1 /* 2 * Copyright © 2008 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <drm/drmP.h> 29 #include <drm/i915_drm.h> 30 #include "i915_drv.h" 31 #include "i915_trace.h" 32 #include "intel_drv.h" 33 #include <linux/shmem_fs.h> 34 #include <linux/slab.h> 35 #include <linux/swap.h> 36 #include <linux/pci.h> 37 #include <linux/dma-buf.h> 38 39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj); 40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj); 41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj, 42 unsigned alignment, 43 bool map_and_fenceable, 44 bool nonblocking); 45 static int i915_gem_phys_pwrite(struct drm_device *dev, 46 struct drm_i915_gem_object *obj, 47 struct drm_i915_gem_pwrite *args, 48 struct drm_file *file); 49 50 static void i915_gem_write_fence(struct drm_device *dev, int reg, 51 struct drm_i915_gem_object *obj); 52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, 53 struct drm_i915_fence_reg *fence, 54 bool enable); 55 56 static int i915_gem_inactive_shrink(struct shrinker *shrinker, 57 struct shrink_control *sc); 58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target); 59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv); 60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj); 61 62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj) 63 { 64 if (obj->tiling_mode) 65 i915_gem_release_mmap(obj); 66 67 /* As we do not have an associated fence register, we will force 68 * a tiling change if we ever need to acquire one. 69 */ 70 obj->fence_dirty = false; 71 obj->fence_reg = I915_FENCE_REG_NONE; 72 } 73 74 /* some bookkeeping */ 75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv, 76 size_t size) 77 { 78 dev_priv->mm.object_count++; 79 dev_priv->mm.object_memory += size; 80 } 81 82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, 83 size_t size) 84 { 85 dev_priv->mm.object_count--; 86 dev_priv->mm.object_memory -= size; 87 } 88 89 static int 90 i915_gem_wait_for_error(struct drm_device *dev) 91 { 92 struct drm_i915_private *dev_priv = dev->dev_private; 93 struct completion *x = &dev_priv->error_completion; 94 unsigned long flags; 95 int ret; 96 97 if (!atomic_read(&dev_priv->mm.wedged)) 98 return 0; 99 100 /* 101 * Only wait 10 seconds for the gpu reset to complete to avoid hanging 102 * userspace. If it takes that long something really bad is going on and 103 * we should simply try to bail out and fail as gracefully as possible. 104 */ 105 ret = wait_for_completion_interruptible_timeout(x, 10*HZ); 106 if (ret == 0) { 107 DRM_ERROR("Timed out waiting for the gpu reset to complete\n"); 108 return -EIO; 109 } else if (ret < 0) { 110 return ret; 111 } 112 113 if (atomic_read(&dev_priv->mm.wedged)) { 114 /* GPU is hung, bump the completion count to account for 115 * the token we just consumed so that we never hit zero and 116 * end up waiting upon a subsequent completion event that 117 * will never happen. 118 */ 119 spin_lock_irqsave(&x->wait.lock, flags); 120 x->done++; 121 spin_unlock_irqrestore(&x->wait.lock, flags); 122 } 123 return 0; 124 } 125 126 int i915_mutex_lock_interruptible(struct drm_device *dev) 127 { 128 int ret; 129 130 ret = i915_gem_wait_for_error(dev); 131 if (ret) 132 return ret; 133 134 ret = mutex_lock_interruptible(&dev->struct_mutex); 135 if (ret) 136 return ret; 137 138 WARN_ON(i915_verify_lists(dev)); 139 return 0; 140 } 141 142 static inline bool 143 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj) 144 { 145 return obj->gtt_space && !obj->active; 146 } 147 148 int 149 i915_gem_init_ioctl(struct drm_device *dev, void *data, 150 struct drm_file *file) 151 { 152 struct drm_i915_gem_init *args = data; 153 154 if (drm_core_check_feature(dev, DRIVER_MODESET)) 155 return -ENODEV; 156 157 if (args->gtt_start >= args->gtt_end || 158 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1)) 159 return -EINVAL; 160 161 /* GEM with user mode setting was never supported on ilk and later. */ 162 if (INTEL_INFO(dev)->gen >= 5) 163 return -ENODEV; 164 165 mutex_lock(&dev->struct_mutex); 166 i915_gem_init_global_gtt(dev, args->gtt_start, 167 args->gtt_end, args->gtt_end); 168 mutex_unlock(&dev->struct_mutex); 169 170 return 0; 171 } 172 173 int 174 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 175 struct drm_file *file) 176 { 177 struct drm_i915_private *dev_priv = dev->dev_private; 178 struct drm_i915_gem_get_aperture *args = data; 179 struct drm_i915_gem_object *obj; 180 size_t pinned; 181 182 pinned = 0; 183 mutex_lock(&dev->struct_mutex); 184 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list) 185 if (obj->pin_count) 186 pinned += obj->gtt_space->size; 187 mutex_unlock(&dev->struct_mutex); 188 189 args->aper_size = dev_priv->mm.gtt_total; 190 args->aper_available_size = args->aper_size - pinned; 191 192 return 0; 193 } 194 195 static int 196 i915_gem_create(struct drm_file *file, 197 struct drm_device *dev, 198 uint64_t size, 199 uint32_t *handle_p) 200 { 201 struct drm_i915_gem_object *obj; 202 int ret; 203 u32 handle; 204 205 size = roundup(size, PAGE_SIZE); 206 if (size == 0) 207 return -EINVAL; 208 209 /* Allocate the new object */ 210 obj = i915_gem_alloc_object(dev, size); 211 if (obj == NULL) 212 return -ENOMEM; 213 214 ret = drm_gem_handle_create(file, &obj->base, &handle); 215 if (ret) { 216 drm_gem_object_release(&obj->base); 217 i915_gem_info_remove_obj(dev->dev_private, obj->base.size); 218 kfree(obj); 219 return ret; 220 } 221 222 /* drop reference from allocate - handle holds it now */ 223 drm_gem_object_unreference(&obj->base); 224 trace_i915_gem_object_create(obj); 225 226 *handle_p = handle; 227 return 0; 228 } 229 230 int 231 i915_gem_dumb_create(struct drm_file *file, 232 struct drm_device *dev, 233 struct drm_mode_create_dumb *args) 234 { 235 /* have to work out size/pitch and return them */ 236 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64); 237 args->size = args->pitch * args->height; 238 return i915_gem_create(file, dev, 239 args->size, &args->handle); 240 } 241 242 int i915_gem_dumb_destroy(struct drm_file *file, 243 struct drm_device *dev, 244 uint32_t handle) 245 { 246 return drm_gem_handle_delete(file, handle); 247 } 248 249 /** 250 * Creates a new mm object and returns a handle to it. 251 */ 252 int 253 i915_gem_create_ioctl(struct drm_device *dev, void *data, 254 struct drm_file *file) 255 { 256 struct drm_i915_gem_create *args = data; 257 258 return i915_gem_create(file, dev, 259 args->size, &args->handle); 260 } 261 262 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj) 263 { 264 drm_i915_private_t *dev_priv = obj->base.dev->dev_private; 265 266 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 && 267 obj->tiling_mode != I915_TILING_NONE; 268 } 269 270 static inline int 271 __copy_to_user_swizzled(char __user *cpu_vaddr, 272 const char *gpu_vaddr, int gpu_offset, 273 int length) 274 { 275 int ret, cpu_offset = 0; 276 277 while (length > 0) { 278 int cacheline_end = ALIGN(gpu_offset + 1, 64); 279 int this_length = min(cacheline_end - gpu_offset, length); 280 int swizzled_gpu_offset = gpu_offset ^ 64; 281 282 ret = __copy_to_user(cpu_vaddr + cpu_offset, 283 gpu_vaddr + swizzled_gpu_offset, 284 this_length); 285 if (ret) 286 return ret + length; 287 288 cpu_offset += this_length; 289 gpu_offset += this_length; 290 length -= this_length; 291 } 292 293 return 0; 294 } 295 296 static inline int 297 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset, 298 const char __user *cpu_vaddr, 299 int length) 300 { 301 int ret, cpu_offset = 0; 302 303 while (length > 0) { 304 int cacheline_end = ALIGN(gpu_offset + 1, 64); 305 int this_length = min(cacheline_end - gpu_offset, length); 306 int swizzled_gpu_offset = gpu_offset ^ 64; 307 308 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset, 309 cpu_vaddr + cpu_offset, 310 this_length); 311 if (ret) 312 return ret + length; 313 314 cpu_offset += this_length; 315 gpu_offset += this_length; 316 length -= this_length; 317 } 318 319 return 0; 320 } 321 322 /* Per-page copy function for the shmem pread fastpath. 323 * Flushes invalid cachelines before reading the target if 324 * needs_clflush is set. */ 325 static int 326 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length, 327 char __user *user_data, 328 bool page_do_bit17_swizzling, bool needs_clflush) 329 { 330 char *vaddr; 331 int ret; 332 333 if (unlikely(page_do_bit17_swizzling)) 334 return -EINVAL; 335 336 vaddr = kmap_atomic(page); 337 if (needs_clflush) 338 drm_clflush_virt_range(vaddr + shmem_page_offset, 339 page_length); 340 ret = __copy_to_user_inatomic(user_data, 341 vaddr + shmem_page_offset, 342 page_length); 343 kunmap_atomic(vaddr); 344 345 return ret ? -EFAULT : 0; 346 } 347 348 static void 349 shmem_clflush_swizzled_range(char *addr, unsigned long length, 350 bool swizzled) 351 { 352 if (unlikely(swizzled)) { 353 unsigned long start = (unsigned long) addr; 354 unsigned long end = (unsigned long) addr + length; 355 356 /* For swizzling simply ensure that we always flush both 357 * channels. Lame, but simple and it works. Swizzled 358 * pwrite/pread is far from a hotpath - current userspace 359 * doesn't use it at all. */ 360 start = round_down(start, 128); 361 end = round_up(end, 128); 362 363 drm_clflush_virt_range((void *)start, end - start); 364 } else { 365 drm_clflush_virt_range(addr, length); 366 } 367 368 } 369 370 /* Only difference to the fast-path function is that this can handle bit17 371 * and uses non-atomic copy and kmap functions. */ 372 static int 373 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length, 374 char __user *user_data, 375 bool page_do_bit17_swizzling, bool needs_clflush) 376 { 377 char *vaddr; 378 int ret; 379 380 vaddr = kmap(page); 381 if (needs_clflush) 382 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 383 page_length, 384 page_do_bit17_swizzling); 385 386 if (page_do_bit17_swizzling) 387 ret = __copy_to_user_swizzled(user_data, 388 vaddr, shmem_page_offset, 389 page_length); 390 else 391 ret = __copy_to_user(user_data, 392 vaddr + shmem_page_offset, 393 page_length); 394 kunmap(page); 395 396 return ret ? - EFAULT : 0; 397 } 398 399 static int 400 i915_gem_shmem_pread(struct drm_device *dev, 401 struct drm_i915_gem_object *obj, 402 struct drm_i915_gem_pread *args, 403 struct drm_file *file) 404 { 405 char __user *user_data; 406 ssize_t remain; 407 loff_t offset; 408 int shmem_page_offset, page_length, ret = 0; 409 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 410 int hit_slowpath = 0; 411 int prefaulted = 0; 412 int needs_clflush = 0; 413 struct scatterlist *sg; 414 int i; 415 416 user_data = (char __user *) (uintptr_t) args->data_ptr; 417 remain = args->size; 418 419 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 420 421 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) { 422 /* If we're not in the cpu read domain, set ourself into the gtt 423 * read domain and manually flush cachelines (if required). This 424 * optimizes for the case when the gpu will dirty the data 425 * anyway again before the next pread happens. */ 426 if (obj->cache_level == I915_CACHE_NONE) 427 needs_clflush = 1; 428 if (obj->gtt_space) { 429 ret = i915_gem_object_set_to_gtt_domain(obj, false); 430 if (ret) 431 return ret; 432 } 433 } 434 435 ret = i915_gem_object_get_pages(obj); 436 if (ret) 437 return ret; 438 439 i915_gem_object_pin_pages(obj); 440 441 offset = args->offset; 442 443 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) { 444 struct page *page; 445 446 if (i < offset >> PAGE_SHIFT) 447 continue; 448 449 if (remain <= 0) 450 break; 451 452 /* Operation in this page 453 * 454 * shmem_page_offset = offset within page in shmem file 455 * page_length = bytes to copy for this page 456 */ 457 shmem_page_offset = offset_in_page(offset); 458 page_length = remain; 459 if ((shmem_page_offset + page_length) > PAGE_SIZE) 460 page_length = PAGE_SIZE - shmem_page_offset; 461 462 page = sg_page(sg); 463 page_do_bit17_swizzling = obj_do_bit17_swizzling && 464 (page_to_phys(page) & (1 << 17)) != 0; 465 466 ret = shmem_pread_fast(page, shmem_page_offset, page_length, 467 user_data, page_do_bit17_swizzling, 468 needs_clflush); 469 if (ret == 0) 470 goto next_page; 471 472 hit_slowpath = 1; 473 mutex_unlock(&dev->struct_mutex); 474 475 if (!prefaulted) { 476 ret = fault_in_multipages_writeable(user_data, remain); 477 /* Userspace is tricking us, but we've already clobbered 478 * its pages with the prefault and promised to write the 479 * data up to the first fault. Hence ignore any errors 480 * and just continue. */ 481 (void)ret; 482 prefaulted = 1; 483 } 484 485 ret = shmem_pread_slow(page, shmem_page_offset, page_length, 486 user_data, page_do_bit17_swizzling, 487 needs_clflush); 488 489 mutex_lock(&dev->struct_mutex); 490 491 next_page: 492 mark_page_accessed(page); 493 494 if (ret) 495 goto out; 496 497 remain -= page_length; 498 user_data += page_length; 499 offset += page_length; 500 } 501 502 out: 503 i915_gem_object_unpin_pages(obj); 504 505 if (hit_slowpath) { 506 /* Fixup: Kill any reinstated backing storage pages */ 507 if (obj->madv == __I915_MADV_PURGED) 508 i915_gem_object_truncate(obj); 509 } 510 511 return ret; 512 } 513 514 /** 515 * Reads data from the object referenced by handle. 516 * 517 * On error, the contents of *data are undefined. 518 */ 519 int 520 i915_gem_pread_ioctl(struct drm_device *dev, void *data, 521 struct drm_file *file) 522 { 523 struct drm_i915_gem_pread *args = data; 524 struct drm_i915_gem_object *obj; 525 int ret = 0; 526 527 if (args->size == 0) 528 return 0; 529 530 if (!access_ok(VERIFY_WRITE, 531 (char __user *)(uintptr_t)args->data_ptr, 532 args->size)) 533 return -EFAULT; 534 535 ret = i915_mutex_lock_interruptible(dev); 536 if (ret) 537 return ret; 538 539 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 540 if (&obj->base == NULL) { 541 ret = -ENOENT; 542 goto unlock; 543 } 544 545 /* Bounds check source. */ 546 if (args->offset > obj->base.size || 547 args->size > obj->base.size - args->offset) { 548 ret = -EINVAL; 549 goto out; 550 } 551 552 /* prime objects have no backing filp to GEM pread/pwrite 553 * pages from. 554 */ 555 if (!obj->base.filp) { 556 ret = -EINVAL; 557 goto out; 558 } 559 560 trace_i915_gem_object_pread(obj, args->offset, args->size); 561 562 ret = i915_gem_shmem_pread(dev, obj, args, file); 563 564 out: 565 drm_gem_object_unreference(&obj->base); 566 unlock: 567 mutex_unlock(&dev->struct_mutex); 568 return ret; 569 } 570 571 /* This is the fast write path which cannot handle 572 * page faults in the source data 573 */ 574 575 static inline int 576 fast_user_write(struct io_mapping *mapping, 577 loff_t page_base, int page_offset, 578 char __user *user_data, 579 int length) 580 { 581 void __iomem *vaddr_atomic; 582 void *vaddr; 583 unsigned long unwritten; 584 585 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base); 586 /* We can use the cpu mem copy function because this is X86. */ 587 vaddr = (void __force*)vaddr_atomic + page_offset; 588 unwritten = __copy_from_user_inatomic_nocache(vaddr, 589 user_data, length); 590 io_mapping_unmap_atomic(vaddr_atomic); 591 return unwritten; 592 } 593 594 /** 595 * This is the fast pwrite path, where we copy the data directly from the 596 * user into the GTT, uncached. 597 */ 598 static int 599 i915_gem_gtt_pwrite_fast(struct drm_device *dev, 600 struct drm_i915_gem_object *obj, 601 struct drm_i915_gem_pwrite *args, 602 struct drm_file *file) 603 { 604 drm_i915_private_t *dev_priv = dev->dev_private; 605 ssize_t remain; 606 loff_t offset, page_base; 607 char __user *user_data; 608 int page_offset, page_length, ret; 609 610 ret = i915_gem_object_pin(obj, 0, true, true); 611 if (ret) 612 goto out; 613 614 ret = i915_gem_object_set_to_gtt_domain(obj, true); 615 if (ret) 616 goto out_unpin; 617 618 ret = i915_gem_object_put_fence(obj); 619 if (ret) 620 goto out_unpin; 621 622 user_data = (char __user *) (uintptr_t) args->data_ptr; 623 remain = args->size; 624 625 offset = obj->gtt_offset + args->offset; 626 627 while (remain > 0) { 628 /* Operation in this page 629 * 630 * page_base = page offset within aperture 631 * page_offset = offset within page 632 * page_length = bytes to copy for this page 633 */ 634 page_base = offset & PAGE_MASK; 635 page_offset = offset_in_page(offset); 636 page_length = remain; 637 if ((page_offset + remain) > PAGE_SIZE) 638 page_length = PAGE_SIZE - page_offset; 639 640 /* If we get a fault while copying data, then (presumably) our 641 * source page isn't available. Return the error and we'll 642 * retry in the slow path. 643 */ 644 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base, 645 page_offset, user_data, page_length)) { 646 ret = -EFAULT; 647 goto out_unpin; 648 } 649 650 remain -= page_length; 651 user_data += page_length; 652 offset += page_length; 653 } 654 655 out_unpin: 656 i915_gem_object_unpin(obj); 657 out: 658 return ret; 659 } 660 661 /* Per-page copy function for the shmem pwrite fastpath. 662 * Flushes invalid cachelines before writing to the target if 663 * needs_clflush_before is set and flushes out any written cachelines after 664 * writing if needs_clflush is set. */ 665 static int 666 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length, 667 char __user *user_data, 668 bool page_do_bit17_swizzling, 669 bool needs_clflush_before, 670 bool needs_clflush_after) 671 { 672 char *vaddr; 673 int ret; 674 675 if (unlikely(page_do_bit17_swizzling)) 676 return -EINVAL; 677 678 vaddr = kmap_atomic(page); 679 if (needs_clflush_before) 680 drm_clflush_virt_range(vaddr + shmem_page_offset, 681 page_length); 682 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset, 683 user_data, 684 page_length); 685 if (needs_clflush_after) 686 drm_clflush_virt_range(vaddr + shmem_page_offset, 687 page_length); 688 kunmap_atomic(vaddr); 689 690 return ret ? -EFAULT : 0; 691 } 692 693 /* Only difference to the fast-path function is that this can handle bit17 694 * and uses non-atomic copy and kmap functions. */ 695 static int 696 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length, 697 char __user *user_data, 698 bool page_do_bit17_swizzling, 699 bool needs_clflush_before, 700 bool needs_clflush_after) 701 { 702 char *vaddr; 703 int ret; 704 705 vaddr = kmap(page); 706 if (unlikely(needs_clflush_before || page_do_bit17_swizzling)) 707 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 708 page_length, 709 page_do_bit17_swizzling); 710 if (page_do_bit17_swizzling) 711 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset, 712 user_data, 713 page_length); 714 else 715 ret = __copy_from_user(vaddr + shmem_page_offset, 716 user_data, 717 page_length); 718 if (needs_clflush_after) 719 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 720 page_length, 721 page_do_bit17_swizzling); 722 kunmap(page); 723 724 return ret ? -EFAULT : 0; 725 } 726 727 static int 728 i915_gem_shmem_pwrite(struct drm_device *dev, 729 struct drm_i915_gem_object *obj, 730 struct drm_i915_gem_pwrite *args, 731 struct drm_file *file) 732 { 733 ssize_t remain; 734 loff_t offset; 735 char __user *user_data; 736 int shmem_page_offset, page_length, ret = 0; 737 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 738 int hit_slowpath = 0; 739 int needs_clflush_after = 0; 740 int needs_clflush_before = 0; 741 int i; 742 struct scatterlist *sg; 743 744 user_data = (char __user *) (uintptr_t) args->data_ptr; 745 remain = args->size; 746 747 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 748 749 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 750 /* If we're not in the cpu write domain, set ourself into the gtt 751 * write domain and manually flush cachelines (if required). This 752 * optimizes for the case when the gpu will use the data 753 * right away and we therefore have to clflush anyway. */ 754 if (obj->cache_level == I915_CACHE_NONE) 755 needs_clflush_after = 1; 756 if (obj->gtt_space) { 757 ret = i915_gem_object_set_to_gtt_domain(obj, true); 758 if (ret) 759 return ret; 760 } 761 } 762 /* Same trick applies for invalidate partially written cachelines before 763 * writing. */ 764 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU) 765 && obj->cache_level == I915_CACHE_NONE) 766 needs_clflush_before = 1; 767 768 ret = i915_gem_object_get_pages(obj); 769 if (ret) 770 return ret; 771 772 i915_gem_object_pin_pages(obj); 773 774 offset = args->offset; 775 obj->dirty = 1; 776 777 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) { 778 struct page *page; 779 int partial_cacheline_write; 780 781 if (i < offset >> PAGE_SHIFT) 782 continue; 783 784 if (remain <= 0) 785 break; 786 787 /* Operation in this page 788 * 789 * shmem_page_offset = offset within page in shmem file 790 * page_length = bytes to copy for this page 791 */ 792 shmem_page_offset = offset_in_page(offset); 793 794 page_length = remain; 795 if ((shmem_page_offset + page_length) > PAGE_SIZE) 796 page_length = PAGE_SIZE - shmem_page_offset; 797 798 /* If we don't overwrite a cacheline completely we need to be 799 * careful to have up-to-date data by first clflushing. Don't 800 * overcomplicate things and flush the entire patch. */ 801 partial_cacheline_write = needs_clflush_before && 802 ((shmem_page_offset | page_length) 803 & (boot_cpu_data.x86_clflush_size - 1)); 804 805 page = sg_page(sg); 806 page_do_bit17_swizzling = obj_do_bit17_swizzling && 807 (page_to_phys(page) & (1 << 17)) != 0; 808 809 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length, 810 user_data, page_do_bit17_swizzling, 811 partial_cacheline_write, 812 needs_clflush_after); 813 if (ret == 0) 814 goto next_page; 815 816 hit_slowpath = 1; 817 mutex_unlock(&dev->struct_mutex); 818 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length, 819 user_data, page_do_bit17_swizzling, 820 partial_cacheline_write, 821 needs_clflush_after); 822 823 mutex_lock(&dev->struct_mutex); 824 825 next_page: 826 set_page_dirty(page); 827 mark_page_accessed(page); 828 829 if (ret) 830 goto out; 831 832 remain -= page_length; 833 user_data += page_length; 834 offset += page_length; 835 } 836 837 out: 838 i915_gem_object_unpin_pages(obj); 839 840 if (hit_slowpath) { 841 /* Fixup: Kill any reinstated backing storage pages */ 842 if (obj->madv == __I915_MADV_PURGED) 843 i915_gem_object_truncate(obj); 844 /* and flush dirty cachelines in case the object isn't in the cpu write 845 * domain anymore. */ 846 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 847 i915_gem_clflush_object(obj); 848 intel_gtt_chipset_flush(); 849 } 850 } 851 852 if (needs_clflush_after) 853 intel_gtt_chipset_flush(); 854 855 return ret; 856 } 857 858 /** 859 * Writes data to the object referenced by handle. 860 * 861 * On error, the contents of the buffer that were to be modified are undefined. 862 */ 863 int 864 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 865 struct drm_file *file) 866 { 867 struct drm_i915_gem_pwrite *args = data; 868 struct drm_i915_gem_object *obj; 869 int ret; 870 871 if (args->size == 0) 872 return 0; 873 874 if (!access_ok(VERIFY_READ, 875 (char __user *)(uintptr_t)args->data_ptr, 876 args->size)) 877 return -EFAULT; 878 879 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr, 880 args->size); 881 if (ret) 882 return -EFAULT; 883 884 ret = i915_mutex_lock_interruptible(dev); 885 if (ret) 886 return ret; 887 888 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 889 if (&obj->base == NULL) { 890 ret = -ENOENT; 891 goto unlock; 892 } 893 894 /* Bounds check destination. */ 895 if (args->offset > obj->base.size || 896 args->size > obj->base.size - args->offset) { 897 ret = -EINVAL; 898 goto out; 899 } 900 901 /* prime objects have no backing filp to GEM pread/pwrite 902 * pages from. 903 */ 904 if (!obj->base.filp) { 905 ret = -EINVAL; 906 goto out; 907 } 908 909 trace_i915_gem_object_pwrite(obj, args->offset, args->size); 910 911 ret = -EFAULT; 912 /* We can only do the GTT pwrite on untiled buffers, as otherwise 913 * it would end up going through the fenced access, and we'll get 914 * different detiling behavior between reading and writing. 915 * pread/pwrite currently are reading and writing from the CPU 916 * perspective, requiring manual detiling by the client. 917 */ 918 if (obj->phys_obj) { 919 ret = i915_gem_phys_pwrite(dev, obj, args, file); 920 goto out; 921 } 922 923 if (obj->cache_level == I915_CACHE_NONE && 924 obj->tiling_mode == I915_TILING_NONE && 925 obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 926 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file); 927 /* Note that the gtt paths might fail with non-page-backed user 928 * pointers (e.g. gtt mappings when moving data between 929 * textures). Fallback to the shmem path in that case. */ 930 } 931 932 if (ret == -EFAULT || ret == -ENOSPC) 933 ret = i915_gem_shmem_pwrite(dev, obj, args, file); 934 935 out: 936 drm_gem_object_unreference(&obj->base); 937 unlock: 938 mutex_unlock(&dev->struct_mutex); 939 return ret; 940 } 941 942 int 943 i915_gem_check_wedge(struct drm_i915_private *dev_priv, 944 bool interruptible) 945 { 946 if (atomic_read(&dev_priv->mm.wedged)) { 947 struct completion *x = &dev_priv->error_completion; 948 bool recovery_complete; 949 unsigned long flags; 950 951 /* Give the error handler a chance to run. */ 952 spin_lock_irqsave(&x->wait.lock, flags); 953 recovery_complete = x->done > 0; 954 spin_unlock_irqrestore(&x->wait.lock, flags); 955 956 /* Non-interruptible callers can't handle -EAGAIN, hence return 957 * -EIO unconditionally for these. */ 958 if (!interruptible) 959 return -EIO; 960 961 /* Recovery complete, but still wedged means reset failure. */ 962 if (recovery_complete) 963 return -EIO; 964 965 return -EAGAIN; 966 } 967 968 return 0; 969 } 970 971 /* 972 * Compare seqno against outstanding lazy request. Emit a request if they are 973 * equal. 974 */ 975 static int 976 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno) 977 { 978 int ret; 979 980 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex)); 981 982 ret = 0; 983 if (seqno == ring->outstanding_lazy_request) 984 ret = i915_add_request(ring, NULL, NULL); 985 986 return ret; 987 } 988 989 /** 990 * __wait_seqno - wait until execution of seqno has finished 991 * @ring: the ring expected to report seqno 992 * @seqno: duh! 993 * @interruptible: do an interruptible wait (normally yes) 994 * @timeout: in - how long to wait (NULL forever); out - how much time remaining 995 * 996 * Returns 0 if the seqno was found within the alloted time. Else returns the 997 * errno with remaining time filled in timeout argument. 998 */ 999 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno, 1000 bool interruptible, struct timespec *timeout) 1001 { 1002 drm_i915_private_t *dev_priv = ring->dev->dev_private; 1003 struct timespec before, now, wait_time={1,0}; 1004 unsigned long timeout_jiffies; 1005 long end; 1006 bool wait_forever = true; 1007 int ret; 1008 1009 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno)) 1010 return 0; 1011 1012 trace_i915_gem_request_wait_begin(ring, seqno); 1013 1014 if (timeout != NULL) { 1015 wait_time = *timeout; 1016 wait_forever = false; 1017 } 1018 1019 timeout_jiffies = timespec_to_jiffies(&wait_time); 1020 1021 if (WARN_ON(!ring->irq_get(ring))) 1022 return -ENODEV; 1023 1024 /* Record current time in case interrupted by signal, or wedged * */ 1025 getrawmonotonic(&before); 1026 1027 #define EXIT_COND \ 1028 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \ 1029 atomic_read(&dev_priv->mm.wedged)) 1030 do { 1031 if (interruptible) 1032 end = wait_event_interruptible_timeout(ring->irq_queue, 1033 EXIT_COND, 1034 timeout_jiffies); 1035 else 1036 end = wait_event_timeout(ring->irq_queue, EXIT_COND, 1037 timeout_jiffies); 1038 1039 ret = i915_gem_check_wedge(dev_priv, interruptible); 1040 if (ret) 1041 end = ret; 1042 } while (end == 0 && wait_forever); 1043 1044 getrawmonotonic(&now); 1045 1046 ring->irq_put(ring); 1047 trace_i915_gem_request_wait_end(ring, seqno); 1048 #undef EXIT_COND 1049 1050 if (timeout) { 1051 struct timespec sleep_time = timespec_sub(now, before); 1052 *timeout = timespec_sub(*timeout, sleep_time); 1053 } 1054 1055 switch (end) { 1056 case -EIO: 1057 case -EAGAIN: /* Wedged */ 1058 case -ERESTARTSYS: /* Signal */ 1059 return (int)end; 1060 case 0: /* Timeout */ 1061 if (timeout) 1062 set_normalized_timespec(timeout, 0, 0); 1063 return -ETIME; 1064 default: /* Completed */ 1065 WARN_ON(end < 0); /* We're not aware of other errors */ 1066 return 0; 1067 } 1068 } 1069 1070 /** 1071 * Waits for a sequence number to be signaled, and cleans up the 1072 * request and object lists appropriately for that event. 1073 */ 1074 int 1075 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno) 1076 { 1077 struct drm_device *dev = ring->dev; 1078 struct drm_i915_private *dev_priv = dev->dev_private; 1079 bool interruptible = dev_priv->mm.interruptible; 1080 int ret; 1081 1082 BUG_ON(!mutex_is_locked(&dev->struct_mutex)); 1083 BUG_ON(seqno == 0); 1084 1085 ret = i915_gem_check_wedge(dev_priv, interruptible); 1086 if (ret) 1087 return ret; 1088 1089 ret = i915_gem_check_olr(ring, seqno); 1090 if (ret) 1091 return ret; 1092 1093 return __wait_seqno(ring, seqno, interruptible, NULL); 1094 } 1095 1096 /** 1097 * Ensures that all rendering to the object has completed and the object is 1098 * safe to unbind from the GTT or access from the CPU. 1099 */ 1100 static __must_check int 1101 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, 1102 bool readonly) 1103 { 1104 struct intel_ring_buffer *ring = obj->ring; 1105 u32 seqno; 1106 int ret; 1107 1108 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno; 1109 if (seqno == 0) 1110 return 0; 1111 1112 ret = i915_wait_seqno(ring, seqno); 1113 if (ret) 1114 return ret; 1115 1116 i915_gem_retire_requests_ring(ring); 1117 1118 /* Manually manage the write flush as we may have not yet 1119 * retired the buffer. 1120 */ 1121 if (obj->last_write_seqno && 1122 i915_seqno_passed(seqno, obj->last_write_seqno)) { 1123 obj->last_write_seqno = 0; 1124 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS; 1125 } 1126 1127 return 0; 1128 } 1129 1130 /* A nonblocking variant of the above wait. This is a highly dangerous routine 1131 * as the object state may change during this call. 1132 */ 1133 static __must_check int 1134 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj, 1135 bool readonly) 1136 { 1137 struct drm_device *dev = obj->base.dev; 1138 struct drm_i915_private *dev_priv = dev->dev_private; 1139 struct intel_ring_buffer *ring = obj->ring; 1140 u32 seqno; 1141 int ret; 1142 1143 BUG_ON(!mutex_is_locked(&dev->struct_mutex)); 1144 BUG_ON(!dev_priv->mm.interruptible); 1145 1146 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno; 1147 if (seqno == 0) 1148 return 0; 1149 1150 ret = i915_gem_check_wedge(dev_priv, true); 1151 if (ret) 1152 return ret; 1153 1154 ret = i915_gem_check_olr(ring, seqno); 1155 if (ret) 1156 return ret; 1157 1158 mutex_unlock(&dev->struct_mutex); 1159 ret = __wait_seqno(ring, seqno, true, NULL); 1160 mutex_lock(&dev->struct_mutex); 1161 1162 i915_gem_retire_requests_ring(ring); 1163 1164 /* Manually manage the write flush as we may have not yet 1165 * retired the buffer. 1166 */ 1167 if (obj->last_write_seqno && 1168 i915_seqno_passed(seqno, obj->last_write_seqno)) { 1169 obj->last_write_seqno = 0; 1170 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS; 1171 } 1172 1173 return ret; 1174 } 1175 1176 /** 1177 * Called when user space prepares to use an object with the CPU, either 1178 * through the mmap ioctl's mapping or a GTT mapping. 1179 */ 1180 int 1181 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 1182 struct drm_file *file) 1183 { 1184 struct drm_i915_gem_set_domain *args = data; 1185 struct drm_i915_gem_object *obj; 1186 uint32_t read_domains = args->read_domains; 1187 uint32_t write_domain = args->write_domain; 1188 int ret; 1189 1190 /* Only handle setting domains to types used by the CPU. */ 1191 if (write_domain & I915_GEM_GPU_DOMAINS) 1192 return -EINVAL; 1193 1194 if (read_domains & I915_GEM_GPU_DOMAINS) 1195 return -EINVAL; 1196 1197 /* Having something in the write domain implies it's in the read 1198 * domain, and only that read domain. Enforce that in the request. 1199 */ 1200 if (write_domain != 0 && read_domains != write_domain) 1201 return -EINVAL; 1202 1203 ret = i915_mutex_lock_interruptible(dev); 1204 if (ret) 1205 return ret; 1206 1207 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1208 if (&obj->base == NULL) { 1209 ret = -ENOENT; 1210 goto unlock; 1211 } 1212 1213 /* Try to flush the object off the GPU without holding the lock. 1214 * We will repeat the flush holding the lock in the normal manner 1215 * to catch cases where we are gazumped. 1216 */ 1217 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain); 1218 if (ret) 1219 goto unref; 1220 1221 if (read_domains & I915_GEM_DOMAIN_GTT) { 1222 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0); 1223 1224 /* Silently promote "you're not bound, there was nothing to do" 1225 * to success, since the client was just asking us to 1226 * make sure everything was done. 1227 */ 1228 if (ret == -EINVAL) 1229 ret = 0; 1230 } else { 1231 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0); 1232 } 1233 1234 unref: 1235 drm_gem_object_unreference(&obj->base); 1236 unlock: 1237 mutex_unlock(&dev->struct_mutex); 1238 return ret; 1239 } 1240 1241 /** 1242 * Called when user space has done writes to this buffer 1243 */ 1244 int 1245 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 1246 struct drm_file *file) 1247 { 1248 struct drm_i915_gem_sw_finish *args = data; 1249 struct drm_i915_gem_object *obj; 1250 int ret = 0; 1251 1252 ret = i915_mutex_lock_interruptible(dev); 1253 if (ret) 1254 return ret; 1255 1256 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1257 if (&obj->base == NULL) { 1258 ret = -ENOENT; 1259 goto unlock; 1260 } 1261 1262 /* Pinned buffers may be scanout, so flush the cache */ 1263 if (obj->pin_count) 1264 i915_gem_object_flush_cpu_write_domain(obj); 1265 1266 drm_gem_object_unreference(&obj->base); 1267 unlock: 1268 mutex_unlock(&dev->struct_mutex); 1269 return ret; 1270 } 1271 1272 /** 1273 * Maps the contents of an object, returning the address it is mapped 1274 * into. 1275 * 1276 * While the mapping holds a reference on the contents of the object, it doesn't 1277 * imply a ref on the object itself. 1278 */ 1279 int 1280 i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 1281 struct drm_file *file) 1282 { 1283 struct drm_i915_gem_mmap *args = data; 1284 struct drm_gem_object *obj; 1285 unsigned long addr; 1286 1287 obj = drm_gem_object_lookup(dev, file, args->handle); 1288 if (obj == NULL) 1289 return -ENOENT; 1290 1291 /* prime objects have no backing filp to GEM mmap 1292 * pages from. 1293 */ 1294 if (!obj->filp) { 1295 drm_gem_object_unreference_unlocked(obj); 1296 return -EINVAL; 1297 } 1298 1299 addr = vm_mmap(obj->filp, 0, args->size, 1300 PROT_READ | PROT_WRITE, MAP_SHARED, 1301 args->offset); 1302 drm_gem_object_unreference_unlocked(obj); 1303 if (IS_ERR((void *)addr)) 1304 return addr; 1305 1306 args->addr_ptr = (uint64_t) addr; 1307 1308 return 0; 1309 } 1310 1311 /** 1312 * i915_gem_fault - fault a page into the GTT 1313 * vma: VMA in question 1314 * vmf: fault info 1315 * 1316 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped 1317 * from userspace. The fault handler takes care of binding the object to 1318 * the GTT (if needed), allocating and programming a fence register (again, 1319 * only if needed based on whether the old reg is still valid or the object 1320 * is tiled) and inserting a new PTE into the faulting process. 1321 * 1322 * Note that the faulting process may involve evicting existing objects 1323 * from the GTT and/or fence registers to make room. So performance may 1324 * suffer if the GTT working set is large or there are few fence registers 1325 * left. 1326 */ 1327 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1328 { 1329 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data); 1330 struct drm_device *dev = obj->base.dev; 1331 drm_i915_private_t *dev_priv = dev->dev_private; 1332 pgoff_t page_offset; 1333 unsigned long pfn; 1334 int ret = 0; 1335 bool write = !!(vmf->flags & FAULT_FLAG_WRITE); 1336 1337 /* We don't use vmf->pgoff since that has the fake offset */ 1338 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >> 1339 PAGE_SHIFT; 1340 1341 ret = i915_mutex_lock_interruptible(dev); 1342 if (ret) 1343 goto out; 1344 1345 trace_i915_gem_object_fault(obj, page_offset, true, write); 1346 1347 /* Now bind it into the GTT if needed */ 1348 if (!obj->map_and_fenceable) { 1349 ret = i915_gem_object_unbind(obj); 1350 if (ret) 1351 goto unlock; 1352 } 1353 if (!obj->gtt_space) { 1354 ret = i915_gem_object_bind_to_gtt(obj, 0, true, false); 1355 if (ret) 1356 goto unlock; 1357 1358 ret = i915_gem_object_set_to_gtt_domain(obj, write); 1359 if (ret) 1360 goto unlock; 1361 } 1362 1363 if (!obj->has_global_gtt_mapping) 1364 i915_gem_gtt_bind_object(obj, obj->cache_level); 1365 1366 ret = i915_gem_object_get_fence(obj); 1367 if (ret) 1368 goto unlock; 1369 1370 if (i915_gem_object_is_inactive(obj)) 1371 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list); 1372 1373 obj->fault_mappable = true; 1374 1375 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) + 1376 page_offset; 1377 1378 /* Finally, remap it using the new GTT offset */ 1379 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn); 1380 unlock: 1381 mutex_unlock(&dev->struct_mutex); 1382 out: 1383 switch (ret) { 1384 case -EIO: 1385 /* If this -EIO is due to a gpu hang, give the reset code a 1386 * chance to clean up the mess. Otherwise return the proper 1387 * SIGBUS. */ 1388 if (!atomic_read(&dev_priv->mm.wedged)) 1389 return VM_FAULT_SIGBUS; 1390 case -EAGAIN: 1391 /* Give the error handler a chance to run and move the 1392 * objects off the GPU active list. Next time we service the 1393 * fault, we should be able to transition the page into the 1394 * GTT without touching the GPU (and so avoid further 1395 * EIO/EGAIN). If the GPU is wedged, then there is no issue 1396 * with coherency, just lost writes. 1397 */ 1398 set_need_resched(); 1399 case 0: 1400 case -ERESTARTSYS: 1401 case -EINTR: 1402 case -EBUSY: 1403 /* 1404 * EBUSY is ok: this just means that another thread 1405 * already did the job. 1406 */ 1407 return VM_FAULT_NOPAGE; 1408 case -ENOMEM: 1409 return VM_FAULT_OOM; 1410 default: 1411 WARN_ON_ONCE(ret); 1412 return VM_FAULT_SIGBUS; 1413 } 1414 } 1415 1416 /** 1417 * i915_gem_release_mmap - remove physical page mappings 1418 * @obj: obj in question 1419 * 1420 * Preserve the reservation of the mmapping with the DRM core code, but 1421 * relinquish ownership of the pages back to the system. 1422 * 1423 * It is vital that we remove the page mapping if we have mapped a tiled 1424 * object through the GTT and then lose the fence register due to 1425 * resource pressure. Similarly if the object has been moved out of the 1426 * aperture, than pages mapped into userspace must be revoked. Removing the 1427 * mapping will then trigger a page fault on the next user access, allowing 1428 * fixup by i915_gem_fault(). 1429 */ 1430 void 1431 i915_gem_release_mmap(struct drm_i915_gem_object *obj) 1432 { 1433 if (!obj->fault_mappable) 1434 return; 1435 1436 if (obj->base.dev->dev_mapping) 1437 unmap_mapping_range(obj->base.dev->dev_mapping, 1438 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT, 1439 obj->base.size, 1); 1440 1441 obj->fault_mappable = false; 1442 } 1443 1444 static uint32_t 1445 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode) 1446 { 1447 uint32_t gtt_size; 1448 1449 if (INTEL_INFO(dev)->gen >= 4 || 1450 tiling_mode == I915_TILING_NONE) 1451 return size; 1452 1453 /* Previous chips need a power-of-two fence region when tiling */ 1454 if (INTEL_INFO(dev)->gen == 3) 1455 gtt_size = 1024*1024; 1456 else 1457 gtt_size = 512*1024; 1458 1459 while (gtt_size < size) 1460 gtt_size <<= 1; 1461 1462 return gtt_size; 1463 } 1464 1465 /** 1466 * i915_gem_get_gtt_alignment - return required GTT alignment for an object 1467 * @obj: object to check 1468 * 1469 * Return the required GTT alignment for an object, taking into account 1470 * potential fence register mapping. 1471 */ 1472 static uint32_t 1473 i915_gem_get_gtt_alignment(struct drm_device *dev, 1474 uint32_t size, 1475 int tiling_mode) 1476 { 1477 /* 1478 * Minimum alignment is 4k (GTT page size), but might be greater 1479 * if a fence register is needed for the object. 1480 */ 1481 if (INTEL_INFO(dev)->gen >= 4 || 1482 tiling_mode == I915_TILING_NONE) 1483 return 4096; 1484 1485 /* 1486 * Previous chips need to be aligned to the size of the smallest 1487 * fence register that can contain the object. 1488 */ 1489 return i915_gem_get_gtt_size(dev, size, tiling_mode); 1490 } 1491 1492 /** 1493 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an 1494 * unfenced object 1495 * @dev: the device 1496 * @size: size of the object 1497 * @tiling_mode: tiling mode of the object 1498 * 1499 * Return the required GTT alignment for an object, only taking into account 1500 * unfenced tiled surface requirements. 1501 */ 1502 uint32_t 1503 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev, 1504 uint32_t size, 1505 int tiling_mode) 1506 { 1507 /* 1508 * Minimum alignment is 4k (GTT page size) for sane hw. 1509 */ 1510 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) || 1511 tiling_mode == I915_TILING_NONE) 1512 return 4096; 1513 1514 /* Previous hardware however needs to be aligned to a power-of-two 1515 * tile height. The simplest method for determining this is to reuse 1516 * the power-of-tile object size. 1517 */ 1518 return i915_gem_get_gtt_size(dev, size, tiling_mode); 1519 } 1520 1521 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj) 1522 { 1523 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1524 int ret; 1525 1526 if (obj->base.map_list.map) 1527 return 0; 1528 1529 ret = drm_gem_create_mmap_offset(&obj->base); 1530 if (ret != -ENOSPC) 1531 return ret; 1532 1533 /* Badly fragmented mmap space? The only way we can recover 1534 * space is by destroying unwanted objects. We can't randomly release 1535 * mmap_offsets as userspace expects them to be persistent for the 1536 * lifetime of the objects. The closest we can is to release the 1537 * offsets on purgeable objects by truncating it and marking it purged, 1538 * which prevents userspace from ever using that object again. 1539 */ 1540 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT); 1541 ret = drm_gem_create_mmap_offset(&obj->base); 1542 if (ret != -ENOSPC) 1543 return ret; 1544 1545 i915_gem_shrink_all(dev_priv); 1546 return drm_gem_create_mmap_offset(&obj->base); 1547 } 1548 1549 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj) 1550 { 1551 if (!obj->base.map_list.map) 1552 return; 1553 1554 drm_gem_free_mmap_offset(&obj->base); 1555 } 1556 1557 int 1558 i915_gem_mmap_gtt(struct drm_file *file, 1559 struct drm_device *dev, 1560 uint32_t handle, 1561 uint64_t *offset) 1562 { 1563 struct drm_i915_private *dev_priv = dev->dev_private; 1564 struct drm_i915_gem_object *obj; 1565 int ret; 1566 1567 ret = i915_mutex_lock_interruptible(dev); 1568 if (ret) 1569 return ret; 1570 1571 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle)); 1572 if (&obj->base == NULL) { 1573 ret = -ENOENT; 1574 goto unlock; 1575 } 1576 1577 if (obj->base.size > dev_priv->mm.gtt_mappable_end) { 1578 ret = -E2BIG; 1579 goto out; 1580 } 1581 1582 if (obj->madv != I915_MADV_WILLNEED) { 1583 DRM_ERROR("Attempting to mmap a purgeable buffer\n"); 1584 ret = -EINVAL; 1585 goto out; 1586 } 1587 1588 ret = i915_gem_object_create_mmap_offset(obj); 1589 if (ret) 1590 goto out; 1591 1592 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT; 1593 1594 out: 1595 drm_gem_object_unreference(&obj->base); 1596 unlock: 1597 mutex_unlock(&dev->struct_mutex); 1598 return ret; 1599 } 1600 1601 /** 1602 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing 1603 * @dev: DRM device 1604 * @data: GTT mapping ioctl data 1605 * @file: GEM object info 1606 * 1607 * Simply returns the fake offset to userspace so it can mmap it. 1608 * The mmap call will end up in drm_gem_mmap(), which will set things 1609 * up so we can get faults in the handler above. 1610 * 1611 * The fault handler will take care of binding the object into the GTT 1612 * (since it may have been evicted to make room for something), allocating 1613 * a fence register, and mapping the appropriate aperture address into 1614 * userspace. 1615 */ 1616 int 1617 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 1618 struct drm_file *file) 1619 { 1620 struct drm_i915_gem_mmap_gtt *args = data; 1621 1622 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset); 1623 } 1624 1625 /* Immediately discard the backing storage */ 1626 static void 1627 i915_gem_object_truncate(struct drm_i915_gem_object *obj) 1628 { 1629 struct inode *inode; 1630 1631 i915_gem_object_free_mmap_offset(obj); 1632 1633 if (obj->base.filp == NULL) 1634 return; 1635 1636 /* Our goal here is to return as much of the memory as 1637 * is possible back to the system as we are called from OOM. 1638 * To do this we must instruct the shmfs to drop all of its 1639 * backing pages, *now*. 1640 */ 1641 inode = obj->base.filp->f_path.dentry->d_inode; 1642 shmem_truncate_range(inode, 0, (loff_t)-1); 1643 1644 obj->madv = __I915_MADV_PURGED; 1645 } 1646 1647 static inline int 1648 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj) 1649 { 1650 return obj->madv == I915_MADV_DONTNEED; 1651 } 1652 1653 static void 1654 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj) 1655 { 1656 int page_count = obj->base.size / PAGE_SIZE; 1657 struct scatterlist *sg; 1658 int ret, i; 1659 1660 BUG_ON(obj->madv == __I915_MADV_PURGED); 1661 1662 ret = i915_gem_object_set_to_cpu_domain(obj, true); 1663 if (ret) { 1664 /* In the event of a disaster, abandon all caches and 1665 * hope for the best. 1666 */ 1667 WARN_ON(ret != -EIO); 1668 i915_gem_clflush_object(obj); 1669 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU; 1670 } 1671 1672 if (i915_gem_object_needs_bit17_swizzle(obj)) 1673 i915_gem_object_save_bit_17_swizzle(obj); 1674 1675 if (obj->madv == I915_MADV_DONTNEED) 1676 obj->dirty = 0; 1677 1678 for_each_sg(obj->pages->sgl, sg, page_count, i) { 1679 struct page *page = sg_page(sg); 1680 1681 if (obj->dirty) 1682 set_page_dirty(page); 1683 1684 if (obj->madv == I915_MADV_WILLNEED) 1685 mark_page_accessed(page); 1686 1687 page_cache_release(page); 1688 } 1689 obj->dirty = 0; 1690 1691 sg_free_table(obj->pages); 1692 kfree(obj->pages); 1693 } 1694 1695 static int 1696 i915_gem_object_put_pages(struct drm_i915_gem_object *obj) 1697 { 1698 const struct drm_i915_gem_object_ops *ops = obj->ops; 1699 1700 if (obj->pages == NULL) 1701 return 0; 1702 1703 BUG_ON(obj->gtt_space); 1704 1705 if (obj->pages_pin_count) 1706 return -EBUSY; 1707 1708 ops->put_pages(obj); 1709 obj->pages = NULL; 1710 1711 list_del(&obj->gtt_list); 1712 if (i915_gem_object_is_purgeable(obj)) 1713 i915_gem_object_truncate(obj); 1714 1715 return 0; 1716 } 1717 1718 static long 1719 i915_gem_purge(struct drm_i915_private *dev_priv, long target) 1720 { 1721 struct drm_i915_gem_object *obj, *next; 1722 long count = 0; 1723 1724 list_for_each_entry_safe(obj, next, 1725 &dev_priv->mm.unbound_list, 1726 gtt_list) { 1727 if (i915_gem_object_is_purgeable(obj) && 1728 i915_gem_object_put_pages(obj) == 0) { 1729 count += obj->base.size >> PAGE_SHIFT; 1730 if (count >= target) 1731 return count; 1732 } 1733 } 1734 1735 list_for_each_entry_safe(obj, next, 1736 &dev_priv->mm.inactive_list, 1737 mm_list) { 1738 if (i915_gem_object_is_purgeable(obj) && 1739 i915_gem_object_unbind(obj) == 0 && 1740 i915_gem_object_put_pages(obj) == 0) { 1741 count += obj->base.size >> PAGE_SHIFT; 1742 if (count >= target) 1743 return count; 1744 } 1745 } 1746 1747 return count; 1748 } 1749 1750 static void 1751 i915_gem_shrink_all(struct drm_i915_private *dev_priv) 1752 { 1753 struct drm_i915_gem_object *obj, *next; 1754 1755 i915_gem_evict_everything(dev_priv->dev); 1756 1757 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list) 1758 i915_gem_object_put_pages(obj); 1759 } 1760 1761 static int 1762 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj) 1763 { 1764 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1765 int page_count, i; 1766 struct address_space *mapping; 1767 struct sg_table *st; 1768 struct scatterlist *sg; 1769 struct page *page; 1770 gfp_t gfp; 1771 1772 /* Assert that the object is not currently in any GPU domain. As it 1773 * wasn't in the GTT, there shouldn't be any way it could have been in 1774 * a GPU cache 1775 */ 1776 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS); 1777 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS); 1778 1779 st = kmalloc(sizeof(*st), GFP_KERNEL); 1780 if (st == NULL) 1781 return -ENOMEM; 1782 1783 page_count = obj->base.size / PAGE_SIZE; 1784 if (sg_alloc_table(st, page_count, GFP_KERNEL)) { 1785 sg_free_table(st); 1786 kfree(st); 1787 return -ENOMEM; 1788 } 1789 1790 /* Get the list of pages out of our struct file. They'll be pinned 1791 * at this point until we release them. 1792 * 1793 * Fail silently without starting the shrinker 1794 */ 1795 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping; 1796 gfp = mapping_gfp_mask(mapping); 1797 gfp |= __GFP_NORETRY | __GFP_NOWARN; 1798 gfp &= ~(__GFP_IO | __GFP_WAIT); 1799 for_each_sg(st->sgl, sg, page_count, i) { 1800 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 1801 if (IS_ERR(page)) { 1802 i915_gem_purge(dev_priv, page_count); 1803 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 1804 } 1805 if (IS_ERR(page)) { 1806 /* We've tried hard to allocate the memory by reaping 1807 * our own buffer, now let the real VM do its job and 1808 * go down in flames if truly OOM. 1809 */ 1810 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN); 1811 gfp |= __GFP_IO | __GFP_WAIT; 1812 1813 i915_gem_shrink_all(dev_priv); 1814 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 1815 if (IS_ERR(page)) 1816 goto err_pages; 1817 1818 gfp |= __GFP_NORETRY | __GFP_NOWARN; 1819 gfp &= ~(__GFP_IO | __GFP_WAIT); 1820 } 1821 1822 sg_set_page(sg, page, PAGE_SIZE, 0); 1823 } 1824 1825 if (i915_gem_object_needs_bit17_swizzle(obj)) 1826 i915_gem_object_do_bit_17_swizzle(obj); 1827 1828 obj->pages = st; 1829 return 0; 1830 1831 err_pages: 1832 for_each_sg(st->sgl, sg, i, page_count) 1833 page_cache_release(sg_page(sg)); 1834 sg_free_table(st); 1835 kfree(st); 1836 return PTR_ERR(page); 1837 } 1838 1839 /* Ensure that the associated pages are gathered from the backing storage 1840 * and pinned into our object. i915_gem_object_get_pages() may be called 1841 * multiple times before they are released by a single call to 1842 * i915_gem_object_put_pages() - once the pages are no longer referenced 1843 * either as a result of memory pressure (reaping pages under the shrinker) 1844 * or as the object is itself released. 1845 */ 1846 int 1847 i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 1848 { 1849 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1850 const struct drm_i915_gem_object_ops *ops = obj->ops; 1851 int ret; 1852 1853 if (obj->pages) 1854 return 0; 1855 1856 BUG_ON(obj->pages_pin_count); 1857 1858 ret = ops->get_pages(obj); 1859 if (ret) 1860 return ret; 1861 1862 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list); 1863 return 0; 1864 } 1865 1866 void 1867 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj, 1868 struct intel_ring_buffer *ring, 1869 u32 seqno) 1870 { 1871 struct drm_device *dev = obj->base.dev; 1872 struct drm_i915_private *dev_priv = dev->dev_private; 1873 1874 BUG_ON(ring == NULL); 1875 obj->ring = ring; 1876 1877 /* Add a reference if we're newly entering the active list. */ 1878 if (!obj->active) { 1879 drm_gem_object_reference(&obj->base); 1880 obj->active = 1; 1881 } 1882 1883 /* Move from whatever list we were on to the tail of execution. */ 1884 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list); 1885 list_move_tail(&obj->ring_list, &ring->active_list); 1886 1887 obj->last_read_seqno = seqno; 1888 1889 if (obj->fenced_gpu_access) { 1890 obj->last_fenced_seqno = seqno; 1891 1892 /* Bump MRU to take account of the delayed flush */ 1893 if (obj->fence_reg != I915_FENCE_REG_NONE) { 1894 struct drm_i915_fence_reg *reg; 1895 1896 reg = &dev_priv->fence_regs[obj->fence_reg]; 1897 list_move_tail(®->lru_list, 1898 &dev_priv->mm.fence_list); 1899 } 1900 } 1901 } 1902 1903 static void 1904 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj) 1905 { 1906 struct drm_device *dev = obj->base.dev; 1907 struct drm_i915_private *dev_priv = dev->dev_private; 1908 1909 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS); 1910 BUG_ON(!obj->active); 1911 1912 if (obj->pin_count) /* are we a framebuffer? */ 1913 intel_mark_fb_idle(obj); 1914 1915 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list); 1916 1917 list_del_init(&obj->ring_list); 1918 obj->ring = NULL; 1919 1920 obj->last_read_seqno = 0; 1921 obj->last_write_seqno = 0; 1922 obj->base.write_domain = 0; 1923 1924 obj->last_fenced_seqno = 0; 1925 obj->fenced_gpu_access = false; 1926 1927 obj->active = 0; 1928 drm_gem_object_unreference(&obj->base); 1929 1930 WARN_ON(i915_verify_lists(dev)); 1931 } 1932 1933 static u32 1934 i915_gem_get_seqno(struct drm_device *dev) 1935 { 1936 drm_i915_private_t *dev_priv = dev->dev_private; 1937 u32 seqno = dev_priv->next_seqno; 1938 1939 /* reserve 0 for non-seqno */ 1940 if (++dev_priv->next_seqno == 0) 1941 dev_priv->next_seqno = 1; 1942 1943 return seqno; 1944 } 1945 1946 u32 1947 i915_gem_next_request_seqno(struct intel_ring_buffer *ring) 1948 { 1949 if (ring->outstanding_lazy_request == 0) 1950 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev); 1951 1952 return ring->outstanding_lazy_request; 1953 } 1954 1955 int 1956 i915_add_request(struct intel_ring_buffer *ring, 1957 struct drm_file *file, 1958 u32 *out_seqno) 1959 { 1960 drm_i915_private_t *dev_priv = ring->dev->dev_private; 1961 struct drm_i915_gem_request *request; 1962 u32 request_ring_position; 1963 u32 seqno; 1964 int was_empty; 1965 int ret; 1966 1967 /* 1968 * Emit any outstanding flushes - execbuf can fail to emit the flush 1969 * after having emitted the batchbuffer command. Hence we need to fix 1970 * things up similar to emitting the lazy request. The difference here 1971 * is that the flush _must_ happen before the next request, no matter 1972 * what. 1973 */ 1974 ret = intel_ring_flush_all_caches(ring); 1975 if (ret) 1976 return ret; 1977 1978 request = kmalloc(sizeof(*request), GFP_KERNEL); 1979 if (request == NULL) 1980 return -ENOMEM; 1981 1982 seqno = i915_gem_next_request_seqno(ring); 1983 1984 /* Record the position of the start of the request so that 1985 * should we detect the updated seqno part-way through the 1986 * GPU processing the request, we never over-estimate the 1987 * position of the head. 1988 */ 1989 request_ring_position = intel_ring_get_tail(ring); 1990 1991 ret = ring->add_request(ring, &seqno); 1992 if (ret) { 1993 kfree(request); 1994 return ret; 1995 } 1996 1997 trace_i915_gem_request_add(ring, seqno); 1998 1999 request->seqno = seqno; 2000 request->ring = ring; 2001 request->tail = request_ring_position; 2002 request->emitted_jiffies = jiffies; 2003 was_empty = list_empty(&ring->request_list); 2004 list_add_tail(&request->list, &ring->request_list); 2005 request->file_priv = NULL; 2006 2007 if (file) { 2008 struct drm_i915_file_private *file_priv = file->driver_priv; 2009 2010 spin_lock(&file_priv->mm.lock); 2011 request->file_priv = file_priv; 2012 list_add_tail(&request->client_list, 2013 &file_priv->mm.request_list); 2014 spin_unlock(&file_priv->mm.lock); 2015 } 2016 2017 ring->outstanding_lazy_request = 0; 2018 2019 if (!dev_priv->mm.suspended) { 2020 if (i915_enable_hangcheck) { 2021 mod_timer(&dev_priv->hangcheck_timer, 2022 jiffies + 2023 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)); 2024 } 2025 if (was_empty) { 2026 queue_delayed_work(dev_priv->wq, 2027 &dev_priv->mm.retire_work, HZ); 2028 intel_mark_busy(dev_priv->dev); 2029 } 2030 } 2031 2032 if (out_seqno) 2033 *out_seqno = seqno; 2034 return 0; 2035 } 2036 2037 static inline void 2038 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request) 2039 { 2040 struct drm_i915_file_private *file_priv = request->file_priv; 2041 2042 if (!file_priv) 2043 return; 2044 2045 spin_lock(&file_priv->mm.lock); 2046 if (request->file_priv) { 2047 list_del(&request->client_list); 2048 request->file_priv = NULL; 2049 } 2050 spin_unlock(&file_priv->mm.lock); 2051 } 2052 2053 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv, 2054 struct intel_ring_buffer *ring) 2055 { 2056 while (!list_empty(&ring->request_list)) { 2057 struct drm_i915_gem_request *request; 2058 2059 request = list_first_entry(&ring->request_list, 2060 struct drm_i915_gem_request, 2061 list); 2062 2063 list_del(&request->list); 2064 i915_gem_request_remove_from_client(request); 2065 kfree(request); 2066 } 2067 2068 while (!list_empty(&ring->active_list)) { 2069 struct drm_i915_gem_object *obj; 2070 2071 obj = list_first_entry(&ring->active_list, 2072 struct drm_i915_gem_object, 2073 ring_list); 2074 2075 i915_gem_object_move_to_inactive(obj); 2076 } 2077 } 2078 2079 static void i915_gem_reset_fences(struct drm_device *dev) 2080 { 2081 struct drm_i915_private *dev_priv = dev->dev_private; 2082 int i; 2083 2084 for (i = 0; i < dev_priv->num_fence_regs; i++) { 2085 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i]; 2086 2087 i915_gem_write_fence(dev, i, NULL); 2088 2089 if (reg->obj) 2090 i915_gem_object_fence_lost(reg->obj); 2091 2092 reg->pin_count = 0; 2093 reg->obj = NULL; 2094 INIT_LIST_HEAD(®->lru_list); 2095 } 2096 2097 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 2098 } 2099 2100 void i915_gem_reset(struct drm_device *dev) 2101 { 2102 struct drm_i915_private *dev_priv = dev->dev_private; 2103 struct drm_i915_gem_object *obj; 2104 struct intel_ring_buffer *ring; 2105 int i; 2106 2107 for_each_ring(ring, dev_priv, i) 2108 i915_gem_reset_ring_lists(dev_priv, ring); 2109 2110 /* Move everything out of the GPU domains to ensure we do any 2111 * necessary invalidation upon reuse. 2112 */ 2113 list_for_each_entry(obj, 2114 &dev_priv->mm.inactive_list, 2115 mm_list) 2116 { 2117 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS; 2118 } 2119 2120 /* The fence registers are invalidated so clear them out */ 2121 i915_gem_reset_fences(dev); 2122 } 2123 2124 /** 2125 * This function clears the request list as sequence numbers are passed. 2126 */ 2127 void 2128 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring) 2129 { 2130 uint32_t seqno; 2131 int i; 2132 2133 if (list_empty(&ring->request_list)) 2134 return; 2135 2136 WARN_ON(i915_verify_lists(ring->dev)); 2137 2138 seqno = ring->get_seqno(ring, true); 2139 2140 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++) 2141 if (seqno >= ring->sync_seqno[i]) 2142 ring->sync_seqno[i] = 0; 2143 2144 while (!list_empty(&ring->request_list)) { 2145 struct drm_i915_gem_request *request; 2146 2147 request = list_first_entry(&ring->request_list, 2148 struct drm_i915_gem_request, 2149 list); 2150 2151 if (!i915_seqno_passed(seqno, request->seqno)) 2152 break; 2153 2154 trace_i915_gem_request_retire(ring, request->seqno); 2155 /* We know the GPU must have read the request to have 2156 * sent us the seqno + interrupt, so use the position 2157 * of tail of the request to update the last known position 2158 * of the GPU head. 2159 */ 2160 ring->last_retired_head = request->tail; 2161 2162 list_del(&request->list); 2163 i915_gem_request_remove_from_client(request); 2164 kfree(request); 2165 } 2166 2167 /* Move any buffers on the active list that are no longer referenced 2168 * by the ringbuffer to the flushing/inactive lists as appropriate. 2169 */ 2170 while (!list_empty(&ring->active_list)) { 2171 struct drm_i915_gem_object *obj; 2172 2173 obj = list_first_entry(&ring->active_list, 2174 struct drm_i915_gem_object, 2175 ring_list); 2176 2177 if (!i915_seqno_passed(seqno, obj->last_read_seqno)) 2178 break; 2179 2180 i915_gem_object_move_to_inactive(obj); 2181 } 2182 2183 if (unlikely(ring->trace_irq_seqno && 2184 i915_seqno_passed(seqno, ring->trace_irq_seqno))) { 2185 ring->irq_put(ring); 2186 ring->trace_irq_seqno = 0; 2187 } 2188 2189 WARN_ON(i915_verify_lists(ring->dev)); 2190 } 2191 2192 void 2193 i915_gem_retire_requests(struct drm_device *dev) 2194 { 2195 drm_i915_private_t *dev_priv = dev->dev_private; 2196 struct intel_ring_buffer *ring; 2197 int i; 2198 2199 for_each_ring(ring, dev_priv, i) 2200 i915_gem_retire_requests_ring(ring); 2201 } 2202 2203 static void 2204 i915_gem_retire_work_handler(struct work_struct *work) 2205 { 2206 drm_i915_private_t *dev_priv; 2207 struct drm_device *dev; 2208 struct intel_ring_buffer *ring; 2209 bool idle; 2210 int i; 2211 2212 dev_priv = container_of(work, drm_i915_private_t, 2213 mm.retire_work.work); 2214 dev = dev_priv->dev; 2215 2216 /* Come back later if the device is busy... */ 2217 if (!mutex_trylock(&dev->struct_mutex)) { 2218 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ); 2219 return; 2220 } 2221 2222 i915_gem_retire_requests(dev); 2223 2224 /* Send a periodic flush down the ring so we don't hold onto GEM 2225 * objects indefinitely. 2226 */ 2227 idle = true; 2228 for_each_ring(ring, dev_priv, i) { 2229 if (ring->gpu_caches_dirty) 2230 i915_add_request(ring, NULL, NULL); 2231 2232 idle &= list_empty(&ring->request_list); 2233 } 2234 2235 if (!dev_priv->mm.suspended && !idle) 2236 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ); 2237 if (idle) 2238 intel_mark_idle(dev); 2239 2240 mutex_unlock(&dev->struct_mutex); 2241 } 2242 2243 /** 2244 * Ensures that an object will eventually get non-busy by flushing any required 2245 * write domains, emitting any outstanding lazy request and retiring and 2246 * completed requests. 2247 */ 2248 static int 2249 i915_gem_object_flush_active(struct drm_i915_gem_object *obj) 2250 { 2251 int ret; 2252 2253 if (obj->active) { 2254 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno); 2255 if (ret) 2256 return ret; 2257 2258 i915_gem_retire_requests_ring(obj->ring); 2259 } 2260 2261 return 0; 2262 } 2263 2264 /** 2265 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT 2266 * @DRM_IOCTL_ARGS: standard ioctl arguments 2267 * 2268 * Returns 0 if successful, else an error is returned with the remaining time in 2269 * the timeout parameter. 2270 * -ETIME: object is still busy after timeout 2271 * -ERESTARTSYS: signal interrupted the wait 2272 * -ENONENT: object doesn't exist 2273 * Also possible, but rare: 2274 * -EAGAIN: GPU wedged 2275 * -ENOMEM: damn 2276 * -ENODEV: Internal IRQ fail 2277 * -E?: The add request failed 2278 * 2279 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any 2280 * non-zero timeout parameter the wait ioctl will wait for the given number of 2281 * nanoseconds on an object becoming unbusy. Since the wait itself does so 2282 * without holding struct_mutex the object may become re-busied before this 2283 * function completes. A similar but shorter * race condition exists in the busy 2284 * ioctl 2285 */ 2286 int 2287 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file) 2288 { 2289 struct drm_i915_gem_wait *args = data; 2290 struct drm_i915_gem_object *obj; 2291 struct intel_ring_buffer *ring = NULL; 2292 struct timespec timeout_stack, *timeout = NULL; 2293 u32 seqno = 0; 2294 int ret = 0; 2295 2296 if (args->timeout_ns >= 0) { 2297 timeout_stack = ns_to_timespec(args->timeout_ns); 2298 timeout = &timeout_stack; 2299 } 2300 2301 ret = i915_mutex_lock_interruptible(dev); 2302 if (ret) 2303 return ret; 2304 2305 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle)); 2306 if (&obj->base == NULL) { 2307 mutex_unlock(&dev->struct_mutex); 2308 return -ENOENT; 2309 } 2310 2311 /* Need to make sure the object gets inactive eventually. */ 2312 ret = i915_gem_object_flush_active(obj); 2313 if (ret) 2314 goto out; 2315 2316 if (obj->active) { 2317 seqno = obj->last_read_seqno; 2318 ring = obj->ring; 2319 } 2320 2321 if (seqno == 0) 2322 goto out; 2323 2324 /* Do this after OLR check to make sure we make forward progress polling 2325 * on this IOCTL with a 0 timeout (like busy ioctl) 2326 */ 2327 if (!args->timeout_ns) { 2328 ret = -ETIME; 2329 goto out; 2330 } 2331 2332 drm_gem_object_unreference(&obj->base); 2333 mutex_unlock(&dev->struct_mutex); 2334 2335 ret = __wait_seqno(ring, seqno, true, timeout); 2336 if (timeout) { 2337 WARN_ON(!timespec_valid(timeout)); 2338 args->timeout_ns = timespec_to_ns(timeout); 2339 } 2340 return ret; 2341 2342 out: 2343 drm_gem_object_unreference(&obj->base); 2344 mutex_unlock(&dev->struct_mutex); 2345 return ret; 2346 } 2347 2348 /** 2349 * i915_gem_object_sync - sync an object to a ring. 2350 * 2351 * @obj: object which may be in use on another ring. 2352 * @to: ring we wish to use the object on. May be NULL. 2353 * 2354 * This code is meant to abstract object synchronization with the GPU. 2355 * Calling with NULL implies synchronizing the object with the CPU 2356 * rather than a particular GPU ring. 2357 * 2358 * Returns 0 if successful, else propagates up the lower layer error. 2359 */ 2360 int 2361 i915_gem_object_sync(struct drm_i915_gem_object *obj, 2362 struct intel_ring_buffer *to) 2363 { 2364 struct intel_ring_buffer *from = obj->ring; 2365 u32 seqno; 2366 int ret, idx; 2367 2368 if (from == NULL || to == from) 2369 return 0; 2370 2371 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev)) 2372 return i915_gem_object_wait_rendering(obj, false); 2373 2374 idx = intel_ring_sync_index(from, to); 2375 2376 seqno = obj->last_read_seqno; 2377 if (seqno <= from->sync_seqno[idx]) 2378 return 0; 2379 2380 ret = i915_gem_check_olr(obj->ring, seqno); 2381 if (ret) 2382 return ret; 2383 2384 ret = to->sync_to(to, from, seqno); 2385 if (!ret) 2386 from->sync_seqno[idx] = seqno; 2387 2388 return ret; 2389 } 2390 2391 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj) 2392 { 2393 u32 old_write_domain, old_read_domains; 2394 2395 /* Act a barrier for all accesses through the GTT */ 2396 mb(); 2397 2398 /* Force a pagefault for domain tracking on next user access */ 2399 i915_gem_release_mmap(obj); 2400 2401 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 2402 return; 2403 2404 old_read_domains = obj->base.read_domains; 2405 old_write_domain = obj->base.write_domain; 2406 2407 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT; 2408 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT; 2409 2410 trace_i915_gem_object_change_domain(obj, 2411 old_read_domains, 2412 old_write_domain); 2413 } 2414 2415 /** 2416 * Unbinds an object from the GTT aperture. 2417 */ 2418 int 2419 i915_gem_object_unbind(struct drm_i915_gem_object *obj) 2420 { 2421 drm_i915_private_t *dev_priv = obj->base.dev->dev_private; 2422 int ret = 0; 2423 2424 if (obj->gtt_space == NULL) 2425 return 0; 2426 2427 if (obj->pin_count) 2428 return -EBUSY; 2429 2430 BUG_ON(obj->pages == NULL); 2431 2432 ret = i915_gem_object_finish_gpu(obj); 2433 if (ret) 2434 return ret; 2435 /* Continue on if we fail due to EIO, the GPU is hung so we 2436 * should be safe and we need to cleanup or else we might 2437 * cause memory corruption through use-after-free. 2438 */ 2439 2440 i915_gem_object_finish_gtt(obj); 2441 2442 /* release the fence reg _after_ flushing */ 2443 ret = i915_gem_object_put_fence(obj); 2444 if (ret) 2445 return ret; 2446 2447 trace_i915_gem_object_unbind(obj); 2448 2449 if (obj->has_global_gtt_mapping) 2450 i915_gem_gtt_unbind_object(obj); 2451 if (obj->has_aliasing_ppgtt_mapping) { 2452 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj); 2453 obj->has_aliasing_ppgtt_mapping = 0; 2454 } 2455 i915_gem_gtt_finish_object(obj); 2456 2457 list_del(&obj->mm_list); 2458 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list); 2459 /* Avoid an unnecessary call to unbind on rebind. */ 2460 obj->map_and_fenceable = true; 2461 2462 drm_mm_put_block(obj->gtt_space); 2463 obj->gtt_space = NULL; 2464 obj->gtt_offset = 0; 2465 2466 return 0; 2467 } 2468 2469 static int i915_ring_idle(struct intel_ring_buffer *ring) 2470 { 2471 if (list_empty(&ring->active_list)) 2472 return 0; 2473 2474 return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring)); 2475 } 2476 2477 int i915_gpu_idle(struct drm_device *dev) 2478 { 2479 drm_i915_private_t *dev_priv = dev->dev_private; 2480 struct intel_ring_buffer *ring; 2481 int ret, i; 2482 2483 /* Flush everything onto the inactive list. */ 2484 for_each_ring(ring, dev_priv, i) { 2485 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID); 2486 if (ret) 2487 return ret; 2488 2489 ret = i915_ring_idle(ring); 2490 if (ret) 2491 return ret; 2492 } 2493 2494 return 0; 2495 } 2496 2497 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg, 2498 struct drm_i915_gem_object *obj) 2499 { 2500 drm_i915_private_t *dev_priv = dev->dev_private; 2501 uint64_t val; 2502 2503 if (obj) { 2504 u32 size = obj->gtt_space->size; 2505 2506 val = (uint64_t)((obj->gtt_offset + size - 4096) & 2507 0xfffff000) << 32; 2508 val |= obj->gtt_offset & 0xfffff000; 2509 val |= (uint64_t)((obj->stride / 128) - 1) << 2510 SANDYBRIDGE_FENCE_PITCH_SHIFT; 2511 2512 if (obj->tiling_mode == I915_TILING_Y) 2513 val |= 1 << I965_FENCE_TILING_Y_SHIFT; 2514 val |= I965_FENCE_REG_VALID; 2515 } else 2516 val = 0; 2517 2518 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val); 2519 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8); 2520 } 2521 2522 static void i965_write_fence_reg(struct drm_device *dev, int reg, 2523 struct drm_i915_gem_object *obj) 2524 { 2525 drm_i915_private_t *dev_priv = dev->dev_private; 2526 uint64_t val; 2527 2528 if (obj) { 2529 u32 size = obj->gtt_space->size; 2530 2531 val = (uint64_t)((obj->gtt_offset + size - 4096) & 2532 0xfffff000) << 32; 2533 val |= obj->gtt_offset & 0xfffff000; 2534 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT; 2535 if (obj->tiling_mode == I915_TILING_Y) 2536 val |= 1 << I965_FENCE_TILING_Y_SHIFT; 2537 val |= I965_FENCE_REG_VALID; 2538 } else 2539 val = 0; 2540 2541 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val); 2542 POSTING_READ(FENCE_REG_965_0 + reg * 8); 2543 } 2544 2545 static void i915_write_fence_reg(struct drm_device *dev, int reg, 2546 struct drm_i915_gem_object *obj) 2547 { 2548 drm_i915_private_t *dev_priv = dev->dev_private; 2549 u32 val; 2550 2551 if (obj) { 2552 u32 size = obj->gtt_space->size; 2553 int pitch_val; 2554 int tile_width; 2555 2556 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) || 2557 (size & -size) != size || 2558 (obj->gtt_offset & (size - 1)), 2559 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n", 2560 obj->gtt_offset, obj->map_and_fenceable, size); 2561 2562 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)) 2563 tile_width = 128; 2564 else 2565 tile_width = 512; 2566 2567 /* Note: pitch better be a power of two tile widths */ 2568 pitch_val = obj->stride / tile_width; 2569 pitch_val = ffs(pitch_val) - 1; 2570 2571 val = obj->gtt_offset; 2572 if (obj->tiling_mode == I915_TILING_Y) 2573 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 2574 val |= I915_FENCE_SIZE_BITS(size); 2575 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 2576 val |= I830_FENCE_REG_VALID; 2577 } else 2578 val = 0; 2579 2580 if (reg < 8) 2581 reg = FENCE_REG_830_0 + reg * 4; 2582 else 2583 reg = FENCE_REG_945_8 + (reg - 8) * 4; 2584 2585 I915_WRITE(reg, val); 2586 POSTING_READ(reg); 2587 } 2588 2589 static void i830_write_fence_reg(struct drm_device *dev, int reg, 2590 struct drm_i915_gem_object *obj) 2591 { 2592 drm_i915_private_t *dev_priv = dev->dev_private; 2593 uint32_t val; 2594 2595 if (obj) { 2596 u32 size = obj->gtt_space->size; 2597 uint32_t pitch_val; 2598 2599 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) || 2600 (size & -size) != size || 2601 (obj->gtt_offset & (size - 1)), 2602 "object 0x%08x not 512K or pot-size 0x%08x aligned\n", 2603 obj->gtt_offset, size); 2604 2605 pitch_val = obj->stride / 128; 2606 pitch_val = ffs(pitch_val) - 1; 2607 2608 val = obj->gtt_offset; 2609 if (obj->tiling_mode == I915_TILING_Y) 2610 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 2611 val |= I830_FENCE_SIZE_BITS(size); 2612 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 2613 val |= I830_FENCE_REG_VALID; 2614 } else 2615 val = 0; 2616 2617 I915_WRITE(FENCE_REG_830_0 + reg * 4, val); 2618 POSTING_READ(FENCE_REG_830_0 + reg * 4); 2619 } 2620 2621 static void i915_gem_write_fence(struct drm_device *dev, int reg, 2622 struct drm_i915_gem_object *obj) 2623 { 2624 switch (INTEL_INFO(dev)->gen) { 2625 case 7: 2626 case 6: sandybridge_write_fence_reg(dev, reg, obj); break; 2627 case 5: 2628 case 4: i965_write_fence_reg(dev, reg, obj); break; 2629 case 3: i915_write_fence_reg(dev, reg, obj); break; 2630 case 2: i830_write_fence_reg(dev, reg, obj); break; 2631 default: break; 2632 } 2633 } 2634 2635 static inline int fence_number(struct drm_i915_private *dev_priv, 2636 struct drm_i915_fence_reg *fence) 2637 { 2638 return fence - dev_priv->fence_regs; 2639 } 2640 2641 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, 2642 struct drm_i915_fence_reg *fence, 2643 bool enable) 2644 { 2645 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2646 int reg = fence_number(dev_priv, fence); 2647 2648 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL); 2649 2650 if (enable) { 2651 obj->fence_reg = reg; 2652 fence->obj = obj; 2653 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list); 2654 } else { 2655 obj->fence_reg = I915_FENCE_REG_NONE; 2656 fence->obj = NULL; 2657 list_del_init(&fence->lru_list); 2658 } 2659 } 2660 2661 static int 2662 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj) 2663 { 2664 if (obj->last_fenced_seqno) { 2665 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno); 2666 if (ret) 2667 return ret; 2668 2669 obj->last_fenced_seqno = 0; 2670 } 2671 2672 /* Ensure that all CPU reads are completed before installing a fence 2673 * and all writes before removing the fence. 2674 */ 2675 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT) 2676 mb(); 2677 2678 obj->fenced_gpu_access = false; 2679 return 0; 2680 } 2681 2682 int 2683 i915_gem_object_put_fence(struct drm_i915_gem_object *obj) 2684 { 2685 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2686 int ret; 2687 2688 ret = i915_gem_object_flush_fence(obj); 2689 if (ret) 2690 return ret; 2691 2692 if (obj->fence_reg == I915_FENCE_REG_NONE) 2693 return 0; 2694 2695 i915_gem_object_update_fence(obj, 2696 &dev_priv->fence_regs[obj->fence_reg], 2697 false); 2698 i915_gem_object_fence_lost(obj); 2699 2700 return 0; 2701 } 2702 2703 static struct drm_i915_fence_reg * 2704 i915_find_fence_reg(struct drm_device *dev) 2705 { 2706 struct drm_i915_private *dev_priv = dev->dev_private; 2707 struct drm_i915_fence_reg *reg, *avail; 2708 int i; 2709 2710 /* First try to find a free reg */ 2711 avail = NULL; 2712 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) { 2713 reg = &dev_priv->fence_regs[i]; 2714 if (!reg->obj) 2715 return reg; 2716 2717 if (!reg->pin_count) 2718 avail = reg; 2719 } 2720 2721 if (avail == NULL) 2722 return NULL; 2723 2724 /* None available, try to steal one or wait for a user to finish */ 2725 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) { 2726 if (reg->pin_count) 2727 continue; 2728 2729 return reg; 2730 } 2731 2732 return NULL; 2733 } 2734 2735 /** 2736 * i915_gem_object_get_fence - set up fencing for an object 2737 * @obj: object to map through a fence reg 2738 * 2739 * When mapping objects through the GTT, userspace wants to be able to write 2740 * to them without having to worry about swizzling if the object is tiled. 2741 * This function walks the fence regs looking for a free one for @obj, 2742 * stealing one if it can't find any. 2743 * 2744 * It then sets up the reg based on the object's properties: address, pitch 2745 * and tiling format. 2746 * 2747 * For an untiled surface, this removes any existing fence. 2748 */ 2749 int 2750 i915_gem_object_get_fence(struct drm_i915_gem_object *obj) 2751 { 2752 struct drm_device *dev = obj->base.dev; 2753 struct drm_i915_private *dev_priv = dev->dev_private; 2754 bool enable = obj->tiling_mode != I915_TILING_NONE; 2755 struct drm_i915_fence_reg *reg; 2756 int ret; 2757 2758 /* Have we updated the tiling parameters upon the object and so 2759 * will need to serialise the write to the associated fence register? 2760 */ 2761 if (obj->fence_dirty) { 2762 ret = i915_gem_object_flush_fence(obj); 2763 if (ret) 2764 return ret; 2765 } 2766 2767 /* Just update our place in the LRU if our fence is getting reused. */ 2768 if (obj->fence_reg != I915_FENCE_REG_NONE) { 2769 reg = &dev_priv->fence_regs[obj->fence_reg]; 2770 if (!obj->fence_dirty) { 2771 list_move_tail(®->lru_list, 2772 &dev_priv->mm.fence_list); 2773 return 0; 2774 } 2775 } else if (enable) { 2776 reg = i915_find_fence_reg(dev); 2777 if (reg == NULL) 2778 return -EDEADLK; 2779 2780 if (reg->obj) { 2781 struct drm_i915_gem_object *old = reg->obj; 2782 2783 ret = i915_gem_object_flush_fence(old); 2784 if (ret) 2785 return ret; 2786 2787 i915_gem_object_fence_lost(old); 2788 } 2789 } else 2790 return 0; 2791 2792 i915_gem_object_update_fence(obj, reg, enable); 2793 obj->fence_dirty = false; 2794 2795 return 0; 2796 } 2797 2798 static bool i915_gem_valid_gtt_space(struct drm_device *dev, 2799 struct drm_mm_node *gtt_space, 2800 unsigned long cache_level) 2801 { 2802 struct drm_mm_node *other; 2803 2804 /* On non-LLC machines we have to be careful when putting differing 2805 * types of snoopable memory together to avoid the prefetcher 2806 * crossing memory domains and dieing. 2807 */ 2808 if (HAS_LLC(dev)) 2809 return true; 2810 2811 if (gtt_space == NULL) 2812 return true; 2813 2814 if (list_empty(>t_space->node_list)) 2815 return true; 2816 2817 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list); 2818 if (other->allocated && !other->hole_follows && other->color != cache_level) 2819 return false; 2820 2821 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list); 2822 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level) 2823 return false; 2824 2825 return true; 2826 } 2827 2828 static void i915_gem_verify_gtt(struct drm_device *dev) 2829 { 2830 #if WATCH_GTT 2831 struct drm_i915_private *dev_priv = dev->dev_private; 2832 struct drm_i915_gem_object *obj; 2833 int err = 0; 2834 2835 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) { 2836 if (obj->gtt_space == NULL) { 2837 printk(KERN_ERR "object found on GTT list with no space reserved\n"); 2838 err++; 2839 continue; 2840 } 2841 2842 if (obj->cache_level != obj->gtt_space->color) { 2843 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n", 2844 obj->gtt_space->start, 2845 obj->gtt_space->start + obj->gtt_space->size, 2846 obj->cache_level, 2847 obj->gtt_space->color); 2848 err++; 2849 continue; 2850 } 2851 2852 if (!i915_gem_valid_gtt_space(dev, 2853 obj->gtt_space, 2854 obj->cache_level)) { 2855 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n", 2856 obj->gtt_space->start, 2857 obj->gtt_space->start + obj->gtt_space->size, 2858 obj->cache_level); 2859 err++; 2860 continue; 2861 } 2862 } 2863 2864 WARN_ON(err); 2865 #endif 2866 } 2867 2868 /** 2869 * Finds free space in the GTT aperture and binds the object there. 2870 */ 2871 static int 2872 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj, 2873 unsigned alignment, 2874 bool map_and_fenceable, 2875 bool nonblocking) 2876 { 2877 struct drm_device *dev = obj->base.dev; 2878 drm_i915_private_t *dev_priv = dev->dev_private; 2879 struct drm_mm_node *free_space; 2880 u32 size, fence_size, fence_alignment, unfenced_alignment; 2881 bool mappable, fenceable; 2882 int ret; 2883 2884 if (obj->madv != I915_MADV_WILLNEED) { 2885 DRM_ERROR("Attempting to bind a purgeable object\n"); 2886 return -EINVAL; 2887 } 2888 2889 fence_size = i915_gem_get_gtt_size(dev, 2890 obj->base.size, 2891 obj->tiling_mode); 2892 fence_alignment = i915_gem_get_gtt_alignment(dev, 2893 obj->base.size, 2894 obj->tiling_mode); 2895 unfenced_alignment = 2896 i915_gem_get_unfenced_gtt_alignment(dev, 2897 obj->base.size, 2898 obj->tiling_mode); 2899 2900 if (alignment == 0) 2901 alignment = map_and_fenceable ? fence_alignment : 2902 unfenced_alignment; 2903 if (map_and_fenceable && alignment & (fence_alignment - 1)) { 2904 DRM_ERROR("Invalid object alignment requested %u\n", alignment); 2905 return -EINVAL; 2906 } 2907 2908 size = map_and_fenceable ? fence_size : obj->base.size; 2909 2910 /* If the object is bigger than the entire aperture, reject it early 2911 * before evicting everything in a vain attempt to find space. 2912 */ 2913 if (obj->base.size > 2914 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) { 2915 DRM_ERROR("Attempting to bind an object larger than the aperture\n"); 2916 return -E2BIG; 2917 } 2918 2919 ret = i915_gem_object_get_pages(obj); 2920 if (ret) 2921 return ret; 2922 2923 search_free: 2924 if (map_and_fenceable) 2925 free_space = 2926 drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space, 2927 size, alignment, obj->cache_level, 2928 0, dev_priv->mm.gtt_mappable_end, 2929 false); 2930 else 2931 free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space, 2932 size, alignment, obj->cache_level, 2933 false); 2934 2935 if (free_space != NULL) { 2936 if (map_and_fenceable) 2937 obj->gtt_space = 2938 drm_mm_get_block_range_generic(free_space, 2939 size, alignment, obj->cache_level, 2940 0, dev_priv->mm.gtt_mappable_end, 2941 false); 2942 else 2943 obj->gtt_space = 2944 drm_mm_get_block_generic(free_space, 2945 size, alignment, obj->cache_level, 2946 false); 2947 } 2948 if (obj->gtt_space == NULL) { 2949 ret = i915_gem_evict_something(dev, size, alignment, 2950 obj->cache_level, 2951 map_and_fenceable, 2952 nonblocking); 2953 if (ret) 2954 return ret; 2955 2956 goto search_free; 2957 } 2958 if (WARN_ON(!i915_gem_valid_gtt_space(dev, 2959 obj->gtt_space, 2960 obj->cache_level))) { 2961 drm_mm_put_block(obj->gtt_space); 2962 obj->gtt_space = NULL; 2963 return -EINVAL; 2964 } 2965 2966 2967 ret = i915_gem_gtt_prepare_object(obj); 2968 if (ret) { 2969 drm_mm_put_block(obj->gtt_space); 2970 obj->gtt_space = NULL; 2971 return ret; 2972 } 2973 2974 if (!dev_priv->mm.aliasing_ppgtt) 2975 i915_gem_gtt_bind_object(obj, obj->cache_level); 2976 2977 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list); 2978 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list); 2979 2980 obj->gtt_offset = obj->gtt_space->start; 2981 2982 fenceable = 2983 obj->gtt_space->size == fence_size && 2984 (obj->gtt_space->start & (fence_alignment - 1)) == 0; 2985 2986 mappable = 2987 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end; 2988 2989 obj->map_and_fenceable = mappable && fenceable; 2990 2991 trace_i915_gem_object_bind(obj, map_and_fenceable); 2992 i915_gem_verify_gtt(dev); 2993 return 0; 2994 } 2995 2996 void 2997 i915_gem_clflush_object(struct drm_i915_gem_object *obj) 2998 { 2999 /* If we don't have a page list set up, then we're not pinned 3000 * to GPU, and we can ignore the cache flush because it'll happen 3001 * again at bind time. 3002 */ 3003 if (obj->pages == NULL) 3004 return; 3005 3006 /* If the GPU is snooping the contents of the CPU cache, 3007 * we do not need to manually clear the CPU cache lines. However, 3008 * the caches are only snooped when the render cache is 3009 * flushed/invalidated. As we always have to emit invalidations 3010 * and flushes when moving into and out of the RENDER domain, correct 3011 * snooping behaviour occurs naturally as the result of our domain 3012 * tracking. 3013 */ 3014 if (obj->cache_level != I915_CACHE_NONE) 3015 return; 3016 3017 trace_i915_gem_object_clflush(obj); 3018 3019 drm_clflush_sg(obj->pages); 3020 } 3021 3022 /** Flushes the GTT write domain for the object if it's dirty. */ 3023 static void 3024 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj) 3025 { 3026 uint32_t old_write_domain; 3027 3028 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT) 3029 return; 3030 3031 /* No actual flushing is required for the GTT write domain. Writes 3032 * to it immediately go to main memory as far as we know, so there's 3033 * no chipset flush. It also doesn't land in render cache. 3034 * 3035 * However, we do have to enforce the order so that all writes through 3036 * the GTT land before any writes to the device, such as updates to 3037 * the GATT itself. 3038 */ 3039 wmb(); 3040 3041 old_write_domain = obj->base.write_domain; 3042 obj->base.write_domain = 0; 3043 3044 trace_i915_gem_object_change_domain(obj, 3045 obj->base.read_domains, 3046 old_write_domain); 3047 } 3048 3049 /** Flushes the CPU write domain for the object if it's dirty. */ 3050 static void 3051 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj) 3052 { 3053 uint32_t old_write_domain; 3054 3055 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) 3056 return; 3057 3058 i915_gem_clflush_object(obj); 3059 intel_gtt_chipset_flush(); 3060 old_write_domain = obj->base.write_domain; 3061 obj->base.write_domain = 0; 3062 3063 trace_i915_gem_object_change_domain(obj, 3064 obj->base.read_domains, 3065 old_write_domain); 3066 } 3067 3068 /** 3069 * Moves a single object to the GTT read, and possibly write domain. 3070 * 3071 * This function returns when the move is complete, including waiting on 3072 * flushes to occur. 3073 */ 3074 int 3075 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write) 3076 { 3077 drm_i915_private_t *dev_priv = obj->base.dev->dev_private; 3078 uint32_t old_write_domain, old_read_domains; 3079 int ret; 3080 3081 /* Not valid to be called on unbound objects. */ 3082 if (obj->gtt_space == NULL) 3083 return -EINVAL; 3084 3085 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT) 3086 return 0; 3087 3088 ret = i915_gem_object_wait_rendering(obj, !write); 3089 if (ret) 3090 return ret; 3091 3092 i915_gem_object_flush_cpu_write_domain(obj); 3093 3094 old_write_domain = obj->base.write_domain; 3095 old_read_domains = obj->base.read_domains; 3096 3097 /* It should now be out of any other write domains, and we can update 3098 * the domain values for our changes. 3099 */ 3100 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0); 3101 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3102 if (write) { 3103 obj->base.read_domains = I915_GEM_DOMAIN_GTT; 3104 obj->base.write_domain = I915_GEM_DOMAIN_GTT; 3105 obj->dirty = 1; 3106 } 3107 3108 trace_i915_gem_object_change_domain(obj, 3109 old_read_domains, 3110 old_write_domain); 3111 3112 /* And bump the LRU for this access */ 3113 if (i915_gem_object_is_inactive(obj)) 3114 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list); 3115 3116 return 0; 3117 } 3118 3119 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3120 enum i915_cache_level cache_level) 3121 { 3122 struct drm_device *dev = obj->base.dev; 3123 drm_i915_private_t *dev_priv = dev->dev_private; 3124 int ret; 3125 3126 if (obj->cache_level == cache_level) 3127 return 0; 3128 3129 if (obj->pin_count) { 3130 DRM_DEBUG("can not change the cache level of pinned objects\n"); 3131 return -EBUSY; 3132 } 3133 3134 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) { 3135 ret = i915_gem_object_unbind(obj); 3136 if (ret) 3137 return ret; 3138 } 3139 3140 if (obj->gtt_space) { 3141 ret = i915_gem_object_finish_gpu(obj); 3142 if (ret) 3143 return ret; 3144 3145 i915_gem_object_finish_gtt(obj); 3146 3147 /* Before SandyBridge, you could not use tiling or fence 3148 * registers with snooped memory, so relinquish any fences 3149 * currently pointing to our region in the aperture. 3150 */ 3151 if (INTEL_INFO(dev)->gen < 6) { 3152 ret = i915_gem_object_put_fence(obj); 3153 if (ret) 3154 return ret; 3155 } 3156 3157 if (obj->has_global_gtt_mapping) 3158 i915_gem_gtt_bind_object(obj, cache_level); 3159 if (obj->has_aliasing_ppgtt_mapping) 3160 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt, 3161 obj, cache_level); 3162 3163 obj->gtt_space->color = cache_level; 3164 } 3165 3166 if (cache_level == I915_CACHE_NONE) { 3167 u32 old_read_domains, old_write_domain; 3168 3169 /* If we're coming from LLC cached, then we haven't 3170 * actually been tracking whether the data is in the 3171 * CPU cache or not, since we only allow one bit set 3172 * in obj->write_domain and have been skipping the clflushes. 3173 * Just set it to the CPU cache for now. 3174 */ 3175 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU); 3176 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU); 3177 3178 old_read_domains = obj->base.read_domains; 3179 old_write_domain = obj->base.write_domain; 3180 3181 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3182 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3183 3184 trace_i915_gem_object_change_domain(obj, 3185 old_read_domains, 3186 old_write_domain); 3187 } 3188 3189 obj->cache_level = cache_level; 3190 i915_gem_verify_gtt(dev); 3191 return 0; 3192 } 3193 3194 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 3195 struct drm_file *file) 3196 { 3197 struct drm_i915_gem_caching *args = data; 3198 struct drm_i915_gem_object *obj; 3199 int ret; 3200 3201 ret = i915_mutex_lock_interruptible(dev); 3202 if (ret) 3203 return ret; 3204 3205 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3206 if (&obj->base == NULL) { 3207 ret = -ENOENT; 3208 goto unlock; 3209 } 3210 3211 args->caching = obj->cache_level != I915_CACHE_NONE; 3212 3213 drm_gem_object_unreference(&obj->base); 3214 unlock: 3215 mutex_unlock(&dev->struct_mutex); 3216 return ret; 3217 } 3218 3219 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 3220 struct drm_file *file) 3221 { 3222 struct drm_i915_gem_caching *args = data; 3223 struct drm_i915_gem_object *obj; 3224 enum i915_cache_level level; 3225 int ret; 3226 3227 switch (args->caching) { 3228 case I915_CACHING_NONE: 3229 level = I915_CACHE_NONE; 3230 break; 3231 case I915_CACHING_CACHED: 3232 level = I915_CACHE_LLC; 3233 break; 3234 default: 3235 return -EINVAL; 3236 } 3237 3238 ret = i915_mutex_lock_interruptible(dev); 3239 if (ret) 3240 return ret; 3241 3242 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3243 if (&obj->base == NULL) { 3244 ret = -ENOENT; 3245 goto unlock; 3246 } 3247 3248 ret = i915_gem_object_set_cache_level(obj, level); 3249 3250 drm_gem_object_unreference(&obj->base); 3251 unlock: 3252 mutex_unlock(&dev->struct_mutex); 3253 return ret; 3254 } 3255 3256 /* 3257 * Prepare buffer for display plane (scanout, cursors, etc). 3258 * Can be called from an uninterruptible phase (modesetting) and allows 3259 * any flushes to be pipelined (for pageflips). 3260 */ 3261 int 3262 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3263 u32 alignment, 3264 struct intel_ring_buffer *pipelined) 3265 { 3266 u32 old_read_domains, old_write_domain; 3267 int ret; 3268 3269 if (pipelined != obj->ring) { 3270 ret = i915_gem_object_sync(obj, pipelined); 3271 if (ret) 3272 return ret; 3273 } 3274 3275 /* The display engine is not coherent with the LLC cache on gen6. As 3276 * a result, we make sure that the pinning that is about to occur is 3277 * done with uncached PTEs. This is lowest common denominator for all 3278 * chipsets. 3279 * 3280 * However for gen6+, we could do better by using the GFDT bit instead 3281 * of uncaching, which would allow us to flush all the LLC-cached data 3282 * with that bit in the PTE to main memory with just one PIPE_CONTROL. 3283 */ 3284 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE); 3285 if (ret) 3286 return ret; 3287 3288 /* As the user may map the buffer once pinned in the display plane 3289 * (e.g. libkms for the bootup splash), we have to ensure that we 3290 * always use map_and_fenceable for all scanout buffers. 3291 */ 3292 ret = i915_gem_object_pin(obj, alignment, true, false); 3293 if (ret) 3294 return ret; 3295 3296 i915_gem_object_flush_cpu_write_domain(obj); 3297 3298 old_write_domain = obj->base.write_domain; 3299 old_read_domains = obj->base.read_domains; 3300 3301 /* It should now be out of any other write domains, and we can update 3302 * the domain values for our changes. 3303 */ 3304 obj->base.write_domain = 0; 3305 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3306 3307 trace_i915_gem_object_change_domain(obj, 3308 old_read_domains, 3309 old_write_domain); 3310 3311 return 0; 3312 } 3313 3314 int 3315 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj) 3316 { 3317 int ret; 3318 3319 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0) 3320 return 0; 3321 3322 ret = i915_gem_object_wait_rendering(obj, false); 3323 if (ret) 3324 return ret; 3325 3326 /* Ensure that we invalidate the GPU's caches and TLBs. */ 3327 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS; 3328 return 0; 3329 } 3330 3331 /** 3332 * Moves a single object to the CPU read, and possibly write domain. 3333 * 3334 * This function returns when the move is complete, including waiting on 3335 * flushes to occur. 3336 */ 3337 int 3338 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write) 3339 { 3340 uint32_t old_write_domain, old_read_domains; 3341 int ret; 3342 3343 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) 3344 return 0; 3345 3346 ret = i915_gem_object_wait_rendering(obj, !write); 3347 if (ret) 3348 return ret; 3349 3350 i915_gem_object_flush_gtt_write_domain(obj); 3351 3352 old_write_domain = obj->base.write_domain; 3353 old_read_domains = obj->base.read_domains; 3354 3355 /* Flush the CPU cache if it's still invalid. */ 3356 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) { 3357 i915_gem_clflush_object(obj); 3358 3359 obj->base.read_domains |= I915_GEM_DOMAIN_CPU; 3360 } 3361 3362 /* It should now be out of any other write domains, and we can update 3363 * the domain values for our changes. 3364 */ 3365 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0); 3366 3367 /* If we're writing through the CPU, then the GPU read domains will 3368 * need to be invalidated at next use. 3369 */ 3370 if (write) { 3371 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3372 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3373 } 3374 3375 trace_i915_gem_object_change_domain(obj, 3376 old_read_domains, 3377 old_write_domain); 3378 3379 return 0; 3380 } 3381 3382 /* Throttle our rendering by waiting until the ring has completed our requests 3383 * emitted over 20 msec ago. 3384 * 3385 * Note that if we were to use the current jiffies each time around the loop, 3386 * we wouldn't escape the function with any frames outstanding if the time to 3387 * render a frame was over 20ms. 3388 * 3389 * This should get us reasonable parallelism between CPU and GPU but also 3390 * relatively low latency when blocking on a particular request to finish. 3391 */ 3392 static int 3393 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file) 3394 { 3395 struct drm_i915_private *dev_priv = dev->dev_private; 3396 struct drm_i915_file_private *file_priv = file->driver_priv; 3397 unsigned long recent_enough = jiffies - msecs_to_jiffies(20); 3398 struct drm_i915_gem_request *request; 3399 struct intel_ring_buffer *ring = NULL; 3400 u32 seqno = 0; 3401 int ret; 3402 3403 if (atomic_read(&dev_priv->mm.wedged)) 3404 return -EIO; 3405 3406 spin_lock(&file_priv->mm.lock); 3407 list_for_each_entry(request, &file_priv->mm.request_list, client_list) { 3408 if (time_after_eq(request->emitted_jiffies, recent_enough)) 3409 break; 3410 3411 ring = request->ring; 3412 seqno = request->seqno; 3413 } 3414 spin_unlock(&file_priv->mm.lock); 3415 3416 if (seqno == 0) 3417 return 0; 3418 3419 ret = __wait_seqno(ring, seqno, true, NULL); 3420 if (ret == 0) 3421 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0); 3422 3423 return ret; 3424 } 3425 3426 int 3427 i915_gem_object_pin(struct drm_i915_gem_object *obj, 3428 uint32_t alignment, 3429 bool map_and_fenceable, 3430 bool nonblocking) 3431 { 3432 int ret; 3433 3434 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT)) 3435 return -EBUSY; 3436 3437 if (obj->gtt_space != NULL) { 3438 if ((alignment && obj->gtt_offset & (alignment - 1)) || 3439 (map_and_fenceable && !obj->map_and_fenceable)) { 3440 WARN(obj->pin_count, 3441 "bo is already pinned with incorrect alignment:" 3442 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d," 3443 " obj->map_and_fenceable=%d\n", 3444 obj->gtt_offset, alignment, 3445 map_and_fenceable, 3446 obj->map_and_fenceable); 3447 ret = i915_gem_object_unbind(obj); 3448 if (ret) 3449 return ret; 3450 } 3451 } 3452 3453 if (obj->gtt_space == NULL) { 3454 ret = i915_gem_object_bind_to_gtt(obj, alignment, 3455 map_and_fenceable, 3456 nonblocking); 3457 if (ret) 3458 return ret; 3459 } 3460 3461 if (!obj->has_global_gtt_mapping && map_and_fenceable) 3462 i915_gem_gtt_bind_object(obj, obj->cache_level); 3463 3464 obj->pin_count++; 3465 obj->pin_mappable |= map_and_fenceable; 3466 3467 return 0; 3468 } 3469 3470 void 3471 i915_gem_object_unpin(struct drm_i915_gem_object *obj) 3472 { 3473 BUG_ON(obj->pin_count == 0); 3474 BUG_ON(obj->gtt_space == NULL); 3475 3476 if (--obj->pin_count == 0) 3477 obj->pin_mappable = false; 3478 } 3479 3480 int 3481 i915_gem_pin_ioctl(struct drm_device *dev, void *data, 3482 struct drm_file *file) 3483 { 3484 struct drm_i915_gem_pin *args = data; 3485 struct drm_i915_gem_object *obj; 3486 int ret; 3487 3488 ret = i915_mutex_lock_interruptible(dev); 3489 if (ret) 3490 return ret; 3491 3492 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3493 if (&obj->base == NULL) { 3494 ret = -ENOENT; 3495 goto unlock; 3496 } 3497 3498 if (obj->madv != I915_MADV_WILLNEED) { 3499 DRM_ERROR("Attempting to pin a purgeable buffer\n"); 3500 ret = -EINVAL; 3501 goto out; 3502 } 3503 3504 if (obj->pin_filp != NULL && obj->pin_filp != file) { 3505 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n", 3506 args->handle); 3507 ret = -EINVAL; 3508 goto out; 3509 } 3510 3511 obj->user_pin_count++; 3512 obj->pin_filp = file; 3513 if (obj->user_pin_count == 1) { 3514 ret = i915_gem_object_pin(obj, args->alignment, true, false); 3515 if (ret) 3516 goto out; 3517 } 3518 3519 /* XXX - flush the CPU caches for pinned objects 3520 * as the X server doesn't manage domains yet 3521 */ 3522 i915_gem_object_flush_cpu_write_domain(obj); 3523 args->offset = obj->gtt_offset; 3524 out: 3525 drm_gem_object_unreference(&obj->base); 3526 unlock: 3527 mutex_unlock(&dev->struct_mutex); 3528 return ret; 3529 } 3530 3531 int 3532 i915_gem_unpin_ioctl(struct drm_device *dev, void *data, 3533 struct drm_file *file) 3534 { 3535 struct drm_i915_gem_pin *args = data; 3536 struct drm_i915_gem_object *obj; 3537 int ret; 3538 3539 ret = i915_mutex_lock_interruptible(dev); 3540 if (ret) 3541 return ret; 3542 3543 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3544 if (&obj->base == NULL) { 3545 ret = -ENOENT; 3546 goto unlock; 3547 } 3548 3549 if (obj->pin_filp != file) { 3550 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n", 3551 args->handle); 3552 ret = -EINVAL; 3553 goto out; 3554 } 3555 obj->user_pin_count--; 3556 if (obj->user_pin_count == 0) { 3557 obj->pin_filp = NULL; 3558 i915_gem_object_unpin(obj); 3559 } 3560 3561 out: 3562 drm_gem_object_unreference(&obj->base); 3563 unlock: 3564 mutex_unlock(&dev->struct_mutex); 3565 return ret; 3566 } 3567 3568 int 3569 i915_gem_busy_ioctl(struct drm_device *dev, void *data, 3570 struct drm_file *file) 3571 { 3572 struct drm_i915_gem_busy *args = data; 3573 struct drm_i915_gem_object *obj; 3574 int ret; 3575 3576 ret = i915_mutex_lock_interruptible(dev); 3577 if (ret) 3578 return ret; 3579 3580 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3581 if (&obj->base == NULL) { 3582 ret = -ENOENT; 3583 goto unlock; 3584 } 3585 3586 /* Count all active objects as busy, even if they are currently not used 3587 * by the gpu. Users of this interface expect objects to eventually 3588 * become non-busy without any further actions, therefore emit any 3589 * necessary flushes here. 3590 */ 3591 ret = i915_gem_object_flush_active(obj); 3592 3593 args->busy = obj->active; 3594 if (obj->ring) { 3595 BUILD_BUG_ON(I915_NUM_RINGS > 16); 3596 args->busy |= intel_ring_flag(obj->ring) << 16; 3597 } 3598 3599 drm_gem_object_unreference(&obj->base); 3600 unlock: 3601 mutex_unlock(&dev->struct_mutex); 3602 return ret; 3603 } 3604 3605 int 3606 i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 3607 struct drm_file *file_priv) 3608 { 3609 return i915_gem_ring_throttle(dev, file_priv); 3610 } 3611 3612 int 3613 i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 3614 struct drm_file *file_priv) 3615 { 3616 struct drm_i915_gem_madvise *args = data; 3617 struct drm_i915_gem_object *obj; 3618 int ret; 3619 3620 switch (args->madv) { 3621 case I915_MADV_DONTNEED: 3622 case I915_MADV_WILLNEED: 3623 break; 3624 default: 3625 return -EINVAL; 3626 } 3627 3628 ret = i915_mutex_lock_interruptible(dev); 3629 if (ret) 3630 return ret; 3631 3632 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle)); 3633 if (&obj->base == NULL) { 3634 ret = -ENOENT; 3635 goto unlock; 3636 } 3637 3638 if (obj->pin_count) { 3639 ret = -EINVAL; 3640 goto out; 3641 } 3642 3643 if (obj->madv != __I915_MADV_PURGED) 3644 obj->madv = args->madv; 3645 3646 /* if the object is no longer attached, discard its backing storage */ 3647 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL) 3648 i915_gem_object_truncate(obj); 3649 3650 args->retained = obj->madv != __I915_MADV_PURGED; 3651 3652 out: 3653 drm_gem_object_unreference(&obj->base); 3654 unlock: 3655 mutex_unlock(&dev->struct_mutex); 3656 return ret; 3657 } 3658 3659 void i915_gem_object_init(struct drm_i915_gem_object *obj, 3660 const struct drm_i915_gem_object_ops *ops) 3661 { 3662 INIT_LIST_HEAD(&obj->mm_list); 3663 INIT_LIST_HEAD(&obj->gtt_list); 3664 INIT_LIST_HEAD(&obj->ring_list); 3665 INIT_LIST_HEAD(&obj->exec_list); 3666 3667 obj->ops = ops; 3668 3669 obj->fence_reg = I915_FENCE_REG_NONE; 3670 obj->madv = I915_MADV_WILLNEED; 3671 /* Avoid an unnecessary call to unbind on the first bind. */ 3672 obj->map_and_fenceable = true; 3673 3674 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size); 3675 } 3676 3677 static const struct drm_i915_gem_object_ops i915_gem_object_ops = { 3678 .get_pages = i915_gem_object_get_pages_gtt, 3679 .put_pages = i915_gem_object_put_pages_gtt, 3680 }; 3681 3682 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev, 3683 size_t size) 3684 { 3685 struct drm_i915_gem_object *obj; 3686 struct address_space *mapping; 3687 u32 mask; 3688 3689 obj = kzalloc(sizeof(*obj), GFP_KERNEL); 3690 if (obj == NULL) 3691 return NULL; 3692 3693 if (drm_gem_object_init(dev, &obj->base, size) != 0) { 3694 kfree(obj); 3695 return NULL; 3696 } 3697 3698 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; 3699 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) { 3700 /* 965gm cannot relocate objects above 4GiB. */ 3701 mask &= ~__GFP_HIGHMEM; 3702 mask |= __GFP_DMA32; 3703 } 3704 3705 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping; 3706 mapping_set_gfp_mask(mapping, mask); 3707 3708 i915_gem_object_init(obj, &i915_gem_object_ops); 3709 3710 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3711 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3712 3713 if (HAS_LLC(dev)) { 3714 /* On some devices, we can have the GPU use the LLC (the CPU 3715 * cache) for about a 10% performance improvement 3716 * compared to uncached. Graphics requests other than 3717 * display scanout are coherent with the CPU in 3718 * accessing this cache. This means in this mode we 3719 * don't need to clflush on the CPU side, and on the 3720 * GPU side we only need to flush internal caches to 3721 * get data visible to the CPU. 3722 * 3723 * However, we maintain the display planes as UC, and so 3724 * need to rebind when first used as such. 3725 */ 3726 obj->cache_level = I915_CACHE_LLC; 3727 } else 3728 obj->cache_level = I915_CACHE_NONE; 3729 3730 return obj; 3731 } 3732 3733 int i915_gem_init_object(struct drm_gem_object *obj) 3734 { 3735 BUG(); 3736 3737 return 0; 3738 } 3739 3740 void i915_gem_free_object(struct drm_gem_object *gem_obj) 3741 { 3742 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); 3743 struct drm_device *dev = obj->base.dev; 3744 drm_i915_private_t *dev_priv = dev->dev_private; 3745 3746 trace_i915_gem_object_destroy(obj); 3747 3748 if (obj->phys_obj) 3749 i915_gem_detach_phys_object(dev, obj); 3750 3751 obj->pin_count = 0; 3752 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) { 3753 bool was_interruptible; 3754 3755 was_interruptible = dev_priv->mm.interruptible; 3756 dev_priv->mm.interruptible = false; 3757 3758 WARN_ON(i915_gem_object_unbind(obj)); 3759 3760 dev_priv->mm.interruptible = was_interruptible; 3761 } 3762 3763 obj->pages_pin_count = 0; 3764 i915_gem_object_put_pages(obj); 3765 i915_gem_object_free_mmap_offset(obj); 3766 3767 BUG_ON(obj->pages); 3768 3769 if (obj->base.import_attach) 3770 drm_prime_gem_destroy(&obj->base, NULL); 3771 3772 drm_gem_object_release(&obj->base); 3773 i915_gem_info_remove_obj(dev_priv, obj->base.size); 3774 3775 kfree(obj->bit_17); 3776 kfree(obj); 3777 } 3778 3779 int 3780 i915_gem_idle(struct drm_device *dev) 3781 { 3782 drm_i915_private_t *dev_priv = dev->dev_private; 3783 int ret; 3784 3785 mutex_lock(&dev->struct_mutex); 3786 3787 if (dev_priv->mm.suspended) { 3788 mutex_unlock(&dev->struct_mutex); 3789 return 0; 3790 } 3791 3792 ret = i915_gpu_idle(dev); 3793 if (ret) { 3794 mutex_unlock(&dev->struct_mutex); 3795 return ret; 3796 } 3797 i915_gem_retire_requests(dev); 3798 3799 /* Under UMS, be paranoid and evict. */ 3800 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 3801 i915_gem_evict_everything(dev); 3802 3803 i915_gem_reset_fences(dev); 3804 3805 /* Hack! Don't let anybody do execbuf while we don't control the chip. 3806 * We need to replace this with a semaphore, or something. 3807 * And not confound mm.suspended! 3808 */ 3809 dev_priv->mm.suspended = 1; 3810 del_timer_sync(&dev_priv->hangcheck_timer); 3811 3812 i915_kernel_lost_context(dev); 3813 i915_gem_cleanup_ringbuffer(dev); 3814 3815 mutex_unlock(&dev->struct_mutex); 3816 3817 /* Cancel the retire work handler, which should be idle now. */ 3818 cancel_delayed_work_sync(&dev_priv->mm.retire_work); 3819 3820 return 0; 3821 } 3822 3823 void i915_gem_l3_remap(struct drm_device *dev) 3824 { 3825 drm_i915_private_t *dev_priv = dev->dev_private; 3826 u32 misccpctl; 3827 int i; 3828 3829 if (!IS_IVYBRIDGE(dev)) 3830 return; 3831 3832 if (!dev_priv->mm.l3_remap_info) 3833 return; 3834 3835 misccpctl = I915_READ(GEN7_MISCCPCTL); 3836 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE); 3837 POSTING_READ(GEN7_MISCCPCTL); 3838 3839 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) { 3840 u32 remap = I915_READ(GEN7_L3LOG_BASE + i); 3841 if (remap && remap != dev_priv->mm.l3_remap_info[i/4]) 3842 DRM_DEBUG("0x%x was already programmed to %x\n", 3843 GEN7_L3LOG_BASE + i, remap); 3844 if (remap && !dev_priv->mm.l3_remap_info[i/4]) 3845 DRM_DEBUG_DRIVER("Clearing remapped register\n"); 3846 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]); 3847 } 3848 3849 /* Make sure all the writes land before disabling dop clock gating */ 3850 POSTING_READ(GEN7_L3LOG_BASE); 3851 3852 I915_WRITE(GEN7_MISCCPCTL, misccpctl); 3853 } 3854 3855 void i915_gem_init_swizzling(struct drm_device *dev) 3856 { 3857 drm_i915_private_t *dev_priv = dev->dev_private; 3858 3859 if (INTEL_INFO(dev)->gen < 5 || 3860 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) 3861 return; 3862 3863 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | 3864 DISP_TILE_SURFACE_SWIZZLING); 3865 3866 if (IS_GEN5(dev)) 3867 return; 3868 3869 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL); 3870 if (IS_GEN6(dev)) 3871 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); 3872 else 3873 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); 3874 } 3875 3876 void i915_gem_init_ppgtt(struct drm_device *dev) 3877 { 3878 drm_i915_private_t *dev_priv = dev->dev_private; 3879 uint32_t pd_offset; 3880 struct intel_ring_buffer *ring; 3881 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt; 3882 uint32_t __iomem *pd_addr; 3883 uint32_t pd_entry; 3884 int i; 3885 3886 if (!dev_priv->mm.aliasing_ppgtt) 3887 return; 3888 3889 3890 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t); 3891 for (i = 0; i < ppgtt->num_pd_entries; i++) { 3892 dma_addr_t pt_addr; 3893 3894 if (dev_priv->mm.gtt->needs_dmar) 3895 pt_addr = ppgtt->pt_dma_addr[i]; 3896 else 3897 pt_addr = page_to_phys(ppgtt->pt_pages[i]); 3898 3899 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr); 3900 pd_entry |= GEN6_PDE_VALID; 3901 3902 writel(pd_entry, pd_addr + i); 3903 } 3904 readl(pd_addr); 3905 3906 pd_offset = ppgtt->pd_offset; 3907 pd_offset /= 64; /* in cachelines, */ 3908 pd_offset <<= 16; 3909 3910 if (INTEL_INFO(dev)->gen == 6) { 3911 uint32_t ecochk, gab_ctl, ecobits; 3912 3913 ecobits = I915_READ(GAC_ECO_BITS); 3914 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B); 3915 3916 gab_ctl = I915_READ(GAB_CTL); 3917 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT); 3918 3919 ecochk = I915_READ(GAM_ECOCHK); 3920 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | 3921 ECOCHK_PPGTT_CACHE64B); 3922 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); 3923 } else if (INTEL_INFO(dev)->gen >= 7) { 3924 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B); 3925 /* GFX_MODE is per-ring on gen7+ */ 3926 } 3927 3928 for_each_ring(ring, dev_priv, i) { 3929 if (INTEL_INFO(dev)->gen >= 7) 3930 I915_WRITE(RING_MODE_GEN7(ring), 3931 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); 3932 3933 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G); 3934 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset); 3935 } 3936 } 3937 3938 static bool 3939 intel_enable_blt(struct drm_device *dev) 3940 { 3941 if (!HAS_BLT(dev)) 3942 return false; 3943 3944 /* The blitter was dysfunctional on early prototypes */ 3945 if (IS_GEN6(dev) && dev->pdev->revision < 8) { 3946 DRM_INFO("BLT not supported on this pre-production hardware;" 3947 " graphics performance will be degraded.\n"); 3948 return false; 3949 } 3950 3951 return true; 3952 } 3953 3954 int 3955 i915_gem_init_hw(struct drm_device *dev) 3956 { 3957 drm_i915_private_t *dev_priv = dev->dev_private; 3958 int ret; 3959 3960 if (!intel_enable_gtt()) 3961 return -EIO; 3962 3963 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1)) 3964 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000); 3965 3966 i915_gem_l3_remap(dev); 3967 3968 i915_gem_init_swizzling(dev); 3969 3970 ret = intel_init_render_ring_buffer(dev); 3971 if (ret) 3972 return ret; 3973 3974 if (HAS_BSD(dev)) { 3975 ret = intel_init_bsd_ring_buffer(dev); 3976 if (ret) 3977 goto cleanup_render_ring; 3978 } 3979 3980 if (intel_enable_blt(dev)) { 3981 ret = intel_init_blt_ring_buffer(dev); 3982 if (ret) 3983 goto cleanup_bsd_ring; 3984 } 3985 3986 dev_priv->next_seqno = 1; 3987 3988 /* 3989 * XXX: There was some w/a described somewhere suggesting loading 3990 * contexts before PPGTT. 3991 */ 3992 i915_gem_context_init(dev); 3993 i915_gem_init_ppgtt(dev); 3994 3995 return 0; 3996 3997 cleanup_bsd_ring: 3998 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]); 3999 cleanup_render_ring: 4000 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]); 4001 return ret; 4002 } 4003 4004 static bool 4005 intel_enable_ppgtt(struct drm_device *dev) 4006 { 4007 if (i915_enable_ppgtt >= 0) 4008 return i915_enable_ppgtt; 4009 4010 #ifdef CONFIG_INTEL_IOMMU 4011 /* Disable ppgtt on SNB if VT-d is on. */ 4012 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) 4013 return false; 4014 #endif 4015 4016 return true; 4017 } 4018 4019 int i915_gem_init(struct drm_device *dev) 4020 { 4021 struct drm_i915_private *dev_priv = dev->dev_private; 4022 unsigned long gtt_size, mappable_size; 4023 int ret; 4024 4025 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT; 4026 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT; 4027 4028 mutex_lock(&dev->struct_mutex); 4029 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) { 4030 /* PPGTT pdes are stolen from global gtt ptes, so shrink the 4031 * aperture accordingly when using aliasing ppgtt. */ 4032 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE; 4033 4034 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size); 4035 4036 ret = i915_gem_init_aliasing_ppgtt(dev); 4037 if (ret) { 4038 mutex_unlock(&dev->struct_mutex); 4039 return ret; 4040 } 4041 } else { 4042 /* Let GEM Manage all of the aperture. 4043 * 4044 * However, leave one page at the end still bound to the scratch 4045 * page. There are a number of places where the hardware 4046 * apparently prefetches past the end of the object, and we've 4047 * seen multiple hangs with the GPU head pointer stuck in a 4048 * batchbuffer bound at the last page of the aperture. One page 4049 * should be enough to keep any prefetching inside of the 4050 * aperture. 4051 */ 4052 i915_gem_init_global_gtt(dev, 0, mappable_size, 4053 gtt_size); 4054 } 4055 4056 ret = i915_gem_init_hw(dev); 4057 mutex_unlock(&dev->struct_mutex); 4058 if (ret) { 4059 i915_gem_cleanup_aliasing_ppgtt(dev); 4060 return ret; 4061 } 4062 4063 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */ 4064 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4065 dev_priv->dri1.allow_batchbuffer = 1; 4066 return 0; 4067 } 4068 4069 void 4070 i915_gem_cleanup_ringbuffer(struct drm_device *dev) 4071 { 4072 drm_i915_private_t *dev_priv = dev->dev_private; 4073 struct intel_ring_buffer *ring; 4074 int i; 4075 4076 for_each_ring(ring, dev_priv, i) 4077 intel_cleanup_ring_buffer(ring); 4078 } 4079 4080 int 4081 i915_gem_entervt_ioctl(struct drm_device *dev, void *data, 4082 struct drm_file *file_priv) 4083 { 4084 drm_i915_private_t *dev_priv = dev->dev_private; 4085 int ret; 4086 4087 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4088 return 0; 4089 4090 if (atomic_read(&dev_priv->mm.wedged)) { 4091 DRM_ERROR("Reenabling wedged hardware, good luck\n"); 4092 atomic_set(&dev_priv->mm.wedged, 0); 4093 } 4094 4095 mutex_lock(&dev->struct_mutex); 4096 dev_priv->mm.suspended = 0; 4097 4098 ret = i915_gem_init_hw(dev); 4099 if (ret != 0) { 4100 mutex_unlock(&dev->struct_mutex); 4101 return ret; 4102 } 4103 4104 BUG_ON(!list_empty(&dev_priv->mm.active_list)); 4105 mutex_unlock(&dev->struct_mutex); 4106 4107 ret = drm_irq_install(dev); 4108 if (ret) 4109 goto cleanup_ringbuffer; 4110 4111 return 0; 4112 4113 cleanup_ringbuffer: 4114 mutex_lock(&dev->struct_mutex); 4115 i915_gem_cleanup_ringbuffer(dev); 4116 dev_priv->mm.suspended = 1; 4117 mutex_unlock(&dev->struct_mutex); 4118 4119 return ret; 4120 } 4121 4122 int 4123 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data, 4124 struct drm_file *file_priv) 4125 { 4126 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4127 return 0; 4128 4129 drm_irq_uninstall(dev); 4130 return i915_gem_idle(dev); 4131 } 4132 4133 void 4134 i915_gem_lastclose(struct drm_device *dev) 4135 { 4136 int ret; 4137 4138 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4139 return; 4140 4141 ret = i915_gem_idle(dev); 4142 if (ret) 4143 DRM_ERROR("failed to idle hardware: %d\n", ret); 4144 } 4145 4146 static void 4147 init_ring_lists(struct intel_ring_buffer *ring) 4148 { 4149 INIT_LIST_HEAD(&ring->active_list); 4150 INIT_LIST_HEAD(&ring->request_list); 4151 } 4152 4153 void 4154 i915_gem_load(struct drm_device *dev) 4155 { 4156 int i; 4157 drm_i915_private_t *dev_priv = dev->dev_private; 4158 4159 INIT_LIST_HEAD(&dev_priv->mm.active_list); 4160 INIT_LIST_HEAD(&dev_priv->mm.inactive_list); 4161 INIT_LIST_HEAD(&dev_priv->mm.unbound_list); 4162 INIT_LIST_HEAD(&dev_priv->mm.bound_list); 4163 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 4164 for (i = 0; i < I915_NUM_RINGS; i++) 4165 init_ring_lists(&dev_priv->ring[i]); 4166 for (i = 0; i < I915_MAX_NUM_FENCES; i++) 4167 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list); 4168 INIT_DELAYED_WORK(&dev_priv->mm.retire_work, 4169 i915_gem_retire_work_handler); 4170 init_completion(&dev_priv->error_completion); 4171 4172 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */ 4173 if (IS_GEN3(dev)) { 4174 I915_WRITE(MI_ARB_STATE, 4175 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE)); 4176 } 4177 4178 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL; 4179 4180 /* Old X drivers will take 0-2 for front, back, depth buffers */ 4181 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4182 dev_priv->fence_reg_start = 3; 4183 4184 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) 4185 dev_priv->num_fence_regs = 16; 4186 else 4187 dev_priv->num_fence_regs = 8; 4188 4189 /* Initialize fence registers to zero */ 4190 i915_gem_reset_fences(dev); 4191 4192 i915_gem_detect_bit_6_swizzle(dev); 4193 init_waitqueue_head(&dev_priv->pending_flip_queue); 4194 4195 dev_priv->mm.interruptible = true; 4196 4197 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink; 4198 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS; 4199 register_shrinker(&dev_priv->mm.inactive_shrinker); 4200 } 4201 4202 /* 4203 * Create a physically contiguous memory object for this object 4204 * e.g. for cursor + overlay regs 4205 */ 4206 static int i915_gem_init_phys_object(struct drm_device *dev, 4207 int id, int size, int align) 4208 { 4209 drm_i915_private_t *dev_priv = dev->dev_private; 4210 struct drm_i915_gem_phys_object *phys_obj; 4211 int ret; 4212 4213 if (dev_priv->mm.phys_objs[id - 1] || !size) 4214 return 0; 4215 4216 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL); 4217 if (!phys_obj) 4218 return -ENOMEM; 4219 4220 phys_obj->id = id; 4221 4222 phys_obj->handle = drm_pci_alloc(dev, size, align); 4223 if (!phys_obj->handle) { 4224 ret = -ENOMEM; 4225 goto kfree_obj; 4226 } 4227 #ifdef CONFIG_X86 4228 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE); 4229 #endif 4230 4231 dev_priv->mm.phys_objs[id - 1] = phys_obj; 4232 4233 return 0; 4234 kfree_obj: 4235 kfree(phys_obj); 4236 return ret; 4237 } 4238 4239 static void i915_gem_free_phys_object(struct drm_device *dev, int id) 4240 { 4241 drm_i915_private_t *dev_priv = dev->dev_private; 4242 struct drm_i915_gem_phys_object *phys_obj; 4243 4244 if (!dev_priv->mm.phys_objs[id - 1]) 4245 return; 4246 4247 phys_obj = dev_priv->mm.phys_objs[id - 1]; 4248 if (phys_obj->cur_obj) { 4249 i915_gem_detach_phys_object(dev, phys_obj->cur_obj); 4250 } 4251 4252 #ifdef CONFIG_X86 4253 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE); 4254 #endif 4255 drm_pci_free(dev, phys_obj->handle); 4256 kfree(phys_obj); 4257 dev_priv->mm.phys_objs[id - 1] = NULL; 4258 } 4259 4260 void i915_gem_free_all_phys_object(struct drm_device *dev) 4261 { 4262 int i; 4263 4264 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++) 4265 i915_gem_free_phys_object(dev, i); 4266 } 4267 4268 void i915_gem_detach_phys_object(struct drm_device *dev, 4269 struct drm_i915_gem_object *obj) 4270 { 4271 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping; 4272 char *vaddr; 4273 int i; 4274 int page_count; 4275 4276 if (!obj->phys_obj) 4277 return; 4278 vaddr = obj->phys_obj->handle->vaddr; 4279 4280 page_count = obj->base.size / PAGE_SIZE; 4281 for (i = 0; i < page_count; i++) { 4282 struct page *page = shmem_read_mapping_page(mapping, i); 4283 if (!IS_ERR(page)) { 4284 char *dst = kmap_atomic(page); 4285 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE); 4286 kunmap_atomic(dst); 4287 4288 drm_clflush_pages(&page, 1); 4289 4290 set_page_dirty(page); 4291 mark_page_accessed(page); 4292 page_cache_release(page); 4293 } 4294 } 4295 intel_gtt_chipset_flush(); 4296 4297 obj->phys_obj->cur_obj = NULL; 4298 obj->phys_obj = NULL; 4299 } 4300 4301 int 4302 i915_gem_attach_phys_object(struct drm_device *dev, 4303 struct drm_i915_gem_object *obj, 4304 int id, 4305 int align) 4306 { 4307 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping; 4308 drm_i915_private_t *dev_priv = dev->dev_private; 4309 int ret = 0; 4310 int page_count; 4311 int i; 4312 4313 if (id > I915_MAX_PHYS_OBJECT) 4314 return -EINVAL; 4315 4316 if (obj->phys_obj) { 4317 if (obj->phys_obj->id == id) 4318 return 0; 4319 i915_gem_detach_phys_object(dev, obj); 4320 } 4321 4322 /* create a new object */ 4323 if (!dev_priv->mm.phys_objs[id - 1]) { 4324 ret = i915_gem_init_phys_object(dev, id, 4325 obj->base.size, align); 4326 if (ret) { 4327 DRM_ERROR("failed to init phys object %d size: %zu\n", 4328 id, obj->base.size); 4329 return ret; 4330 } 4331 } 4332 4333 /* bind to the object */ 4334 obj->phys_obj = dev_priv->mm.phys_objs[id - 1]; 4335 obj->phys_obj->cur_obj = obj; 4336 4337 page_count = obj->base.size / PAGE_SIZE; 4338 4339 for (i = 0; i < page_count; i++) { 4340 struct page *page; 4341 char *dst, *src; 4342 4343 page = shmem_read_mapping_page(mapping, i); 4344 if (IS_ERR(page)) 4345 return PTR_ERR(page); 4346 4347 src = kmap_atomic(page); 4348 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE); 4349 memcpy(dst, src, PAGE_SIZE); 4350 kunmap_atomic(src); 4351 4352 mark_page_accessed(page); 4353 page_cache_release(page); 4354 } 4355 4356 return 0; 4357 } 4358 4359 static int 4360 i915_gem_phys_pwrite(struct drm_device *dev, 4361 struct drm_i915_gem_object *obj, 4362 struct drm_i915_gem_pwrite *args, 4363 struct drm_file *file_priv) 4364 { 4365 void *vaddr = obj->phys_obj->handle->vaddr + args->offset; 4366 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr; 4367 4368 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) { 4369 unsigned long unwritten; 4370 4371 /* The physical object once assigned is fixed for the lifetime 4372 * of the obj, so we can safely drop the lock and continue 4373 * to access vaddr. 4374 */ 4375 mutex_unlock(&dev->struct_mutex); 4376 unwritten = copy_from_user(vaddr, user_data, args->size); 4377 mutex_lock(&dev->struct_mutex); 4378 if (unwritten) 4379 return -EFAULT; 4380 } 4381 4382 intel_gtt_chipset_flush(); 4383 return 0; 4384 } 4385 4386 void i915_gem_release(struct drm_device *dev, struct drm_file *file) 4387 { 4388 struct drm_i915_file_private *file_priv = file->driver_priv; 4389 4390 /* Clean up our request list when the client is going away, so that 4391 * later retire_requests won't dereference our soon-to-be-gone 4392 * file_priv. 4393 */ 4394 spin_lock(&file_priv->mm.lock); 4395 while (!list_empty(&file_priv->mm.request_list)) { 4396 struct drm_i915_gem_request *request; 4397 4398 request = list_first_entry(&file_priv->mm.request_list, 4399 struct drm_i915_gem_request, 4400 client_list); 4401 list_del(&request->client_list); 4402 request->file_priv = NULL; 4403 } 4404 spin_unlock(&file_priv->mm.lock); 4405 } 4406 4407 static int 4408 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc) 4409 { 4410 struct drm_i915_private *dev_priv = 4411 container_of(shrinker, 4412 struct drm_i915_private, 4413 mm.inactive_shrinker); 4414 struct drm_device *dev = dev_priv->dev; 4415 struct drm_i915_gem_object *obj; 4416 int nr_to_scan = sc->nr_to_scan; 4417 int cnt; 4418 4419 if (!mutex_trylock(&dev->struct_mutex)) 4420 return 0; 4421 4422 if (nr_to_scan) { 4423 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan); 4424 if (nr_to_scan > 0) 4425 i915_gem_shrink_all(dev_priv); 4426 } 4427 4428 cnt = 0; 4429 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list) 4430 if (obj->pages_pin_count == 0) 4431 cnt += obj->base.size >> PAGE_SHIFT; 4432 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list) 4433 if (obj->pin_count == 0 && obj->pages_pin_count == 0) 4434 cnt += obj->base.size >> PAGE_SHIFT; 4435 4436 mutex_unlock(&dev->struct_mutex); 4437 return cnt; 4438 } 4439