1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*- 2 */ 3 /* 4 * 5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. 6 * All Rights Reserved. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a 9 * copy of this software and associated documentation files (the 10 * "Software"), to deal in the Software without restriction, including 11 * without limitation the rights to use, copy, modify, merge, publish, 12 * distribute, sub license, and/or sell copies of the Software, and to 13 * permit persons to whom the Software is furnished to do so, subject to 14 * the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the 17 * next paragraph) shall be included in all copies or substantial portions 18 * of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 27 * 28 */ 29 30 #ifndef _I915_DRV_H_ 31 #define _I915_DRV_H_ 32 33 #include <uapi/drm/i915_drm.h> 34 #include <uapi/drm/drm_fourcc.h> 35 36 #include <linux/io-mapping.h> 37 #include <linux/i2c.h> 38 #include <linux/i2c-algo-bit.h> 39 #include <linux/backlight.h> 40 #include <linux/hashtable.h> 41 #include <linux/intel-iommu.h> 42 #include <linux/kref.h> 43 #include <linux/pm_qos.h> 44 #include <linux/reservation.h> 45 #include <linux/shmem_fs.h> 46 47 #include <drm/drmP.h> 48 #include <drm/intel-gtt.h> 49 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */ 50 #include <drm/drm_gem.h> 51 #include <drm/drm_auth.h> 52 #include <drm/drm_cache.h> 53 54 #include "i915_params.h" 55 #include "i915_reg.h" 56 #include "i915_utils.h" 57 58 #include "intel_bios.h" 59 #include "intel_dpll_mgr.h" 60 #include "intel_uc.h" 61 #include "intel_lrc.h" 62 #include "intel_ringbuffer.h" 63 64 #include "i915_gem.h" 65 #include "i915_gem_context.h" 66 #include "i915_gem_fence_reg.h" 67 #include "i915_gem_object.h" 68 #include "i915_gem_gtt.h" 69 #include "i915_gem_render_state.h" 70 #include "i915_gem_request.h" 71 #include "i915_gem_timeline.h" 72 73 #include "i915_vma.h" 74 75 #include "intel_gvt.h" 76 77 /* General customization: 78 */ 79 80 #define DRIVER_NAME "i915" 81 #define DRIVER_DESC "Intel Graphics" 82 #define DRIVER_DATE "20170123" 83 #define DRIVER_TIMESTAMP 1485156432 84 85 #undef WARN_ON 86 /* Many gcc seem to no see through this and fall over :( */ 87 #if 0 88 #define WARN_ON(x) ({ \ 89 bool __i915_warn_cond = (x); \ 90 if (__builtin_constant_p(__i915_warn_cond)) \ 91 BUILD_BUG_ON(__i915_warn_cond); \ 92 WARN(__i915_warn_cond, "WARN_ON(" #x ")"); }) 93 #else 94 #define WARN_ON(x) WARN((x), "%s", "WARN_ON(" __stringify(x) ")") 95 #endif 96 97 #undef WARN_ON_ONCE 98 #define WARN_ON_ONCE(x) WARN_ONCE((x), "%s", "WARN_ON_ONCE(" __stringify(x) ")") 99 100 #define MISSING_CASE(x) WARN(1, "Missing switch case (%lu) in %s\n", \ 101 (long) (x), __func__); 102 103 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and 104 * WARN_ON()) for hw state sanity checks to check for unexpected conditions 105 * which may not necessarily be a user visible problem. This will either 106 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to 107 * enable distros and users to tailor their preferred amount of i915 abrt 108 * spam. 109 */ 110 #define I915_STATE_WARN(condition, format...) ({ \ 111 int __ret_warn_on = !!(condition); \ 112 if (unlikely(__ret_warn_on)) \ 113 if (!WARN(i915.verbose_state_checks, format)) \ 114 DRM_ERROR(format); \ 115 unlikely(__ret_warn_on); \ 116 }) 117 118 #define I915_STATE_WARN_ON(x) \ 119 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")") 120 121 bool __i915_inject_load_failure(const char *func, int line); 122 #define i915_inject_load_failure() \ 123 __i915_inject_load_failure(__func__, __LINE__) 124 125 typedef struct { 126 uint32_t val; 127 } uint_fixed_16_16_t; 128 129 #define FP_16_16_MAX ({ \ 130 uint_fixed_16_16_t fp; \ 131 fp.val = UINT_MAX; \ 132 fp; \ 133 }) 134 135 static inline uint_fixed_16_16_t u32_to_fixed_16_16(uint32_t val) 136 { 137 uint_fixed_16_16_t fp; 138 139 WARN_ON(val >> 16); 140 141 fp.val = val << 16; 142 return fp; 143 } 144 145 static inline uint32_t fixed_16_16_to_u32_round_up(uint_fixed_16_16_t fp) 146 { 147 return DIV_ROUND_UP(fp.val, 1 << 16); 148 } 149 150 static inline uint32_t fixed_16_16_to_u32(uint_fixed_16_16_t fp) 151 { 152 return fp.val >> 16; 153 } 154 155 static inline uint_fixed_16_16_t min_fixed_16_16(uint_fixed_16_16_t min1, 156 uint_fixed_16_16_t min2) 157 { 158 uint_fixed_16_16_t min; 159 160 min.val = min(min1.val, min2.val); 161 return min; 162 } 163 164 static inline uint_fixed_16_16_t max_fixed_16_16(uint_fixed_16_16_t max1, 165 uint_fixed_16_16_t max2) 166 { 167 uint_fixed_16_16_t max; 168 169 max.val = max(max1.val, max2.val); 170 return max; 171 } 172 173 static inline uint_fixed_16_16_t fixed_16_16_div_round_up(uint32_t val, 174 uint32_t d) 175 { 176 uint_fixed_16_16_t fp, res; 177 178 fp = u32_to_fixed_16_16(val); 179 res.val = DIV_ROUND_UP(fp.val, d); 180 return res; 181 } 182 183 static inline uint_fixed_16_16_t fixed_16_16_div_round_up_u64(uint32_t val, 184 uint32_t d) 185 { 186 uint_fixed_16_16_t res; 187 uint64_t interm_val; 188 189 interm_val = (uint64_t)val << 16; 190 interm_val = DIV_ROUND_UP_ULL(interm_val, d); 191 WARN_ON(interm_val >> 32); 192 res.val = (uint32_t) interm_val; 193 194 return res; 195 } 196 197 static inline uint_fixed_16_16_t mul_u32_fixed_16_16(uint32_t val, 198 uint_fixed_16_16_t mul) 199 { 200 uint64_t intermediate_val; 201 uint_fixed_16_16_t fp; 202 203 intermediate_val = (uint64_t) val * mul.val; 204 WARN_ON(intermediate_val >> 32); 205 fp.val = (uint32_t) intermediate_val; 206 return fp; 207 } 208 209 static inline const char *yesno(bool v) 210 { 211 return v ? "yes" : "no"; 212 } 213 214 static inline const char *onoff(bool v) 215 { 216 return v ? "on" : "off"; 217 } 218 219 static inline const char *enableddisabled(bool v) 220 { 221 return v ? "enabled" : "disabled"; 222 } 223 224 enum pipe { 225 INVALID_PIPE = -1, 226 PIPE_A = 0, 227 PIPE_B, 228 PIPE_C, 229 _PIPE_EDP, 230 I915_MAX_PIPES = _PIPE_EDP 231 }; 232 #define pipe_name(p) ((p) + 'A') 233 234 enum transcoder { 235 TRANSCODER_A = 0, 236 TRANSCODER_B, 237 TRANSCODER_C, 238 TRANSCODER_EDP, 239 TRANSCODER_DSI_A, 240 TRANSCODER_DSI_C, 241 I915_MAX_TRANSCODERS 242 }; 243 244 static inline const char *transcoder_name(enum transcoder transcoder) 245 { 246 switch (transcoder) { 247 case TRANSCODER_A: 248 return "A"; 249 case TRANSCODER_B: 250 return "B"; 251 case TRANSCODER_C: 252 return "C"; 253 case TRANSCODER_EDP: 254 return "EDP"; 255 case TRANSCODER_DSI_A: 256 return "DSI A"; 257 case TRANSCODER_DSI_C: 258 return "DSI C"; 259 default: 260 return "<invalid>"; 261 } 262 } 263 264 static inline bool transcoder_is_dsi(enum transcoder transcoder) 265 { 266 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C; 267 } 268 269 /* 270 * Global legacy plane identifier. Valid only for primary/sprite 271 * planes on pre-g4x, and only for primary planes on g4x+. 272 */ 273 enum plane { 274 PLANE_A, 275 PLANE_B, 276 PLANE_C, 277 }; 278 #define plane_name(p) ((p) + 'A') 279 280 #define sprite_name(p, s) ((p) * INTEL_INFO(dev_priv)->num_sprites[(p)] + (s) + 'A') 281 282 /* 283 * Per-pipe plane identifier. 284 * I915_MAX_PLANES in the enum below is the maximum (across all platforms) 285 * number of planes per CRTC. Not all platforms really have this many planes, 286 * which means some arrays of size I915_MAX_PLANES may have unused entries 287 * between the topmost sprite plane and the cursor plane. 288 * 289 * This is expected to be passed to various register macros 290 * (eg. PLANE_CTL(), PS_PLANE_SEL(), etc.) so adjust with care. 291 */ 292 enum plane_id { 293 PLANE_PRIMARY, 294 PLANE_SPRITE0, 295 PLANE_SPRITE1, 296 PLANE_SPRITE2, 297 PLANE_CURSOR, 298 I915_MAX_PLANES, 299 }; 300 301 #define for_each_plane_id_on_crtc(__crtc, __p) \ 302 for ((__p) = PLANE_PRIMARY; (__p) < I915_MAX_PLANES; (__p)++) \ 303 for_each_if ((__crtc)->plane_ids_mask & BIT(__p)) 304 305 enum port { 306 PORT_NONE = -1, 307 PORT_A = 0, 308 PORT_B, 309 PORT_C, 310 PORT_D, 311 PORT_E, 312 I915_MAX_PORTS 313 }; 314 #define port_name(p) ((p) + 'A') 315 316 #define I915_NUM_PHYS_VLV 2 317 318 enum dpio_channel { 319 DPIO_CH0, 320 DPIO_CH1 321 }; 322 323 enum dpio_phy { 324 DPIO_PHY0, 325 DPIO_PHY1, 326 DPIO_PHY2, 327 }; 328 329 enum intel_display_power_domain { 330 POWER_DOMAIN_PIPE_A, 331 POWER_DOMAIN_PIPE_B, 332 POWER_DOMAIN_PIPE_C, 333 POWER_DOMAIN_PIPE_A_PANEL_FITTER, 334 POWER_DOMAIN_PIPE_B_PANEL_FITTER, 335 POWER_DOMAIN_PIPE_C_PANEL_FITTER, 336 POWER_DOMAIN_TRANSCODER_A, 337 POWER_DOMAIN_TRANSCODER_B, 338 POWER_DOMAIN_TRANSCODER_C, 339 POWER_DOMAIN_TRANSCODER_EDP, 340 POWER_DOMAIN_TRANSCODER_DSI_A, 341 POWER_DOMAIN_TRANSCODER_DSI_C, 342 POWER_DOMAIN_PORT_DDI_A_LANES, 343 POWER_DOMAIN_PORT_DDI_B_LANES, 344 POWER_DOMAIN_PORT_DDI_C_LANES, 345 POWER_DOMAIN_PORT_DDI_D_LANES, 346 POWER_DOMAIN_PORT_DDI_E_LANES, 347 POWER_DOMAIN_PORT_DSI, 348 POWER_DOMAIN_PORT_CRT, 349 POWER_DOMAIN_PORT_OTHER, 350 POWER_DOMAIN_VGA, 351 POWER_DOMAIN_AUDIO, 352 POWER_DOMAIN_PLLS, 353 POWER_DOMAIN_AUX_A, 354 POWER_DOMAIN_AUX_B, 355 POWER_DOMAIN_AUX_C, 356 POWER_DOMAIN_AUX_D, 357 POWER_DOMAIN_GMBUS, 358 POWER_DOMAIN_MODESET, 359 POWER_DOMAIN_INIT, 360 361 POWER_DOMAIN_NUM, 362 }; 363 364 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A) 365 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \ 366 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER) 367 #define POWER_DOMAIN_TRANSCODER(tran) \ 368 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \ 369 (tran) + POWER_DOMAIN_TRANSCODER_A) 370 371 enum hpd_pin { 372 HPD_NONE = 0, 373 HPD_TV = HPD_NONE, /* TV is known to be unreliable */ 374 HPD_CRT, 375 HPD_SDVO_B, 376 HPD_SDVO_C, 377 HPD_PORT_A, 378 HPD_PORT_B, 379 HPD_PORT_C, 380 HPD_PORT_D, 381 HPD_PORT_E, 382 HPD_NUM_PINS 383 }; 384 385 #define for_each_hpd_pin(__pin) \ 386 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++) 387 388 struct i915_hotplug { 389 struct work_struct hotplug_work; 390 391 struct { 392 unsigned long last_jiffies; 393 int count; 394 enum { 395 HPD_ENABLED = 0, 396 HPD_DISABLED = 1, 397 HPD_MARK_DISABLED = 2 398 } state; 399 } stats[HPD_NUM_PINS]; 400 u32 event_bits; 401 struct delayed_work reenable_work; 402 403 struct intel_digital_port *irq_port[I915_MAX_PORTS]; 404 u32 long_port_mask; 405 u32 short_port_mask; 406 struct work_struct dig_port_work; 407 408 struct work_struct poll_init_work; 409 bool poll_enabled; 410 411 /* 412 * if we get a HPD irq from DP and a HPD irq from non-DP 413 * the non-DP HPD could block the workqueue on a mode config 414 * mutex getting, that userspace may have taken. However 415 * userspace is waiting on the DP workqueue to run which is 416 * blocked behind the non-DP one. 417 */ 418 struct workqueue_struct *dp_wq; 419 }; 420 421 #define I915_GEM_GPU_DOMAINS \ 422 (I915_GEM_DOMAIN_RENDER | \ 423 I915_GEM_DOMAIN_SAMPLER | \ 424 I915_GEM_DOMAIN_COMMAND | \ 425 I915_GEM_DOMAIN_INSTRUCTION | \ 426 I915_GEM_DOMAIN_VERTEX) 427 428 #define for_each_pipe(__dev_priv, __p) \ 429 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) 430 #define for_each_pipe_masked(__dev_priv, __p, __mask) \ 431 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \ 432 for_each_if ((__mask) & (1 << (__p))) 433 #define for_each_universal_plane(__dev_priv, __pipe, __p) \ 434 for ((__p) = 0; \ 435 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \ 436 (__p)++) 437 #define for_each_sprite(__dev_priv, __p, __s) \ 438 for ((__s) = 0; \ 439 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \ 440 (__s)++) 441 442 #define for_each_port_masked(__port, __ports_mask) \ 443 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \ 444 for_each_if ((__ports_mask) & (1 << (__port))) 445 446 #define for_each_crtc(dev, crtc) \ 447 list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head) 448 449 #define for_each_intel_plane(dev, intel_plane) \ 450 list_for_each_entry(intel_plane, \ 451 &(dev)->mode_config.plane_list, \ 452 base.head) 453 454 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \ 455 list_for_each_entry(intel_plane, \ 456 &(dev)->mode_config.plane_list, \ 457 base.head) \ 458 for_each_if ((plane_mask) & \ 459 (1 << drm_plane_index(&intel_plane->base))) 460 461 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \ 462 list_for_each_entry(intel_plane, \ 463 &(dev)->mode_config.plane_list, \ 464 base.head) \ 465 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe) 466 467 #define for_each_intel_crtc(dev, intel_crtc) \ 468 list_for_each_entry(intel_crtc, \ 469 &(dev)->mode_config.crtc_list, \ 470 base.head) 471 472 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \ 473 list_for_each_entry(intel_crtc, \ 474 &(dev)->mode_config.crtc_list, \ 475 base.head) \ 476 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base))) 477 478 #define for_each_intel_encoder(dev, intel_encoder) \ 479 list_for_each_entry(intel_encoder, \ 480 &(dev)->mode_config.encoder_list, \ 481 base.head) 482 483 #define for_each_intel_connector(dev, intel_connector) \ 484 list_for_each_entry(intel_connector, \ 485 &(dev)->mode_config.connector_list, \ 486 base.head) 487 488 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \ 489 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \ 490 for_each_if ((intel_encoder)->base.crtc == (__crtc)) 491 492 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \ 493 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \ 494 for_each_if ((intel_connector)->base.encoder == (__encoder)) 495 496 #define for_each_power_domain(domain, mask) \ 497 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \ 498 for_each_if ((1 << (domain)) & (mask)) 499 500 struct drm_i915_private; 501 struct i915_mm_struct; 502 struct i915_mmu_object; 503 504 struct drm_i915_file_private { 505 struct drm_i915_private *dev_priv; 506 struct drm_file *file; 507 508 struct { 509 spinlock_t lock; 510 struct list_head request_list; 511 /* 20ms is a fairly arbitrary limit (greater than the average frame time) 512 * chosen to prevent the CPU getting more than a frame ahead of the GPU 513 * (when using lax throttling for the frontbuffer). We also use it to 514 * offer free GPU waitboosts for severely congested workloads. 515 */ 516 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20) 517 } mm; 518 struct idr context_idr; 519 520 struct intel_rps_client { 521 struct list_head link; 522 unsigned boosts; 523 } rps; 524 525 unsigned int bsd_engine; 526 527 /* Client can have a maximum of 3 contexts banned before 528 * it is denied of creating new contexts. As one context 529 * ban needs 4 consecutive hangs, and more if there is 530 * progress in between, this is a last resort stop gap measure 531 * to limit the badly behaving clients access to gpu. 532 */ 533 #define I915_MAX_CLIENT_CONTEXT_BANS 3 534 int context_bans; 535 }; 536 537 /* Used by dp and fdi links */ 538 struct intel_link_m_n { 539 uint32_t tu; 540 uint32_t gmch_m; 541 uint32_t gmch_n; 542 uint32_t link_m; 543 uint32_t link_n; 544 }; 545 546 void intel_link_compute_m_n(int bpp, int nlanes, 547 int pixel_clock, int link_clock, 548 struct intel_link_m_n *m_n); 549 550 /* Interface history: 551 * 552 * 1.1: Original. 553 * 1.2: Add Power Management 554 * 1.3: Add vblank support 555 * 1.4: Fix cmdbuffer path, add heap destroy 556 * 1.5: Add vblank pipe configuration 557 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank 558 * - Support vertical blank on secondary display pipe 559 */ 560 #define DRIVER_MAJOR 1 561 #define DRIVER_MINOR 6 562 #define DRIVER_PATCHLEVEL 0 563 564 struct opregion_header; 565 struct opregion_acpi; 566 struct opregion_swsci; 567 struct opregion_asle; 568 569 struct intel_opregion { 570 struct opregion_header *header; 571 struct opregion_acpi *acpi; 572 struct opregion_swsci *swsci; 573 u32 swsci_gbda_sub_functions; 574 u32 swsci_sbcb_sub_functions; 575 struct opregion_asle *asle; 576 void *rvda; 577 const void *vbt; 578 u32 vbt_size; 579 u32 *lid_state; 580 struct work_struct asle_work; 581 }; 582 #define OPREGION_SIZE (8*1024) 583 584 struct intel_overlay; 585 struct intel_overlay_error_state; 586 587 struct sdvo_device_mapping { 588 u8 initialized; 589 u8 dvo_port; 590 u8 slave_addr; 591 u8 dvo_wiring; 592 u8 i2c_pin; 593 u8 ddc_pin; 594 }; 595 596 struct intel_connector; 597 struct intel_encoder; 598 struct intel_atomic_state; 599 struct intel_crtc_state; 600 struct intel_initial_plane_config; 601 struct intel_crtc; 602 struct intel_limit; 603 struct dpll; 604 605 struct drm_i915_display_funcs { 606 int (*get_display_clock_speed)(struct drm_i915_private *dev_priv); 607 int (*get_fifo_size)(struct drm_i915_private *dev_priv, int plane); 608 int (*compute_pipe_wm)(struct intel_crtc_state *cstate); 609 int (*compute_intermediate_wm)(struct drm_device *dev, 610 struct intel_crtc *intel_crtc, 611 struct intel_crtc_state *newstate); 612 void (*initial_watermarks)(struct intel_atomic_state *state, 613 struct intel_crtc_state *cstate); 614 void (*atomic_update_watermarks)(struct intel_atomic_state *state, 615 struct intel_crtc_state *cstate); 616 void (*optimize_watermarks)(struct intel_atomic_state *state, 617 struct intel_crtc_state *cstate); 618 int (*compute_global_watermarks)(struct drm_atomic_state *state); 619 void (*update_wm)(struct intel_crtc *crtc); 620 int (*modeset_calc_cdclk)(struct drm_atomic_state *state); 621 void (*modeset_commit_cdclk)(struct drm_atomic_state *state); 622 /* Returns the active state of the crtc, and if the crtc is active, 623 * fills out the pipe-config with the hw state. */ 624 bool (*get_pipe_config)(struct intel_crtc *, 625 struct intel_crtc_state *); 626 void (*get_initial_plane_config)(struct intel_crtc *, 627 struct intel_initial_plane_config *); 628 int (*crtc_compute_clock)(struct intel_crtc *crtc, 629 struct intel_crtc_state *crtc_state); 630 void (*crtc_enable)(struct intel_crtc_state *pipe_config, 631 struct drm_atomic_state *old_state); 632 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state, 633 struct drm_atomic_state *old_state); 634 void (*update_crtcs)(struct drm_atomic_state *state, 635 unsigned int *crtc_vblank_mask); 636 void (*audio_codec_enable)(struct drm_connector *connector, 637 struct intel_encoder *encoder, 638 const struct drm_display_mode *adjusted_mode); 639 void (*audio_codec_disable)(struct intel_encoder *encoder); 640 void (*fdi_link_train)(struct drm_crtc *crtc); 641 void (*init_clock_gating)(struct drm_i915_private *dev_priv); 642 int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc, 643 struct drm_framebuffer *fb, 644 struct drm_i915_gem_object *obj, 645 struct drm_i915_gem_request *req, 646 uint32_t flags); 647 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv); 648 /* clock updates for mode set */ 649 /* cursor updates */ 650 /* render clock increase/decrease */ 651 /* display clock increase/decrease */ 652 /* pll clock increase/decrease */ 653 654 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state); 655 void (*load_luts)(struct drm_crtc_state *crtc_state); 656 }; 657 658 enum forcewake_domain_id { 659 FW_DOMAIN_ID_RENDER = 0, 660 FW_DOMAIN_ID_BLITTER, 661 FW_DOMAIN_ID_MEDIA, 662 663 FW_DOMAIN_ID_COUNT 664 }; 665 666 enum forcewake_domains { 667 FORCEWAKE_RENDER = (1 << FW_DOMAIN_ID_RENDER), 668 FORCEWAKE_BLITTER = (1 << FW_DOMAIN_ID_BLITTER), 669 FORCEWAKE_MEDIA = (1 << FW_DOMAIN_ID_MEDIA), 670 FORCEWAKE_ALL = (FORCEWAKE_RENDER | 671 FORCEWAKE_BLITTER | 672 FORCEWAKE_MEDIA) 673 }; 674 675 #define FW_REG_READ (1) 676 #define FW_REG_WRITE (2) 677 678 enum decoupled_power_domain { 679 GEN9_DECOUPLED_PD_BLITTER = 0, 680 GEN9_DECOUPLED_PD_RENDER, 681 GEN9_DECOUPLED_PD_MEDIA, 682 GEN9_DECOUPLED_PD_ALL 683 }; 684 685 enum decoupled_ops { 686 GEN9_DECOUPLED_OP_WRITE = 0, 687 GEN9_DECOUPLED_OP_READ 688 }; 689 690 enum forcewake_domains 691 intel_uncore_forcewake_for_reg(struct drm_i915_private *dev_priv, 692 i915_reg_t reg, unsigned int op); 693 694 struct intel_uncore_funcs { 695 void (*force_wake_get)(struct drm_i915_private *dev_priv, 696 enum forcewake_domains domains); 697 void (*force_wake_put)(struct drm_i915_private *dev_priv, 698 enum forcewake_domains domains); 699 700 uint8_t (*mmio_readb)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace); 701 uint16_t (*mmio_readw)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace); 702 uint32_t (*mmio_readl)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace); 703 uint64_t (*mmio_readq)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace); 704 705 void (*mmio_writeb)(struct drm_i915_private *dev_priv, i915_reg_t r, 706 uint8_t val, bool trace); 707 void (*mmio_writew)(struct drm_i915_private *dev_priv, i915_reg_t r, 708 uint16_t val, bool trace); 709 void (*mmio_writel)(struct drm_i915_private *dev_priv, i915_reg_t r, 710 uint32_t val, bool trace); 711 }; 712 713 struct intel_forcewake_range { 714 u32 start; 715 u32 end; 716 717 enum forcewake_domains domains; 718 }; 719 720 struct intel_uncore { 721 spinlock_t lock; /** lock is also taken in irq contexts. */ 722 723 const struct intel_forcewake_range *fw_domains_table; 724 unsigned int fw_domains_table_entries; 725 726 struct intel_uncore_funcs funcs; 727 728 unsigned fifo_count; 729 730 enum forcewake_domains fw_domains; 731 enum forcewake_domains fw_domains_active; 732 733 struct intel_uncore_forcewake_domain { 734 struct drm_i915_private *i915; 735 enum forcewake_domain_id id; 736 enum forcewake_domains mask; 737 unsigned wake_count; 738 struct hrtimer timer; 739 i915_reg_t reg_set; 740 u32 val_set; 741 u32 val_clear; 742 i915_reg_t reg_ack; 743 i915_reg_t reg_post; 744 u32 val_reset; 745 } fw_domain[FW_DOMAIN_ID_COUNT]; 746 747 int unclaimed_mmio_check; 748 }; 749 750 /* Iterate over initialised fw domains */ 751 #define for_each_fw_domain_masked(domain__, mask__, dev_priv__) \ 752 for ((domain__) = &(dev_priv__)->uncore.fw_domain[0]; \ 753 (domain__) < &(dev_priv__)->uncore.fw_domain[FW_DOMAIN_ID_COUNT]; \ 754 (domain__)++) \ 755 for_each_if ((mask__) & (domain__)->mask) 756 757 #define for_each_fw_domain(domain__, dev_priv__) \ 758 for_each_fw_domain_masked(domain__, FORCEWAKE_ALL, dev_priv__) 759 760 #define CSR_VERSION(major, minor) ((major) << 16 | (minor)) 761 #define CSR_VERSION_MAJOR(version) ((version) >> 16) 762 #define CSR_VERSION_MINOR(version) ((version) & 0xffff) 763 764 struct intel_csr { 765 struct work_struct work; 766 const char *fw_path; 767 uint32_t *dmc_payload; 768 uint32_t dmc_fw_size; 769 uint32_t version; 770 uint32_t mmio_count; 771 i915_reg_t mmioaddr[8]; 772 uint32_t mmiodata[8]; 773 uint32_t dc_state; 774 uint32_t allowed_dc_mask; 775 }; 776 777 #define DEV_INFO_FOR_EACH_FLAG(func) \ 778 func(is_mobile); \ 779 func(is_lp); \ 780 func(is_alpha_support); \ 781 /* Keep has_* in alphabetical order */ \ 782 func(has_64bit_reloc); \ 783 func(has_aliasing_ppgtt); \ 784 func(has_csr); \ 785 func(has_ddi); \ 786 func(has_decoupled_mmio); \ 787 func(has_dp_mst); \ 788 func(has_fbc); \ 789 func(has_fpga_dbg); \ 790 func(has_full_ppgtt); \ 791 func(has_full_48bit_ppgtt); \ 792 func(has_gmbus_irq); \ 793 func(has_gmch_display); \ 794 func(has_guc); \ 795 func(has_hotplug); \ 796 func(has_hw_contexts); \ 797 func(has_l3_dpf); \ 798 func(has_llc); \ 799 func(has_logical_ring_contexts); \ 800 func(has_overlay); \ 801 func(has_pipe_cxsr); \ 802 func(has_pooled_eu); \ 803 func(has_psr); \ 804 func(has_rc6); \ 805 func(has_rc6p); \ 806 func(has_resource_streamer); \ 807 func(has_runtime_pm); \ 808 func(has_snoop); \ 809 func(unfenced_needs_alignment); \ 810 func(cursor_needs_physical); \ 811 func(hws_needs_physical); \ 812 func(overlay_needs_physical); \ 813 func(supports_tv); 814 815 struct sseu_dev_info { 816 u8 slice_mask; 817 u8 subslice_mask; 818 u8 eu_total; 819 u8 eu_per_subslice; 820 u8 min_eu_in_pool; 821 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */ 822 u8 subslice_7eu[3]; 823 u8 has_slice_pg:1; 824 u8 has_subslice_pg:1; 825 u8 has_eu_pg:1; 826 }; 827 828 static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu) 829 { 830 return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask); 831 } 832 833 /* Keep in gen based order, and chronological order within a gen */ 834 enum intel_platform { 835 INTEL_PLATFORM_UNINITIALIZED = 0, 836 INTEL_I830, 837 INTEL_I845G, 838 INTEL_I85X, 839 INTEL_I865G, 840 INTEL_I915G, 841 INTEL_I915GM, 842 INTEL_I945G, 843 INTEL_I945GM, 844 INTEL_G33, 845 INTEL_PINEVIEW, 846 INTEL_I965G, 847 INTEL_I965GM, 848 INTEL_G45, 849 INTEL_GM45, 850 INTEL_IRONLAKE, 851 INTEL_SANDYBRIDGE, 852 INTEL_IVYBRIDGE, 853 INTEL_VALLEYVIEW, 854 INTEL_HASWELL, 855 INTEL_BROADWELL, 856 INTEL_CHERRYVIEW, 857 INTEL_SKYLAKE, 858 INTEL_BROXTON, 859 INTEL_KABYLAKE, 860 INTEL_GEMINILAKE, 861 }; 862 863 struct intel_device_info { 864 u32 display_mmio_offset; 865 u16 device_id; 866 u8 num_pipes; 867 u8 num_sprites[I915_MAX_PIPES]; 868 u8 num_scalers[I915_MAX_PIPES]; 869 u8 gen; 870 u16 gen_mask; 871 enum intel_platform platform; 872 u8 ring_mask; /* Rings supported by the HW */ 873 u8 num_rings; 874 #define DEFINE_FLAG(name) u8 name:1 875 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG); 876 #undef DEFINE_FLAG 877 u16 ddb_size; /* in blocks */ 878 /* Register offsets for the various display pipes and transcoders */ 879 int pipe_offsets[I915_MAX_TRANSCODERS]; 880 int trans_offsets[I915_MAX_TRANSCODERS]; 881 int palette_offsets[I915_MAX_PIPES]; 882 int cursor_offsets[I915_MAX_PIPES]; 883 884 /* Slice/subslice/EU info */ 885 struct sseu_dev_info sseu; 886 887 struct color_luts { 888 u16 degamma_lut_size; 889 u16 gamma_lut_size; 890 } color; 891 }; 892 893 struct intel_display_error_state; 894 895 struct drm_i915_error_state { 896 struct kref ref; 897 struct timeval time; 898 struct timeval boottime; 899 struct timeval uptime; 900 901 struct drm_i915_private *i915; 902 903 char error_msg[128]; 904 bool simulated; 905 int iommu; 906 u32 reset_count; 907 u32 suspend_count; 908 struct intel_device_info device_info; 909 910 /* Generic register state */ 911 u32 eir; 912 u32 pgtbl_er; 913 u32 ier; 914 u32 gtier[4]; 915 u32 ccid; 916 u32 derrmr; 917 u32 forcewake; 918 u32 error; /* gen6+ */ 919 u32 err_int; /* gen7 */ 920 u32 fault_data0; /* gen8, gen9 */ 921 u32 fault_data1; /* gen8, gen9 */ 922 u32 done_reg; 923 u32 gac_eco; 924 u32 gam_ecochk; 925 u32 gab_ctl; 926 u32 gfx_mode; 927 928 u64 fence[I915_MAX_NUM_FENCES]; 929 struct intel_overlay_error_state *overlay; 930 struct intel_display_error_state *display; 931 struct drm_i915_error_object *semaphore; 932 struct drm_i915_error_object *guc_log; 933 934 struct drm_i915_error_engine { 935 int engine_id; 936 /* Software tracked state */ 937 bool waiting; 938 int num_waiters; 939 unsigned long hangcheck_timestamp; 940 bool hangcheck_stalled; 941 enum intel_engine_hangcheck_action hangcheck_action; 942 struct i915_address_space *vm; 943 int num_requests; 944 945 /* position of active request inside the ring */ 946 u32 rq_head, rq_post, rq_tail; 947 948 /* our own tracking of ring head and tail */ 949 u32 cpu_ring_head; 950 u32 cpu_ring_tail; 951 952 u32 last_seqno; 953 954 /* Register state */ 955 u32 start; 956 u32 tail; 957 u32 head; 958 u32 ctl; 959 u32 mode; 960 u32 hws; 961 u32 ipeir; 962 u32 ipehr; 963 u32 bbstate; 964 u32 instpm; 965 u32 instps; 966 u32 seqno; 967 u64 bbaddr; 968 u64 acthd; 969 u32 fault_reg; 970 u64 faddr; 971 u32 rc_psmi; /* sleep state */ 972 u32 semaphore_mboxes[I915_NUM_ENGINES - 1]; 973 struct intel_instdone instdone; 974 975 struct drm_i915_error_object { 976 u64 gtt_offset; 977 u64 gtt_size; 978 int page_count; 979 int unused; 980 u32 *pages[0]; 981 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page; 982 983 struct drm_i915_error_object *wa_ctx; 984 985 struct drm_i915_error_request { 986 long jiffies; 987 pid_t pid; 988 u32 context; 989 int ban_score; 990 u32 seqno; 991 u32 head; 992 u32 tail; 993 } *requests, execlist[2]; 994 995 struct drm_i915_error_waiter { 996 char comm[TASK_COMM_LEN]; 997 pid_t pid; 998 u32 seqno; 999 } *waiters; 1000 1001 struct { 1002 u32 gfx_mode; 1003 union { 1004 u64 pdp[4]; 1005 u32 pp_dir_base; 1006 }; 1007 } vm_info; 1008 1009 pid_t pid; 1010 char comm[TASK_COMM_LEN]; 1011 int context_bans; 1012 } engine[I915_NUM_ENGINES]; 1013 1014 struct drm_i915_error_buffer { 1015 u32 size; 1016 u32 name; 1017 u32 rseqno[I915_NUM_ENGINES], wseqno; 1018 u64 gtt_offset; 1019 u32 read_domains; 1020 u32 write_domain; 1021 s32 fence_reg:I915_MAX_NUM_FENCE_BITS; 1022 u32 tiling:2; 1023 u32 dirty:1; 1024 u32 purgeable:1; 1025 u32 userptr:1; 1026 s32 engine:4; 1027 u32 cache_level:3; 1028 } *active_bo[I915_NUM_ENGINES], *pinned_bo; 1029 u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count; 1030 struct i915_address_space *active_vm[I915_NUM_ENGINES]; 1031 }; 1032 1033 enum i915_cache_level { 1034 I915_CACHE_NONE = 0, 1035 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */ 1036 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc 1037 caches, eg sampler/render caches, and the 1038 large Last-Level-Cache. LLC is coherent with 1039 the CPU, but L3 is only visible to the GPU. */ 1040 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */ 1041 }; 1042 1043 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */ 1044 1045 enum fb_op_origin { 1046 ORIGIN_GTT, 1047 ORIGIN_CPU, 1048 ORIGIN_CS, 1049 ORIGIN_FLIP, 1050 ORIGIN_DIRTYFB, 1051 }; 1052 1053 struct intel_fbc { 1054 /* This is always the inner lock when overlapping with struct_mutex and 1055 * it's the outer lock when overlapping with stolen_lock. */ 1056 struct mutex lock; 1057 unsigned threshold; 1058 unsigned int possible_framebuffer_bits; 1059 unsigned int busy_bits; 1060 unsigned int visible_pipes_mask; 1061 struct intel_crtc *crtc; 1062 1063 struct drm_mm_node compressed_fb; 1064 struct drm_mm_node *compressed_llb; 1065 1066 bool false_color; 1067 1068 bool enabled; 1069 bool active; 1070 1071 bool underrun_detected; 1072 struct work_struct underrun_work; 1073 1074 struct intel_fbc_state_cache { 1075 struct i915_vma *vma; 1076 1077 struct { 1078 unsigned int mode_flags; 1079 uint32_t hsw_bdw_pixel_rate; 1080 } crtc; 1081 1082 struct { 1083 unsigned int rotation; 1084 int src_w; 1085 int src_h; 1086 bool visible; 1087 } plane; 1088 1089 struct { 1090 const struct drm_format_info *format; 1091 unsigned int stride; 1092 } fb; 1093 } state_cache; 1094 1095 struct intel_fbc_reg_params { 1096 struct i915_vma *vma; 1097 1098 struct { 1099 enum pipe pipe; 1100 enum plane plane; 1101 unsigned int fence_y_offset; 1102 } crtc; 1103 1104 struct { 1105 const struct drm_format_info *format; 1106 unsigned int stride; 1107 } fb; 1108 1109 int cfb_size; 1110 } params; 1111 1112 struct intel_fbc_work { 1113 bool scheduled; 1114 u32 scheduled_vblank; 1115 struct work_struct work; 1116 } work; 1117 1118 const char *no_fbc_reason; 1119 }; 1120 1121 /* 1122 * HIGH_RR is the highest eDP panel refresh rate read from EDID 1123 * LOW_RR is the lowest eDP panel refresh rate found from EDID 1124 * parsing for same resolution. 1125 */ 1126 enum drrs_refresh_rate_type { 1127 DRRS_HIGH_RR, 1128 DRRS_LOW_RR, 1129 DRRS_MAX_RR, /* RR count */ 1130 }; 1131 1132 enum drrs_support_type { 1133 DRRS_NOT_SUPPORTED = 0, 1134 STATIC_DRRS_SUPPORT = 1, 1135 SEAMLESS_DRRS_SUPPORT = 2 1136 }; 1137 1138 struct intel_dp; 1139 struct i915_drrs { 1140 struct mutex mutex; 1141 struct delayed_work work; 1142 struct intel_dp *dp; 1143 unsigned busy_frontbuffer_bits; 1144 enum drrs_refresh_rate_type refresh_rate_type; 1145 enum drrs_support_type type; 1146 }; 1147 1148 struct i915_psr { 1149 struct mutex lock; 1150 bool sink_support; 1151 bool source_ok; 1152 struct intel_dp *enabled; 1153 bool active; 1154 struct delayed_work work; 1155 unsigned busy_frontbuffer_bits; 1156 bool psr2_support; 1157 bool aux_frame_sync; 1158 bool link_standby; 1159 bool y_cord_support; 1160 bool colorimetry_support; 1161 bool alpm; 1162 }; 1163 1164 enum intel_pch { 1165 PCH_NONE = 0, /* No PCH present */ 1166 PCH_IBX, /* Ibexpeak PCH */ 1167 PCH_CPT, /* Cougarpoint PCH */ 1168 PCH_LPT, /* Lynxpoint PCH */ 1169 PCH_SPT, /* Sunrisepoint PCH */ 1170 PCH_KBP, /* Kabypoint PCH */ 1171 PCH_NOP, 1172 }; 1173 1174 enum intel_sbi_destination { 1175 SBI_ICLK, 1176 SBI_MPHY, 1177 }; 1178 1179 #define QUIRK_PIPEA_FORCE (1<<0) 1180 #define QUIRK_LVDS_SSC_DISABLE (1<<1) 1181 #define QUIRK_INVERT_BRIGHTNESS (1<<2) 1182 #define QUIRK_BACKLIGHT_PRESENT (1<<3) 1183 #define QUIRK_PIPEB_FORCE (1<<4) 1184 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5) 1185 1186 struct intel_fbdev; 1187 struct intel_fbc_work; 1188 1189 struct intel_gmbus { 1190 struct i2c_adapter adapter; 1191 #define GMBUS_FORCE_BIT_RETRY (1U << 31) 1192 u32 force_bit; 1193 u32 reg0; 1194 i915_reg_t gpio_reg; 1195 struct i2c_algo_bit_data bit_algo; 1196 struct drm_i915_private *dev_priv; 1197 }; 1198 1199 struct i915_suspend_saved_registers { 1200 u32 saveDSPARB; 1201 u32 saveFBC_CONTROL; 1202 u32 saveCACHE_MODE_0; 1203 u32 saveMI_ARB_STATE; 1204 u32 saveSWF0[16]; 1205 u32 saveSWF1[16]; 1206 u32 saveSWF3[3]; 1207 uint64_t saveFENCE[I915_MAX_NUM_FENCES]; 1208 u32 savePCH_PORT_HOTPLUG; 1209 u16 saveGCDGMBUS; 1210 }; 1211 1212 struct vlv_s0ix_state { 1213 /* GAM */ 1214 u32 wr_watermark; 1215 u32 gfx_prio_ctrl; 1216 u32 arb_mode; 1217 u32 gfx_pend_tlb0; 1218 u32 gfx_pend_tlb1; 1219 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM]; 1220 u32 media_max_req_count; 1221 u32 gfx_max_req_count; 1222 u32 render_hwsp; 1223 u32 ecochk; 1224 u32 bsd_hwsp; 1225 u32 blt_hwsp; 1226 u32 tlb_rd_addr; 1227 1228 /* MBC */ 1229 u32 g3dctl; 1230 u32 gsckgctl; 1231 u32 mbctl; 1232 1233 /* GCP */ 1234 u32 ucgctl1; 1235 u32 ucgctl3; 1236 u32 rcgctl1; 1237 u32 rcgctl2; 1238 u32 rstctl; 1239 u32 misccpctl; 1240 1241 /* GPM */ 1242 u32 gfxpause; 1243 u32 rpdeuhwtc; 1244 u32 rpdeuc; 1245 u32 ecobus; 1246 u32 pwrdwnupctl; 1247 u32 rp_down_timeout; 1248 u32 rp_deucsw; 1249 u32 rcubmabdtmr; 1250 u32 rcedata; 1251 u32 spare2gh; 1252 1253 /* Display 1 CZ domain */ 1254 u32 gt_imr; 1255 u32 gt_ier; 1256 u32 pm_imr; 1257 u32 pm_ier; 1258 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM]; 1259 1260 /* GT SA CZ domain */ 1261 u32 tilectl; 1262 u32 gt_fifoctl; 1263 u32 gtlc_wake_ctrl; 1264 u32 gtlc_survive; 1265 u32 pmwgicz; 1266 1267 /* Display 2 CZ domain */ 1268 u32 gu_ctl0; 1269 u32 gu_ctl1; 1270 u32 pcbr; 1271 u32 clock_gate_dis2; 1272 }; 1273 1274 struct intel_rps_ei { 1275 u32 cz_clock; 1276 u32 render_c0; 1277 u32 media_c0; 1278 }; 1279 1280 struct intel_gen6_power_mgmt { 1281 /* 1282 * work, interrupts_enabled and pm_iir are protected by 1283 * dev_priv->irq_lock 1284 */ 1285 struct work_struct work; 1286 bool interrupts_enabled; 1287 u32 pm_iir; 1288 1289 /* PM interrupt bits that should never be masked */ 1290 u32 pm_intr_keep; 1291 1292 /* Frequencies are stored in potentially platform dependent multiples. 1293 * In other words, *_freq needs to be multiplied by X to be interesting. 1294 * Soft limits are those which are used for the dynamic reclocking done 1295 * by the driver (raise frequencies under heavy loads, and lower for 1296 * lighter loads). Hard limits are those imposed by the hardware. 1297 * 1298 * A distinction is made for overclocking, which is never enabled by 1299 * default, and is considered to be above the hard limit if it's 1300 * possible at all. 1301 */ 1302 u8 cur_freq; /* Current frequency (cached, may not == HW) */ 1303 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */ 1304 u8 max_freq_softlimit; /* Max frequency permitted by the driver */ 1305 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */ 1306 u8 min_freq; /* AKA RPn. Minimum frequency */ 1307 u8 boost_freq; /* Frequency to request when wait boosting */ 1308 u8 idle_freq; /* Frequency to request when we are idle */ 1309 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */ 1310 u8 rp1_freq; /* "less than" RP0 power/freqency */ 1311 u8 rp0_freq; /* Non-overclocked max frequency. */ 1312 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */ 1313 1314 u8 up_threshold; /* Current %busy required to uplock */ 1315 u8 down_threshold; /* Current %busy required to downclock */ 1316 1317 int last_adj; 1318 enum { LOW_POWER, BETWEEN, HIGH_POWER } power; 1319 1320 spinlock_t client_lock; 1321 struct list_head clients; 1322 bool client_boost; 1323 1324 bool enabled; 1325 struct delayed_work autoenable_work; 1326 unsigned boosts; 1327 1328 /* manual wa residency calculations */ 1329 struct intel_rps_ei ei; 1330 1331 /* 1332 * Protects RPS/RC6 register access and PCU communication. 1333 * Must be taken after struct_mutex if nested. Note that 1334 * this lock may be held for long periods of time when 1335 * talking to hw - so only take it when talking to hw! 1336 */ 1337 struct mutex hw_lock; 1338 }; 1339 1340 /* defined intel_pm.c */ 1341 extern spinlock_t mchdev_lock; 1342 1343 struct intel_ilk_power_mgmt { 1344 u8 cur_delay; 1345 u8 min_delay; 1346 u8 max_delay; 1347 u8 fmax; 1348 u8 fstart; 1349 1350 u64 last_count1; 1351 unsigned long last_time1; 1352 unsigned long chipset_power; 1353 u64 last_count2; 1354 u64 last_time2; 1355 unsigned long gfx_power; 1356 u8 corr; 1357 1358 int c_m; 1359 int r_t; 1360 }; 1361 1362 struct drm_i915_private; 1363 struct i915_power_well; 1364 1365 struct i915_power_well_ops { 1366 /* 1367 * Synchronize the well's hw state to match the current sw state, for 1368 * example enable/disable it based on the current refcount. Called 1369 * during driver init and resume time, possibly after first calling 1370 * the enable/disable handlers. 1371 */ 1372 void (*sync_hw)(struct drm_i915_private *dev_priv, 1373 struct i915_power_well *power_well); 1374 /* 1375 * Enable the well and resources that depend on it (for example 1376 * interrupts located on the well). Called after the 0->1 refcount 1377 * transition. 1378 */ 1379 void (*enable)(struct drm_i915_private *dev_priv, 1380 struct i915_power_well *power_well); 1381 /* 1382 * Disable the well and resources that depend on it. Called after 1383 * the 1->0 refcount transition. 1384 */ 1385 void (*disable)(struct drm_i915_private *dev_priv, 1386 struct i915_power_well *power_well); 1387 /* Returns the hw enabled state. */ 1388 bool (*is_enabled)(struct drm_i915_private *dev_priv, 1389 struct i915_power_well *power_well); 1390 }; 1391 1392 /* Power well structure for haswell */ 1393 struct i915_power_well { 1394 const char *name; 1395 bool always_on; 1396 /* power well enable/disable usage count */ 1397 int count; 1398 /* cached hw enabled state */ 1399 bool hw_enabled; 1400 unsigned long domains; 1401 /* unique identifier for this power well */ 1402 unsigned long id; 1403 /* 1404 * Arbitraty data associated with this power well. Platform and power 1405 * well specific. 1406 */ 1407 unsigned long data; 1408 const struct i915_power_well_ops *ops; 1409 }; 1410 1411 struct i915_power_domains { 1412 /* 1413 * Power wells needed for initialization at driver init and suspend 1414 * time are on. They are kept on until after the first modeset. 1415 */ 1416 bool init_power_on; 1417 bool initializing; 1418 int power_well_count; 1419 1420 struct mutex lock; 1421 int domain_use_count[POWER_DOMAIN_NUM]; 1422 struct i915_power_well *power_wells; 1423 }; 1424 1425 #define MAX_L3_SLICES 2 1426 struct intel_l3_parity { 1427 u32 *remap_info[MAX_L3_SLICES]; 1428 struct work_struct error_work; 1429 int which_slice; 1430 }; 1431 1432 struct i915_gem_mm { 1433 /** Memory allocator for GTT stolen memory */ 1434 struct drm_mm stolen; 1435 /** Protects the usage of the GTT stolen memory allocator. This is 1436 * always the inner lock when overlapping with struct_mutex. */ 1437 struct mutex stolen_lock; 1438 1439 /** List of all objects in gtt_space. Used to restore gtt 1440 * mappings on resume */ 1441 struct list_head bound_list; 1442 /** 1443 * List of objects which are not bound to the GTT (thus 1444 * are idle and not used by the GPU). These objects may or may 1445 * not actually have any pages attached. 1446 */ 1447 struct list_head unbound_list; 1448 1449 /** List of all objects in gtt_space, currently mmaped by userspace. 1450 * All objects within this list must also be on bound_list. 1451 */ 1452 struct list_head userfault_list; 1453 1454 /** 1455 * List of objects which are pending destruction. 1456 */ 1457 struct llist_head free_list; 1458 struct work_struct free_work; 1459 1460 /** Usable portion of the GTT for GEM */ 1461 phys_addr_t stolen_base; /* limited to low memory (32-bit) */ 1462 1463 /** PPGTT used for aliasing the PPGTT with the GTT */ 1464 struct i915_hw_ppgtt *aliasing_ppgtt; 1465 1466 struct notifier_block oom_notifier; 1467 struct notifier_block vmap_notifier; 1468 struct shrinker shrinker; 1469 1470 /** LRU list of objects with fence regs on them. */ 1471 struct list_head fence_list; 1472 1473 /** 1474 * Are we in a non-interruptible section of code like 1475 * modesetting? 1476 */ 1477 bool interruptible; 1478 1479 /* the indicator for dispatch video commands on two BSD rings */ 1480 atomic_t bsd_engine_dispatch_index; 1481 1482 /** Bit 6 swizzling required for X tiling */ 1483 uint32_t bit_6_swizzle_x; 1484 /** Bit 6 swizzling required for Y tiling */ 1485 uint32_t bit_6_swizzle_y; 1486 1487 /* accounting, useful for userland debugging */ 1488 spinlock_t object_stat_lock; 1489 u64 object_memory; 1490 u32 object_count; 1491 }; 1492 1493 struct drm_i915_error_state_buf { 1494 struct drm_i915_private *i915; 1495 unsigned bytes; 1496 unsigned size; 1497 int err; 1498 u8 *buf; 1499 loff_t start; 1500 loff_t pos; 1501 }; 1502 1503 struct i915_error_state_file_priv { 1504 struct drm_i915_private *i915; 1505 struct drm_i915_error_state *error; 1506 }; 1507 1508 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */ 1509 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */ 1510 1511 #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */ 1512 #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */ 1513 1514 struct i915_gpu_error { 1515 /* For hangcheck timer */ 1516 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */ 1517 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD) 1518 1519 struct delayed_work hangcheck_work; 1520 1521 /* For reset and error_state handling. */ 1522 spinlock_t lock; 1523 /* Protected by the above dev->gpu_error.lock. */ 1524 struct drm_i915_error_state *first_error; 1525 1526 unsigned long missed_irq_rings; 1527 1528 /** 1529 * State variable controlling the reset flow and count 1530 * 1531 * This is a counter which gets incremented when reset is triggered, 1532 * 1533 * Before the reset commences, the I915_RESET_IN_PROGRESS bit is set 1534 * meaning that any waiters holding onto the struct_mutex should 1535 * relinquish the lock immediately in order for the reset to start. 1536 * 1537 * If reset is not completed succesfully, the I915_WEDGE bit is 1538 * set meaning that hardware is terminally sour and there is no 1539 * recovery. All waiters on the reset_queue will be woken when 1540 * that happens. 1541 * 1542 * This counter is used by the wait_seqno code to notice that reset 1543 * event happened and it needs to restart the entire ioctl (since most 1544 * likely the seqno it waited for won't ever signal anytime soon). 1545 * 1546 * This is important for lock-free wait paths, where no contended lock 1547 * naturally enforces the correct ordering between the bail-out of the 1548 * waiter and the gpu reset work code. 1549 */ 1550 unsigned long reset_count; 1551 1552 unsigned long flags; 1553 #define I915_RESET_IN_PROGRESS 0 1554 #define I915_WEDGED (BITS_PER_LONG - 1) 1555 1556 /** 1557 * Waitqueue to signal when a hang is detected. Used to for waiters 1558 * to release the struct_mutex for the reset to procede. 1559 */ 1560 wait_queue_head_t wait_queue; 1561 1562 /** 1563 * Waitqueue to signal when the reset has completed. Used by clients 1564 * that wait for dev_priv->mm.wedged to settle. 1565 */ 1566 wait_queue_head_t reset_queue; 1567 1568 /* For missed irq/seqno simulation. */ 1569 unsigned long test_irq_rings; 1570 }; 1571 1572 enum modeset_restore { 1573 MODESET_ON_LID_OPEN, 1574 MODESET_DONE, 1575 MODESET_SUSPENDED, 1576 }; 1577 1578 #define DP_AUX_A 0x40 1579 #define DP_AUX_B 0x10 1580 #define DP_AUX_C 0x20 1581 #define DP_AUX_D 0x30 1582 1583 #define DDC_PIN_B 0x05 1584 #define DDC_PIN_C 0x04 1585 #define DDC_PIN_D 0x06 1586 1587 struct ddi_vbt_port_info { 1588 /* 1589 * This is an index in the HDMI/DVI DDI buffer translation table. 1590 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't 1591 * populate this field. 1592 */ 1593 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff 1594 uint8_t hdmi_level_shift; 1595 1596 uint8_t supports_dvi:1; 1597 uint8_t supports_hdmi:1; 1598 uint8_t supports_dp:1; 1599 uint8_t supports_edp:1; 1600 1601 uint8_t alternate_aux_channel; 1602 uint8_t alternate_ddc_pin; 1603 1604 uint8_t dp_boost_level; 1605 uint8_t hdmi_boost_level; 1606 }; 1607 1608 enum psr_lines_to_wait { 1609 PSR_0_LINES_TO_WAIT = 0, 1610 PSR_1_LINE_TO_WAIT, 1611 PSR_4_LINES_TO_WAIT, 1612 PSR_8_LINES_TO_WAIT 1613 }; 1614 1615 struct intel_vbt_data { 1616 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */ 1617 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */ 1618 1619 /* Feature bits */ 1620 unsigned int int_tv_support:1; 1621 unsigned int lvds_dither:1; 1622 unsigned int lvds_vbt:1; 1623 unsigned int int_crt_support:1; 1624 unsigned int lvds_use_ssc:1; 1625 unsigned int display_clock_mode:1; 1626 unsigned int fdi_rx_polarity_inverted:1; 1627 unsigned int panel_type:4; 1628 int lvds_ssc_freq; 1629 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */ 1630 1631 enum drrs_support_type drrs_type; 1632 1633 struct { 1634 int rate; 1635 int lanes; 1636 int preemphasis; 1637 int vswing; 1638 bool low_vswing; 1639 bool initialized; 1640 bool support; 1641 int bpp; 1642 struct edp_power_seq pps; 1643 } edp; 1644 1645 struct { 1646 bool full_link; 1647 bool require_aux_wakeup; 1648 int idle_frames; 1649 enum psr_lines_to_wait lines_to_wait; 1650 int tp1_wakeup_time; 1651 int tp2_tp3_wakeup_time; 1652 } psr; 1653 1654 struct { 1655 u16 pwm_freq_hz; 1656 bool present; 1657 bool active_low_pwm; 1658 u8 min_brightness; /* min_brightness/255 of max */ 1659 u8 controller; /* brightness controller number */ 1660 enum intel_backlight_type type; 1661 } backlight; 1662 1663 /* MIPI DSI */ 1664 struct { 1665 u16 panel_id; 1666 struct mipi_config *config; 1667 struct mipi_pps_data *pps; 1668 u8 seq_version; 1669 u32 size; 1670 u8 *data; 1671 const u8 *sequence[MIPI_SEQ_MAX]; 1672 } dsi; 1673 1674 int crt_ddc_pin; 1675 1676 int child_dev_num; 1677 union child_device_config *child_dev; 1678 1679 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS]; 1680 struct sdvo_device_mapping sdvo_mappings[2]; 1681 }; 1682 1683 enum intel_ddb_partitioning { 1684 INTEL_DDB_PART_1_2, 1685 INTEL_DDB_PART_5_6, /* IVB+ */ 1686 }; 1687 1688 struct intel_wm_level { 1689 bool enable; 1690 uint32_t pri_val; 1691 uint32_t spr_val; 1692 uint32_t cur_val; 1693 uint32_t fbc_val; 1694 }; 1695 1696 struct ilk_wm_values { 1697 uint32_t wm_pipe[3]; 1698 uint32_t wm_lp[3]; 1699 uint32_t wm_lp_spr[3]; 1700 uint32_t wm_linetime[3]; 1701 bool enable_fbc_wm; 1702 enum intel_ddb_partitioning partitioning; 1703 }; 1704 1705 struct vlv_pipe_wm { 1706 uint16_t plane[I915_MAX_PLANES]; 1707 }; 1708 1709 struct vlv_sr_wm { 1710 uint16_t plane; 1711 uint16_t cursor; 1712 }; 1713 1714 struct vlv_wm_ddl_values { 1715 uint8_t plane[I915_MAX_PLANES]; 1716 }; 1717 1718 struct vlv_wm_values { 1719 struct vlv_pipe_wm pipe[3]; 1720 struct vlv_sr_wm sr; 1721 struct vlv_wm_ddl_values ddl[3]; 1722 uint8_t level; 1723 bool cxsr; 1724 }; 1725 1726 struct skl_ddb_entry { 1727 uint16_t start, end; /* in number of blocks, 'end' is exclusive */ 1728 }; 1729 1730 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry) 1731 { 1732 return entry->end - entry->start; 1733 } 1734 1735 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1, 1736 const struct skl_ddb_entry *e2) 1737 { 1738 if (e1->start == e2->start && e1->end == e2->end) 1739 return true; 1740 1741 return false; 1742 } 1743 1744 struct skl_ddb_allocation { 1745 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */ 1746 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES]; 1747 }; 1748 1749 struct skl_wm_values { 1750 unsigned dirty_pipes; 1751 struct skl_ddb_allocation ddb; 1752 }; 1753 1754 struct skl_wm_level { 1755 bool plane_en; 1756 uint16_t plane_res_b; 1757 uint8_t plane_res_l; 1758 }; 1759 1760 /* 1761 * This struct helps tracking the state needed for runtime PM, which puts the 1762 * device in PCI D3 state. Notice that when this happens, nothing on the 1763 * graphics device works, even register access, so we don't get interrupts nor 1764 * anything else. 1765 * 1766 * Every piece of our code that needs to actually touch the hardware needs to 1767 * either call intel_runtime_pm_get or call intel_display_power_get with the 1768 * appropriate power domain. 1769 * 1770 * Our driver uses the autosuspend delay feature, which means we'll only really 1771 * suspend if we stay with zero refcount for a certain amount of time. The 1772 * default value is currently very conservative (see intel_runtime_pm_enable), but 1773 * it can be changed with the standard runtime PM files from sysfs. 1774 * 1775 * The irqs_disabled variable becomes true exactly after we disable the IRQs and 1776 * goes back to false exactly before we reenable the IRQs. We use this variable 1777 * to check if someone is trying to enable/disable IRQs while they're supposed 1778 * to be disabled. This shouldn't happen and we'll print some error messages in 1779 * case it happens. 1780 * 1781 * For more, read the Documentation/power/runtime_pm.txt. 1782 */ 1783 struct i915_runtime_pm { 1784 atomic_t wakeref_count; 1785 bool suspended; 1786 bool irqs_enabled; 1787 }; 1788 1789 enum intel_pipe_crc_source { 1790 INTEL_PIPE_CRC_SOURCE_NONE, 1791 INTEL_PIPE_CRC_SOURCE_PLANE1, 1792 INTEL_PIPE_CRC_SOURCE_PLANE2, 1793 INTEL_PIPE_CRC_SOURCE_PF, 1794 INTEL_PIPE_CRC_SOURCE_PIPE, 1795 /* TV/DP on pre-gen5/vlv can't use the pipe source. */ 1796 INTEL_PIPE_CRC_SOURCE_TV, 1797 INTEL_PIPE_CRC_SOURCE_DP_B, 1798 INTEL_PIPE_CRC_SOURCE_DP_C, 1799 INTEL_PIPE_CRC_SOURCE_DP_D, 1800 INTEL_PIPE_CRC_SOURCE_AUTO, 1801 INTEL_PIPE_CRC_SOURCE_MAX, 1802 }; 1803 1804 struct intel_pipe_crc_entry { 1805 uint32_t frame; 1806 uint32_t crc[5]; 1807 }; 1808 1809 #define INTEL_PIPE_CRC_ENTRIES_NR 128 1810 struct intel_pipe_crc { 1811 spinlock_t lock; 1812 bool opened; /* exclusive access to the result file */ 1813 struct intel_pipe_crc_entry *entries; 1814 enum intel_pipe_crc_source source; 1815 int head, tail; 1816 wait_queue_head_t wq; 1817 int skipped; 1818 }; 1819 1820 struct i915_frontbuffer_tracking { 1821 spinlock_t lock; 1822 1823 /* 1824 * Tracking bits for delayed frontbuffer flushing du to gpu activity or 1825 * scheduled flips. 1826 */ 1827 unsigned busy_bits; 1828 unsigned flip_bits; 1829 }; 1830 1831 struct i915_wa_reg { 1832 i915_reg_t addr; 1833 u32 value; 1834 /* bitmask representing WA bits */ 1835 u32 mask; 1836 }; 1837 1838 /* 1839 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only 1840 * allowing it for RCS as we don't foresee any requirement of having 1841 * a whitelist for other engines. When it is really required for 1842 * other engines then the limit need to be increased. 1843 */ 1844 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS) 1845 1846 struct i915_workarounds { 1847 struct i915_wa_reg reg[I915_MAX_WA_REGS]; 1848 u32 count; 1849 u32 hw_whitelist_count[I915_NUM_ENGINES]; 1850 }; 1851 1852 struct i915_virtual_gpu { 1853 bool active; 1854 }; 1855 1856 /* used in computing the new watermarks state */ 1857 struct intel_wm_config { 1858 unsigned int num_pipes_active; 1859 bool sprites_enabled; 1860 bool sprites_scaled; 1861 }; 1862 1863 struct i915_oa_format { 1864 u32 format; 1865 int size; 1866 }; 1867 1868 struct i915_oa_reg { 1869 i915_reg_t addr; 1870 u32 value; 1871 }; 1872 1873 struct i915_perf_stream; 1874 1875 /** 1876 * struct i915_perf_stream_ops - the OPs to support a specific stream type 1877 */ 1878 struct i915_perf_stream_ops { 1879 /** 1880 * @enable: Enables the collection of HW samples, either in response to 1881 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened 1882 * without `I915_PERF_FLAG_DISABLED`. 1883 */ 1884 void (*enable)(struct i915_perf_stream *stream); 1885 1886 /** 1887 * @disable: Disables the collection of HW samples, either in response 1888 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying 1889 * the stream. 1890 */ 1891 void (*disable)(struct i915_perf_stream *stream); 1892 1893 /** 1894 * @poll_wait: Call poll_wait, passing a wait queue that will be woken 1895 * once there is something ready to read() for the stream 1896 */ 1897 void (*poll_wait)(struct i915_perf_stream *stream, 1898 struct file *file, 1899 poll_table *wait); 1900 1901 /** 1902 * @wait_unlocked: For handling a blocking read, wait until there is 1903 * something to ready to read() for the stream. E.g. wait on the same 1904 * wait queue that would be passed to poll_wait(). 1905 */ 1906 int (*wait_unlocked)(struct i915_perf_stream *stream); 1907 1908 /** 1909 * @read: Copy buffered metrics as records to userspace 1910 * **buf**: the userspace, destination buffer 1911 * **count**: the number of bytes to copy, requested by userspace 1912 * **offset**: zero at the start of the read, updated as the read 1913 * proceeds, it represents how many bytes have been copied so far and 1914 * the buffer offset for copying the next record. 1915 * 1916 * Copy as many buffered i915 perf samples and records for this stream 1917 * to userspace as will fit in the given buffer. 1918 * 1919 * Only write complete records; returning -%ENOSPC if there isn't room 1920 * for a complete record. 1921 * 1922 * Return any error condition that results in a short read such as 1923 * -%ENOSPC or -%EFAULT, even though these may be squashed before 1924 * returning to userspace. 1925 */ 1926 int (*read)(struct i915_perf_stream *stream, 1927 char __user *buf, 1928 size_t count, 1929 size_t *offset); 1930 1931 /** 1932 * @destroy: Cleanup any stream specific resources. 1933 * 1934 * The stream will always be disabled before this is called. 1935 */ 1936 void (*destroy)(struct i915_perf_stream *stream); 1937 }; 1938 1939 /** 1940 * struct i915_perf_stream - state for a single open stream FD 1941 */ 1942 struct i915_perf_stream { 1943 /** 1944 * @dev_priv: i915 drm device 1945 */ 1946 struct drm_i915_private *dev_priv; 1947 1948 /** 1949 * @link: Links the stream into ``&drm_i915_private->streams`` 1950 */ 1951 struct list_head link; 1952 1953 /** 1954 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*` 1955 * properties given when opening a stream, representing the contents 1956 * of a single sample as read() by userspace. 1957 */ 1958 u32 sample_flags; 1959 1960 /** 1961 * @sample_size: Considering the configured contents of a sample 1962 * combined with the required header size, this is the total size 1963 * of a single sample record. 1964 */ 1965 int sample_size; 1966 1967 /** 1968 * @ctx: %NULL if measuring system-wide across all contexts or a 1969 * specific context that is being monitored. 1970 */ 1971 struct i915_gem_context *ctx; 1972 1973 /** 1974 * @enabled: Whether the stream is currently enabled, considering 1975 * whether the stream was opened in a disabled state and based 1976 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls. 1977 */ 1978 bool enabled; 1979 1980 /** 1981 * @ops: The callbacks providing the implementation of this specific 1982 * type of configured stream. 1983 */ 1984 const struct i915_perf_stream_ops *ops; 1985 }; 1986 1987 /** 1988 * struct i915_oa_ops - Gen specific implementation of an OA unit stream 1989 */ 1990 struct i915_oa_ops { 1991 /** 1992 * @init_oa_buffer: Resets the head and tail pointers of the 1993 * circular buffer for periodic OA reports. 1994 * 1995 * Called when first opening a stream for OA metrics, but also may be 1996 * called in response to an OA buffer overflow or other error 1997 * condition. 1998 * 1999 * Note it may be necessary to clear the full OA buffer here as part of 2000 * maintaining the invariable that new reports must be written to 2001 * zeroed memory for us to be able to reliable detect if an expected 2002 * report has not yet landed in memory. (At least on Haswell the OA 2003 * buffer tail pointer is not synchronized with reports being visible 2004 * to the CPU) 2005 */ 2006 void (*init_oa_buffer)(struct drm_i915_private *dev_priv); 2007 2008 /** 2009 * @enable_metric_set: Applies any MUX configuration to set up the 2010 * Boolean and Custom (B/C) counters that are part of the counter 2011 * reports being sampled. May apply system constraints such as 2012 * disabling EU clock gating as required. 2013 */ 2014 int (*enable_metric_set)(struct drm_i915_private *dev_priv); 2015 2016 /** 2017 * @disable_metric_set: Remove system constraints associated with using 2018 * the OA unit. 2019 */ 2020 void (*disable_metric_set)(struct drm_i915_private *dev_priv); 2021 2022 /** 2023 * @oa_enable: Enable periodic sampling 2024 */ 2025 void (*oa_enable)(struct drm_i915_private *dev_priv); 2026 2027 /** 2028 * @oa_disable: Disable periodic sampling 2029 */ 2030 void (*oa_disable)(struct drm_i915_private *dev_priv); 2031 2032 /** 2033 * @read: Copy data from the circular OA buffer into a given userspace 2034 * buffer. 2035 */ 2036 int (*read)(struct i915_perf_stream *stream, 2037 char __user *buf, 2038 size_t count, 2039 size_t *offset); 2040 2041 /** 2042 * @oa_buffer_is_empty: Check if OA buffer empty (false positives OK) 2043 * 2044 * This is either called via fops or the poll check hrtimer (atomic 2045 * ctx) without any locks taken. 2046 * 2047 * It's safe to read OA config state here unlocked, assuming that this 2048 * is only called while the stream is enabled, while the global OA 2049 * configuration can't be modified. 2050 * 2051 * Efficiency is more important than avoiding some false positives 2052 * here, which will be handled gracefully - likely resulting in an 2053 * %EAGAIN error for userspace. 2054 */ 2055 bool (*oa_buffer_is_empty)(struct drm_i915_private *dev_priv); 2056 }; 2057 2058 struct drm_i915_private { 2059 struct drm_device drm; 2060 2061 struct kmem_cache *objects; 2062 struct kmem_cache *vmas; 2063 struct kmem_cache *requests; 2064 struct kmem_cache *dependencies; 2065 2066 const struct intel_device_info info; 2067 2068 void __iomem *regs; 2069 2070 struct intel_uncore uncore; 2071 2072 struct i915_virtual_gpu vgpu; 2073 2074 struct intel_gvt *gvt; 2075 2076 struct intel_huc huc; 2077 struct intel_guc guc; 2078 2079 struct intel_csr csr; 2080 2081 struct intel_gmbus gmbus[GMBUS_NUM_PINS]; 2082 2083 /** gmbus_mutex protects against concurrent usage of the single hw gmbus 2084 * controller on different i2c buses. */ 2085 struct mutex gmbus_mutex; 2086 2087 /** 2088 * Base address of the gmbus and gpio block. 2089 */ 2090 uint32_t gpio_mmio_base; 2091 2092 /* MMIO base address for MIPI regs */ 2093 uint32_t mipi_mmio_base; 2094 2095 uint32_t psr_mmio_base; 2096 2097 uint32_t pps_mmio_base; 2098 2099 wait_queue_head_t gmbus_wait_queue; 2100 2101 struct pci_dev *bridge_dev; 2102 struct i915_gem_context *kernel_context; 2103 struct intel_engine_cs *engine[I915_NUM_ENGINES]; 2104 struct i915_vma *semaphore; 2105 2106 struct drm_dma_handle *status_page_dmah; 2107 struct resource mch_res; 2108 2109 /* protects the irq masks */ 2110 spinlock_t irq_lock; 2111 2112 /* protects the mmio flip data */ 2113 spinlock_t mmio_flip_lock; 2114 2115 bool display_irqs_enabled; 2116 2117 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */ 2118 struct pm_qos_request pm_qos; 2119 2120 /* Sideband mailbox protection */ 2121 struct mutex sb_lock; 2122 2123 /** Cached value of IMR to avoid reads in updating the bitfield */ 2124 union { 2125 u32 irq_mask; 2126 u32 de_irq_mask[I915_MAX_PIPES]; 2127 }; 2128 u32 gt_irq_mask; 2129 u32 pm_imr; 2130 u32 pm_ier; 2131 u32 pm_rps_events; 2132 u32 pm_guc_events; 2133 u32 pipestat_irq_mask[I915_MAX_PIPES]; 2134 2135 struct i915_hotplug hotplug; 2136 struct intel_fbc fbc; 2137 struct i915_drrs drrs; 2138 struct intel_opregion opregion; 2139 struct intel_vbt_data vbt; 2140 2141 bool preserve_bios_swizzle; 2142 2143 /* overlay */ 2144 struct intel_overlay *overlay; 2145 2146 /* backlight registers and fields in struct intel_panel */ 2147 struct mutex backlight_lock; 2148 2149 /* LVDS info */ 2150 bool no_aux_handshake; 2151 2152 /* protects panel power sequencer state */ 2153 struct mutex pps_mutex; 2154 2155 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */ 2156 int num_fence_regs; /* 8 on pre-965, 16 otherwise */ 2157 2158 unsigned int fsb_freq, mem_freq, is_ddr3; 2159 unsigned int skl_preferred_vco_freq; 2160 unsigned int cdclk_freq, max_cdclk_freq; 2161 2162 /* 2163 * For reading holding any crtc lock is sufficient, 2164 * for writing must hold all of them. 2165 */ 2166 unsigned int atomic_cdclk_freq; 2167 2168 unsigned int max_dotclk_freq; 2169 unsigned int rawclk_freq; 2170 unsigned int hpll_freq; 2171 unsigned int czclk_freq; 2172 2173 struct { 2174 unsigned int vco, ref; 2175 } cdclk_pll; 2176 2177 /** 2178 * wq - Driver workqueue for GEM. 2179 * 2180 * NOTE: Work items scheduled here are not allowed to grab any modeset 2181 * locks, for otherwise the flushing done in the pageflip code will 2182 * result in deadlocks. 2183 */ 2184 struct workqueue_struct *wq; 2185 2186 /* Display functions */ 2187 struct drm_i915_display_funcs display; 2188 2189 /* PCH chipset type */ 2190 enum intel_pch pch_type; 2191 unsigned short pch_id; 2192 2193 unsigned long quirks; 2194 2195 enum modeset_restore modeset_restore; 2196 struct mutex modeset_restore_lock; 2197 struct drm_atomic_state *modeset_restore_state; 2198 struct drm_modeset_acquire_ctx reset_ctx; 2199 2200 struct list_head vm_list; /* Global list of all address spaces */ 2201 struct i915_ggtt ggtt; /* VM representing the global address space */ 2202 2203 struct i915_gem_mm mm; 2204 DECLARE_HASHTABLE(mm_structs, 7); 2205 struct mutex mm_lock; 2206 2207 /* The hw wants to have a stable context identifier for the lifetime 2208 * of the context (for OA, PASID, faults, etc). This is limited 2209 * in execlists to 21 bits. 2210 */ 2211 struct ida context_hw_ida; 2212 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */ 2213 2214 /* Kernel Modesetting */ 2215 2216 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES]; 2217 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES]; 2218 wait_queue_head_t pending_flip_queue; 2219 2220 #ifdef CONFIG_DEBUG_FS 2221 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES]; 2222 #endif 2223 2224 /* dpll and cdclk state is protected by connection_mutex */ 2225 int num_shared_dpll; 2226 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS]; 2227 const struct intel_dpll_mgr *dpll_mgr; 2228 2229 /* 2230 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll. 2231 * Must be global rather than per dpll, because on some platforms 2232 * plls share registers. 2233 */ 2234 struct mutex dpll_lock; 2235 2236 unsigned int active_crtcs; 2237 unsigned int min_pixclk[I915_MAX_PIPES]; 2238 2239 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV]; 2240 2241 struct i915_workarounds workarounds; 2242 2243 struct i915_frontbuffer_tracking fb_tracking; 2244 2245 struct intel_atomic_helper { 2246 struct llist_head free_list; 2247 struct work_struct free_work; 2248 } atomic_helper; 2249 2250 u16 orig_clock; 2251 2252 bool mchbar_need_disable; 2253 2254 struct intel_l3_parity l3_parity; 2255 2256 /* Cannot be determined by PCIID. You must always read a register. */ 2257 u32 edram_cap; 2258 2259 /* gen6+ rps state */ 2260 struct intel_gen6_power_mgmt rps; 2261 2262 /* ilk-only ips/rps state. Everything in here is protected by the global 2263 * mchdev_lock in intel_pm.c */ 2264 struct intel_ilk_power_mgmt ips; 2265 2266 struct i915_power_domains power_domains; 2267 2268 struct i915_psr psr; 2269 2270 struct i915_gpu_error gpu_error; 2271 2272 struct drm_i915_gem_object *vlv_pctx; 2273 2274 #ifdef CONFIG_DRM_FBDEV_EMULATION 2275 /* list of fbdev register on this device */ 2276 struct intel_fbdev *fbdev; 2277 struct work_struct fbdev_suspend_work; 2278 #endif 2279 2280 struct drm_property *broadcast_rgb_property; 2281 struct drm_property *force_audio_property; 2282 2283 /* hda/i915 audio component */ 2284 struct i915_audio_component *audio_component; 2285 bool audio_component_registered; 2286 /** 2287 * av_mutex - mutex for audio/video sync 2288 * 2289 */ 2290 struct mutex av_mutex; 2291 2292 uint32_t hw_context_size; 2293 struct list_head context_list; 2294 2295 u32 fdi_rx_config; 2296 2297 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */ 2298 u32 chv_phy_control; 2299 /* 2300 * Shadows for CHV DPLL_MD regs to keep the state 2301 * checker somewhat working in the presence hardware 2302 * crappiness (can't read out DPLL_MD for pipes B & C). 2303 */ 2304 u32 chv_dpll_md[I915_MAX_PIPES]; 2305 u32 bxt_phy_grc; 2306 2307 u32 suspend_count; 2308 bool suspended_to_idle; 2309 struct i915_suspend_saved_registers regfile; 2310 struct vlv_s0ix_state vlv_s0ix_state; 2311 2312 enum { 2313 I915_SAGV_UNKNOWN = 0, 2314 I915_SAGV_DISABLED, 2315 I915_SAGV_ENABLED, 2316 I915_SAGV_NOT_CONTROLLED 2317 } sagv_status; 2318 2319 struct { 2320 /* protects DSPARB registers on pre-g4x/vlv/chv */ 2321 spinlock_t dsparb_lock; 2322 2323 /* 2324 * Raw watermark latency values: 2325 * in 0.1us units for WM0, 2326 * in 0.5us units for WM1+. 2327 */ 2328 /* primary */ 2329 uint16_t pri_latency[5]; 2330 /* sprite */ 2331 uint16_t spr_latency[5]; 2332 /* cursor */ 2333 uint16_t cur_latency[5]; 2334 /* 2335 * Raw watermark memory latency values 2336 * for SKL for all 8 levels 2337 * in 1us units. 2338 */ 2339 uint16_t skl_latency[8]; 2340 2341 /* current hardware state */ 2342 union { 2343 struct ilk_wm_values hw; 2344 struct skl_wm_values skl_hw; 2345 struct vlv_wm_values vlv; 2346 }; 2347 2348 uint8_t max_level; 2349 2350 /* 2351 * Should be held around atomic WM register writing; also 2352 * protects * intel_crtc->wm.active and 2353 * cstate->wm.need_postvbl_update. 2354 */ 2355 struct mutex wm_mutex; 2356 2357 /* 2358 * Set during HW readout of watermarks/DDB. Some platforms 2359 * need to know when we're still using BIOS-provided values 2360 * (which we don't fully trust). 2361 */ 2362 bool distrust_bios_wm; 2363 } wm; 2364 2365 struct i915_runtime_pm pm; 2366 2367 struct { 2368 bool initialized; 2369 2370 struct kobject *metrics_kobj; 2371 struct ctl_table_header *sysctl_header; 2372 2373 struct mutex lock; 2374 struct list_head streams; 2375 2376 spinlock_t hook_lock; 2377 2378 struct { 2379 struct i915_perf_stream *exclusive_stream; 2380 2381 u32 specific_ctx_id; 2382 2383 struct hrtimer poll_check_timer; 2384 wait_queue_head_t poll_wq; 2385 bool pollin; 2386 2387 bool periodic; 2388 int period_exponent; 2389 int timestamp_frequency; 2390 2391 int tail_margin; 2392 2393 int metrics_set; 2394 2395 const struct i915_oa_reg *mux_regs; 2396 int mux_regs_len; 2397 const struct i915_oa_reg *b_counter_regs; 2398 int b_counter_regs_len; 2399 2400 struct { 2401 struct i915_vma *vma; 2402 u8 *vaddr; 2403 int format; 2404 int format_size; 2405 } oa_buffer; 2406 2407 u32 gen7_latched_oastatus1; 2408 2409 struct i915_oa_ops ops; 2410 const struct i915_oa_format *oa_formats; 2411 int n_builtin_sets; 2412 } oa; 2413 } perf; 2414 2415 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */ 2416 struct { 2417 void (*resume)(struct drm_i915_private *); 2418 void (*cleanup_engine)(struct intel_engine_cs *engine); 2419 2420 struct list_head timelines; 2421 struct i915_gem_timeline global_timeline; 2422 u32 active_requests; 2423 2424 /** 2425 * Is the GPU currently considered idle, or busy executing 2426 * userspace requests? Whilst idle, we allow runtime power 2427 * management to power down the hardware and display clocks. 2428 * In order to reduce the effect on performance, there 2429 * is a slight delay before we do so. 2430 */ 2431 bool awake; 2432 2433 /** 2434 * We leave the user IRQ off as much as possible, 2435 * but this means that requests will finish and never 2436 * be retired once the system goes idle. Set a timer to 2437 * fire periodically while the ring is running. When it 2438 * fires, go retire requests. 2439 */ 2440 struct delayed_work retire_work; 2441 2442 /** 2443 * When we detect an idle GPU, we want to turn on 2444 * powersaving features. So once we see that there 2445 * are no more requests outstanding and no more 2446 * arrive within a small period of time, we fire 2447 * off the idle_work. 2448 */ 2449 struct delayed_work idle_work; 2450 2451 ktime_t last_init_time; 2452 } gt; 2453 2454 /* perform PHY state sanity checks? */ 2455 bool chv_phy_assert[2]; 2456 2457 bool ipc_enabled; 2458 2459 /* Used to save the pipe-to-encoder mapping for audio */ 2460 struct intel_encoder *av_enc_map[I915_MAX_PIPES]; 2461 2462 /* necessary resource sharing with HDMI LPE audio driver. */ 2463 struct { 2464 struct platform_device *platdev; 2465 int irq; 2466 } lpe_audio; 2467 2468 /* 2469 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch 2470 * will be rejected. Instead look for a better place. 2471 */ 2472 }; 2473 2474 static inline struct drm_i915_private *to_i915(const struct drm_device *dev) 2475 { 2476 return container_of(dev, struct drm_i915_private, drm); 2477 } 2478 2479 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev) 2480 { 2481 return to_i915(dev_get_drvdata(kdev)); 2482 } 2483 2484 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc) 2485 { 2486 return container_of(guc, struct drm_i915_private, guc); 2487 } 2488 2489 /* Simple iterator over all initialised engines */ 2490 #define for_each_engine(engine__, dev_priv__, id__) \ 2491 for ((id__) = 0; \ 2492 (id__) < I915_NUM_ENGINES; \ 2493 (id__)++) \ 2494 for_each_if ((engine__) = (dev_priv__)->engine[(id__)]) 2495 2496 #define __mask_next_bit(mask) ({ \ 2497 int __idx = ffs(mask) - 1; \ 2498 mask &= ~BIT(__idx); \ 2499 __idx; \ 2500 }) 2501 2502 /* Iterator over subset of engines selected by mask */ 2503 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \ 2504 for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask; \ 2505 tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; ) 2506 2507 enum hdmi_force_audio { 2508 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */ 2509 HDMI_AUDIO_OFF, /* force turn off HDMI audio */ 2510 HDMI_AUDIO_AUTO, /* trust EDID */ 2511 HDMI_AUDIO_ON, /* force turn on HDMI audio */ 2512 }; 2513 2514 #define I915_GTT_OFFSET_NONE ((u32)-1) 2515 2516 /* 2517 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is 2518 * considered to be the frontbuffer for the given plane interface-wise. This 2519 * doesn't mean that the hw necessarily already scans it out, but that any 2520 * rendering (by the cpu or gpu) will land in the frontbuffer eventually. 2521 * 2522 * We have one bit per pipe and per scanout plane type. 2523 */ 2524 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5 2525 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8 2526 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \ 2527 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))) 2528 #define INTEL_FRONTBUFFER_CURSOR(pipe) \ 2529 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))) 2530 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \ 2531 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))) 2532 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \ 2533 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))) 2534 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \ 2535 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))) 2536 2537 /* 2538 * Optimised SGL iterator for GEM objects 2539 */ 2540 static __always_inline struct sgt_iter { 2541 struct scatterlist *sgp; 2542 union { 2543 unsigned long pfn; 2544 dma_addr_t dma; 2545 }; 2546 unsigned int curr; 2547 unsigned int max; 2548 } __sgt_iter(struct scatterlist *sgl, bool dma) { 2549 struct sgt_iter s = { .sgp = sgl }; 2550 2551 if (s.sgp) { 2552 s.max = s.curr = s.sgp->offset; 2553 s.max += s.sgp->length; 2554 if (dma) 2555 s.dma = sg_dma_address(s.sgp); 2556 else 2557 s.pfn = page_to_pfn(sg_page(s.sgp)); 2558 } 2559 2560 return s; 2561 } 2562 2563 static inline struct scatterlist *____sg_next(struct scatterlist *sg) 2564 { 2565 ++sg; 2566 if (unlikely(sg_is_chain(sg))) 2567 sg = sg_chain_ptr(sg); 2568 return sg; 2569 } 2570 2571 /** 2572 * __sg_next - return the next scatterlist entry in a list 2573 * @sg: The current sg entry 2574 * 2575 * Description: 2576 * If the entry is the last, return NULL; otherwise, step to the next 2577 * element in the array (@sg@+1). If that's a chain pointer, follow it; 2578 * otherwise just return the pointer to the current element. 2579 **/ 2580 static inline struct scatterlist *__sg_next(struct scatterlist *sg) 2581 { 2582 #ifdef CONFIG_DEBUG_SG 2583 BUG_ON(sg->sg_magic != SG_MAGIC); 2584 #endif 2585 return sg_is_last(sg) ? NULL : ____sg_next(sg); 2586 } 2587 2588 /** 2589 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table 2590 * @__dmap: DMA address (output) 2591 * @__iter: 'struct sgt_iter' (iterator state, internal) 2592 * @__sgt: sg_table to iterate over (input) 2593 */ 2594 #define for_each_sgt_dma(__dmap, __iter, __sgt) \ 2595 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \ 2596 ((__dmap) = (__iter).dma + (__iter).curr); \ 2597 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \ 2598 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0)) 2599 2600 /** 2601 * for_each_sgt_page - iterate over the pages of the given sg_table 2602 * @__pp: page pointer (output) 2603 * @__iter: 'struct sgt_iter' (iterator state, internal) 2604 * @__sgt: sg_table to iterate over (input) 2605 */ 2606 #define for_each_sgt_page(__pp, __iter, __sgt) \ 2607 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \ 2608 ((__pp) = (__iter).pfn == 0 ? NULL : \ 2609 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \ 2610 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \ 2611 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0)) 2612 2613 static inline const struct intel_device_info * 2614 intel_info(const struct drm_i915_private *dev_priv) 2615 { 2616 return &dev_priv->info; 2617 } 2618 2619 #define INTEL_INFO(dev_priv) intel_info((dev_priv)) 2620 2621 #define INTEL_GEN(dev_priv) ((dev_priv)->info.gen) 2622 #define INTEL_DEVID(dev_priv) ((dev_priv)->info.device_id) 2623 2624 #define REVID_FOREVER 0xff 2625 #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision) 2626 2627 #define GEN_FOREVER (0) 2628 /* 2629 * Returns true if Gen is in inclusive range [Start, End]. 2630 * 2631 * Use GEN_FOREVER for unbound start and or end. 2632 */ 2633 #define IS_GEN(dev_priv, s, e) ({ \ 2634 unsigned int __s = (s), __e = (e); \ 2635 BUILD_BUG_ON(!__builtin_constant_p(s)); \ 2636 BUILD_BUG_ON(!__builtin_constant_p(e)); \ 2637 if ((__s) != GEN_FOREVER) \ 2638 __s = (s) - 1; \ 2639 if ((__e) == GEN_FOREVER) \ 2640 __e = BITS_PER_LONG - 1; \ 2641 else \ 2642 __e = (e) - 1; \ 2643 !!((dev_priv)->info.gen_mask & GENMASK((__e), (__s))); \ 2644 }) 2645 2646 /* 2647 * Return true if revision is in range [since,until] inclusive. 2648 * 2649 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until. 2650 */ 2651 #define IS_REVID(p, since, until) \ 2652 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until)) 2653 2654 #define IS_I830(dev_priv) ((dev_priv)->info.platform == INTEL_I830) 2655 #define IS_I845G(dev_priv) ((dev_priv)->info.platform == INTEL_I845G) 2656 #define IS_I85X(dev_priv) ((dev_priv)->info.platform == INTEL_I85X) 2657 #define IS_I865G(dev_priv) ((dev_priv)->info.platform == INTEL_I865G) 2658 #define IS_I915G(dev_priv) ((dev_priv)->info.platform == INTEL_I915G) 2659 #define IS_I915GM(dev_priv) ((dev_priv)->info.platform == INTEL_I915GM) 2660 #define IS_I945G(dev_priv) ((dev_priv)->info.platform == INTEL_I945G) 2661 #define IS_I945GM(dev_priv) ((dev_priv)->info.platform == INTEL_I945GM) 2662 #define IS_I965G(dev_priv) ((dev_priv)->info.platform == INTEL_I965G) 2663 #define IS_I965GM(dev_priv) ((dev_priv)->info.platform == INTEL_I965GM) 2664 #define IS_G45(dev_priv) ((dev_priv)->info.platform == INTEL_G45) 2665 #define IS_GM45(dev_priv) ((dev_priv)->info.platform == INTEL_GM45) 2666 #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv)) 2667 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001) 2668 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011) 2669 #define IS_PINEVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_PINEVIEW) 2670 #define IS_G33(dev_priv) ((dev_priv)->info.platform == INTEL_G33) 2671 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046) 2672 #define IS_IVYBRIDGE(dev_priv) ((dev_priv)->info.platform == INTEL_IVYBRIDGE) 2673 #define IS_IVB_GT1(dev_priv) (INTEL_DEVID(dev_priv) == 0x0156 || \ 2674 INTEL_DEVID(dev_priv) == 0x0152 || \ 2675 INTEL_DEVID(dev_priv) == 0x015a) 2676 #define IS_VALLEYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_VALLEYVIEW) 2677 #define IS_CHERRYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_CHERRYVIEW) 2678 #define IS_HASWELL(dev_priv) ((dev_priv)->info.platform == INTEL_HASWELL) 2679 #define IS_BROADWELL(dev_priv) ((dev_priv)->info.platform == INTEL_BROADWELL) 2680 #define IS_SKYLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_SKYLAKE) 2681 #define IS_BROXTON(dev_priv) ((dev_priv)->info.platform == INTEL_BROXTON) 2682 #define IS_KABYLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_KABYLAKE) 2683 #define IS_GEMINILAKE(dev_priv) ((dev_priv)->info.platform == INTEL_GEMINILAKE) 2684 #define IS_MOBILE(dev_priv) ((dev_priv)->info.is_mobile) 2685 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \ 2686 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00) 2687 #define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \ 2688 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \ 2689 (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \ 2690 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)) 2691 /* ULX machines are also considered ULT. */ 2692 #define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \ 2693 (INTEL_DEVID(dev_priv) & 0xf) == 0xe) 2694 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \ 2695 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020) 2696 #define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \ 2697 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00) 2698 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \ 2699 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020) 2700 /* ULX machines are also considered ULT. */ 2701 #define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \ 2702 INTEL_DEVID(dev_priv) == 0x0A1E) 2703 #define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \ 2704 INTEL_DEVID(dev_priv) == 0x1913 || \ 2705 INTEL_DEVID(dev_priv) == 0x1916 || \ 2706 INTEL_DEVID(dev_priv) == 0x1921 || \ 2707 INTEL_DEVID(dev_priv) == 0x1926) 2708 #define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \ 2709 INTEL_DEVID(dev_priv) == 0x1915 || \ 2710 INTEL_DEVID(dev_priv) == 0x191E) 2711 #define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \ 2712 INTEL_DEVID(dev_priv) == 0x5913 || \ 2713 INTEL_DEVID(dev_priv) == 0x5916 || \ 2714 INTEL_DEVID(dev_priv) == 0x5921 || \ 2715 INTEL_DEVID(dev_priv) == 0x5926) 2716 #define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \ 2717 INTEL_DEVID(dev_priv) == 0x5915 || \ 2718 INTEL_DEVID(dev_priv) == 0x591E) 2719 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2720 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020) 2721 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2722 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0030) 2723 2724 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support) 2725 2726 #define SKL_REVID_A0 0x0 2727 #define SKL_REVID_B0 0x1 2728 #define SKL_REVID_C0 0x2 2729 #define SKL_REVID_D0 0x3 2730 #define SKL_REVID_E0 0x4 2731 #define SKL_REVID_F0 0x5 2732 #define SKL_REVID_G0 0x6 2733 #define SKL_REVID_H0 0x7 2734 2735 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until)) 2736 2737 #define BXT_REVID_A0 0x0 2738 #define BXT_REVID_A1 0x1 2739 #define BXT_REVID_B0 0x3 2740 #define BXT_REVID_B_LAST 0x8 2741 #define BXT_REVID_C0 0x9 2742 2743 #define IS_BXT_REVID(dev_priv, since, until) \ 2744 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until)) 2745 2746 #define KBL_REVID_A0 0x0 2747 #define KBL_REVID_B0 0x1 2748 #define KBL_REVID_C0 0x2 2749 #define KBL_REVID_D0 0x3 2750 #define KBL_REVID_E0 0x4 2751 2752 #define IS_KBL_REVID(dev_priv, since, until) \ 2753 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until)) 2754 2755 /* 2756 * The genX designation typically refers to the render engine, so render 2757 * capability related checks should use IS_GEN, while display and other checks 2758 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular 2759 * chips, etc.). 2760 */ 2761 #define IS_GEN2(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(1))) 2762 #define IS_GEN3(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(2))) 2763 #define IS_GEN4(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(3))) 2764 #define IS_GEN5(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(4))) 2765 #define IS_GEN6(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(5))) 2766 #define IS_GEN7(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(6))) 2767 #define IS_GEN8(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(7))) 2768 #define IS_GEN9(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(8))) 2769 2770 #define IS_GEN9_LP(dev_priv) (IS_GEN9(dev_priv) && INTEL_INFO(dev_priv)->is_lp) 2771 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp) 2772 2773 #define ENGINE_MASK(id) BIT(id) 2774 #define RENDER_RING ENGINE_MASK(RCS) 2775 #define BSD_RING ENGINE_MASK(VCS) 2776 #define BLT_RING ENGINE_MASK(BCS) 2777 #define VEBOX_RING ENGINE_MASK(VECS) 2778 #define BSD2_RING ENGINE_MASK(VCS2) 2779 #define ALL_ENGINES (~0) 2780 2781 #define HAS_ENGINE(dev_priv, id) \ 2782 (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id))) 2783 2784 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS) 2785 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2) 2786 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS) 2787 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS) 2788 2789 #define HAS_LLC(dev_priv) ((dev_priv)->info.has_llc) 2790 #define HAS_SNOOP(dev_priv) ((dev_priv)->info.has_snoop) 2791 #define HAS_EDRAM(dev_priv) (!!((dev_priv)->edram_cap & EDRAM_ENABLED)) 2792 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \ 2793 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv)) 2794 2795 #define HWS_NEEDS_PHYSICAL(dev_priv) ((dev_priv)->info.hws_needs_physical) 2796 2797 #define HAS_HW_CONTEXTS(dev_priv) ((dev_priv)->info.has_hw_contexts) 2798 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \ 2799 ((dev_priv)->info.has_logical_ring_contexts) 2800 #define USES_PPGTT(dev_priv) (i915.enable_ppgtt) 2801 #define USES_FULL_PPGTT(dev_priv) (i915.enable_ppgtt >= 2) 2802 #define USES_FULL_48BIT_PPGTT(dev_priv) (i915.enable_ppgtt == 3) 2803 2804 #define HAS_OVERLAY(dev_priv) ((dev_priv)->info.has_overlay) 2805 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \ 2806 ((dev_priv)->info.overlay_needs_physical) 2807 2808 /* Early gen2 have a totally busted CS tlb and require pinned batches. */ 2809 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv)) 2810 2811 /* WaRsDisableCoarsePowerGating:skl,bxt */ 2812 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \ 2813 (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) || \ 2814 IS_SKL_GT3(dev_priv) || \ 2815 IS_SKL_GT4(dev_priv)) 2816 2817 /* 2818 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts 2819 * even when in MSI mode. This results in spurious interrupt warnings if the 2820 * legacy irq no. is shared with another device. The kernel then disables that 2821 * interrupt source and so prevents the other device from working properly. 2822 */ 2823 #define HAS_AUX_IRQ(dev_priv) ((dev_priv)->info.gen >= 5) 2824 #define HAS_GMBUS_IRQ(dev_priv) ((dev_priv)->info.has_gmbus_irq) 2825 2826 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte 2827 * rows, which changed the alignment requirements and fence programming. 2828 */ 2829 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \ 2830 !(IS_I915G(dev_priv) || \ 2831 IS_I915GM(dev_priv))) 2832 #define SUPPORTS_TV(dev_priv) ((dev_priv)->info.supports_tv) 2833 #define I915_HAS_HOTPLUG(dev_priv) ((dev_priv)->info.has_hotplug) 2834 2835 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2) 2836 #define HAS_PIPE_CXSR(dev_priv) ((dev_priv)->info.has_pipe_cxsr) 2837 #define HAS_FBC(dev_priv) ((dev_priv)->info.has_fbc) 2838 2839 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv)) 2840 2841 #define HAS_DP_MST(dev_priv) ((dev_priv)->info.has_dp_mst) 2842 2843 #define HAS_DDI(dev_priv) ((dev_priv)->info.has_ddi) 2844 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg) 2845 #define HAS_PSR(dev_priv) ((dev_priv)->info.has_psr) 2846 #define HAS_RC6(dev_priv) ((dev_priv)->info.has_rc6) 2847 #define HAS_RC6p(dev_priv) ((dev_priv)->info.has_rc6p) 2848 2849 #define HAS_CSR(dev_priv) ((dev_priv)->info.has_csr) 2850 2851 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm) 2852 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc) 2853 2854 /* 2855 * For now, anything with a GuC requires uCode loading, and then supports 2856 * command submission once loaded. But these are logically independent 2857 * properties, so we have separate macros to test them. 2858 */ 2859 #define HAS_GUC(dev_priv) ((dev_priv)->info.has_guc) 2860 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv)) 2861 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv)) 2862 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv)) 2863 2864 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer) 2865 2866 #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu) 2867 2868 #define INTEL_PCH_DEVICE_ID_MASK 0xff00 2869 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00 2870 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00 2871 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00 2872 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00 2873 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00 2874 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100 2875 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00 2876 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA200 2877 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100 2878 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000 2879 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */ 2880 2881 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type) 2882 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP) 2883 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT) 2884 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT) 2885 #define HAS_PCH_LPT_LP(dev_priv) \ 2886 ((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) 2887 #define HAS_PCH_LPT_H(dev_priv) \ 2888 ((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) 2889 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT) 2890 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX) 2891 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP) 2892 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE) 2893 2894 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display) 2895 2896 #define HAS_LSPCON(dev_priv) (IS_GEN9(dev_priv)) 2897 2898 /* DPF == dynamic parity feature */ 2899 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf) 2900 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \ 2901 2 : HAS_L3_DPF(dev_priv)) 2902 2903 #define GT_FREQUENCY_MULTIPLIER 50 2904 #define GEN9_FREQ_SCALER 3 2905 2906 #define HAS_DECOUPLED_MMIO(dev_priv) (INTEL_INFO(dev_priv)->has_decoupled_mmio) 2907 2908 #include "i915_trace.h" 2909 2910 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv) 2911 { 2912 #ifdef CONFIG_INTEL_IOMMU 2913 if (INTEL_GEN(dev_priv) >= 6 && intel_iommu_gfx_mapped) 2914 return true; 2915 #endif 2916 return false; 2917 } 2918 2919 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv, 2920 int enable_ppgtt); 2921 2922 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value); 2923 2924 /* i915_drv.c */ 2925 void __printf(3, 4) 2926 __i915_printk(struct drm_i915_private *dev_priv, const char *level, 2927 const char *fmt, ...); 2928 2929 #define i915_report_error(dev_priv, fmt, ...) \ 2930 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__) 2931 2932 #ifdef CONFIG_COMPAT 2933 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd, 2934 unsigned long arg); 2935 #else 2936 #define i915_compat_ioctl NULL 2937 #endif 2938 extern const struct dev_pm_ops i915_pm_ops; 2939 2940 extern int i915_driver_load(struct pci_dev *pdev, 2941 const struct pci_device_id *ent); 2942 extern void i915_driver_unload(struct drm_device *dev); 2943 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask); 2944 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv); 2945 extern void i915_reset(struct drm_i915_private *dev_priv); 2946 extern int intel_guc_reset(struct drm_i915_private *dev_priv); 2947 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine); 2948 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv); 2949 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv); 2950 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv); 2951 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv); 2952 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv); 2953 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on); 2954 2955 /* intel_hotplug.c */ 2956 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv, 2957 u32 pin_mask, u32 long_mask); 2958 void intel_hpd_init(struct drm_i915_private *dev_priv); 2959 void intel_hpd_init_work(struct drm_i915_private *dev_priv); 2960 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv); 2961 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port); 2962 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin); 2963 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin); 2964 2965 /* i915_irq.c */ 2966 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv) 2967 { 2968 unsigned long delay; 2969 2970 if (unlikely(!i915.enable_hangcheck)) 2971 return; 2972 2973 /* Don't continually defer the hangcheck so that it is always run at 2974 * least once after work has been scheduled on any ring. Otherwise, 2975 * we will ignore a hung ring if a second ring is kept busy. 2976 */ 2977 2978 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES); 2979 queue_delayed_work(system_long_wq, 2980 &dev_priv->gpu_error.hangcheck_work, delay); 2981 } 2982 2983 __printf(3, 4) 2984 void i915_handle_error(struct drm_i915_private *dev_priv, 2985 u32 engine_mask, 2986 const char *fmt, ...); 2987 2988 extern void intel_irq_init(struct drm_i915_private *dev_priv); 2989 int intel_irq_install(struct drm_i915_private *dev_priv); 2990 void intel_irq_uninstall(struct drm_i915_private *dev_priv); 2991 2992 extern void intel_uncore_sanitize(struct drm_i915_private *dev_priv); 2993 extern void intel_uncore_early_sanitize(struct drm_i915_private *dev_priv, 2994 bool restore_forcewake); 2995 extern void intel_uncore_init(struct drm_i915_private *dev_priv); 2996 extern bool intel_uncore_unclaimed_mmio(struct drm_i915_private *dev_priv); 2997 extern bool intel_uncore_arm_unclaimed_mmio_detection(struct drm_i915_private *dev_priv); 2998 extern void intel_uncore_fini(struct drm_i915_private *dev_priv); 2999 extern void intel_uncore_forcewake_reset(struct drm_i915_private *dev_priv, 3000 bool restore); 3001 const char *intel_uncore_forcewake_domain_to_str(const enum forcewake_domain_id id); 3002 void intel_uncore_forcewake_get(struct drm_i915_private *dev_priv, 3003 enum forcewake_domains domains); 3004 void intel_uncore_forcewake_put(struct drm_i915_private *dev_priv, 3005 enum forcewake_domains domains); 3006 /* Like above but the caller must manage the uncore.lock itself. 3007 * Must be used with I915_READ_FW and friends. 3008 */ 3009 void intel_uncore_forcewake_get__locked(struct drm_i915_private *dev_priv, 3010 enum forcewake_domains domains); 3011 void intel_uncore_forcewake_put__locked(struct drm_i915_private *dev_priv, 3012 enum forcewake_domains domains); 3013 u64 intel_uncore_edram_size(struct drm_i915_private *dev_priv); 3014 3015 void assert_forcewakes_inactive(struct drm_i915_private *dev_priv); 3016 3017 int intel_wait_for_register(struct drm_i915_private *dev_priv, 3018 i915_reg_t reg, 3019 const u32 mask, 3020 const u32 value, 3021 const unsigned long timeout_ms); 3022 int intel_wait_for_register_fw(struct drm_i915_private *dev_priv, 3023 i915_reg_t reg, 3024 const u32 mask, 3025 const u32 value, 3026 const unsigned long timeout_ms); 3027 3028 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv) 3029 { 3030 return dev_priv->gvt; 3031 } 3032 3033 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv) 3034 { 3035 return dev_priv->vgpu.active; 3036 } 3037 3038 void 3039 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 3040 u32 status_mask); 3041 3042 void 3043 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 3044 u32 status_mask); 3045 3046 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv); 3047 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv); 3048 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv, 3049 uint32_t mask, 3050 uint32_t bits); 3051 void ilk_update_display_irq(struct drm_i915_private *dev_priv, 3052 uint32_t interrupt_mask, 3053 uint32_t enabled_irq_mask); 3054 static inline void 3055 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits) 3056 { 3057 ilk_update_display_irq(dev_priv, bits, bits); 3058 } 3059 static inline void 3060 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits) 3061 { 3062 ilk_update_display_irq(dev_priv, bits, 0); 3063 } 3064 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv, 3065 enum pipe pipe, 3066 uint32_t interrupt_mask, 3067 uint32_t enabled_irq_mask); 3068 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv, 3069 enum pipe pipe, uint32_t bits) 3070 { 3071 bdw_update_pipe_irq(dev_priv, pipe, bits, bits); 3072 } 3073 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv, 3074 enum pipe pipe, uint32_t bits) 3075 { 3076 bdw_update_pipe_irq(dev_priv, pipe, bits, 0); 3077 } 3078 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv, 3079 uint32_t interrupt_mask, 3080 uint32_t enabled_irq_mask); 3081 static inline void 3082 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits) 3083 { 3084 ibx_display_interrupt_update(dev_priv, bits, bits); 3085 } 3086 static inline void 3087 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits) 3088 { 3089 ibx_display_interrupt_update(dev_priv, bits, 0); 3090 } 3091 3092 /* i915_gem.c */ 3093 int i915_gem_create_ioctl(struct drm_device *dev, void *data, 3094 struct drm_file *file_priv); 3095 int i915_gem_pread_ioctl(struct drm_device *dev, void *data, 3096 struct drm_file *file_priv); 3097 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 3098 struct drm_file *file_priv); 3099 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 3100 struct drm_file *file_priv); 3101 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 3102 struct drm_file *file_priv); 3103 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 3104 struct drm_file *file_priv); 3105 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 3106 struct drm_file *file_priv); 3107 int i915_gem_execbuffer(struct drm_device *dev, void *data, 3108 struct drm_file *file_priv); 3109 int i915_gem_execbuffer2(struct drm_device *dev, void *data, 3110 struct drm_file *file_priv); 3111 int i915_gem_busy_ioctl(struct drm_device *dev, void *data, 3112 struct drm_file *file_priv); 3113 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 3114 struct drm_file *file); 3115 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 3116 struct drm_file *file); 3117 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 3118 struct drm_file *file_priv); 3119 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 3120 struct drm_file *file_priv); 3121 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data, 3122 struct drm_file *file_priv); 3123 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data, 3124 struct drm_file *file_priv); 3125 void i915_gem_init_userptr(struct drm_i915_private *dev_priv); 3126 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data, 3127 struct drm_file *file); 3128 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 3129 struct drm_file *file_priv); 3130 int i915_gem_wait_ioctl(struct drm_device *dev, void *data, 3131 struct drm_file *file_priv); 3132 int i915_gem_load_init(struct drm_i915_private *dev_priv); 3133 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv); 3134 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv); 3135 int i915_gem_freeze(struct drm_i915_private *dev_priv); 3136 int i915_gem_freeze_late(struct drm_i915_private *dev_priv); 3137 3138 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv); 3139 void i915_gem_object_free(struct drm_i915_gem_object *obj); 3140 void i915_gem_object_init(struct drm_i915_gem_object *obj, 3141 const struct drm_i915_gem_object_ops *ops); 3142 struct drm_i915_gem_object * 3143 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size); 3144 struct drm_i915_gem_object * 3145 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv, 3146 const void *data, size_t size); 3147 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file); 3148 void i915_gem_free_object(struct drm_gem_object *obj); 3149 3150 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915) 3151 { 3152 /* A single pass should suffice to release all the freed objects (along 3153 * most call paths) , but be a little more paranoid in that freeing 3154 * the objects does take a little amount of time, during which the rcu 3155 * callbacks could have added new objects into the freed list, and 3156 * armed the work again. 3157 */ 3158 do { 3159 rcu_barrier(); 3160 } while (flush_work(&i915->mm.free_work)); 3161 } 3162 3163 struct i915_vma * __must_check 3164 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, 3165 const struct i915_ggtt_view *view, 3166 u64 size, 3167 u64 alignment, 3168 u64 flags); 3169 3170 int i915_gem_object_unbind(struct drm_i915_gem_object *obj); 3171 void i915_gem_release_mmap(struct drm_i915_gem_object *obj); 3172 3173 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv); 3174 3175 static inline int __sg_page_count(const struct scatterlist *sg) 3176 { 3177 return sg->length >> PAGE_SHIFT; 3178 } 3179 3180 struct scatterlist * 3181 i915_gem_object_get_sg(struct drm_i915_gem_object *obj, 3182 unsigned int n, unsigned int *offset); 3183 3184 struct page * 3185 i915_gem_object_get_page(struct drm_i915_gem_object *obj, 3186 unsigned int n); 3187 3188 struct page * 3189 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, 3190 unsigned int n); 3191 3192 dma_addr_t 3193 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, 3194 unsigned long n); 3195 3196 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj, 3197 struct sg_table *pages); 3198 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj); 3199 3200 static inline int __must_check 3201 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) 3202 { 3203 might_lock(&obj->mm.lock); 3204 3205 if (atomic_inc_not_zero(&obj->mm.pages_pin_count)) 3206 return 0; 3207 3208 return __i915_gem_object_get_pages(obj); 3209 } 3210 3211 static inline void 3212 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) 3213 { 3214 GEM_BUG_ON(!obj->mm.pages); 3215 3216 atomic_inc(&obj->mm.pages_pin_count); 3217 } 3218 3219 static inline bool 3220 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj) 3221 { 3222 return atomic_read(&obj->mm.pages_pin_count); 3223 } 3224 3225 static inline void 3226 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) 3227 { 3228 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 3229 GEM_BUG_ON(!obj->mm.pages); 3230 3231 atomic_dec(&obj->mm.pages_pin_count); 3232 } 3233 3234 static inline void 3235 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) 3236 { 3237 __i915_gem_object_unpin_pages(obj); 3238 } 3239 3240 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */ 3241 I915_MM_NORMAL = 0, 3242 I915_MM_SHRINKER 3243 }; 3244 3245 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj, 3246 enum i915_mm_subclass subclass); 3247 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj); 3248 3249 enum i915_map_type { 3250 I915_MAP_WB = 0, 3251 I915_MAP_WC, 3252 }; 3253 3254 /** 3255 * i915_gem_object_pin_map - return a contiguous mapping of the entire object 3256 * @obj: the object to map into kernel address space 3257 * @type: the type of mapping, used to select pgprot_t 3258 * 3259 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's 3260 * pages and then returns a contiguous mapping of the backing storage into 3261 * the kernel address space. Based on the @type of mapping, the PTE will be 3262 * set to either WriteBack or WriteCombine (via pgprot_t). 3263 * 3264 * The caller is responsible for calling i915_gem_object_unpin_map() when the 3265 * mapping is no longer required. 3266 * 3267 * Returns the pointer through which to access the mapped object, or an 3268 * ERR_PTR() on error. 3269 */ 3270 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj, 3271 enum i915_map_type type); 3272 3273 /** 3274 * i915_gem_object_unpin_map - releases an earlier mapping 3275 * @obj: the object to unmap 3276 * 3277 * After pinning the object and mapping its pages, once you are finished 3278 * with your access, call i915_gem_object_unpin_map() to release the pin 3279 * upon the mapping. Once the pin count reaches zero, that mapping may be 3280 * removed. 3281 */ 3282 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj) 3283 { 3284 i915_gem_object_unpin_pages(obj); 3285 } 3286 3287 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, 3288 unsigned int *needs_clflush); 3289 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj, 3290 unsigned int *needs_clflush); 3291 #define CLFLUSH_BEFORE 0x1 3292 #define CLFLUSH_AFTER 0x2 3293 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER) 3294 3295 static inline void 3296 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj) 3297 { 3298 i915_gem_object_unpin_pages(obj); 3299 } 3300 3301 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev); 3302 void i915_vma_move_to_active(struct i915_vma *vma, 3303 struct drm_i915_gem_request *req, 3304 unsigned int flags); 3305 int i915_gem_dumb_create(struct drm_file *file_priv, 3306 struct drm_device *dev, 3307 struct drm_mode_create_dumb *args); 3308 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev, 3309 uint32_t handle, uint64_t *offset); 3310 int i915_gem_mmap_gtt_version(void); 3311 3312 void i915_gem_track_fb(struct drm_i915_gem_object *old, 3313 struct drm_i915_gem_object *new, 3314 unsigned frontbuffer_bits); 3315 3316 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno); 3317 3318 struct drm_i915_gem_request * 3319 i915_gem_find_active_request(struct intel_engine_cs *engine); 3320 3321 void i915_gem_retire_requests(struct drm_i915_private *dev_priv); 3322 3323 static inline bool i915_reset_in_progress(struct i915_gpu_error *error) 3324 { 3325 return unlikely(test_bit(I915_RESET_IN_PROGRESS, &error->flags)); 3326 } 3327 3328 static inline bool i915_terminally_wedged(struct i915_gpu_error *error) 3329 { 3330 return unlikely(test_bit(I915_WEDGED, &error->flags)); 3331 } 3332 3333 static inline bool i915_reset_in_progress_or_wedged(struct i915_gpu_error *error) 3334 { 3335 return i915_reset_in_progress(error) | i915_terminally_wedged(error); 3336 } 3337 3338 static inline u32 i915_reset_count(struct i915_gpu_error *error) 3339 { 3340 return READ_ONCE(error->reset_count); 3341 } 3342 3343 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv); 3344 void i915_gem_reset(struct drm_i915_private *dev_priv); 3345 void i915_gem_reset_finish(struct drm_i915_private *dev_priv); 3346 void i915_gem_set_wedged(struct drm_i915_private *dev_priv); 3347 void i915_gem_clflush_object(struct drm_i915_gem_object *obj, bool force); 3348 int __must_check i915_gem_init(struct drm_i915_private *dev_priv); 3349 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv); 3350 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv); 3351 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv); 3352 int __must_check i915_gem_wait_for_idle(struct drm_i915_private *dev_priv, 3353 unsigned int flags); 3354 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv); 3355 void i915_gem_resume(struct drm_i915_private *dev_priv); 3356 int i915_gem_fault(struct vm_fault *vmf); 3357 int i915_gem_object_wait(struct drm_i915_gem_object *obj, 3358 unsigned int flags, 3359 long timeout, 3360 struct intel_rps_client *rps); 3361 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj, 3362 unsigned int flags, 3363 int priority); 3364 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX 3365 3366 int __must_check 3367 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, 3368 bool write); 3369 int __must_check 3370 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write); 3371 struct i915_vma * __must_check 3372 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3373 u32 alignment, 3374 const struct i915_ggtt_view *view); 3375 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma); 3376 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, 3377 int align); 3378 int i915_gem_open(struct drm_device *dev, struct drm_file *file); 3379 void i915_gem_release(struct drm_device *dev, struct drm_file *file); 3380 3381 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3382 enum i915_cache_level cache_level); 3383 3384 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev, 3385 struct dma_buf *dma_buf); 3386 3387 struct dma_buf *i915_gem_prime_export(struct drm_device *dev, 3388 struct drm_gem_object *gem_obj, int flags); 3389 3390 static inline struct i915_hw_ppgtt * 3391 i915_vm_to_ppgtt(struct i915_address_space *vm) 3392 { 3393 return container_of(vm, struct i915_hw_ppgtt, base); 3394 } 3395 3396 /* i915_gem_fence_reg.c */ 3397 int __must_check i915_vma_get_fence(struct i915_vma *vma); 3398 int __must_check i915_vma_put_fence(struct i915_vma *vma); 3399 3400 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv); 3401 void i915_gem_restore_fences(struct drm_i915_private *dev_priv); 3402 3403 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv); 3404 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj, 3405 struct sg_table *pages); 3406 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj, 3407 struct sg_table *pages); 3408 3409 static inline struct i915_gem_context * 3410 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id) 3411 { 3412 struct i915_gem_context *ctx; 3413 3414 lockdep_assert_held(&file_priv->dev_priv->drm.struct_mutex); 3415 3416 ctx = idr_find(&file_priv->context_idr, id); 3417 if (!ctx) 3418 return ERR_PTR(-ENOENT); 3419 3420 return ctx; 3421 } 3422 3423 static inline struct i915_gem_context * 3424 i915_gem_context_get(struct i915_gem_context *ctx) 3425 { 3426 kref_get(&ctx->ref); 3427 return ctx; 3428 } 3429 3430 static inline void i915_gem_context_put(struct i915_gem_context *ctx) 3431 { 3432 lockdep_assert_held(&ctx->i915->drm.struct_mutex); 3433 kref_put(&ctx->ref, i915_gem_context_free); 3434 } 3435 3436 static inline void i915_gem_context_put_unlocked(struct i915_gem_context *ctx) 3437 { 3438 struct mutex *lock = &ctx->i915->drm.struct_mutex; 3439 3440 if (kref_put_mutex(&ctx->ref, i915_gem_context_free, lock)) 3441 mutex_unlock(lock); 3442 } 3443 3444 static inline struct intel_timeline * 3445 i915_gem_context_lookup_timeline(struct i915_gem_context *ctx, 3446 struct intel_engine_cs *engine) 3447 { 3448 struct i915_address_space *vm; 3449 3450 vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base; 3451 return &vm->timeline.engine[engine->id]; 3452 } 3453 3454 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 3455 struct drm_file *file); 3456 3457 /* i915_gem_evict.c */ 3458 int __must_check i915_gem_evict_something(struct i915_address_space *vm, 3459 u64 min_size, u64 alignment, 3460 unsigned cache_level, 3461 u64 start, u64 end, 3462 unsigned flags); 3463 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm, 3464 struct drm_mm_node *node, 3465 unsigned int flags); 3466 int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle); 3467 3468 /* belongs in i915_gem_gtt.h */ 3469 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv) 3470 { 3471 wmb(); 3472 if (INTEL_GEN(dev_priv) < 6) 3473 intel_gtt_chipset_flush(); 3474 } 3475 3476 /* i915_gem_stolen.c */ 3477 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv, 3478 struct drm_mm_node *node, u64 size, 3479 unsigned alignment); 3480 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv, 3481 struct drm_mm_node *node, u64 size, 3482 unsigned alignment, u64 start, 3483 u64 end); 3484 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv, 3485 struct drm_mm_node *node); 3486 int i915_gem_init_stolen(struct drm_i915_private *dev_priv); 3487 void i915_gem_cleanup_stolen(struct drm_device *dev); 3488 struct drm_i915_gem_object * 3489 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, u32 size); 3490 struct drm_i915_gem_object * 3491 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv, 3492 u32 stolen_offset, 3493 u32 gtt_offset, 3494 u32 size); 3495 3496 /* i915_gem_internal.c */ 3497 struct drm_i915_gem_object * 3498 i915_gem_object_create_internal(struct drm_i915_private *dev_priv, 3499 phys_addr_t size); 3500 3501 /* i915_gem_shrinker.c */ 3502 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv, 3503 unsigned long target, 3504 unsigned flags); 3505 #define I915_SHRINK_PURGEABLE 0x1 3506 #define I915_SHRINK_UNBOUND 0x2 3507 #define I915_SHRINK_BOUND 0x4 3508 #define I915_SHRINK_ACTIVE 0x8 3509 #define I915_SHRINK_VMAPS 0x10 3510 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv); 3511 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv); 3512 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv); 3513 3514 3515 /* i915_gem_tiling.c */ 3516 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj) 3517 { 3518 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 3519 3520 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 && 3521 i915_gem_object_is_tiled(obj); 3522 } 3523 3524 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size, 3525 unsigned int tiling, unsigned int stride); 3526 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size, 3527 unsigned int tiling, unsigned int stride); 3528 3529 /* i915_debugfs.c */ 3530 #ifdef CONFIG_DEBUG_FS 3531 int i915_debugfs_register(struct drm_i915_private *dev_priv); 3532 void i915_debugfs_unregister(struct drm_i915_private *dev_priv); 3533 int i915_debugfs_connector_add(struct drm_connector *connector); 3534 void intel_display_crc_init(struct drm_i915_private *dev_priv); 3535 #else 3536 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;} 3537 static inline void i915_debugfs_unregister(struct drm_i915_private *dev_priv) {} 3538 static inline int i915_debugfs_connector_add(struct drm_connector *connector) 3539 { return 0; } 3540 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {} 3541 #endif 3542 3543 /* i915_gpu_error.c */ 3544 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 3545 3546 __printf(2, 3) 3547 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...); 3548 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr, 3549 const struct i915_error_state_file_priv *error); 3550 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb, 3551 struct drm_i915_private *i915, 3552 size_t count, loff_t pos); 3553 static inline void i915_error_state_buf_release( 3554 struct drm_i915_error_state_buf *eb) 3555 { 3556 kfree(eb->buf); 3557 } 3558 void i915_capture_error_state(struct drm_i915_private *dev_priv, 3559 u32 engine_mask, 3560 const char *error_msg); 3561 void i915_error_state_get(struct drm_device *dev, 3562 struct i915_error_state_file_priv *error_priv); 3563 void i915_error_state_put(struct i915_error_state_file_priv *error_priv); 3564 void i915_destroy_error_state(struct drm_i915_private *dev_priv); 3565 3566 #else 3567 3568 static inline void i915_capture_error_state(struct drm_i915_private *dev_priv, 3569 u32 engine_mask, 3570 const char *error_msg) 3571 { 3572 } 3573 3574 static inline void i915_destroy_error_state(struct drm_i915_private *dev_priv) 3575 { 3576 } 3577 3578 #endif 3579 3580 const char *i915_cache_level_str(struct drm_i915_private *i915, int type); 3581 3582 /* i915_cmd_parser.c */ 3583 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv); 3584 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine); 3585 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine); 3586 int intel_engine_cmd_parser(struct intel_engine_cs *engine, 3587 struct drm_i915_gem_object *batch_obj, 3588 struct drm_i915_gem_object *shadow_batch_obj, 3589 u32 batch_start_offset, 3590 u32 batch_len, 3591 bool is_master); 3592 3593 /* i915_perf.c */ 3594 extern void i915_perf_init(struct drm_i915_private *dev_priv); 3595 extern void i915_perf_fini(struct drm_i915_private *dev_priv); 3596 extern void i915_perf_register(struct drm_i915_private *dev_priv); 3597 extern void i915_perf_unregister(struct drm_i915_private *dev_priv); 3598 3599 /* i915_suspend.c */ 3600 extern int i915_save_state(struct drm_i915_private *dev_priv); 3601 extern int i915_restore_state(struct drm_i915_private *dev_priv); 3602 3603 /* i915_sysfs.c */ 3604 void i915_setup_sysfs(struct drm_i915_private *dev_priv); 3605 void i915_teardown_sysfs(struct drm_i915_private *dev_priv); 3606 3607 /* intel_lpe_audio.c */ 3608 int intel_lpe_audio_init(struct drm_i915_private *dev_priv); 3609 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv); 3610 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv); 3611 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv, 3612 void *eld, int port, int pipe, int tmds_clk_speed, 3613 bool dp_output, int link_rate); 3614 3615 /* intel_i2c.c */ 3616 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv); 3617 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv); 3618 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv, 3619 unsigned int pin); 3620 3621 extern struct i2c_adapter * 3622 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin); 3623 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed); 3624 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit); 3625 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter) 3626 { 3627 return container_of(adapter, struct intel_gmbus, adapter)->force_bit; 3628 } 3629 extern void intel_i2c_reset(struct drm_i915_private *dev_priv); 3630 3631 /* intel_bios.c */ 3632 int intel_bios_init(struct drm_i915_private *dev_priv); 3633 bool intel_bios_is_valid_vbt(const void *buf, size_t size); 3634 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv); 3635 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin); 3636 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port); 3637 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port); 3638 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port); 3639 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port); 3640 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv, 3641 enum port port); 3642 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv, 3643 enum port port); 3644 3645 3646 /* intel_opregion.c */ 3647 #ifdef CONFIG_ACPI 3648 extern int intel_opregion_setup(struct drm_i915_private *dev_priv); 3649 extern void intel_opregion_register(struct drm_i915_private *dev_priv); 3650 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv); 3651 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv); 3652 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, 3653 bool enable); 3654 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv, 3655 pci_power_t state); 3656 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv); 3657 #else 3658 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; } 3659 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { } 3660 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { } 3661 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv) 3662 { 3663 } 3664 static inline int 3665 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable) 3666 { 3667 return 0; 3668 } 3669 static inline int 3670 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state) 3671 { 3672 return 0; 3673 } 3674 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev) 3675 { 3676 return -ENODEV; 3677 } 3678 #endif 3679 3680 /* intel_acpi.c */ 3681 #ifdef CONFIG_ACPI 3682 extern void intel_register_dsm_handler(void); 3683 extern void intel_unregister_dsm_handler(void); 3684 #else 3685 static inline void intel_register_dsm_handler(void) { return; } 3686 static inline void intel_unregister_dsm_handler(void) { return; } 3687 #endif /* CONFIG_ACPI */ 3688 3689 /* intel_device_info.c */ 3690 static inline struct intel_device_info * 3691 mkwrite_device_info(struct drm_i915_private *dev_priv) 3692 { 3693 return (struct intel_device_info *)&dev_priv->info; 3694 } 3695 3696 const char *intel_platform_name(enum intel_platform platform); 3697 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv); 3698 void intel_device_info_dump(struct drm_i915_private *dev_priv); 3699 3700 /* modesetting */ 3701 extern void intel_modeset_init_hw(struct drm_device *dev); 3702 extern int intel_modeset_init(struct drm_device *dev); 3703 extern void intel_modeset_gem_init(struct drm_device *dev); 3704 extern void intel_modeset_cleanup(struct drm_device *dev); 3705 extern int intel_connector_register(struct drm_connector *); 3706 extern void intel_connector_unregister(struct drm_connector *); 3707 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, 3708 bool state); 3709 extern void intel_display_resume(struct drm_device *dev); 3710 extern void i915_redisable_vga(struct drm_i915_private *dev_priv); 3711 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv); 3712 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val); 3713 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv); 3714 extern void intel_set_rps(struct drm_i915_private *dev_priv, u8 val); 3715 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, 3716 bool enable); 3717 3718 int i915_reg_read_ioctl(struct drm_device *dev, void *data, 3719 struct drm_file *file); 3720 3721 /* overlay */ 3722 extern struct intel_overlay_error_state * 3723 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv); 3724 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e, 3725 struct intel_overlay_error_state *error); 3726 3727 extern struct intel_display_error_state * 3728 intel_display_capture_error_state(struct drm_i915_private *dev_priv); 3729 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e, 3730 struct drm_i915_private *dev_priv, 3731 struct intel_display_error_state *error); 3732 3733 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val); 3734 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val); 3735 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request, 3736 u32 reply_mask, u32 reply, int timeout_base_ms); 3737 3738 /* intel_sideband.c */ 3739 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr); 3740 void vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val); 3741 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr); 3742 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg); 3743 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val); 3744 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg); 3745 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3746 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg); 3747 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3748 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg); 3749 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3750 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg); 3751 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val); 3752 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg, 3753 enum intel_sbi_destination destination); 3754 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value, 3755 enum intel_sbi_destination destination); 3756 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg); 3757 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3758 3759 /* intel_dpio_phy.c */ 3760 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port, 3761 enum dpio_phy *phy, enum dpio_channel *ch); 3762 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv, 3763 enum port port, u32 margin, u32 scale, 3764 u32 enable, u32 deemphasis); 3765 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy); 3766 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy); 3767 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv, 3768 enum dpio_phy phy); 3769 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv, 3770 enum dpio_phy phy); 3771 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder, 3772 uint8_t lane_count); 3773 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder, 3774 uint8_t lane_lat_optim_mask); 3775 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder); 3776 3777 void chv_set_phy_signal_level(struct intel_encoder *encoder, 3778 u32 deemph_reg_value, u32 margin_reg_value, 3779 bool uniq_trans_scale); 3780 void chv_data_lane_soft_reset(struct intel_encoder *encoder, 3781 bool reset); 3782 void chv_phy_pre_pll_enable(struct intel_encoder *encoder); 3783 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder); 3784 void chv_phy_release_cl2_override(struct intel_encoder *encoder); 3785 void chv_phy_post_pll_disable(struct intel_encoder *encoder); 3786 3787 void vlv_set_phy_signal_level(struct intel_encoder *encoder, 3788 u32 demph_reg_value, u32 preemph_reg_value, 3789 u32 uniqtranscale_reg_value, u32 tx3_demph); 3790 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder); 3791 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder); 3792 void vlv_phy_reset_lanes(struct intel_encoder *encoder); 3793 3794 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val); 3795 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val); 3796 3797 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true) 3798 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true) 3799 3800 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true) 3801 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true) 3802 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false) 3803 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false) 3804 3805 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true) 3806 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true) 3807 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false) 3808 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false) 3809 3810 /* Be very careful with read/write 64-bit values. On 32-bit machines, they 3811 * will be implemented using 2 32-bit writes in an arbitrary order with 3812 * an arbitrary delay between them. This can cause the hardware to 3813 * act upon the intermediate value, possibly leading to corruption and 3814 * machine death. For this reason we do not support I915_WRITE64, or 3815 * dev_priv->uncore.funcs.mmio_writeq. 3816 * 3817 * When reading a 64-bit value as two 32-bit values, the delay may cause 3818 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that 3819 * occasionally a 64-bit register does not actualy support a full readq 3820 * and must be read using two 32-bit reads. 3821 * 3822 * You have been warned. 3823 */ 3824 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true) 3825 3826 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \ 3827 u32 upper, lower, old_upper, loop = 0; \ 3828 upper = I915_READ(upper_reg); \ 3829 do { \ 3830 old_upper = upper; \ 3831 lower = I915_READ(lower_reg); \ 3832 upper = I915_READ(upper_reg); \ 3833 } while (upper != old_upper && loop++ < 2); \ 3834 (u64)upper << 32 | lower; }) 3835 3836 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg) 3837 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg) 3838 3839 #define __raw_read(x, s) \ 3840 static inline uint##x##_t __raw_i915_read##x(struct drm_i915_private *dev_priv, \ 3841 i915_reg_t reg) \ 3842 { \ 3843 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \ 3844 } 3845 3846 #define __raw_write(x, s) \ 3847 static inline void __raw_i915_write##x(struct drm_i915_private *dev_priv, \ 3848 i915_reg_t reg, uint##x##_t val) \ 3849 { \ 3850 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \ 3851 } 3852 __raw_read(8, b) 3853 __raw_read(16, w) 3854 __raw_read(32, l) 3855 __raw_read(64, q) 3856 3857 __raw_write(8, b) 3858 __raw_write(16, w) 3859 __raw_write(32, l) 3860 __raw_write(64, q) 3861 3862 #undef __raw_read 3863 #undef __raw_write 3864 3865 /* These are untraced mmio-accessors that are only valid to be used inside 3866 * critical sections, such as inside IRQ handlers, where forcewake is explicitly 3867 * controlled. 3868 * 3869 * Think twice, and think again, before using these. 3870 * 3871 * As an example, these accessors can possibly be used between: 3872 * 3873 * spin_lock_irq(&dev_priv->uncore.lock); 3874 * intel_uncore_forcewake_get__locked(); 3875 * 3876 * and 3877 * 3878 * intel_uncore_forcewake_put__locked(); 3879 * spin_unlock_irq(&dev_priv->uncore.lock); 3880 * 3881 * 3882 * Note: some registers may not need forcewake held, so 3883 * intel_uncore_forcewake_{get,put} can be omitted, see 3884 * intel_uncore_forcewake_for_reg(). 3885 * 3886 * Certain architectures will die if the same cacheline is concurrently accessed 3887 * by different clients (e.g. on Ivybridge). Access to registers should 3888 * therefore generally be serialised, by either the dev_priv->uncore.lock or 3889 * a more localised lock guarding all access to that bank of registers. 3890 */ 3891 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__)) 3892 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__)) 3893 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__)) 3894 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__) 3895 3896 /* "Broadcast RGB" property */ 3897 #define INTEL_BROADCAST_RGB_AUTO 0 3898 #define INTEL_BROADCAST_RGB_FULL 1 3899 #define INTEL_BROADCAST_RGB_LIMITED 2 3900 3901 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv) 3902 { 3903 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3904 return VLV_VGACNTRL; 3905 else if (INTEL_GEN(dev_priv) >= 5) 3906 return CPU_VGACNTRL; 3907 else 3908 return VGACNTRL; 3909 } 3910 3911 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m) 3912 { 3913 unsigned long j = msecs_to_jiffies(m); 3914 3915 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1); 3916 } 3917 3918 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n) 3919 { 3920 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1); 3921 } 3922 3923 static inline unsigned long 3924 timespec_to_jiffies_timeout(const struct timespec *value) 3925 { 3926 unsigned long j = timespec_to_jiffies(value); 3927 3928 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1); 3929 } 3930 3931 /* 3932 * If you need to wait X milliseconds between events A and B, but event B 3933 * doesn't happen exactly after event A, you record the timestamp (jiffies) of 3934 * when event A happened, then just before event B you call this function and 3935 * pass the timestamp as the first argument, and X as the second argument. 3936 */ 3937 static inline void 3938 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms) 3939 { 3940 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies; 3941 3942 /* 3943 * Don't re-read the value of "jiffies" every time since it may change 3944 * behind our back and break the math. 3945 */ 3946 tmp_jiffies = jiffies; 3947 target_jiffies = timestamp_jiffies + 3948 msecs_to_jiffies_timeout(to_wait_ms); 3949 3950 if (time_after(target_jiffies, tmp_jiffies)) { 3951 remaining_jiffies = target_jiffies - tmp_jiffies; 3952 while (remaining_jiffies) 3953 remaining_jiffies = 3954 schedule_timeout_uninterruptible(remaining_jiffies); 3955 } 3956 } 3957 3958 static inline bool 3959 __i915_request_irq_complete(struct drm_i915_gem_request *req) 3960 { 3961 struct intel_engine_cs *engine = req->engine; 3962 3963 /* Before we do the heavier coherent read of the seqno, 3964 * check the value (hopefully) in the CPU cacheline. 3965 */ 3966 if (__i915_gem_request_completed(req)) 3967 return true; 3968 3969 /* Ensure our read of the seqno is coherent so that we 3970 * do not "miss an interrupt" (i.e. if this is the last 3971 * request and the seqno write from the GPU is not visible 3972 * by the time the interrupt fires, we will see that the 3973 * request is incomplete and go back to sleep awaiting 3974 * another interrupt that will never come.) 3975 * 3976 * Strictly, we only need to do this once after an interrupt, 3977 * but it is easier and safer to do it every time the waiter 3978 * is woken. 3979 */ 3980 if (engine->irq_seqno_barrier && 3981 rcu_access_pointer(engine->breadcrumbs.irq_seqno_bh) == current && 3982 cmpxchg_relaxed(&engine->breadcrumbs.irq_posted, 1, 0)) { 3983 struct task_struct *tsk; 3984 3985 /* The ordering of irq_posted versus applying the barrier 3986 * is crucial. The clearing of the current irq_posted must 3987 * be visible before we perform the barrier operation, 3988 * such that if a subsequent interrupt arrives, irq_posted 3989 * is reasserted and our task rewoken (which causes us to 3990 * do another __i915_request_irq_complete() immediately 3991 * and reapply the barrier). Conversely, if the clear 3992 * occurs after the barrier, then an interrupt that arrived 3993 * whilst we waited on the barrier would not trigger a 3994 * barrier on the next pass, and the read may not see the 3995 * seqno update. 3996 */ 3997 engine->irq_seqno_barrier(engine); 3998 3999 /* If we consume the irq, but we are no longer the bottom-half, 4000 * the real bottom-half may not have serialised their own 4001 * seqno check with the irq-barrier (i.e. may have inspected 4002 * the seqno before we believe it coherent since they see 4003 * irq_posted == false but we are still running). 4004 */ 4005 rcu_read_lock(); 4006 tsk = rcu_dereference(engine->breadcrumbs.irq_seqno_bh); 4007 if (tsk && tsk != current) 4008 /* Note that if the bottom-half is changed as we 4009 * are sending the wake-up, the new bottom-half will 4010 * be woken by whomever made the change. We only have 4011 * to worry about when we steal the irq-posted for 4012 * ourself. 4013 */ 4014 wake_up_process(tsk); 4015 rcu_read_unlock(); 4016 4017 if (__i915_gem_request_completed(req)) 4018 return true; 4019 } 4020 4021 return false; 4022 } 4023 4024 void i915_memcpy_init_early(struct drm_i915_private *dev_priv); 4025 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len); 4026 4027 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment, 4028 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot 4029 * perform the operation. To check beforehand, pass in the parameters to 4030 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits, 4031 * you only need to pass in the minor offsets, page-aligned pointers are 4032 * always valid. 4033 * 4034 * For just checking for SSE4.1, in the foreknowledge that the future use 4035 * will be correctly aligned, just use i915_has_memcpy_from_wc(). 4036 */ 4037 #define i915_can_memcpy_from_wc(dst, src, len) \ 4038 i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0) 4039 4040 #define i915_has_memcpy_from_wc() \ 4041 i915_memcpy_from_wc(NULL, NULL, 0) 4042 4043 /* i915_mm.c */ 4044 int remap_io_mapping(struct vm_area_struct *vma, 4045 unsigned long addr, unsigned long pfn, unsigned long size, 4046 struct io_mapping *iomap); 4047 4048 #endif 4049