xref: /linux/drivers/gpu/drm/i915/i915_gem.c (revision 08ec212c0f92cbf30e3ecc7349f18151714041d6)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38 
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 						    unsigned alignment,
43 						    bool map_and_fenceable,
44 						    bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46 				struct drm_i915_gem_object *obj,
47 				struct drm_i915_gem_pwrite *args,
48 				struct drm_file *file);
49 
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 				 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 					 struct drm_i915_fence_reg *fence,
54 					 bool enable);
55 
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57 				    struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61 
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64 	if (obj->tiling_mode)
65 		i915_gem_release_mmap(obj);
66 
67 	/* As we do not have an associated fence register, we will force
68 	 * a tiling change if we ever need to acquire one.
69 	 */
70 	obj->fence_dirty = false;
71 	obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73 
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 				  size_t size)
77 {
78 	dev_priv->mm.object_count++;
79 	dev_priv->mm.object_memory += size;
80 }
81 
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 				     size_t size)
84 {
85 	dev_priv->mm.object_count--;
86 	dev_priv->mm.object_memory -= size;
87 }
88 
89 static int
90 i915_gem_wait_for_error(struct drm_device *dev)
91 {
92 	struct drm_i915_private *dev_priv = dev->dev_private;
93 	struct completion *x = &dev_priv->error_completion;
94 	unsigned long flags;
95 	int ret;
96 
97 	if (!atomic_read(&dev_priv->mm.wedged))
98 		return 0;
99 
100 	/*
101 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
102 	 * userspace. If it takes that long something really bad is going on and
103 	 * we should simply try to bail out and fail as gracefully as possible.
104 	 */
105 	ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
106 	if (ret == 0) {
107 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
108 		return -EIO;
109 	} else if (ret < 0) {
110 		return ret;
111 	}
112 
113 	if (atomic_read(&dev_priv->mm.wedged)) {
114 		/* GPU is hung, bump the completion count to account for
115 		 * the token we just consumed so that we never hit zero and
116 		 * end up waiting upon a subsequent completion event that
117 		 * will never happen.
118 		 */
119 		spin_lock_irqsave(&x->wait.lock, flags);
120 		x->done++;
121 		spin_unlock_irqrestore(&x->wait.lock, flags);
122 	}
123 	return 0;
124 }
125 
126 int i915_mutex_lock_interruptible(struct drm_device *dev)
127 {
128 	int ret;
129 
130 	ret = i915_gem_wait_for_error(dev);
131 	if (ret)
132 		return ret;
133 
134 	ret = mutex_lock_interruptible(&dev->struct_mutex);
135 	if (ret)
136 		return ret;
137 
138 	WARN_ON(i915_verify_lists(dev));
139 	return 0;
140 }
141 
142 static inline bool
143 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
144 {
145 	return obj->gtt_space && !obj->active;
146 }
147 
148 int
149 i915_gem_init_ioctl(struct drm_device *dev, void *data,
150 		    struct drm_file *file)
151 {
152 	struct drm_i915_gem_init *args = data;
153 
154 	if (drm_core_check_feature(dev, DRIVER_MODESET))
155 		return -ENODEV;
156 
157 	if (args->gtt_start >= args->gtt_end ||
158 	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
159 		return -EINVAL;
160 
161 	/* GEM with user mode setting was never supported on ilk and later. */
162 	if (INTEL_INFO(dev)->gen >= 5)
163 		return -ENODEV;
164 
165 	mutex_lock(&dev->struct_mutex);
166 	i915_gem_init_global_gtt(dev, args->gtt_start,
167 				 args->gtt_end, args->gtt_end);
168 	mutex_unlock(&dev->struct_mutex);
169 
170 	return 0;
171 }
172 
173 int
174 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
175 			    struct drm_file *file)
176 {
177 	struct drm_i915_private *dev_priv = dev->dev_private;
178 	struct drm_i915_gem_get_aperture *args = data;
179 	struct drm_i915_gem_object *obj;
180 	size_t pinned;
181 
182 	pinned = 0;
183 	mutex_lock(&dev->struct_mutex);
184 	list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
185 		if (obj->pin_count)
186 			pinned += obj->gtt_space->size;
187 	mutex_unlock(&dev->struct_mutex);
188 
189 	args->aper_size = dev_priv->mm.gtt_total;
190 	args->aper_available_size = args->aper_size - pinned;
191 
192 	return 0;
193 }
194 
195 static int
196 i915_gem_create(struct drm_file *file,
197 		struct drm_device *dev,
198 		uint64_t size,
199 		uint32_t *handle_p)
200 {
201 	struct drm_i915_gem_object *obj;
202 	int ret;
203 	u32 handle;
204 
205 	size = roundup(size, PAGE_SIZE);
206 	if (size == 0)
207 		return -EINVAL;
208 
209 	/* Allocate the new object */
210 	obj = i915_gem_alloc_object(dev, size);
211 	if (obj == NULL)
212 		return -ENOMEM;
213 
214 	ret = drm_gem_handle_create(file, &obj->base, &handle);
215 	if (ret) {
216 		drm_gem_object_release(&obj->base);
217 		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
218 		kfree(obj);
219 		return ret;
220 	}
221 
222 	/* drop reference from allocate - handle holds it now */
223 	drm_gem_object_unreference(&obj->base);
224 	trace_i915_gem_object_create(obj);
225 
226 	*handle_p = handle;
227 	return 0;
228 }
229 
230 int
231 i915_gem_dumb_create(struct drm_file *file,
232 		     struct drm_device *dev,
233 		     struct drm_mode_create_dumb *args)
234 {
235 	/* have to work out size/pitch and return them */
236 	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
237 	args->size = args->pitch * args->height;
238 	return i915_gem_create(file, dev,
239 			       args->size, &args->handle);
240 }
241 
242 int i915_gem_dumb_destroy(struct drm_file *file,
243 			  struct drm_device *dev,
244 			  uint32_t handle)
245 {
246 	return drm_gem_handle_delete(file, handle);
247 }
248 
249 /**
250  * Creates a new mm object and returns a handle to it.
251  */
252 int
253 i915_gem_create_ioctl(struct drm_device *dev, void *data,
254 		      struct drm_file *file)
255 {
256 	struct drm_i915_gem_create *args = data;
257 
258 	return i915_gem_create(file, dev,
259 			       args->size, &args->handle);
260 }
261 
262 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
263 {
264 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
265 
266 	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
267 		obj->tiling_mode != I915_TILING_NONE;
268 }
269 
270 static inline int
271 __copy_to_user_swizzled(char __user *cpu_vaddr,
272 			const char *gpu_vaddr, int gpu_offset,
273 			int length)
274 {
275 	int ret, cpu_offset = 0;
276 
277 	while (length > 0) {
278 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
279 		int this_length = min(cacheline_end - gpu_offset, length);
280 		int swizzled_gpu_offset = gpu_offset ^ 64;
281 
282 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
283 				     gpu_vaddr + swizzled_gpu_offset,
284 				     this_length);
285 		if (ret)
286 			return ret + length;
287 
288 		cpu_offset += this_length;
289 		gpu_offset += this_length;
290 		length -= this_length;
291 	}
292 
293 	return 0;
294 }
295 
296 static inline int
297 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
298 			  const char __user *cpu_vaddr,
299 			  int length)
300 {
301 	int ret, cpu_offset = 0;
302 
303 	while (length > 0) {
304 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
305 		int this_length = min(cacheline_end - gpu_offset, length);
306 		int swizzled_gpu_offset = gpu_offset ^ 64;
307 
308 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
309 				       cpu_vaddr + cpu_offset,
310 				       this_length);
311 		if (ret)
312 			return ret + length;
313 
314 		cpu_offset += this_length;
315 		gpu_offset += this_length;
316 		length -= this_length;
317 	}
318 
319 	return 0;
320 }
321 
322 /* Per-page copy function for the shmem pread fastpath.
323  * Flushes invalid cachelines before reading the target if
324  * needs_clflush is set. */
325 static int
326 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
327 		 char __user *user_data,
328 		 bool page_do_bit17_swizzling, bool needs_clflush)
329 {
330 	char *vaddr;
331 	int ret;
332 
333 	if (unlikely(page_do_bit17_swizzling))
334 		return -EINVAL;
335 
336 	vaddr = kmap_atomic(page);
337 	if (needs_clflush)
338 		drm_clflush_virt_range(vaddr + shmem_page_offset,
339 				       page_length);
340 	ret = __copy_to_user_inatomic(user_data,
341 				      vaddr + shmem_page_offset,
342 				      page_length);
343 	kunmap_atomic(vaddr);
344 
345 	return ret ? -EFAULT : 0;
346 }
347 
348 static void
349 shmem_clflush_swizzled_range(char *addr, unsigned long length,
350 			     bool swizzled)
351 {
352 	if (unlikely(swizzled)) {
353 		unsigned long start = (unsigned long) addr;
354 		unsigned long end = (unsigned long) addr + length;
355 
356 		/* For swizzling simply ensure that we always flush both
357 		 * channels. Lame, but simple and it works. Swizzled
358 		 * pwrite/pread is far from a hotpath - current userspace
359 		 * doesn't use it at all. */
360 		start = round_down(start, 128);
361 		end = round_up(end, 128);
362 
363 		drm_clflush_virt_range((void *)start, end - start);
364 	} else {
365 		drm_clflush_virt_range(addr, length);
366 	}
367 
368 }
369 
370 /* Only difference to the fast-path function is that this can handle bit17
371  * and uses non-atomic copy and kmap functions. */
372 static int
373 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
374 		 char __user *user_data,
375 		 bool page_do_bit17_swizzling, bool needs_clflush)
376 {
377 	char *vaddr;
378 	int ret;
379 
380 	vaddr = kmap(page);
381 	if (needs_clflush)
382 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
383 					     page_length,
384 					     page_do_bit17_swizzling);
385 
386 	if (page_do_bit17_swizzling)
387 		ret = __copy_to_user_swizzled(user_data,
388 					      vaddr, shmem_page_offset,
389 					      page_length);
390 	else
391 		ret = __copy_to_user(user_data,
392 				     vaddr + shmem_page_offset,
393 				     page_length);
394 	kunmap(page);
395 
396 	return ret ? - EFAULT : 0;
397 }
398 
399 static int
400 i915_gem_shmem_pread(struct drm_device *dev,
401 		     struct drm_i915_gem_object *obj,
402 		     struct drm_i915_gem_pread *args,
403 		     struct drm_file *file)
404 {
405 	char __user *user_data;
406 	ssize_t remain;
407 	loff_t offset;
408 	int shmem_page_offset, page_length, ret = 0;
409 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
410 	int hit_slowpath = 0;
411 	int prefaulted = 0;
412 	int needs_clflush = 0;
413 	struct scatterlist *sg;
414 	int i;
415 
416 	user_data = (char __user *) (uintptr_t) args->data_ptr;
417 	remain = args->size;
418 
419 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
420 
421 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
422 		/* If we're not in the cpu read domain, set ourself into the gtt
423 		 * read domain and manually flush cachelines (if required). This
424 		 * optimizes for the case when the gpu will dirty the data
425 		 * anyway again before the next pread happens. */
426 		if (obj->cache_level == I915_CACHE_NONE)
427 			needs_clflush = 1;
428 		if (obj->gtt_space) {
429 			ret = i915_gem_object_set_to_gtt_domain(obj, false);
430 			if (ret)
431 				return ret;
432 		}
433 	}
434 
435 	ret = i915_gem_object_get_pages(obj);
436 	if (ret)
437 		return ret;
438 
439 	i915_gem_object_pin_pages(obj);
440 
441 	offset = args->offset;
442 
443 	for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
444 		struct page *page;
445 
446 		if (i < offset >> PAGE_SHIFT)
447 			continue;
448 
449 		if (remain <= 0)
450 			break;
451 
452 		/* Operation in this page
453 		 *
454 		 * shmem_page_offset = offset within page in shmem file
455 		 * page_length = bytes to copy for this page
456 		 */
457 		shmem_page_offset = offset_in_page(offset);
458 		page_length = remain;
459 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
460 			page_length = PAGE_SIZE - shmem_page_offset;
461 
462 		page = sg_page(sg);
463 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
464 			(page_to_phys(page) & (1 << 17)) != 0;
465 
466 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
467 				       user_data, page_do_bit17_swizzling,
468 				       needs_clflush);
469 		if (ret == 0)
470 			goto next_page;
471 
472 		hit_slowpath = 1;
473 		mutex_unlock(&dev->struct_mutex);
474 
475 		if (!prefaulted) {
476 			ret = fault_in_multipages_writeable(user_data, remain);
477 			/* Userspace is tricking us, but we've already clobbered
478 			 * its pages with the prefault and promised to write the
479 			 * data up to the first fault. Hence ignore any errors
480 			 * and just continue. */
481 			(void)ret;
482 			prefaulted = 1;
483 		}
484 
485 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
486 				       user_data, page_do_bit17_swizzling,
487 				       needs_clflush);
488 
489 		mutex_lock(&dev->struct_mutex);
490 
491 next_page:
492 		mark_page_accessed(page);
493 
494 		if (ret)
495 			goto out;
496 
497 		remain -= page_length;
498 		user_data += page_length;
499 		offset += page_length;
500 	}
501 
502 out:
503 	i915_gem_object_unpin_pages(obj);
504 
505 	if (hit_slowpath) {
506 		/* Fixup: Kill any reinstated backing storage pages */
507 		if (obj->madv == __I915_MADV_PURGED)
508 			i915_gem_object_truncate(obj);
509 	}
510 
511 	return ret;
512 }
513 
514 /**
515  * Reads data from the object referenced by handle.
516  *
517  * On error, the contents of *data are undefined.
518  */
519 int
520 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
521 		     struct drm_file *file)
522 {
523 	struct drm_i915_gem_pread *args = data;
524 	struct drm_i915_gem_object *obj;
525 	int ret = 0;
526 
527 	if (args->size == 0)
528 		return 0;
529 
530 	if (!access_ok(VERIFY_WRITE,
531 		       (char __user *)(uintptr_t)args->data_ptr,
532 		       args->size))
533 		return -EFAULT;
534 
535 	ret = i915_mutex_lock_interruptible(dev);
536 	if (ret)
537 		return ret;
538 
539 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
540 	if (&obj->base == NULL) {
541 		ret = -ENOENT;
542 		goto unlock;
543 	}
544 
545 	/* Bounds check source.  */
546 	if (args->offset > obj->base.size ||
547 	    args->size > obj->base.size - args->offset) {
548 		ret = -EINVAL;
549 		goto out;
550 	}
551 
552 	/* prime objects have no backing filp to GEM pread/pwrite
553 	 * pages from.
554 	 */
555 	if (!obj->base.filp) {
556 		ret = -EINVAL;
557 		goto out;
558 	}
559 
560 	trace_i915_gem_object_pread(obj, args->offset, args->size);
561 
562 	ret = i915_gem_shmem_pread(dev, obj, args, file);
563 
564 out:
565 	drm_gem_object_unreference(&obj->base);
566 unlock:
567 	mutex_unlock(&dev->struct_mutex);
568 	return ret;
569 }
570 
571 /* This is the fast write path which cannot handle
572  * page faults in the source data
573  */
574 
575 static inline int
576 fast_user_write(struct io_mapping *mapping,
577 		loff_t page_base, int page_offset,
578 		char __user *user_data,
579 		int length)
580 {
581 	void __iomem *vaddr_atomic;
582 	void *vaddr;
583 	unsigned long unwritten;
584 
585 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
586 	/* We can use the cpu mem copy function because this is X86. */
587 	vaddr = (void __force*)vaddr_atomic + page_offset;
588 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
589 						      user_data, length);
590 	io_mapping_unmap_atomic(vaddr_atomic);
591 	return unwritten;
592 }
593 
594 /**
595  * This is the fast pwrite path, where we copy the data directly from the
596  * user into the GTT, uncached.
597  */
598 static int
599 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
600 			 struct drm_i915_gem_object *obj,
601 			 struct drm_i915_gem_pwrite *args,
602 			 struct drm_file *file)
603 {
604 	drm_i915_private_t *dev_priv = dev->dev_private;
605 	ssize_t remain;
606 	loff_t offset, page_base;
607 	char __user *user_data;
608 	int page_offset, page_length, ret;
609 
610 	ret = i915_gem_object_pin(obj, 0, true, true);
611 	if (ret)
612 		goto out;
613 
614 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
615 	if (ret)
616 		goto out_unpin;
617 
618 	ret = i915_gem_object_put_fence(obj);
619 	if (ret)
620 		goto out_unpin;
621 
622 	user_data = (char __user *) (uintptr_t) args->data_ptr;
623 	remain = args->size;
624 
625 	offset = obj->gtt_offset + args->offset;
626 
627 	while (remain > 0) {
628 		/* Operation in this page
629 		 *
630 		 * page_base = page offset within aperture
631 		 * page_offset = offset within page
632 		 * page_length = bytes to copy for this page
633 		 */
634 		page_base = offset & PAGE_MASK;
635 		page_offset = offset_in_page(offset);
636 		page_length = remain;
637 		if ((page_offset + remain) > PAGE_SIZE)
638 			page_length = PAGE_SIZE - page_offset;
639 
640 		/* If we get a fault while copying data, then (presumably) our
641 		 * source page isn't available.  Return the error and we'll
642 		 * retry in the slow path.
643 		 */
644 		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
645 				    page_offset, user_data, page_length)) {
646 			ret = -EFAULT;
647 			goto out_unpin;
648 		}
649 
650 		remain -= page_length;
651 		user_data += page_length;
652 		offset += page_length;
653 	}
654 
655 out_unpin:
656 	i915_gem_object_unpin(obj);
657 out:
658 	return ret;
659 }
660 
661 /* Per-page copy function for the shmem pwrite fastpath.
662  * Flushes invalid cachelines before writing to the target if
663  * needs_clflush_before is set and flushes out any written cachelines after
664  * writing if needs_clflush is set. */
665 static int
666 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
667 		  char __user *user_data,
668 		  bool page_do_bit17_swizzling,
669 		  bool needs_clflush_before,
670 		  bool needs_clflush_after)
671 {
672 	char *vaddr;
673 	int ret;
674 
675 	if (unlikely(page_do_bit17_swizzling))
676 		return -EINVAL;
677 
678 	vaddr = kmap_atomic(page);
679 	if (needs_clflush_before)
680 		drm_clflush_virt_range(vaddr + shmem_page_offset,
681 				       page_length);
682 	ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
683 						user_data,
684 						page_length);
685 	if (needs_clflush_after)
686 		drm_clflush_virt_range(vaddr + shmem_page_offset,
687 				       page_length);
688 	kunmap_atomic(vaddr);
689 
690 	return ret ? -EFAULT : 0;
691 }
692 
693 /* Only difference to the fast-path function is that this can handle bit17
694  * and uses non-atomic copy and kmap functions. */
695 static int
696 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
697 		  char __user *user_data,
698 		  bool page_do_bit17_swizzling,
699 		  bool needs_clflush_before,
700 		  bool needs_clflush_after)
701 {
702 	char *vaddr;
703 	int ret;
704 
705 	vaddr = kmap(page);
706 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
707 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
708 					     page_length,
709 					     page_do_bit17_swizzling);
710 	if (page_do_bit17_swizzling)
711 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
712 						user_data,
713 						page_length);
714 	else
715 		ret = __copy_from_user(vaddr + shmem_page_offset,
716 				       user_data,
717 				       page_length);
718 	if (needs_clflush_after)
719 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
720 					     page_length,
721 					     page_do_bit17_swizzling);
722 	kunmap(page);
723 
724 	return ret ? -EFAULT : 0;
725 }
726 
727 static int
728 i915_gem_shmem_pwrite(struct drm_device *dev,
729 		      struct drm_i915_gem_object *obj,
730 		      struct drm_i915_gem_pwrite *args,
731 		      struct drm_file *file)
732 {
733 	ssize_t remain;
734 	loff_t offset;
735 	char __user *user_data;
736 	int shmem_page_offset, page_length, ret = 0;
737 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
738 	int hit_slowpath = 0;
739 	int needs_clflush_after = 0;
740 	int needs_clflush_before = 0;
741 	int i;
742 	struct scatterlist *sg;
743 
744 	user_data = (char __user *) (uintptr_t) args->data_ptr;
745 	remain = args->size;
746 
747 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
748 
749 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
750 		/* If we're not in the cpu write domain, set ourself into the gtt
751 		 * write domain and manually flush cachelines (if required). This
752 		 * optimizes for the case when the gpu will use the data
753 		 * right away and we therefore have to clflush anyway. */
754 		if (obj->cache_level == I915_CACHE_NONE)
755 			needs_clflush_after = 1;
756 		if (obj->gtt_space) {
757 			ret = i915_gem_object_set_to_gtt_domain(obj, true);
758 			if (ret)
759 				return ret;
760 		}
761 	}
762 	/* Same trick applies for invalidate partially written cachelines before
763 	 * writing.  */
764 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
765 	    && obj->cache_level == I915_CACHE_NONE)
766 		needs_clflush_before = 1;
767 
768 	ret = i915_gem_object_get_pages(obj);
769 	if (ret)
770 		return ret;
771 
772 	i915_gem_object_pin_pages(obj);
773 
774 	offset = args->offset;
775 	obj->dirty = 1;
776 
777 	for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
778 		struct page *page;
779 		int partial_cacheline_write;
780 
781 		if (i < offset >> PAGE_SHIFT)
782 			continue;
783 
784 		if (remain <= 0)
785 			break;
786 
787 		/* Operation in this page
788 		 *
789 		 * shmem_page_offset = offset within page in shmem file
790 		 * page_length = bytes to copy for this page
791 		 */
792 		shmem_page_offset = offset_in_page(offset);
793 
794 		page_length = remain;
795 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
796 			page_length = PAGE_SIZE - shmem_page_offset;
797 
798 		/* If we don't overwrite a cacheline completely we need to be
799 		 * careful to have up-to-date data by first clflushing. Don't
800 		 * overcomplicate things and flush the entire patch. */
801 		partial_cacheline_write = needs_clflush_before &&
802 			((shmem_page_offset | page_length)
803 				& (boot_cpu_data.x86_clflush_size - 1));
804 
805 		page = sg_page(sg);
806 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
807 			(page_to_phys(page) & (1 << 17)) != 0;
808 
809 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
810 					user_data, page_do_bit17_swizzling,
811 					partial_cacheline_write,
812 					needs_clflush_after);
813 		if (ret == 0)
814 			goto next_page;
815 
816 		hit_slowpath = 1;
817 		mutex_unlock(&dev->struct_mutex);
818 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
819 					user_data, page_do_bit17_swizzling,
820 					partial_cacheline_write,
821 					needs_clflush_after);
822 
823 		mutex_lock(&dev->struct_mutex);
824 
825 next_page:
826 		set_page_dirty(page);
827 		mark_page_accessed(page);
828 
829 		if (ret)
830 			goto out;
831 
832 		remain -= page_length;
833 		user_data += page_length;
834 		offset += page_length;
835 	}
836 
837 out:
838 	i915_gem_object_unpin_pages(obj);
839 
840 	if (hit_slowpath) {
841 		/* Fixup: Kill any reinstated backing storage pages */
842 		if (obj->madv == __I915_MADV_PURGED)
843 			i915_gem_object_truncate(obj);
844 		/* and flush dirty cachelines in case the object isn't in the cpu write
845 		 * domain anymore. */
846 		if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
847 			i915_gem_clflush_object(obj);
848 			intel_gtt_chipset_flush();
849 		}
850 	}
851 
852 	if (needs_clflush_after)
853 		intel_gtt_chipset_flush();
854 
855 	return ret;
856 }
857 
858 /**
859  * Writes data to the object referenced by handle.
860  *
861  * On error, the contents of the buffer that were to be modified are undefined.
862  */
863 int
864 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
865 		      struct drm_file *file)
866 {
867 	struct drm_i915_gem_pwrite *args = data;
868 	struct drm_i915_gem_object *obj;
869 	int ret;
870 
871 	if (args->size == 0)
872 		return 0;
873 
874 	if (!access_ok(VERIFY_READ,
875 		       (char __user *)(uintptr_t)args->data_ptr,
876 		       args->size))
877 		return -EFAULT;
878 
879 	ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
880 					   args->size);
881 	if (ret)
882 		return -EFAULT;
883 
884 	ret = i915_mutex_lock_interruptible(dev);
885 	if (ret)
886 		return ret;
887 
888 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
889 	if (&obj->base == NULL) {
890 		ret = -ENOENT;
891 		goto unlock;
892 	}
893 
894 	/* Bounds check destination. */
895 	if (args->offset > obj->base.size ||
896 	    args->size > obj->base.size - args->offset) {
897 		ret = -EINVAL;
898 		goto out;
899 	}
900 
901 	/* prime objects have no backing filp to GEM pread/pwrite
902 	 * pages from.
903 	 */
904 	if (!obj->base.filp) {
905 		ret = -EINVAL;
906 		goto out;
907 	}
908 
909 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
910 
911 	ret = -EFAULT;
912 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
913 	 * it would end up going through the fenced access, and we'll get
914 	 * different detiling behavior between reading and writing.
915 	 * pread/pwrite currently are reading and writing from the CPU
916 	 * perspective, requiring manual detiling by the client.
917 	 */
918 	if (obj->phys_obj) {
919 		ret = i915_gem_phys_pwrite(dev, obj, args, file);
920 		goto out;
921 	}
922 
923 	if (obj->cache_level == I915_CACHE_NONE &&
924 	    obj->tiling_mode == I915_TILING_NONE &&
925 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
926 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
927 		/* Note that the gtt paths might fail with non-page-backed user
928 		 * pointers (e.g. gtt mappings when moving data between
929 		 * textures). Fallback to the shmem path in that case. */
930 	}
931 
932 	if (ret == -EFAULT || ret == -ENOSPC)
933 		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
934 
935 out:
936 	drm_gem_object_unreference(&obj->base);
937 unlock:
938 	mutex_unlock(&dev->struct_mutex);
939 	return ret;
940 }
941 
942 int
943 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
944 		     bool interruptible)
945 {
946 	if (atomic_read(&dev_priv->mm.wedged)) {
947 		struct completion *x = &dev_priv->error_completion;
948 		bool recovery_complete;
949 		unsigned long flags;
950 
951 		/* Give the error handler a chance to run. */
952 		spin_lock_irqsave(&x->wait.lock, flags);
953 		recovery_complete = x->done > 0;
954 		spin_unlock_irqrestore(&x->wait.lock, flags);
955 
956 		/* Non-interruptible callers can't handle -EAGAIN, hence return
957 		 * -EIO unconditionally for these. */
958 		if (!interruptible)
959 			return -EIO;
960 
961 		/* Recovery complete, but still wedged means reset failure. */
962 		if (recovery_complete)
963 			return -EIO;
964 
965 		return -EAGAIN;
966 	}
967 
968 	return 0;
969 }
970 
971 /*
972  * Compare seqno against outstanding lazy request. Emit a request if they are
973  * equal.
974  */
975 static int
976 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
977 {
978 	int ret;
979 
980 	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
981 
982 	ret = 0;
983 	if (seqno == ring->outstanding_lazy_request)
984 		ret = i915_add_request(ring, NULL, NULL);
985 
986 	return ret;
987 }
988 
989 /**
990  * __wait_seqno - wait until execution of seqno has finished
991  * @ring: the ring expected to report seqno
992  * @seqno: duh!
993  * @interruptible: do an interruptible wait (normally yes)
994  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
995  *
996  * Returns 0 if the seqno was found within the alloted time. Else returns the
997  * errno with remaining time filled in timeout argument.
998  */
999 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1000 			bool interruptible, struct timespec *timeout)
1001 {
1002 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1003 	struct timespec before, now, wait_time={1,0};
1004 	unsigned long timeout_jiffies;
1005 	long end;
1006 	bool wait_forever = true;
1007 	int ret;
1008 
1009 	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1010 		return 0;
1011 
1012 	trace_i915_gem_request_wait_begin(ring, seqno);
1013 
1014 	if (timeout != NULL) {
1015 		wait_time = *timeout;
1016 		wait_forever = false;
1017 	}
1018 
1019 	timeout_jiffies = timespec_to_jiffies(&wait_time);
1020 
1021 	if (WARN_ON(!ring->irq_get(ring)))
1022 		return -ENODEV;
1023 
1024 	/* Record current time in case interrupted by signal, or wedged * */
1025 	getrawmonotonic(&before);
1026 
1027 #define EXIT_COND \
1028 	(i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1029 	atomic_read(&dev_priv->mm.wedged))
1030 	do {
1031 		if (interruptible)
1032 			end = wait_event_interruptible_timeout(ring->irq_queue,
1033 							       EXIT_COND,
1034 							       timeout_jiffies);
1035 		else
1036 			end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1037 						 timeout_jiffies);
1038 
1039 		ret = i915_gem_check_wedge(dev_priv, interruptible);
1040 		if (ret)
1041 			end = ret;
1042 	} while (end == 0 && wait_forever);
1043 
1044 	getrawmonotonic(&now);
1045 
1046 	ring->irq_put(ring);
1047 	trace_i915_gem_request_wait_end(ring, seqno);
1048 #undef EXIT_COND
1049 
1050 	if (timeout) {
1051 		struct timespec sleep_time = timespec_sub(now, before);
1052 		*timeout = timespec_sub(*timeout, sleep_time);
1053 	}
1054 
1055 	switch (end) {
1056 	case -EIO:
1057 	case -EAGAIN: /* Wedged */
1058 	case -ERESTARTSYS: /* Signal */
1059 		return (int)end;
1060 	case 0: /* Timeout */
1061 		if (timeout)
1062 			set_normalized_timespec(timeout, 0, 0);
1063 		return -ETIME;
1064 	default: /* Completed */
1065 		WARN_ON(end < 0); /* We're not aware of other errors */
1066 		return 0;
1067 	}
1068 }
1069 
1070 /**
1071  * Waits for a sequence number to be signaled, and cleans up the
1072  * request and object lists appropriately for that event.
1073  */
1074 int
1075 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1076 {
1077 	struct drm_device *dev = ring->dev;
1078 	struct drm_i915_private *dev_priv = dev->dev_private;
1079 	bool interruptible = dev_priv->mm.interruptible;
1080 	int ret;
1081 
1082 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1083 	BUG_ON(seqno == 0);
1084 
1085 	ret = i915_gem_check_wedge(dev_priv, interruptible);
1086 	if (ret)
1087 		return ret;
1088 
1089 	ret = i915_gem_check_olr(ring, seqno);
1090 	if (ret)
1091 		return ret;
1092 
1093 	return __wait_seqno(ring, seqno, interruptible, NULL);
1094 }
1095 
1096 /**
1097  * Ensures that all rendering to the object has completed and the object is
1098  * safe to unbind from the GTT or access from the CPU.
1099  */
1100 static __must_check int
1101 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1102 			       bool readonly)
1103 {
1104 	struct intel_ring_buffer *ring = obj->ring;
1105 	u32 seqno;
1106 	int ret;
1107 
1108 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1109 	if (seqno == 0)
1110 		return 0;
1111 
1112 	ret = i915_wait_seqno(ring, seqno);
1113 	if (ret)
1114 		return ret;
1115 
1116 	i915_gem_retire_requests_ring(ring);
1117 
1118 	/* Manually manage the write flush as we may have not yet
1119 	 * retired the buffer.
1120 	 */
1121 	if (obj->last_write_seqno &&
1122 	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
1123 		obj->last_write_seqno = 0;
1124 		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1125 	}
1126 
1127 	return 0;
1128 }
1129 
1130 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1131  * as the object state may change during this call.
1132  */
1133 static __must_check int
1134 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1135 					    bool readonly)
1136 {
1137 	struct drm_device *dev = obj->base.dev;
1138 	struct drm_i915_private *dev_priv = dev->dev_private;
1139 	struct intel_ring_buffer *ring = obj->ring;
1140 	u32 seqno;
1141 	int ret;
1142 
1143 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1144 	BUG_ON(!dev_priv->mm.interruptible);
1145 
1146 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1147 	if (seqno == 0)
1148 		return 0;
1149 
1150 	ret = i915_gem_check_wedge(dev_priv, true);
1151 	if (ret)
1152 		return ret;
1153 
1154 	ret = i915_gem_check_olr(ring, seqno);
1155 	if (ret)
1156 		return ret;
1157 
1158 	mutex_unlock(&dev->struct_mutex);
1159 	ret = __wait_seqno(ring, seqno, true, NULL);
1160 	mutex_lock(&dev->struct_mutex);
1161 
1162 	i915_gem_retire_requests_ring(ring);
1163 
1164 	/* Manually manage the write flush as we may have not yet
1165 	 * retired the buffer.
1166 	 */
1167 	if (obj->last_write_seqno &&
1168 	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
1169 		obj->last_write_seqno = 0;
1170 		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1171 	}
1172 
1173 	return ret;
1174 }
1175 
1176 /**
1177  * Called when user space prepares to use an object with the CPU, either
1178  * through the mmap ioctl's mapping or a GTT mapping.
1179  */
1180 int
1181 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1182 			  struct drm_file *file)
1183 {
1184 	struct drm_i915_gem_set_domain *args = data;
1185 	struct drm_i915_gem_object *obj;
1186 	uint32_t read_domains = args->read_domains;
1187 	uint32_t write_domain = args->write_domain;
1188 	int ret;
1189 
1190 	/* Only handle setting domains to types used by the CPU. */
1191 	if (write_domain & I915_GEM_GPU_DOMAINS)
1192 		return -EINVAL;
1193 
1194 	if (read_domains & I915_GEM_GPU_DOMAINS)
1195 		return -EINVAL;
1196 
1197 	/* Having something in the write domain implies it's in the read
1198 	 * domain, and only that read domain.  Enforce that in the request.
1199 	 */
1200 	if (write_domain != 0 && read_domains != write_domain)
1201 		return -EINVAL;
1202 
1203 	ret = i915_mutex_lock_interruptible(dev);
1204 	if (ret)
1205 		return ret;
1206 
1207 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1208 	if (&obj->base == NULL) {
1209 		ret = -ENOENT;
1210 		goto unlock;
1211 	}
1212 
1213 	/* Try to flush the object off the GPU without holding the lock.
1214 	 * We will repeat the flush holding the lock in the normal manner
1215 	 * to catch cases where we are gazumped.
1216 	 */
1217 	ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1218 	if (ret)
1219 		goto unref;
1220 
1221 	if (read_domains & I915_GEM_DOMAIN_GTT) {
1222 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1223 
1224 		/* Silently promote "you're not bound, there was nothing to do"
1225 		 * to success, since the client was just asking us to
1226 		 * make sure everything was done.
1227 		 */
1228 		if (ret == -EINVAL)
1229 			ret = 0;
1230 	} else {
1231 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1232 	}
1233 
1234 unref:
1235 	drm_gem_object_unreference(&obj->base);
1236 unlock:
1237 	mutex_unlock(&dev->struct_mutex);
1238 	return ret;
1239 }
1240 
1241 /**
1242  * Called when user space has done writes to this buffer
1243  */
1244 int
1245 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1246 			 struct drm_file *file)
1247 {
1248 	struct drm_i915_gem_sw_finish *args = data;
1249 	struct drm_i915_gem_object *obj;
1250 	int ret = 0;
1251 
1252 	ret = i915_mutex_lock_interruptible(dev);
1253 	if (ret)
1254 		return ret;
1255 
1256 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1257 	if (&obj->base == NULL) {
1258 		ret = -ENOENT;
1259 		goto unlock;
1260 	}
1261 
1262 	/* Pinned buffers may be scanout, so flush the cache */
1263 	if (obj->pin_count)
1264 		i915_gem_object_flush_cpu_write_domain(obj);
1265 
1266 	drm_gem_object_unreference(&obj->base);
1267 unlock:
1268 	mutex_unlock(&dev->struct_mutex);
1269 	return ret;
1270 }
1271 
1272 /**
1273  * Maps the contents of an object, returning the address it is mapped
1274  * into.
1275  *
1276  * While the mapping holds a reference on the contents of the object, it doesn't
1277  * imply a ref on the object itself.
1278  */
1279 int
1280 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1281 		    struct drm_file *file)
1282 {
1283 	struct drm_i915_gem_mmap *args = data;
1284 	struct drm_gem_object *obj;
1285 	unsigned long addr;
1286 
1287 	obj = drm_gem_object_lookup(dev, file, args->handle);
1288 	if (obj == NULL)
1289 		return -ENOENT;
1290 
1291 	/* prime objects have no backing filp to GEM mmap
1292 	 * pages from.
1293 	 */
1294 	if (!obj->filp) {
1295 		drm_gem_object_unreference_unlocked(obj);
1296 		return -EINVAL;
1297 	}
1298 
1299 	addr = vm_mmap(obj->filp, 0, args->size,
1300 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1301 		       args->offset);
1302 	drm_gem_object_unreference_unlocked(obj);
1303 	if (IS_ERR((void *)addr))
1304 		return addr;
1305 
1306 	args->addr_ptr = (uint64_t) addr;
1307 
1308 	return 0;
1309 }
1310 
1311 /**
1312  * i915_gem_fault - fault a page into the GTT
1313  * vma: VMA in question
1314  * vmf: fault info
1315  *
1316  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1317  * from userspace.  The fault handler takes care of binding the object to
1318  * the GTT (if needed), allocating and programming a fence register (again,
1319  * only if needed based on whether the old reg is still valid or the object
1320  * is tiled) and inserting a new PTE into the faulting process.
1321  *
1322  * Note that the faulting process may involve evicting existing objects
1323  * from the GTT and/or fence registers to make room.  So performance may
1324  * suffer if the GTT working set is large or there are few fence registers
1325  * left.
1326  */
1327 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1328 {
1329 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1330 	struct drm_device *dev = obj->base.dev;
1331 	drm_i915_private_t *dev_priv = dev->dev_private;
1332 	pgoff_t page_offset;
1333 	unsigned long pfn;
1334 	int ret = 0;
1335 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1336 
1337 	/* We don't use vmf->pgoff since that has the fake offset */
1338 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1339 		PAGE_SHIFT;
1340 
1341 	ret = i915_mutex_lock_interruptible(dev);
1342 	if (ret)
1343 		goto out;
1344 
1345 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1346 
1347 	/* Now bind it into the GTT if needed */
1348 	if (!obj->map_and_fenceable) {
1349 		ret = i915_gem_object_unbind(obj);
1350 		if (ret)
1351 			goto unlock;
1352 	}
1353 	if (!obj->gtt_space) {
1354 		ret = i915_gem_object_bind_to_gtt(obj, 0, true, false);
1355 		if (ret)
1356 			goto unlock;
1357 
1358 		ret = i915_gem_object_set_to_gtt_domain(obj, write);
1359 		if (ret)
1360 			goto unlock;
1361 	}
1362 
1363 	if (!obj->has_global_gtt_mapping)
1364 		i915_gem_gtt_bind_object(obj, obj->cache_level);
1365 
1366 	ret = i915_gem_object_get_fence(obj);
1367 	if (ret)
1368 		goto unlock;
1369 
1370 	if (i915_gem_object_is_inactive(obj))
1371 		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1372 
1373 	obj->fault_mappable = true;
1374 
1375 	pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1376 		page_offset;
1377 
1378 	/* Finally, remap it using the new GTT offset */
1379 	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1380 unlock:
1381 	mutex_unlock(&dev->struct_mutex);
1382 out:
1383 	switch (ret) {
1384 	case -EIO:
1385 		/* If this -EIO is due to a gpu hang, give the reset code a
1386 		 * chance to clean up the mess. Otherwise return the proper
1387 		 * SIGBUS. */
1388 		if (!atomic_read(&dev_priv->mm.wedged))
1389 			return VM_FAULT_SIGBUS;
1390 	case -EAGAIN:
1391 		/* Give the error handler a chance to run and move the
1392 		 * objects off the GPU active list. Next time we service the
1393 		 * fault, we should be able to transition the page into the
1394 		 * GTT without touching the GPU (and so avoid further
1395 		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1396 		 * with coherency, just lost writes.
1397 		 */
1398 		set_need_resched();
1399 	case 0:
1400 	case -ERESTARTSYS:
1401 	case -EINTR:
1402 	case -EBUSY:
1403 		/*
1404 		 * EBUSY is ok: this just means that another thread
1405 		 * already did the job.
1406 		 */
1407 		return VM_FAULT_NOPAGE;
1408 	case -ENOMEM:
1409 		return VM_FAULT_OOM;
1410 	default:
1411 		WARN_ON_ONCE(ret);
1412 		return VM_FAULT_SIGBUS;
1413 	}
1414 }
1415 
1416 /**
1417  * i915_gem_release_mmap - remove physical page mappings
1418  * @obj: obj in question
1419  *
1420  * Preserve the reservation of the mmapping with the DRM core code, but
1421  * relinquish ownership of the pages back to the system.
1422  *
1423  * It is vital that we remove the page mapping if we have mapped a tiled
1424  * object through the GTT and then lose the fence register due to
1425  * resource pressure. Similarly if the object has been moved out of the
1426  * aperture, than pages mapped into userspace must be revoked. Removing the
1427  * mapping will then trigger a page fault on the next user access, allowing
1428  * fixup by i915_gem_fault().
1429  */
1430 void
1431 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1432 {
1433 	if (!obj->fault_mappable)
1434 		return;
1435 
1436 	if (obj->base.dev->dev_mapping)
1437 		unmap_mapping_range(obj->base.dev->dev_mapping,
1438 				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1439 				    obj->base.size, 1);
1440 
1441 	obj->fault_mappable = false;
1442 }
1443 
1444 static uint32_t
1445 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1446 {
1447 	uint32_t gtt_size;
1448 
1449 	if (INTEL_INFO(dev)->gen >= 4 ||
1450 	    tiling_mode == I915_TILING_NONE)
1451 		return size;
1452 
1453 	/* Previous chips need a power-of-two fence region when tiling */
1454 	if (INTEL_INFO(dev)->gen == 3)
1455 		gtt_size = 1024*1024;
1456 	else
1457 		gtt_size = 512*1024;
1458 
1459 	while (gtt_size < size)
1460 		gtt_size <<= 1;
1461 
1462 	return gtt_size;
1463 }
1464 
1465 /**
1466  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1467  * @obj: object to check
1468  *
1469  * Return the required GTT alignment for an object, taking into account
1470  * potential fence register mapping.
1471  */
1472 static uint32_t
1473 i915_gem_get_gtt_alignment(struct drm_device *dev,
1474 			   uint32_t size,
1475 			   int tiling_mode)
1476 {
1477 	/*
1478 	 * Minimum alignment is 4k (GTT page size), but might be greater
1479 	 * if a fence register is needed for the object.
1480 	 */
1481 	if (INTEL_INFO(dev)->gen >= 4 ||
1482 	    tiling_mode == I915_TILING_NONE)
1483 		return 4096;
1484 
1485 	/*
1486 	 * Previous chips need to be aligned to the size of the smallest
1487 	 * fence register that can contain the object.
1488 	 */
1489 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1490 }
1491 
1492 /**
1493  * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1494  *					 unfenced object
1495  * @dev: the device
1496  * @size: size of the object
1497  * @tiling_mode: tiling mode of the object
1498  *
1499  * Return the required GTT alignment for an object, only taking into account
1500  * unfenced tiled surface requirements.
1501  */
1502 uint32_t
1503 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1504 				    uint32_t size,
1505 				    int tiling_mode)
1506 {
1507 	/*
1508 	 * Minimum alignment is 4k (GTT page size) for sane hw.
1509 	 */
1510 	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1511 	    tiling_mode == I915_TILING_NONE)
1512 		return 4096;
1513 
1514 	/* Previous hardware however needs to be aligned to a power-of-two
1515 	 * tile height. The simplest method for determining this is to reuse
1516 	 * the power-of-tile object size.
1517 	 */
1518 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1519 }
1520 
1521 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1522 {
1523 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1524 	int ret;
1525 
1526 	if (obj->base.map_list.map)
1527 		return 0;
1528 
1529 	ret = drm_gem_create_mmap_offset(&obj->base);
1530 	if (ret != -ENOSPC)
1531 		return ret;
1532 
1533 	/* Badly fragmented mmap space? The only way we can recover
1534 	 * space is by destroying unwanted objects. We can't randomly release
1535 	 * mmap_offsets as userspace expects them to be persistent for the
1536 	 * lifetime of the objects. The closest we can is to release the
1537 	 * offsets on purgeable objects by truncating it and marking it purged,
1538 	 * which prevents userspace from ever using that object again.
1539 	 */
1540 	i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1541 	ret = drm_gem_create_mmap_offset(&obj->base);
1542 	if (ret != -ENOSPC)
1543 		return ret;
1544 
1545 	i915_gem_shrink_all(dev_priv);
1546 	return drm_gem_create_mmap_offset(&obj->base);
1547 }
1548 
1549 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1550 {
1551 	if (!obj->base.map_list.map)
1552 		return;
1553 
1554 	drm_gem_free_mmap_offset(&obj->base);
1555 }
1556 
1557 int
1558 i915_gem_mmap_gtt(struct drm_file *file,
1559 		  struct drm_device *dev,
1560 		  uint32_t handle,
1561 		  uint64_t *offset)
1562 {
1563 	struct drm_i915_private *dev_priv = dev->dev_private;
1564 	struct drm_i915_gem_object *obj;
1565 	int ret;
1566 
1567 	ret = i915_mutex_lock_interruptible(dev);
1568 	if (ret)
1569 		return ret;
1570 
1571 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1572 	if (&obj->base == NULL) {
1573 		ret = -ENOENT;
1574 		goto unlock;
1575 	}
1576 
1577 	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1578 		ret = -E2BIG;
1579 		goto out;
1580 	}
1581 
1582 	if (obj->madv != I915_MADV_WILLNEED) {
1583 		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1584 		ret = -EINVAL;
1585 		goto out;
1586 	}
1587 
1588 	ret = i915_gem_object_create_mmap_offset(obj);
1589 	if (ret)
1590 		goto out;
1591 
1592 	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1593 
1594 out:
1595 	drm_gem_object_unreference(&obj->base);
1596 unlock:
1597 	mutex_unlock(&dev->struct_mutex);
1598 	return ret;
1599 }
1600 
1601 /**
1602  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1603  * @dev: DRM device
1604  * @data: GTT mapping ioctl data
1605  * @file: GEM object info
1606  *
1607  * Simply returns the fake offset to userspace so it can mmap it.
1608  * The mmap call will end up in drm_gem_mmap(), which will set things
1609  * up so we can get faults in the handler above.
1610  *
1611  * The fault handler will take care of binding the object into the GTT
1612  * (since it may have been evicted to make room for something), allocating
1613  * a fence register, and mapping the appropriate aperture address into
1614  * userspace.
1615  */
1616 int
1617 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1618 			struct drm_file *file)
1619 {
1620 	struct drm_i915_gem_mmap_gtt *args = data;
1621 
1622 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1623 }
1624 
1625 /* Immediately discard the backing storage */
1626 static void
1627 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1628 {
1629 	struct inode *inode;
1630 
1631 	i915_gem_object_free_mmap_offset(obj);
1632 
1633 	if (obj->base.filp == NULL)
1634 		return;
1635 
1636 	/* Our goal here is to return as much of the memory as
1637 	 * is possible back to the system as we are called from OOM.
1638 	 * To do this we must instruct the shmfs to drop all of its
1639 	 * backing pages, *now*.
1640 	 */
1641 	inode = obj->base.filp->f_path.dentry->d_inode;
1642 	shmem_truncate_range(inode, 0, (loff_t)-1);
1643 
1644 	obj->madv = __I915_MADV_PURGED;
1645 }
1646 
1647 static inline int
1648 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1649 {
1650 	return obj->madv == I915_MADV_DONTNEED;
1651 }
1652 
1653 static void
1654 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1655 {
1656 	int page_count = obj->base.size / PAGE_SIZE;
1657 	struct scatterlist *sg;
1658 	int ret, i;
1659 
1660 	BUG_ON(obj->madv == __I915_MADV_PURGED);
1661 
1662 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
1663 	if (ret) {
1664 		/* In the event of a disaster, abandon all caches and
1665 		 * hope for the best.
1666 		 */
1667 		WARN_ON(ret != -EIO);
1668 		i915_gem_clflush_object(obj);
1669 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1670 	}
1671 
1672 	if (i915_gem_object_needs_bit17_swizzle(obj))
1673 		i915_gem_object_save_bit_17_swizzle(obj);
1674 
1675 	if (obj->madv == I915_MADV_DONTNEED)
1676 		obj->dirty = 0;
1677 
1678 	for_each_sg(obj->pages->sgl, sg, page_count, i) {
1679 		struct page *page = sg_page(sg);
1680 
1681 		if (obj->dirty)
1682 			set_page_dirty(page);
1683 
1684 		if (obj->madv == I915_MADV_WILLNEED)
1685 			mark_page_accessed(page);
1686 
1687 		page_cache_release(page);
1688 	}
1689 	obj->dirty = 0;
1690 
1691 	sg_free_table(obj->pages);
1692 	kfree(obj->pages);
1693 }
1694 
1695 static int
1696 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1697 {
1698 	const struct drm_i915_gem_object_ops *ops = obj->ops;
1699 
1700 	if (obj->pages == NULL)
1701 		return 0;
1702 
1703 	BUG_ON(obj->gtt_space);
1704 
1705 	if (obj->pages_pin_count)
1706 		return -EBUSY;
1707 
1708 	ops->put_pages(obj);
1709 	obj->pages = NULL;
1710 
1711 	list_del(&obj->gtt_list);
1712 	if (i915_gem_object_is_purgeable(obj))
1713 		i915_gem_object_truncate(obj);
1714 
1715 	return 0;
1716 }
1717 
1718 static long
1719 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1720 {
1721 	struct drm_i915_gem_object *obj, *next;
1722 	long count = 0;
1723 
1724 	list_for_each_entry_safe(obj, next,
1725 				 &dev_priv->mm.unbound_list,
1726 				 gtt_list) {
1727 		if (i915_gem_object_is_purgeable(obj) &&
1728 		    i915_gem_object_put_pages(obj) == 0) {
1729 			count += obj->base.size >> PAGE_SHIFT;
1730 			if (count >= target)
1731 				return count;
1732 		}
1733 	}
1734 
1735 	list_for_each_entry_safe(obj, next,
1736 				 &dev_priv->mm.inactive_list,
1737 				 mm_list) {
1738 		if (i915_gem_object_is_purgeable(obj) &&
1739 		    i915_gem_object_unbind(obj) == 0 &&
1740 		    i915_gem_object_put_pages(obj) == 0) {
1741 			count += obj->base.size >> PAGE_SHIFT;
1742 			if (count >= target)
1743 				return count;
1744 		}
1745 	}
1746 
1747 	return count;
1748 }
1749 
1750 static void
1751 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1752 {
1753 	struct drm_i915_gem_object *obj, *next;
1754 
1755 	i915_gem_evict_everything(dev_priv->dev);
1756 
1757 	list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1758 		i915_gem_object_put_pages(obj);
1759 }
1760 
1761 static int
1762 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1763 {
1764 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1765 	int page_count, i;
1766 	struct address_space *mapping;
1767 	struct sg_table *st;
1768 	struct scatterlist *sg;
1769 	struct page *page;
1770 	gfp_t gfp;
1771 
1772 	/* Assert that the object is not currently in any GPU domain. As it
1773 	 * wasn't in the GTT, there shouldn't be any way it could have been in
1774 	 * a GPU cache
1775 	 */
1776 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1777 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1778 
1779 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1780 	if (st == NULL)
1781 		return -ENOMEM;
1782 
1783 	page_count = obj->base.size / PAGE_SIZE;
1784 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1785 		sg_free_table(st);
1786 		kfree(st);
1787 		return -ENOMEM;
1788 	}
1789 
1790 	/* Get the list of pages out of our struct file.  They'll be pinned
1791 	 * at this point until we release them.
1792 	 *
1793 	 * Fail silently without starting the shrinker
1794 	 */
1795 	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1796 	gfp = mapping_gfp_mask(mapping);
1797 	gfp |= __GFP_NORETRY | __GFP_NOWARN;
1798 	gfp &= ~(__GFP_IO | __GFP_WAIT);
1799 	for_each_sg(st->sgl, sg, page_count, i) {
1800 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1801 		if (IS_ERR(page)) {
1802 			i915_gem_purge(dev_priv, page_count);
1803 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1804 		}
1805 		if (IS_ERR(page)) {
1806 			/* We've tried hard to allocate the memory by reaping
1807 			 * our own buffer, now let the real VM do its job and
1808 			 * go down in flames if truly OOM.
1809 			 */
1810 			gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
1811 			gfp |= __GFP_IO | __GFP_WAIT;
1812 
1813 			i915_gem_shrink_all(dev_priv);
1814 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1815 			if (IS_ERR(page))
1816 				goto err_pages;
1817 
1818 			gfp |= __GFP_NORETRY | __GFP_NOWARN;
1819 			gfp &= ~(__GFP_IO | __GFP_WAIT);
1820 		}
1821 
1822 		sg_set_page(sg, page, PAGE_SIZE, 0);
1823 	}
1824 
1825 	if (i915_gem_object_needs_bit17_swizzle(obj))
1826 		i915_gem_object_do_bit_17_swizzle(obj);
1827 
1828 	obj->pages = st;
1829 	return 0;
1830 
1831 err_pages:
1832 	for_each_sg(st->sgl, sg, i, page_count)
1833 		page_cache_release(sg_page(sg));
1834 	sg_free_table(st);
1835 	kfree(st);
1836 	return PTR_ERR(page);
1837 }
1838 
1839 /* Ensure that the associated pages are gathered from the backing storage
1840  * and pinned into our object. i915_gem_object_get_pages() may be called
1841  * multiple times before they are released by a single call to
1842  * i915_gem_object_put_pages() - once the pages are no longer referenced
1843  * either as a result of memory pressure (reaping pages under the shrinker)
1844  * or as the object is itself released.
1845  */
1846 int
1847 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1848 {
1849 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1850 	const struct drm_i915_gem_object_ops *ops = obj->ops;
1851 	int ret;
1852 
1853 	if (obj->pages)
1854 		return 0;
1855 
1856 	BUG_ON(obj->pages_pin_count);
1857 
1858 	ret = ops->get_pages(obj);
1859 	if (ret)
1860 		return ret;
1861 
1862 	list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1863 	return 0;
1864 }
1865 
1866 void
1867 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1868 			       struct intel_ring_buffer *ring,
1869 			       u32 seqno)
1870 {
1871 	struct drm_device *dev = obj->base.dev;
1872 	struct drm_i915_private *dev_priv = dev->dev_private;
1873 
1874 	BUG_ON(ring == NULL);
1875 	obj->ring = ring;
1876 
1877 	/* Add a reference if we're newly entering the active list. */
1878 	if (!obj->active) {
1879 		drm_gem_object_reference(&obj->base);
1880 		obj->active = 1;
1881 	}
1882 
1883 	/* Move from whatever list we were on to the tail of execution. */
1884 	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1885 	list_move_tail(&obj->ring_list, &ring->active_list);
1886 
1887 	obj->last_read_seqno = seqno;
1888 
1889 	if (obj->fenced_gpu_access) {
1890 		obj->last_fenced_seqno = seqno;
1891 
1892 		/* Bump MRU to take account of the delayed flush */
1893 		if (obj->fence_reg != I915_FENCE_REG_NONE) {
1894 			struct drm_i915_fence_reg *reg;
1895 
1896 			reg = &dev_priv->fence_regs[obj->fence_reg];
1897 			list_move_tail(&reg->lru_list,
1898 				       &dev_priv->mm.fence_list);
1899 		}
1900 	}
1901 }
1902 
1903 static void
1904 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1905 {
1906 	struct drm_device *dev = obj->base.dev;
1907 	struct drm_i915_private *dev_priv = dev->dev_private;
1908 
1909 	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1910 	BUG_ON(!obj->active);
1911 
1912 	if (obj->pin_count) /* are we a framebuffer? */
1913 		intel_mark_fb_idle(obj);
1914 
1915 	list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1916 
1917 	list_del_init(&obj->ring_list);
1918 	obj->ring = NULL;
1919 
1920 	obj->last_read_seqno = 0;
1921 	obj->last_write_seqno = 0;
1922 	obj->base.write_domain = 0;
1923 
1924 	obj->last_fenced_seqno = 0;
1925 	obj->fenced_gpu_access = false;
1926 
1927 	obj->active = 0;
1928 	drm_gem_object_unreference(&obj->base);
1929 
1930 	WARN_ON(i915_verify_lists(dev));
1931 }
1932 
1933 static u32
1934 i915_gem_get_seqno(struct drm_device *dev)
1935 {
1936 	drm_i915_private_t *dev_priv = dev->dev_private;
1937 	u32 seqno = dev_priv->next_seqno;
1938 
1939 	/* reserve 0 for non-seqno */
1940 	if (++dev_priv->next_seqno == 0)
1941 		dev_priv->next_seqno = 1;
1942 
1943 	return seqno;
1944 }
1945 
1946 u32
1947 i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1948 {
1949 	if (ring->outstanding_lazy_request == 0)
1950 		ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1951 
1952 	return ring->outstanding_lazy_request;
1953 }
1954 
1955 int
1956 i915_add_request(struct intel_ring_buffer *ring,
1957 		 struct drm_file *file,
1958 		 u32 *out_seqno)
1959 {
1960 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1961 	struct drm_i915_gem_request *request;
1962 	u32 request_ring_position;
1963 	u32 seqno;
1964 	int was_empty;
1965 	int ret;
1966 
1967 	/*
1968 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
1969 	 * after having emitted the batchbuffer command. Hence we need to fix
1970 	 * things up similar to emitting the lazy request. The difference here
1971 	 * is that the flush _must_ happen before the next request, no matter
1972 	 * what.
1973 	 */
1974 	ret = intel_ring_flush_all_caches(ring);
1975 	if (ret)
1976 		return ret;
1977 
1978 	request = kmalloc(sizeof(*request), GFP_KERNEL);
1979 	if (request == NULL)
1980 		return -ENOMEM;
1981 
1982 	seqno = i915_gem_next_request_seqno(ring);
1983 
1984 	/* Record the position of the start of the request so that
1985 	 * should we detect the updated seqno part-way through the
1986 	 * GPU processing the request, we never over-estimate the
1987 	 * position of the head.
1988 	 */
1989 	request_ring_position = intel_ring_get_tail(ring);
1990 
1991 	ret = ring->add_request(ring, &seqno);
1992 	if (ret) {
1993 		kfree(request);
1994 		return ret;
1995 	}
1996 
1997 	trace_i915_gem_request_add(ring, seqno);
1998 
1999 	request->seqno = seqno;
2000 	request->ring = ring;
2001 	request->tail = request_ring_position;
2002 	request->emitted_jiffies = jiffies;
2003 	was_empty = list_empty(&ring->request_list);
2004 	list_add_tail(&request->list, &ring->request_list);
2005 	request->file_priv = NULL;
2006 
2007 	if (file) {
2008 		struct drm_i915_file_private *file_priv = file->driver_priv;
2009 
2010 		spin_lock(&file_priv->mm.lock);
2011 		request->file_priv = file_priv;
2012 		list_add_tail(&request->client_list,
2013 			      &file_priv->mm.request_list);
2014 		spin_unlock(&file_priv->mm.lock);
2015 	}
2016 
2017 	ring->outstanding_lazy_request = 0;
2018 
2019 	if (!dev_priv->mm.suspended) {
2020 		if (i915_enable_hangcheck) {
2021 			mod_timer(&dev_priv->hangcheck_timer,
2022 				  jiffies +
2023 				  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
2024 		}
2025 		if (was_empty) {
2026 			queue_delayed_work(dev_priv->wq,
2027 					   &dev_priv->mm.retire_work, HZ);
2028 			intel_mark_busy(dev_priv->dev);
2029 		}
2030 	}
2031 
2032 	if (out_seqno)
2033 		*out_seqno = seqno;
2034 	return 0;
2035 }
2036 
2037 static inline void
2038 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2039 {
2040 	struct drm_i915_file_private *file_priv = request->file_priv;
2041 
2042 	if (!file_priv)
2043 		return;
2044 
2045 	spin_lock(&file_priv->mm.lock);
2046 	if (request->file_priv) {
2047 		list_del(&request->client_list);
2048 		request->file_priv = NULL;
2049 	}
2050 	spin_unlock(&file_priv->mm.lock);
2051 }
2052 
2053 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2054 				      struct intel_ring_buffer *ring)
2055 {
2056 	while (!list_empty(&ring->request_list)) {
2057 		struct drm_i915_gem_request *request;
2058 
2059 		request = list_first_entry(&ring->request_list,
2060 					   struct drm_i915_gem_request,
2061 					   list);
2062 
2063 		list_del(&request->list);
2064 		i915_gem_request_remove_from_client(request);
2065 		kfree(request);
2066 	}
2067 
2068 	while (!list_empty(&ring->active_list)) {
2069 		struct drm_i915_gem_object *obj;
2070 
2071 		obj = list_first_entry(&ring->active_list,
2072 				       struct drm_i915_gem_object,
2073 				       ring_list);
2074 
2075 		i915_gem_object_move_to_inactive(obj);
2076 	}
2077 }
2078 
2079 static void i915_gem_reset_fences(struct drm_device *dev)
2080 {
2081 	struct drm_i915_private *dev_priv = dev->dev_private;
2082 	int i;
2083 
2084 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2085 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2086 
2087 		i915_gem_write_fence(dev, i, NULL);
2088 
2089 		if (reg->obj)
2090 			i915_gem_object_fence_lost(reg->obj);
2091 
2092 		reg->pin_count = 0;
2093 		reg->obj = NULL;
2094 		INIT_LIST_HEAD(&reg->lru_list);
2095 	}
2096 
2097 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2098 }
2099 
2100 void i915_gem_reset(struct drm_device *dev)
2101 {
2102 	struct drm_i915_private *dev_priv = dev->dev_private;
2103 	struct drm_i915_gem_object *obj;
2104 	struct intel_ring_buffer *ring;
2105 	int i;
2106 
2107 	for_each_ring(ring, dev_priv, i)
2108 		i915_gem_reset_ring_lists(dev_priv, ring);
2109 
2110 	/* Move everything out of the GPU domains to ensure we do any
2111 	 * necessary invalidation upon reuse.
2112 	 */
2113 	list_for_each_entry(obj,
2114 			    &dev_priv->mm.inactive_list,
2115 			    mm_list)
2116 	{
2117 		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2118 	}
2119 
2120 	/* The fence registers are invalidated so clear them out */
2121 	i915_gem_reset_fences(dev);
2122 }
2123 
2124 /**
2125  * This function clears the request list as sequence numbers are passed.
2126  */
2127 void
2128 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2129 {
2130 	uint32_t seqno;
2131 	int i;
2132 
2133 	if (list_empty(&ring->request_list))
2134 		return;
2135 
2136 	WARN_ON(i915_verify_lists(ring->dev));
2137 
2138 	seqno = ring->get_seqno(ring, true);
2139 
2140 	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
2141 		if (seqno >= ring->sync_seqno[i])
2142 			ring->sync_seqno[i] = 0;
2143 
2144 	while (!list_empty(&ring->request_list)) {
2145 		struct drm_i915_gem_request *request;
2146 
2147 		request = list_first_entry(&ring->request_list,
2148 					   struct drm_i915_gem_request,
2149 					   list);
2150 
2151 		if (!i915_seqno_passed(seqno, request->seqno))
2152 			break;
2153 
2154 		trace_i915_gem_request_retire(ring, request->seqno);
2155 		/* We know the GPU must have read the request to have
2156 		 * sent us the seqno + interrupt, so use the position
2157 		 * of tail of the request to update the last known position
2158 		 * of the GPU head.
2159 		 */
2160 		ring->last_retired_head = request->tail;
2161 
2162 		list_del(&request->list);
2163 		i915_gem_request_remove_from_client(request);
2164 		kfree(request);
2165 	}
2166 
2167 	/* Move any buffers on the active list that are no longer referenced
2168 	 * by the ringbuffer to the flushing/inactive lists as appropriate.
2169 	 */
2170 	while (!list_empty(&ring->active_list)) {
2171 		struct drm_i915_gem_object *obj;
2172 
2173 		obj = list_first_entry(&ring->active_list,
2174 				      struct drm_i915_gem_object,
2175 				      ring_list);
2176 
2177 		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2178 			break;
2179 
2180 		i915_gem_object_move_to_inactive(obj);
2181 	}
2182 
2183 	if (unlikely(ring->trace_irq_seqno &&
2184 		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2185 		ring->irq_put(ring);
2186 		ring->trace_irq_seqno = 0;
2187 	}
2188 
2189 	WARN_ON(i915_verify_lists(ring->dev));
2190 }
2191 
2192 void
2193 i915_gem_retire_requests(struct drm_device *dev)
2194 {
2195 	drm_i915_private_t *dev_priv = dev->dev_private;
2196 	struct intel_ring_buffer *ring;
2197 	int i;
2198 
2199 	for_each_ring(ring, dev_priv, i)
2200 		i915_gem_retire_requests_ring(ring);
2201 }
2202 
2203 static void
2204 i915_gem_retire_work_handler(struct work_struct *work)
2205 {
2206 	drm_i915_private_t *dev_priv;
2207 	struct drm_device *dev;
2208 	struct intel_ring_buffer *ring;
2209 	bool idle;
2210 	int i;
2211 
2212 	dev_priv = container_of(work, drm_i915_private_t,
2213 				mm.retire_work.work);
2214 	dev = dev_priv->dev;
2215 
2216 	/* Come back later if the device is busy... */
2217 	if (!mutex_trylock(&dev->struct_mutex)) {
2218 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2219 		return;
2220 	}
2221 
2222 	i915_gem_retire_requests(dev);
2223 
2224 	/* Send a periodic flush down the ring so we don't hold onto GEM
2225 	 * objects indefinitely.
2226 	 */
2227 	idle = true;
2228 	for_each_ring(ring, dev_priv, i) {
2229 		if (ring->gpu_caches_dirty)
2230 			i915_add_request(ring, NULL, NULL);
2231 
2232 		idle &= list_empty(&ring->request_list);
2233 	}
2234 
2235 	if (!dev_priv->mm.suspended && !idle)
2236 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2237 	if (idle)
2238 		intel_mark_idle(dev);
2239 
2240 	mutex_unlock(&dev->struct_mutex);
2241 }
2242 
2243 /**
2244  * Ensures that an object will eventually get non-busy by flushing any required
2245  * write domains, emitting any outstanding lazy request and retiring and
2246  * completed requests.
2247  */
2248 static int
2249 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2250 {
2251 	int ret;
2252 
2253 	if (obj->active) {
2254 		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2255 		if (ret)
2256 			return ret;
2257 
2258 		i915_gem_retire_requests_ring(obj->ring);
2259 	}
2260 
2261 	return 0;
2262 }
2263 
2264 /**
2265  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2266  * @DRM_IOCTL_ARGS: standard ioctl arguments
2267  *
2268  * Returns 0 if successful, else an error is returned with the remaining time in
2269  * the timeout parameter.
2270  *  -ETIME: object is still busy after timeout
2271  *  -ERESTARTSYS: signal interrupted the wait
2272  *  -ENONENT: object doesn't exist
2273  * Also possible, but rare:
2274  *  -EAGAIN: GPU wedged
2275  *  -ENOMEM: damn
2276  *  -ENODEV: Internal IRQ fail
2277  *  -E?: The add request failed
2278  *
2279  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2280  * non-zero timeout parameter the wait ioctl will wait for the given number of
2281  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2282  * without holding struct_mutex the object may become re-busied before this
2283  * function completes. A similar but shorter * race condition exists in the busy
2284  * ioctl
2285  */
2286 int
2287 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2288 {
2289 	struct drm_i915_gem_wait *args = data;
2290 	struct drm_i915_gem_object *obj;
2291 	struct intel_ring_buffer *ring = NULL;
2292 	struct timespec timeout_stack, *timeout = NULL;
2293 	u32 seqno = 0;
2294 	int ret = 0;
2295 
2296 	if (args->timeout_ns >= 0) {
2297 		timeout_stack = ns_to_timespec(args->timeout_ns);
2298 		timeout = &timeout_stack;
2299 	}
2300 
2301 	ret = i915_mutex_lock_interruptible(dev);
2302 	if (ret)
2303 		return ret;
2304 
2305 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2306 	if (&obj->base == NULL) {
2307 		mutex_unlock(&dev->struct_mutex);
2308 		return -ENOENT;
2309 	}
2310 
2311 	/* Need to make sure the object gets inactive eventually. */
2312 	ret = i915_gem_object_flush_active(obj);
2313 	if (ret)
2314 		goto out;
2315 
2316 	if (obj->active) {
2317 		seqno = obj->last_read_seqno;
2318 		ring = obj->ring;
2319 	}
2320 
2321 	if (seqno == 0)
2322 		 goto out;
2323 
2324 	/* Do this after OLR check to make sure we make forward progress polling
2325 	 * on this IOCTL with a 0 timeout (like busy ioctl)
2326 	 */
2327 	if (!args->timeout_ns) {
2328 		ret = -ETIME;
2329 		goto out;
2330 	}
2331 
2332 	drm_gem_object_unreference(&obj->base);
2333 	mutex_unlock(&dev->struct_mutex);
2334 
2335 	ret = __wait_seqno(ring, seqno, true, timeout);
2336 	if (timeout) {
2337 		WARN_ON(!timespec_valid(timeout));
2338 		args->timeout_ns = timespec_to_ns(timeout);
2339 	}
2340 	return ret;
2341 
2342 out:
2343 	drm_gem_object_unreference(&obj->base);
2344 	mutex_unlock(&dev->struct_mutex);
2345 	return ret;
2346 }
2347 
2348 /**
2349  * i915_gem_object_sync - sync an object to a ring.
2350  *
2351  * @obj: object which may be in use on another ring.
2352  * @to: ring we wish to use the object on. May be NULL.
2353  *
2354  * This code is meant to abstract object synchronization with the GPU.
2355  * Calling with NULL implies synchronizing the object with the CPU
2356  * rather than a particular GPU ring.
2357  *
2358  * Returns 0 if successful, else propagates up the lower layer error.
2359  */
2360 int
2361 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2362 		     struct intel_ring_buffer *to)
2363 {
2364 	struct intel_ring_buffer *from = obj->ring;
2365 	u32 seqno;
2366 	int ret, idx;
2367 
2368 	if (from == NULL || to == from)
2369 		return 0;
2370 
2371 	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2372 		return i915_gem_object_wait_rendering(obj, false);
2373 
2374 	idx = intel_ring_sync_index(from, to);
2375 
2376 	seqno = obj->last_read_seqno;
2377 	if (seqno <= from->sync_seqno[idx])
2378 		return 0;
2379 
2380 	ret = i915_gem_check_olr(obj->ring, seqno);
2381 	if (ret)
2382 		return ret;
2383 
2384 	ret = to->sync_to(to, from, seqno);
2385 	if (!ret)
2386 		from->sync_seqno[idx] = seqno;
2387 
2388 	return ret;
2389 }
2390 
2391 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2392 {
2393 	u32 old_write_domain, old_read_domains;
2394 
2395 	/* Act a barrier for all accesses through the GTT */
2396 	mb();
2397 
2398 	/* Force a pagefault for domain tracking on next user access */
2399 	i915_gem_release_mmap(obj);
2400 
2401 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2402 		return;
2403 
2404 	old_read_domains = obj->base.read_domains;
2405 	old_write_domain = obj->base.write_domain;
2406 
2407 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2408 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2409 
2410 	trace_i915_gem_object_change_domain(obj,
2411 					    old_read_domains,
2412 					    old_write_domain);
2413 }
2414 
2415 /**
2416  * Unbinds an object from the GTT aperture.
2417  */
2418 int
2419 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2420 {
2421 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2422 	int ret = 0;
2423 
2424 	if (obj->gtt_space == NULL)
2425 		return 0;
2426 
2427 	if (obj->pin_count)
2428 		return -EBUSY;
2429 
2430 	BUG_ON(obj->pages == NULL);
2431 
2432 	ret = i915_gem_object_finish_gpu(obj);
2433 	if (ret)
2434 		return ret;
2435 	/* Continue on if we fail due to EIO, the GPU is hung so we
2436 	 * should be safe and we need to cleanup or else we might
2437 	 * cause memory corruption through use-after-free.
2438 	 */
2439 
2440 	i915_gem_object_finish_gtt(obj);
2441 
2442 	/* release the fence reg _after_ flushing */
2443 	ret = i915_gem_object_put_fence(obj);
2444 	if (ret)
2445 		return ret;
2446 
2447 	trace_i915_gem_object_unbind(obj);
2448 
2449 	if (obj->has_global_gtt_mapping)
2450 		i915_gem_gtt_unbind_object(obj);
2451 	if (obj->has_aliasing_ppgtt_mapping) {
2452 		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2453 		obj->has_aliasing_ppgtt_mapping = 0;
2454 	}
2455 	i915_gem_gtt_finish_object(obj);
2456 
2457 	list_del(&obj->mm_list);
2458 	list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2459 	/* Avoid an unnecessary call to unbind on rebind. */
2460 	obj->map_and_fenceable = true;
2461 
2462 	drm_mm_put_block(obj->gtt_space);
2463 	obj->gtt_space = NULL;
2464 	obj->gtt_offset = 0;
2465 
2466 	return 0;
2467 }
2468 
2469 static int i915_ring_idle(struct intel_ring_buffer *ring)
2470 {
2471 	if (list_empty(&ring->active_list))
2472 		return 0;
2473 
2474 	return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
2475 }
2476 
2477 int i915_gpu_idle(struct drm_device *dev)
2478 {
2479 	drm_i915_private_t *dev_priv = dev->dev_private;
2480 	struct intel_ring_buffer *ring;
2481 	int ret, i;
2482 
2483 	/* Flush everything onto the inactive list. */
2484 	for_each_ring(ring, dev_priv, i) {
2485 		ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2486 		if (ret)
2487 			return ret;
2488 
2489 		ret = i915_ring_idle(ring);
2490 		if (ret)
2491 			return ret;
2492 	}
2493 
2494 	return 0;
2495 }
2496 
2497 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2498 					struct drm_i915_gem_object *obj)
2499 {
2500 	drm_i915_private_t *dev_priv = dev->dev_private;
2501 	uint64_t val;
2502 
2503 	if (obj) {
2504 		u32 size = obj->gtt_space->size;
2505 
2506 		val = (uint64_t)((obj->gtt_offset + size - 4096) &
2507 				 0xfffff000) << 32;
2508 		val |= obj->gtt_offset & 0xfffff000;
2509 		val |= (uint64_t)((obj->stride / 128) - 1) <<
2510 			SANDYBRIDGE_FENCE_PITCH_SHIFT;
2511 
2512 		if (obj->tiling_mode == I915_TILING_Y)
2513 			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2514 		val |= I965_FENCE_REG_VALID;
2515 	} else
2516 		val = 0;
2517 
2518 	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2519 	POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2520 }
2521 
2522 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2523 				 struct drm_i915_gem_object *obj)
2524 {
2525 	drm_i915_private_t *dev_priv = dev->dev_private;
2526 	uint64_t val;
2527 
2528 	if (obj) {
2529 		u32 size = obj->gtt_space->size;
2530 
2531 		val = (uint64_t)((obj->gtt_offset + size - 4096) &
2532 				 0xfffff000) << 32;
2533 		val |= obj->gtt_offset & 0xfffff000;
2534 		val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2535 		if (obj->tiling_mode == I915_TILING_Y)
2536 			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2537 		val |= I965_FENCE_REG_VALID;
2538 	} else
2539 		val = 0;
2540 
2541 	I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2542 	POSTING_READ(FENCE_REG_965_0 + reg * 8);
2543 }
2544 
2545 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2546 				 struct drm_i915_gem_object *obj)
2547 {
2548 	drm_i915_private_t *dev_priv = dev->dev_private;
2549 	u32 val;
2550 
2551 	if (obj) {
2552 		u32 size = obj->gtt_space->size;
2553 		int pitch_val;
2554 		int tile_width;
2555 
2556 		WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2557 		     (size & -size) != size ||
2558 		     (obj->gtt_offset & (size - 1)),
2559 		     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2560 		     obj->gtt_offset, obj->map_and_fenceable, size);
2561 
2562 		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2563 			tile_width = 128;
2564 		else
2565 			tile_width = 512;
2566 
2567 		/* Note: pitch better be a power of two tile widths */
2568 		pitch_val = obj->stride / tile_width;
2569 		pitch_val = ffs(pitch_val) - 1;
2570 
2571 		val = obj->gtt_offset;
2572 		if (obj->tiling_mode == I915_TILING_Y)
2573 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2574 		val |= I915_FENCE_SIZE_BITS(size);
2575 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2576 		val |= I830_FENCE_REG_VALID;
2577 	} else
2578 		val = 0;
2579 
2580 	if (reg < 8)
2581 		reg = FENCE_REG_830_0 + reg * 4;
2582 	else
2583 		reg = FENCE_REG_945_8 + (reg - 8) * 4;
2584 
2585 	I915_WRITE(reg, val);
2586 	POSTING_READ(reg);
2587 }
2588 
2589 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2590 				struct drm_i915_gem_object *obj)
2591 {
2592 	drm_i915_private_t *dev_priv = dev->dev_private;
2593 	uint32_t val;
2594 
2595 	if (obj) {
2596 		u32 size = obj->gtt_space->size;
2597 		uint32_t pitch_val;
2598 
2599 		WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2600 		     (size & -size) != size ||
2601 		     (obj->gtt_offset & (size - 1)),
2602 		     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2603 		     obj->gtt_offset, size);
2604 
2605 		pitch_val = obj->stride / 128;
2606 		pitch_val = ffs(pitch_val) - 1;
2607 
2608 		val = obj->gtt_offset;
2609 		if (obj->tiling_mode == I915_TILING_Y)
2610 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2611 		val |= I830_FENCE_SIZE_BITS(size);
2612 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2613 		val |= I830_FENCE_REG_VALID;
2614 	} else
2615 		val = 0;
2616 
2617 	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2618 	POSTING_READ(FENCE_REG_830_0 + reg * 4);
2619 }
2620 
2621 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2622 				 struct drm_i915_gem_object *obj)
2623 {
2624 	switch (INTEL_INFO(dev)->gen) {
2625 	case 7:
2626 	case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2627 	case 5:
2628 	case 4: i965_write_fence_reg(dev, reg, obj); break;
2629 	case 3: i915_write_fence_reg(dev, reg, obj); break;
2630 	case 2: i830_write_fence_reg(dev, reg, obj); break;
2631 	default: break;
2632 	}
2633 }
2634 
2635 static inline int fence_number(struct drm_i915_private *dev_priv,
2636 			       struct drm_i915_fence_reg *fence)
2637 {
2638 	return fence - dev_priv->fence_regs;
2639 }
2640 
2641 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2642 					 struct drm_i915_fence_reg *fence,
2643 					 bool enable)
2644 {
2645 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2646 	int reg = fence_number(dev_priv, fence);
2647 
2648 	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2649 
2650 	if (enable) {
2651 		obj->fence_reg = reg;
2652 		fence->obj = obj;
2653 		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2654 	} else {
2655 		obj->fence_reg = I915_FENCE_REG_NONE;
2656 		fence->obj = NULL;
2657 		list_del_init(&fence->lru_list);
2658 	}
2659 }
2660 
2661 static int
2662 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2663 {
2664 	if (obj->last_fenced_seqno) {
2665 		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2666 		if (ret)
2667 			return ret;
2668 
2669 		obj->last_fenced_seqno = 0;
2670 	}
2671 
2672 	/* Ensure that all CPU reads are completed before installing a fence
2673 	 * and all writes before removing the fence.
2674 	 */
2675 	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2676 		mb();
2677 
2678 	obj->fenced_gpu_access = false;
2679 	return 0;
2680 }
2681 
2682 int
2683 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2684 {
2685 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2686 	int ret;
2687 
2688 	ret = i915_gem_object_flush_fence(obj);
2689 	if (ret)
2690 		return ret;
2691 
2692 	if (obj->fence_reg == I915_FENCE_REG_NONE)
2693 		return 0;
2694 
2695 	i915_gem_object_update_fence(obj,
2696 				     &dev_priv->fence_regs[obj->fence_reg],
2697 				     false);
2698 	i915_gem_object_fence_lost(obj);
2699 
2700 	return 0;
2701 }
2702 
2703 static struct drm_i915_fence_reg *
2704 i915_find_fence_reg(struct drm_device *dev)
2705 {
2706 	struct drm_i915_private *dev_priv = dev->dev_private;
2707 	struct drm_i915_fence_reg *reg, *avail;
2708 	int i;
2709 
2710 	/* First try to find a free reg */
2711 	avail = NULL;
2712 	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2713 		reg = &dev_priv->fence_regs[i];
2714 		if (!reg->obj)
2715 			return reg;
2716 
2717 		if (!reg->pin_count)
2718 			avail = reg;
2719 	}
2720 
2721 	if (avail == NULL)
2722 		return NULL;
2723 
2724 	/* None available, try to steal one or wait for a user to finish */
2725 	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2726 		if (reg->pin_count)
2727 			continue;
2728 
2729 		return reg;
2730 	}
2731 
2732 	return NULL;
2733 }
2734 
2735 /**
2736  * i915_gem_object_get_fence - set up fencing for an object
2737  * @obj: object to map through a fence reg
2738  *
2739  * When mapping objects through the GTT, userspace wants to be able to write
2740  * to them without having to worry about swizzling if the object is tiled.
2741  * This function walks the fence regs looking for a free one for @obj,
2742  * stealing one if it can't find any.
2743  *
2744  * It then sets up the reg based on the object's properties: address, pitch
2745  * and tiling format.
2746  *
2747  * For an untiled surface, this removes any existing fence.
2748  */
2749 int
2750 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2751 {
2752 	struct drm_device *dev = obj->base.dev;
2753 	struct drm_i915_private *dev_priv = dev->dev_private;
2754 	bool enable = obj->tiling_mode != I915_TILING_NONE;
2755 	struct drm_i915_fence_reg *reg;
2756 	int ret;
2757 
2758 	/* Have we updated the tiling parameters upon the object and so
2759 	 * will need to serialise the write to the associated fence register?
2760 	 */
2761 	if (obj->fence_dirty) {
2762 		ret = i915_gem_object_flush_fence(obj);
2763 		if (ret)
2764 			return ret;
2765 	}
2766 
2767 	/* Just update our place in the LRU if our fence is getting reused. */
2768 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
2769 		reg = &dev_priv->fence_regs[obj->fence_reg];
2770 		if (!obj->fence_dirty) {
2771 			list_move_tail(&reg->lru_list,
2772 				       &dev_priv->mm.fence_list);
2773 			return 0;
2774 		}
2775 	} else if (enable) {
2776 		reg = i915_find_fence_reg(dev);
2777 		if (reg == NULL)
2778 			return -EDEADLK;
2779 
2780 		if (reg->obj) {
2781 			struct drm_i915_gem_object *old = reg->obj;
2782 
2783 			ret = i915_gem_object_flush_fence(old);
2784 			if (ret)
2785 				return ret;
2786 
2787 			i915_gem_object_fence_lost(old);
2788 		}
2789 	} else
2790 		return 0;
2791 
2792 	i915_gem_object_update_fence(obj, reg, enable);
2793 	obj->fence_dirty = false;
2794 
2795 	return 0;
2796 }
2797 
2798 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2799 				     struct drm_mm_node *gtt_space,
2800 				     unsigned long cache_level)
2801 {
2802 	struct drm_mm_node *other;
2803 
2804 	/* On non-LLC machines we have to be careful when putting differing
2805 	 * types of snoopable memory together to avoid the prefetcher
2806 	 * crossing memory domains and dieing.
2807 	 */
2808 	if (HAS_LLC(dev))
2809 		return true;
2810 
2811 	if (gtt_space == NULL)
2812 		return true;
2813 
2814 	if (list_empty(&gtt_space->node_list))
2815 		return true;
2816 
2817 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2818 	if (other->allocated && !other->hole_follows && other->color != cache_level)
2819 		return false;
2820 
2821 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2822 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2823 		return false;
2824 
2825 	return true;
2826 }
2827 
2828 static void i915_gem_verify_gtt(struct drm_device *dev)
2829 {
2830 #if WATCH_GTT
2831 	struct drm_i915_private *dev_priv = dev->dev_private;
2832 	struct drm_i915_gem_object *obj;
2833 	int err = 0;
2834 
2835 	list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2836 		if (obj->gtt_space == NULL) {
2837 			printk(KERN_ERR "object found on GTT list with no space reserved\n");
2838 			err++;
2839 			continue;
2840 		}
2841 
2842 		if (obj->cache_level != obj->gtt_space->color) {
2843 			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2844 			       obj->gtt_space->start,
2845 			       obj->gtt_space->start + obj->gtt_space->size,
2846 			       obj->cache_level,
2847 			       obj->gtt_space->color);
2848 			err++;
2849 			continue;
2850 		}
2851 
2852 		if (!i915_gem_valid_gtt_space(dev,
2853 					      obj->gtt_space,
2854 					      obj->cache_level)) {
2855 			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2856 			       obj->gtt_space->start,
2857 			       obj->gtt_space->start + obj->gtt_space->size,
2858 			       obj->cache_level);
2859 			err++;
2860 			continue;
2861 		}
2862 	}
2863 
2864 	WARN_ON(err);
2865 #endif
2866 }
2867 
2868 /**
2869  * Finds free space in the GTT aperture and binds the object there.
2870  */
2871 static int
2872 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2873 			    unsigned alignment,
2874 			    bool map_and_fenceable,
2875 			    bool nonblocking)
2876 {
2877 	struct drm_device *dev = obj->base.dev;
2878 	drm_i915_private_t *dev_priv = dev->dev_private;
2879 	struct drm_mm_node *free_space;
2880 	u32 size, fence_size, fence_alignment, unfenced_alignment;
2881 	bool mappable, fenceable;
2882 	int ret;
2883 
2884 	if (obj->madv != I915_MADV_WILLNEED) {
2885 		DRM_ERROR("Attempting to bind a purgeable object\n");
2886 		return -EINVAL;
2887 	}
2888 
2889 	fence_size = i915_gem_get_gtt_size(dev,
2890 					   obj->base.size,
2891 					   obj->tiling_mode);
2892 	fence_alignment = i915_gem_get_gtt_alignment(dev,
2893 						     obj->base.size,
2894 						     obj->tiling_mode);
2895 	unfenced_alignment =
2896 		i915_gem_get_unfenced_gtt_alignment(dev,
2897 						    obj->base.size,
2898 						    obj->tiling_mode);
2899 
2900 	if (alignment == 0)
2901 		alignment = map_and_fenceable ? fence_alignment :
2902 						unfenced_alignment;
2903 	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2904 		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2905 		return -EINVAL;
2906 	}
2907 
2908 	size = map_and_fenceable ? fence_size : obj->base.size;
2909 
2910 	/* If the object is bigger than the entire aperture, reject it early
2911 	 * before evicting everything in a vain attempt to find space.
2912 	 */
2913 	if (obj->base.size >
2914 	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2915 		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2916 		return -E2BIG;
2917 	}
2918 
2919 	ret = i915_gem_object_get_pages(obj);
2920 	if (ret)
2921 		return ret;
2922 
2923  search_free:
2924 	if (map_and_fenceable)
2925 		free_space =
2926 			drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
2927 							  size, alignment, obj->cache_level,
2928 							  0, dev_priv->mm.gtt_mappable_end,
2929 							  false);
2930 	else
2931 		free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
2932 						      size, alignment, obj->cache_level,
2933 						      false);
2934 
2935 	if (free_space != NULL) {
2936 		if (map_and_fenceable)
2937 			obj->gtt_space =
2938 				drm_mm_get_block_range_generic(free_space,
2939 							       size, alignment, obj->cache_level,
2940 							       0, dev_priv->mm.gtt_mappable_end,
2941 							       false);
2942 		else
2943 			obj->gtt_space =
2944 				drm_mm_get_block_generic(free_space,
2945 							 size, alignment, obj->cache_level,
2946 							 false);
2947 	}
2948 	if (obj->gtt_space == NULL) {
2949 		ret = i915_gem_evict_something(dev, size, alignment,
2950 					       obj->cache_level,
2951 					       map_and_fenceable,
2952 					       nonblocking);
2953 		if (ret)
2954 			return ret;
2955 
2956 		goto search_free;
2957 	}
2958 	if (WARN_ON(!i915_gem_valid_gtt_space(dev,
2959 					      obj->gtt_space,
2960 					      obj->cache_level))) {
2961 		drm_mm_put_block(obj->gtt_space);
2962 		obj->gtt_space = NULL;
2963 		return -EINVAL;
2964 	}
2965 
2966 
2967 	ret = i915_gem_gtt_prepare_object(obj);
2968 	if (ret) {
2969 		drm_mm_put_block(obj->gtt_space);
2970 		obj->gtt_space = NULL;
2971 		return ret;
2972 	}
2973 
2974 	if (!dev_priv->mm.aliasing_ppgtt)
2975 		i915_gem_gtt_bind_object(obj, obj->cache_level);
2976 
2977 	list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2978 	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2979 
2980 	obj->gtt_offset = obj->gtt_space->start;
2981 
2982 	fenceable =
2983 		obj->gtt_space->size == fence_size &&
2984 		(obj->gtt_space->start & (fence_alignment - 1)) == 0;
2985 
2986 	mappable =
2987 		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2988 
2989 	obj->map_and_fenceable = mappable && fenceable;
2990 
2991 	trace_i915_gem_object_bind(obj, map_and_fenceable);
2992 	i915_gem_verify_gtt(dev);
2993 	return 0;
2994 }
2995 
2996 void
2997 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2998 {
2999 	/* If we don't have a page list set up, then we're not pinned
3000 	 * to GPU, and we can ignore the cache flush because it'll happen
3001 	 * again at bind time.
3002 	 */
3003 	if (obj->pages == NULL)
3004 		return;
3005 
3006 	/* If the GPU is snooping the contents of the CPU cache,
3007 	 * we do not need to manually clear the CPU cache lines.  However,
3008 	 * the caches are only snooped when the render cache is
3009 	 * flushed/invalidated.  As we always have to emit invalidations
3010 	 * and flushes when moving into and out of the RENDER domain, correct
3011 	 * snooping behaviour occurs naturally as the result of our domain
3012 	 * tracking.
3013 	 */
3014 	if (obj->cache_level != I915_CACHE_NONE)
3015 		return;
3016 
3017 	trace_i915_gem_object_clflush(obj);
3018 
3019 	drm_clflush_sg(obj->pages);
3020 }
3021 
3022 /** Flushes the GTT write domain for the object if it's dirty. */
3023 static void
3024 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3025 {
3026 	uint32_t old_write_domain;
3027 
3028 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3029 		return;
3030 
3031 	/* No actual flushing is required for the GTT write domain.  Writes
3032 	 * to it immediately go to main memory as far as we know, so there's
3033 	 * no chipset flush.  It also doesn't land in render cache.
3034 	 *
3035 	 * However, we do have to enforce the order so that all writes through
3036 	 * the GTT land before any writes to the device, such as updates to
3037 	 * the GATT itself.
3038 	 */
3039 	wmb();
3040 
3041 	old_write_domain = obj->base.write_domain;
3042 	obj->base.write_domain = 0;
3043 
3044 	trace_i915_gem_object_change_domain(obj,
3045 					    obj->base.read_domains,
3046 					    old_write_domain);
3047 }
3048 
3049 /** Flushes the CPU write domain for the object if it's dirty. */
3050 static void
3051 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3052 {
3053 	uint32_t old_write_domain;
3054 
3055 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3056 		return;
3057 
3058 	i915_gem_clflush_object(obj);
3059 	intel_gtt_chipset_flush();
3060 	old_write_domain = obj->base.write_domain;
3061 	obj->base.write_domain = 0;
3062 
3063 	trace_i915_gem_object_change_domain(obj,
3064 					    obj->base.read_domains,
3065 					    old_write_domain);
3066 }
3067 
3068 /**
3069  * Moves a single object to the GTT read, and possibly write domain.
3070  *
3071  * This function returns when the move is complete, including waiting on
3072  * flushes to occur.
3073  */
3074 int
3075 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3076 {
3077 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3078 	uint32_t old_write_domain, old_read_domains;
3079 	int ret;
3080 
3081 	/* Not valid to be called on unbound objects. */
3082 	if (obj->gtt_space == NULL)
3083 		return -EINVAL;
3084 
3085 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3086 		return 0;
3087 
3088 	ret = i915_gem_object_wait_rendering(obj, !write);
3089 	if (ret)
3090 		return ret;
3091 
3092 	i915_gem_object_flush_cpu_write_domain(obj);
3093 
3094 	old_write_domain = obj->base.write_domain;
3095 	old_read_domains = obj->base.read_domains;
3096 
3097 	/* It should now be out of any other write domains, and we can update
3098 	 * the domain values for our changes.
3099 	 */
3100 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3101 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3102 	if (write) {
3103 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3104 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3105 		obj->dirty = 1;
3106 	}
3107 
3108 	trace_i915_gem_object_change_domain(obj,
3109 					    old_read_domains,
3110 					    old_write_domain);
3111 
3112 	/* And bump the LRU for this access */
3113 	if (i915_gem_object_is_inactive(obj))
3114 		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3115 
3116 	return 0;
3117 }
3118 
3119 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3120 				    enum i915_cache_level cache_level)
3121 {
3122 	struct drm_device *dev = obj->base.dev;
3123 	drm_i915_private_t *dev_priv = dev->dev_private;
3124 	int ret;
3125 
3126 	if (obj->cache_level == cache_level)
3127 		return 0;
3128 
3129 	if (obj->pin_count) {
3130 		DRM_DEBUG("can not change the cache level of pinned objects\n");
3131 		return -EBUSY;
3132 	}
3133 
3134 	if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3135 		ret = i915_gem_object_unbind(obj);
3136 		if (ret)
3137 			return ret;
3138 	}
3139 
3140 	if (obj->gtt_space) {
3141 		ret = i915_gem_object_finish_gpu(obj);
3142 		if (ret)
3143 			return ret;
3144 
3145 		i915_gem_object_finish_gtt(obj);
3146 
3147 		/* Before SandyBridge, you could not use tiling or fence
3148 		 * registers with snooped memory, so relinquish any fences
3149 		 * currently pointing to our region in the aperture.
3150 		 */
3151 		if (INTEL_INFO(dev)->gen < 6) {
3152 			ret = i915_gem_object_put_fence(obj);
3153 			if (ret)
3154 				return ret;
3155 		}
3156 
3157 		if (obj->has_global_gtt_mapping)
3158 			i915_gem_gtt_bind_object(obj, cache_level);
3159 		if (obj->has_aliasing_ppgtt_mapping)
3160 			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3161 					       obj, cache_level);
3162 
3163 		obj->gtt_space->color = cache_level;
3164 	}
3165 
3166 	if (cache_level == I915_CACHE_NONE) {
3167 		u32 old_read_domains, old_write_domain;
3168 
3169 		/* If we're coming from LLC cached, then we haven't
3170 		 * actually been tracking whether the data is in the
3171 		 * CPU cache or not, since we only allow one bit set
3172 		 * in obj->write_domain and have been skipping the clflushes.
3173 		 * Just set it to the CPU cache for now.
3174 		 */
3175 		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3176 		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3177 
3178 		old_read_domains = obj->base.read_domains;
3179 		old_write_domain = obj->base.write_domain;
3180 
3181 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3182 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3183 
3184 		trace_i915_gem_object_change_domain(obj,
3185 						    old_read_domains,
3186 						    old_write_domain);
3187 	}
3188 
3189 	obj->cache_level = cache_level;
3190 	i915_gem_verify_gtt(dev);
3191 	return 0;
3192 }
3193 
3194 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3195 			       struct drm_file *file)
3196 {
3197 	struct drm_i915_gem_caching *args = data;
3198 	struct drm_i915_gem_object *obj;
3199 	int ret;
3200 
3201 	ret = i915_mutex_lock_interruptible(dev);
3202 	if (ret)
3203 		return ret;
3204 
3205 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3206 	if (&obj->base == NULL) {
3207 		ret = -ENOENT;
3208 		goto unlock;
3209 	}
3210 
3211 	args->caching = obj->cache_level != I915_CACHE_NONE;
3212 
3213 	drm_gem_object_unreference(&obj->base);
3214 unlock:
3215 	mutex_unlock(&dev->struct_mutex);
3216 	return ret;
3217 }
3218 
3219 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3220 			       struct drm_file *file)
3221 {
3222 	struct drm_i915_gem_caching *args = data;
3223 	struct drm_i915_gem_object *obj;
3224 	enum i915_cache_level level;
3225 	int ret;
3226 
3227 	switch (args->caching) {
3228 	case I915_CACHING_NONE:
3229 		level = I915_CACHE_NONE;
3230 		break;
3231 	case I915_CACHING_CACHED:
3232 		level = I915_CACHE_LLC;
3233 		break;
3234 	default:
3235 		return -EINVAL;
3236 	}
3237 
3238 	ret = i915_mutex_lock_interruptible(dev);
3239 	if (ret)
3240 		return ret;
3241 
3242 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3243 	if (&obj->base == NULL) {
3244 		ret = -ENOENT;
3245 		goto unlock;
3246 	}
3247 
3248 	ret = i915_gem_object_set_cache_level(obj, level);
3249 
3250 	drm_gem_object_unreference(&obj->base);
3251 unlock:
3252 	mutex_unlock(&dev->struct_mutex);
3253 	return ret;
3254 }
3255 
3256 /*
3257  * Prepare buffer for display plane (scanout, cursors, etc).
3258  * Can be called from an uninterruptible phase (modesetting) and allows
3259  * any flushes to be pipelined (for pageflips).
3260  */
3261 int
3262 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3263 				     u32 alignment,
3264 				     struct intel_ring_buffer *pipelined)
3265 {
3266 	u32 old_read_domains, old_write_domain;
3267 	int ret;
3268 
3269 	if (pipelined != obj->ring) {
3270 		ret = i915_gem_object_sync(obj, pipelined);
3271 		if (ret)
3272 			return ret;
3273 	}
3274 
3275 	/* The display engine is not coherent with the LLC cache on gen6.  As
3276 	 * a result, we make sure that the pinning that is about to occur is
3277 	 * done with uncached PTEs. This is lowest common denominator for all
3278 	 * chipsets.
3279 	 *
3280 	 * However for gen6+, we could do better by using the GFDT bit instead
3281 	 * of uncaching, which would allow us to flush all the LLC-cached data
3282 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3283 	 */
3284 	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3285 	if (ret)
3286 		return ret;
3287 
3288 	/* As the user may map the buffer once pinned in the display plane
3289 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3290 	 * always use map_and_fenceable for all scanout buffers.
3291 	 */
3292 	ret = i915_gem_object_pin(obj, alignment, true, false);
3293 	if (ret)
3294 		return ret;
3295 
3296 	i915_gem_object_flush_cpu_write_domain(obj);
3297 
3298 	old_write_domain = obj->base.write_domain;
3299 	old_read_domains = obj->base.read_domains;
3300 
3301 	/* It should now be out of any other write domains, and we can update
3302 	 * the domain values for our changes.
3303 	 */
3304 	obj->base.write_domain = 0;
3305 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3306 
3307 	trace_i915_gem_object_change_domain(obj,
3308 					    old_read_domains,
3309 					    old_write_domain);
3310 
3311 	return 0;
3312 }
3313 
3314 int
3315 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3316 {
3317 	int ret;
3318 
3319 	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3320 		return 0;
3321 
3322 	ret = i915_gem_object_wait_rendering(obj, false);
3323 	if (ret)
3324 		return ret;
3325 
3326 	/* Ensure that we invalidate the GPU's caches and TLBs. */
3327 	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3328 	return 0;
3329 }
3330 
3331 /**
3332  * Moves a single object to the CPU read, and possibly write domain.
3333  *
3334  * This function returns when the move is complete, including waiting on
3335  * flushes to occur.
3336  */
3337 int
3338 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3339 {
3340 	uint32_t old_write_domain, old_read_domains;
3341 	int ret;
3342 
3343 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3344 		return 0;
3345 
3346 	ret = i915_gem_object_wait_rendering(obj, !write);
3347 	if (ret)
3348 		return ret;
3349 
3350 	i915_gem_object_flush_gtt_write_domain(obj);
3351 
3352 	old_write_domain = obj->base.write_domain;
3353 	old_read_domains = obj->base.read_domains;
3354 
3355 	/* Flush the CPU cache if it's still invalid. */
3356 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3357 		i915_gem_clflush_object(obj);
3358 
3359 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3360 	}
3361 
3362 	/* It should now be out of any other write domains, and we can update
3363 	 * the domain values for our changes.
3364 	 */
3365 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3366 
3367 	/* If we're writing through the CPU, then the GPU read domains will
3368 	 * need to be invalidated at next use.
3369 	 */
3370 	if (write) {
3371 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3372 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3373 	}
3374 
3375 	trace_i915_gem_object_change_domain(obj,
3376 					    old_read_domains,
3377 					    old_write_domain);
3378 
3379 	return 0;
3380 }
3381 
3382 /* Throttle our rendering by waiting until the ring has completed our requests
3383  * emitted over 20 msec ago.
3384  *
3385  * Note that if we were to use the current jiffies each time around the loop,
3386  * we wouldn't escape the function with any frames outstanding if the time to
3387  * render a frame was over 20ms.
3388  *
3389  * This should get us reasonable parallelism between CPU and GPU but also
3390  * relatively low latency when blocking on a particular request to finish.
3391  */
3392 static int
3393 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3394 {
3395 	struct drm_i915_private *dev_priv = dev->dev_private;
3396 	struct drm_i915_file_private *file_priv = file->driver_priv;
3397 	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3398 	struct drm_i915_gem_request *request;
3399 	struct intel_ring_buffer *ring = NULL;
3400 	u32 seqno = 0;
3401 	int ret;
3402 
3403 	if (atomic_read(&dev_priv->mm.wedged))
3404 		return -EIO;
3405 
3406 	spin_lock(&file_priv->mm.lock);
3407 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3408 		if (time_after_eq(request->emitted_jiffies, recent_enough))
3409 			break;
3410 
3411 		ring = request->ring;
3412 		seqno = request->seqno;
3413 	}
3414 	spin_unlock(&file_priv->mm.lock);
3415 
3416 	if (seqno == 0)
3417 		return 0;
3418 
3419 	ret = __wait_seqno(ring, seqno, true, NULL);
3420 	if (ret == 0)
3421 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3422 
3423 	return ret;
3424 }
3425 
3426 int
3427 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3428 		    uint32_t alignment,
3429 		    bool map_and_fenceable,
3430 		    bool nonblocking)
3431 {
3432 	int ret;
3433 
3434 	if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3435 		return -EBUSY;
3436 
3437 	if (obj->gtt_space != NULL) {
3438 		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3439 		    (map_and_fenceable && !obj->map_and_fenceable)) {
3440 			WARN(obj->pin_count,
3441 			     "bo is already pinned with incorrect alignment:"
3442 			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3443 			     " obj->map_and_fenceable=%d\n",
3444 			     obj->gtt_offset, alignment,
3445 			     map_and_fenceable,
3446 			     obj->map_and_fenceable);
3447 			ret = i915_gem_object_unbind(obj);
3448 			if (ret)
3449 				return ret;
3450 		}
3451 	}
3452 
3453 	if (obj->gtt_space == NULL) {
3454 		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3455 						  map_and_fenceable,
3456 						  nonblocking);
3457 		if (ret)
3458 			return ret;
3459 	}
3460 
3461 	if (!obj->has_global_gtt_mapping && map_and_fenceable)
3462 		i915_gem_gtt_bind_object(obj, obj->cache_level);
3463 
3464 	obj->pin_count++;
3465 	obj->pin_mappable |= map_and_fenceable;
3466 
3467 	return 0;
3468 }
3469 
3470 void
3471 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3472 {
3473 	BUG_ON(obj->pin_count == 0);
3474 	BUG_ON(obj->gtt_space == NULL);
3475 
3476 	if (--obj->pin_count == 0)
3477 		obj->pin_mappable = false;
3478 }
3479 
3480 int
3481 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3482 		   struct drm_file *file)
3483 {
3484 	struct drm_i915_gem_pin *args = data;
3485 	struct drm_i915_gem_object *obj;
3486 	int ret;
3487 
3488 	ret = i915_mutex_lock_interruptible(dev);
3489 	if (ret)
3490 		return ret;
3491 
3492 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3493 	if (&obj->base == NULL) {
3494 		ret = -ENOENT;
3495 		goto unlock;
3496 	}
3497 
3498 	if (obj->madv != I915_MADV_WILLNEED) {
3499 		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3500 		ret = -EINVAL;
3501 		goto out;
3502 	}
3503 
3504 	if (obj->pin_filp != NULL && obj->pin_filp != file) {
3505 		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3506 			  args->handle);
3507 		ret = -EINVAL;
3508 		goto out;
3509 	}
3510 
3511 	obj->user_pin_count++;
3512 	obj->pin_filp = file;
3513 	if (obj->user_pin_count == 1) {
3514 		ret = i915_gem_object_pin(obj, args->alignment, true, false);
3515 		if (ret)
3516 			goto out;
3517 	}
3518 
3519 	/* XXX - flush the CPU caches for pinned objects
3520 	 * as the X server doesn't manage domains yet
3521 	 */
3522 	i915_gem_object_flush_cpu_write_domain(obj);
3523 	args->offset = obj->gtt_offset;
3524 out:
3525 	drm_gem_object_unreference(&obj->base);
3526 unlock:
3527 	mutex_unlock(&dev->struct_mutex);
3528 	return ret;
3529 }
3530 
3531 int
3532 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3533 		     struct drm_file *file)
3534 {
3535 	struct drm_i915_gem_pin *args = data;
3536 	struct drm_i915_gem_object *obj;
3537 	int ret;
3538 
3539 	ret = i915_mutex_lock_interruptible(dev);
3540 	if (ret)
3541 		return ret;
3542 
3543 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3544 	if (&obj->base == NULL) {
3545 		ret = -ENOENT;
3546 		goto unlock;
3547 	}
3548 
3549 	if (obj->pin_filp != file) {
3550 		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3551 			  args->handle);
3552 		ret = -EINVAL;
3553 		goto out;
3554 	}
3555 	obj->user_pin_count--;
3556 	if (obj->user_pin_count == 0) {
3557 		obj->pin_filp = NULL;
3558 		i915_gem_object_unpin(obj);
3559 	}
3560 
3561 out:
3562 	drm_gem_object_unreference(&obj->base);
3563 unlock:
3564 	mutex_unlock(&dev->struct_mutex);
3565 	return ret;
3566 }
3567 
3568 int
3569 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3570 		    struct drm_file *file)
3571 {
3572 	struct drm_i915_gem_busy *args = data;
3573 	struct drm_i915_gem_object *obj;
3574 	int ret;
3575 
3576 	ret = i915_mutex_lock_interruptible(dev);
3577 	if (ret)
3578 		return ret;
3579 
3580 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3581 	if (&obj->base == NULL) {
3582 		ret = -ENOENT;
3583 		goto unlock;
3584 	}
3585 
3586 	/* Count all active objects as busy, even if they are currently not used
3587 	 * by the gpu. Users of this interface expect objects to eventually
3588 	 * become non-busy without any further actions, therefore emit any
3589 	 * necessary flushes here.
3590 	 */
3591 	ret = i915_gem_object_flush_active(obj);
3592 
3593 	args->busy = obj->active;
3594 	if (obj->ring) {
3595 		BUILD_BUG_ON(I915_NUM_RINGS > 16);
3596 		args->busy |= intel_ring_flag(obj->ring) << 16;
3597 	}
3598 
3599 	drm_gem_object_unreference(&obj->base);
3600 unlock:
3601 	mutex_unlock(&dev->struct_mutex);
3602 	return ret;
3603 }
3604 
3605 int
3606 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3607 			struct drm_file *file_priv)
3608 {
3609 	return i915_gem_ring_throttle(dev, file_priv);
3610 }
3611 
3612 int
3613 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3614 		       struct drm_file *file_priv)
3615 {
3616 	struct drm_i915_gem_madvise *args = data;
3617 	struct drm_i915_gem_object *obj;
3618 	int ret;
3619 
3620 	switch (args->madv) {
3621 	case I915_MADV_DONTNEED:
3622 	case I915_MADV_WILLNEED:
3623 	    break;
3624 	default:
3625 	    return -EINVAL;
3626 	}
3627 
3628 	ret = i915_mutex_lock_interruptible(dev);
3629 	if (ret)
3630 		return ret;
3631 
3632 	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3633 	if (&obj->base == NULL) {
3634 		ret = -ENOENT;
3635 		goto unlock;
3636 	}
3637 
3638 	if (obj->pin_count) {
3639 		ret = -EINVAL;
3640 		goto out;
3641 	}
3642 
3643 	if (obj->madv != __I915_MADV_PURGED)
3644 		obj->madv = args->madv;
3645 
3646 	/* if the object is no longer attached, discard its backing storage */
3647 	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3648 		i915_gem_object_truncate(obj);
3649 
3650 	args->retained = obj->madv != __I915_MADV_PURGED;
3651 
3652 out:
3653 	drm_gem_object_unreference(&obj->base);
3654 unlock:
3655 	mutex_unlock(&dev->struct_mutex);
3656 	return ret;
3657 }
3658 
3659 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3660 			  const struct drm_i915_gem_object_ops *ops)
3661 {
3662 	INIT_LIST_HEAD(&obj->mm_list);
3663 	INIT_LIST_HEAD(&obj->gtt_list);
3664 	INIT_LIST_HEAD(&obj->ring_list);
3665 	INIT_LIST_HEAD(&obj->exec_list);
3666 
3667 	obj->ops = ops;
3668 
3669 	obj->fence_reg = I915_FENCE_REG_NONE;
3670 	obj->madv = I915_MADV_WILLNEED;
3671 	/* Avoid an unnecessary call to unbind on the first bind. */
3672 	obj->map_and_fenceable = true;
3673 
3674 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3675 }
3676 
3677 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3678 	.get_pages = i915_gem_object_get_pages_gtt,
3679 	.put_pages = i915_gem_object_put_pages_gtt,
3680 };
3681 
3682 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3683 						  size_t size)
3684 {
3685 	struct drm_i915_gem_object *obj;
3686 	struct address_space *mapping;
3687 	u32 mask;
3688 
3689 	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3690 	if (obj == NULL)
3691 		return NULL;
3692 
3693 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3694 		kfree(obj);
3695 		return NULL;
3696 	}
3697 
3698 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3699 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3700 		/* 965gm cannot relocate objects above 4GiB. */
3701 		mask &= ~__GFP_HIGHMEM;
3702 		mask |= __GFP_DMA32;
3703 	}
3704 
3705 	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3706 	mapping_set_gfp_mask(mapping, mask);
3707 
3708 	i915_gem_object_init(obj, &i915_gem_object_ops);
3709 
3710 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3711 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3712 
3713 	if (HAS_LLC(dev)) {
3714 		/* On some devices, we can have the GPU use the LLC (the CPU
3715 		 * cache) for about a 10% performance improvement
3716 		 * compared to uncached.  Graphics requests other than
3717 		 * display scanout are coherent with the CPU in
3718 		 * accessing this cache.  This means in this mode we
3719 		 * don't need to clflush on the CPU side, and on the
3720 		 * GPU side we only need to flush internal caches to
3721 		 * get data visible to the CPU.
3722 		 *
3723 		 * However, we maintain the display planes as UC, and so
3724 		 * need to rebind when first used as such.
3725 		 */
3726 		obj->cache_level = I915_CACHE_LLC;
3727 	} else
3728 		obj->cache_level = I915_CACHE_NONE;
3729 
3730 	return obj;
3731 }
3732 
3733 int i915_gem_init_object(struct drm_gem_object *obj)
3734 {
3735 	BUG();
3736 
3737 	return 0;
3738 }
3739 
3740 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3741 {
3742 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3743 	struct drm_device *dev = obj->base.dev;
3744 	drm_i915_private_t *dev_priv = dev->dev_private;
3745 
3746 	trace_i915_gem_object_destroy(obj);
3747 
3748 	if (obj->phys_obj)
3749 		i915_gem_detach_phys_object(dev, obj);
3750 
3751 	obj->pin_count = 0;
3752 	if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3753 		bool was_interruptible;
3754 
3755 		was_interruptible = dev_priv->mm.interruptible;
3756 		dev_priv->mm.interruptible = false;
3757 
3758 		WARN_ON(i915_gem_object_unbind(obj));
3759 
3760 		dev_priv->mm.interruptible = was_interruptible;
3761 	}
3762 
3763 	obj->pages_pin_count = 0;
3764 	i915_gem_object_put_pages(obj);
3765 	i915_gem_object_free_mmap_offset(obj);
3766 
3767 	BUG_ON(obj->pages);
3768 
3769 	if (obj->base.import_attach)
3770 		drm_prime_gem_destroy(&obj->base, NULL);
3771 
3772 	drm_gem_object_release(&obj->base);
3773 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3774 
3775 	kfree(obj->bit_17);
3776 	kfree(obj);
3777 }
3778 
3779 int
3780 i915_gem_idle(struct drm_device *dev)
3781 {
3782 	drm_i915_private_t *dev_priv = dev->dev_private;
3783 	int ret;
3784 
3785 	mutex_lock(&dev->struct_mutex);
3786 
3787 	if (dev_priv->mm.suspended) {
3788 		mutex_unlock(&dev->struct_mutex);
3789 		return 0;
3790 	}
3791 
3792 	ret = i915_gpu_idle(dev);
3793 	if (ret) {
3794 		mutex_unlock(&dev->struct_mutex);
3795 		return ret;
3796 	}
3797 	i915_gem_retire_requests(dev);
3798 
3799 	/* Under UMS, be paranoid and evict. */
3800 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
3801 		i915_gem_evict_everything(dev);
3802 
3803 	i915_gem_reset_fences(dev);
3804 
3805 	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
3806 	 * We need to replace this with a semaphore, or something.
3807 	 * And not confound mm.suspended!
3808 	 */
3809 	dev_priv->mm.suspended = 1;
3810 	del_timer_sync(&dev_priv->hangcheck_timer);
3811 
3812 	i915_kernel_lost_context(dev);
3813 	i915_gem_cleanup_ringbuffer(dev);
3814 
3815 	mutex_unlock(&dev->struct_mutex);
3816 
3817 	/* Cancel the retire work handler, which should be idle now. */
3818 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3819 
3820 	return 0;
3821 }
3822 
3823 void i915_gem_l3_remap(struct drm_device *dev)
3824 {
3825 	drm_i915_private_t *dev_priv = dev->dev_private;
3826 	u32 misccpctl;
3827 	int i;
3828 
3829 	if (!IS_IVYBRIDGE(dev))
3830 		return;
3831 
3832 	if (!dev_priv->mm.l3_remap_info)
3833 		return;
3834 
3835 	misccpctl = I915_READ(GEN7_MISCCPCTL);
3836 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3837 	POSTING_READ(GEN7_MISCCPCTL);
3838 
3839 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3840 		u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3841 		if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
3842 			DRM_DEBUG("0x%x was already programmed to %x\n",
3843 				  GEN7_L3LOG_BASE + i, remap);
3844 		if (remap && !dev_priv->mm.l3_remap_info[i/4])
3845 			DRM_DEBUG_DRIVER("Clearing remapped register\n");
3846 		I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
3847 	}
3848 
3849 	/* Make sure all the writes land before disabling dop clock gating */
3850 	POSTING_READ(GEN7_L3LOG_BASE);
3851 
3852 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3853 }
3854 
3855 void i915_gem_init_swizzling(struct drm_device *dev)
3856 {
3857 	drm_i915_private_t *dev_priv = dev->dev_private;
3858 
3859 	if (INTEL_INFO(dev)->gen < 5 ||
3860 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3861 		return;
3862 
3863 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3864 				 DISP_TILE_SURFACE_SWIZZLING);
3865 
3866 	if (IS_GEN5(dev))
3867 		return;
3868 
3869 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3870 	if (IS_GEN6(dev))
3871 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3872 	else
3873 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3874 }
3875 
3876 void i915_gem_init_ppgtt(struct drm_device *dev)
3877 {
3878 	drm_i915_private_t *dev_priv = dev->dev_private;
3879 	uint32_t pd_offset;
3880 	struct intel_ring_buffer *ring;
3881 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3882 	uint32_t __iomem *pd_addr;
3883 	uint32_t pd_entry;
3884 	int i;
3885 
3886 	if (!dev_priv->mm.aliasing_ppgtt)
3887 		return;
3888 
3889 
3890 	pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3891 	for (i = 0; i < ppgtt->num_pd_entries; i++) {
3892 		dma_addr_t pt_addr;
3893 
3894 		if (dev_priv->mm.gtt->needs_dmar)
3895 			pt_addr = ppgtt->pt_dma_addr[i];
3896 		else
3897 			pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3898 
3899 		pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3900 		pd_entry |= GEN6_PDE_VALID;
3901 
3902 		writel(pd_entry, pd_addr + i);
3903 	}
3904 	readl(pd_addr);
3905 
3906 	pd_offset = ppgtt->pd_offset;
3907 	pd_offset /= 64; /* in cachelines, */
3908 	pd_offset <<= 16;
3909 
3910 	if (INTEL_INFO(dev)->gen == 6) {
3911 		uint32_t ecochk, gab_ctl, ecobits;
3912 
3913 		ecobits = I915_READ(GAC_ECO_BITS);
3914 		I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3915 
3916 		gab_ctl = I915_READ(GAB_CTL);
3917 		I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3918 
3919 		ecochk = I915_READ(GAM_ECOCHK);
3920 		I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3921 				       ECOCHK_PPGTT_CACHE64B);
3922 		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3923 	} else if (INTEL_INFO(dev)->gen >= 7) {
3924 		I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3925 		/* GFX_MODE is per-ring on gen7+ */
3926 	}
3927 
3928 	for_each_ring(ring, dev_priv, i) {
3929 		if (INTEL_INFO(dev)->gen >= 7)
3930 			I915_WRITE(RING_MODE_GEN7(ring),
3931 				   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3932 
3933 		I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3934 		I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3935 	}
3936 }
3937 
3938 static bool
3939 intel_enable_blt(struct drm_device *dev)
3940 {
3941 	if (!HAS_BLT(dev))
3942 		return false;
3943 
3944 	/* The blitter was dysfunctional on early prototypes */
3945 	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3946 		DRM_INFO("BLT not supported on this pre-production hardware;"
3947 			 " graphics performance will be degraded.\n");
3948 		return false;
3949 	}
3950 
3951 	return true;
3952 }
3953 
3954 int
3955 i915_gem_init_hw(struct drm_device *dev)
3956 {
3957 	drm_i915_private_t *dev_priv = dev->dev_private;
3958 	int ret;
3959 
3960 	if (!intel_enable_gtt())
3961 		return -EIO;
3962 
3963 	if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3964 		I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3965 
3966 	i915_gem_l3_remap(dev);
3967 
3968 	i915_gem_init_swizzling(dev);
3969 
3970 	ret = intel_init_render_ring_buffer(dev);
3971 	if (ret)
3972 		return ret;
3973 
3974 	if (HAS_BSD(dev)) {
3975 		ret = intel_init_bsd_ring_buffer(dev);
3976 		if (ret)
3977 			goto cleanup_render_ring;
3978 	}
3979 
3980 	if (intel_enable_blt(dev)) {
3981 		ret = intel_init_blt_ring_buffer(dev);
3982 		if (ret)
3983 			goto cleanup_bsd_ring;
3984 	}
3985 
3986 	dev_priv->next_seqno = 1;
3987 
3988 	/*
3989 	 * XXX: There was some w/a described somewhere suggesting loading
3990 	 * contexts before PPGTT.
3991 	 */
3992 	i915_gem_context_init(dev);
3993 	i915_gem_init_ppgtt(dev);
3994 
3995 	return 0;
3996 
3997 cleanup_bsd_ring:
3998 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3999 cleanup_render_ring:
4000 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4001 	return ret;
4002 }
4003 
4004 static bool
4005 intel_enable_ppgtt(struct drm_device *dev)
4006 {
4007 	if (i915_enable_ppgtt >= 0)
4008 		return i915_enable_ppgtt;
4009 
4010 #ifdef CONFIG_INTEL_IOMMU
4011 	/* Disable ppgtt on SNB if VT-d is on. */
4012 	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
4013 		return false;
4014 #endif
4015 
4016 	return true;
4017 }
4018 
4019 int i915_gem_init(struct drm_device *dev)
4020 {
4021 	struct drm_i915_private *dev_priv = dev->dev_private;
4022 	unsigned long gtt_size, mappable_size;
4023 	int ret;
4024 
4025 	gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
4026 	mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
4027 
4028 	mutex_lock(&dev->struct_mutex);
4029 	if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
4030 		/* PPGTT pdes are stolen from global gtt ptes, so shrink the
4031 		 * aperture accordingly when using aliasing ppgtt. */
4032 		gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
4033 
4034 		i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
4035 
4036 		ret = i915_gem_init_aliasing_ppgtt(dev);
4037 		if (ret) {
4038 			mutex_unlock(&dev->struct_mutex);
4039 			return ret;
4040 		}
4041 	} else {
4042 		/* Let GEM Manage all of the aperture.
4043 		 *
4044 		 * However, leave one page at the end still bound to the scratch
4045 		 * page.  There are a number of places where the hardware
4046 		 * apparently prefetches past the end of the object, and we've
4047 		 * seen multiple hangs with the GPU head pointer stuck in a
4048 		 * batchbuffer bound at the last page of the aperture.  One page
4049 		 * should be enough to keep any prefetching inside of the
4050 		 * aperture.
4051 		 */
4052 		i915_gem_init_global_gtt(dev, 0, mappable_size,
4053 					 gtt_size);
4054 	}
4055 
4056 	ret = i915_gem_init_hw(dev);
4057 	mutex_unlock(&dev->struct_mutex);
4058 	if (ret) {
4059 		i915_gem_cleanup_aliasing_ppgtt(dev);
4060 		return ret;
4061 	}
4062 
4063 	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4064 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4065 		dev_priv->dri1.allow_batchbuffer = 1;
4066 	return 0;
4067 }
4068 
4069 void
4070 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4071 {
4072 	drm_i915_private_t *dev_priv = dev->dev_private;
4073 	struct intel_ring_buffer *ring;
4074 	int i;
4075 
4076 	for_each_ring(ring, dev_priv, i)
4077 		intel_cleanup_ring_buffer(ring);
4078 }
4079 
4080 int
4081 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4082 		       struct drm_file *file_priv)
4083 {
4084 	drm_i915_private_t *dev_priv = dev->dev_private;
4085 	int ret;
4086 
4087 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4088 		return 0;
4089 
4090 	if (atomic_read(&dev_priv->mm.wedged)) {
4091 		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4092 		atomic_set(&dev_priv->mm.wedged, 0);
4093 	}
4094 
4095 	mutex_lock(&dev->struct_mutex);
4096 	dev_priv->mm.suspended = 0;
4097 
4098 	ret = i915_gem_init_hw(dev);
4099 	if (ret != 0) {
4100 		mutex_unlock(&dev->struct_mutex);
4101 		return ret;
4102 	}
4103 
4104 	BUG_ON(!list_empty(&dev_priv->mm.active_list));
4105 	mutex_unlock(&dev->struct_mutex);
4106 
4107 	ret = drm_irq_install(dev);
4108 	if (ret)
4109 		goto cleanup_ringbuffer;
4110 
4111 	return 0;
4112 
4113 cleanup_ringbuffer:
4114 	mutex_lock(&dev->struct_mutex);
4115 	i915_gem_cleanup_ringbuffer(dev);
4116 	dev_priv->mm.suspended = 1;
4117 	mutex_unlock(&dev->struct_mutex);
4118 
4119 	return ret;
4120 }
4121 
4122 int
4123 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4124 		       struct drm_file *file_priv)
4125 {
4126 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4127 		return 0;
4128 
4129 	drm_irq_uninstall(dev);
4130 	return i915_gem_idle(dev);
4131 }
4132 
4133 void
4134 i915_gem_lastclose(struct drm_device *dev)
4135 {
4136 	int ret;
4137 
4138 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4139 		return;
4140 
4141 	ret = i915_gem_idle(dev);
4142 	if (ret)
4143 		DRM_ERROR("failed to idle hardware: %d\n", ret);
4144 }
4145 
4146 static void
4147 init_ring_lists(struct intel_ring_buffer *ring)
4148 {
4149 	INIT_LIST_HEAD(&ring->active_list);
4150 	INIT_LIST_HEAD(&ring->request_list);
4151 }
4152 
4153 void
4154 i915_gem_load(struct drm_device *dev)
4155 {
4156 	int i;
4157 	drm_i915_private_t *dev_priv = dev->dev_private;
4158 
4159 	INIT_LIST_HEAD(&dev_priv->mm.active_list);
4160 	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4161 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4162 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4163 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4164 	for (i = 0; i < I915_NUM_RINGS; i++)
4165 		init_ring_lists(&dev_priv->ring[i]);
4166 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4167 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4168 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4169 			  i915_gem_retire_work_handler);
4170 	init_completion(&dev_priv->error_completion);
4171 
4172 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4173 	if (IS_GEN3(dev)) {
4174 		I915_WRITE(MI_ARB_STATE,
4175 			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4176 	}
4177 
4178 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4179 
4180 	/* Old X drivers will take 0-2 for front, back, depth buffers */
4181 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4182 		dev_priv->fence_reg_start = 3;
4183 
4184 	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4185 		dev_priv->num_fence_regs = 16;
4186 	else
4187 		dev_priv->num_fence_regs = 8;
4188 
4189 	/* Initialize fence registers to zero */
4190 	i915_gem_reset_fences(dev);
4191 
4192 	i915_gem_detect_bit_6_swizzle(dev);
4193 	init_waitqueue_head(&dev_priv->pending_flip_queue);
4194 
4195 	dev_priv->mm.interruptible = true;
4196 
4197 	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4198 	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4199 	register_shrinker(&dev_priv->mm.inactive_shrinker);
4200 }
4201 
4202 /*
4203  * Create a physically contiguous memory object for this object
4204  * e.g. for cursor + overlay regs
4205  */
4206 static int i915_gem_init_phys_object(struct drm_device *dev,
4207 				     int id, int size, int align)
4208 {
4209 	drm_i915_private_t *dev_priv = dev->dev_private;
4210 	struct drm_i915_gem_phys_object *phys_obj;
4211 	int ret;
4212 
4213 	if (dev_priv->mm.phys_objs[id - 1] || !size)
4214 		return 0;
4215 
4216 	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4217 	if (!phys_obj)
4218 		return -ENOMEM;
4219 
4220 	phys_obj->id = id;
4221 
4222 	phys_obj->handle = drm_pci_alloc(dev, size, align);
4223 	if (!phys_obj->handle) {
4224 		ret = -ENOMEM;
4225 		goto kfree_obj;
4226 	}
4227 #ifdef CONFIG_X86
4228 	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4229 #endif
4230 
4231 	dev_priv->mm.phys_objs[id - 1] = phys_obj;
4232 
4233 	return 0;
4234 kfree_obj:
4235 	kfree(phys_obj);
4236 	return ret;
4237 }
4238 
4239 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4240 {
4241 	drm_i915_private_t *dev_priv = dev->dev_private;
4242 	struct drm_i915_gem_phys_object *phys_obj;
4243 
4244 	if (!dev_priv->mm.phys_objs[id - 1])
4245 		return;
4246 
4247 	phys_obj = dev_priv->mm.phys_objs[id - 1];
4248 	if (phys_obj->cur_obj) {
4249 		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4250 	}
4251 
4252 #ifdef CONFIG_X86
4253 	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4254 #endif
4255 	drm_pci_free(dev, phys_obj->handle);
4256 	kfree(phys_obj);
4257 	dev_priv->mm.phys_objs[id - 1] = NULL;
4258 }
4259 
4260 void i915_gem_free_all_phys_object(struct drm_device *dev)
4261 {
4262 	int i;
4263 
4264 	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4265 		i915_gem_free_phys_object(dev, i);
4266 }
4267 
4268 void i915_gem_detach_phys_object(struct drm_device *dev,
4269 				 struct drm_i915_gem_object *obj)
4270 {
4271 	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4272 	char *vaddr;
4273 	int i;
4274 	int page_count;
4275 
4276 	if (!obj->phys_obj)
4277 		return;
4278 	vaddr = obj->phys_obj->handle->vaddr;
4279 
4280 	page_count = obj->base.size / PAGE_SIZE;
4281 	for (i = 0; i < page_count; i++) {
4282 		struct page *page = shmem_read_mapping_page(mapping, i);
4283 		if (!IS_ERR(page)) {
4284 			char *dst = kmap_atomic(page);
4285 			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4286 			kunmap_atomic(dst);
4287 
4288 			drm_clflush_pages(&page, 1);
4289 
4290 			set_page_dirty(page);
4291 			mark_page_accessed(page);
4292 			page_cache_release(page);
4293 		}
4294 	}
4295 	intel_gtt_chipset_flush();
4296 
4297 	obj->phys_obj->cur_obj = NULL;
4298 	obj->phys_obj = NULL;
4299 }
4300 
4301 int
4302 i915_gem_attach_phys_object(struct drm_device *dev,
4303 			    struct drm_i915_gem_object *obj,
4304 			    int id,
4305 			    int align)
4306 {
4307 	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4308 	drm_i915_private_t *dev_priv = dev->dev_private;
4309 	int ret = 0;
4310 	int page_count;
4311 	int i;
4312 
4313 	if (id > I915_MAX_PHYS_OBJECT)
4314 		return -EINVAL;
4315 
4316 	if (obj->phys_obj) {
4317 		if (obj->phys_obj->id == id)
4318 			return 0;
4319 		i915_gem_detach_phys_object(dev, obj);
4320 	}
4321 
4322 	/* create a new object */
4323 	if (!dev_priv->mm.phys_objs[id - 1]) {
4324 		ret = i915_gem_init_phys_object(dev, id,
4325 						obj->base.size, align);
4326 		if (ret) {
4327 			DRM_ERROR("failed to init phys object %d size: %zu\n",
4328 				  id, obj->base.size);
4329 			return ret;
4330 		}
4331 	}
4332 
4333 	/* bind to the object */
4334 	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4335 	obj->phys_obj->cur_obj = obj;
4336 
4337 	page_count = obj->base.size / PAGE_SIZE;
4338 
4339 	for (i = 0; i < page_count; i++) {
4340 		struct page *page;
4341 		char *dst, *src;
4342 
4343 		page = shmem_read_mapping_page(mapping, i);
4344 		if (IS_ERR(page))
4345 			return PTR_ERR(page);
4346 
4347 		src = kmap_atomic(page);
4348 		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4349 		memcpy(dst, src, PAGE_SIZE);
4350 		kunmap_atomic(src);
4351 
4352 		mark_page_accessed(page);
4353 		page_cache_release(page);
4354 	}
4355 
4356 	return 0;
4357 }
4358 
4359 static int
4360 i915_gem_phys_pwrite(struct drm_device *dev,
4361 		     struct drm_i915_gem_object *obj,
4362 		     struct drm_i915_gem_pwrite *args,
4363 		     struct drm_file *file_priv)
4364 {
4365 	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4366 	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4367 
4368 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4369 		unsigned long unwritten;
4370 
4371 		/* The physical object once assigned is fixed for the lifetime
4372 		 * of the obj, so we can safely drop the lock and continue
4373 		 * to access vaddr.
4374 		 */
4375 		mutex_unlock(&dev->struct_mutex);
4376 		unwritten = copy_from_user(vaddr, user_data, args->size);
4377 		mutex_lock(&dev->struct_mutex);
4378 		if (unwritten)
4379 			return -EFAULT;
4380 	}
4381 
4382 	intel_gtt_chipset_flush();
4383 	return 0;
4384 }
4385 
4386 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4387 {
4388 	struct drm_i915_file_private *file_priv = file->driver_priv;
4389 
4390 	/* Clean up our request list when the client is going away, so that
4391 	 * later retire_requests won't dereference our soon-to-be-gone
4392 	 * file_priv.
4393 	 */
4394 	spin_lock(&file_priv->mm.lock);
4395 	while (!list_empty(&file_priv->mm.request_list)) {
4396 		struct drm_i915_gem_request *request;
4397 
4398 		request = list_first_entry(&file_priv->mm.request_list,
4399 					   struct drm_i915_gem_request,
4400 					   client_list);
4401 		list_del(&request->client_list);
4402 		request->file_priv = NULL;
4403 	}
4404 	spin_unlock(&file_priv->mm.lock);
4405 }
4406 
4407 static int
4408 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4409 {
4410 	struct drm_i915_private *dev_priv =
4411 		container_of(shrinker,
4412 			     struct drm_i915_private,
4413 			     mm.inactive_shrinker);
4414 	struct drm_device *dev = dev_priv->dev;
4415 	struct drm_i915_gem_object *obj;
4416 	int nr_to_scan = sc->nr_to_scan;
4417 	int cnt;
4418 
4419 	if (!mutex_trylock(&dev->struct_mutex))
4420 		return 0;
4421 
4422 	if (nr_to_scan) {
4423 		nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4424 		if (nr_to_scan > 0)
4425 			i915_gem_shrink_all(dev_priv);
4426 	}
4427 
4428 	cnt = 0;
4429 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4430 		if (obj->pages_pin_count == 0)
4431 			cnt += obj->base.size >> PAGE_SHIFT;
4432 	list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
4433 		if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4434 			cnt += obj->base.size >> PAGE_SHIFT;
4435 
4436 	mutex_unlock(&dev->struct_mutex);
4437 	return cnt;
4438 }
4439