1 /* 2 * Copyright © 2008 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include "drmP.h" 29 #include "drm.h" 30 #include "i915_drm.h" 31 #include "i915_drv.h" 32 #include <linux/swap.h> 33 #include <linux/pci.h> 34 35 #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT)) 36 37 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj); 38 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj); 39 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj); 40 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, 41 int write); 42 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj, 43 uint64_t offset, 44 uint64_t size); 45 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj); 46 static int i915_gem_object_get_page_list(struct drm_gem_object *obj); 47 static void i915_gem_object_free_page_list(struct drm_gem_object *obj); 48 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj); 49 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, 50 unsigned alignment); 51 static int i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write); 52 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj); 53 static int i915_gem_evict_something(struct drm_device *dev); 54 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj, 55 struct drm_i915_gem_pwrite *args, 56 struct drm_file *file_priv); 57 58 int i915_gem_do_init(struct drm_device *dev, unsigned long start, 59 unsigned long end) 60 { 61 drm_i915_private_t *dev_priv = dev->dev_private; 62 63 if (start >= end || 64 (start & (PAGE_SIZE - 1)) != 0 || 65 (end & (PAGE_SIZE - 1)) != 0) { 66 return -EINVAL; 67 } 68 69 drm_mm_init(&dev_priv->mm.gtt_space, start, 70 end - start); 71 72 dev->gtt_total = (uint32_t) (end - start); 73 74 return 0; 75 } 76 77 int 78 i915_gem_init_ioctl(struct drm_device *dev, void *data, 79 struct drm_file *file_priv) 80 { 81 struct drm_i915_gem_init *args = data; 82 int ret; 83 84 mutex_lock(&dev->struct_mutex); 85 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end); 86 mutex_unlock(&dev->struct_mutex); 87 88 return ret; 89 } 90 91 int 92 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 93 struct drm_file *file_priv) 94 { 95 struct drm_i915_gem_get_aperture *args = data; 96 97 if (!(dev->driver->driver_features & DRIVER_GEM)) 98 return -ENODEV; 99 100 args->aper_size = dev->gtt_total; 101 args->aper_available_size = (args->aper_size - 102 atomic_read(&dev->pin_memory)); 103 104 return 0; 105 } 106 107 108 /** 109 * Creates a new mm object and returns a handle to it. 110 */ 111 int 112 i915_gem_create_ioctl(struct drm_device *dev, void *data, 113 struct drm_file *file_priv) 114 { 115 struct drm_i915_gem_create *args = data; 116 struct drm_gem_object *obj; 117 int handle, ret; 118 119 args->size = roundup(args->size, PAGE_SIZE); 120 121 /* Allocate the new object */ 122 obj = drm_gem_object_alloc(dev, args->size); 123 if (obj == NULL) 124 return -ENOMEM; 125 126 ret = drm_gem_handle_create(file_priv, obj, &handle); 127 mutex_lock(&dev->struct_mutex); 128 drm_gem_object_handle_unreference(obj); 129 mutex_unlock(&dev->struct_mutex); 130 131 if (ret) 132 return ret; 133 134 args->handle = handle; 135 136 return 0; 137 } 138 139 /** 140 * Reads data from the object referenced by handle. 141 * 142 * On error, the contents of *data are undefined. 143 */ 144 int 145 i915_gem_pread_ioctl(struct drm_device *dev, void *data, 146 struct drm_file *file_priv) 147 { 148 struct drm_i915_gem_pread *args = data; 149 struct drm_gem_object *obj; 150 struct drm_i915_gem_object *obj_priv; 151 ssize_t read; 152 loff_t offset; 153 int ret; 154 155 obj = drm_gem_object_lookup(dev, file_priv, args->handle); 156 if (obj == NULL) 157 return -EBADF; 158 obj_priv = obj->driver_private; 159 160 /* Bounds check source. 161 * 162 * XXX: This could use review for overflow issues... 163 */ 164 if (args->offset > obj->size || args->size > obj->size || 165 args->offset + args->size > obj->size) { 166 drm_gem_object_unreference(obj); 167 return -EINVAL; 168 } 169 170 mutex_lock(&dev->struct_mutex); 171 172 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset, 173 args->size); 174 if (ret != 0) { 175 drm_gem_object_unreference(obj); 176 mutex_unlock(&dev->struct_mutex); 177 return ret; 178 } 179 180 offset = args->offset; 181 182 read = vfs_read(obj->filp, (char __user *)(uintptr_t)args->data_ptr, 183 args->size, &offset); 184 if (read != args->size) { 185 drm_gem_object_unreference(obj); 186 mutex_unlock(&dev->struct_mutex); 187 if (read < 0) 188 return read; 189 else 190 return -EINVAL; 191 } 192 193 drm_gem_object_unreference(obj); 194 mutex_unlock(&dev->struct_mutex); 195 196 return 0; 197 } 198 199 /* This is the fast write path which cannot handle 200 * page faults in the source data 201 */ 202 203 static inline int 204 fast_user_write(struct io_mapping *mapping, 205 loff_t page_base, int page_offset, 206 char __user *user_data, 207 int length) 208 { 209 char *vaddr_atomic; 210 unsigned long unwritten; 211 212 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base); 213 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset, 214 user_data, length); 215 io_mapping_unmap_atomic(vaddr_atomic); 216 if (unwritten) 217 return -EFAULT; 218 return 0; 219 } 220 221 /* Here's the write path which can sleep for 222 * page faults 223 */ 224 225 static inline int 226 slow_user_write(struct io_mapping *mapping, 227 loff_t page_base, int page_offset, 228 char __user *user_data, 229 int length) 230 { 231 char __iomem *vaddr; 232 unsigned long unwritten; 233 234 vaddr = io_mapping_map_wc(mapping, page_base); 235 if (vaddr == NULL) 236 return -EFAULT; 237 unwritten = __copy_from_user(vaddr + page_offset, 238 user_data, length); 239 io_mapping_unmap(vaddr); 240 if (unwritten) 241 return -EFAULT; 242 return 0; 243 } 244 245 static int 246 i915_gem_gtt_pwrite(struct drm_device *dev, struct drm_gem_object *obj, 247 struct drm_i915_gem_pwrite *args, 248 struct drm_file *file_priv) 249 { 250 struct drm_i915_gem_object *obj_priv = obj->driver_private; 251 drm_i915_private_t *dev_priv = dev->dev_private; 252 ssize_t remain; 253 loff_t offset, page_base; 254 char __user *user_data; 255 int page_offset, page_length; 256 int ret; 257 258 user_data = (char __user *) (uintptr_t) args->data_ptr; 259 remain = args->size; 260 if (!access_ok(VERIFY_READ, user_data, remain)) 261 return -EFAULT; 262 263 264 mutex_lock(&dev->struct_mutex); 265 ret = i915_gem_object_pin(obj, 0); 266 if (ret) { 267 mutex_unlock(&dev->struct_mutex); 268 return ret; 269 } 270 ret = i915_gem_object_set_to_gtt_domain(obj, 1); 271 if (ret) 272 goto fail; 273 274 obj_priv = obj->driver_private; 275 offset = obj_priv->gtt_offset + args->offset; 276 obj_priv->dirty = 1; 277 278 while (remain > 0) { 279 /* Operation in this page 280 * 281 * page_base = page offset within aperture 282 * page_offset = offset within page 283 * page_length = bytes to copy for this page 284 */ 285 page_base = (offset & ~(PAGE_SIZE-1)); 286 page_offset = offset & (PAGE_SIZE-1); 287 page_length = remain; 288 if ((page_offset + remain) > PAGE_SIZE) 289 page_length = PAGE_SIZE - page_offset; 290 291 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base, 292 page_offset, user_data, page_length); 293 294 /* If we get a fault while copying data, then (presumably) our 295 * source page isn't available. In this case, use the 296 * non-atomic function 297 */ 298 if (ret) { 299 ret = slow_user_write (dev_priv->mm.gtt_mapping, 300 page_base, page_offset, 301 user_data, page_length); 302 if (ret) 303 goto fail; 304 } 305 306 remain -= page_length; 307 user_data += page_length; 308 offset += page_length; 309 } 310 311 fail: 312 i915_gem_object_unpin(obj); 313 mutex_unlock(&dev->struct_mutex); 314 315 return ret; 316 } 317 318 static int 319 i915_gem_shmem_pwrite(struct drm_device *dev, struct drm_gem_object *obj, 320 struct drm_i915_gem_pwrite *args, 321 struct drm_file *file_priv) 322 { 323 int ret; 324 loff_t offset; 325 ssize_t written; 326 327 mutex_lock(&dev->struct_mutex); 328 329 ret = i915_gem_object_set_to_cpu_domain(obj, 1); 330 if (ret) { 331 mutex_unlock(&dev->struct_mutex); 332 return ret; 333 } 334 335 offset = args->offset; 336 337 written = vfs_write(obj->filp, 338 (char __user *)(uintptr_t) args->data_ptr, 339 args->size, &offset); 340 if (written != args->size) { 341 mutex_unlock(&dev->struct_mutex); 342 if (written < 0) 343 return written; 344 else 345 return -EINVAL; 346 } 347 348 mutex_unlock(&dev->struct_mutex); 349 350 return 0; 351 } 352 353 /** 354 * Writes data to the object referenced by handle. 355 * 356 * On error, the contents of the buffer that were to be modified are undefined. 357 */ 358 int 359 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 360 struct drm_file *file_priv) 361 { 362 struct drm_i915_gem_pwrite *args = data; 363 struct drm_gem_object *obj; 364 struct drm_i915_gem_object *obj_priv; 365 int ret = 0; 366 367 obj = drm_gem_object_lookup(dev, file_priv, args->handle); 368 if (obj == NULL) 369 return -EBADF; 370 obj_priv = obj->driver_private; 371 372 /* Bounds check destination. 373 * 374 * XXX: This could use review for overflow issues... 375 */ 376 if (args->offset > obj->size || args->size > obj->size || 377 args->offset + args->size > obj->size) { 378 drm_gem_object_unreference(obj); 379 return -EINVAL; 380 } 381 382 /* We can only do the GTT pwrite on untiled buffers, as otherwise 383 * it would end up going through the fenced access, and we'll get 384 * different detiling behavior between reading and writing. 385 * pread/pwrite currently are reading and writing from the CPU 386 * perspective, requiring manual detiling by the client. 387 */ 388 if (obj_priv->phys_obj) 389 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv); 390 else if (obj_priv->tiling_mode == I915_TILING_NONE && 391 dev->gtt_total != 0) 392 ret = i915_gem_gtt_pwrite(dev, obj, args, file_priv); 393 else 394 ret = i915_gem_shmem_pwrite(dev, obj, args, file_priv); 395 396 #if WATCH_PWRITE 397 if (ret) 398 DRM_INFO("pwrite failed %d\n", ret); 399 #endif 400 401 drm_gem_object_unreference(obj); 402 403 return ret; 404 } 405 406 /** 407 * Called when user space prepares to use an object with the CPU, either 408 * through the mmap ioctl's mapping or a GTT mapping. 409 */ 410 int 411 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 412 struct drm_file *file_priv) 413 { 414 struct drm_i915_gem_set_domain *args = data; 415 struct drm_gem_object *obj; 416 uint32_t read_domains = args->read_domains; 417 uint32_t write_domain = args->write_domain; 418 int ret; 419 420 if (!(dev->driver->driver_features & DRIVER_GEM)) 421 return -ENODEV; 422 423 /* Only handle setting domains to types used by the CPU. */ 424 if (write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT)) 425 return -EINVAL; 426 427 if (read_domains & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT)) 428 return -EINVAL; 429 430 /* Having something in the write domain implies it's in the read 431 * domain, and only that read domain. Enforce that in the request. 432 */ 433 if (write_domain != 0 && read_domains != write_domain) 434 return -EINVAL; 435 436 obj = drm_gem_object_lookup(dev, file_priv, args->handle); 437 if (obj == NULL) 438 return -EBADF; 439 440 mutex_lock(&dev->struct_mutex); 441 #if WATCH_BUF 442 DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n", 443 obj, obj->size, read_domains, write_domain); 444 #endif 445 if (read_domains & I915_GEM_DOMAIN_GTT) { 446 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0); 447 448 /* Silently promote "you're not bound, there was nothing to do" 449 * to success, since the client was just asking us to 450 * make sure everything was done. 451 */ 452 if (ret == -EINVAL) 453 ret = 0; 454 } else { 455 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0); 456 } 457 458 drm_gem_object_unreference(obj); 459 mutex_unlock(&dev->struct_mutex); 460 return ret; 461 } 462 463 /** 464 * Called when user space has done writes to this buffer 465 */ 466 int 467 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 468 struct drm_file *file_priv) 469 { 470 struct drm_i915_gem_sw_finish *args = data; 471 struct drm_gem_object *obj; 472 struct drm_i915_gem_object *obj_priv; 473 int ret = 0; 474 475 if (!(dev->driver->driver_features & DRIVER_GEM)) 476 return -ENODEV; 477 478 mutex_lock(&dev->struct_mutex); 479 obj = drm_gem_object_lookup(dev, file_priv, args->handle); 480 if (obj == NULL) { 481 mutex_unlock(&dev->struct_mutex); 482 return -EBADF; 483 } 484 485 #if WATCH_BUF 486 DRM_INFO("%s: sw_finish %d (%p %d)\n", 487 __func__, args->handle, obj, obj->size); 488 #endif 489 obj_priv = obj->driver_private; 490 491 /* Pinned buffers may be scanout, so flush the cache */ 492 if (obj_priv->pin_count) 493 i915_gem_object_flush_cpu_write_domain(obj); 494 495 drm_gem_object_unreference(obj); 496 mutex_unlock(&dev->struct_mutex); 497 return ret; 498 } 499 500 /** 501 * Maps the contents of an object, returning the address it is mapped 502 * into. 503 * 504 * While the mapping holds a reference on the contents of the object, it doesn't 505 * imply a ref on the object itself. 506 */ 507 int 508 i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 509 struct drm_file *file_priv) 510 { 511 struct drm_i915_gem_mmap *args = data; 512 struct drm_gem_object *obj; 513 loff_t offset; 514 unsigned long addr; 515 516 if (!(dev->driver->driver_features & DRIVER_GEM)) 517 return -ENODEV; 518 519 obj = drm_gem_object_lookup(dev, file_priv, args->handle); 520 if (obj == NULL) 521 return -EBADF; 522 523 offset = args->offset; 524 525 down_write(¤t->mm->mmap_sem); 526 addr = do_mmap(obj->filp, 0, args->size, 527 PROT_READ | PROT_WRITE, MAP_SHARED, 528 args->offset); 529 up_write(¤t->mm->mmap_sem); 530 mutex_lock(&dev->struct_mutex); 531 drm_gem_object_unreference(obj); 532 mutex_unlock(&dev->struct_mutex); 533 if (IS_ERR((void *)addr)) 534 return addr; 535 536 args->addr_ptr = (uint64_t) addr; 537 538 return 0; 539 } 540 541 /** 542 * i915_gem_fault - fault a page into the GTT 543 * vma: VMA in question 544 * vmf: fault info 545 * 546 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped 547 * from userspace. The fault handler takes care of binding the object to 548 * the GTT (if needed), allocating and programming a fence register (again, 549 * only if needed based on whether the old reg is still valid or the object 550 * is tiled) and inserting a new PTE into the faulting process. 551 * 552 * Note that the faulting process may involve evicting existing objects 553 * from the GTT and/or fence registers to make room. So performance may 554 * suffer if the GTT working set is large or there are few fence registers 555 * left. 556 */ 557 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 558 { 559 struct drm_gem_object *obj = vma->vm_private_data; 560 struct drm_device *dev = obj->dev; 561 struct drm_i915_private *dev_priv = dev->dev_private; 562 struct drm_i915_gem_object *obj_priv = obj->driver_private; 563 pgoff_t page_offset; 564 unsigned long pfn; 565 int ret = 0; 566 bool write = !!(vmf->flags & FAULT_FLAG_WRITE); 567 568 /* We don't use vmf->pgoff since that has the fake offset */ 569 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >> 570 PAGE_SHIFT; 571 572 /* Now bind it into the GTT if needed */ 573 mutex_lock(&dev->struct_mutex); 574 if (!obj_priv->gtt_space) { 575 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment); 576 if (ret) { 577 mutex_unlock(&dev->struct_mutex); 578 return VM_FAULT_SIGBUS; 579 } 580 list_add(&obj_priv->list, &dev_priv->mm.inactive_list); 581 } 582 583 /* Need a new fence register? */ 584 if (obj_priv->fence_reg == I915_FENCE_REG_NONE && 585 obj_priv->tiling_mode != I915_TILING_NONE) { 586 ret = i915_gem_object_get_fence_reg(obj, write); 587 if (ret) { 588 mutex_unlock(&dev->struct_mutex); 589 return VM_FAULT_SIGBUS; 590 } 591 } 592 593 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) + 594 page_offset; 595 596 /* Finally, remap it using the new GTT offset */ 597 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn); 598 599 mutex_unlock(&dev->struct_mutex); 600 601 switch (ret) { 602 case -ENOMEM: 603 case -EAGAIN: 604 return VM_FAULT_OOM; 605 case -EFAULT: 606 return VM_FAULT_SIGBUS; 607 default: 608 return VM_FAULT_NOPAGE; 609 } 610 } 611 612 /** 613 * i915_gem_create_mmap_offset - create a fake mmap offset for an object 614 * @obj: obj in question 615 * 616 * GEM memory mapping works by handing back to userspace a fake mmap offset 617 * it can use in a subsequent mmap(2) call. The DRM core code then looks 618 * up the object based on the offset and sets up the various memory mapping 619 * structures. 620 * 621 * This routine allocates and attaches a fake offset for @obj. 622 */ 623 static int 624 i915_gem_create_mmap_offset(struct drm_gem_object *obj) 625 { 626 struct drm_device *dev = obj->dev; 627 struct drm_gem_mm *mm = dev->mm_private; 628 struct drm_i915_gem_object *obj_priv = obj->driver_private; 629 struct drm_map_list *list; 630 struct drm_map *map; 631 int ret = 0; 632 633 /* Set the object up for mmap'ing */ 634 list = &obj->map_list; 635 list->map = drm_calloc(1, sizeof(struct drm_map_list), 636 DRM_MEM_DRIVER); 637 if (!list->map) 638 return -ENOMEM; 639 640 map = list->map; 641 map->type = _DRM_GEM; 642 map->size = obj->size; 643 map->handle = obj; 644 645 /* Get a DRM GEM mmap offset allocated... */ 646 list->file_offset_node = drm_mm_search_free(&mm->offset_manager, 647 obj->size / PAGE_SIZE, 0, 0); 648 if (!list->file_offset_node) { 649 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name); 650 ret = -ENOMEM; 651 goto out_free_list; 652 } 653 654 list->file_offset_node = drm_mm_get_block(list->file_offset_node, 655 obj->size / PAGE_SIZE, 0); 656 if (!list->file_offset_node) { 657 ret = -ENOMEM; 658 goto out_free_list; 659 } 660 661 list->hash.key = list->file_offset_node->start; 662 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) { 663 DRM_ERROR("failed to add to map hash\n"); 664 goto out_free_mm; 665 } 666 667 /* By now we should be all set, any drm_mmap request on the offset 668 * below will get to our mmap & fault handler */ 669 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT; 670 671 return 0; 672 673 out_free_mm: 674 drm_mm_put_block(list->file_offset_node); 675 out_free_list: 676 drm_free(list->map, sizeof(struct drm_map_list), DRM_MEM_DRIVER); 677 678 return ret; 679 } 680 681 static void 682 i915_gem_free_mmap_offset(struct drm_gem_object *obj) 683 { 684 struct drm_device *dev = obj->dev; 685 struct drm_i915_gem_object *obj_priv = obj->driver_private; 686 struct drm_gem_mm *mm = dev->mm_private; 687 struct drm_map_list *list; 688 689 list = &obj->map_list; 690 drm_ht_remove_item(&mm->offset_hash, &list->hash); 691 692 if (list->file_offset_node) { 693 drm_mm_put_block(list->file_offset_node); 694 list->file_offset_node = NULL; 695 } 696 697 if (list->map) { 698 drm_free(list->map, sizeof(struct drm_map), DRM_MEM_DRIVER); 699 list->map = NULL; 700 } 701 702 obj_priv->mmap_offset = 0; 703 } 704 705 /** 706 * i915_gem_get_gtt_alignment - return required GTT alignment for an object 707 * @obj: object to check 708 * 709 * Return the required GTT alignment for an object, taking into account 710 * potential fence register mapping if needed. 711 */ 712 static uint32_t 713 i915_gem_get_gtt_alignment(struct drm_gem_object *obj) 714 { 715 struct drm_device *dev = obj->dev; 716 struct drm_i915_gem_object *obj_priv = obj->driver_private; 717 int start, i; 718 719 /* 720 * Minimum alignment is 4k (GTT page size), but might be greater 721 * if a fence register is needed for the object. 722 */ 723 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE) 724 return 4096; 725 726 /* 727 * Previous chips need to be aligned to the size of the smallest 728 * fence register that can contain the object. 729 */ 730 if (IS_I9XX(dev)) 731 start = 1024*1024; 732 else 733 start = 512*1024; 734 735 for (i = start; i < obj->size; i <<= 1) 736 ; 737 738 return i; 739 } 740 741 /** 742 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing 743 * @dev: DRM device 744 * @data: GTT mapping ioctl data 745 * @file_priv: GEM object info 746 * 747 * Simply returns the fake offset to userspace so it can mmap it. 748 * The mmap call will end up in drm_gem_mmap(), which will set things 749 * up so we can get faults in the handler above. 750 * 751 * The fault handler will take care of binding the object into the GTT 752 * (since it may have been evicted to make room for something), allocating 753 * a fence register, and mapping the appropriate aperture address into 754 * userspace. 755 */ 756 int 757 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 758 struct drm_file *file_priv) 759 { 760 struct drm_i915_gem_mmap_gtt *args = data; 761 struct drm_i915_private *dev_priv = dev->dev_private; 762 struct drm_gem_object *obj; 763 struct drm_i915_gem_object *obj_priv; 764 int ret; 765 766 if (!(dev->driver->driver_features & DRIVER_GEM)) 767 return -ENODEV; 768 769 obj = drm_gem_object_lookup(dev, file_priv, args->handle); 770 if (obj == NULL) 771 return -EBADF; 772 773 mutex_lock(&dev->struct_mutex); 774 775 obj_priv = obj->driver_private; 776 777 if (!obj_priv->mmap_offset) { 778 ret = i915_gem_create_mmap_offset(obj); 779 if (ret) { 780 drm_gem_object_unreference(obj); 781 mutex_unlock(&dev->struct_mutex); 782 return ret; 783 } 784 } 785 786 args->offset = obj_priv->mmap_offset; 787 788 obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj); 789 790 /* Make sure the alignment is correct for fence regs etc */ 791 if (obj_priv->agp_mem && 792 (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) { 793 drm_gem_object_unreference(obj); 794 mutex_unlock(&dev->struct_mutex); 795 return -EINVAL; 796 } 797 798 /* 799 * Pull it into the GTT so that we have a page list (makes the 800 * initial fault faster and any subsequent flushing possible). 801 */ 802 if (!obj_priv->agp_mem) { 803 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment); 804 if (ret) { 805 drm_gem_object_unreference(obj); 806 mutex_unlock(&dev->struct_mutex); 807 return ret; 808 } 809 list_add(&obj_priv->list, &dev_priv->mm.inactive_list); 810 } 811 812 drm_gem_object_unreference(obj); 813 mutex_unlock(&dev->struct_mutex); 814 815 return 0; 816 } 817 818 static void 819 i915_gem_object_free_page_list(struct drm_gem_object *obj) 820 { 821 struct drm_i915_gem_object *obj_priv = obj->driver_private; 822 int page_count = obj->size / PAGE_SIZE; 823 int i; 824 825 if (obj_priv->page_list == NULL) 826 return; 827 828 829 for (i = 0; i < page_count; i++) 830 if (obj_priv->page_list[i] != NULL) { 831 if (obj_priv->dirty) 832 set_page_dirty(obj_priv->page_list[i]); 833 mark_page_accessed(obj_priv->page_list[i]); 834 page_cache_release(obj_priv->page_list[i]); 835 } 836 obj_priv->dirty = 0; 837 838 drm_free(obj_priv->page_list, 839 page_count * sizeof(struct page *), 840 DRM_MEM_DRIVER); 841 obj_priv->page_list = NULL; 842 } 843 844 static void 845 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno) 846 { 847 struct drm_device *dev = obj->dev; 848 drm_i915_private_t *dev_priv = dev->dev_private; 849 struct drm_i915_gem_object *obj_priv = obj->driver_private; 850 851 /* Add a reference if we're newly entering the active list. */ 852 if (!obj_priv->active) { 853 drm_gem_object_reference(obj); 854 obj_priv->active = 1; 855 } 856 /* Move from whatever list we were on to the tail of execution. */ 857 list_move_tail(&obj_priv->list, 858 &dev_priv->mm.active_list); 859 obj_priv->last_rendering_seqno = seqno; 860 } 861 862 static void 863 i915_gem_object_move_to_flushing(struct drm_gem_object *obj) 864 { 865 struct drm_device *dev = obj->dev; 866 drm_i915_private_t *dev_priv = dev->dev_private; 867 struct drm_i915_gem_object *obj_priv = obj->driver_private; 868 869 BUG_ON(!obj_priv->active); 870 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list); 871 obj_priv->last_rendering_seqno = 0; 872 } 873 874 static void 875 i915_gem_object_move_to_inactive(struct drm_gem_object *obj) 876 { 877 struct drm_device *dev = obj->dev; 878 drm_i915_private_t *dev_priv = dev->dev_private; 879 struct drm_i915_gem_object *obj_priv = obj->driver_private; 880 881 i915_verify_inactive(dev, __FILE__, __LINE__); 882 if (obj_priv->pin_count != 0) 883 list_del_init(&obj_priv->list); 884 else 885 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list); 886 887 obj_priv->last_rendering_seqno = 0; 888 if (obj_priv->active) { 889 obj_priv->active = 0; 890 drm_gem_object_unreference(obj); 891 } 892 i915_verify_inactive(dev, __FILE__, __LINE__); 893 } 894 895 /** 896 * Creates a new sequence number, emitting a write of it to the status page 897 * plus an interrupt, which will trigger i915_user_interrupt_handler. 898 * 899 * Must be called with struct_lock held. 900 * 901 * Returned sequence numbers are nonzero on success. 902 */ 903 static uint32_t 904 i915_add_request(struct drm_device *dev, uint32_t flush_domains) 905 { 906 drm_i915_private_t *dev_priv = dev->dev_private; 907 struct drm_i915_gem_request *request; 908 uint32_t seqno; 909 int was_empty; 910 RING_LOCALS; 911 912 request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER); 913 if (request == NULL) 914 return 0; 915 916 /* Grab the seqno we're going to make this request be, and bump the 917 * next (skipping 0 so it can be the reserved no-seqno value). 918 */ 919 seqno = dev_priv->mm.next_gem_seqno; 920 dev_priv->mm.next_gem_seqno++; 921 if (dev_priv->mm.next_gem_seqno == 0) 922 dev_priv->mm.next_gem_seqno++; 923 924 BEGIN_LP_RING(4); 925 OUT_RING(MI_STORE_DWORD_INDEX); 926 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT); 927 OUT_RING(seqno); 928 929 OUT_RING(MI_USER_INTERRUPT); 930 ADVANCE_LP_RING(); 931 932 DRM_DEBUG("%d\n", seqno); 933 934 request->seqno = seqno; 935 request->emitted_jiffies = jiffies; 936 was_empty = list_empty(&dev_priv->mm.request_list); 937 list_add_tail(&request->list, &dev_priv->mm.request_list); 938 939 /* Associate any objects on the flushing list matching the write 940 * domain we're flushing with our flush. 941 */ 942 if (flush_domains != 0) { 943 struct drm_i915_gem_object *obj_priv, *next; 944 945 list_for_each_entry_safe(obj_priv, next, 946 &dev_priv->mm.flushing_list, list) { 947 struct drm_gem_object *obj = obj_priv->obj; 948 949 if ((obj->write_domain & flush_domains) == 950 obj->write_domain) { 951 obj->write_domain = 0; 952 i915_gem_object_move_to_active(obj, seqno); 953 } 954 } 955 956 } 957 958 if (was_empty && !dev_priv->mm.suspended) 959 schedule_delayed_work(&dev_priv->mm.retire_work, HZ); 960 return seqno; 961 } 962 963 /** 964 * Command execution barrier 965 * 966 * Ensures that all commands in the ring are finished 967 * before signalling the CPU 968 */ 969 static uint32_t 970 i915_retire_commands(struct drm_device *dev) 971 { 972 drm_i915_private_t *dev_priv = dev->dev_private; 973 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH; 974 uint32_t flush_domains = 0; 975 RING_LOCALS; 976 977 /* The sampler always gets flushed on i965 (sigh) */ 978 if (IS_I965G(dev)) 979 flush_domains |= I915_GEM_DOMAIN_SAMPLER; 980 BEGIN_LP_RING(2); 981 OUT_RING(cmd); 982 OUT_RING(0); /* noop */ 983 ADVANCE_LP_RING(); 984 return flush_domains; 985 } 986 987 /** 988 * Moves buffers associated only with the given active seqno from the active 989 * to inactive list, potentially freeing them. 990 */ 991 static void 992 i915_gem_retire_request(struct drm_device *dev, 993 struct drm_i915_gem_request *request) 994 { 995 drm_i915_private_t *dev_priv = dev->dev_private; 996 997 /* Move any buffers on the active list that are no longer referenced 998 * by the ringbuffer to the flushing/inactive lists as appropriate. 999 */ 1000 while (!list_empty(&dev_priv->mm.active_list)) { 1001 struct drm_gem_object *obj; 1002 struct drm_i915_gem_object *obj_priv; 1003 1004 obj_priv = list_first_entry(&dev_priv->mm.active_list, 1005 struct drm_i915_gem_object, 1006 list); 1007 obj = obj_priv->obj; 1008 1009 /* If the seqno being retired doesn't match the oldest in the 1010 * list, then the oldest in the list must still be newer than 1011 * this seqno. 1012 */ 1013 if (obj_priv->last_rendering_seqno != request->seqno) 1014 return; 1015 1016 #if WATCH_LRU 1017 DRM_INFO("%s: retire %d moves to inactive list %p\n", 1018 __func__, request->seqno, obj); 1019 #endif 1020 1021 if (obj->write_domain != 0) 1022 i915_gem_object_move_to_flushing(obj); 1023 else 1024 i915_gem_object_move_to_inactive(obj); 1025 } 1026 } 1027 1028 /** 1029 * Returns true if seq1 is later than seq2. 1030 */ 1031 static int 1032 i915_seqno_passed(uint32_t seq1, uint32_t seq2) 1033 { 1034 return (int32_t)(seq1 - seq2) >= 0; 1035 } 1036 1037 uint32_t 1038 i915_get_gem_seqno(struct drm_device *dev) 1039 { 1040 drm_i915_private_t *dev_priv = dev->dev_private; 1041 1042 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX); 1043 } 1044 1045 /** 1046 * This function clears the request list as sequence numbers are passed. 1047 */ 1048 void 1049 i915_gem_retire_requests(struct drm_device *dev) 1050 { 1051 drm_i915_private_t *dev_priv = dev->dev_private; 1052 uint32_t seqno; 1053 1054 if (!dev_priv->hw_status_page) 1055 return; 1056 1057 seqno = i915_get_gem_seqno(dev); 1058 1059 while (!list_empty(&dev_priv->mm.request_list)) { 1060 struct drm_i915_gem_request *request; 1061 uint32_t retiring_seqno; 1062 1063 request = list_first_entry(&dev_priv->mm.request_list, 1064 struct drm_i915_gem_request, 1065 list); 1066 retiring_seqno = request->seqno; 1067 1068 if (i915_seqno_passed(seqno, retiring_seqno) || 1069 dev_priv->mm.wedged) { 1070 i915_gem_retire_request(dev, request); 1071 1072 list_del(&request->list); 1073 drm_free(request, sizeof(*request), DRM_MEM_DRIVER); 1074 } else 1075 break; 1076 } 1077 } 1078 1079 void 1080 i915_gem_retire_work_handler(struct work_struct *work) 1081 { 1082 drm_i915_private_t *dev_priv; 1083 struct drm_device *dev; 1084 1085 dev_priv = container_of(work, drm_i915_private_t, 1086 mm.retire_work.work); 1087 dev = dev_priv->dev; 1088 1089 mutex_lock(&dev->struct_mutex); 1090 i915_gem_retire_requests(dev); 1091 if (!dev_priv->mm.suspended && 1092 !list_empty(&dev_priv->mm.request_list)) 1093 schedule_delayed_work(&dev_priv->mm.retire_work, HZ); 1094 mutex_unlock(&dev->struct_mutex); 1095 } 1096 1097 /** 1098 * Waits for a sequence number to be signaled, and cleans up the 1099 * request and object lists appropriately for that event. 1100 */ 1101 static int 1102 i915_wait_request(struct drm_device *dev, uint32_t seqno) 1103 { 1104 drm_i915_private_t *dev_priv = dev->dev_private; 1105 int ret = 0; 1106 1107 BUG_ON(seqno == 0); 1108 1109 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) { 1110 dev_priv->mm.waiting_gem_seqno = seqno; 1111 i915_user_irq_get(dev); 1112 ret = wait_event_interruptible(dev_priv->irq_queue, 1113 i915_seqno_passed(i915_get_gem_seqno(dev), 1114 seqno) || 1115 dev_priv->mm.wedged); 1116 i915_user_irq_put(dev); 1117 dev_priv->mm.waiting_gem_seqno = 0; 1118 } 1119 if (dev_priv->mm.wedged) 1120 ret = -EIO; 1121 1122 if (ret && ret != -ERESTARTSYS) 1123 DRM_ERROR("%s returns %d (awaiting %d at %d)\n", 1124 __func__, ret, seqno, i915_get_gem_seqno(dev)); 1125 1126 /* Directly dispatch request retiring. While we have the work queue 1127 * to handle this, the waiter on a request often wants an associated 1128 * buffer to have made it to the inactive list, and we would need 1129 * a separate wait queue to handle that. 1130 */ 1131 if (ret == 0) 1132 i915_gem_retire_requests(dev); 1133 1134 return ret; 1135 } 1136 1137 static void 1138 i915_gem_flush(struct drm_device *dev, 1139 uint32_t invalidate_domains, 1140 uint32_t flush_domains) 1141 { 1142 drm_i915_private_t *dev_priv = dev->dev_private; 1143 uint32_t cmd; 1144 RING_LOCALS; 1145 1146 #if WATCH_EXEC 1147 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__, 1148 invalidate_domains, flush_domains); 1149 #endif 1150 1151 if (flush_domains & I915_GEM_DOMAIN_CPU) 1152 drm_agp_chipset_flush(dev); 1153 1154 if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU | 1155 I915_GEM_DOMAIN_GTT)) { 1156 /* 1157 * read/write caches: 1158 * 1159 * I915_GEM_DOMAIN_RENDER is always invalidated, but is 1160 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is 1161 * also flushed at 2d versus 3d pipeline switches. 1162 * 1163 * read-only caches: 1164 * 1165 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if 1166 * MI_READ_FLUSH is set, and is always flushed on 965. 1167 * 1168 * I915_GEM_DOMAIN_COMMAND may not exist? 1169 * 1170 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is 1171 * invalidated when MI_EXE_FLUSH is set. 1172 * 1173 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is 1174 * invalidated with every MI_FLUSH. 1175 * 1176 * TLBs: 1177 * 1178 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND 1179 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and 1180 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER 1181 * are flushed at any MI_FLUSH. 1182 */ 1183 1184 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH; 1185 if ((invalidate_domains|flush_domains) & 1186 I915_GEM_DOMAIN_RENDER) 1187 cmd &= ~MI_NO_WRITE_FLUSH; 1188 if (!IS_I965G(dev)) { 1189 /* 1190 * On the 965, the sampler cache always gets flushed 1191 * and this bit is reserved. 1192 */ 1193 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER) 1194 cmd |= MI_READ_FLUSH; 1195 } 1196 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION) 1197 cmd |= MI_EXE_FLUSH; 1198 1199 #if WATCH_EXEC 1200 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd); 1201 #endif 1202 BEGIN_LP_RING(2); 1203 OUT_RING(cmd); 1204 OUT_RING(0); /* noop */ 1205 ADVANCE_LP_RING(); 1206 } 1207 } 1208 1209 /** 1210 * Ensures that all rendering to the object has completed and the object is 1211 * safe to unbind from the GTT or access from the CPU. 1212 */ 1213 static int 1214 i915_gem_object_wait_rendering(struct drm_gem_object *obj) 1215 { 1216 struct drm_device *dev = obj->dev; 1217 struct drm_i915_gem_object *obj_priv = obj->driver_private; 1218 int ret; 1219 1220 /* This function only exists to support waiting for existing rendering, 1221 * not for emitting required flushes. 1222 */ 1223 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0); 1224 1225 /* If there is rendering queued on the buffer being evicted, wait for 1226 * it. 1227 */ 1228 if (obj_priv->active) { 1229 #if WATCH_BUF 1230 DRM_INFO("%s: object %p wait for seqno %08x\n", 1231 __func__, obj, obj_priv->last_rendering_seqno); 1232 #endif 1233 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno); 1234 if (ret != 0) 1235 return ret; 1236 } 1237 1238 return 0; 1239 } 1240 1241 /** 1242 * Unbinds an object from the GTT aperture. 1243 */ 1244 int 1245 i915_gem_object_unbind(struct drm_gem_object *obj) 1246 { 1247 struct drm_device *dev = obj->dev; 1248 struct drm_i915_gem_object *obj_priv = obj->driver_private; 1249 loff_t offset; 1250 int ret = 0; 1251 1252 #if WATCH_BUF 1253 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj); 1254 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space); 1255 #endif 1256 if (obj_priv->gtt_space == NULL) 1257 return 0; 1258 1259 if (obj_priv->pin_count != 0) { 1260 DRM_ERROR("Attempting to unbind pinned buffer\n"); 1261 return -EINVAL; 1262 } 1263 1264 /* Move the object to the CPU domain to ensure that 1265 * any possible CPU writes while it's not in the GTT 1266 * are flushed when we go to remap it. This will 1267 * also ensure that all pending GPU writes are finished 1268 * before we unbind. 1269 */ 1270 ret = i915_gem_object_set_to_cpu_domain(obj, 1); 1271 if (ret) { 1272 if (ret != -ERESTARTSYS) 1273 DRM_ERROR("set_domain failed: %d\n", ret); 1274 return ret; 1275 } 1276 1277 if (obj_priv->agp_mem != NULL) { 1278 drm_unbind_agp(obj_priv->agp_mem); 1279 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE); 1280 obj_priv->agp_mem = NULL; 1281 } 1282 1283 BUG_ON(obj_priv->active); 1284 1285 /* blow away mappings if mapped through GTT */ 1286 offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT; 1287 if (dev->dev_mapping) 1288 unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1); 1289 1290 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) 1291 i915_gem_clear_fence_reg(obj); 1292 1293 i915_gem_object_free_page_list(obj); 1294 1295 if (obj_priv->gtt_space) { 1296 atomic_dec(&dev->gtt_count); 1297 atomic_sub(obj->size, &dev->gtt_memory); 1298 1299 drm_mm_put_block(obj_priv->gtt_space); 1300 obj_priv->gtt_space = NULL; 1301 } 1302 1303 /* Remove ourselves from the LRU list if present. */ 1304 if (!list_empty(&obj_priv->list)) 1305 list_del_init(&obj_priv->list); 1306 1307 return 0; 1308 } 1309 1310 static int 1311 i915_gem_evict_something(struct drm_device *dev) 1312 { 1313 drm_i915_private_t *dev_priv = dev->dev_private; 1314 struct drm_gem_object *obj; 1315 struct drm_i915_gem_object *obj_priv; 1316 int ret = 0; 1317 1318 for (;;) { 1319 /* If there's an inactive buffer available now, grab it 1320 * and be done. 1321 */ 1322 if (!list_empty(&dev_priv->mm.inactive_list)) { 1323 obj_priv = list_first_entry(&dev_priv->mm.inactive_list, 1324 struct drm_i915_gem_object, 1325 list); 1326 obj = obj_priv->obj; 1327 BUG_ON(obj_priv->pin_count != 0); 1328 #if WATCH_LRU 1329 DRM_INFO("%s: evicting %p\n", __func__, obj); 1330 #endif 1331 BUG_ON(obj_priv->active); 1332 1333 /* Wait on the rendering and unbind the buffer. */ 1334 ret = i915_gem_object_unbind(obj); 1335 break; 1336 } 1337 1338 /* If we didn't get anything, but the ring is still processing 1339 * things, wait for one of those things to finish and hopefully 1340 * leave us a buffer to evict. 1341 */ 1342 if (!list_empty(&dev_priv->mm.request_list)) { 1343 struct drm_i915_gem_request *request; 1344 1345 request = list_first_entry(&dev_priv->mm.request_list, 1346 struct drm_i915_gem_request, 1347 list); 1348 1349 ret = i915_wait_request(dev, request->seqno); 1350 if (ret) 1351 break; 1352 1353 /* if waiting caused an object to become inactive, 1354 * then loop around and wait for it. Otherwise, we 1355 * assume that waiting freed and unbound something, 1356 * so there should now be some space in the GTT 1357 */ 1358 if (!list_empty(&dev_priv->mm.inactive_list)) 1359 continue; 1360 break; 1361 } 1362 1363 /* If we didn't have anything on the request list but there 1364 * are buffers awaiting a flush, emit one and try again. 1365 * When we wait on it, those buffers waiting for that flush 1366 * will get moved to inactive. 1367 */ 1368 if (!list_empty(&dev_priv->mm.flushing_list)) { 1369 obj_priv = list_first_entry(&dev_priv->mm.flushing_list, 1370 struct drm_i915_gem_object, 1371 list); 1372 obj = obj_priv->obj; 1373 1374 i915_gem_flush(dev, 1375 obj->write_domain, 1376 obj->write_domain); 1377 i915_add_request(dev, obj->write_domain); 1378 1379 obj = NULL; 1380 continue; 1381 } 1382 1383 DRM_ERROR("inactive empty %d request empty %d " 1384 "flushing empty %d\n", 1385 list_empty(&dev_priv->mm.inactive_list), 1386 list_empty(&dev_priv->mm.request_list), 1387 list_empty(&dev_priv->mm.flushing_list)); 1388 /* If we didn't do any of the above, there's nothing to be done 1389 * and we just can't fit it in. 1390 */ 1391 return -ENOMEM; 1392 } 1393 return ret; 1394 } 1395 1396 static int 1397 i915_gem_evict_everything(struct drm_device *dev) 1398 { 1399 int ret; 1400 1401 for (;;) { 1402 ret = i915_gem_evict_something(dev); 1403 if (ret != 0) 1404 break; 1405 } 1406 if (ret == -ENOMEM) 1407 return 0; 1408 return ret; 1409 } 1410 1411 static int 1412 i915_gem_object_get_page_list(struct drm_gem_object *obj) 1413 { 1414 struct drm_i915_gem_object *obj_priv = obj->driver_private; 1415 int page_count, i; 1416 struct address_space *mapping; 1417 struct inode *inode; 1418 struct page *page; 1419 int ret; 1420 1421 if (obj_priv->page_list) 1422 return 0; 1423 1424 /* Get the list of pages out of our struct file. They'll be pinned 1425 * at this point until we release them. 1426 */ 1427 page_count = obj->size / PAGE_SIZE; 1428 BUG_ON(obj_priv->page_list != NULL); 1429 obj_priv->page_list = drm_calloc(page_count, sizeof(struct page *), 1430 DRM_MEM_DRIVER); 1431 if (obj_priv->page_list == NULL) { 1432 DRM_ERROR("Faled to allocate page list\n"); 1433 return -ENOMEM; 1434 } 1435 1436 inode = obj->filp->f_path.dentry->d_inode; 1437 mapping = inode->i_mapping; 1438 for (i = 0; i < page_count; i++) { 1439 page = read_mapping_page(mapping, i, NULL); 1440 if (IS_ERR(page)) { 1441 ret = PTR_ERR(page); 1442 DRM_ERROR("read_mapping_page failed: %d\n", ret); 1443 i915_gem_object_free_page_list(obj); 1444 return ret; 1445 } 1446 obj_priv->page_list[i] = page; 1447 } 1448 return 0; 1449 } 1450 1451 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg) 1452 { 1453 struct drm_gem_object *obj = reg->obj; 1454 struct drm_device *dev = obj->dev; 1455 drm_i915_private_t *dev_priv = dev->dev_private; 1456 struct drm_i915_gem_object *obj_priv = obj->driver_private; 1457 int regnum = obj_priv->fence_reg; 1458 uint64_t val; 1459 1460 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) & 1461 0xfffff000) << 32; 1462 val |= obj_priv->gtt_offset & 0xfffff000; 1463 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT; 1464 if (obj_priv->tiling_mode == I915_TILING_Y) 1465 val |= 1 << I965_FENCE_TILING_Y_SHIFT; 1466 val |= I965_FENCE_REG_VALID; 1467 1468 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val); 1469 } 1470 1471 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg) 1472 { 1473 struct drm_gem_object *obj = reg->obj; 1474 struct drm_device *dev = obj->dev; 1475 drm_i915_private_t *dev_priv = dev->dev_private; 1476 struct drm_i915_gem_object *obj_priv = obj->driver_private; 1477 int regnum = obj_priv->fence_reg; 1478 int tile_width; 1479 uint32_t fence_reg, val; 1480 uint32_t pitch_val; 1481 1482 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) || 1483 (obj_priv->gtt_offset & (obj->size - 1))) { 1484 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n", 1485 __func__, obj_priv->gtt_offset, obj->size); 1486 return; 1487 } 1488 1489 if (obj_priv->tiling_mode == I915_TILING_Y && 1490 HAS_128_BYTE_Y_TILING(dev)) 1491 tile_width = 128; 1492 else 1493 tile_width = 512; 1494 1495 /* Note: pitch better be a power of two tile widths */ 1496 pitch_val = obj_priv->stride / tile_width; 1497 pitch_val = ffs(pitch_val) - 1; 1498 1499 val = obj_priv->gtt_offset; 1500 if (obj_priv->tiling_mode == I915_TILING_Y) 1501 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 1502 val |= I915_FENCE_SIZE_BITS(obj->size); 1503 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 1504 val |= I830_FENCE_REG_VALID; 1505 1506 if (regnum < 8) 1507 fence_reg = FENCE_REG_830_0 + (regnum * 4); 1508 else 1509 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4); 1510 I915_WRITE(fence_reg, val); 1511 } 1512 1513 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg) 1514 { 1515 struct drm_gem_object *obj = reg->obj; 1516 struct drm_device *dev = obj->dev; 1517 drm_i915_private_t *dev_priv = dev->dev_private; 1518 struct drm_i915_gem_object *obj_priv = obj->driver_private; 1519 int regnum = obj_priv->fence_reg; 1520 uint32_t val; 1521 uint32_t pitch_val; 1522 1523 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) || 1524 (obj_priv->gtt_offset & (obj->size - 1))) { 1525 WARN(1, "%s: object 0x%08x not 1M or size aligned\n", 1526 __func__, obj_priv->gtt_offset); 1527 return; 1528 } 1529 1530 pitch_val = (obj_priv->stride / 128) - 1; 1531 1532 val = obj_priv->gtt_offset; 1533 if (obj_priv->tiling_mode == I915_TILING_Y) 1534 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 1535 val |= I830_FENCE_SIZE_BITS(obj->size); 1536 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 1537 val |= I830_FENCE_REG_VALID; 1538 1539 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val); 1540 1541 } 1542 1543 /** 1544 * i915_gem_object_get_fence_reg - set up a fence reg for an object 1545 * @obj: object to map through a fence reg 1546 * @write: object is about to be written 1547 * 1548 * When mapping objects through the GTT, userspace wants to be able to write 1549 * to them without having to worry about swizzling if the object is tiled. 1550 * 1551 * This function walks the fence regs looking for a free one for @obj, 1552 * stealing one if it can't find any. 1553 * 1554 * It then sets up the reg based on the object's properties: address, pitch 1555 * and tiling format. 1556 */ 1557 static int 1558 i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write) 1559 { 1560 struct drm_device *dev = obj->dev; 1561 struct drm_i915_private *dev_priv = dev->dev_private; 1562 struct drm_i915_gem_object *obj_priv = obj->driver_private; 1563 struct drm_i915_fence_reg *reg = NULL; 1564 struct drm_i915_gem_object *old_obj_priv = NULL; 1565 int i, ret, avail; 1566 1567 switch (obj_priv->tiling_mode) { 1568 case I915_TILING_NONE: 1569 WARN(1, "allocating a fence for non-tiled object?\n"); 1570 break; 1571 case I915_TILING_X: 1572 if (!obj_priv->stride) 1573 return -EINVAL; 1574 WARN((obj_priv->stride & (512 - 1)), 1575 "object 0x%08x is X tiled but has non-512B pitch\n", 1576 obj_priv->gtt_offset); 1577 break; 1578 case I915_TILING_Y: 1579 if (!obj_priv->stride) 1580 return -EINVAL; 1581 WARN((obj_priv->stride & (128 - 1)), 1582 "object 0x%08x is Y tiled but has non-128B pitch\n", 1583 obj_priv->gtt_offset); 1584 break; 1585 } 1586 1587 /* First try to find a free reg */ 1588 try_again: 1589 avail = 0; 1590 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) { 1591 reg = &dev_priv->fence_regs[i]; 1592 if (!reg->obj) 1593 break; 1594 1595 old_obj_priv = reg->obj->driver_private; 1596 if (!old_obj_priv->pin_count) 1597 avail++; 1598 } 1599 1600 /* None available, try to steal one or wait for a user to finish */ 1601 if (i == dev_priv->num_fence_regs) { 1602 uint32_t seqno = dev_priv->mm.next_gem_seqno; 1603 loff_t offset; 1604 1605 if (avail == 0) 1606 return -ENOMEM; 1607 1608 for (i = dev_priv->fence_reg_start; 1609 i < dev_priv->num_fence_regs; i++) { 1610 uint32_t this_seqno; 1611 1612 reg = &dev_priv->fence_regs[i]; 1613 old_obj_priv = reg->obj->driver_private; 1614 1615 if (old_obj_priv->pin_count) 1616 continue; 1617 1618 /* i915 uses fences for GPU access to tiled buffers */ 1619 if (IS_I965G(dev) || !old_obj_priv->active) 1620 break; 1621 1622 /* find the seqno of the first available fence */ 1623 this_seqno = old_obj_priv->last_rendering_seqno; 1624 if (this_seqno != 0 && 1625 reg->obj->write_domain == 0 && 1626 i915_seqno_passed(seqno, this_seqno)) 1627 seqno = this_seqno; 1628 } 1629 1630 /* 1631 * Now things get ugly... we have to wait for one of the 1632 * objects to finish before trying again. 1633 */ 1634 if (i == dev_priv->num_fence_regs) { 1635 if (seqno == dev_priv->mm.next_gem_seqno) { 1636 i915_gem_flush(dev, 1637 I915_GEM_GPU_DOMAINS, 1638 I915_GEM_GPU_DOMAINS); 1639 seqno = i915_add_request(dev, 1640 I915_GEM_GPU_DOMAINS); 1641 if (seqno == 0) 1642 return -ENOMEM; 1643 } 1644 1645 ret = i915_wait_request(dev, seqno); 1646 if (ret) 1647 return ret; 1648 goto try_again; 1649 } 1650 1651 BUG_ON(old_obj_priv->active || 1652 (reg->obj->write_domain & I915_GEM_GPU_DOMAINS)); 1653 1654 /* 1655 * Zap this virtual mapping so we can set up a fence again 1656 * for this object next time we need it. 1657 */ 1658 offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT; 1659 if (dev->dev_mapping) 1660 unmap_mapping_range(dev->dev_mapping, offset, 1661 reg->obj->size, 1); 1662 old_obj_priv->fence_reg = I915_FENCE_REG_NONE; 1663 } 1664 1665 obj_priv->fence_reg = i; 1666 reg->obj = obj; 1667 1668 if (IS_I965G(dev)) 1669 i965_write_fence_reg(reg); 1670 else if (IS_I9XX(dev)) 1671 i915_write_fence_reg(reg); 1672 else 1673 i830_write_fence_reg(reg); 1674 1675 return 0; 1676 } 1677 1678 /** 1679 * i915_gem_clear_fence_reg - clear out fence register info 1680 * @obj: object to clear 1681 * 1682 * Zeroes out the fence register itself and clears out the associated 1683 * data structures in dev_priv and obj_priv. 1684 */ 1685 static void 1686 i915_gem_clear_fence_reg(struct drm_gem_object *obj) 1687 { 1688 struct drm_device *dev = obj->dev; 1689 drm_i915_private_t *dev_priv = dev->dev_private; 1690 struct drm_i915_gem_object *obj_priv = obj->driver_private; 1691 1692 if (IS_I965G(dev)) 1693 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0); 1694 else { 1695 uint32_t fence_reg; 1696 1697 if (obj_priv->fence_reg < 8) 1698 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4; 1699 else 1700 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 1701 8) * 4; 1702 1703 I915_WRITE(fence_reg, 0); 1704 } 1705 1706 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL; 1707 obj_priv->fence_reg = I915_FENCE_REG_NONE; 1708 } 1709 1710 /** 1711 * Finds free space in the GTT aperture and binds the object there. 1712 */ 1713 static int 1714 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment) 1715 { 1716 struct drm_device *dev = obj->dev; 1717 drm_i915_private_t *dev_priv = dev->dev_private; 1718 struct drm_i915_gem_object *obj_priv = obj->driver_private; 1719 struct drm_mm_node *free_space; 1720 int page_count, ret; 1721 1722 if (dev_priv->mm.suspended) 1723 return -EBUSY; 1724 if (alignment == 0) 1725 alignment = i915_gem_get_gtt_alignment(obj); 1726 if (alignment & (PAGE_SIZE - 1)) { 1727 DRM_ERROR("Invalid object alignment requested %u\n", alignment); 1728 return -EINVAL; 1729 } 1730 1731 search_free: 1732 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space, 1733 obj->size, alignment, 0); 1734 if (free_space != NULL) { 1735 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size, 1736 alignment); 1737 if (obj_priv->gtt_space != NULL) { 1738 obj_priv->gtt_space->private = obj; 1739 obj_priv->gtt_offset = obj_priv->gtt_space->start; 1740 } 1741 } 1742 if (obj_priv->gtt_space == NULL) { 1743 /* If the gtt is empty and we're still having trouble 1744 * fitting our object in, we're out of memory. 1745 */ 1746 #if WATCH_LRU 1747 DRM_INFO("%s: GTT full, evicting something\n", __func__); 1748 #endif 1749 if (list_empty(&dev_priv->mm.inactive_list) && 1750 list_empty(&dev_priv->mm.flushing_list) && 1751 list_empty(&dev_priv->mm.active_list)) { 1752 DRM_ERROR("GTT full, but LRU list empty\n"); 1753 return -ENOMEM; 1754 } 1755 1756 ret = i915_gem_evict_something(dev); 1757 if (ret != 0) { 1758 if (ret != -ERESTARTSYS) 1759 DRM_ERROR("Failed to evict a buffer %d\n", ret); 1760 return ret; 1761 } 1762 goto search_free; 1763 } 1764 1765 #if WATCH_BUF 1766 DRM_INFO("Binding object of size %d at 0x%08x\n", 1767 obj->size, obj_priv->gtt_offset); 1768 #endif 1769 ret = i915_gem_object_get_page_list(obj); 1770 if (ret) { 1771 drm_mm_put_block(obj_priv->gtt_space); 1772 obj_priv->gtt_space = NULL; 1773 return ret; 1774 } 1775 1776 page_count = obj->size / PAGE_SIZE; 1777 /* Create an AGP memory structure pointing at our pages, and bind it 1778 * into the GTT. 1779 */ 1780 obj_priv->agp_mem = drm_agp_bind_pages(dev, 1781 obj_priv->page_list, 1782 page_count, 1783 obj_priv->gtt_offset, 1784 obj_priv->agp_type); 1785 if (obj_priv->agp_mem == NULL) { 1786 i915_gem_object_free_page_list(obj); 1787 drm_mm_put_block(obj_priv->gtt_space); 1788 obj_priv->gtt_space = NULL; 1789 return -ENOMEM; 1790 } 1791 atomic_inc(&dev->gtt_count); 1792 atomic_add(obj->size, &dev->gtt_memory); 1793 1794 /* Assert that the object is not currently in any GPU domain. As it 1795 * wasn't in the GTT, there shouldn't be any way it could have been in 1796 * a GPU cache 1797 */ 1798 BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT)); 1799 BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT)); 1800 1801 return 0; 1802 } 1803 1804 void 1805 i915_gem_clflush_object(struct drm_gem_object *obj) 1806 { 1807 struct drm_i915_gem_object *obj_priv = obj->driver_private; 1808 1809 /* If we don't have a page list set up, then we're not pinned 1810 * to GPU, and we can ignore the cache flush because it'll happen 1811 * again at bind time. 1812 */ 1813 if (obj_priv->page_list == NULL) 1814 return; 1815 1816 drm_clflush_pages(obj_priv->page_list, obj->size / PAGE_SIZE); 1817 } 1818 1819 /** Flushes any GPU write domain for the object if it's dirty. */ 1820 static void 1821 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj) 1822 { 1823 struct drm_device *dev = obj->dev; 1824 uint32_t seqno; 1825 1826 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0) 1827 return; 1828 1829 /* Queue the GPU write cache flushing we need. */ 1830 i915_gem_flush(dev, 0, obj->write_domain); 1831 seqno = i915_add_request(dev, obj->write_domain); 1832 obj->write_domain = 0; 1833 i915_gem_object_move_to_active(obj, seqno); 1834 } 1835 1836 /** Flushes the GTT write domain for the object if it's dirty. */ 1837 static void 1838 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj) 1839 { 1840 if (obj->write_domain != I915_GEM_DOMAIN_GTT) 1841 return; 1842 1843 /* No actual flushing is required for the GTT write domain. Writes 1844 * to it immediately go to main memory as far as we know, so there's 1845 * no chipset flush. It also doesn't land in render cache. 1846 */ 1847 obj->write_domain = 0; 1848 } 1849 1850 /** Flushes the CPU write domain for the object if it's dirty. */ 1851 static void 1852 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj) 1853 { 1854 struct drm_device *dev = obj->dev; 1855 1856 if (obj->write_domain != I915_GEM_DOMAIN_CPU) 1857 return; 1858 1859 i915_gem_clflush_object(obj); 1860 drm_agp_chipset_flush(dev); 1861 obj->write_domain = 0; 1862 } 1863 1864 /** 1865 * Moves a single object to the GTT read, and possibly write domain. 1866 * 1867 * This function returns when the move is complete, including waiting on 1868 * flushes to occur. 1869 */ 1870 int 1871 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write) 1872 { 1873 struct drm_i915_gem_object *obj_priv = obj->driver_private; 1874 int ret; 1875 1876 /* Not valid to be called on unbound objects. */ 1877 if (obj_priv->gtt_space == NULL) 1878 return -EINVAL; 1879 1880 i915_gem_object_flush_gpu_write_domain(obj); 1881 /* Wait on any GPU rendering and flushing to occur. */ 1882 ret = i915_gem_object_wait_rendering(obj); 1883 if (ret != 0) 1884 return ret; 1885 1886 /* If we're writing through the GTT domain, then CPU and GPU caches 1887 * will need to be invalidated at next use. 1888 */ 1889 if (write) 1890 obj->read_domains &= I915_GEM_DOMAIN_GTT; 1891 1892 i915_gem_object_flush_cpu_write_domain(obj); 1893 1894 /* It should now be out of any other write domains, and we can update 1895 * the domain values for our changes. 1896 */ 1897 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0); 1898 obj->read_domains |= I915_GEM_DOMAIN_GTT; 1899 if (write) { 1900 obj->write_domain = I915_GEM_DOMAIN_GTT; 1901 obj_priv->dirty = 1; 1902 } 1903 1904 return 0; 1905 } 1906 1907 /** 1908 * Moves a single object to the CPU read, and possibly write domain. 1909 * 1910 * This function returns when the move is complete, including waiting on 1911 * flushes to occur. 1912 */ 1913 static int 1914 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write) 1915 { 1916 struct drm_device *dev = obj->dev; 1917 int ret; 1918 1919 i915_gem_object_flush_gpu_write_domain(obj); 1920 /* Wait on any GPU rendering and flushing to occur. */ 1921 ret = i915_gem_object_wait_rendering(obj); 1922 if (ret != 0) 1923 return ret; 1924 1925 i915_gem_object_flush_gtt_write_domain(obj); 1926 1927 /* If we have a partially-valid cache of the object in the CPU, 1928 * finish invalidating it and free the per-page flags. 1929 */ 1930 i915_gem_object_set_to_full_cpu_read_domain(obj); 1931 1932 /* Flush the CPU cache if it's still invalid. */ 1933 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) { 1934 i915_gem_clflush_object(obj); 1935 drm_agp_chipset_flush(dev); 1936 1937 obj->read_domains |= I915_GEM_DOMAIN_CPU; 1938 } 1939 1940 /* It should now be out of any other write domains, and we can update 1941 * the domain values for our changes. 1942 */ 1943 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0); 1944 1945 /* If we're writing through the CPU, then the GPU read domains will 1946 * need to be invalidated at next use. 1947 */ 1948 if (write) { 1949 obj->read_domains &= I915_GEM_DOMAIN_CPU; 1950 obj->write_domain = I915_GEM_DOMAIN_CPU; 1951 } 1952 1953 return 0; 1954 } 1955 1956 /* 1957 * Set the next domain for the specified object. This 1958 * may not actually perform the necessary flushing/invaliding though, 1959 * as that may want to be batched with other set_domain operations 1960 * 1961 * This is (we hope) the only really tricky part of gem. The goal 1962 * is fairly simple -- track which caches hold bits of the object 1963 * and make sure they remain coherent. A few concrete examples may 1964 * help to explain how it works. For shorthand, we use the notation 1965 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the 1966 * a pair of read and write domain masks. 1967 * 1968 * Case 1: the batch buffer 1969 * 1970 * 1. Allocated 1971 * 2. Written by CPU 1972 * 3. Mapped to GTT 1973 * 4. Read by GPU 1974 * 5. Unmapped from GTT 1975 * 6. Freed 1976 * 1977 * Let's take these a step at a time 1978 * 1979 * 1. Allocated 1980 * Pages allocated from the kernel may still have 1981 * cache contents, so we set them to (CPU, CPU) always. 1982 * 2. Written by CPU (using pwrite) 1983 * The pwrite function calls set_domain (CPU, CPU) and 1984 * this function does nothing (as nothing changes) 1985 * 3. Mapped by GTT 1986 * This function asserts that the object is not 1987 * currently in any GPU-based read or write domains 1988 * 4. Read by GPU 1989 * i915_gem_execbuffer calls set_domain (COMMAND, 0). 1990 * As write_domain is zero, this function adds in the 1991 * current read domains (CPU+COMMAND, 0). 1992 * flush_domains is set to CPU. 1993 * invalidate_domains is set to COMMAND 1994 * clflush is run to get data out of the CPU caches 1995 * then i915_dev_set_domain calls i915_gem_flush to 1996 * emit an MI_FLUSH and drm_agp_chipset_flush 1997 * 5. Unmapped from GTT 1998 * i915_gem_object_unbind calls set_domain (CPU, CPU) 1999 * flush_domains and invalidate_domains end up both zero 2000 * so no flushing/invalidating happens 2001 * 6. Freed 2002 * yay, done 2003 * 2004 * Case 2: The shared render buffer 2005 * 2006 * 1. Allocated 2007 * 2. Mapped to GTT 2008 * 3. Read/written by GPU 2009 * 4. set_domain to (CPU,CPU) 2010 * 5. Read/written by CPU 2011 * 6. Read/written by GPU 2012 * 2013 * 1. Allocated 2014 * Same as last example, (CPU, CPU) 2015 * 2. Mapped to GTT 2016 * Nothing changes (assertions find that it is not in the GPU) 2017 * 3. Read/written by GPU 2018 * execbuffer calls set_domain (RENDER, RENDER) 2019 * flush_domains gets CPU 2020 * invalidate_domains gets GPU 2021 * clflush (obj) 2022 * MI_FLUSH and drm_agp_chipset_flush 2023 * 4. set_domain (CPU, CPU) 2024 * flush_domains gets GPU 2025 * invalidate_domains gets CPU 2026 * wait_rendering (obj) to make sure all drawing is complete. 2027 * This will include an MI_FLUSH to get the data from GPU 2028 * to memory 2029 * clflush (obj) to invalidate the CPU cache 2030 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?) 2031 * 5. Read/written by CPU 2032 * cache lines are loaded and dirtied 2033 * 6. Read written by GPU 2034 * Same as last GPU access 2035 * 2036 * Case 3: The constant buffer 2037 * 2038 * 1. Allocated 2039 * 2. Written by CPU 2040 * 3. Read by GPU 2041 * 4. Updated (written) by CPU again 2042 * 5. Read by GPU 2043 * 2044 * 1. Allocated 2045 * (CPU, CPU) 2046 * 2. Written by CPU 2047 * (CPU, CPU) 2048 * 3. Read by GPU 2049 * (CPU+RENDER, 0) 2050 * flush_domains = CPU 2051 * invalidate_domains = RENDER 2052 * clflush (obj) 2053 * MI_FLUSH 2054 * drm_agp_chipset_flush 2055 * 4. Updated (written) by CPU again 2056 * (CPU, CPU) 2057 * flush_domains = 0 (no previous write domain) 2058 * invalidate_domains = 0 (no new read domains) 2059 * 5. Read by GPU 2060 * (CPU+RENDER, 0) 2061 * flush_domains = CPU 2062 * invalidate_domains = RENDER 2063 * clflush (obj) 2064 * MI_FLUSH 2065 * drm_agp_chipset_flush 2066 */ 2067 static void 2068 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj) 2069 { 2070 struct drm_device *dev = obj->dev; 2071 struct drm_i915_gem_object *obj_priv = obj->driver_private; 2072 uint32_t invalidate_domains = 0; 2073 uint32_t flush_domains = 0; 2074 2075 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU); 2076 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU); 2077 2078 #if WATCH_BUF 2079 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n", 2080 __func__, obj, 2081 obj->read_domains, obj->pending_read_domains, 2082 obj->write_domain, obj->pending_write_domain); 2083 #endif 2084 /* 2085 * If the object isn't moving to a new write domain, 2086 * let the object stay in multiple read domains 2087 */ 2088 if (obj->pending_write_domain == 0) 2089 obj->pending_read_domains |= obj->read_domains; 2090 else 2091 obj_priv->dirty = 1; 2092 2093 /* 2094 * Flush the current write domain if 2095 * the new read domains don't match. Invalidate 2096 * any read domains which differ from the old 2097 * write domain 2098 */ 2099 if (obj->write_domain && 2100 obj->write_domain != obj->pending_read_domains) { 2101 flush_domains |= obj->write_domain; 2102 invalidate_domains |= 2103 obj->pending_read_domains & ~obj->write_domain; 2104 } 2105 /* 2106 * Invalidate any read caches which may have 2107 * stale data. That is, any new read domains. 2108 */ 2109 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains; 2110 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) { 2111 #if WATCH_BUF 2112 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n", 2113 __func__, flush_domains, invalidate_domains); 2114 #endif 2115 i915_gem_clflush_object(obj); 2116 } 2117 2118 /* The actual obj->write_domain will be updated with 2119 * pending_write_domain after we emit the accumulated flush for all 2120 * of our domain changes in execbuffers (which clears objects' 2121 * write_domains). So if we have a current write domain that we 2122 * aren't changing, set pending_write_domain to that. 2123 */ 2124 if (flush_domains == 0 && obj->pending_write_domain == 0) 2125 obj->pending_write_domain = obj->write_domain; 2126 obj->read_domains = obj->pending_read_domains; 2127 2128 dev->invalidate_domains |= invalidate_domains; 2129 dev->flush_domains |= flush_domains; 2130 #if WATCH_BUF 2131 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n", 2132 __func__, 2133 obj->read_domains, obj->write_domain, 2134 dev->invalidate_domains, dev->flush_domains); 2135 #endif 2136 } 2137 2138 /** 2139 * Moves the object from a partially CPU read to a full one. 2140 * 2141 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(), 2142 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU). 2143 */ 2144 static void 2145 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj) 2146 { 2147 struct drm_device *dev = obj->dev; 2148 struct drm_i915_gem_object *obj_priv = obj->driver_private; 2149 2150 if (!obj_priv->page_cpu_valid) 2151 return; 2152 2153 /* If we're partially in the CPU read domain, finish moving it in. 2154 */ 2155 if (obj->read_domains & I915_GEM_DOMAIN_CPU) { 2156 int i; 2157 2158 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) { 2159 if (obj_priv->page_cpu_valid[i]) 2160 continue; 2161 drm_clflush_pages(obj_priv->page_list + i, 1); 2162 } 2163 drm_agp_chipset_flush(dev); 2164 } 2165 2166 /* Free the page_cpu_valid mappings which are now stale, whether 2167 * or not we've got I915_GEM_DOMAIN_CPU. 2168 */ 2169 drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE, 2170 DRM_MEM_DRIVER); 2171 obj_priv->page_cpu_valid = NULL; 2172 } 2173 2174 /** 2175 * Set the CPU read domain on a range of the object. 2176 * 2177 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's 2178 * not entirely valid. The page_cpu_valid member of the object flags which 2179 * pages have been flushed, and will be respected by 2180 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping 2181 * of the whole object. 2182 * 2183 * This function returns when the move is complete, including waiting on 2184 * flushes to occur. 2185 */ 2186 static int 2187 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj, 2188 uint64_t offset, uint64_t size) 2189 { 2190 struct drm_i915_gem_object *obj_priv = obj->driver_private; 2191 int i, ret; 2192 2193 if (offset == 0 && size == obj->size) 2194 return i915_gem_object_set_to_cpu_domain(obj, 0); 2195 2196 i915_gem_object_flush_gpu_write_domain(obj); 2197 /* Wait on any GPU rendering and flushing to occur. */ 2198 ret = i915_gem_object_wait_rendering(obj); 2199 if (ret != 0) 2200 return ret; 2201 i915_gem_object_flush_gtt_write_domain(obj); 2202 2203 /* If we're already fully in the CPU read domain, we're done. */ 2204 if (obj_priv->page_cpu_valid == NULL && 2205 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0) 2206 return 0; 2207 2208 /* Otherwise, create/clear the per-page CPU read domain flag if we're 2209 * newly adding I915_GEM_DOMAIN_CPU 2210 */ 2211 if (obj_priv->page_cpu_valid == NULL) { 2212 obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE, 2213 DRM_MEM_DRIVER); 2214 if (obj_priv->page_cpu_valid == NULL) 2215 return -ENOMEM; 2216 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) 2217 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE); 2218 2219 /* Flush the cache on any pages that are still invalid from the CPU's 2220 * perspective. 2221 */ 2222 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE; 2223 i++) { 2224 if (obj_priv->page_cpu_valid[i]) 2225 continue; 2226 2227 drm_clflush_pages(obj_priv->page_list + i, 1); 2228 2229 obj_priv->page_cpu_valid[i] = 1; 2230 } 2231 2232 /* It should now be out of any other write domains, and we can update 2233 * the domain values for our changes. 2234 */ 2235 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0); 2236 2237 obj->read_domains |= I915_GEM_DOMAIN_CPU; 2238 2239 return 0; 2240 } 2241 2242 /** 2243 * Pin an object to the GTT and evaluate the relocations landing in it. 2244 */ 2245 static int 2246 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj, 2247 struct drm_file *file_priv, 2248 struct drm_i915_gem_exec_object *entry) 2249 { 2250 struct drm_device *dev = obj->dev; 2251 drm_i915_private_t *dev_priv = dev->dev_private; 2252 struct drm_i915_gem_relocation_entry reloc; 2253 struct drm_i915_gem_relocation_entry __user *relocs; 2254 struct drm_i915_gem_object *obj_priv = obj->driver_private; 2255 int i, ret; 2256 void __iomem *reloc_page; 2257 2258 /* Choose the GTT offset for our buffer and put it there. */ 2259 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment); 2260 if (ret) 2261 return ret; 2262 2263 entry->offset = obj_priv->gtt_offset; 2264 2265 relocs = (struct drm_i915_gem_relocation_entry __user *) 2266 (uintptr_t) entry->relocs_ptr; 2267 /* Apply the relocations, using the GTT aperture to avoid cache 2268 * flushing requirements. 2269 */ 2270 for (i = 0; i < entry->relocation_count; i++) { 2271 struct drm_gem_object *target_obj; 2272 struct drm_i915_gem_object *target_obj_priv; 2273 uint32_t reloc_val, reloc_offset; 2274 uint32_t __iomem *reloc_entry; 2275 2276 ret = copy_from_user(&reloc, relocs + i, sizeof(reloc)); 2277 if (ret != 0) { 2278 i915_gem_object_unpin(obj); 2279 return ret; 2280 } 2281 2282 target_obj = drm_gem_object_lookup(obj->dev, file_priv, 2283 reloc.target_handle); 2284 if (target_obj == NULL) { 2285 i915_gem_object_unpin(obj); 2286 return -EBADF; 2287 } 2288 target_obj_priv = target_obj->driver_private; 2289 2290 /* The target buffer should have appeared before us in the 2291 * exec_object list, so it should have a GTT space bound by now. 2292 */ 2293 if (target_obj_priv->gtt_space == NULL) { 2294 DRM_ERROR("No GTT space found for object %d\n", 2295 reloc.target_handle); 2296 drm_gem_object_unreference(target_obj); 2297 i915_gem_object_unpin(obj); 2298 return -EINVAL; 2299 } 2300 2301 if (reloc.offset > obj->size - 4) { 2302 DRM_ERROR("Relocation beyond object bounds: " 2303 "obj %p target %d offset %d size %d.\n", 2304 obj, reloc.target_handle, 2305 (int) reloc.offset, (int) obj->size); 2306 drm_gem_object_unreference(target_obj); 2307 i915_gem_object_unpin(obj); 2308 return -EINVAL; 2309 } 2310 if (reloc.offset & 3) { 2311 DRM_ERROR("Relocation not 4-byte aligned: " 2312 "obj %p target %d offset %d.\n", 2313 obj, reloc.target_handle, 2314 (int) reloc.offset); 2315 drm_gem_object_unreference(target_obj); 2316 i915_gem_object_unpin(obj); 2317 return -EINVAL; 2318 } 2319 2320 if (reloc.write_domain & I915_GEM_DOMAIN_CPU || 2321 reloc.read_domains & I915_GEM_DOMAIN_CPU) { 2322 DRM_ERROR("reloc with read/write CPU domains: " 2323 "obj %p target %d offset %d " 2324 "read %08x write %08x", 2325 obj, reloc.target_handle, 2326 (int) reloc.offset, 2327 reloc.read_domains, 2328 reloc.write_domain); 2329 drm_gem_object_unreference(target_obj); 2330 i915_gem_object_unpin(obj); 2331 return -EINVAL; 2332 } 2333 2334 if (reloc.write_domain && target_obj->pending_write_domain && 2335 reloc.write_domain != target_obj->pending_write_domain) { 2336 DRM_ERROR("Write domain conflict: " 2337 "obj %p target %d offset %d " 2338 "new %08x old %08x\n", 2339 obj, reloc.target_handle, 2340 (int) reloc.offset, 2341 reloc.write_domain, 2342 target_obj->pending_write_domain); 2343 drm_gem_object_unreference(target_obj); 2344 i915_gem_object_unpin(obj); 2345 return -EINVAL; 2346 } 2347 2348 #if WATCH_RELOC 2349 DRM_INFO("%s: obj %p offset %08x target %d " 2350 "read %08x write %08x gtt %08x " 2351 "presumed %08x delta %08x\n", 2352 __func__, 2353 obj, 2354 (int) reloc.offset, 2355 (int) reloc.target_handle, 2356 (int) reloc.read_domains, 2357 (int) reloc.write_domain, 2358 (int) target_obj_priv->gtt_offset, 2359 (int) reloc.presumed_offset, 2360 reloc.delta); 2361 #endif 2362 2363 target_obj->pending_read_domains |= reloc.read_domains; 2364 target_obj->pending_write_domain |= reloc.write_domain; 2365 2366 /* If the relocation already has the right value in it, no 2367 * more work needs to be done. 2368 */ 2369 if (target_obj_priv->gtt_offset == reloc.presumed_offset) { 2370 drm_gem_object_unreference(target_obj); 2371 continue; 2372 } 2373 2374 ret = i915_gem_object_set_to_gtt_domain(obj, 1); 2375 if (ret != 0) { 2376 drm_gem_object_unreference(target_obj); 2377 i915_gem_object_unpin(obj); 2378 return -EINVAL; 2379 } 2380 2381 /* Map the page containing the relocation we're going to 2382 * perform. 2383 */ 2384 reloc_offset = obj_priv->gtt_offset + reloc.offset; 2385 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping, 2386 (reloc_offset & 2387 ~(PAGE_SIZE - 1))); 2388 reloc_entry = (uint32_t __iomem *)(reloc_page + 2389 (reloc_offset & (PAGE_SIZE - 1))); 2390 reloc_val = target_obj_priv->gtt_offset + reloc.delta; 2391 2392 #if WATCH_BUF 2393 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n", 2394 obj, (unsigned int) reloc.offset, 2395 readl(reloc_entry), reloc_val); 2396 #endif 2397 writel(reloc_val, reloc_entry); 2398 io_mapping_unmap_atomic(reloc_page); 2399 2400 /* Write the updated presumed offset for this entry back out 2401 * to the user. 2402 */ 2403 reloc.presumed_offset = target_obj_priv->gtt_offset; 2404 ret = copy_to_user(relocs + i, &reloc, sizeof(reloc)); 2405 if (ret != 0) { 2406 drm_gem_object_unreference(target_obj); 2407 i915_gem_object_unpin(obj); 2408 return ret; 2409 } 2410 2411 drm_gem_object_unreference(target_obj); 2412 } 2413 2414 #if WATCH_BUF 2415 if (0) 2416 i915_gem_dump_object(obj, 128, __func__, ~0); 2417 #endif 2418 return 0; 2419 } 2420 2421 /** Dispatch a batchbuffer to the ring 2422 */ 2423 static int 2424 i915_dispatch_gem_execbuffer(struct drm_device *dev, 2425 struct drm_i915_gem_execbuffer *exec, 2426 uint64_t exec_offset) 2427 { 2428 drm_i915_private_t *dev_priv = dev->dev_private; 2429 struct drm_clip_rect __user *boxes = (struct drm_clip_rect __user *) 2430 (uintptr_t) exec->cliprects_ptr; 2431 int nbox = exec->num_cliprects; 2432 int i = 0, count; 2433 uint32_t exec_start, exec_len; 2434 RING_LOCALS; 2435 2436 exec_start = (uint32_t) exec_offset + exec->batch_start_offset; 2437 exec_len = (uint32_t) exec->batch_len; 2438 2439 if ((exec_start | exec_len) & 0x7) { 2440 DRM_ERROR("alignment\n"); 2441 return -EINVAL; 2442 } 2443 2444 if (!exec_start) 2445 return -EINVAL; 2446 2447 count = nbox ? nbox : 1; 2448 2449 for (i = 0; i < count; i++) { 2450 if (i < nbox) { 2451 int ret = i915_emit_box(dev, boxes, i, 2452 exec->DR1, exec->DR4); 2453 if (ret) 2454 return ret; 2455 } 2456 2457 if (IS_I830(dev) || IS_845G(dev)) { 2458 BEGIN_LP_RING(4); 2459 OUT_RING(MI_BATCH_BUFFER); 2460 OUT_RING(exec_start | MI_BATCH_NON_SECURE); 2461 OUT_RING(exec_start + exec_len - 4); 2462 OUT_RING(0); 2463 ADVANCE_LP_RING(); 2464 } else { 2465 BEGIN_LP_RING(2); 2466 if (IS_I965G(dev)) { 2467 OUT_RING(MI_BATCH_BUFFER_START | 2468 (2 << 6) | 2469 MI_BATCH_NON_SECURE_I965); 2470 OUT_RING(exec_start); 2471 } else { 2472 OUT_RING(MI_BATCH_BUFFER_START | 2473 (2 << 6)); 2474 OUT_RING(exec_start | MI_BATCH_NON_SECURE); 2475 } 2476 ADVANCE_LP_RING(); 2477 } 2478 } 2479 2480 /* XXX breadcrumb */ 2481 return 0; 2482 } 2483 2484 /* Throttle our rendering by waiting until the ring has completed our requests 2485 * emitted over 20 msec ago. 2486 * 2487 * This should get us reasonable parallelism between CPU and GPU but also 2488 * relatively low latency when blocking on a particular request to finish. 2489 */ 2490 static int 2491 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv) 2492 { 2493 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv; 2494 int ret = 0; 2495 uint32_t seqno; 2496 2497 mutex_lock(&dev->struct_mutex); 2498 seqno = i915_file_priv->mm.last_gem_throttle_seqno; 2499 i915_file_priv->mm.last_gem_throttle_seqno = 2500 i915_file_priv->mm.last_gem_seqno; 2501 if (seqno) 2502 ret = i915_wait_request(dev, seqno); 2503 mutex_unlock(&dev->struct_mutex); 2504 return ret; 2505 } 2506 2507 int 2508 i915_gem_execbuffer(struct drm_device *dev, void *data, 2509 struct drm_file *file_priv) 2510 { 2511 drm_i915_private_t *dev_priv = dev->dev_private; 2512 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv; 2513 struct drm_i915_gem_execbuffer *args = data; 2514 struct drm_i915_gem_exec_object *exec_list = NULL; 2515 struct drm_gem_object **object_list = NULL; 2516 struct drm_gem_object *batch_obj; 2517 struct drm_i915_gem_object *obj_priv; 2518 int ret, i, pinned = 0; 2519 uint64_t exec_offset; 2520 uint32_t seqno, flush_domains; 2521 int pin_tries; 2522 2523 #if WATCH_EXEC 2524 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n", 2525 (int) args->buffers_ptr, args->buffer_count, args->batch_len); 2526 #endif 2527 2528 if (args->buffer_count < 1) { 2529 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count); 2530 return -EINVAL; 2531 } 2532 /* Copy in the exec list from userland */ 2533 exec_list = drm_calloc(sizeof(*exec_list), args->buffer_count, 2534 DRM_MEM_DRIVER); 2535 object_list = drm_calloc(sizeof(*object_list), args->buffer_count, 2536 DRM_MEM_DRIVER); 2537 if (exec_list == NULL || object_list == NULL) { 2538 DRM_ERROR("Failed to allocate exec or object list " 2539 "for %d buffers\n", 2540 args->buffer_count); 2541 ret = -ENOMEM; 2542 goto pre_mutex_err; 2543 } 2544 ret = copy_from_user(exec_list, 2545 (struct drm_i915_relocation_entry __user *) 2546 (uintptr_t) args->buffers_ptr, 2547 sizeof(*exec_list) * args->buffer_count); 2548 if (ret != 0) { 2549 DRM_ERROR("copy %d exec entries failed %d\n", 2550 args->buffer_count, ret); 2551 goto pre_mutex_err; 2552 } 2553 2554 mutex_lock(&dev->struct_mutex); 2555 2556 i915_verify_inactive(dev, __FILE__, __LINE__); 2557 2558 if (dev_priv->mm.wedged) { 2559 DRM_ERROR("Execbuf while wedged\n"); 2560 mutex_unlock(&dev->struct_mutex); 2561 ret = -EIO; 2562 goto pre_mutex_err; 2563 } 2564 2565 if (dev_priv->mm.suspended) { 2566 DRM_ERROR("Execbuf while VT-switched.\n"); 2567 mutex_unlock(&dev->struct_mutex); 2568 ret = -EBUSY; 2569 goto pre_mutex_err; 2570 } 2571 2572 /* Look up object handles */ 2573 for (i = 0; i < args->buffer_count; i++) { 2574 object_list[i] = drm_gem_object_lookup(dev, file_priv, 2575 exec_list[i].handle); 2576 if (object_list[i] == NULL) { 2577 DRM_ERROR("Invalid object handle %d at index %d\n", 2578 exec_list[i].handle, i); 2579 ret = -EBADF; 2580 goto err; 2581 } 2582 2583 obj_priv = object_list[i]->driver_private; 2584 if (obj_priv->in_execbuffer) { 2585 DRM_ERROR("Object %p appears more than once in object list\n", 2586 object_list[i]); 2587 ret = -EBADF; 2588 goto err; 2589 } 2590 obj_priv->in_execbuffer = true; 2591 } 2592 2593 /* Pin and relocate */ 2594 for (pin_tries = 0; ; pin_tries++) { 2595 ret = 0; 2596 for (i = 0; i < args->buffer_count; i++) { 2597 object_list[i]->pending_read_domains = 0; 2598 object_list[i]->pending_write_domain = 0; 2599 ret = i915_gem_object_pin_and_relocate(object_list[i], 2600 file_priv, 2601 &exec_list[i]); 2602 if (ret) 2603 break; 2604 pinned = i + 1; 2605 } 2606 /* success */ 2607 if (ret == 0) 2608 break; 2609 2610 /* error other than GTT full, or we've already tried again */ 2611 if (ret != -ENOMEM || pin_tries >= 1) { 2612 if (ret != -ERESTARTSYS) 2613 DRM_ERROR("Failed to pin buffers %d\n", ret); 2614 goto err; 2615 } 2616 2617 /* unpin all of our buffers */ 2618 for (i = 0; i < pinned; i++) 2619 i915_gem_object_unpin(object_list[i]); 2620 pinned = 0; 2621 2622 /* evict everyone we can from the aperture */ 2623 ret = i915_gem_evict_everything(dev); 2624 if (ret) 2625 goto err; 2626 } 2627 2628 /* Set the pending read domains for the batch buffer to COMMAND */ 2629 batch_obj = object_list[args->buffer_count-1]; 2630 batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND; 2631 batch_obj->pending_write_domain = 0; 2632 2633 i915_verify_inactive(dev, __FILE__, __LINE__); 2634 2635 /* Zero the global flush/invalidate flags. These 2636 * will be modified as new domains are computed 2637 * for each object 2638 */ 2639 dev->invalidate_domains = 0; 2640 dev->flush_domains = 0; 2641 2642 for (i = 0; i < args->buffer_count; i++) { 2643 struct drm_gem_object *obj = object_list[i]; 2644 2645 /* Compute new gpu domains and update invalidate/flush */ 2646 i915_gem_object_set_to_gpu_domain(obj); 2647 } 2648 2649 i915_verify_inactive(dev, __FILE__, __LINE__); 2650 2651 if (dev->invalidate_domains | dev->flush_domains) { 2652 #if WATCH_EXEC 2653 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n", 2654 __func__, 2655 dev->invalidate_domains, 2656 dev->flush_domains); 2657 #endif 2658 i915_gem_flush(dev, 2659 dev->invalidate_domains, 2660 dev->flush_domains); 2661 if (dev->flush_domains) 2662 (void)i915_add_request(dev, dev->flush_domains); 2663 } 2664 2665 for (i = 0; i < args->buffer_count; i++) { 2666 struct drm_gem_object *obj = object_list[i]; 2667 2668 obj->write_domain = obj->pending_write_domain; 2669 } 2670 2671 i915_verify_inactive(dev, __FILE__, __LINE__); 2672 2673 #if WATCH_COHERENCY 2674 for (i = 0; i < args->buffer_count; i++) { 2675 i915_gem_object_check_coherency(object_list[i], 2676 exec_list[i].handle); 2677 } 2678 #endif 2679 2680 exec_offset = exec_list[args->buffer_count - 1].offset; 2681 2682 #if WATCH_EXEC 2683 i915_gem_dump_object(object_list[args->buffer_count - 1], 2684 args->batch_len, 2685 __func__, 2686 ~0); 2687 #endif 2688 2689 /* Exec the batchbuffer */ 2690 ret = i915_dispatch_gem_execbuffer(dev, args, exec_offset); 2691 if (ret) { 2692 DRM_ERROR("dispatch failed %d\n", ret); 2693 goto err; 2694 } 2695 2696 /* 2697 * Ensure that the commands in the batch buffer are 2698 * finished before the interrupt fires 2699 */ 2700 flush_domains = i915_retire_commands(dev); 2701 2702 i915_verify_inactive(dev, __FILE__, __LINE__); 2703 2704 /* 2705 * Get a seqno representing the execution of the current buffer, 2706 * which we can wait on. We would like to mitigate these interrupts, 2707 * likely by only creating seqnos occasionally (so that we have 2708 * *some* interrupts representing completion of buffers that we can 2709 * wait on when trying to clear up gtt space). 2710 */ 2711 seqno = i915_add_request(dev, flush_domains); 2712 BUG_ON(seqno == 0); 2713 i915_file_priv->mm.last_gem_seqno = seqno; 2714 for (i = 0; i < args->buffer_count; i++) { 2715 struct drm_gem_object *obj = object_list[i]; 2716 2717 i915_gem_object_move_to_active(obj, seqno); 2718 #if WATCH_LRU 2719 DRM_INFO("%s: move to exec list %p\n", __func__, obj); 2720 #endif 2721 } 2722 #if WATCH_LRU 2723 i915_dump_lru(dev, __func__); 2724 #endif 2725 2726 i915_verify_inactive(dev, __FILE__, __LINE__); 2727 2728 err: 2729 for (i = 0; i < pinned; i++) 2730 i915_gem_object_unpin(object_list[i]); 2731 2732 for (i = 0; i < args->buffer_count; i++) { 2733 if (object_list[i]) { 2734 obj_priv = object_list[i]->driver_private; 2735 obj_priv->in_execbuffer = false; 2736 } 2737 drm_gem_object_unreference(object_list[i]); 2738 } 2739 2740 mutex_unlock(&dev->struct_mutex); 2741 2742 if (!ret) { 2743 /* Copy the new buffer offsets back to the user's exec list. */ 2744 ret = copy_to_user((struct drm_i915_relocation_entry __user *) 2745 (uintptr_t) args->buffers_ptr, 2746 exec_list, 2747 sizeof(*exec_list) * args->buffer_count); 2748 if (ret) 2749 DRM_ERROR("failed to copy %d exec entries " 2750 "back to user (%d)\n", 2751 args->buffer_count, ret); 2752 } 2753 2754 pre_mutex_err: 2755 drm_free(object_list, sizeof(*object_list) * args->buffer_count, 2756 DRM_MEM_DRIVER); 2757 drm_free(exec_list, sizeof(*exec_list) * args->buffer_count, 2758 DRM_MEM_DRIVER); 2759 2760 return ret; 2761 } 2762 2763 int 2764 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment) 2765 { 2766 struct drm_device *dev = obj->dev; 2767 struct drm_i915_gem_object *obj_priv = obj->driver_private; 2768 int ret; 2769 2770 i915_verify_inactive(dev, __FILE__, __LINE__); 2771 if (obj_priv->gtt_space == NULL) { 2772 ret = i915_gem_object_bind_to_gtt(obj, alignment); 2773 if (ret != 0) { 2774 if (ret != -EBUSY && ret != -ERESTARTSYS) 2775 DRM_ERROR("Failure to bind: %d\n", ret); 2776 return ret; 2777 } 2778 } 2779 /* 2780 * Pre-965 chips need a fence register set up in order to 2781 * properly handle tiled surfaces. 2782 */ 2783 if (!IS_I965G(dev) && 2784 obj_priv->fence_reg == I915_FENCE_REG_NONE && 2785 obj_priv->tiling_mode != I915_TILING_NONE) { 2786 ret = i915_gem_object_get_fence_reg(obj, true); 2787 if (ret != 0) { 2788 if (ret != -EBUSY && ret != -ERESTARTSYS) 2789 DRM_ERROR("Failure to install fence: %d\n", 2790 ret); 2791 return ret; 2792 } 2793 } 2794 obj_priv->pin_count++; 2795 2796 /* If the object is not active and not pending a flush, 2797 * remove it from the inactive list 2798 */ 2799 if (obj_priv->pin_count == 1) { 2800 atomic_inc(&dev->pin_count); 2801 atomic_add(obj->size, &dev->pin_memory); 2802 if (!obj_priv->active && 2803 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU | 2804 I915_GEM_DOMAIN_GTT)) == 0 && 2805 !list_empty(&obj_priv->list)) 2806 list_del_init(&obj_priv->list); 2807 } 2808 i915_verify_inactive(dev, __FILE__, __LINE__); 2809 2810 return 0; 2811 } 2812 2813 void 2814 i915_gem_object_unpin(struct drm_gem_object *obj) 2815 { 2816 struct drm_device *dev = obj->dev; 2817 drm_i915_private_t *dev_priv = dev->dev_private; 2818 struct drm_i915_gem_object *obj_priv = obj->driver_private; 2819 2820 i915_verify_inactive(dev, __FILE__, __LINE__); 2821 obj_priv->pin_count--; 2822 BUG_ON(obj_priv->pin_count < 0); 2823 BUG_ON(obj_priv->gtt_space == NULL); 2824 2825 /* If the object is no longer pinned, and is 2826 * neither active nor being flushed, then stick it on 2827 * the inactive list 2828 */ 2829 if (obj_priv->pin_count == 0) { 2830 if (!obj_priv->active && 2831 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU | 2832 I915_GEM_DOMAIN_GTT)) == 0) 2833 list_move_tail(&obj_priv->list, 2834 &dev_priv->mm.inactive_list); 2835 atomic_dec(&dev->pin_count); 2836 atomic_sub(obj->size, &dev->pin_memory); 2837 } 2838 i915_verify_inactive(dev, __FILE__, __LINE__); 2839 } 2840 2841 int 2842 i915_gem_pin_ioctl(struct drm_device *dev, void *data, 2843 struct drm_file *file_priv) 2844 { 2845 struct drm_i915_gem_pin *args = data; 2846 struct drm_gem_object *obj; 2847 struct drm_i915_gem_object *obj_priv; 2848 int ret; 2849 2850 mutex_lock(&dev->struct_mutex); 2851 2852 obj = drm_gem_object_lookup(dev, file_priv, args->handle); 2853 if (obj == NULL) { 2854 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n", 2855 args->handle); 2856 mutex_unlock(&dev->struct_mutex); 2857 return -EBADF; 2858 } 2859 obj_priv = obj->driver_private; 2860 2861 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) { 2862 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n", 2863 args->handle); 2864 drm_gem_object_unreference(obj); 2865 mutex_unlock(&dev->struct_mutex); 2866 return -EINVAL; 2867 } 2868 2869 obj_priv->user_pin_count++; 2870 obj_priv->pin_filp = file_priv; 2871 if (obj_priv->user_pin_count == 1) { 2872 ret = i915_gem_object_pin(obj, args->alignment); 2873 if (ret != 0) { 2874 drm_gem_object_unreference(obj); 2875 mutex_unlock(&dev->struct_mutex); 2876 return ret; 2877 } 2878 } 2879 2880 /* XXX - flush the CPU caches for pinned objects 2881 * as the X server doesn't manage domains yet 2882 */ 2883 i915_gem_object_flush_cpu_write_domain(obj); 2884 args->offset = obj_priv->gtt_offset; 2885 drm_gem_object_unreference(obj); 2886 mutex_unlock(&dev->struct_mutex); 2887 2888 return 0; 2889 } 2890 2891 int 2892 i915_gem_unpin_ioctl(struct drm_device *dev, void *data, 2893 struct drm_file *file_priv) 2894 { 2895 struct drm_i915_gem_pin *args = data; 2896 struct drm_gem_object *obj; 2897 struct drm_i915_gem_object *obj_priv; 2898 2899 mutex_lock(&dev->struct_mutex); 2900 2901 obj = drm_gem_object_lookup(dev, file_priv, args->handle); 2902 if (obj == NULL) { 2903 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n", 2904 args->handle); 2905 mutex_unlock(&dev->struct_mutex); 2906 return -EBADF; 2907 } 2908 2909 obj_priv = obj->driver_private; 2910 if (obj_priv->pin_filp != file_priv) { 2911 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n", 2912 args->handle); 2913 drm_gem_object_unreference(obj); 2914 mutex_unlock(&dev->struct_mutex); 2915 return -EINVAL; 2916 } 2917 obj_priv->user_pin_count--; 2918 if (obj_priv->user_pin_count == 0) { 2919 obj_priv->pin_filp = NULL; 2920 i915_gem_object_unpin(obj); 2921 } 2922 2923 drm_gem_object_unreference(obj); 2924 mutex_unlock(&dev->struct_mutex); 2925 return 0; 2926 } 2927 2928 int 2929 i915_gem_busy_ioctl(struct drm_device *dev, void *data, 2930 struct drm_file *file_priv) 2931 { 2932 struct drm_i915_gem_busy *args = data; 2933 struct drm_gem_object *obj; 2934 struct drm_i915_gem_object *obj_priv; 2935 2936 mutex_lock(&dev->struct_mutex); 2937 obj = drm_gem_object_lookup(dev, file_priv, args->handle); 2938 if (obj == NULL) { 2939 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n", 2940 args->handle); 2941 mutex_unlock(&dev->struct_mutex); 2942 return -EBADF; 2943 } 2944 2945 /* Update the active list for the hardware's current position. 2946 * Otherwise this only updates on a delayed timer or when irqs are 2947 * actually unmasked, and our working set ends up being larger than 2948 * required. 2949 */ 2950 i915_gem_retire_requests(dev); 2951 2952 obj_priv = obj->driver_private; 2953 /* Don't count being on the flushing list against the object being 2954 * done. Otherwise, a buffer left on the flushing list but not getting 2955 * flushed (because nobody's flushing that domain) won't ever return 2956 * unbusy and get reused by libdrm's bo cache. The other expected 2957 * consumer of this interface, OpenGL's occlusion queries, also specs 2958 * that the objects get unbusy "eventually" without any interference. 2959 */ 2960 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0; 2961 2962 drm_gem_object_unreference(obj); 2963 mutex_unlock(&dev->struct_mutex); 2964 return 0; 2965 } 2966 2967 int 2968 i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 2969 struct drm_file *file_priv) 2970 { 2971 return i915_gem_ring_throttle(dev, file_priv); 2972 } 2973 2974 int i915_gem_init_object(struct drm_gem_object *obj) 2975 { 2976 struct drm_i915_gem_object *obj_priv; 2977 2978 obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER); 2979 if (obj_priv == NULL) 2980 return -ENOMEM; 2981 2982 /* 2983 * We've just allocated pages from the kernel, 2984 * so they've just been written by the CPU with 2985 * zeros. They'll need to be clflushed before we 2986 * use them with the GPU. 2987 */ 2988 obj->write_domain = I915_GEM_DOMAIN_CPU; 2989 obj->read_domains = I915_GEM_DOMAIN_CPU; 2990 2991 obj_priv->agp_type = AGP_USER_MEMORY; 2992 2993 obj->driver_private = obj_priv; 2994 obj_priv->obj = obj; 2995 obj_priv->fence_reg = I915_FENCE_REG_NONE; 2996 INIT_LIST_HEAD(&obj_priv->list); 2997 2998 return 0; 2999 } 3000 3001 void i915_gem_free_object(struct drm_gem_object *obj) 3002 { 3003 struct drm_device *dev = obj->dev; 3004 struct drm_i915_gem_object *obj_priv = obj->driver_private; 3005 3006 while (obj_priv->pin_count > 0) 3007 i915_gem_object_unpin(obj); 3008 3009 if (obj_priv->phys_obj) 3010 i915_gem_detach_phys_object(dev, obj); 3011 3012 i915_gem_object_unbind(obj); 3013 3014 i915_gem_free_mmap_offset(obj); 3015 3016 drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER); 3017 drm_free(obj->driver_private, 1, DRM_MEM_DRIVER); 3018 } 3019 3020 /** Unbinds all objects that are on the given buffer list. */ 3021 static int 3022 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head) 3023 { 3024 struct drm_gem_object *obj; 3025 struct drm_i915_gem_object *obj_priv; 3026 int ret; 3027 3028 while (!list_empty(head)) { 3029 obj_priv = list_first_entry(head, 3030 struct drm_i915_gem_object, 3031 list); 3032 obj = obj_priv->obj; 3033 3034 if (obj_priv->pin_count != 0) { 3035 DRM_ERROR("Pinned object in unbind list\n"); 3036 mutex_unlock(&dev->struct_mutex); 3037 return -EINVAL; 3038 } 3039 3040 ret = i915_gem_object_unbind(obj); 3041 if (ret != 0) { 3042 DRM_ERROR("Error unbinding object in LeaveVT: %d\n", 3043 ret); 3044 mutex_unlock(&dev->struct_mutex); 3045 return ret; 3046 } 3047 } 3048 3049 3050 return 0; 3051 } 3052 3053 int 3054 i915_gem_idle(struct drm_device *dev) 3055 { 3056 drm_i915_private_t *dev_priv = dev->dev_private; 3057 uint32_t seqno, cur_seqno, last_seqno; 3058 int stuck, ret; 3059 3060 mutex_lock(&dev->struct_mutex); 3061 3062 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) { 3063 mutex_unlock(&dev->struct_mutex); 3064 return 0; 3065 } 3066 3067 /* Hack! Don't let anybody do execbuf while we don't control the chip. 3068 * We need to replace this with a semaphore, or something. 3069 */ 3070 dev_priv->mm.suspended = 1; 3071 3072 /* Cancel the retire work handler, wait for it to finish if running 3073 */ 3074 mutex_unlock(&dev->struct_mutex); 3075 cancel_delayed_work_sync(&dev_priv->mm.retire_work); 3076 mutex_lock(&dev->struct_mutex); 3077 3078 i915_kernel_lost_context(dev); 3079 3080 /* Flush the GPU along with all non-CPU write domains 3081 */ 3082 i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT), 3083 ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT)); 3084 seqno = i915_add_request(dev, ~I915_GEM_DOMAIN_CPU); 3085 3086 if (seqno == 0) { 3087 mutex_unlock(&dev->struct_mutex); 3088 return -ENOMEM; 3089 } 3090 3091 dev_priv->mm.waiting_gem_seqno = seqno; 3092 last_seqno = 0; 3093 stuck = 0; 3094 for (;;) { 3095 cur_seqno = i915_get_gem_seqno(dev); 3096 if (i915_seqno_passed(cur_seqno, seqno)) 3097 break; 3098 if (last_seqno == cur_seqno) { 3099 if (stuck++ > 100) { 3100 DRM_ERROR("hardware wedged\n"); 3101 dev_priv->mm.wedged = 1; 3102 DRM_WAKEUP(&dev_priv->irq_queue); 3103 break; 3104 } 3105 } 3106 msleep(10); 3107 last_seqno = cur_seqno; 3108 } 3109 dev_priv->mm.waiting_gem_seqno = 0; 3110 3111 i915_gem_retire_requests(dev); 3112 3113 if (!dev_priv->mm.wedged) { 3114 /* Active and flushing should now be empty as we've 3115 * waited for a sequence higher than any pending execbuffer 3116 */ 3117 WARN_ON(!list_empty(&dev_priv->mm.active_list)); 3118 WARN_ON(!list_empty(&dev_priv->mm.flushing_list)); 3119 /* Request should now be empty as we've also waited 3120 * for the last request in the list 3121 */ 3122 WARN_ON(!list_empty(&dev_priv->mm.request_list)); 3123 } 3124 3125 /* Empty the active and flushing lists to inactive. If there's 3126 * anything left at this point, it means that we're wedged and 3127 * nothing good's going to happen by leaving them there. So strip 3128 * the GPU domains and just stuff them onto inactive. 3129 */ 3130 while (!list_empty(&dev_priv->mm.active_list)) { 3131 struct drm_i915_gem_object *obj_priv; 3132 3133 obj_priv = list_first_entry(&dev_priv->mm.active_list, 3134 struct drm_i915_gem_object, 3135 list); 3136 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS; 3137 i915_gem_object_move_to_inactive(obj_priv->obj); 3138 } 3139 3140 while (!list_empty(&dev_priv->mm.flushing_list)) { 3141 struct drm_i915_gem_object *obj_priv; 3142 3143 obj_priv = list_first_entry(&dev_priv->mm.flushing_list, 3144 struct drm_i915_gem_object, 3145 list); 3146 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS; 3147 i915_gem_object_move_to_inactive(obj_priv->obj); 3148 } 3149 3150 3151 /* Move all inactive buffers out of the GTT. */ 3152 ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list); 3153 WARN_ON(!list_empty(&dev_priv->mm.inactive_list)); 3154 if (ret) { 3155 mutex_unlock(&dev->struct_mutex); 3156 return ret; 3157 } 3158 3159 i915_gem_cleanup_ringbuffer(dev); 3160 mutex_unlock(&dev->struct_mutex); 3161 3162 return 0; 3163 } 3164 3165 static int 3166 i915_gem_init_hws(struct drm_device *dev) 3167 { 3168 drm_i915_private_t *dev_priv = dev->dev_private; 3169 struct drm_gem_object *obj; 3170 struct drm_i915_gem_object *obj_priv; 3171 int ret; 3172 3173 /* If we need a physical address for the status page, it's already 3174 * initialized at driver load time. 3175 */ 3176 if (!I915_NEED_GFX_HWS(dev)) 3177 return 0; 3178 3179 obj = drm_gem_object_alloc(dev, 4096); 3180 if (obj == NULL) { 3181 DRM_ERROR("Failed to allocate status page\n"); 3182 return -ENOMEM; 3183 } 3184 obj_priv = obj->driver_private; 3185 obj_priv->agp_type = AGP_USER_CACHED_MEMORY; 3186 3187 ret = i915_gem_object_pin(obj, 4096); 3188 if (ret != 0) { 3189 drm_gem_object_unreference(obj); 3190 return ret; 3191 } 3192 3193 dev_priv->status_gfx_addr = obj_priv->gtt_offset; 3194 3195 dev_priv->hw_status_page = kmap(obj_priv->page_list[0]); 3196 if (dev_priv->hw_status_page == NULL) { 3197 DRM_ERROR("Failed to map status page.\n"); 3198 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map)); 3199 i915_gem_object_unpin(obj); 3200 drm_gem_object_unreference(obj); 3201 return -EINVAL; 3202 } 3203 dev_priv->hws_obj = obj; 3204 memset(dev_priv->hw_status_page, 0, PAGE_SIZE); 3205 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr); 3206 I915_READ(HWS_PGA); /* posting read */ 3207 DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr); 3208 3209 return 0; 3210 } 3211 3212 static void 3213 i915_gem_cleanup_hws(struct drm_device *dev) 3214 { 3215 drm_i915_private_t *dev_priv = dev->dev_private; 3216 struct drm_gem_object *obj; 3217 struct drm_i915_gem_object *obj_priv; 3218 3219 if (dev_priv->hws_obj == NULL) 3220 return; 3221 3222 obj = dev_priv->hws_obj; 3223 obj_priv = obj->driver_private; 3224 3225 kunmap(obj_priv->page_list[0]); 3226 i915_gem_object_unpin(obj); 3227 drm_gem_object_unreference(obj); 3228 dev_priv->hws_obj = NULL; 3229 3230 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map)); 3231 dev_priv->hw_status_page = NULL; 3232 3233 /* Write high address into HWS_PGA when disabling. */ 3234 I915_WRITE(HWS_PGA, 0x1ffff000); 3235 } 3236 3237 int 3238 i915_gem_init_ringbuffer(struct drm_device *dev) 3239 { 3240 drm_i915_private_t *dev_priv = dev->dev_private; 3241 struct drm_gem_object *obj; 3242 struct drm_i915_gem_object *obj_priv; 3243 drm_i915_ring_buffer_t *ring = &dev_priv->ring; 3244 int ret; 3245 u32 head; 3246 3247 ret = i915_gem_init_hws(dev); 3248 if (ret != 0) 3249 return ret; 3250 3251 obj = drm_gem_object_alloc(dev, 128 * 1024); 3252 if (obj == NULL) { 3253 DRM_ERROR("Failed to allocate ringbuffer\n"); 3254 i915_gem_cleanup_hws(dev); 3255 return -ENOMEM; 3256 } 3257 obj_priv = obj->driver_private; 3258 3259 ret = i915_gem_object_pin(obj, 4096); 3260 if (ret != 0) { 3261 drm_gem_object_unreference(obj); 3262 i915_gem_cleanup_hws(dev); 3263 return ret; 3264 } 3265 3266 /* Set up the kernel mapping for the ring. */ 3267 ring->Size = obj->size; 3268 ring->tail_mask = obj->size - 1; 3269 3270 ring->map.offset = dev->agp->base + obj_priv->gtt_offset; 3271 ring->map.size = obj->size; 3272 ring->map.type = 0; 3273 ring->map.flags = 0; 3274 ring->map.mtrr = 0; 3275 3276 drm_core_ioremap_wc(&ring->map, dev); 3277 if (ring->map.handle == NULL) { 3278 DRM_ERROR("Failed to map ringbuffer.\n"); 3279 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring)); 3280 i915_gem_object_unpin(obj); 3281 drm_gem_object_unreference(obj); 3282 i915_gem_cleanup_hws(dev); 3283 return -EINVAL; 3284 } 3285 ring->ring_obj = obj; 3286 ring->virtual_start = ring->map.handle; 3287 3288 /* Stop the ring if it's running. */ 3289 I915_WRITE(PRB0_CTL, 0); 3290 I915_WRITE(PRB0_TAIL, 0); 3291 I915_WRITE(PRB0_HEAD, 0); 3292 3293 /* Initialize the ring. */ 3294 I915_WRITE(PRB0_START, obj_priv->gtt_offset); 3295 head = I915_READ(PRB0_HEAD) & HEAD_ADDR; 3296 3297 /* G45 ring initialization fails to reset head to zero */ 3298 if (head != 0) { 3299 DRM_ERROR("Ring head not reset to zero " 3300 "ctl %08x head %08x tail %08x start %08x\n", 3301 I915_READ(PRB0_CTL), 3302 I915_READ(PRB0_HEAD), 3303 I915_READ(PRB0_TAIL), 3304 I915_READ(PRB0_START)); 3305 I915_WRITE(PRB0_HEAD, 0); 3306 3307 DRM_ERROR("Ring head forced to zero " 3308 "ctl %08x head %08x tail %08x start %08x\n", 3309 I915_READ(PRB0_CTL), 3310 I915_READ(PRB0_HEAD), 3311 I915_READ(PRB0_TAIL), 3312 I915_READ(PRB0_START)); 3313 } 3314 3315 I915_WRITE(PRB0_CTL, 3316 ((obj->size - 4096) & RING_NR_PAGES) | 3317 RING_NO_REPORT | 3318 RING_VALID); 3319 3320 head = I915_READ(PRB0_HEAD) & HEAD_ADDR; 3321 3322 /* If the head is still not zero, the ring is dead */ 3323 if (head != 0) { 3324 DRM_ERROR("Ring initialization failed " 3325 "ctl %08x head %08x tail %08x start %08x\n", 3326 I915_READ(PRB0_CTL), 3327 I915_READ(PRB0_HEAD), 3328 I915_READ(PRB0_TAIL), 3329 I915_READ(PRB0_START)); 3330 return -EIO; 3331 } 3332 3333 /* Update our cache of the ring state */ 3334 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 3335 i915_kernel_lost_context(dev); 3336 else { 3337 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR; 3338 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR; 3339 ring->space = ring->head - (ring->tail + 8); 3340 if (ring->space < 0) 3341 ring->space += ring->Size; 3342 } 3343 3344 return 0; 3345 } 3346 3347 void 3348 i915_gem_cleanup_ringbuffer(struct drm_device *dev) 3349 { 3350 drm_i915_private_t *dev_priv = dev->dev_private; 3351 3352 if (dev_priv->ring.ring_obj == NULL) 3353 return; 3354 3355 drm_core_ioremapfree(&dev_priv->ring.map, dev); 3356 3357 i915_gem_object_unpin(dev_priv->ring.ring_obj); 3358 drm_gem_object_unreference(dev_priv->ring.ring_obj); 3359 dev_priv->ring.ring_obj = NULL; 3360 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring)); 3361 3362 i915_gem_cleanup_hws(dev); 3363 } 3364 3365 int 3366 i915_gem_entervt_ioctl(struct drm_device *dev, void *data, 3367 struct drm_file *file_priv) 3368 { 3369 drm_i915_private_t *dev_priv = dev->dev_private; 3370 int ret; 3371 3372 if (drm_core_check_feature(dev, DRIVER_MODESET)) 3373 return 0; 3374 3375 if (dev_priv->mm.wedged) { 3376 DRM_ERROR("Reenabling wedged hardware, good luck\n"); 3377 dev_priv->mm.wedged = 0; 3378 } 3379 3380 mutex_lock(&dev->struct_mutex); 3381 dev_priv->mm.suspended = 0; 3382 3383 ret = i915_gem_init_ringbuffer(dev); 3384 if (ret != 0) 3385 return ret; 3386 3387 BUG_ON(!list_empty(&dev_priv->mm.active_list)); 3388 BUG_ON(!list_empty(&dev_priv->mm.flushing_list)); 3389 BUG_ON(!list_empty(&dev_priv->mm.inactive_list)); 3390 BUG_ON(!list_empty(&dev_priv->mm.request_list)); 3391 mutex_unlock(&dev->struct_mutex); 3392 3393 drm_irq_install(dev); 3394 3395 return 0; 3396 } 3397 3398 int 3399 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data, 3400 struct drm_file *file_priv) 3401 { 3402 int ret; 3403 3404 if (drm_core_check_feature(dev, DRIVER_MODESET)) 3405 return 0; 3406 3407 ret = i915_gem_idle(dev); 3408 drm_irq_uninstall(dev); 3409 3410 return ret; 3411 } 3412 3413 void 3414 i915_gem_lastclose(struct drm_device *dev) 3415 { 3416 int ret; 3417 3418 if (drm_core_check_feature(dev, DRIVER_MODESET)) 3419 return; 3420 3421 ret = i915_gem_idle(dev); 3422 if (ret) 3423 DRM_ERROR("failed to idle hardware: %d\n", ret); 3424 } 3425 3426 void 3427 i915_gem_load(struct drm_device *dev) 3428 { 3429 drm_i915_private_t *dev_priv = dev->dev_private; 3430 3431 INIT_LIST_HEAD(&dev_priv->mm.active_list); 3432 INIT_LIST_HEAD(&dev_priv->mm.flushing_list); 3433 INIT_LIST_HEAD(&dev_priv->mm.inactive_list); 3434 INIT_LIST_HEAD(&dev_priv->mm.request_list); 3435 INIT_DELAYED_WORK(&dev_priv->mm.retire_work, 3436 i915_gem_retire_work_handler); 3437 dev_priv->mm.next_gem_seqno = 1; 3438 3439 /* Old X drivers will take 0-2 for front, back, depth buffers */ 3440 dev_priv->fence_reg_start = 3; 3441 3442 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) 3443 dev_priv->num_fence_regs = 16; 3444 else 3445 dev_priv->num_fence_regs = 8; 3446 3447 i915_gem_detect_bit_6_swizzle(dev); 3448 } 3449 3450 /* 3451 * Create a physically contiguous memory object for this object 3452 * e.g. for cursor + overlay regs 3453 */ 3454 int i915_gem_init_phys_object(struct drm_device *dev, 3455 int id, int size) 3456 { 3457 drm_i915_private_t *dev_priv = dev->dev_private; 3458 struct drm_i915_gem_phys_object *phys_obj; 3459 int ret; 3460 3461 if (dev_priv->mm.phys_objs[id - 1] || !size) 3462 return 0; 3463 3464 phys_obj = drm_calloc(1, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER); 3465 if (!phys_obj) 3466 return -ENOMEM; 3467 3468 phys_obj->id = id; 3469 3470 phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff); 3471 if (!phys_obj->handle) { 3472 ret = -ENOMEM; 3473 goto kfree_obj; 3474 } 3475 #ifdef CONFIG_X86 3476 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE); 3477 #endif 3478 3479 dev_priv->mm.phys_objs[id - 1] = phys_obj; 3480 3481 return 0; 3482 kfree_obj: 3483 drm_free(phys_obj, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER); 3484 return ret; 3485 } 3486 3487 void i915_gem_free_phys_object(struct drm_device *dev, int id) 3488 { 3489 drm_i915_private_t *dev_priv = dev->dev_private; 3490 struct drm_i915_gem_phys_object *phys_obj; 3491 3492 if (!dev_priv->mm.phys_objs[id - 1]) 3493 return; 3494 3495 phys_obj = dev_priv->mm.phys_objs[id - 1]; 3496 if (phys_obj->cur_obj) { 3497 i915_gem_detach_phys_object(dev, phys_obj->cur_obj); 3498 } 3499 3500 #ifdef CONFIG_X86 3501 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE); 3502 #endif 3503 drm_pci_free(dev, phys_obj->handle); 3504 kfree(phys_obj); 3505 dev_priv->mm.phys_objs[id - 1] = NULL; 3506 } 3507 3508 void i915_gem_free_all_phys_object(struct drm_device *dev) 3509 { 3510 int i; 3511 3512 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++) 3513 i915_gem_free_phys_object(dev, i); 3514 } 3515 3516 void i915_gem_detach_phys_object(struct drm_device *dev, 3517 struct drm_gem_object *obj) 3518 { 3519 struct drm_i915_gem_object *obj_priv; 3520 int i; 3521 int ret; 3522 int page_count; 3523 3524 obj_priv = obj->driver_private; 3525 if (!obj_priv->phys_obj) 3526 return; 3527 3528 ret = i915_gem_object_get_page_list(obj); 3529 if (ret) 3530 goto out; 3531 3532 page_count = obj->size / PAGE_SIZE; 3533 3534 for (i = 0; i < page_count; i++) { 3535 char *dst = kmap_atomic(obj_priv->page_list[i], KM_USER0); 3536 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE); 3537 3538 memcpy(dst, src, PAGE_SIZE); 3539 kunmap_atomic(dst, KM_USER0); 3540 } 3541 drm_clflush_pages(obj_priv->page_list, page_count); 3542 drm_agp_chipset_flush(dev); 3543 out: 3544 obj_priv->phys_obj->cur_obj = NULL; 3545 obj_priv->phys_obj = NULL; 3546 } 3547 3548 int 3549 i915_gem_attach_phys_object(struct drm_device *dev, 3550 struct drm_gem_object *obj, int id) 3551 { 3552 drm_i915_private_t *dev_priv = dev->dev_private; 3553 struct drm_i915_gem_object *obj_priv; 3554 int ret = 0; 3555 int page_count; 3556 int i; 3557 3558 if (id > I915_MAX_PHYS_OBJECT) 3559 return -EINVAL; 3560 3561 obj_priv = obj->driver_private; 3562 3563 if (obj_priv->phys_obj) { 3564 if (obj_priv->phys_obj->id == id) 3565 return 0; 3566 i915_gem_detach_phys_object(dev, obj); 3567 } 3568 3569 3570 /* create a new object */ 3571 if (!dev_priv->mm.phys_objs[id - 1]) { 3572 ret = i915_gem_init_phys_object(dev, id, 3573 obj->size); 3574 if (ret) { 3575 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size); 3576 goto out; 3577 } 3578 } 3579 3580 /* bind to the object */ 3581 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1]; 3582 obj_priv->phys_obj->cur_obj = obj; 3583 3584 ret = i915_gem_object_get_page_list(obj); 3585 if (ret) { 3586 DRM_ERROR("failed to get page list\n"); 3587 goto out; 3588 } 3589 3590 page_count = obj->size / PAGE_SIZE; 3591 3592 for (i = 0; i < page_count; i++) { 3593 char *src = kmap_atomic(obj_priv->page_list[i], KM_USER0); 3594 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE); 3595 3596 memcpy(dst, src, PAGE_SIZE); 3597 kunmap_atomic(src, KM_USER0); 3598 } 3599 3600 return 0; 3601 out: 3602 return ret; 3603 } 3604 3605 static int 3606 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj, 3607 struct drm_i915_gem_pwrite *args, 3608 struct drm_file *file_priv) 3609 { 3610 struct drm_i915_gem_object *obj_priv = obj->driver_private; 3611 void *obj_addr; 3612 int ret; 3613 char __user *user_data; 3614 3615 user_data = (char __user *) (uintptr_t) args->data_ptr; 3616 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset; 3617 3618 DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size); 3619 ret = copy_from_user(obj_addr, user_data, args->size); 3620 if (ret) 3621 return -EFAULT; 3622 3623 drm_agp_chipset_flush(dev); 3624 return 0; 3625 } 3626