv->page_list, obj->size / PAGE_SIZE);
1817 }
1818 
1819 /** Flushes any GPU write domain for the object if it's dirty. */
1820 static void
1821 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
1822 {
1823 	struct drm_device *dev = obj->dev;
1824 	uint32_t seqno;
1825 
1826 	if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
1827 		return;
1828 
1829 	/* Queue the GPU write cache flushing we need. */
1830 	i915_gem_flush(dev, 0, obj->write_domain);
1831 	seqno = i915_add_request(dev, obj->write_domain);
1832 	obj->write_domain = 0;
1833 	i915_gem_object_move_to_active(obj, seqno);
1834 }
1835 
1836 /** Flushes the GTT write domain for the object if it's dirty. */
1837 static void
1838 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
1839 {
1840 	if (obj->write_domain != I915_GEM_DOMAIN_GTT)
1841 		return;
1842 
1843 	/* No actual flushing is required for the GTT write domain.   Writes
1844 	 * to it immediately go to main memory as far as we know, so there's
1845 	 * no chipset flush.  It also doesn't land in render cache.
1846 	 */
1847 	obj->write_domain = 0;
1848 }
1849 
1850 /** Flushes the CPU write domain for the object if it's dirty. */
1851 static void
1852 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
1853 {
1854 	struct drm_device *dev = obj->dev;
1855 
1856 	if (obj->write_domain != I915_GEM_DOMAIN_CPU)
1857 		return;
1858 
1859 	i915_gem_clflush_object(obj);
1860 	drm_agp_chipset_flush(dev);
1861 	obj->write_domain = 0;
1862 }
1863 
1864 /**
1865  * Moves a single object to the GTT read, and possibly write domain.
1866  *
1867  * This function returns when the move is complete, including waiting on
1868  * flushes to occur.
1869  */
1870 int
1871 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
1872 {
1873 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
1874 	int ret;
1875 
1876 	/* Not valid to be called on unbound objects. */
1877 	if (obj_priv->gtt_space == NULL)
1878 		return -EINVAL;
1879 
1880 	i915_gem_object_flush_gpu_write_domain(obj);
1881 	/* Wait on any GPU rendering and flushing to occur. */
1882 	ret = i915_gem_object_wait_rendering(obj);
1883 	if (ret != 0)
1884 		return ret;
1885 
1886 	/* If we're writing through the GTT domain, then CPU and GPU caches
1887 	 * will need to be invalidated at next use.
1888 	 */
1889 	if (write)
1890 		obj->read_domains &= I915_GEM_DOMAIN_GTT;
1891 
1892 	i915_gem_object_flush_cpu_write_domain(obj);
1893 
1894 	/* It should now be out of any other write domains, and we can update
1895 	 * the domain values for our changes.
1896 	 */
1897 	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
1898 	obj->read_domains |= I915_GEM_DOMAIN_GTT;
1899 	if (write) {
1900 		obj->write_domain = I915_GEM_DOMAIN_GTT;
1901 		obj_priv->dirty = 1;
1902 	}
1903 
1904 	return 0;
1905 }
1906 
1907 /**
1908  * Moves a single object to the CPU read, and possibly write domain.
1909  *
1910  * This function returns when the move is complete, including waiting on
1911  * flushes to occur.
1912  */
1913 static int
1914 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
1915 {
1916 	struct drm_device *dev = obj->dev;
1917 	int ret;
1918 
1919 	i915_gem_object_flush_gpu_write_domain(obj);
1920 	/* Wait on any GPU rendering and flushing to occur. */
1921 	ret = i915_gem_object_wait_rendering(obj);
1922 	if (ret != 0)
1923 		return ret;
1924 
1925 	i915_gem_object_flush_gtt_write_domain(obj);
1926 
1927 	/* If we have a partially-valid cache of the object in the CPU,
1928 	 * finish invalidating it and free the per-page flags.
1929 	 */
1930 	i915_gem_object_set_to_full_cpu_read_domain(obj);
1931 
1932 	/* Flush the CPU cache if it's still invalid. */
1933 	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
1934 		i915_gem_clflush_object(obj);
1935 		drm_agp_chipset_flush(dev);
1936 
1937 		obj->read_domains |= I915_GEM_DOMAIN_CPU;
1938 	}
1939 
1940 	/* It should now be out of any other write domains, and we can update
1941 	 * the domain values for our changes.
1942 	 */
1943 	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
1944 
1945 	/* If we're writing through the CPU, then the GPU read domains will
1946 	 * need to be invalidated at next use.
1947 	 */
1948 	if (write) {
1949 		obj->read_domains &= I915_GEM_DOMAIN_CPU;
1950 		obj->write_domain = I915_GEM_DOMAIN_CPU;
1951 	}
1952 
1953 	return 0;
1954 }
1955 
1956 /*
1957  * Set the next domain for the specified object. This
1958  * may not actually perform the necessary flushing/invaliding though,
1959  * as that may want to be batched with other set_domain operations
1960  *
1961  * This is (we hope) the only really tricky part of gem. The goal
1962  * is fairly simple -- track which caches hold bits of the object
1963  * and make sure they remain coherent. A few concrete examples may
1964  * help to explain how it works. For shorthand, we use the notation
1965  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
1966  * a pair of read and write domain masks.
1967  *
1968  * Case 1: the batch buffer
1969  *
1970  *	1. Allocated
1971  *	2. Written by CPU
1972  *	3. Mapped to GTT
1973  *	4. Read by GPU
1974  *	5. Unmapped from GTT
1975  *	6. Freed
1976  *
1977  *	Let's take these a step at a time
1978  *
1979  *	1. Allocated
1980  *		Pages allocated from the kernel may still have
1981  *		cache contents, so we set them to (CPU, CPU) always.
1982  *	2. Written by CPU (using pwrite)
1983  *		The pwrite function calls set_domain (CPU, CPU) and
1984  *		this function does nothing (as nothing changes)
1985  *	3. Mapped by GTT
1986  *		This function asserts that the object is not
1987  *		currently in any GPU-based read or write domains
1988  *	4. Read by GPU
1989  *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
1990  *		As write_domain is zero, this function adds in the
1991  *		current read domains (CPU+COMMAND, 0).
1992  *		flush_domains is set to CPU.
1993  *		invalidate_domains is set to COMMAND
1994  *		clflush is run to get data out of the CPU caches
1995  *		then i915_dev_set_domain calls i915_gem_flush to
1996  *		emit an MI_FLUSH and drm_agp_chipset_flush
1997  *	5. Unmapped from GTT
1998  *		i915_gem_object_unbind calls set_domain (CPU, CPU)
1999  *		flush_domains and invalidate_domains end up both zero
2000  *		so no flushing/invalidating happens
2001  *	6. Freed
2002  *		yay, done
2003  *
2004  * Case 2: The shared render buffer
2005  *
2006  *	1. Allocated
2007  *	2. Mapped to GTT
2008  *	3. Read/written by GPU
2009  *	4. set_domain to (CPU,CPU)
2010  *	5. Read/written by CPU
2011  *	6. Read/written by GPU
2012  *
2013  *	1. Allocated
2014  *		Same as last example, (CPU, CPU)
2015  *	2. Mapped to GTT
2016  *		Nothing changes (assertions find that it is not in the GPU)
2017  *	3. Read/written by GPU
2018  *		execbuffer calls set_domain (RENDER, RENDER)
2019  *		flush_domains gets CPU
2020  *		invalidate_domains gets GPU
2021  *		clflush (obj)
2022  *		MI_FLUSH and drm_agp_chipset_flush
2023  *	4. set_domain (CPU, CPU)
2024  *		flush_domains gets GPU
2025  *		invalidate_domains gets CPU
2026  *		wait_rendering (obj) to make sure all drawing is complete.
2027  *		This will include an MI_FLUSH to get the data from GPU
2028  *		to memory
2029  *		clflush (obj) to invalidate the CPU cache
2030  *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2031  *	5. Read/written by CPU
2032  *		cache lines are loaded and dirtied
2033  *	6. Read written by GPU
2034  *		Same as last GPU access
2035  *
2036  * Case 3: The constant buffer
2037  *
2038  *	1. Allocated
2039  *	2. Written by CPU
2040  *	3. Read by GPU
2041  *	4. Updated (written) by CPU again
2042  *	5. Read by GPU
2043  *
2044  *	1. Allocated
2045  *		(CPU, CPU)
2046  *	2. Written by CPU
2047  *		(CPU, CPU)
2048  *	3. Read by GPU
2049  *		(CPU+RENDER, 0)
2050  *		flush_domains = CPU
2051  *		invalidate_domains = RENDER
2052  *		clflush (obj)
2053  *		MI_FLUSH
2054  *		drm_agp_chipset_flush
2055  *	4. Updated (written) by CPU again
2056  *		(CPU, CPU)
2057  *		flush_domains = 0 (no previous write domain)
2058  *		invalidate_domains = 0 (no new read domains)
2059  *	5. Read by GPU
2060  *		(CPU+RENDER, 0)
2061  *		flush_domains = CPU
2062  *		invalidate_domains = RENDER
2063  *		clflush (obj)
2064  *		MI_FLUSH
2065  *		drm_agp_chipset_flush
2066  */
2067 static void
2068 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2069 {
2070 	struct drm_device		*dev = obj->dev;
2071 	struct drm_i915_gem_object	*obj_priv = obj->driver_private;
2072 	uint32_t			invalidate_domains = 0;
2073 	uint32_t			flush_domains = 0;
2074 
2075 	BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2076 	BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2077 
2078 #if WATCH_BUF
2079 	DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2080 		 __func__, obj,
2081 		 obj->read_domains, obj->pending_read_domains,
2082 		 obj->write_domain, obj->pending_write_domain);
2083 #endif
2084 	/*
2085 	 * If the object isn't moving to a new write domain,
2086 	 * let the object stay in multiple read domains
2087 	 */
2088 	if (obj->pending_write_domain == 0)
2089 		obj->pending_read_domains |= obj->read_domains;
2090 	else
2091 		obj_priv->dirty = 1;
2092 
2093 	/*
2094 	 * Flush the current write domain if
2095 	 * the new read domains don't match. Invalidate
2096 	 * any read domains which differ from the old
2097 	 * write domain
2098 	 */
2099 	if (obj->write_domain &&
2100 	    obj->write_domain != obj->pending_read_domains) {
2101 		flush_domains |= obj->write_domain;
2102 		invalidate_domains |=
2103 			obj->pending_read_domains & ~obj->write_domain;
2104 	}
2105 	/*
2106 	 * Invalidate any read caches which may have
2107 	 * stale data. That is, any new read domains.
2108 	 */
2109 	invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2110 	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2111 #if WATCH_BUF
2112 		DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2113 			 __func__, flush_domains, invalidate_domains);
2114 #endif
2115 		i915_gem_clflush_object(obj);
2116 	}
2117 
2118 	/* The actual obj->write_domain will be updated with
2119 	 * pending_write_domain after we emit the accumulated flush for all
2120 	 * of our domain changes in execbuffers (which clears objects'
2121 	 * write_domains).  So if we have a current write domain that we
2122 	 * aren't changing, set pending_write_domain to that.
2123 	 */
2124 	if (flush_domains == 0 && obj->pending_write_domain == 0)
2125 		obj->pending_write_domain = obj->write_domain;
2126 	obj->read_domains = obj->pending_read_domains;
2127 
2128 	dev->invalidate_domains |= invalidate_domains;
2129 	dev->flush_domains |= flush_domains;
2130 #if WATCH_BUF
2131 	DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2132 		 __func__,
2133 		 obj->read_domains, obj->write_domain,
2134 		 dev->invalidate_domains, dev->flush_domains);
2135 #endif
2136 }
2137 
2138 /**
2139  * Moves the object from a partially CPU read to a full one.
2140  *
2141  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2142  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2143  */
2144 static void
2145 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
2146 {
2147 	struct drm_device *dev = obj->dev;
2148 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
2149 
2150 	if (!obj_priv->page_cpu_valid)
2151 		return;
2152 
2153 	/* If we're partially in the CPU read domain, finish moving it in.
2154 	 */
2155 	if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2156 		int i;
2157 
2158 		for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2159 			if (obj_priv->page_cpu_valid[i])
2160 				continue;
2161 			drm_clflush_pages(obj_priv->page_list + i, 1);
2162 		}
2163 		drm_agp_chipset_flush(dev);
2164 	}
2165 
2166 	/* Free the page_cpu_valid mappings which are now stale, whether
2167 	 * or not we've got I915_GEM_DOMAIN_CPU.
2168 	 */
2169 	drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
2170 		 DRM_MEM_DRIVER);
2171 	obj_priv->page_cpu_valid = NULL;
2172 }
2173 
2174 /**
2175  * Set the CPU read domain on a range of the object.
2176  *
2177  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2178  * not entirely valid.  The page_cpu_valid member of the object flags which
2179  * pages have been flushed, and will be respected by
2180  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2181  * of the whole object.
2182  *
2183  * This function returns when the move is complete, including waiting on
2184  * flushes to occur.
2185  */
2186 static int
2187 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2188 					  uint64_t offset, uint64_t size)
2189 {
2190 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
2191 	int i, ret;
2192 
2193 	if (offset == 0 && size == obj->size)
2194 		return i915_gem_object_set_to_cpu_domain(obj, 0);
2195 
2196 	i915_gem_object_flush_gpu_write_domain(obj);
2197 	/* Wait on any GPU rendering and flushing to occur. */
2198 	ret = i915_gem_object_wait_rendering(obj);
2199 	if (ret != 0)
2200 		return ret;
2201 	i915_gem_object_flush_gtt_write_domain(obj);
2202 
2203 	/* If we're already fully in the CPU read domain, we're done. */
2204 	if (obj_priv->page_cpu_valid == NULL &&
2205 	    (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2206 		return 0;
2207 
2208 	/* Otherwise, create/clear the per-page CPU read domain flag if we're
2209 	 * newly adding I915_GEM_DOMAIN_CPU
2210 	 */
2211 	if (obj_priv->page_cpu_valid == NULL) {
2212 		obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
2213 						      DRM_MEM_DRIVER);
2214 		if (obj_priv->page_cpu_valid == NULL)
2215 			return -ENOMEM;
2216 	} else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2217 		memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
2218 
2219 	/* Flush the cache on any pages that are still invalid from the CPU's
2220 	 * perspective.
2221 	 */
2222 	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2223 	     i++) {
2224 		if (obj_priv->page_cpu_valid[i])
2225 			continue;
2226 
2227 		drm_clflush_pages(obj_priv->page_list + i, 1);
2228 
2229 		obj_priv->page_cpu_valid[i] = 1;
2230 	}
2231 
2232 	/* It should now be out of any other write domains, and we can update
2233 	 * the domain values for our changes.
2234 	 */
2235 	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2236 
2237 	obj->read_domains |= I915_GEM_DOMAIN_CPU;
2238 
2239 	return 0;
2240 }
2241 
2242 /**
2243  * Pin an object to the GTT and evaluate the relocations landing in it.
2244  */
2245 static int
2246 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2247 				 struct drm_file *file_priv,
2248 				 struct drm_i915_gem_exec_object *entry)
2249 {
2250 	struct drm_device *dev = obj->dev;
2251 	drm_i915_private_t *dev_priv = dev->dev_private;
2252 	struct drm_i915_gem_relocation_entry reloc;
2253 	struct drm_i915_gem_relocation_entry __user *relocs;
2254 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
2255 	int i, ret;
2256 	void __iomem *reloc_page;
2257 
2258 	/* Choose the GTT offset for our buffer and put it there. */
2259 	ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2260 	if (ret)
2261 		return ret;
2262 
2263 	entry->offset = obj_priv->gtt_offset;
2264 
2265 	relocs = (struct drm_i915_gem_relocation_entry __user *)
2266 		 (uintptr_t) entry->relocs_ptr;
2267 	/* Apply the relocations, using the GTT aperture to avoid cache
2268 	 * flushing requirements.
2269 	 */
2270 	for (i = 0; i < entry->relocation_count; i++) {
2271 		struct drm_gem_object *target_obj;
2272 		struct drm_i915_gem_object *target_obj_priv;
2273 		uint32_t reloc_val, reloc_offset;
2274 		uint32_t __iomem *reloc_entry;
2275 
2276 		ret = copy_from_user(&reloc, relocs + i, sizeof(reloc));
2277 		if (ret != 0) {
2278 			i915_gem_object_unpin(obj);
2279 			return ret;
2280 		}
2281 
2282 		target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2283 						   reloc.target_handle);
2284 		if (target_obj == NULL) {
2285 			i915_gem_object_unpin(obj);
2286 			return -EBADF;
2287 		}
2288 		target_obj_priv = target_obj->driver_private;
2289 
2290 		/* The target buffer should have appeared before us in the
2291 		 * exec_object list, so it should have a GTT space bound by now.
2292 		 */
2293 		if (target_obj_priv->gtt_space == NULL) {
2294 			DRM_ERROR("No GTT space found for object %d\n",
2295 				  reloc.target_handle);
2296 			drm_gem_object_unreference(target_obj);
2297 			i915_gem_object_unpin(obj);
2298 			return -EINVAL;
2299 		}
2300 
2301 		if (reloc.offset > obj->size - 4) {
2302 			DRM_ERROR("Relocation beyond object bounds: "
2303 				  "obj %p target %d offset %d size %d.\n",
2304 				  obj, reloc.target_handle,
2305 				  (int) reloc.offset, (int) obj->size);
2306 			drm_gem_object_unreference(target_obj);
2307 			i915_gem_object_unpin(obj);
2308 			return -EINVAL;
2309 		}
2310 		if (reloc.offset & 3) {
2311 			DRM_ERROR("Relocation not 4-byte aligned: "
2312 				  "obj %p target %d offset %d.\n",
2313 				  obj, reloc.target_handle,
2314 				  (int) reloc.offset);
2315 			drm_gem_object_unreference(target_obj);
2316 			i915_gem_object_unpin(obj);
2317 			return -EINVAL;
2318 		}
2319 
2320 		if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
2321 		    reloc.read_domains & I915_GEM_DOMAIN_CPU) {
2322 			DRM_ERROR("reloc with read/write CPU domains: "
2323 				  "obj %p target %d offset %d "
2324 				  "read %08x write %08x",
2325 				  obj, reloc.target_handle,
2326 				  (int) reloc.offset,
2327 				  reloc.read_domains,
2328 				  reloc.write_domain);
2329 			drm_gem_object_unreference(target_obj);
2330 			i915_gem_object_unpin(obj);
2331 			return -EINVAL;
2332 		}
2333 
2334 		if (reloc.write_domain && target_obj->pending_write_domain &&
2335 		    reloc.write_domain != target_obj->pending_write_domain) {
2336 			DRM_ERROR("Write domain conflict: "
2337 				  "obj %p target %d offset %d "
2338 				  "new %08x old %08x\n",
2339 				  obj, reloc.target_handle,
2340 				  (int) reloc.offset,
2341 				  reloc.write_domain,
2342 				  target_obj->pending_write_domain);
2343 			drm_gem_object_unreference(target_obj);
2344 			i915_gem_object_unpin(obj);
2345 			return -EINVAL;
2346 		}
2347 
2348 #if WATCH_RELOC
2349 		DRM_INFO("%s: obj %p offset %08x target %d "
2350 			 "read %08x write %08x gtt %08x "
2351 			 "presumed %08x delta %08x\n",
2352 			 __func__,
2353 			 obj,
2354 			 (int) reloc.offset,
2355 			 (int) reloc.target_handle,
2356 			 (int) reloc.read_domains,
2357 			 (int) reloc.write_domain,
2358 			 (int) target_obj_priv->gtt_offset,
2359 			 (int) reloc.presumed_offset,
2360 			 reloc.delta);
2361 #endif
2362 
2363 		target_obj->pending_read_domains |= reloc.read_domains;
2364 		target_obj->pending_write_domain |= reloc.write_domain;
2365 
2366 		/* If the relocation already has the right value in it, no
2367 		 * more work needs to be done.
2368 		 */
2369 		if (target_obj_priv->gtt_offset == reloc.presumed_offset) {
2370 			drm_gem_object_unreference(target_obj);
2371 			continue;
2372 		}
2373 
2374 		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
2375 		if (ret != 0) {
2376 			drm_gem_object_unreference(target_obj);
2377 			i915_gem_object_unpin(obj);
2378 			return -EINVAL;
2379 		}
2380 
2381 		/* Map the page containing the relocation we're going to
2382 		 * perform.
2383 		 */
2384 		reloc_offset = obj_priv->gtt_offset + reloc.offset;
2385 		reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
2386 						      (reloc_offset &
2387 						       ~(PAGE_SIZE - 1)));
2388 		reloc_entry = (uint32_t __iomem *)(reloc_page +
2389 						   (reloc_offset & (PAGE_SIZE - 1)));
2390 		reloc_val = target_obj_priv->gtt_offset + reloc.delta;
2391 
2392 #if WATCH_BUF
2393 		DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
2394 			  obj, (unsigned int) reloc.offset,
2395 			  readl(reloc_entry), reloc_val);
2396 #endif
2397 		writel(reloc_val, reloc_entry);
2398 		io_mapping_unmap_atomic(reloc_page);
2399 
2400 		/* Write the updated presumed offset for this entry back out
2401 		 * to the user.
2402 		 */
2403 		reloc.presumed_offset = target_obj_priv->gtt_offset;
2404 		ret = copy_to_user(relocs + i, &reloc, sizeof(reloc));
2405 		if (ret != 0) {
2406 			drm_gem_object_unreference(target_obj);
2407 			i915_gem_object_unpin(obj);
2408 			return ret;
2409 		}
2410 
2411 		drm_gem_object_unreference(target_obj);
2412 	}
2413 
2414 #if WATCH_BUF
2415 	if (0)
2416 		i915_gem_dump_object(obj, 128, __func__, ~0);
2417 #endif
2418 	return 0;
2419 }
2420 
2421 /** Dispatch a batchbuffer to the ring
2422  */
2423 static int
2424 i915_dispatch_gem_execbuffer(struct drm_device *dev,
2425 			      struct drm_i915_gem_execbuffer *exec,
2426 			      uint64_t exec_offset)
2427 {
2428 	drm_i915_private_t *dev_priv = dev->dev_private;
2429 	struct drm_clip_rect __user *boxes = (struct drm_clip_rect __user *)
2430 					     (uintptr_t) exec->cliprects_ptr;
2431 	int nbox = exec->num_cliprects;
2432 	int i = 0, count;
2433 	uint32_t	exec_start, exec_len;
2434 	RING_LOCALS;
2435 
2436 	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
2437 	exec_len = (uint32_t) exec->batch_len;
2438 
2439 	if ((exec_start | exec_len) & 0x7) {
2440 		DRM_ERROR("alignment\n");
2441 		return -EINVAL;
2442 	}
2443 
2444 	if (!exec_start)
2445 		return -EINVAL;
2446 
2447 	count = nbox ? nbox : 1;
2448 
2449 	for (i = 0; i < count; i++) {
2450 		if (i < nbox) {
2451 			int ret = i915_emit_box(dev, boxes, i,
2452 						exec->DR1, exec->DR4);
2453 			if (ret)
2454 				return ret;
2455 		}
2456 
2457 		if (IS_I830(dev) || IS_845G(dev)) {
2458 			BEGIN_LP_RING(4);
2459 			OUT_RING(MI_BATCH_BUFFER);
2460 			OUT_RING(exec_start | MI_BATCH_NON_SECURE);
2461 			OUT_RING(exec_start + exec_len - 4);
2462 			OUT_RING(0);
2463 			ADVANCE_LP_RING();
2464 		} else {
2465 			BEGIN_LP_RING(2);
2466 			if (IS_I965G(dev)) {
2467 				OUT_RING(MI_BATCH_BUFFER_START |
2468 					 (2 << 6) |
2469 					 MI_BATCH_NON_SECURE_I965);
2470 				OUT_RING(exec_start);
2471 			} else {
2472 				OUT_RING(MI_BATCH_BUFFER_START |
2473 					 (2 << 6));
2474 				OUT_RING(exec_start | MI_BATCH_NON_SECURE);
2475 			}
2476 			ADVANCE_LP_RING();
2477 		}
2478 	}
2479 
2480 	/* XXX breadcrumb */
2481 	return 0;
2482 }
2483 
2484 /* Throttle our rendering by waiting until the ring has completed our requests
2485  * emitted over 20 msec ago.
2486  *
2487  * This should get us reasonable parallelism between CPU and GPU but also
2488  * relatively low latency when blocking on a particular request to finish.
2489  */
2490 static int
2491 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
2492 {
2493 	struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
2494 	int ret = 0;
2495 	uint32_t seqno;
2496 
2497 	mutex_lock(&dev->struct_mutex);
2498 	seqno = i915_file_priv->mm.last_gem_throttle_seqno;
2499 	i915_file_priv->mm.last_gem_throttle_seqno =
2500 		i915_file_priv->mm.last_gem_seqno;
2501 	if (seqno)
2502 		ret = i915_wait_request(dev, seqno);
2503 	mutex_unlock(&dev->struct_mutex);
2504 	return ret;
2505 }
2506 
2507 int
2508 i915_gem_execbuffer(struct drm_device *dev, void *data,
2509 		    struct drm_file *file_priv)
2510 {
2511 	drm_i915_private_t *dev_priv = dev->dev_private;
2512 	struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
2513 	struct drm_i915_gem_execbuffer *args = data;
2514 	struct drm_i915_gem_exec_object *exec_list = NULL;
2515 	struct drm_gem_object **object_list = NULL;
2516 	struct drm_gem_object *batch_obj;
2517 	struct drm_i915_gem_object *obj_priv;
2518 	int ret, i, pinned = 0;
2519 	uint64_t exec_offset;
2520 	uint32_t seqno, flush_domains;
2521 	int pin_tries;
2522 
2523 #if WATCH_EXEC
2524 	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
2525 		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
2526 #endif
2527 
2528 	if (args->buffer_count < 1) {
2529 		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
2530 		return -EINVAL;
2531 	}
2532 	/* Copy in the exec list from userland */
2533 	exec_list = drm_calloc(sizeof(*exec_list), args->buffer_count,
2534 			       DRM_MEM_DRIVER);
2535 	object_list = drm_calloc(sizeof(*object_list), args->buffer_count,
2536 				 DRM_MEM_DRIVER);
2537 	if (exec_list == NULL || object_list == NULL) {
2538 		DRM_ERROR("Failed to allocate exec or object list "
2539 			  "for %d buffers\n",
2540 			  args->buffer_count);
2541 		ret = -ENOMEM;
2542 		goto pre_mutex_err;
2543 	}
2544 	ret = copy_from_user(exec_list,
2545 			     (struct drm_i915_relocation_entry __user *)
2546 			     (uintptr_t) args->buffers_ptr,
2547 			     sizeof(*exec_list) * args->buffer_count);
2548 	if (ret != 0) {
2549 		DRM_ERROR("copy %d exec entries failed %d\n",
2550 			  args->buffer_count, ret);
2551 		goto pre_mutex_err;
2552 	}
2553 
2554 	mutex_lock(&dev->struct_mutex);
2555 
2556 	i915_verify_inactive(dev, __FILE__, __LINE__);
2557 
2558 	if (dev_priv->mm.wedged) {
2559 		DRM_ERROR("Execbuf while wedged\n");
2560 		mutex_unlock(&dev->struct_mutex);
2561 		ret = -EIO;
2562 		goto pre_mutex_err;
2563 	}
2564 
2565 	if (dev_priv->mm.suspended) {
2566 		DRM_ERROR("Execbuf while VT-switched.\n");
2567 		mutex_unlock(&dev->struct_mutex);
2568 		ret = -EBUSY;
2569 		goto pre_mutex_err;
2570 	}
2571 
2572 	/* Look up object handles */
2573 	for (i = 0; i < args->buffer_count; i++) {
2574 		object_list[i] = drm_gem_object_lookup(dev, file_priv,
2575 						       exec_list[i].handle);
2576 		if (object_list[i] == NULL) {
2577 			DRM_ERROR("Invalid object handle %d at index %d\n",
2578 				   exec_list[i].handle, i);
2579 			ret = -EBADF;
2580 			goto err;
2581 		}
2582 
2583 		obj_priv = object_list[i]->driver_private;
2584 		if (obj_priv->in_execbuffer) {
2585 			DRM_ERROR("Object %p appears more than once in object list\n",
2586 				   object_list[i]);
2587 			ret = -EBADF;
2588 			goto err;
2589 		}
2590 		obj_priv->in_execbuffer = true;
2591 	}
2592 
2593 	/* Pin and relocate */
2594 	for (pin_tries = 0; ; pin_tries++) {
2595 		ret = 0;
2596 		for (i = 0; i < args->buffer_count; i++) {
2597 			object_list[i]->pending_read_domains = 0;
2598 			object_list[i]->pending_write_domain = 0;
2599 			ret = i915_gem_object_pin_and_relocate(object_list[i],
2600 							       file_priv,
2601 							       &exec_list[i]);
2602 			if (ret)
2603 				break;
2604 			pinned = i + 1;
2605 		}
2606 		/* success */
2607 		if (ret == 0)
2608 			break;
2609 
2610 		/* error other than GTT full, or we've already tried again */
2611 		if (ret != -ENOMEM || pin_tries >= 1) {
2612 			if (ret != -ERESTARTSYS)
2613 				DRM_ERROR("Failed to pin buffers %d\n", ret);
2614 			goto err;
2615 		}
2616 
2617 		/* unpin all of our buffers */
2618 		for (i = 0; i < pinned; i++)
2619 			i915_gem_object_unpin(object_list[i]);
2620 		pinned = 0;
2621 
2622 		/* evict everyone we can from the aperture */
2623 		ret = i915_gem_evict_everything(dev);
2624 		if (ret)
2625 			goto err;
2626 	}
2627 
2628 	/* Set the pending read domains for the batch buffer to COMMAND */
2629 	batch_obj = object_list[args->buffer_count-1];
2630 	batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
2631 	batch_obj->pending_write_domain = 0;
2632 
2633 	i915_verify_inactive(dev, __FILE__, __LINE__);
2634 
2635 	/* Zero the global flush/invalidate flags. These
2636 	 * will be modified as new domains are computed
2637 	 * for each object
2638 	 */
2639 	dev->invalidate_domains = 0;
2640 	dev->flush_domains = 0;
2641 
2642 	for (i = 0; i < args->buffer_count; i++) {
2643 		struct drm_gem_object *obj = object_list[i];
2644 
2645 		/* Compute new gpu domains and update invalidate/flush */
2646 		i915_gem_object_set_to_gpu_domain(obj);
2647 	}
2648 
2649 	i915_verify_inactive(dev, __FILE__, __LINE__);
2650 
2651 	if (dev->invalidate_domains | dev->flush_domains) {
2652 #if WATCH_EXEC
2653 		DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
2654 			  __func__,
2655 			 dev->invalidate_domains,
2656 			 dev->flush_domains);
2657 #endif
2658 		i915_gem_flush(dev,
2659 			       dev->invalidate_domains,
2660 			       dev->flush_domains);
2661 		if (dev->flush_domains)
2662 			(void)i915_add_request(dev, dev->flush_domains);
2663 	}
2664 
2665 	for (i = 0; i < args->buffer_count; i++) {
2666 		struct drm_gem_object *obj = object_list[i];
2667 
2668 		obj->write_domain = obj->pending_write_domain;
2669 	}
2670 
2671 	i915_verify_inactive(dev, __FILE__, __LINE__);
2672 
2673 #if WATCH_COHERENCY
2674 	for (i = 0; i < args->buffer_count; i++) {
2675 		i915_gem_object_check_coherency(object_list[i],
2676 						exec_list[i].handle);
2677 	}
2678 #endif
2679 
2680 	exec_offset = exec_list[args->buffer_count - 1].offset;
2681 
2682 #if WATCH_EXEC
2683 	i915_gem_dump_object(object_list[args->buffer_count - 1],
2684 			      args->batch_len,
2685 			      __func__,
2686 			      ~0);
2687 #endif
2688 
2689 	/* Exec the batchbuffer */
2690 	ret = i915_dispatch_gem_execbuffer(dev, args, exec_offset);
2691 	if (ret) {
2692 		DRM_ERROR("dispatch failed %d\n", ret);
2693 		goto err;
2694 	}
2695 
2696 	/*
2697 	 * Ensure that the commands in the batch buffer are
2698 	 * finished before the interrupt fires
2699 	 */
2700 	flush_domains = i915_retire_commands(dev);
2701 
2702 	i915_verify_inactive(dev, __FILE__, __LINE__);
2703 
2704 	/*
2705 	 * Get a seqno representing the execution of the current buffer,
2706 	 * which we can wait on.  We would like to mitigate these interrupts,
2707 	 * likely by only creating seqnos occasionally (so that we have
2708 	 * *some* interrupts representing completion of buffers that we can
2709 	 * wait on when trying to clear up gtt space).
2710 	 */
2711 	seqno = i915_add_request(dev, flush_domains);
2712 	BUG_ON(seqno == 0);
2713 	i915_file_priv->mm.last_gem_seqno = seqno;
2714 	for (i = 0; i < args->buffer_count; i++) {
2715 		struct drm_gem_object *obj = object_list[i];
2716 
2717 		i915_gem_object_move_to_active(obj, seqno);
2718 #if WATCH_LRU
2719 		DRM_INFO("%s: move to exec list %p\n", __func__, obj);
2720 #endif
2721 	}
2722 #if WATCH_LRU
2723 	i915_dump_lru(dev, __func__);
2724 #endif
2725 
2726 	i915_verify_inactive(dev, __FILE__, __LINE__);
2727 
2728 err:
2729 	for (i = 0; i < pinned; i++)
2730 		i915_gem_object_unpin(object_list[i]);
2731 
2732 	for (i = 0; i < args->buffer_count; i++) {
2733 		if (object_list[i]) {
2734 			obj_priv = object_list[i]->driver_private;
2735 			obj_priv->in_execbuffer = false;
2736 		}
2737 		drm_gem_object_unreference(object_list[i]);
2738 	}
2739 
2740 	mutex_unlock(&dev->struct_mutex);
2741 
2742 	if (!ret) {
2743 		/* Copy the new buffer offsets back to the user's exec list. */
2744 		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
2745 				   (uintptr_t) args->buffers_ptr,
2746 				   exec_list,
2747 				   sizeof(*exec_list) * args->buffer_count);
2748 		if (ret)
2749 			DRM_ERROR("failed to copy %d exec entries "
2750 				  "back to user (%d)\n",
2751 				  args->buffer_count, ret);
2752 	}
2753 
2754 pre_mutex_err:
2755 	drm_free(object_list, sizeof(*object_list) * args->buffer_count,
2756 		 DRM_MEM_DRIVER);
2757 	drm_free(exec_list, sizeof(*exec_list) * args->buffer_count,
2758 		 DRM_MEM_DRIVER);
2759 
2760 	return ret;
2761 }
2762 
2763 int
2764 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
2765 {
2766 	struct drm_device *dev = obj->dev;
2767 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
2768 	int ret;
2769 
2770 	i915_verify_inactive(dev, __FILE__, __LINE__);
2771 	if (obj_priv->gtt_space == NULL) {
2772 		ret = i915_gem_object_bind_to_gtt(obj, alignment);
2773 		if (ret != 0) {
2774 			if (ret != -EBUSY && ret != -ERESTARTSYS)
2775 				DRM_ERROR("Failure to bind: %d\n", ret);
2776 			return ret;
2777 		}
2778 	}
2779 	/*
2780 	 * Pre-965 chips need a fence register set up in order to
2781 	 * properly handle tiled surfaces.
2782 	 */
2783 	if (!IS_I965G(dev) &&
2784 	    obj_priv->fence_reg == I915_FENCE_REG_NONE &&
2785 	    obj_priv->tiling_mode != I915_TILING_NONE) {
2786 		ret = i915_gem_object_get_fence_reg(obj, true);
2787 		if (ret != 0) {
2788 			if (ret != -EBUSY && ret != -ERESTARTSYS)
2789 				DRM_ERROR("Failure to install fence: %d\n",
2790 					  ret);
2791 			return ret;
2792 		}
2793 	}
2794 	obj_priv->pin_count++;
2795 
2796 	/* If the object is not active and not pending a flush,
2797 	 * remove it from the inactive list
2798 	 */
2799 	if (obj_priv->pin_count == 1) {
2800 		atomic_inc(&dev->pin_count);
2801 		atomic_add(obj->size, &dev->pin_memory);
2802 		if (!obj_priv->active &&
2803 		    (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2804 					   I915_GEM_DOMAIN_GTT)) == 0 &&
2805 		    !list_empty(&obj_priv->list))
2806 			list_del_init(&obj_priv->list);
2807 	}
2808 	i915_verify_inactive(dev, __FILE__, __LINE__);
2809 
2810 	return 0;
2811 }
2812 
2813 void
2814 i915_gem_object_unpin(struct drm_gem_object *obj)
2815 {
2816 	struct drm_device *dev = obj->dev;
2817 	drm_i915_private_t *dev_priv = dev->dev_private;
2818 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
2819 
2820 	i915_verify_inactive(dev, __FILE__, __LINE__);
2821 	obj_priv->pin_count--;
2822 	BUG_ON(obj_priv->pin_count < 0);
2823 	BUG_ON(obj_priv->gtt_space == NULL);
2824 
2825 	/* If the object is no longer pinned, and is
2826 	 * neither active nor being flushed, then stick it on
2827 	 * the inactive list
2828 	 */
2829 	if (obj_priv->pin_count == 0) {
2830 		if (!obj_priv->active &&
2831 		    (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2832 					   I915_GEM_DOMAIN_GTT)) == 0)
2833 			list_move_tail(&obj_priv->list,
2834 				       &dev_priv->mm.inactive_list);
2835 		atomic_dec(&dev->pin_count);
2836 		atomic_sub(obj->size, &dev->pin_memory);
2837 	}
2838 	i915_verify_inactive(dev, __FILE__, __LINE__);
2839 }
2840 
2841 int
2842 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
2843 		   struct drm_file *file_priv)
2844 {
2845 	struct drm_i915_gem_pin *args = data;
2846 	struct drm_gem_object *obj;
2847 	struct drm_i915_gem_object *obj_priv;
2848 	int ret;
2849 
2850 	mutex_lock(&dev->struct_mutex);
2851 
2852 	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2853 	if (obj == NULL) {
2854 		DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
2855 			  args->handle);
2856 		mutex_unlock(&dev->struct_mutex);
2857 		return -EBADF;
2858 	}
2859 	obj_priv = obj->driver_private;
2860 
2861 	if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
2862 		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
2863 			  args->handle);
2864 		drm_gem_object_unreference(obj);
2865 		mutex_unlock(&dev->struct_mutex);
2866 		return -EINVAL;
2867 	}
2868 
2869 	obj_priv->user_pin_count++;
2870 	obj_priv->pin_filp = file_priv;
2871 	if (obj_priv->user_pin_count == 1) {
2872 		ret = i915_gem_object_pin(obj, args->alignment);
2873 		if (ret != 0) {
2874 			drm_gem_object_unreference(obj);
2875 			mutex_unlock(&dev->struct_mutex);
2876 			return ret;
2877 		}
2878 	}
2879 
2880 	/* XXX - flush the CPU caches for pinned objects
2881 	 * as the X server doesn't manage domains yet
2882 	 */
2883 	i915_gem_object_flush_cpu_write_domain(obj);
2884 	args->offset = obj_priv->gtt_offset;
2885 	drm_gem_object_unreference(obj);
2886 	mutex_unlock(&dev->struct_mutex);
2887 
2888 	return 0;
2889 }
2890 
2891 int
2892 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
2893 		     struct drm_file *file_priv)
2894 {
2895 	struct drm_i915_gem_pin *args = data;
2896 	struct drm_gem_object *obj;
2897 	struct drm_i915_gem_object *obj_priv;
2898 
2899 	mutex_lock(&dev->struct_mutex);
2900 
2901 	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2902 	if (obj == NULL) {
2903 		DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
2904 			  args->handle);
2905 		mutex_unlock(&dev->struct_mutex);
2906 		return -EBADF;
2907 	}
2908 
2909 	obj_priv = obj->driver_private;
2910 	if (obj_priv->pin_filp != file_priv) {
2911 		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
2912 			  args->handle);
2913 		drm_gem_object_unreference(obj);
2914 		mutex_unlock(&dev->struct_mutex);
2915 		return -EINVAL;
2916 	}
2917 	obj_priv->user_pin_count--;
2918 	if (obj_priv->user_pin_count == 0) {
2919 		obj_priv->pin_filp = NULL;
2920 		i915_gem_object_unpin(obj);
2921 	}
2922 
2923 	drm_gem_object_unreference(obj);
2924 	mutex_unlock(&dev->struct_mutex);
2925 	return 0;
2926 }
2927 
2928 int
2929 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2930 		    struct drm_file *file_priv)
2931 {
2932 	struct drm_i915_gem_busy *args = data;
2933 	struct drm_gem_object *obj;
2934 	struct drm_i915_gem_object *obj_priv;
2935 
2936 	mutex_lock(&dev->struct_mutex);
2937 	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2938 	if (obj == NULL) {
2939 		DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
2940 			  args->handle);
2941 		mutex_unlock(&dev->struct_mutex);
2942 		return -EBADF;
2943 	}
2944 
2945 	/* Update the active list for the hardware's current position.
2946 	 * Otherwise this only updates on a delayed timer or when irqs are
2947 	 * actually unmasked, and our working set ends up being larger than
2948 	 * required.
2949 	 */
2950 	i915_gem_retire_requests(dev);
2951 
2952 	obj_priv = obj->driver_private;
2953 	/* Don't count being on the flushing list against the object being
2954 	 * done.  Otherwise, a buffer left on the flushing list but not getting
2955 	 * flushed (because nobody's flushing that domain) won't ever return
2956 	 * unbusy and get reused by libdrm's bo cache.  The other expected
2957 	 * consumer of this interface, OpenGL's occlusion queries, also specs
2958 	 * that the objects get unbusy "eventually" without any interference.
2959 	 */
2960 	args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
2961 
2962 	drm_gem_object_unreference(obj);
2963 	mutex_unlock(&dev->struct_mutex);
2964 	return 0;
2965 }
2966 
2967 int
2968 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2969 			struct drm_file *file_priv)
2970 {
2971     return i915_gem_ring_throttle(dev, file_priv);
2972 }
2973 
2974 int i915_gem_init_object(struct drm_gem_object *obj)
2975 {
2976 	struct drm_i915_gem_object *obj_priv;
2977 
2978 	obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
2979 	if (obj_priv == NULL)
2980 		return -ENOMEM;
2981 
2982 	/*
2983 	 * We've just allocated pages from the kernel,
2984 	 * so they've just been written by the CPU with
2985 	 * zeros. They'll need to be clflushed before we
2986 	 * use them with the GPU.
2987 	 */
2988 	obj->write_domain = I915_GEM_DOMAIN_CPU;
2989 	obj->read_domains = I915_GEM_DOMAIN_CPU;
2990 
2991 	obj_priv->agp_type = AGP_USER_MEMORY;
2992 
2993 	obj->driver_private = obj_priv;
2994 	obj_priv->obj = obj;
2995 	obj_priv->fence_reg = I915_FENCE_REG_NONE;
2996 	INIT_LIST_HEAD(&obj_priv->list);
2997 
2998 	return 0;
2999 }
3000 
3001 void i915_gem_free_object(struct drm_gem_object *obj)
3002 {
3003 	struct drm_device *dev = obj->dev;
3004 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
3005 
3006 	while (obj_priv->pin_count > 0)
3007 		i915_gem_object_unpin(obj);
3008 
3009 	if (obj_priv->phys_obj)
3010 		i915_gem_detach_phys_object(dev, obj);
3011 
3012 	i915_gem_object_unbind(obj);
3013 
3014 	i915_gem_free_mmap_offset(obj);
3015 
3016 	drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
3017 	drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
3018 }
3019 
3020 /** Unbinds all objects that are on the given buffer list. */
3021 static int
3022 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
3023 {
3024 	struct drm_gem_object *obj;
3025 	struct drm_i915_gem_object *obj_priv;
3026 	int ret;
3027 
3028 	while (!list_empty(head)) {
3029 		obj_priv = list_first_entry(head,
3030 					    struct drm_i915_gem_object,
3031 					    list);
3032 		obj = obj_priv->obj;
3033 
3034 		if (obj_priv->pin_count != 0) {
3035 			DRM_ERROR("Pinned object in unbind list\n");
3036 			mutex_unlock(&dev->struct_mutex);
3037 			return -EINVAL;
3038 		}
3039 
3040 		ret = i915_gem_object_unbind(obj);
3041 		if (ret != 0) {
3042 			DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
3043 				  ret);
3044 			mutex_unlock(&dev->struct_mutex);
3045 			return ret;
3046 		}
3047 	}
3048 
3049 
3050 	return 0;
3051 }
3052 
3053 int
3054 i915_gem_idle(struct drm_device *dev)
3055 {
3056 	drm_i915_private_t *dev_priv = dev->dev_private;
3057 	uint32_t seqno, cur_seqno, last_seqno;
3058 	int stuck, ret;
3059 
3060 	mutex_lock(&dev->struct_mutex);
3061 
3062 	if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
3063 		mutex_unlock(&dev->struct_mutex);
3064 		return 0;
3065 	}
3066 
3067 	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
3068 	 * We need to replace this with a semaphore, or something.
3069 	 */
3070 	dev_priv->mm.suspended = 1;
3071 
3072 	/* Cancel the retire work handler, wait for it to finish if running
3073 	 */
3074 	mutex_unlock(&dev->struct_mutex);
3075 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3076 	mutex_lock(&dev->struct_mutex);
3077 
3078 	i915_kernel_lost_context(dev);
3079 
3080 	/* Flush the GPU along with all non-CPU write domains
3081 	 */
3082 	i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
3083 		       ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
3084 	seqno = i915_add_request(dev, ~I915_GEM_DOMAIN_CPU);
3085 
3086 	if (seqno == 0) {
3087 		mutex_unlock(&dev->struct_mutex);
3088 		return -ENOMEM;
3089 	}
3090 
3091 	dev_priv->mm.waiting_gem_seqno = seqno;
3092 	last_seqno = 0;
3093 	stuck = 0;
3094 	for (;;) {
3095 		cur_seqno = i915_get_gem_seqno(dev);
3096 		if (i915_seqno_passed(cur_seqno, seqno))
3097 			break;
3098 		if (last_seqno == cur_seqno) {
3099 			if (stuck++ > 100) {
3100 				DRM_ERROR("hardware wedged\n");
3101 				dev_priv->mm.wedged = 1;
3102 				DRM_WAKEUP(&dev_priv->irq_queue);
3103 				break;
3104 			}
3105 		}
3106 		msleep(10);
3107 		last_seqno = cur_seqno;
3108 	}
3109 	dev_priv->mm.waiting_gem_seqno = 0;
3110 
3111 	i915_gem_retire_requests(dev);
3112 
3113 	if (!dev_priv->mm.wedged) {
3114 		/* Active and flushing should now be empty as we've
3115 		 * waited for a sequence higher than any pending execbuffer
3116 		 */
3117 		WARN_ON(!list_empty(&dev_priv->mm.active_list));
3118 		WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
3119 		/* Request should now be empty as we've also waited
3120 		 * for the last request in the list
3121 		 */
3122 		WARN_ON(!list_empty(&dev_priv->mm.request_list));
3123 	}
3124 
3125 	/* Empty the active and flushing lists to inactive.  If there's
3126 	 * anything left at this point, it means that we're wedged and
3127 	 * nothing good's going to happen by leaving them there.  So strip
3128 	 * the GPU domains and just stuff them onto inactive.
3129 	 */
3130 	while (!list_empty(&dev_priv->mm.active_list)) {
3131 		struct drm_i915_gem_object *obj_priv;
3132 
3133 		obj_priv = list_first_entry(&dev_priv->mm.active_list,
3134 					    struct drm_i915_gem_object,
3135 					    list);
3136 		obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3137 		i915_gem_object_move_to_inactive(obj_priv->obj);
3138 	}
3139 
3140 	while (!list_empty(&dev_priv->mm.flushing_list)) {
3141 		struct drm_i915_gem_object *obj_priv;
3142 
3143 		obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
3144 					    struct drm_i915_gem_object,
3145 					    list);
3146 		obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3147 		i915_gem_object_move_to_inactive(obj_priv->obj);
3148 	}
3149 
3150 
3151 	/* Move all inactive buffers out of the GTT. */
3152 	ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
3153 	WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
3154 	if (ret) {
3155 		mutex_unlock(&dev->struct_mutex);
3156 		return ret;
3157 	}
3158 
3159 	i915_gem_cleanup_ringbuffer(dev);
3160 	mutex_unlock(&dev->struct_mutex);
3161 
3162 	return 0;
3163 }
3164 
3165 static int
3166 i915_gem_init_hws(struct drm_device *dev)
3167 {
3168 	drm_i915_private_t *dev_priv = dev->dev_private;
3169 	struct drm_gem_object *obj;
3170 	struct drm_i915_gem_object *obj_priv;
3171 	int ret;
3172 
3173 	/* If we need a physical address for the status page, it's already
3174 	 * initialized at driver load time.
3175 	 */
3176 	if (!I915_NEED_GFX_HWS(dev))
3177 		return 0;
3178 
3179 	obj = drm_gem_object_alloc(dev, 4096);
3180 	if (obj == NULL) {
3181 		DRM_ERROR("Failed to allocate status page\n");
3182 		return -ENOMEM;
3183 	}
3184 	obj_priv = obj->driver_private;
3185 	obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
3186 
3187 	ret = i915_gem_object_pin(obj, 4096);
3188 	if (ret != 0) {
3189 		drm_gem_object_unreference(obj);
3190 		return ret;
3191 	}
3192 
3193 	dev_priv->status_gfx_addr = obj_priv->gtt_offset;
3194 
3195 	dev_priv->hw_status_page = kmap(obj_priv->page_list[0]);
3196 	if (dev_priv->hw_status_page == NULL) {
3197 		DRM_ERROR("Failed to map status page.\n");
3198 		memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3199 		i915_gem_object_unpin(obj);
3200 		drm_gem_object_unreference(obj);
3201 		return -EINVAL;
3202 	}
3203 	dev_priv->hws_obj = obj;
3204 	memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
3205 	I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
3206 	I915_READ(HWS_PGA); /* posting read */
3207 	DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
3208 
3209 	return 0;
3210 }
3211 
3212 static void
3213 i915_gem_cleanup_hws(struct drm_device *dev)
3214 {
3215 	drm_i915_private_t *dev_priv = dev->dev_private;
3216 	struct drm_gem_object *obj;
3217 	struct drm_i915_gem_object *obj_priv;
3218 
3219 	if (dev_priv->hws_obj == NULL)
3220 		return;
3221 
3222 	obj = dev_priv->hws_obj;
3223 	obj_priv = obj->driver_private;
3224 
3225 	kunmap(obj_priv->page_list[0]);
3226 	i915_gem_object_unpin(obj);
3227 	drm_gem_object_unreference(obj);
3228 	dev_priv->hws_obj = NULL;
3229 
3230 	memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3231 	dev_priv->hw_status_page = NULL;
3232 
3233 	/* Write high address into HWS_PGA when disabling. */
3234 	I915_WRITE(HWS_PGA, 0x1ffff000);
3235 }
3236 
3237 int
3238 i915_gem_init_ringbuffer(struct drm_device *dev)
3239 {
3240 	drm_i915_private_t *dev_priv = dev->dev_private;
3241 	struct drm_gem_object *obj;
3242 	struct drm_i915_gem_object *obj_priv;
3243 	drm_i915_ring_buffer_t *ring = &dev_priv->ring;
3244 	int ret;
3245 	u32 head;
3246 
3247 	ret = i915_gem_init_hws(dev);
3248 	if (ret != 0)
3249 		return ret;
3250 
3251 	obj = drm_gem_object_alloc(dev, 128 * 1024);
3252 	if (obj == NULL) {
3253 		DRM_ERROR("Failed to allocate ringbuffer\n");
3254 		i915_gem_cleanup_hws(dev);
3255 		return -ENOMEM;
3256 	}
3257 	obj_priv = obj->driver_private;
3258 
3259 	ret = i915_gem_object_pin(obj, 4096);
3260 	if (ret != 0) {
3261 		drm_gem_object_unreference(obj);
3262 		i915_gem_cleanup_hws(dev);
3263 		return ret;
3264 	}
3265 
3266 	/* Set up the kernel mapping for the ring. */
3267 	ring->Size = obj->size;
3268 	ring->tail_mask = obj->size - 1;
3269 
3270 	ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
3271 	ring->map.size = obj->size;
3272 	ring->map.type = 0;
3273 	ring->map.flags = 0;
3274 	ring->map.mtrr = 0;
3275 
3276 	drm_core_ioremap_wc(&ring->map, dev);
3277 	if (ring->map.handle == NULL) {
3278 		DRM_ERROR("Failed to map ringbuffer.\n");
3279 		memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
3280 		i915_gem_object_unpin(obj);
3281 		drm_gem_object_unreference(obj);
3282 		i915_gem_cleanup_hws(dev);
3283 		return -EINVAL;
3284 	}
3285 	ring->ring_obj = obj;
3286 	ring->virtual_start = ring->map.handle;
3287 
3288 	/* Stop the ring if it's running. */
3289 	I915_WRITE(PRB0_CTL, 0);
3290 	I915_WRITE(PRB0_TAIL, 0);
3291 	I915_WRITE(PRB0_HEAD, 0);
3292 
3293 	/* Initialize the ring. */
3294 	I915_WRITE(PRB0_START, obj_priv->gtt_offset);
3295 	head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3296 
3297 	/* G45 ring initialization fails to reset head to zero */
3298 	if (head != 0) {
3299 		DRM_ERROR("Ring head not reset to zero "
3300 			  "ctl %08x head %08x tail %08x start %08x\n",
3301 			  I915_READ(PRB0_CTL),
3302 			  I915_READ(PRB0_HEAD),
3303 			  I915_READ(PRB0_TAIL),
3304 			  I915_READ(PRB0_START));
3305 		I915_WRITE(PRB0_HEAD, 0);
3306 
3307 		DRM_ERROR("Ring head forced to zero "
3308 			  "ctl %08x head %08x tail %08x start %08x\n",
3309 			  I915_READ(PRB0_CTL),
3310 			  I915_READ(PRB0_HEAD),
3311 			  I915_READ(PRB0_TAIL),
3312 			  I915_READ(PRB0_START));
3313 	}
3314 
3315 	I915_WRITE(PRB0_CTL,
3316 		   ((obj->size - 4096) & RING_NR_PAGES) |
3317 		   RING_NO_REPORT |
3318 		   RING_VALID);
3319 
3320 	head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3321 
3322 	/* If the head is still not zero, the ring is dead */
3323 	if (head != 0) {
3324 		DRM_ERROR("Ring initialization failed "
3325 			  "ctl %08x head %08x tail %08x start %08x\n",
3326 			  I915_READ(PRB0_CTL),
3327 			  I915_READ(PRB0_HEAD),
3328 			  I915_READ(PRB0_TAIL),
3329 			  I915_READ(PRB0_START));
3330 		return -EIO;
3331 	}
3332 
3333 	/* Update our cache of the ring state */
3334 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
3335 		i915_kernel_lost_context(dev);
3336 	else {
3337 		ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3338 		ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
3339 		ring->space = ring->head - (ring->tail + 8);
3340 		if (ring->space < 0)
3341 			ring->space += ring->Size;
3342 	}
3343 
3344 	return 0;
3345 }
3346 
3347 void
3348 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3349 {
3350 	drm_i915_private_t *dev_priv = dev->dev_private;
3351 
3352 	if (dev_priv->ring.ring_obj == NULL)
3353 		return;
3354 
3355 	drm_core_ioremapfree(&dev_priv->ring.map, dev);
3356 
3357 	i915_gem_object_unpin(dev_priv->ring.ring_obj);
3358 	drm_gem_object_unreference(dev_priv->ring.ring_obj);
3359 	dev_priv->ring.ring_obj = NULL;
3360 	memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
3361 
3362 	i915_gem_cleanup_hws(dev);
3363 }
3364 
3365 int
3366 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3367 		       struct drm_file *file_priv)
3368 {
3369 	drm_i915_private_t *dev_priv = dev->dev_private;
3370 	int ret;
3371 
3372 	if (drm_core_check_feature(dev, DRIVER_MODESET))
3373 		return 0;
3374 
3375 	if (dev_priv->mm.wedged) {
3376 		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3377 		dev_priv->mm.wedged = 0;
3378 	}
3379 
3380 	mutex_lock(&dev->struct_mutex);
3381 	dev_priv->mm.suspended = 0;
3382 
3383 	ret = i915_gem_init_ringbuffer(dev);
3384 	if (ret != 0)
3385 		return ret;
3386 
3387 	BUG_ON(!list_empty(&dev_priv->mm.active_list));
3388 	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3389 	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3390 	BUG_ON(!list_empty(&dev_priv->mm.request_list));
3391 	mutex_unlock(&dev->struct_mutex);
3392 
3393 	drm_irq_install(dev);
3394 
3395 	return 0;
3396 }
3397 
3398 int
3399 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3400 		       struct drm_file *file_priv)
3401 {
3402 	int ret;
3403 
3404 	if (drm_core_check_feature(dev, DRIVER_MODESET))
3405 		return 0;
3406 
3407 	ret = i915_gem_idle(dev);
3408 	drm_irq_uninstall(dev);
3409 
3410 	return ret;
3411 }
3412 
3413 void
3414 i915_gem_lastclose(struct drm_device *dev)
3415 {
3416 	int ret;
3417 
3418 	if (drm_core_check_feature(dev, DRIVER_MODESET))
3419 		return;
3420 
3421 	ret = i915_gem_idle(dev);
3422 	if (ret)
3423 		DRM_ERROR("failed to idle hardware: %d\n", ret);
3424 }
3425 
3426 void
3427 i915_gem_load(struct drm_device *dev)
3428 {
3429 	drm_i915_private_t *dev_priv = dev->dev_private;
3430 
3431 	INIT_LIST_HEAD(&dev_priv->mm.active_list);
3432 	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3433 	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3434 	INIT_LIST_HEAD(&dev_priv->mm.request_list);
3435 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3436 			  i915_gem_retire_work_handler);
3437 	dev_priv->mm.next_gem_seqno = 1;
3438 
3439 	/* Old X drivers will take 0-2 for front, back, depth buffers */
3440 	dev_priv->fence_reg_start = 3;
3441 
3442 	if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3443 		dev_priv->num_fence_regs = 16;
3444 	else
3445 		dev_priv->num_fence_regs = 8;
3446 
3447 	i915_gem_detect_bit_6_swizzle(dev);
3448 }
3449 
3450 /*
3451  * Create a physically contiguous memory object for this object
3452  * e.g. for cursor + overlay regs
3453  */
3454 int i915_gem_init_phys_object(struct drm_device *dev,
3455 			      int id, int size)
3456 {
3457 	drm_i915_private_t *dev_priv = dev->dev_private;
3458 	struct drm_i915_gem_phys_object *phys_obj;
3459 	int ret;
3460 
3461 	if (dev_priv->mm.phys_objs[id - 1] || !size)
3462 		return 0;
3463 
3464 	phys_obj = drm_calloc(1, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
3465 	if (!phys_obj)
3466 		return -ENOMEM;
3467 
3468 	phys_obj->id = id;
3469 
3470 	phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
3471 	if (!phys_obj->handle) {
3472 		ret = -ENOMEM;
3473 		goto kfree_obj;
3474 	}
3475 #ifdef CONFIG_X86
3476 	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3477 #endif
3478 
3479 	dev_priv->mm.phys_objs[id - 1] = phys_obj;
3480 
3481 	return 0;
3482 kfree_obj:
3483 	drm_free(phys_obj, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
3484 	return ret;
3485 }
3486 
3487 void i915_gem_free_phys_object(struct drm_device *dev, int id)
3488 {
3489 	drm_i915_private_t *dev_priv = dev->dev_private;
3490 	struct drm_i915_gem_phys_object *phys_obj;
3491 
3492 	if (!dev_priv->mm.phys_objs[id - 1])
3493 		return;
3494 
3495 	phys_obj = dev_priv->mm.phys_objs[id - 1];
3496 	if (phys_obj->cur_obj) {
3497 		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3498 	}
3499 
3500 #ifdef CONFIG_X86
3501 	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3502 #endif
3503 	drm_pci_free(dev, phys_obj->handle);
3504 	kfree(phys_obj);
3505 	dev_priv->mm.phys_objs[id - 1] = NULL;
3506 }
3507 
3508 void i915_gem_free_all_phys_object(struct drm_device *dev)
3509 {
3510 	int i;
3511 
3512 	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3513 		i915_gem_free_phys_object(dev, i);
3514 }
3515 
3516 void i915_gem_detach_phys_object(struct drm_device *dev,
3517 				 struct drm_gem_object *obj)
3518 {
3519 	struct drm_i915_gem_object *obj_priv;
3520 	int i;
3521 	int ret;
3522 	int page_count;
3523 
3524 	obj_priv = obj->driver_private;
3525 	if (!obj_priv->phys_obj)
3526 		return;
3527 
3528 	ret = i915_gem_object_get_page_list(obj);
3529 	if (ret)
3530 		goto out;
3531 
3532 	page_count = obj->size / PAGE_SIZE;
3533 
3534 	for (i = 0; i < page_count; i++) {
3535 		char *dst = kmap_atomic(obj_priv->page_list[i], KM_USER0);
3536 		char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3537 
3538 		memcpy(dst, src, PAGE_SIZE);
3539 		kunmap_atomic(dst, KM_USER0);
3540 	}
3541 	drm_clflush_pages(obj_priv->page_list, page_count);
3542 	drm_agp_chipset_flush(dev);
3543 out:
3544 	obj_priv->phys_obj->cur_obj = NULL;
3545 	obj_priv->phys_obj = NULL;
3546 }
3547 
3548 int
3549 i915_gem_attach_phys_object(struct drm_device *dev,
3550 			    struct drm_gem_object *obj, int id)
3551 {
3552 	drm_i915_private_t *dev_priv = dev->dev_private;
3553 	struct drm_i915_gem_object *obj_priv;
3554 	int ret = 0;
3555 	int page_count;
3556 	int i;
3557 
3558 	if (id > I915_MAX_PHYS_OBJECT)
3559 		return -EINVAL;
3560 
3561 	obj_priv = obj->driver_private;
3562 
3563 	if (obj_priv->phys_obj) {
3564 		if (obj_priv->phys_obj->id == id)
3565 			return 0;
3566 		i915_gem_detach_phys_object(dev, obj);
3567 	}
3568 
3569 
3570 	/* create a new object */
3571 	if (!dev_priv->mm.phys_objs[id - 1]) {
3572 		ret = i915_gem_init_phys_object(dev, id,
3573 						obj->size);
3574 		if (ret) {
3575 			DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
3576 			goto out;
3577 		}
3578 	}
3579 
3580 	/* bind to the object */
3581 	obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
3582 	obj_priv->phys_obj->cur_obj = obj;
3583 
3584 	ret = i915_gem_object_get_page_list(obj);
3585 	if (ret) {
3586 		DRM_ERROR("failed to get page list\n");
3587 		goto out;
3588 	}
3589 
3590 	page_count = obj->size / PAGE_SIZE;
3591 
3592 	for (i = 0; i < page_count; i++) {
3593 		char *src = kmap_atomic(obj_priv->page_list[i], KM_USER0);
3594 		char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3595 
3596 		memcpy(dst, src, PAGE_SIZE);
3597 		kunmap_atomic(src, KM_USER0);
3598 	}
3599 
3600 	return 0;
3601 out:
3602 	return ret;
3603 }
3604 
3605 static int
3606 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
3607 		     struct drm_i915_gem_pwrite *args,
3608 		     struct drm_file *file_priv)
3609 {
3610 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
3611 	void *obj_addr;
3612 	int ret;
3613 	char __user *user_data;
3614 
3615 	user_data = (char __user *) (uintptr_t) args->data_ptr;
3616 	obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
3617 
3618 	DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
3619 	ret = copy_from_user(obj_addr, user_data, args->size);
3620 	if (ret)
3621 		return -EFAULT;
3622 
3623 	drm_agp_chipset_flush(dev);
3624 	return 0;
3625 }
3626