xref: /linux/drivers/gpu/drm/i915/i915_drv.h (revision dc3e0896003ee9b3bcc34c53965dc4bbc8671c44)
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29 
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32 
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35 
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/mm_types.h>
44 #include <linux/perf_event.h>
45 #include <linux/pm_qos.h>
46 #include <linux/reservation.h>
47 #include <linux/shmem_fs.h>
48 
49 #include <drm/drmP.h>
50 #include <drm/intel-gtt.h>
51 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
52 #include <drm/drm_gem.h>
53 #include <drm/drm_auth.h>
54 #include <drm/drm_cache.h>
55 #include <drm/drm_util.h>
56 
57 #include "i915_params.h"
58 #include "i915_reg.h"
59 #include "i915_utils.h"
60 
61 #include "intel_bios.h"
62 #include "intel_device_info.h"
63 #include "intel_display.h"
64 #include "intel_dpll_mgr.h"
65 #include "intel_lrc.h"
66 #include "intel_opregion.h"
67 #include "intel_ringbuffer.h"
68 #include "intel_uncore.h"
69 #include "intel_wopcm.h"
70 #include "intel_workarounds.h"
71 #include "intel_uc.h"
72 
73 #include "i915_gem.h"
74 #include "i915_gem_context.h"
75 #include "i915_gem_fence_reg.h"
76 #include "i915_gem_object.h"
77 #include "i915_gem_gtt.h"
78 #include "i915_gpu_error.h"
79 #include "i915_request.h"
80 #include "i915_scheduler.h"
81 #include "i915_timeline.h"
82 #include "i915_vma.h"
83 
84 #include "intel_gvt.h"
85 
86 /* General customization:
87  */
88 
89 #define DRIVER_NAME		"i915"
90 #define DRIVER_DESC		"Intel Graphics"
91 #define DRIVER_DATE		"20180921"
92 #define DRIVER_TIMESTAMP	1537521997
93 
94 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
95  * WARN_ON()) for hw state sanity checks to check for unexpected conditions
96  * which may not necessarily be a user visible problem.  This will either
97  * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
98  * enable distros and users to tailor their preferred amount of i915 abrt
99  * spam.
100  */
101 #define I915_STATE_WARN(condition, format...) ({			\
102 	int __ret_warn_on = !!(condition);				\
103 	if (unlikely(__ret_warn_on))					\
104 		if (!WARN(i915_modparams.verbose_state_checks, format))	\
105 			DRM_ERROR(format);				\
106 	unlikely(__ret_warn_on);					\
107 })
108 
109 #define I915_STATE_WARN_ON(x)						\
110 	I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
111 
112 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG)
113 
114 bool __i915_inject_load_failure(const char *func, int line);
115 #define i915_inject_load_failure() \
116 	__i915_inject_load_failure(__func__, __LINE__)
117 
118 bool i915_error_injected(void);
119 
120 #else
121 
122 #define i915_inject_load_failure() false
123 #define i915_error_injected() false
124 
125 #endif
126 
127 #define i915_load_error(i915, fmt, ...)					 \
128 	__i915_printk(i915, i915_error_injected() ? KERN_DEBUG : KERN_ERR, \
129 		      fmt, ##__VA_ARGS__)
130 
131 typedef struct {
132 	uint32_t val;
133 } uint_fixed_16_16_t;
134 
135 #define FP_16_16_MAX ({ \
136 	uint_fixed_16_16_t fp; \
137 	fp.val = UINT_MAX; \
138 	fp; \
139 })
140 
141 static inline bool is_fixed16_zero(uint_fixed_16_16_t val)
142 {
143 	if (val.val == 0)
144 		return true;
145 	return false;
146 }
147 
148 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val)
149 {
150 	uint_fixed_16_16_t fp;
151 
152 	WARN_ON(val > U16_MAX);
153 
154 	fp.val = val << 16;
155 	return fp;
156 }
157 
158 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp)
159 {
160 	return DIV_ROUND_UP(fp.val, 1 << 16);
161 }
162 
163 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp)
164 {
165 	return fp.val >> 16;
166 }
167 
168 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1,
169 						 uint_fixed_16_16_t min2)
170 {
171 	uint_fixed_16_16_t min;
172 
173 	min.val = min(min1.val, min2.val);
174 	return min;
175 }
176 
177 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1,
178 						 uint_fixed_16_16_t max2)
179 {
180 	uint_fixed_16_16_t max;
181 
182 	max.val = max(max1.val, max2.val);
183 	return max;
184 }
185 
186 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val)
187 {
188 	uint_fixed_16_16_t fp;
189 	WARN_ON(val > U32_MAX);
190 	fp.val = (uint32_t) val;
191 	return fp;
192 }
193 
194 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val,
195 					    uint_fixed_16_16_t d)
196 {
197 	return DIV_ROUND_UP(val.val, d.val);
198 }
199 
200 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val,
201 						uint_fixed_16_16_t mul)
202 {
203 	uint64_t intermediate_val;
204 
205 	intermediate_val = (uint64_t) val * mul.val;
206 	intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16);
207 	WARN_ON(intermediate_val > U32_MAX);
208 	return (uint32_t) intermediate_val;
209 }
210 
211 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val,
212 					     uint_fixed_16_16_t mul)
213 {
214 	uint64_t intermediate_val;
215 
216 	intermediate_val = (uint64_t) val.val * mul.val;
217 	intermediate_val = intermediate_val >> 16;
218 	return clamp_u64_to_fixed16(intermediate_val);
219 }
220 
221 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d)
222 {
223 	uint64_t interm_val;
224 
225 	interm_val = (uint64_t)val << 16;
226 	interm_val = DIV_ROUND_UP_ULL(interm_val, d);
227 	return clamp_u64_to_fixed16(interm_val);
228 }
229 
230 static inline uint32_t div_round_up_u32_fixed16(uint32_t val,
231 						uint_fixed_16_16_t d)
232 {
233 	uint64_t interm_val;
234 
235 	interm_val = (uint64_t)val << 16;
236 	interm_val = DIV_ROUND_UP_ULL(interm_val, d.val);
237 	WARN_ON(interm_val > U32_MAX);
238 	return (uint32_t) interm_val;
239 }
240 
241 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val,
242 						     uint_fixed_16_16_t mul)
243 {
244 	uint64_t intermediate_val;
245 
246 	intermediate_val = (uint64_t) val * mul.val;
247 	return clamp_u64_to_fixed16(intermediate_val);
248 }
249 
250 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1,
251 					     uint_fixed_16_16_t add2)
252 {
253 	uint64_t interm_sum;
254 
255 	interm_sum = (uint64_t) add1.val + add2.val;
256 	return clamp_u64_to_fixed16(interm_sum);
257 }
258 
259 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1,
260 						 uint32_t add2)
261 {
262 	uint64_t interm_sum;
263 	uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2);
264 
265 	interm_sum = (uint64_t) add1.val + interm_add2.val;
266 	return clamp_u64_to_fixed16(interm_sum);
267 }
268 
269 enum hpd_pin {
270 	HPD_NONE = 0,
271 	HPD_TV = HPD_NONE,     /* TV is known to be unreliable */
272 	HPD_CRT,
273 	HPD_SDVO_B,
274 	HPD_SDVO_C,
275 	HPD_PORT_A,
276 	HPD_PORT_B,
277 	HPD_PORT_C,
278 	HPD_PORT_D,
279 	HPD_PORT_E,
280 	HPD_PORT_F,
281 	HPD_NUM_PINS
282 };
283 
284 #define for_each_hpd_pin(__pin) \
285 	for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
286 
287 #define HPD_STORM_DEFAULT_THRESHOLD 5
288 
289 struct i915_hotplug {
290 	struct work_struct hotplug_work;
291 
292 	struct {
293 		unsigned long last_jiffies;
294 		int count;
295 		enum {
296 			HPD_ENABLED = 0,
297 			HPD_DISABLED = 1,
298 			HPD_MARK_DISABLED = 2
299 		} state;
300 	} stats[HPD_NUM_PINS];
301 	u32 event_bits;
302 	struct delayed_work reenable_work;
303 
304 	u32 long_port_mask;
305 	u32 short_port_mask;
306 	struct work_struct dig_port_work;
307 
308 	struct work_struct poll_init_work;
309 	bool poll_enabled;
310 
311 	unsigned int hpd_storm_threshold;
312 
313 	/*
314 	 * if we get a HPD irq from DP and a HPD irq from non-DP
315 	 * the non-DP HPD could block the workqueue on a mode config
316 	 * mutex getting, that userspace may have taken. However
317 	 * userspace is waiting on the DP workqueue to run which is
318 	 * blocked behind the non-DP one.
319 	 */
320 	struct workqueue_struct *dp_wq;
321 };
322 
323 #define I915_GEM_GPU_DOMAINS \
324 	(I915_GEM_DOMAIN_RENDER | \
325 	 I915_GEM_DOMAIN_SAMPLER | \
326 	 I915_GEM_DOMAIN_COMMAND | \
327 	 I915_GEM_DOMAIN_INSTRUCTION | \
328 	 I915_GEM_DOMAIN_VERTEX)
329 
330 struct drm_i915_private;
331 struct i915_mm_struct;
332 struct i915_mmu_object;
333 
334 struct drm_i915_file_private {
335 	struct drm_i915_private *dev_priv;
336 	struct drm_file *file;
337 
338 	struct {
339 		spinlock_t lock;
340 		struct list_head request_list;
341 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
342  * chosen to prevent the CPU getting more than a frame ahead of the GPU
343  * (when using lax throttling for the frontbuffer). We also use it to
344  * offer free GPU waitboosts for severely congested workloads.
345  */
346 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
347 	} mm;
348 	struct idr context_idr;
349 
350 	struct intel_rps_client {
351 		atomic_t boosts;
352 	} rps_client;
353 
354 	unsigned int bsd_engine;
355 
356 /*
357  * Every context ban increments per client ban score. Also
358  * hangs in short succession increments ban score. If ban threshold
359  * is reached, client is considered banned and submitting more work
360  * will fail. This is a stop gap measure to limit the badly behaving
361  * clients access to gpu. Note that unbannable contexts never increment
362  * the client ban score.
363  */
364 #define I915_CLIENT_SCORE_HANG_FAST	1
365 #define   I915_CLIENT_FAST_HANG_JIFFIES (60 * HZ)
366 #define I915_CLIENT_SCORE_CONTEXT_BAN   3
367 #define I915_CLIENT_SCORE_BANNED	9
368 	/** ban_score: Accumulated score of all ctx bans and fast hangs. */
369 	atomic_t ban_score;
370 	unsigned long hang_timestamp;
371 };
372 
373 /* Interface history:
374  *
375  * 1.1: Original.
376  * 1.2: Add Power Management
377  * 1.3: Add vblank support
378  * 1.4: Fix cmdbuffer path, add heap destroy
379  * 1.5: Add vblank pipe configuration
380  * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
381  *      - Support vertical blank on secondary display pipe
382  */
383 #define DRIVER_MAJOR		1
384 #define DRIVER_MINOR		6
385 #define DRIVER_PATCHLEVEL	0
386 
387 struct intel_overlay;
388 struct intel_overlay_error_state;
389 
390 struct sdvo_device_mapping {
391 	u8 initialized;
392 	u8 dvo_port;
393 	u8 slave_addr;
394 	u8 dvo_wiring;
395 	u8 i2c_pin;
396 	u8 ddc_pin;
397 };
398 
399 struct intel_connector;
400 struct intel_encoder;
401 struct intel_atomic_state;
402 struct intel_crtc_state;
403 struct intel_initial_plane_config;
404 struct intel_crtc;
405 struct intel_limit;
406 struct dpll;
407 struct intel_cdclk_state;
408 
409 struct drm_i915_display_funcs {
410 	void (*get_cdclk)(struct drm_i915_private *dev_priv,
411 			  struct intel_cdclk_state *cdclk_state);
412 	void (*set_cdclk)(struct drm_i915_private *dev_priv,
413 			  const struct intel_cdclk_state *cdclk_state);
414 	int (*get_fifo_size)(struct drm_i915_private *dev_priv,
415 			     enum i9xx_plane_id i9xx_plane);
416 	int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
417 	int (*compute_intermediate_wm)(struct drm_device *dev,
418 				       struct intel_crtc *intel_crtc,
419 				       struct intel_crtc_state *newstate);
420 	void (*initial_watermarks)(struct intel_atomic_state *state,
421 				   struct intel_crtc_state *cstate);
422 	void (*atomic_update_watermarks)(struct intel_atomic_state *state,
423 					 struct intel_crtc_state *cstate);
424 	void (*optimize_watermarks)(struct intel_atomic_state *state,
425 				    struct intel_crtc_state *cstate);
426 	int (*compute_global_watermarks)(struct drm_atomic_state *state);
427 	void (*update_wm)(struct intel_crtc *crtc);
428 	int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
429 	/* Returns the active state of the crtc, and if the crtc is active,
430 	 * fills out the pipe-config with the hw state. */
431 	bool (*get_pipe_config)(struct intel_crtc *,
432 				struct intel_crtc_state *);
433 	void (*get_initial_plane_config)(struct intel_crtc *,
434 					 struct intel_initial_plane_config *);
435 	int (*crtc_compute_clock)(struct intel_crtc *crtc,
436 				  struct intel_crtc_state *crtc_state);
437 	void (*crtc_enable)(struct intel_crtc_state *pipe_config,
438 			    struct drm_atomic_state *old_state);
439 	void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
440 			     struct drm_atomic_state *old_state);
441 	void (*update_crtcs)(struct drm_atomic_state *state);
442 	void (*audio_codec_enable)(struct intel_encoder *encoder,
443 				   const struct intel_crtc_state *crtc_state,
444 				   const struct drm_connector_state *conn_state);
445 	void (*audio_codec_disable)(struct intel_encoder *encoder,
446 				    const struct intel_crtc_state *old_crtc_state,
447 				    const struct drm_connector_state *old_conn_state);
448 	void (*fdi_link_train)(struct intel_crtc *crtc,
449 			       const struct intel_crtc_state *crtc_state);
450 	void (*init_clock_gating)(struct drm_i915_private *dev_priv);
451 	void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
452 	/* clock updates for mode set */
453 	/* cursor updates */
454 	/* render clock increase/decrease */
455 	/* display clock increase/decrease */
456 	/* pll clock increase/decrease */
457 
458 	void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
459 	void (*load_luts)(struct drm_crtc_state *crtc_state);
460 };
461 
462 #define CSR_VERSION(major, minor)	((major) << 16 | (minor))
463 #define CSR_VERSION_MAJOR(version)	((version) >> 16)
464 #define CSR_VERSION_MINOR(version)	((version) & 0xffff)
465 
466 struct intel_csr {
467 	struct work_struct work;
468 	const char *fw_path;
469 	uint32_t *dmc_payload;
470 	uint32_t dmc_fw_size;
471 	uint32_t version;
472 	uint32_t mmio_count;
473 	i915_reg_t mmioaddr[8];
474 	uint32_t mmiodata[8];
475 	uint32_t dc_state;
476 	uint32_t allowed_dc_mask;
477 };
478 
479 enum i915_cache_level {
480 	I915_CACHE_NONE = 0,
481 	I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
482 	I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
483 			      caches, eg sampler/render caches, and the
484 			      large Last-Level-Cache. LLC is coherent with
485 			      the CPU, but L3 is only visible to the GPU. */
486 	I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
487 };
488 
489 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
490 
491 enum fb_op_origin {
492 	ORIGIN_GTT,
493 	ORIGIN_CPU,
494 	ORIGIN_CS,
495 	ORIGIN_FLIP,
496 	ORIGIN_DIRTYFB,
497 };
498 
499 struct intel_fbc {
500 	/* This is always the inner lock when overlapping with struct_mutex and
501 	 * it's the outer lock when overlapping with stolen_lock. */
502 	struct mutex lock;
503 	unsigned threshold;
504 	unsigned int possible_framebuffer_bits;
505 	unsigned int busy_bits;
506 	unsigned int visible_pipes_mask;
507 	struct intel_crtc *crtc;
508 
509 	struct drm_mm_node compressed_fb;
510 	struct drm_mm_node *compressed_llb;
511 
512 	bool false_color;
513 
514 	bool enabled;
515 	bool active;
516 	bool flip_pending;
517 
518 	bool underrun_detected;
519 	struct work_struct underrun_work;
520 
521 	/*
522 	 * Due to the atomic rules we can't access some structures without the
523 	 * appropriate locking, so we cache information here in order to avoid
524 	 * these problems.
525 	 */
526 	struct intel_fbc_state_cache {
527 		struct i915_vma *vma;
528 		unsigned long flags;
529 
530 		struct {
531 			unsigned int mode_flags;
532 			uint32_t hsw_bdw_pixel_rate;
533 		} crtc;
534 
535 		struct {
536 			unsigned int rotation;
537 			int src_w;
538 			int src_h;
539 			bool visible;
540 			/*
541 			 * Display surface base address adjustement for
542 			 * pageflips. Note that on gen4+ this only adjusts up
543 			 * to a tile, offsets within a tile are handled in
544 			 * the hw itself (with the TILEOFF register).
545 			 */
546 			int adjusted_x;
547 			int adjusted_y;
548 
549 			int y;
550 		} plane;
551 
552 		struct {
553 			const struct drm_format_info *format;
554 			unsigned int stride;
555 		} fb;
556 	} state_cache;
557 
558 	/*
559 	 * This structure contains everything that's relevant to program the
560 	 * hardware registers. When we want to figure out if we need to disable
561 	 * and re-enable FBC for a new configuration we just check if there's
562 	 * something different in the struct. The genx_fbc_activate functions
563 	 * are supposed to read from it in order to program the registers.
564 	 */
565 	struct intel_fbc_reg_params {
566 		struct i915_vma *vma;
567 		unsigned long flags;
568 
569 		struct {
570 			enum pipe pipe;
571 			enum i9xx_plane_id i9xx_plane;
572 			unsigned int fence_y_offset;
573 		} crtc;
574 
575 		struct {
576 			const struct drm_format_info *format;
577 			unsigned int stride;
578 		} fb;
579 
580 		int cfb_size;
581 		unsigned int gen9_wa_cfb_stride;
582 	} params;
583 
584 	const char *no_fbc_reason;
585 };
586 
587 /*
588  * HIGH_RR is the highest eDP panel refresh rate read from EDID
589  * LOW_RR is the lowest eDP panel refresh rate found from EDID
590  * parsing for same resolution.
591  */
592 enum drrs_refresh_rate_type {
593 	DRRS_HIGH_RR,
594 	DRRS_LOW_RR,
595 	DRRS_MAX_RR, /* RR count */
596 };
597 
598 enum drrs_support_type {
599 	DRRS_NOT_SUPPORTED = 0,
600 	STATIC_DRRS_SUPPORT = 1,
601 	SEAMLESS_DRRS_SUPPORT = 2
602 };
603 
604 struct intel_dp;
605 struct i915_drrs {
606 	struct mutex mutex;
607 	struct delayed_work work;
608 	struct intel_dp *dp;
609 	unsigned busy_frontbuffer_bits;
610 	enum drrs_refresh_rate_type refresh_rate_type;
611 	enum drrs_support_type type;
612 };
613 
614 struct i915_psr {
615 	struct mutex lock;
616 
617 #define I915_PSR_DEBUG_MODE_MASK	0x0f
618 #define I915_PSR_DEBUG_DEFAULT		0x00
619 #define I915_PSR_DEBUG_DISABLE		0x01
620 #define I915_PSR_DEBUG_ENABLE		0x02
621 #define I915_PSR_DEBUG_FORCE_PSR1	0x03
622 #define I915_PSR_DEBUG_IRQ		0x10
623 
624 	u32 debug;
625 	bool sink_support;
626 	bool prepared, enabled;
627 	struct intel_dp *dp;
628 	bool active;
629 	struct work_struct work;
630 	unsigned busy_frontbuffer_bits;
631 	bool sink_psr2_support;
632 	bool link_standby;
633 	bool colorimetry_support;
634 	bool alpm;
635 	bool psr2_enabled;
636 	u8 sink_sync_latency;
637 	ktime_t last_entry_attempt;
638 	ktime_t last_exit;
639 };
640 
641 enum intel_pch {
642 	PCH_NONE = 0,	/* No PCH present */
643 	PCH_IBX,	/* Ibexpeak PCH */
644 	PCH_CPT,	/* Cougarpoint/Pantherpoint PCH */
645 	PCH_LPT,	/* Lynxpoint/Wildcatpoint PCH */
646 	PCH_SPT,        /* Sunrisepoint PCH */
647 	PCH_KBP,        /* Kaby Lake PCH */
648 	PCH_CNP,        /* Cannon Lake PCH */
649 	PCH_ICP,	/* Ice Lake PCH */
650 	PCH_NOP,	/* PCH without south display */
651 };
652 
653 enum intel_sbi_destination {
654 	SBI_ICLK,
655 	SBI_MPHY,
656 };
657 
658 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
659 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
660 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
661 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
662 #define QUIRK_INCREASE_T12_DELAY (1<<6)
663 #define QUIRK_INCREASE_DDI_DISABLED_TIME (1<<7)
664 
665 struct intel_fbdev;
666 struct intel_fbc_work;
667 
668 struct intel_gmbus {
669 	struct i2c_adapter adapter;
670 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
671 	u32 force_bit;
672 	u32 reg0;
673 	i915_reg_t gpio_reg;
674 	struct i2c_algo_bit_data bit_algo;
675 	struct drm_i915_private *dev_priv;
676 };
677 
678 struct i915_suspend_saved_registers {
679 	u32 saveDSPARB;
680 	u32 saveFBC_CONTROL;
681 	u32 saveCACHE_MODE_0;
682 	u32 saveMI_ARB_STATE;
683 	u32 saveSWF0[16];
684 	u32 saveSWF1[16];
685 	u32 saveSWF3[3];
686 	uint64_t saveFENCE[I915_MAX_NUM_FENCES];
687 	u32 savePCH_PORT_HOTPLUG;
688 	u16 saveGCDGMBUS;
689 };
690 
691 struct vlv_s0ix_state {
692 	/* GAM */
693 	u32 wr_watermark;
694 	u32 gfx_prio_ctrl;
695 	u32 arb_mode;
696 	u32 gfx_pend_tlb0;
697 	u32 gfx_pend_tlb1;
698 	u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
699 	u32 media_max_req_count;
700 	u32 gfx_max_req_count;
701 	u32 render_hwsp;
702 	u32 ecochk;
703 	u32 bsd_hwsp;
704 	u32 blt_hwsp;
705 	u32 tlb_rd_addr;
706 
707 	/* MBC */
708 	u32 g3dctl;
709 	u32 gsckgctl;
710 	u32 mbctl;
711 
712 	/* GCP */
713 	u32 ucgctl1;
714 	u32 ucgctl3;
715 	u32 rcgctl1;
716 	u32 rcgctl2;
717 	u32 rstctl;
718 	u32 misccpctl;
719 
720 	/* GPM */
721 	u32 gfxpause;
722 	u32 rpdeuhwtc;
723 	u32 rpdeuc;
724 	u32 ecobus;
725 	u32 pwrdwnupctl;
726 	u32 rp_down_timeout;
727 	u32 rp_deucsw;
728 	u32 rcubmabdtmr;
729 	u32 rcedata;
730 	u32 spare2gh;
731 
732 	/* Display 1 CZ domain */
733 	u32 gt_imr;
734 	u32 gt_ier;
735 	u32 pm_imr;
736 	u32 pm_ier;
737 	u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
738 
739 	/* GT SA CZ domain */
740 	u32 tilectl;
741 	u32 gt_fifoctl;
742 	u32 gtlc_wake_ctrl;
743 	u32 gtlc_survive;
744 	u32 pmwgicz;
745 
746 	/* Display 2 CZ domain */
747 	u32 gu_ctl0;
748 	u32 gu_ctl1;
749 	u32 pcbr;
750 	u32 clock_gate_dis2;
751 };
752 
753 struct intel_rps_ei {
754 	ktime_t ktime;
755 	u32 render_c0;
756 	u32 media_c0;
757 };
758 
759 struct intel_rps {
760 	/*
761 	 * work, interrupts_enabled and pm_iir are protected by
762 	 * dev_priv->irq_lock
763 	 */
764 	struct work_struct work;
765 	bool interrupts_enabled;
766 	u32 pm_iir;
767 
768 	/* PM interrupt bits that should never be masked */
769 	u32 pm_intrmsk_mbz;
770 
771 	/* Frequencies are stored in potentially platform dependent multiples.
772 	 * In other words, *_freq needs to be multiplied by X to be interesting.
773 	 * Soft limits are those which are used for the dynamic reclocking done
774 	 * by the driver (raise frequencies under heavy loads, and lower for
775 	 * lighter loads). Hard limits are those imposed by the hardware.
776 	 *
777 	 * A distinction is made for overclocking, which is never enabled by
778 	 * default, and is considered to be above the hard limit if it's
779 	 * possible at all.
780 	 */
781 	u8 cur_freq;		/* Current frequency (cached, may not == HW) */
782 	u8 min_freq_softlimit;	/* Minimum frequency permitted by the driver */
783 	u8 max_freq_softlimit;	/* Max frequency permitted by the driver */
784 	u8 max_freq;		/* Maximum frequency, RP0 if not overclocking */
785 	u8 min_freq;		/* AKA RPn. Minimum frequency */
786 	u8 boost_freq;		/* Frequency to request when wait boosting */
787 	u8 idle_freq;		/* Frequency to request when we are idle */
788 	u8 efficient_freq;	/* AKA RPe. Pre-determined balanced frequency */
789 	u8 rp1_freq;		/* "less than" RP0 power/freqency */
790 	u8 rp0_freq;		/* Non-overclocked max frequency. */
791 	u16 gpll_ref_freq;	/* vlv/chv GPLL reference frequency */
792 
793 	int last_adj;
794 
795 	struct {
796 		struct mutex mutex;
797 
798 		enum { LOW_POWER, BETWEEN, HIGH_POWER } mode;
799 		unsigned int interactive;
800 
801 		u8 up_threshold; /* Current %busy required to uplock */
802 		u8 down_threshold; /* Current %busy required to downclock */
803 	} power;
804 
805 	bool enabled;
806 	atomic_t num_waiters;
807 	atomic_t boosts;
808 
809 	/* manual wa residency calculations */
810 	struct intel_rps_ei ei;
811 };
812 
813 struct intel_rc6 {
814 	bool enabled;
815 	u64 prev_hw_residency[4];
816 	u64 cur_residency[4];
817 };
818 
819 struct intel_llc_pstate {
820 	bool enabled;
821 };
822 
823 struct intel_gen6_power_mgmt {
824 	struct intel_rps rps;
825 	struct intel_rc6 rc6;
826 	struct intel_llc_pstate llc_pstate;
827 };
828 
829 /* defined intel_pm.c */
830 extern spinlock_t mchdev_lock;
831 
832 struct intel_ilk_power_mgmt {
833 	u8 cur_delay;
834 	u8 min_delay;
835 	u8 max_delay;
836 	u8 fmax;
837 	u8 fstart;
838 
839 	u64 last_count1;
840 	unsigned long last_time1;
841 	unsigned long chipset_power;
842 	u64 last_count2;
843 	u64 last_time2;
844 	unsigned long gfx_power;
845 	u8 corr;
846 
847 	int c_m;
848 	int r_t;
849 };
850 
851 struct drm_i915_private;
852 struct i915_power_well;
853 
854 struct i915_power_well_ops {
855 	/*
856 	 * Synchronize the well's hw state to match the current sw state, for
857 	 * example enable/disable it based on the current refcount. Called
858 	 * during driver init and resume time, possibly after first calling
859 	 * the enable/disable handlers.
860 	 */
861 	void (*sync_hw)(struct drm_i915_private *dev_priv,
862 			struct i915_power_well *power_well);
863 	/*
864 	 * Enable the well and resources that depend on it (for example
865 	 * interrupts located on the well). Called after the 0->1 refcount
866 	 * transition.
867 	 */
868 	void (*enable)(struct drm_i915_private *dev_priv,
869 		       struct i915_power_well *power_well);
870 	/*
871 	 * Disable the well and resources that depend on it. Called after
872 	 * the 1->0 refcount transition.
873 	 */
874 	void (*disable)(struct drm_i915_private *dev_priv,
875 			struct i915_power_well *power_well);
876 	/* Returns the hw enabled state. */
877 	bool (*is_enabled)(struct drm_i915_private *dev_priv,
878 			   struct i915_power_well *power_well);
879 };
880 
881 struct i915_power_well_regs {
882 	i915_reg_t bios;
883 	i915_reg_t driver;
884 	i915_reg_t kvmr;
885 	i915_reg_t debug;
886 };
887 
888 /* Power well structure for haswell */
889 struct i915_power_well_desc {
890 	const char *name;
891 	bool always_on;
892 	u64 domains;
893 	/* unique identifier for this power well */
894 	enum i915_power_well_id id;
895 	/*
896 	 * Arbitraty data associated with this power well. Platform and power
897 	 * well specific.
898 	 */
899 	union {
900 		struct {
901 			/*
902 			 * request/status flag index in the PUNIT power well
903 			 * control/status registers.
904 			 */
905 			u8 idx;
906 		} vlv;
907 		struct {
908 			enum dpio_phy phy;
909 		} bxt;
910 		struct {
911 			const struct i915_power_well_regs *regs;
912 			/*
913 			 * request/status flag index in the power well
914 			 * constrol/status registers.
915 			 */
916 			u8 idx;
917 			/* Mask of pipes whose IRQ logic is backed by the pw */
918 			u8 irq_pipe_mask;
919 			/* The pw is backing the VGA functionality */
920 			bool has_vga:1;
921 			bool has_fuses:1;
922 		} hsw;
923 	};
924 	const struct i915_power_well_ops *ops;
925 };
926 
927 struct i915_power_well {
928 	const struct i915_power_well_desc *desc;
929 	/* power well enable/disable usage count */
930 	int count;
931 	/* cached hw enabled state */
932 	bool hw_enabled;
933 };
934 
935 struct i915_power_domains {
936 	/*
937 	 * Power wells needed for initialization at driver init and suspend
938 	 * time are on. They are kept on until after the first modeset.
939 	 */
940 	bool initializing;
941 	bool display_core_suspended;
942 	int power_well_count;
943 
944 	struct mutex lock;
945 	int domain_use_count[POWER_DOMAIN_NUM];
946 	struct i915_power_well *power_wells;
947 };
948 
949 #define MAX_L3_SLICES 2
950 struct intel_l3_parity {
951 	u32 *remap_info[MAX_L3_SLICES];
952 	struct work_struct error_work;
953 	int which_slice;
954 };
955 
956 struct i915_gem_mm {
957 	/** Memory allocator for GTT stolen memory */
958 	struct drm_mm stolen;
959 	/** Protects the usage of the GTT stolen memory allocator. This is
960 	 * always the inner lock when overlapping with struct_mutex. */
961 	struct mutex stolen_lock;
962 
963 	/* Protects bound_list/unbound_list and #drm_i915_gem_object.mm.link */
964 	spinlock_t obj_lock;
965 
966 	/** List of all objects in gtt_space. Used to restore gtt
967 	 * mappings on resume */
968 	struct list_head bound_list;
969 	/**
970 	 * List of objects which are not bound to the GTT (thus
971 	 * are idle and not used by the GPU). These objects may or may
972 	 * not actually have any pages attached.
973 	 */
974 	struct list_head unbound_list;
975 
976 	/** List of all objects in gtt_space, currently mmaped by userspace.
977 	 * All objects within this list must also be on bound_list.
978 	 */
979 	struct list_head userfault_list;
980 
981 	/**
982 	 * List of objects which are pending destruction.
983 	 */
984 	struct llist_head free_list;
985 	struct work_struct free_work;
986 	spinlock_t free_lock;
987 	/**
988 	 * Count of objects pending destructions. Used to skip needlessly
989 	 * waiting on an RCU barrier if no objects are waiting to be freed.
990 	 */
991 	atomic_t free_count;
992 
993 	/**
994 	 * Small stash of WC pages
995 	 */
996 	struct pagestash wc_stash;
997 
998 	/**
999 	 * tmpfs instance used for shmem backed objects
1000 	 */
1001 	struct vfsmount *gemfs;
1002 
1003 	/** PPGTT used for aliasing the PPGTT with the GTT */
1004 	struct i915_hw_ppgtt *aliasing_ppgtt;
1005 
1006 	struct notifier_block oom_notifier;
1007 	struct notifier_block vmap_notifier;
1008 	struct shrinker shrinker;
1009 
1010 	/** LRU list of objects with fence regs on them. */
1011 	struct list_head fence_list;
1012 
1013 	/**
1014 	 * Workqueue to fault in userptr pages, flushed by the execbuf
1015 	 * when required but otherwise left to userspace to try again
1016 	 * on EAGAIN.
1017 	 */
1018 	struct workqueue_struct *userptr_wq;
1019 
1020 	u64 unordered_timeline;
1021 
1022 	/* the indicator for dispatch video commands on two BSD rings */
1023 	atomic_t bsd_engine_dispatch_index;
1024 
1025 	/** Bit 6 swizzling required for X tiling */
1026 	uint32_t bit_6_swizzle_x;
1027 	/** Bit 6 swizzling required for Y tiling */
1028 	uint32_t bit_6_swizzle_y;
1029 
1030 	/* accounting, useful for userland debugging */
1031 	spinlock_t object_stat_lock;
1032 	u64 object_memory;
1033 	u32 object_count;
1034 };
1035 
1036 #define I915_IDLE_ENGINES_TIMEOUT (200) /* in ms */
1037 
1038 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1039 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1040 
1041 #define I915_ENGINE_DEAD_TIMEOUT  (4 * HZ)  /* Seqno, head and subunits dead */
1042 #define I915_SEQNO_DEAD_TIMEOUT   (12 * HZ) /* Seqno dead with active head */
1043 
1044 #define I915_ENGINE_WEDGED_TIMEOUT  (60 * HZ)  /* Reset but no recovery? */
1045 
1046 #define DP_AUX_A 0x40
1047 #define DP_AUX_B 0x10
1048 #define DP_AUX_C 0x20
1049 #define DP_AUX_D 0x30
1050 #define DP_AUX_E 0x50
1051 #define DP_AUX_F 0x60
1052 
1053 #define DDC_PIN_B  0x05
1054 #define DDC_PIN_C  0x04
1055 #define DDC_PIN_D  0x06
1056 
1057 struct ddi_vbt_port_info {
1058 	int max_tmds_clock;
1059 
1060 	/*
1061 	 * This is an index in the HDMI/DVI DDI buffer translation table.
1062 	 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1063 	 * populate this field.
1064 	 */
1065 #define HDMI_LEVEL_SHIFT_UNKNOWN	0xff
1066 	uint8_t hdmi_level_shift;
1067 
1068 	uint8_t supports_dvi:1;
1069 	uint8_t supports_hdmi:1;
1070 	uint8_t supports_dp:1;
1071 	uint8_t supports_edp:1;
1072 
1073 	uint8_t alternate_aux_channel;
1074 	uint8_t alternate_ddc_pin;
1075 
1076 	uint8_t dp_boost_level;
1077 	uint8_t hdmi_boost_level;
1078 	int dp_max_link_rate;		/* 0 for not limited by VBT */
1079 };
1080 
1081 enum psr_lines_to_wait {
1082 	PSR_0_LINES_TO_WAIT = 0,
1083 	PSR_1_LINE_TO_WAIT,
1084 	PSR_4_LINES_TO_WAIT,
1085 	PSR_8_LINES_TO_WAIT
1086 };
1087 
1088 struct intel_vbt_data {
1089 	struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1090 	struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1091 
1092 	/* Feature bits */
1093 	unsigned int int_tv_support:1;
1094 	unsigned int lvds_dither:1;
1095 	unsigned int int_crt_support:1;
1096 	unsigned int lvds_use_ssc:1;
1097 	unsigned int int_lvds_support:1;
1098 	unsigned int display_clock_mode:1;
1099 	unsigned int fdi_rx_polarity_inverted:1;
1100 	unsigned int panel_type:4;
1101 	int lvds_ssc_freq;
1102 	unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1103 
1104 	enum drrs_support_type drrs_type;
1105 
1106 	struct {
1107 		int rate;
1108 		int lanes;
1109 		int preemphasis;
1110 		int vswing;
1111 		bool low_vswing;
1112 		bool initialized;
1113 		int bpp;
1114 		struct edp_power_seq pps;
1115 	} edp;
1116 
1117 	struct {
1118 		bool enable;
1119 		bool full_link;
1120 		bool require_aux_wakeup;
1121 		int idle_frames;
1122 		enum psr_lines_to_wait lines_to_wait;
1123 		int tp1_wakeup_time_us;
1124 		int tp2_tp3_wakeup_time_us;
1125 	} psr;
1126 
1127 	struct {
1128 		u16 pwm_freq_hz;
1129 		bool present;
1130 		bool active_low_pwm;
1131 		u8 min_brightness;	/* min_brightness/255 of max */
1132 		u8 controller;		/* brightness controller number */
1133 		enum intel_backlight_type type;
1134 	} backlight;
1135 
1136 	/* MIPI DSI */
1137 	struct {
1138 		u16 panel_id;
1139 		struct mipi_config *config;
1140 		struct mipi_pps_data *pps;
1141 		u16 bl_ports;
1142 		u16 cabc_ports;
1143 		u8 seq_version;
1144 		u32 size;
1145 		u8 *data;
1146 		const u8 *sequence[MIPI_SEQ_MAX];
1147 		u8 *deassert_seq; /* Used by fixup_mipi_sequences() */
1148 	} dsi;
1149 
1150 	int crt_ddc_pin;
1151 
1152 	int child_dev_num;
1153 	struct child_device_config *child_dev;
1154 
1155 	struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1156 	struct sdvo_device_mapping sdvo_mappings[2];
1157 };
1158 
1159 enum intel_ddb_partitioning {
1160 	INTEL_DDB_PART_1_2,
1161 	INTEL_DDB_PART_5_6, /* IVB+ */
1162 };
1163 
1164 struct intel_wm_level {
1165 	bool enable;
1166 	uint32_t pri_val;
1167 	uint32_t spr_val;
1168 	uint32_t cur_val;
1169 	uint32_t fbc_val;
1170 };
1171 
1172 struct ilk_wm_values {
1173 	uint32_t wm_pipe[3];
1174 	uint32_t wm_lp[3];
1175 	uint32_t wm_lp_spr[3];
1176 	uint32_t wm_linetime[3];
1177 	bool enable_fbc_wm;
1178 	enum intel_ddb_partitioning partitioning;
1179 };
1180 
1181 struct g4x_pipe_wm {
1182 	uint16_t plane[I915_MAX_PLANES];
1183 	uint16_t fbc;
1184 };
1185 
1186 struct g4x_sr_wm {
1187 	uint16_t plane;
1188 	uint16_t cursor;
1189 	uint16_t fbc;
1190 };
1191 
1192 struct vlv_wm_ddl_values {
1193 	uint8_t plane[I915_MAX_PLANES];
1194 };
1195 
1196 struct vlv_wm_values {
1197 	struct g4x_pipe_wm pipe[3];
1198 	struct g4x_sr_wm sr;
1199 	struct vlv_wm_ddl_values ddl[3];
1200 	uint8_t level;
1201 	bool cxsr;
1202 };
1203 
1204 struct g4x_wm_values {
1205 	struct g4x_pipe_wm pipe[2];
1206 	struct g4x_sr_wm sr;
1207 	struct g4x_sr_wm hpll;
1208 	bool cxsr;
1209 	bool hpll_en;
1210 	bool fbc_en;
1211 };
1212 
1213 struct skl_ddb_entry {
1214 	uint16_t start, end;	/* in number of blocks, 'end' is exclusive */
1215 };
1216 
1217 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1218 {
1219 	return entry->end - entry->start;
1220 }
1221 
1222 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1223 				       const struct skl_ddb_entry *e2)
1224 {
1225 	if (e1->start == e2->start && e1->end == e2->end)
1226 		return true;
1227 
1228 	return false;
1229 }
1230 
1231 struct skl_ddb_allocation {
1232 	/* packed/y */
1233 	struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES];
1234 	struct skl_ddb_entry uv_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1235 	u8 enabled_slices; /* GEN11 has configurable 2 slices */
1236 };
1237 
1238 struct skl_ddb_values {
1239 	unsigned dirty_pipes;
1240 	struct skl_ddb_allocation ddb;
1241 };
1242 
1243 struct skl_wm_level {
1244 	bool plane_en;
1245 	uint16_t plane_res_b;
1246 	uint8_t plane_res_l;
1247 };
1248 
1249 /* Stores plane specific WM parameters */
1250 struct skl_wm_params {
1251 	bool x_tiled, y_tiled;
1252 	bool rc_surface;
1253 	bool is_planar;
1254 	uint32_t width;
1255 	uint8_t cpp;
1256 	uint32_t plane_pixel_rate;
1257 	uint32_t y_min_scanlines;
1258 	uint32_t plane_bytes_per_line;
1259 	uint_fixed_16_16_t plane_blocks_per_line;
1260 	uint_fixed_16_16_t y_tile_minimum;
1261 	uint32_t linetime_us;
1262 	uint32_t dbuf_block_size;
1263 };
1264 
1265 /*
1266  * This struct helps tracking the state needed for runtime PM, which puts the
1267  * device in PCI D3 state. Notice that when this happens, nothing on the
1268  * graphics device works, even register access, so we don't get interrupts nor
1269  * anything else.
1270  *
1271  * Every piece of our code that needs to actually touch the hardware needs to
1272  * either call intel_runtime_pm_get or call intel_display_power_get with the
1273  * appropriate power domain.
1274  *
1275  * Our driver uses the autosuspend delay feature, which means we'll only really
1276  * suspend if we stay with zero refcount for a certain amount of time. The
1277  * default value is currently very conservative (see intel_runtime_pm_enable), but
1278  * it can be changed with the standard runtime PM files from sysfs.
1279  *
1280  * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1281  * goes back to false exactly before we reenable the IRQs. We use this variable
1282  * to check if someone is trying to enable/disable IRQs while they're supposed
1283  * to be disabled. This shouldn't happen and we'll print some error messages in
1284  * case it happens.
1285  *
1286  * For more, read the Documentation/power/runtime_pm.txt.
1287  */
1288 struct i915_runtime_pm {
1289 	atomic_t wakeref_count;
1290 	bool suspended;
1291 	bool irqs_enabled;
1292 };
1293 
1294 enum intel_pipe_crc_source {
1295 	INTEL_PIPE_CRC_SOURCE_NONE,
1296 	INTEL_PIPE_CRC_SOURCE_PLANE1,
1297 	INTEL_PIPE_CRC_SOURCE_PLANE2,
1298 	INTEL_PIPE_CRC_SOURCE_PF,
1299 	INTEL_PIPE_CRC_SOURCE_PIPE,
1300 	/* TV/DP on pre-gen5/vlv can't use the pipe source. */
1301 	INTEL_PIPE_CRC_SOURCE_TV,
1302 	INTEL_PIPE_CRC_SOURCE_DP_B,
1303 	INTEL_PIPE_CRC_SOURCE_DP_C,
1304 	INTEL_PIPE_CRC_SOURCE_DP_D,
1305 	INTEL_PIPE_CRC_SOURCE_AUTO,
1306 	INTEL_PIPE_CRC_SOURCE_MAX,
1307 };
1308 
1309 #define INTEL_PIPE_CRC_ENTRIES_NR	128
1310 struct intel_pipe_crc {
1311 	spinlock_t lock;
1312 	int skipped;
1313 	enum intel_pipe_crc_source source;
1314 };
1315 
1316 struct i915_frontbuffer_tracking {
1317 	spinlock_t lock;
1318 
1319 	/*
1320 	 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1321 	 * scheduled flips.
1322 	 */
1323 	unsigned busy_bits;
1324 	unsigned flip_bits;
1325 };
1326 
1327 struct i915_wa_reg {
1328 	u32 addr;
1329 	u32 value;
1330 	/* bitmask representing WA bits */
1331 	u32 mask;
1332 };
1333 
1334 #define I915_MAX_WA_REGS 16
1335 
1336 struct i915_workarounds {
1337 	struct i915_wa_reg reg[I915_MAX_WA_REGS];
1338 	u32 count;
1339 };
1340 
1341 struct i915_virtual_gpu {
1342 	bool active;
1343 	u32 caps;
1344 };
1345 
1346 /* used in computing the new watermarks state */
1347 struct intel_wm_config {
1348 	unsigned int num_pipes_active;
1349 	bool sprites_enabled;
1350 	bool sprites_scaled;
1351 };
1352 
1353 struct i915_oa_format {
1354 	u32 format;
1355 	int size;
1356 };
1357 
1358 struct i915_oa_reg {
1359 	i915_reg_t addr;
1360 	u32 value;
1361 };
1362 
1363 struct i915_oa_config {
1364 	char uuid[UUID_STRING_LEN + 1];
1365 	int id;
1366 
1367 	const struct i915_oa_reg *mux_regs;
1368 	u32 mux_regs_len;
1369 	const struct i915_oa_reg *b_counter_regs;
1370 	u32 b_counter_regs_len;
1371 	const struct i915_oa_reg *flex_regs;
1372 	u32 flex_regs_len;
1373 
1374 	struct attribute_group sysfs_metric;
1375 	struct attribute *attrs[2];
1376 	struct device_attribute sysfs_metric_id;
1377 
1378 	atomic_t ref_count;
1379 };
1380 
1381 struct i915_perf_stream;
1382 
1383 /**
1384  * struct i915_perf_stream_ops - the OPs to support a specific stream type
1385  */
1386 struct i915_perf_stream_ops {
1387 	/**
1388 	 * @enable: Enables the collection of HW samples, either in response to
1389 	 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1390 	 * without `I915_PERF_FLAG_DISABLED`.
1391 	 */
1392 	void (*enable)(struct i915_perf_stream *stream);
1393 
1394 	/**
1395 	 * @disable: Disables the collection of HW samples, either in response
1396 	 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1397 	 * the stream.
1398 	 */
1399 	void (*disable)(struct i915_perf_stream *stream);
1400 
1401 	/**
1402 	 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1403 	 * once there is something ready to read() for the stream
1404 	 */
1405 	void (*poll_wait)(struct i915_perf_stream *stream,
1406 			  struct file *file,
1407 			  poll_table *wait);
1408 
1409 	/**
1410 	 * @wait_unlocked: For handling a blocking read, wait until there is
1411 	 * something to ready to read() for the stream. E.g. wait on the same
1412 	 * wait queue that would be passed to poll_wait().
1413 	 */
1414 	int (*wait_unlocked)(struct i915_perf_stream *stream);
1415 
1416 	/**
1417 	 * @read: Copy buffered metrics as records to userspace
1418 	 * **buf**: the userspace, destination buffer
1419 	 * **count**: the number of bytes to copy, requested by userspace
1420 	 * **offset**: zero at the start of the read, updated as the read
1421 	 * proceeds, it represents how many bytes have been copied so far and
1422 	 * the buffer offset for copying the next record.
1423 	 *
1424 	 * Copy as many buffered i915 perf samples and records for this stream
1425 	 * to userspace as will fit in the given buffer.
1426 	 *
1427 	 * Only write complete records; returning -%ENOSPC if there isn't room
1428 	 * for a complete record.
1429 	 *
1430 	 * Return any error condition that results in a short read such as
1431 	 * -%ENOSPC or -%EFAULT, even though these may be squashed before
1432 	 * returning to userspace.
1433 	 */
1434 	int (*read)(struct i915_perf_stream *stream,
1435 		    char __user *buf,
1436 		    size_t count,
1437 		    size_t *offset);
1438 
1439 	/**
1440 	 * @destroy: Cleanup any stream specific resources.
1441 	 *
1442 	 * The stream will always be disabled before this is called.
1443 	 */
1444 	void (*destroy)(struct i915_perf_stream *stream);
1445 };
1446 
1447 /**
1448  * struct i915_perf_stream - state for a single open stream FD
1449  */
1450 struct i915_perf_stream {
1451 	/**
1452 	 * @dev_priv: i915 drm device
1453 	 */
1454 	struct drm_i915_private *dev_priv;
1455 
1456 	/**
1457 	 * @link: Links the stream into ``&drm_i915_private->streams``
1458 	 */
1459 	struct list_head link;
1460 
1461 	/**
1462 	 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
1463 	 * properties given when opening a stream, representing the contents
1464 	 * of a single sample as read() by userspace.
1465 	 */
1466 	u32 sample_flags;
1467 
1468 	/**
1469 	 * @sample_size: Considering the configured contents of a sample
1470 	 * combined with the required header size, this is the total size
1471 	 * of a single sample record.
1472 	 */
1473 	int sample_size;
1474 
1475 	/**
1476 	 * @ctx: %NULL if measuring system-wide across all contexts or a
1477 	 * specific context that is being monitored.
1478 	 */
1479 	struct i915_gem_context *ctx;
1480 
1481 	/**
1482 	 * @enabled: Whether the stream is currently enabled, considering
1483 	 * whether the stream was opened in a disabled state and based
1484 	 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
1485 	 */
1486 	bool enabled;
1487 
1488 	/**
1489 	 * @ops: The callbacks providing the implementation of this specific
1490 	 * type of configured stream.
1491 	 */
1492 	const struct i915_perf_stream_ops *ops;
1493 
1494 	/**
1495 	 * @oa_config: The OA configuration used by the stream.
1496 	 */
1497 	struct i915_oa_config *oa_config;
1498 };
1499 
1500 /**
1501  * struct i915_oa_ops - Gen specific implementation of an OA unit stream
1502  */
1503 struct i915_oa_ops {
1504 	/**
1505 	 * @is_valid_b_counter_reg: Validates register's address for
1506 	 * programming boolean counters for a particular platform.
1507 	 */
1508 	bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
1509 				       u32 addr);
1510 
1511 	/**
1512 	 * @is_valid_mux_reg: Validates register's address for programming mux
1513 	 * for a particular platform.
1514 	 */
1515 	bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
1516 
1517 	/**
1518 	 * @is_valid_flex_reg: Validates register's address for programming
1519 	 * flex EU filtering for a particular platform.
1520 	 */
1521 	bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
1522 
1523 	/**
1524 	 * @init_oa_buffer: Resets the head and tail pointers of the
1525 	 * circular buffer for periodic OA reports.
1526 	 *
1527 	 * Called when first opening a stream for OA metrics, but also may be
1528 	 * called in response to an OA buffer overflow or other error
1529 	 * condition.
1530 	 *
1531 	 * Note it may be necessary to clear the full OA buffer here as part of
1532 	 * maintaining the invariable that new reports must be written to
1533 	 * zeroed memory for us to be able to reliable detect if an expected
1534 	 * report has not yet landed in memory.  (At least on Haswell the OA
1535 	 * buffer tail pointer is not synchronized with reports being visible
1536 	 * to the CPU)
1537 	 */
1538 	void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
1539 
1540 	/**
1541 	 * @enable_metric_set: Selects and applies any MUX configuration to set
1542 	 * up the Boolean and Custom (B/C) counters that are part of the
1543 	 * counter reports being sampled. May apply system constraints such as
1544 	 * disabling EU clock gating as required.
1545 	 */
1546 	int (*enable_metric_set)(struct drm_i915_private *dev_priv,
1547 				 const struct i915_oa_config *oa_config);
1548 
1549 	/**
1550 	 * @disable_metric_set: Remove system constraints associated with using
1551 	 * the OA unit.
1552 	 */
1553 	void (*disable_metric_set)(struct drm_i915_private *dev_priv);
1554 
1555 	/**
1556 	 * @oa_enable: Enable periodic sampling
1557 	 */
1558 	void (*oa_enable)(struct drm_i915_private *dev_priv);
1559 
1560 	/**
1561 	 * @oa_disable: Disable periodic sampling
1562 	 */
1563 	void (*oa_disable)(struct drm_i915_private *dev_priv);
1564 
1565 	/**
1566 	 * @read: Copy data from the circular OA buffer into a given userspace
1567 	 * buffer.
1568 	 */
1569 	int (*read)(struct i915_perf_stream *stream,
1570 		    char __user *buf,
1571 		    size_t count,
1572 		    size_t *offset);
1573 
1574 	/**
1575 	 * @oa_hw_tail_read: read the OA tail pointer register
1576 	 *
1577 	 * In particular this enables us to share all the fiddly code for
1578 	 * handling the OA unit tail pointer race that affects multiple
1579 	 * generations.
1580 	 */
1581 	u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
1582 };
1583 
1584 struct intel_cdclk_state {
1585 	unsigned int cdclk, vco, ref, bypass;
1586 	u8 voltage_level;
1587 };
1588 
1589 struct drm_i915_private {
1590 	struct drm_device drm;
1591 
1592 	struct kmem_cache *objects;
1593 	struct kmem_cache *vmas;
1594 	struct kmem_cache *luts;
1595 	struct kmem_cache *requests;
1596 	struct kmem_cache *dependencies;
1597 	struct kmem_cache *priorities;
1598 
1599 	const struct intel_device_info info;
1600 	struct intel_driver_caps caps;
1601 
1602 	/**
1603 	 * Data Stolen Memory - aka "i915 stolen memory" gives us the start and
1604 	 * end of stolen which we can optionally use to create GEM objects
1605 	 * backed by stolen memory. Note that stolen_usable_size tells us
1606 	 * exactly how much of this we are actually allowed to use, given that
1607 	 * some portion of it is in fact reserved for use by hardware functions.
1608 	 */
1609 	struct resource dsm;
1610 	/**
1611 	 * Reseved portion of Data Stolen Memory
1612 	 */
1613 	struct resource dsm_reserved;
1614 
1615 	/*
1616 	 * Stolen memory is segmented in hardware with different portions
1617 	 * offlimits to certain functions.
1618 	 *
1619 	 * The drm_mm is initialised to the total accessible range, as found
1620 	 * from the PCI config. On Broadwell+, this is further restricted to
1621 	 * avoid the first page! The upper end of stolen memory is reserved for
1622 	 * hardware functions and similarly removed from the accessible range.
1623 	 */
1624 	resource_size_t stolen_usable_size;	/* Total size minus reserved ranges */
1625 
1626 	void __iomem *regs;
1627 
1628 	struct intel_uncore uncore;
1629 
1630 	struct i915_virtual_gpu vgpu;
1631 
1632 	struct intel_gvt *gvt;
1633 
1634 	struct intel_wopcm wopcm;
1635 
1636 	struct intel_huc huc;
1637 	struct intel_guc guc;
1638 
1639 	struct intel_csr csr;
1640 
1641 	struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1642 
1643 	/** gmbus_mutex protects against concurrent usage of the single hw gmbus
1644 	 * controller on different i2c buses. */
1645 	struct mutex gmbus_mutex;
1646 
1647 	/**
1648 	 * Base address of where the gmbus and gpio blocks are located (either
1649 	 * on PCH or on SoC for platforms without PCH).
1650 	 */
1651 	uint32_t gpio_mmio_base;
1652 
1653 	/* MMIO base address for MIPI regs */
1654 	uint32_t mipi_mmio_base;
1655 
1656 	uint32_t psr_mmio_base;
1657 
1658 	uint32_t pps_mmio_base;
1659 
1660 	wait_queue_head_t gmbus_wait_queue;
1661 
1662 	struct pci_dev *bridge_dev;
1663 	struct intel_engine_cs *engine[I915_NUM_ENGINES];
1664 	/* Context used internally to idle the GPU and setup initial state */
1665 	struct i915_gem_context *kernel_context;
1666 	/* Context only to be used for injecting preemption commands */
1667 	struct i915_gem_context *preempt_context;
1668 	struct intel_engine_cs *engine_class[MAX_ENGINE_CLASS + 1]
1669 					    [MAX_ENGINE_INSTANCE + 1];
1670 
1671 	struct resource mch_res;
1672 
1673 	/* protects the irq masks */
1674 	spinlock_t irq_lock;
1675 
1676 	bool display_irqs_enabled;
1677 
1678 	/* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1679 	struct pm_qos_request pm_qos;
1680 
1681 	/* Sideband mailbox protection */
1682 	struct mutex sb_lock;
1683 
1684 	/** Cached value of IMR to avoid reads in updating the bitfield */
1685 	union {
1686 		u32 irq_mask;
1687 		u32 de_irq_mask[I915_MAX_PIPES];
1688 	};
1689 	u32 gt_irq_mask;
1690 	u32 pm_imr;
1691 	u32 pm_ier;
1692 	u32 pm_rps_events;
1693 	u32 pm_guc_events;
1694 	u32 pipestat_irq_mask[I915_MAX_PIPES];
1695 
1696 	struct i915_hotplug hotplug;
1697 	struct intel_fbc fbc;
1698 	struct i915_drrs drrs;
1699 	struct intel_opregion opregion;
1700 	struct intel_vbt_data vbt;
1701 
1702 	bool preserve_bios_swizzle;
1703 
1704 	/* overlay */
1705 	struct intel_overlay *overlay;
1706 
1707 	/* backlight registers and fields in struct intel_panel */
1708 	struct mutex backlight_lock;
1709 
1710 	/* LVDS info */
1711 	bool no_aux_handshake;
1712 
1713 	/* protects panel power sequencer state */
1714 	struct mutex pps_mutex;
1715 
1716 	struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1717 	int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1718 
1719 	unsigned int fsb_freq, mem_freq, is_ddr3;
1720 	unsigned int skl_preferred_vco_freq;
1721 	unsigned int max_cdclk_freq;
1722 
1723 	unsigned int max_dotclk_freq;
1724 	unsigned int rawclk_freq;
1725 	unsigned int hpll_freq;
1726 	unsigned int fdi_pll_freq;
1727 	unsigned int czclk_freq;
1728 
1729 	struct {
1730 		/*
1731 		 * The current logical cdclk state.
1732 		 * See intel_atomic_state.cdclk.logical
1733 		 *
1734 		 * For reading holding any crtc lock is sufficient,
1735 		 * for writing must hold all of them.
1736 		 */
1737 		struct intel_cdclk_state logical;
1738 		/*
1739 		 * The current actual cdclk state.
1740 		 * See intel_atomic_state.cdclk.actual
1741 		 */
1742 		struct intel_cdclk_state actual;
1743 		/* The current hardware cdclk state */
1744 		struct intel_cdclk_state hw;
1745 	} cdclk;
1746 
1747 	/**
1748 	 * wq - Driver workqueue for GEM.
1749 	 *
1750 	 * NOTE: Work items scheduled here are not allowed to grab any modeset
1751 	 * locks, for otherwise the flushing done in the pageflip code will
1752 	 * result in deadlocks.
1753 	 */
1754 	struct workqueue_struct *wq;
1755 
1756 	/* ordered wq for modesets */
1757 	struct workqueue_struct *modeset_wq;
1758 
1759 	/* Display functions */
1760 	struct drm_i915_display_funcs display;
1761 
1762 	/* PCH chipset type */
1763 	enum intel_pch pch_type;
1764 	unsigned short pch_id;
1765 
1766 	unsigned long quirks;
1767 
1768 	struct drm_atomic_state *modeset_restore_state;
1769 	struct drm_modeset_acquire_ctx reset_ctx;
1770 
1771 	struct i915_ggtt ggtt; /* VM representing the global address space */
1772 
1773 	struct i915_gem_mm mm;
1774 	DECLARE_HASHTABLE(mm_structs, 7);
1775 	struct mutex mm_lock;
1776 
1777 	struct intel_ppat ppat;
1778 
1779 	/* Kernel Modesetting */
1780 
1781 	struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1782 	struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1783 
1784 #ifdef CONFIG_DEBUG_FS
1785 	struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1786 #endif
1787 
1788 	/* dpll and cdclk state is protected by connection_mutex */
1789 	int num_shared_dpll;
1790 	struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1791 	const struct intel_dpll_mgr *dpll_mgr;
1792 
1793 	/*
1794 	 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
1795 	 * Must be global rather than per dpll, because on some platforms
1796 	 * plls share registers.
1797 	 */
1798 	struct mutex dpll_lock;
1799 
1800 	unsigned int active_crtcs;
1801 	/* minimum acceptable cdclk for each pipe */
1802 	int min_cdclk[I915_MAX_PIPES];
1803 	/* minimum acceptable voltage level for each pipe */
1804 	u8 min_voltage_level[I915_MAX_PIPES];
1805 
1806 	int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1807 
1808 	struct i915_workarounds workarounds;
1809 	struct i915_wa_list gt_wa_list;
1810 
1811 	struct i915_frontbuffer_tracking fb_tracking;
1812 
1813 	struct intel_atomic_helper {
1814 		struct llist_head free_list;
1815 		struct work_struct free_work;
1816 	} atomic_helper;
1817 
1818 	u16 orig_clock;
1819 
1820 	bool mchbar_need_disable;
1821 
1822 	struct intel_l3_parity l3_parity;
1823 
1824 	/* Cannot be determined by PCIID. You must always read a register. */
1825 	u32 edram_cap;
1826 
1827 	/*
1828 	 * Protects RPS/RC6 register access and PCU communication.
1829 	 * Must be taken after struct_mutex if nested. Note that
1830 	 * this lock may be held for long periods of time when
1831 	 * talking to hw - so only take it when talking to hw!
1832 	 */
1833 	struct mutex pcu_lock;
1834 
1835 	/* gen6+ GT PM state */
1836 	struct intel_gen6_power_mgmt gt_pm;
1837 
1838 	/* ilk-only ips/rps state. Everything in here is protected by the global
1839 	 * mchdev_lock in intel_pm.c */
1840 	struct intel_ilk_power_mgmt ips;
1841 
1842 	struct i915_power_domains power_domains;
1843 
1844 	struct i915_psr psr;
1845 
1846 	struct i915_gpu_error gpu_error;
1847 
1848 	struct drm_i915_gem_object *vlv_pctx;
1849 
1850 	/* list of fbdev register on this device */
1851 	struct intel_fbdev *fbdev;
1852 	struct work_struct fbdev_suspend_work;
1853 
1854 	struct drm_property *broadcast_rgb_property;
1855 	struct drm_property *force_audio_property;
1856 
1857 	/* hda/i915 audio component */
1858 	struct i915_audio_component *audio_component;
1859 	bool audio_component_registered;
1860 	/**
1861 	 * av_mutex - mutex for audio/video sync
1862 	 *
1863 	 */
1864 	struct mutex av_mutex;
1865 
1866 	struct {
1867 		struct mutex mutex;
1868 		struct list_head list;
1869 		struct llist_head free_list;
1870 		struct work_struct free_work;
1871 
1872 		/* The hw wants to have a stable context identifier for the
1873 		 * lifetime of the context (for OA, PASID, faults, etc).
1874 		 * This is limited in execlists to 21 bits.
1875 		 */
1876 		struct ida hw_ida;
1877 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
1878 #define MAX_GUC_CONTEXT_HW_ID (1 << 20) /* exclusive */
1879 #define GEN11_MAX_CONTEXT_HW_ID (1<<11) /* exclusive */
1880 		struct list_head hw_id_list;
1881 	} contexts;
1882 
1883 	u32 fdi_rx_config;
1884 
1885 	/* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
1886 	u32 chv_phy_control;
1887 	/*
1888 	 * Shadows for CHV DPLL_MD regs to keep the state
1889 	 * checker somewhat working in the presence hardware
1890 	 * crappiness (can't read out DPLL_MD for pipes B & C).
1891 	 */
1892 	u32 chv_dpll_md[I915_MAX_PIPES];
1893 	u32 bxt_phy_grc;
1894 
1895 	u32 suspend_count;
1896 	bool power_domains_suspended;
1897 	struct i915_suspend_saved_registers regfile;
1898 	struct vlv_s0ix_state vlv_s0ix_state;
1899 
1900 	enum {
1901 		I915_SAGV_UNKNOWN = 0,
1902 		I915_SAGV_DISABLED,
1903 		I915_SAGV_ENABLED,
1904 		I915_SAGV_NOT_CONTROLLED
1905 	} sagv_status;
1906 
1907 	struct {
1908 		/*
1909 		 * Raw watermark latency values:
1910 		 * in 0.1us units for WM0,
1911 		 * in 0.5us units for WM1+.
1912 		 */
1913 		/* primary */
1914 		uint16_t pri_latency[5];
1915 		/* sprite */
1916 		uint16_t spr_latency[5];
1917 		/* cursor */
1918 		uint16_t cur_latency[5];
1919 		/*
1920 		 * Raw watermark memory latency values
1921 		 * for SKL for all 8 levels
1922 		 * in 1us units.
1923 		 */
1924 		uint16_t skl_latency[8];
1925 
1926 		/* current hardware state */
1927 		union {
1928 			struct ilk_wm_values hw;
1929 			struct skl_ddb_values skl_hw;
1930 			struct vlv_wm_values vlv;
1931 			struct g4x_wm_values g4x;
1932 		};
1933 
1934 		uint8_t max_level;
1935 
1936 		/*
1937 		 * Should be held around atomic WM register writing; also
1938 		 * protects * intel_crtc->wm.active and
1939 		 * cstate->wm.need_postvbl_update.
1940 		 */
1941 		struct mutex wm_mutex;
1942 
1943 		/*
1944 		 * Set during HW readout of watermarks/DDB.  Some platforms
1945 		 * need to know when we're still using BIOS-provided values
1946 		 * (which we don't fully trust).
1947 		 */
1948 		bool distrust_bios_wm;
1949 	} wm;
1950 
1951 	struct dram_info {
1952 		bool valid;
1953 		bool is_16gb_dimm;
1954 		u8 num_channels;
1955 		enum dram_rank {
1956 			I915_DRAM_RANK_INVALID = 0,
1957 			I915_DRAM_RANK_SINGLE,
1958 			I915_DRAM_RANK_DUAL
1959 		} rank;
1960 		u32 bandwidth_kbps;
1961 		bool symmetric_memory;
1962 	} dram_info;
1963 
1964 	struct i915_runtime_pm runtime_pm;
1965 
1966 	struct {
1967 		bool initialized;
1968 
1969 		struct kobject *metrics_kobj;
1970 		struct ctl_table_header *sysctl_header;
1971 
1972 		/*
1973 		 * Lock associated with adding/modifying/removing OA configs
1974 		 * in dev_priv->perf.metrics_idr.
1975 		 */
1976 		struct mutex metrics_lock;
1977 
1978 		/*
1979 		 * List of dynamic configurations, you need to hold
1980 		 * dev_priv->perf.metrics_lock to access it.
1981 		 */
1982 		struct idr metrics_idr;
1983 
1984 		/*
1985 		 * Lock associated with anything below within this structure
1986 		 * except exclusive_stream.
1987 		 */
1988 		struct mutex lock;
1989 		struct list_head streams;
1990 
1991 		struct {
1992 			/*
1993 			 * The stream currently using the OA unit. If accessed
1994 			 * outside a syscall associated to its file
1995 			 * descriptor, you need to hold
1996 			 * dev_priv->drm.struct_mutex.
1997 			 */
1998 			struct i915_perf_stream *exclusive_stream;
1999 
2000 			struct intel_context *pinned_ctx;
2001 			u32 specific_ctx_id;
2002 			u32 specific_ctx_id_mask;
2003 
2004 			struct hrtimer poll_check_timer;
2005 			wait_queue_head_t poll_wq;
2006 			bool pollin;
2007 
2008 			/**
2009 			 * For rate limiting any notifications of spurious
2010 			 * invalid OA reports
2011 			 */
2012 			struct ratelimit_state spurious_report_rs;
2013 
2014 			bool periodic;
2015 			int period_exponent;
2016 
2017 			struct i915_oa_config test_config;
2018 
2019 			struct {
2020 				struct i915_vma *vma;
2021 				u8 *vaddr;
2022 				u32 last_ctx_id;
2023 				int format;
2024 				int format_size;
2025 
2026 				/**
2027 				 * Locks reads and writes to all head/tail state
2028 				 *
2029 				 * Consider: the head and tail pointer state
2030 				 * needs to be read consistently from a hrtimer
2031 				 * callback (atomic context) and read() fop
2032 				 * (user context) with tail pointer updates
2033 				 * happening in atomic context and head updates
2034 				 * in user context and the (unlikely)
2035 				 * possibility of read() errors needing to
2036 				 * reset all head/tail state.
2037 				 *
2038 				 * Note: Contention or performance aren't
2039 				 * currently a significant concern here
2040 				 * considering the relatively low frequency of
2041 				 * hrtimer callbacks (5ms period) and that
2042 				 * reads typically only happen in response to a
2043 				 * hrtimer event and likely complete before the
2044 				 * next callback.
2045 				 *
2046 				 * Note: This lock is not held *while* reading
2047 				 * and copying data to userspace so the value
2048 				 * of head observed in htrimer callbacks won't
2049 				 * represent any partial consumption of data.
2050 				 */
2051 				spinlock_t ptr_lock;
2052 
2053 				/**
2054 				 * One 'aging' tail pointer and one 'aged'
2055 				 * tail pointer ready to used for reading.
2056 				 *
2057 				 * Initial values of 0xffffffff are invalid
2058 				 * and imply that an update is required
2059 				 * (and should be ignored by an attempted
2060 				 * read)
2061 				 */
2062 				struct {
2063 					u32 offset;
2064 				} tails[2];
2065 
2066 				/**
2067 				 * Index for the aged tail ready to read()
2068 				 * data up to.
2069 				 */
2070 				unsigned int aged_tail_idx;
2071 
2072 				/**
2073 				 * A monotonic timestamp for when the current
2074 				 * aging tail pointer was read; used to
2075 				 * determine when it is old enough to trust.
2076 				 */
2077 				u64 aging_timestamp;
2078 
2079 				/**
2080 				 * Although we can always read back the head
2081 				 * pointer register, we prefer to avoid
2082 				 * trusting the HW state, just to avoid any
2083 				 * risk that some hardware condition could
2084 				 * somehow bump the head pointer unpredictably
2085 				 * and cause us to forward the wrong OA buffer
2086 				 * data to userspace.
2087 				 */
2088 				u32 head;
2089 			} oa_buffer;
2090 
2091 			u32 gen7_latched_oastatus1;
2092 			u32 ctx_oactxctrl_offset;
2093 			u32 ctx_flexeu0_offset;
2094 
2095 			/**
2096 			 * The RPT_ID/reason field for Gen8+ includes a bit
2097 			 * to determine if the CTX ID in the report is valid
2098 			 * but the specific bit differs between Gen 8 and 9
2099 			 */
2100 			u32 gen8_valid_ctx_bit;
2101 
2102 			struct i915_oa_ops ops;
2103 			const struct i915_oa_format *oa_formats;
2104 		} oa;
2105 	} perf;
2106 
2107 	/* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2108 	struct {
2109 		void (*resume)(struct drm_i915_private *);
2110 		void (*cleanup_engine)(struct intel_engine_cs *engine);
2111 
2112 		struct list_head timelines;
2113 
2114 		struct list_head active_rings;
2115 		struct list_head closed_vma;
2116 		u32 active_requests;
2117 		u32 request_serial;
2118 
2119 		/**
2120 		 * Is the GPU currently considered idle, or busy executing
2121 		 * userspace requests? Whilst idle, we allow runtime power
2122 		 * management to power down the hardware and display clocks.
2123 		 * In order to reduce the effect on performance, there
2124 		 * is a slight delay before we do so.
2125 		 */
2126 		bool awake;
2127 
2128 		/**
2129 		 * The number of times we have woken up.
2130 		 */
2131 		unsigned int epoch;
2132 #define I915_EPOCH_INVALID 0
2133 
2134 		/**
2135 		 * We leave the user IRQ off as much as possible,
2136 		 * but this means that requests will finish and never
2137 		 * be retired once the system goes idle. Set a timer to
2138 		 * fire periodically while the ring is running. When it
2139 		 * fires, go retire requests.
2140 		 */
2141 		struct delayed_work retire_work;
2142 
2143 		/**
2144 		 * When we detect an idle GPU, we want to turn on
2145 		 * powersaving features. So once we see that there
2146 		 * are no more requests outstanding and no more
2147 		 * arrive within a small period of time, we fire
2148 		 * off the idle_work.
2149 		 */
2150 		struct delayed_work idle_work;
2151 
2152 		ktime_t last_init_time;
2153 
2154 		struct i915_vma *scratch;
2155 	} gt;
2156 
2157 	/* perform PHY state sanity checks? */
2158 	bool chv_phy_assert[2];
2159 
2160 	bool ipc_enabled;
2161 
2162 	/* Used to save the pipe-to-encoder mapping for audio */
2163 	struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2164 
2165 	/* necessary resource sharing with HDMI LPE audio driver. */
2166 	struct {
2167 		struct platform_device *platdev;
2168 		int	irq;
2169 	} lpe_audio;
2170 
2171 	struct i915_pmu pmu;
2172 
2173 	/*
2174 	 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2175 	 * will be rejected. Instead look for a better place.
2176 	 */
2177 };
2178 
2179 struct dram_channel_info {
2180 	struct info {
2181 		u8 size, width;
2182 		enum dram_rank rank;
2183 	} l_info, s_info;
2184 	enum dram_rank rank;
2185 	bool is_16gb_dimm;
2186 };
2187 
2188 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2189 {
2190 	return container_of(dev, struct drm_i915_private, drm);
2191 }
2192 
2193 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2194 {
2195 	return to_i915(dev_get_drvdata(kdev));
2196 }
2197 
2198 static inline struct drm_i915_private *wopcm_to_i915(struct intel_wopcm *wopcm)
2199 {
2200 	return container_of(wopcm, struct drm_i915_private, wopcm);
2201 }
2202 
2203 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2204 {
2205 	return container_of(guc, struct drm_i915_private, guc);
2206 }
2207 
2208 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2209 {
2210 	return container_of(huc, struct drm_i915_private, huc);
2211 }
2212 
2213 /* Simple iterator over all initialised engines */
2214 #define for_each_engine(engine__, dev_priv__, id__) \
2215 	for ((id__) = 0; \
2216 	     (id__) < I915_NUM_ENGINES; \
2217 	     (id__)++) \
2218 		for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2219 
2220 /* Iterator over subset of engines selected by mask */
2221 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2222 	for ((tmp__) = (mask__) & INTEL_INFO(dev_priv__)->ring_mask; \
2223 	     (tmp__) ? \
2224 	     ((engine__) = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : \
2225 	     0;)
2226 
2227 enum hdmi_force_audio {
2228 	HDMI_AUDIO_OFF_DVI = -2,	/* no aux data for HDMI-DVI converter */
2229 	HDMI_AUDIO_OFF,			/* force turn off HDMI audio */
2230 	HDMI_AUDIO_AUTO,		/* trust EDID */
2231 	HDMI_AUDIO_ON,			/* force turn on HDMI audio */
2232 };
2233 
2234 #define I915_GTT_OFFSET_NONE ((u32)-1)
2235 
2236 /*
2237  * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2238  * considered to be the frontbuffer for the given plane interface-wise. This
2239  * doesn't mean that the hw necessarily already scans it out, but that any
2240  * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2241  *
2242  * We have one bit per pipe and per scanout plane type.
2243  */
2244 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2245 #define INTEL_FRONTBUFFER(pipe, plane_id) ({ \
2246 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 32); \
2247 	BUILD_BUG_ON(I915_MAX_PLANES > INTEL_FRONTBUFFER_BITS_PER_PIPE); \
2248 	BIT((plane_id) + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)); \
2249 })
2250 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2251 	BIT(INTEL_FRONTBUFFER_BITS_PER_PIPE - 1 + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2252 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2253 	GENMASK(INTEL_FRONTBUFFER_BITS_PER_PIPE * ((pipe) + 1) - 1, \
2254 		INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2255 
2256 /*
2257  * Optimised SGL iterator for GEM objects
2258  */
2259 static __always_inline struct sgt_iter {
2260 	struct scatterlist *sgp;
2261 	union {
2262 		unsigned long pfn;
2263 		dma_addr_t dma;
2264 	};
2265 	unsigned int curr;
2266 	unsigned int max;
2267 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2268 	struct sgt_iter s = { .sgp = sgl };
2269 
2270 	if (s.sgp) {
2271 		s.max = s.curr = s.sgp->offset;
2272 		s.max += s.sgp->length;
2273 		if (dma)
2274 			s.dma = sg_dma_address(s.sgp);
2275 		else
2276 			s.pfn = page_to_pfn(sg_page(s.sgp));
2277 	}
2278 
2279 	return s;
2280 }
2281 
2282 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2283 {
2284 	++sg;
2285 	if (unlikely(sg_is_chain(sg)))
2286 		sg = sg_chain_ptr(sg);
2287 	return sg;
2288 }
2289 
2290 /**
2291  * __sg_next - return the next scatterlist entry in a list
2292  * @sg:		The current sg entry
2293  *
2294  * Description:
2295  *   If the entry is the last, return NULL; otherwise, step to the next
2296  *   element in the array (@sg@+1). If that's a chain pointer, follow it;
2297  *   otherwise just return the pointer to the current element.
2298  **/
2299 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2300 {
2301 	return sg_is_last(sg) ? NULL : ____sg_next(sg);
2302 }
2303 
2304 /**
2305  * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2306  * @__dmap:	DMA address (output)
2307  * @__iter:	'struct sgt_iter' (iterator state, internal)
2308  * @__sgt:	sg_table to iterate over (input)
2309  */
2310 #define for_each_sgt_dma(__dmap, __iter, __sgt)				\
2311 	for ((__iter) = __sgt_iter((__sgt)->sgl, true);			\
2312 	     ((__dmap) = (__iter).dma + (__iter).curr);			\
2313 	     (((__iter).curr += I915_GTT_PAGE_SIZE) >= (__iter).max) ?	\
2314 	     (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0)
2315 
2316 /**
2317  * for_each_sgt_page - iterate over the pages of the given sg_table
2318  * @__pp:	page pointer (output)
2319  * @__iter:	'struct sgt_iter' (iterator state, internal)
2320  * @__sgt:	sg_table to iterate over (input)
2321  */
2322 #define for_each_sgt_page(__pp, __iter, __sgt)				\
2323 	for ((__iter) = __sgt_iter((__sgt)->sgl, false);		\
2324 	     ((__pp) = (__iter).pfn == 0 ? NULL :			\
2325 	      pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2326 	     (((__iter).curr += PAGE_SIZE) >= (__iter).max) ?		\
2327 	     (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0)
2328 
2329 static inline unsigned int i915_sg_page_sizes(struct scatterlist *sg)
2330 {
2331 	unsigned int page_sizes;
2332 
2333 	page_sizes = 0;
2334 	while (sg) {
2335 		GEM_BUG_ON(sg->offset);
2336 		GEM_BUG_ON(!IS_ALIGNED(sg->length, PAGE_SIZE));
2337 		page_sizes |= sg->length;
2338 		sg = __sg_next(sg);
2339 	}
2340 
2341 	return page_sizes;
2342 }
2343 
2344 static inline unsigned int i915_sg_segment_size(void)
2345 {
2346 	unsigned int size = swiotlb_max_segment();
2347 
2348 	if (size == 0)
2349 		return SCATTERLIST_MAX_SEGMENT;
2350 
2351 	size = rounddown(size, PAGE_SIZE);
2352 	/* swiotlb_max_segment_size can return 1 byte when it means one page. */
2353 	if (size < PAGE_SIZE)
2354 		size = PAGE_SIZE;
2355 
2356 	return size;
2357 }
2358 
2359 static inline const struct intel_device_info *
2360 intel_info(const struct drm_i915_private *dev_priv)
2361 {
2362 	return &dev_priv->info;
2363 }
2364 
2365 #define INTEL_INFO(dev_priv)	intel_info((dev_priv))
2366 #define DRIVER_CAPS(dev_priv)	(&(dev_priv)->caps)
2367 
2368 #define INTEL_GEN(dev_priv)	((dev_priv)->info.gen)
2369 #define INTEL_DEVID(dev_priv)	((dev_priv)->info.device_id)
2370 
2371 #define REVID_FOREVER		0xff
2372 #define INTEL_REVID(dev_priv)	((dev_priv)->drm.pdev->revision)
2373 
2374 #define GEN_FOREVER (0)
2375 
2376 #define INTEL_GEN_MASK(s, e) ( \
2377 	BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \
2378 	BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \
2379 	GENMASK((e) != GEN_FOREVER ? (e) - 1 : BITS_PER_LONG - 1, \
2380 		(s) != GEN_FOREVER ? (s) - 1 : 0) \
2381 )
2382 
2383 /*
2384  * Returns true if Gen is in inclusive range [Start, End].
2385  *
2386  * Use GEN_FOREVER for unbound start and or end.
2387  */
2388 #define IS_GEN(dev_priv, s, e) \
2389 	(!!((dev_priv)->info.gen_mask & INTEL_GEN_MASK((s), (e))))
2390 
2391 /*
2392  * Return true if revision is in range [since,until] inclusive.
2393  *
2394  * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2395  */
2396 #define IS_REVID(p, since, until) \
2397 	(INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2398 
2399 #define IS_PLATFORM(dev_priv, p) ((dev_priv)->info.platform_mask & BIT(p))
2400 
2401 #define IS_I830(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I830)
2402 #define IS_I845G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I845G)
2403 #define IS_I85X(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I85X)
2404 #define IS_I865G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I865G)
2405 #define IS_I915G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I915G)
2406 #define IS_I915GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I915GM)
2407 #define IS_I945G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I945G)
2408 #define IS_I945GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I945GM)
2409 #define IS_I965G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I965G)
2410 #define IS_I965GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I965GM)
2411 #define IS_G45(dev_priv)	IS_PLATFORM(dev_priv, INTEL_G45)
2412 #define IS_GM45(dev_priv)	IS_PLATFORM(dev_priv, INTEL_GM45)
2413 #define IS_G4X(dev_priv)	(IS_G45(dev_priv) || IS_GM45(dev_priv))
2414 #define IS_PINEVIEW_G(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa001)
2415 #define IS_PINEVIEW_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa011)
2416 #define IS_PINEVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_PINEVIEW)
2417 #define IS_G33(dev_priv)	IS_PLATFORM(dev_priv, INTEL_G33)
2418 #define IS_IRONLAKE_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0046)
2419 #define IS_IVYBRIDGE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE)
2420 #define IS_IVB_GT1(dev_priv)	(IS_IVYBRIDGE(dev_priv) && \
2421 				 (dev_priv)->info.gt == 1)
2422 #define IS_VALLEYVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW)
2423 #define IS_CHERRYVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW)
2424 #define IS_HASWELL(dev_priv)	IS_PLATFORM(dev_priv, INTEL_HASWELL)
2425 #define IS_BROADWELL(dev_priv)	IS_PLATFORM(dev_priv, INTEL_BROADWELL)
2426 #define IS_SKYLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_SKYLAKE)
2427 #define IS_BROXTON(dev_priv)	IS_PLATFORM(dev_priv, INTEL_BROXTON)
2428 #define IS_KABYLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_KABYLAKE)
2429 #define IS_GEMINILAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_GEMINILAKE)
2430 #define IS_COFFEELAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_COFFEELAKE)
2431 #define IS_CANNONLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_CANNONLAKE)
2432 #define IS_ICELAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_ICELAKE)
2433 #define IS_MOBILE(dev_priv)	((dev_priv)->info.is_mobile)
2434 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2435 				    (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2436 #define IS_BDW_ULT(dev_priv)	(IS_BROADWELL(dev_priv) && \
2437 				 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 ||	\
2438 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xb ||	\
2439 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2440 /* ULX machines are also considered ULT. */
2441 #define IS_BDW_ULX(dev_priv)	(IS_BROADWELL(dev_priv) && \
2442 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2443 #define IS_BDW_GT3(dev_priv)	(IS_BROADWELL(dev_priv) && \
2444 				 (dev_priv)->info.gt == 3)
2445 #define IS_HSW_ULT(dev_priv)	(IS_HASWELL(dev_priv) && \
2446 				 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2447 #define IS_HSW_GT3(dev_priv)	(IS_HASWELL(dev_priv) && \
2448 				 (dev_priv)->info.gt == 3)
2449 /* ULX machines are also considered ULT. */
2450 #define IS_HSW_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0A0E || \
2451 				 INTEL_DEVID(dev_priv) == 0x0A1E)
2452 #define IS_SKL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x1906 || \
2453 				 INTEL_DEVID(dev_priv) == 0x1913 || \
2454 				 INTEL_DEVID(dev_priv) == 0x1916 || \
2455 				 INTEL_DEVID(dev_priv) == 0x1921 || \
2456 				 INTEL_DEVID(dev_priv) == 0x1926)
2457 #define IS_SKL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x190E || \
2458 				 INTEL_DEVID(dev_priv) == 0x1915 || \
2459 				 INTEL_DEVID(dev_priv) == 0x191E)
2460 #define IS_KBL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x5906 || \
2461 				 INTEL_DEVID(dev_priv) == 0x5913 || \
2462 				 INTEL_DEVID(dev_priv) == 0x5916 || \
2463 				 INTEL_DEVID(dev_priv) == 0x5921 || \
2464 				 INTEL_DEVID(dev_priv) == 0x5926)
2465 #define IS_KBL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x590E || \
2466 				 INTEL_DEVID(dev_priv) == 0x5915 || \
2467 				 INTEL_DEVID(dev_priv) == 0x591E)
2468 #define IS_SKL_GT2(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2469 				 (dev_priv)->info.gt == 2)
2470 #define IS_SKL_GT3(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2471 				 (dev_priv)->info.gt == 3)
2472 #define IS_SKL_GT4(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2473 				 (dev_priv)->info.gt == 4)
2474 #define IS_KBL_GT2(dev_priv)	(IS_KABYLAKE(dev_priv) && \
2475 				 (dev_priv)->info.gt == 2)
2476 #define IS_KBL_GT3(dev_priv)	(IS_KABYLAKE(dev_priv) && \
2477 				 (dev_priv)->info.gt == 3)
2478 #define IS_CFL_ULT(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2479 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
2480 #define IS_CFL_GT2(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2481 				 (dev_priv)->info.gt == 2)
2482 #define IS_CFL_GT3(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2483 				 (dev_priv)->info.gt == 3)
2484 #define IS_CNL_WITH_PORT_F(dev_priv)   (IS_CANNONLAKE(dev_priv) && \
2485 					(INTEL_DEVID(dev_priv) & 0x0004) == 0x0004)
2486 
2487 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2488 
2489 #define SKL_REVID_A0		0x0
2490 #define SKL_REVID_B0		0x1
2491 #define SKL_REVID_C0		0x2
2492 #define SKL_REVID_D0		0x3
2493 #define SKL_REVID_E0		0x4
2494 #define SKL_REVID_F0		0x5
2495 #define SKL_REVID_G0		0x6
2496 #define SKL_REVID_H0		0x7
2497 
2498 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2499 
2500 #define BXT_REVID_A0		0x0
2501 #define BXT_REVID_A1		0x1
2502 #define BXT_REVID_B0		0x3
2503 #define BXT_REVID_B_LAST	0x8
2504 #define BXT_REVID_C0		0x9
2505 
2506 #define IS_BXT_REVID(dev_priv, since, until) \
2507 	(IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2508 
2509 #define KBL_REVID_A0		0x0
2510 #define KBL_REVID_B0		0x1
2511 #define KBL_REVID_C0		0x2
2512 #define KBL_REVID_D0		0x3
2513 #define KBL_REVID_E0		0x4
2514 
2515 #define IS_KBL_REVID(dev_priv, since, until) \
2516 	(IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2517 
2518 #define GLK_REVID_A0		0x0
2519 #define GLK_REVID_A1		0x1
2520 
2521 #define IS_GLK_REVID(dev_priv, since, until) \
2522 	(IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2523 
2524 #define CNL_REVID_A0		0x0
2525 #define CNL_REVID_B0		0x1
2526 #define CNL_REVID_C0		0x2
2527 
2528 #define IS_CNL_REVID(p, since, until) \
2529 	(IS_CANNONLAKE(p) && IS_REVID(p, since, until))
2530 
2531 #define ICL_REVID_A0		0x0
2532 #define ICL_REVID_A2		0x1
2533 #define ICL_REVID_B0		0x3
2534 #define ICL_REVID_B2		0x4
2535 #define ICL_REVID_C0		0x5
2536 
2537 #define IS_ICL_REVID(p, since, until) \
2538 	(IS_ICELAKE(p) && IS_REVID(p, since, until))
2539 
2540 /*
2541  * The genX designation typically refers to the render engine, so render
2542  * capability related checks should use IS_GEN, while display and other checks
2543  * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2544  * chips, etc.).
2545  */
2546 #define IS_GEN2(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(1)))
2547 #define IS_GEN3(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(2)))
2548 #define IS_GEN4(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(3)))
2549 #define IS_GEN5(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(4)))
2550 #define IS_GEN6(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(5)))
2551 #define IS_GEN7(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(6)))
2552 #define IS_GEN8(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(7)))
2553 #define IS_GEN9(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(8)))
2554 #define IS_GEN10(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(9)))
2555 #define IS_GEN11(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(10)))
2556 
2557 #define IS_LP(dev_priv)	(INTEL_INFO(dev_priv)->is_lp)
2558 #define IS_GEN9_LP(dev_priv)	(IS_GEN9(dev_priv) && IS_LP(dev_priv))
2559 #define IS_GEN9_BC(dev_priv)	(IS_GEN9(dev_priv) && !IS_LP(dev_priv))
2560 
2561 #define ENGINE_MASK(id)	BIT(id)
2562 #define RENDER_RING	ENGINE_MASK(RCS)
2563 #define BSD_RING	ENGINE_MASK(VCS)
2564 #define BLT_RING	ENGINE_MASK(BCS)
2565 #define VEBOX_RING	ENGINE_MASK(VECS)
2566 #define BSD2_RING	ENGINE_MASK(VCS2)
2567 #define BSD3_RING	ENGINE_MASK(VCS3)
2568 #define BSD4_RING	ENGINE_MASK(VCS4)
2569 #define VEBOX2_RING	ENGINE_MASK(VECS2)
2570 #define ALL_ENGINES	(~0)
2571 
2572 #define HAS_ENGINE(dev_priv, id) \
2573 	(!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
2574 
2575 #define HAS_BSD(dev_priv)	HAS_ENGINE(dev_priv, VCS)
2576 #define HAS_BSD2(dev_priv)	HAS_ENGINE(dev_priv, VCS2)
2577 #define HAS_BLT(dev_priv)	HAS_ENGINE(dev_priv, BCS)
2578 #define HAS_VEBOX(dev_priv)	HAS_ENGINE(dev_priv, VECS)
2579 
2580 #define HAS_LEGACY_SEMAPHORES(dev_priv) IS_GEN7(dev_priv)
2581 
2582 #define HAS_LLC(dev_priv)	((dev_priv)->info.has_llc)
2583 #define HAS_SNOOP(dev_priv)	((dev_priv)->info.has_snoop)
2584 #define HAS_EDRAM(dev_priv)	(!!((dev_priv)->edram_cap & EDRAM_ENABLED))
2585 #define HAS_WT(dev_priv)	((IS_HASWELL(dev_priv) || \
2586 				 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
2587 
2588 #define HWS_NEEDS_PHYSICAL(dev_priv)	((dev_priv)->info.hws_needs_physical)
2589 
2590 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
2591 		((dev_priv)->info.has_logical_ring_contexts)
2592 #define HAS_LOGICAL_RING_ELSQ(dev_priv) \
2593 		((dev_priv)->info.has_logical_ring_elsq)
2594 #define HAS_LOGICAL_RING_PREEMPTION(dev_priv) \
2595 		((dev_priv)->info.has_logical_ring_preemption)
2596 
2597 #define HAS_EXECLISTS(dev_priv) HAS_LOGICAL_RING_CONTEXTS(dev_priv)
2598 
2599 #define USES_PPGTT(dev_priv)		(i915_modparams.enable_ppgtt)
2600 #define USES_FULL_PPGTT(dev_priv)	(i915_modparams.enable_ppgtt >= 2)
2601 #define USES_FULL_48BIT_PPGTT(dev_priv)	(i915_modparams.enable_ppgtt == 3)
2602 #define HAS_PAGE_SIZES(dev_priv, sizes) ({ \
2603 	GEM_BUG_ON((sizes) == 0); \
2604 	((sizes) & ~(dev_priv)->info.page_sizes) == 0; \
2605 })
2606 
2607 #define HAS_OVERLAY(dev_priv)		 ((dev_priv)->info.has_overlay)
2608 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
2609 		((dev_priv)->info.overlay_needs_physical)
2610 
2611 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2612 #define HAS_BROKEN_CS_TLB(dev_priv)	(IS_I830(dev_priv) || IS_I845G(dev_priv))
2613 
2614 /* WaRsDisableCoarsePowerGating:skl,cnl */
2615 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2616 	(IS_CANNONLAKE(dev_priv) || \
2617 	 IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
2618 
2619 #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4)
2620 #define HAS_GMBUS_BURST_READ(dev_priv) (INTEL_GEN(dev_priv) >= 10 || \
2621 					IS_GEMINILAKE(dev_priv) || \
2622 					IS_KABYLAKE(dev_priv))
2623 
2624 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2625  * rows, which changed the alignment requirements and fence programming.
2626  */
2627 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
2628 					 !(IS_I915G(dev_priv) || \
2629 					 IS_I915GM(dev_priv)))
2630 #define SUPPORTS_TV(dev_priv)		((dev_priv)->info.supports_tv)
2631 #define I915_HAS_HOTPLUG(dev_priv)	((dev_priv)->info.has_hotplug)
2632 
2633 #define HAS_FW_BLC(dev_priv) 	(INTEL_GEN(dev_priv) > 2)
2634 #define HAS_FBC(dev_priv)	((dev_priv)->info.has_fbc)
2635 #define HAS_CUR_FBC(dev_priv)	(!HAS_GMCH_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 7)
2636 
2637 #define HAS_IPS(dev_priv)	(IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
2638 
2639 #define HAS_DP_MST(dev_priv)	((dev_priv)->info.has_dp_mst)
2640 
2641 #define HAS_DDI(dev_priv)		 ((dev_priv)->info.has_ddi)
2642 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
2643 #define HAS_PSR(dev_priv)		 ((dev_priv)->info.has_psr)
2644 
2645 #define HAS_RC6(dev_priv)		 ((dev_priv)->info.has_rc6)
2646 #define HAS_RC6p(dev_priv)		 ((dev_priv)->info.has_rc6p)
2647 #define HAS_RC6pp(dev_priv)		 (false) /* HW was never validated */
2648 
2649 #define HAS_CSR(dev_priv)	((dev_priv)->info.has_csr)
2650 
2651 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
2652 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
2653 
2654 #define HAS_IPC(dev_priv)		 ((dev_priv)->info.has_ipc)
2655 
2656 /*
2657  * For now, anything with a GuC requires uCode loading, and then supports
2658  * command submission once loaded. But these are logically independent
2659  * properties, so we have separate macros to test them.
2660  */
2661 #define HAS_GUC(dev_priv)	((dev_priv)->info.has_guc)
2662 #define HAS_GUC_CT(dev_priv)	((dev_priv)->info.has_guc_ct)
2663 #define HAS_GUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
2664 #define HAS_GUC_SCHED(dev_priv)	(HAS_GUC(dev_priv))
2665 
2666 /* For now, anything with a GuC has also HuC */
2667 #define HAS_HUC(dev_priv)	(HAS_GUC(dev_priv))
2668 #define HAS_HUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
2669 
2670 /* Having a GuC is not the same as using a GuC */
2671 #define USES_GUC(dev_priv)		intel_uc_is_using_guc()
2672 #define USES_GUC_SUBMISSION(dev_priv)	intel_uc_is_using_guc_submission()
2673 #define USES_HUC(dev_priv)		intel_uc_is_using_huc()
2674 
2675 #define HAS_POOLED_EU(dev_priv)	((dev_priv)->info.has_pooled_eu)
2676 
2677 #define INTEL_PCH_DEVICE_ID_MASK		0xff80
2678 #define INTEL_PCH_IBX_DEVICE_ID_TYPE		0x3b00
2679 #define INTEL_PCH_CPT_DEVICE_ID_TYPE		0x1c00
2680 #define INTEL_PCH_PPT_DEVICE_ID_TYPE		0x1e00
2681 #define INTEL_PCH_LPT_DEVICE_ID_TYPE		0x8c00
2682 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE		0x9c00
2683 #define INTEL_PCH_WPT_DEVICE_ID_TYPE		0x8c80
2684 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE		0x9c80
2685 #define INTEL_PCH_SPT_DEVICE_ID_TYPE		0xA100
2686 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE		0x9D00
2687 #define INTEL_PCH_KBP_DEVICE_ID_TYPE		0xA280
2688 #define INTEL_PCH_CNP_DEVICE_ID_TYPE		0xA300
2689 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE		0x9D80
2690 #define INTEL_PCH_ICP_DEVICE_ID_TYPE		0x3480
2691 #define INTEL_PCH_P2X_DEVICE_ID_TYPE		0x7100
2692 #define INTEL_PCH_P3X_DEVICE_ID_TYPE		0x7000
2693 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE		0x2900 /* qemu q35 has 2918 */
2694 
2695 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
2696 #define INTEL_PCH_ID(dev_priv) ((dev_priv)->pch_id)
2697 #define HAS_PCH_ICP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_ICP)
2698 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
2699 #define HAS_PCH_CNP_LP(dev_priv) \
2700 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
2701 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
2702 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
2703 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
2704 #define HAS_PCH_LPT_LP(dev_priv) \
2705 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
2706 	 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
2707 #define HAS_PCH_LPT_H(dev_priv) \
2708 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
2709 	 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_DEVICE_ID_TYPE)
2710 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
2711 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
2712 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
2713 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
2714 
2715 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
2716 
2717 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
2718 
2719 /* DPF == dynamic parity feature */
2720 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
2721 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
2722 				 2 : HAS_L3_DPF(dev_priv))
2723 
2724 #define GT_FREQUENCY_MULTIPLIER 50
2725 #define GEN9_FREQ_SCALER 3
2726 
2727 #include "i915_trace.h"
2728 
2729 static inline bool intel_vtd_active(void)
2730 {
2731 #ifdef CONFIG_INTEL_IOMMU
2732 	if (intel_iommu_gfx_mapped)
2733 		return true;
2734 #endif
2735 	return false;
2736 }
2737 
2738 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
2739 {
2740 	return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
2741 }
2742 
2743 static inline bool
2744 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
2745 {
2746 	return IS_BROXTON(dev_priv) && intel_vtd_active();
2747 }
2748 
2749 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
2750 				int enable_ppgtt);
2751 
2752 /* i915_drv.c */
2753 void __printf(3, 4)
2754 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2755 	      const char *fmt, ...);
2756 
2757 #define i915_report_error(dev_priv, fmt, ...)				   \
2758 	__i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2759 
2760 #ifdef CONFIG_COMPAT
2761 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2762 			      unsigned long arg);
2763 #else
2764 #define i915_compat_ioctl NULL
2765 #endif
2766 extern const struct dev_pm_ops i915_pm_ops;
2767 
2768 extern int i915_driver_load(struct pci_dev *pdev,
2769 			    const struct pci_device_id *ent);
2770 extern void i915_driver_unload(struct drm_device *dev);
2771 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
2772 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
2773 
2774 extern void i915_reset(struct drm_i915_private *i915,
2775 		       unsigned int stalled_mask,
2776 		       const char *reason);
2777 extern int i915_reset_engine(struct intel_engine_cs *engine,
2778 			     const char *reason);
2779 
2780 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv);
2781 extern int intel_reset_guc(struct drm_i915_private *dev_priv);
2782 extern int intel_guc_reset_engine(struct intel_guc *guc,
2783 				  struct intel_engine_cs *engine);
2784 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2785 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
2786 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2787 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2788 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2789 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2790 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2791 
2792 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
2793 int intel_engines_init(struct drm_i915_private *dev_priv);
2794 
2795 u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv);
2796 
2797 /* intel_hotplug.c */
2798 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
2799 			   u32 pin_mask, u32 long_mask);
2800 void intel_hpd_init(struct drm_i915_private *dev_priv);
2801 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2802 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2803 enum hpd_pin intel_hpd_pin_default(struct drm_i915_private *dev_priv,
2804 				   enum port port);
2805 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2806 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2807 
2808 /* i915_irq.c */
2809 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
2810 {
2811 	unsigned long delay;
2812 
2813 	if (unlikely(!i915_modparams.enable_hangcheck))
2814 		return;
2815 
2816 	/* Don't continually defer the hangcheck so that it is always run at
2817 	 * least once after work has been scheduled on any ring. Otherwise,
2818 	 * we will ignore a hung ring if a second ring is kept busy.
2819 	 */
2820 
2821 	delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
2822 	queue_delayed_work(system_long_wq,
2823 			   &dev_priv->gpu_error.hangcheck_work, delay);
2824 }
2825 
2826 __printf(4, 5)
2827 void i915_handle_error(struct drm_i915_private *dev_priv,
2828 		       u32 engine_mask,
2829 		       unsigned long flags,
2830 		       const char *fmt, ...);
2831 #define I915_ERROR_CAPTURE BIT(0)
2832 
2833 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2834 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
2835 int intel_irq_install(struct drm_i915_private *dev_priv);
2836 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2837 
2838 void i915_clear_error_registers(struct drm_i915_private *dev_priv);
2839 
2840 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
2841 {
2842 	return dev_priv->gvt;
2843 }
2844 
2845 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
2846 {
2847 	return dev_priv->vgpu.active;
2848 }
2849 
2850 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
2851 			      enum pipe pipe);
2852 void
2853 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2854 		     u32 status_mask);
2855 
2856 void
2857 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2858 		      u32 status_mask);
2859 
2860 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
2861 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
2862 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
2863 				   uint32_t mask,
2864 				   uint32_t bits);
2865 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
2866 			    uint32_t interrupt_mask,
2867 			    uint32_t enabled_irq_mask);
2868 static inline void
2869 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2870 {
2871 	ilk_update_display_irq(dev_priv, bits, bits);
2872 }
2873 static inline void
2874 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2875 {
2876 	ilk_update_display_irq(dev_priv, bits, 0);
2877 }
2878 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
2879 			 enum pipe pipe,
2880 			 uint32_t interrupt_mask,
2881 			 uint32_t enabled_irq_mask);
2882 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
2883 				       enum pipe pipe, uint32_t bits)
2884 {
2885 	bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
2886 }
2887 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
2888 					enum pipe pipe, uint32_t bits)
2889 {
2890 	bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
2891 }
2892 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
2893 				  uint32_t interrupt_mask,
2894 				  uint32_t enabled_irq_mask);
2895 static inline void
2896 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
2897 {
2898 	ibx_display_interrupt_update(dev_priv, bits, bits);
2899 }
2900 static inline void
2901 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
2902 {
2903 	ibx_display_interrupt_update(dev_priv, bits, 0);
2904 }
2905 
2906 /* i915_gem.c */
2907 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
2908 			  struct drm_file *file_priv);
2909 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
2910 			 struct drm_file *file_priv);
2911 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
2912 			  struct drm_file *file_priv);
2913 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
2914 			struct drm_file *file_priv);
2915 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2916 			struct drm_file *file_priv);
2917 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
2918 			      struct drm_file *file_priv);
2919 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
2920 			     struct drm_file *file_priv);
2921 int i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2922 			      struct drm_file *file_priv);
2923 int i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2924 			       struct drm_file *file_priv);
2925 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2926 			struct drm_file *file_priv);
2927 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
2928 			       struct drm_file *file);
2929 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
2930 			       struct drm_file *file);
2931 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2932 			    struct drm_file *file_priv);
2933 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
2934 			   struct drm_file *file_priv);
2935 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
2936 			      struct drm_file *file_priv);
2937 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
2938 			      struct drm_file *file_priv);
2939 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
2940 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
2941 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
2942 			   struct drm_file *file);
2943 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
2944 				struct drm_file *file_priv);
2945 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
2946 			struct drm_file *file_priv);
2947 void i915_gem_sanitize(struct drm_i915_private *i915);
2948 int i915_gem_init_early(struct drm_i915_private *dev_priv);
2949 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv);
2950 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
2951 int i915_gem_freeze(struct drm_i915_private *dev_priv);
2952 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
2953 
2954 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
2955 void i915_gem_object_free(struct drm_i915_gem_object *obj);
2956 void i915_gem_object_init(struct drm_i915_gem_object *obj,
2957 			 const struct drm_i915_gem_object_ops *ops);
2958 struct drm_i915_gem_object *
2959 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
2960 struct drm_i915_gem_object *
2961 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
2962 				 const void *data, size_t size);
2963 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
2964 void i915_gem_free_object(struct drm_gem_object *obj);
2965 
2966 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
2967 {
2968 	if (!atomic_read(&i915->mm.free_count))
2969 		return;
2970 
2971 	/* A single pass should suffice to release all the freed objects (along
2972 	 * most call paths) , but be a little more paranoid in that freeing
2973 	 * the objects does take a little amount of time, during which the rcu
2974 	 * callbacks could have added new objects into the freed list, and
2975 	 * armed the work again.
2976 	 */
2977 	do {
2978 		rcu_barrier();
2979 	} while (flush_work(&i915->mm.free_work));
2980 }
2981 
2982 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
2983 {
2984 	/*
2985 	 * Similar to objects above (see i915_gem_drain_freed-objects), in
2986 	 * general we have workers that are armed by RCU and then rearm
2987 	 * themselves in their callbacks. To be paranoid, we need to
2988 	 * drain the workqueue a second time after waiting for the RCU
2989 	 * grace period so that we catch work queued via RCU from the first
2990 	 * pass. As neither drain_workqueue() nor flush_workqueue() report
2991 	 * a result, we make an assumption that we only don't require more
2992 	 * than 2 passes to catch all recursive RCU delayed work.
2993 	 *
2994 	 */
2995 	int pass = 2;
2996 	do {
2997 		rcu_barrier();
2998 		drain_workqueue(i915->wq);
2999 	} while (--pass);
3000 }
3001 
3002 struct i915_vma * __must_check
3003 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3004 			 const struct i915_ggtt_view *view,
3005 			 u64 size,
3006 			 u64 alignment,
3007 			 u64 flags);
3008 
3009 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3010 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3011 
3012 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
3013 
3014 static inline int __sg_page_count(const struct scatterlist *sg)
3015 {
3016 	return sg->length >> PAGE_SHIFT;
3017 }
3018 
3019 struct scatterlist *
3020 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
3021 		       unsigned int n, unsigned int *offset);
3022 
3023 struct page *
3024 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
3025 			 unsigned int n);
3026 
3027 struct page *
3028 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
3029 			       unsigned int n);
3030 
3031 dma_addr_t
3032 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
3033 				unsigned long n);
3034 
3035 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3036 				 struct sg_table *pages,
3037 				 unsigned int sg_page_sizes);
3038 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3039 
3040 static inline int __must_check
3041 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3042 {
3043 	might_lock(&obj->mm.lock);
3044 
3045 	if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3046 		return 0;
3047 
3048 	return __i915_gem_object_get_pages(obj);
3049 }
3050 
3051 static inline bool
3052 i915_gem_object_has_pages(struct drm_i915_gem_object *obj)
3053 {
3054 	return !IS_ERR_OR_NULL(READ_ONCE(obj->mm.pages));
3055 }
3056 
3057 static inline void
3058 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3059 {
3060 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
3061 
3062 	atomic_inc(&obj->mm.pages_pin_count);
3063 }
3064 
3065 static inline bool
3066 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3067 {
3068 	return atomic_read(&obj->mm.pages_pin_count);
3069 }
3070 
3071 static inline void
3072 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3073 {
3074 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
3075 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3076 
3077 	atomic_dec(&obj->mm.pages_pin_count);
3078 }
3079 
3080 static inline void
3081 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3082 {
3083 	__i915_gem_object_unpin_pages(obj);
3084 }
3085 
3086 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3087 	I915_MM_NORMAL = 0,
3088 	I915_MM_SHRINKER
3089 };
3090 
3091 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3092 				 enum i915_mm_subclass subclass);
3093 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3094 
3095 enum i915_map_type {
3096 	I915_MAP_WB = 0,
3097 	I915_MAP_WC,
3098 #define I915_MAP_OVERRIDE BIT(31)
3099 	I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
3100 	I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
3101 };
3102 
3103 static inline enum i915_map_type
3104 i915_coherent_map_type(struct drm_i915_private *i915)
3105 {
3106 	return HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC;
3107 }
3108 
3109 /**
3110  * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3111  * @obj: the object to map into kernel address space
3112  * @type: the type of mapping, used to select pgprot_t
3113  *
3114  * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3115  * pages and then returns a contiguous mapping of the backing storage into
3116  * the kernel address space. Based on the @type of mapping, the PTE will be
3117  * set to either WriteBack or WriteCombine (via pgprot_t).
3118  *
3119  * The caller is responsible for calling i915_gem_object_unpin_map() when the
3120  * mapping is no longer required.
3121  *
3122  * Returns the pointer through which to access the mapped object, or an
3123  * ERR_PTR() on error.
3124  */
3125 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3126 					   enum i915_map_type type);
3127 
3128 /**
3129  * i915_gem_object_unpin_map - releases an earlier mapping
3130  * @obj: the object to unmap
3131  *
3132  * After pinning the object and mapping its pages, once you are finished
3133  * with your access, call i915_gem_object_unpin_map() to release the pin
3134  * upon the mapping. Once the pin count reaches zero, that mapping may be
3135  * removed.
3136  */
3137 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3138 {
3139 	i915_gem_object_unpin_pages(obj);
3140 }
3141 
3142 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3143 				    unsigned int *needs_clflush);
3144 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3145 				     unsigned int *needs_clflush);
3146 #define CLFLUSH_BEFORE	BIT(0)
3147 #define CLFLUSH_AFTER	BIT(1)
3148 #define CLFLUSH_FLAGS	(CLFLUSH_BEFORE | CLFLUSH_AFTER)
3149 
3150 static inline void
3151 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3152 {
3153 	i915_gem_object_unpin_pages(obj);
3154 }
3155 
3156 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3157 int i915_gem_dumb_create(struct drm_file *file_priv,
3158 			 struct drm_device *dev,
3159 			 struct drm_mode_create_dumb *args);
3160 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3161 		      uint32_t handle, uint64_t *offset);
3162 int i915_gem_mmap_gtt_version(void);
3163 
3164 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3165 		       struct drm_i915_gem_object *new,
3166 		       unsigned frontbuffer_bits);
3167 
3168 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3169 
3170 struct i915_request *
3171 i915_gem_find_active_request(struct intel_engine_cs *engine);
3172 
3173 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3174 {
3175 	return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3176 }
3177 
3178 static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3179 {
3180 	return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3181 }
3182 
3183 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3184 {
3185 	return unlikely(test_bit(I915_WEDGED, &error->flags));
3186 }
3187 
3188 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3189 {
3190 	return i915_reset_backoff(error) | i915_terminally_wedged(error);
3191 }
3192 
3193 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3194 {
3195 	return READ_ONCE(error->reset_count);
3196 }
3197 
3198 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3199 					  struct intel_engine_cs *engine)
3200 {
3201 	return READ_ONCE(error->reset_engine_count[engine->id]);
3202 }
3203 
3204 struct i915_request *
3205 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine);
3206 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3207 void i915_gem_reset(struct drm_i915_private *dev_priv,
3208 		    unsigned int stalled_mask);
3209 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine);
3210 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3211 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3212 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3213 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3214 			   struct i915_request *request,
3215 			   bool stalled);
3216 
3217 void i915_gem_init_mmio(struct drm_i915_private *i915);
3218 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3219 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3220 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3221 void i915_gem_fini(struct drm_i915_private *dev_priv);
3222 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3223 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3224 			   unsigned int flags, long timeout);
3225 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3226 void i915_gem_suspend_late(struct drm_i915_private *dev_priv);
3227 void i915_gem_resume(struct drm_i915_private *dev_priv);
3228 vm_fault_t i915_gem_fault(struct vm_fault *vmf);
3229 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3230 			 unsigned int flags,
3231 			 long timeout,
3232 			 struct intel_rps_client *rps);
3233 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3234 				  unsigned int flags,
3235 				  const struct i915_sched_attr *attr);
3236 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3237 
3238 int __must_check
3239 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3240 int __must_check
3241 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3242 int __must_check
3243 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3244 struct i915_vma * __must_check
3245 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3246 				     u32 alignment,
3247 				     const struct i915_ggtt_view *view,
3248 				     unsigned int flags);
3249 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3250 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3251 				int align);
3252 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3253 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3254 
3255 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3256 				    enum i915_cache_level cache_level);
3257 
3258 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3259 				struct dma_buf *dma_buf);
3260 
3261 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3262 				struct drm_gem_object *gem_obj, int flags);
3263 
3264 static inline struct i915_hw_ppgtt *
3265 i915_vm_to_ppgtt(struct i915_address_space *vm)
3266 {
3267 	return container_of(vm, struct i915_hw_ppgtt, vm);
3268 }
3269 
3270 /* i915_gem_fence_reg.c */
3271 struct drm_i915_fence_reg *
3272 i915_reserve_fence(struct drm_i915_private *dev_priv);
3273 void i915_unreserve_fence(struct drm_i915_fence_reg *fence);
3274 
3275 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3276 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3277 
3278 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3279 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3280 				       struct sg_table *pages);
3281 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3282 					 struct sg_table *pages);
3283 
3284 static inline struct i915_gem_context *
3285 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3286 {
3287 	return idr_find(&file_priv->context_idr, id);
3288 }
3289 
3290 static inline struct i915_gem_context *
3291 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3292 {
3293 	struct i915_gem_context *ctx;
3294 
3295 	rcu_read_lock();
3296 	ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3297 	if (ctx && !kref_get_unless_zero(&ctx->ref))
3298 		ctx = NULL;
3299 	rcu_read_unlock();
3300 
3301 	return ctx;
3302 }
3303 
3304 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3305 			 struct drm_file *file);
3306 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3307 			       struct drm_file *file);
3308 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3309 				  struct drm_file *file);
3310 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3311 			    struct i915_gem_context *ctx,
3312 			    uint32_t *reg_state);
3313 
3314 /* i915_gem_evict.c */
3315 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3316 					  u64 min_size, u64 alignment,
3317 					  unsigned cache_level,
3318 					  u64 start, u64 end,
3319 					  unsigned flags);
3320 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3321 					 struct drm_mm_node *node,
3322 					 unsigned int flags);
3323 int i915_gem_evict_vm(struct i915_address_space *vm);
3324 
3325 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv);
3326 
3327 /* belongs in i915_gem_gtt.h */
3328 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3329 {
3330 	wmb();
3331 	if (INTEL_GEN(dev_priv) < 6)
3332 		intel_gtt_chipset_flush();
3333 }
3334 
3335 /* i915_gem_stolen.c */
3336 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3337 				struct drm_mm_node *node, u64 size,
3338 				unsigned alignment);
3339 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3340 					 struct drm_mm_node *node, u64 size,
3341 					 unsigned alignment, u64 start,
3342 					 u64 end);
3343 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3344 				 struct drm_mm_node *node);
3345 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3346 void i915_gem_cleanup_stolen(struct drm_i915_private *dev_priv);
3347 struct drm_i915_gem_object *
3348 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv,
3349 			      resource_size_t size);
3350 struct drm_i915_gem_object *
3351 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3352 					       resource_size_t stolen_offset,
3353 					       resource_size_t gtt_offset,
3354 					       resource_size_t size);
3355 
3356 /* i915_gem_internal.c */
3357 struct drm_i915_gem_object *
3358 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3359 				phys_addr_t size);
3360 
3361 /* i915_gem_shrinker.c */
3362 unsigned long i915_gem_shrink(struct drm_i915_private *i915,
3363 			      unsigned long target,
3364 			      unsigned long *nr_scanned,
3365 			      unsigned flags);
3366 #define I915_SHRINK_PURGEABLE 0x1
3367 #define I915_SHRINK_UNBOUND 0x2
3368 #define I915_SHRINK_BOUND 0x4
3369 #define I915_SHRINK_ACTIVE 0x8
3370 #define I915_SHRINK_VMAPS 0x10
3371 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915);
3372 void i915_gem_shrinker_register(struct drm_i915_private *i915);
3373 void i915_gem_shrinker_unregister(struct drm_i915_private *i915);
3374 void i915_gem_shrinker_taints_mutex(struct mutex *mutex);
3375 
3376 /* i915_gem_tiling.c */
3377 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3378 {
3379 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3380 
3381 	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3382 		i915_gem_object_is_tiled(obj);
3383 }
3384 
3385 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3386 			unsigned int tiling, unsigned int stride);
3387 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3388 			     unsigned int tiling, unsigned int stride);
3389 
3390 /* i915_debugfs.c */
3391 #ifdef CONFIG_DEBUG_FS
3392 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3393 int i915_debugfs_connector_add(struct drm_connector *connector);
3394 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3395 #else
3396 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3397 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3398 { return 0; }
3399 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3400 #endif
3401 
3402 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3403 
3404 /* i915_cmd_parser.c */
3405 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3406 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3407 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3408 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3409 			    struct drm_i915_gem_object *batch_obj,
3410 			    struct drm_i915_gem_object *shadow_batch_obj,
3411 			    u32 batch_start_offset,
3412 			    u32 batch_len,
3413 			    bool is_master);
3414 
3415 /* i915_perf.c */
3416 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3417 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3418 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3419 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3420 
3421 /* i915_suspend.c */
3422 extern int i915_save_state(struct drm_i915_private *dev_priv);
3423 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3424 
3425 /* i915_sysfs.c */
3426 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3427 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3428 
3429 /* intel_lpe_audio.c */
3430 int  intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3431 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3432 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3433 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3434 			    enum pipe pipe, enum port port,
3435 			    const void *eld, int ls_clock, bool dp_output);
3436 
3437 /* intel_i2c.c */
3438 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3439 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3440 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3441 				     unsigned int pin);
3442 extern int intel_gmbus_output_aksv(struct i2c_adapter *adapter);
3443 
3444 extern struct i2c_adapter *
3445 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3446 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3447 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3448 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3449 {
3450 	return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3451 }
3452 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3453 
3454 /* intel_bios.c */
3455 void intel_bios_init(struct drm_i915_private *dev_priv);
3456 void intel_bios_cleanup(struct drm_i915_private *dev_priv);
3457 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3458 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3459 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3460 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3461 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3462 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3463 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3464 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3465 				     enum port port);
3466 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3467 				enum port port);
3468 
3469 /* intel_acpi.c */
3470 #ifdef CONFIG_ACPI
3471 extern void intel_register_dsm_handler(void);
3472 extern void intel_unregister_dsm_handler(void);
3473 #else
3474 static inline void intel_register_dsm_handler(void) { return; }
3475 static inline void intel_unregister_dsm_handler(void) { return; }
3476 #endif /* CONFIG_ACPI */
3477 
3478 /* intel_device_info.c */
3479 static inline struct intel_device_info *
3480 mkwrite_device_info(struct drm_i915_private *dev_priv)
3481 {
3482 	return (struct intel_device_info *)&dev_priv->info;
3483 }
3484 
3485 /* modesetting */
3486 extern void intel_modeset_init_hw(struct drm_device *dev);
3487 extern int intel_modeset_init(struct drm_device *dev);
3488 extern void intel_modeset_cleanup(struct drm_device *dev);
3489 extern int intel_connector_register(struct drm_connector *);
3490 extern void intel_connector_unregister(struct drm_connector *);
3491 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3492 				       bool state);
3493 extern void intel_display_resume(struct drm_device *dev);
3494 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3495 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3496 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3497 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3498 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3499 extern void intel_rps_mark_interactive(struct drm_i915_private *i915,
3500 				       bool interactive);
3501 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3502 				  bool enable);
3503 
3504 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3505 			struct drm_file *file);
3506 
3507 /* overlay */
3508 extern struct intel_overlay_error_state *
3509 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3510 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3511 					    struct intel_overlay_error_state *error);
3512 
3513 extern struct intel_display_error_state *
3514 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3515 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3516 					    struct intel_display_error_state *error);
3517 
3518 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3519 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv, u32 mbox,
3520 				    u32 val, int fast_timeout_us,
3521 				    int slow_timeout_ms);
3522 #define sandybridge_pcode_write(dev_priv, mbox, val)	\
3523 	sandybridge_pcode_write_timeout(dev_priv, mbox, val, 500, 0)
3524 
3525 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
3526 		      u32 reply_mask, u32 reply, int timeout_base_ms);
3527 
3528 /* intel_sideband.c */
3529 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3530 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3531 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3532 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3533 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3534 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3535 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3536 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3537 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3538 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3539 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3540 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3541 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3542 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3543 		   enum intel_sbi_destination destination);
3544 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3545 		     enum intel_sbi_destination destination);
3546 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3547 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3548 
3549 /* intel_dpio_phy.c */
3550 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
3551 			     enum dpio_phy *phy, enum dpio_channel *ch);
3552 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
3553 				  enum port port, u32 margin, u32 scale,
3554 				  u32 enable, u32 deemphasis);
3555 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3556 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3557 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
3558 			    enum dpio_phy phy);
3559 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
3560 			      enum dpio_phy phy);
3561 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(uint8_t lane_count);
3562 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
3563 				     uint8_t lane_lat_optim_mask);
3564 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
3565 
3566 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3567 			      u32 deemph_reg_value, u32 margin_reg_value,
3568 			      bool uniq_trans_scale);
3569 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3570 			      const struct intel_crtc_state *crtc_state,
3571 			      bool reset);
3572 void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
3573 			    const struct intel_crtc_state *crtc_state);
3574 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3575 				const struct intel_crtc_state *crtc_state);
3576 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3577 void chv_phy_post_pll_disable(struct intel_encoder *encoder,
3578 			      const struct intel_crtc_state *old_crtc_state);
3579 
3580 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3581 			      u32 demph_reg_value, u32 preemph_reg_value,
3582 			      u32 uniqtranscale_reg_value, u32 tx3_demph);
3583 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
3584 			    const struct intel_crtc_state *crtc_state);
3585 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3586 				const struct intel_crtc_state *crtc_state);
3587 void vlv_phy_reset_lanes(struct intel_encoder *encoder,
3588 			 const struct intel_crtc_state *old_crtc_state);
3589 
3590 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3591 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3592 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
3593 			   const i915_reg_t reg);
3594 
3595 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat1);
3596 
3597 static inline u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
3598 					 const i915_reg_t reg)
3599 {
3600 	return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(dev_priv, reg), 1000);
3601 }
3602 
3603 #define I915_READ8(reg)		dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3604 #define I915_WRITE8(reg, val)	dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3605 
3606 #define I915_READ16(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3607 #define I915_WRITE16(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3608 #define I915_READ16_NOTRACE(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3609 #define I915_WRITE16_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3610 
3611 #define I915_READ(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3612 #define I915_WRITE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3613 #define I915_READ_NOTRACE(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3614 #define I915_WRITE_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3615 
3616 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3617  * will be implemented using 2 32-bit writes in an arbitrary order with
3618  * an arbitrary delay between them. This can cause the hardware to
3619  * act upon the intermediate value, possibly leading to corruption and
3620  * machine death. For this reason we do not support I915_WRITE64, or
3621  * dev_priv->uncore.funcs.mmio_writeq.
3622  *
3623  * When reading a 64-bit value as two 32-bit values, the delay may cause
3624  * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
3625  * occasionally a 64-bit register does not actualy support a full readq
3626  * and must be read using two 32-bit reads.
3627  *
3628  * You have been warned.
3629  */
3630 #define I915_READ64(reg)	dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3631 
3632 #define I915_READ64_2x32(lower_reg, upper_reg) ({			\
3633 	u32 upper, lower, old_upper, loop = 0;				\
3634 	upper = I915_READ(upper_reg);					\
3635 	do {								\
3636 		old_upper = upper;					\
3637 		lower = I915_READ(lower_reg);				\
3638 		upper = I915_READ(upper_reg);				\
3639 	} while (upper != old_upper && loop++ < 2);			\
3640 	(u64)upper << 32 | lower; })
3641 
3642 #define POSTING_READ(reg)	(void)I915_READ_NOTRACE(reg)
3643 #define POSTING_READ16(reg)	(void)I915_READ16_NOTRACE(reg)
3644 
3645 #define __raw_read(x, s) \
3646 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
3647 					     i915_reg_t reg) \
3648 { \
3649 	return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3650 }
3651 
3652 #define __raw_write(x, s) \
3653 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
3654 				       i915_reg_t reg, uint##x##_t val) \
3655 { \
3656 	write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3657 }
3658 __raw_read(8, b)
3659 __raw_read(16, w)
3660 __raw_read(32, l)
3661 __raw_read(64, q)
3662 
3663 __raw_write(8, b)
3664 __raw_write(16, w)
3665 __raw_write(32, l)
3666 __raw_write(64, q)
3667 
3668 #undef __raw_read
3669 #undef __raw_write
3670 
3671 /* These are untraced mmio-accessors that are only valid to be used inside
3672  * critical sections, such as inside IRQ handlers, where forcewake is explicitly
3673  * controlled.
3674  *
3675  * Think twice, and think again, before using these.
3676  *
3677  * As an example, these accessors can possibly be used between:
3678  *
3679  * spin_lock_irq(&dev_priv->uncore.lock);
3680  * intel_uncore_forcewake_get__locked();
3681  *
3682  * and
3683  *
3684  * intel_uncore_forcewake_put__locked();
3685  * spin_unlock_irq(&dev_priv->uncore.lock);
3686  *
3687  *
3688  * Note: some registers may not need forcewake held, so
3689  * intel_uncore_forcewake_{get,put} can be omitted, see
3690  * intel_uncore_forcewake_for_reg().
3691  *
3692  * Certain architectures will die if the same cacheline is concurrently accessed
3693  * by different clients (e.g. on Ivybridge). Access to registers should
3694  * therefore generally be serialised, by either the dev_priv->uncore.lock or
3695  * a more localised lock guarding all access to that bank of registers.
3696  */
3697 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3698 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3699 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
3700 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3701 
3702 /* "Broadcast RGB" property */
3703 #define INTEL_BROADCAST_RGB_AUTO 0
3704 #define INTEL_BROADCAST_RGB_FULL 1
3705 #define INTEL_BROADCAST_RGB_LIMITED 2
3706 
3707 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
3708 {
3709 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3710 		return VLV_VGACNTRL;
3711 	else if (INTEL_GEN(dev_priv) >= 5)
3712 		return CPU_VGACNTRL;
3713 	else
3714 		return VGACNTRL;
3715 }
3716 
3717 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3718 {
3719 	unsigned long j = msecs_to_jiffies(m);
3720 
3721 	return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3722 }
3723 
3724 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3725 {
3726 	/* nsecs_to_jiffies64() does not guard against overflow */
3727 	if (NSEC_PER_SEC % HZ &&
3728 	    div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ)
3729 		return MAX_JIFFY_OFFSET;
3730 
3731         return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3732 }
3733 
3734 /*
3735  * If you need to wait X milliseconds between events A and B, but event B
3736  * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3737  * when event A happened, then just before event B you call this function and
3738  * pass the timestamp as the first argument, and X as the second argument.
3739  */
3740 static inline void
3741 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3742 {
3743 	unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3744 
3745 	/*
3746 	 * Don't re-read the value of "jiffies" every time since it may change
3747 	 * behind our back and break the math.
3748 	 */
3749 	tmp_jiffies = jiffies;
3750 	target_jiffies = timestamp_jiffies +
3751 			 msecs_to_jiffies_timeout(to_wait_ms);
3752 
3753 	if (time_after(target_jiffies, tmp_jiffies)) {
3754 		remaining_jiffies = target_jiffies - tmp_jiffies;
3755 		while (remaining_jiffies)
3756 			remaining_jiffies =
3757 			    schedule_timeout_uninterruptible(remaining_jiffies);
3758 	}
3759 }
3760 
3761 static inline bool
3762 __i915_request_irq_complete(const struct i915_request *rq)
3763 {
3764 	struct intel_engine_cs *engine = rq->engine;
3765 	u32 seqno;
3766 
3767 	/* Note that the engine may have wrapped around the seqno, and
3768 	 * so our request->global_seqno will be ahead of the hardware,
3769 	 * even though it completed the request before wrapping. We catch
3770 	 * this by kicking all the waiters before resetting the seqno
3771 	 * in hardware, and also signal the fence.
3772 	 */
3773 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
3774 		return true;
3775 
3776 	/* The request was dequeued before we were awoken. We check after
3777 	 * inspecting the hw to confirm that this was the same request
3778 	 * that generated the HWS update. The memory barriers within
3779 	 * the request execution are sufficient to ensure that a check
3780 	 * after reading the value from hw matches this request.
3781 	 */
3782 	seqno = i915_request_global_seqno(rq);
3783 	if (!seqno)
3784 		return false;
3785 
3786 	/* Before we do the heavier coherent read of the seqno,
3787 	 * check the value (hopefully) in the CPU cacheline.
3788 	 */
3789 	if (__i915_request_completed(rq, seqno))
3790 		return true;
3791 
3792 	/* Ensure our read of the seqno is coherent so that we
3793 	 * do not "miss an interrupt" (i.e. if this is the last
3794 	 * request and the seqno write from the GPU is not visible
3795 	 * by the time the interrupt fires, we will see that the
3796 	 * request is incomplete and go back to sleep awaiting
3797 	 * another interrupt that will never come.)
3798 	 *
3799 	 * Strictly, we only need to do this once after an interrupt,
3800 	 * but it is easier and safer to do it every time the waiter
3801 	 * is woken.
3802 	 */
3803 	if (engine->irq_seqno_barrier &&
3804 	    test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
3805 		struct intel_breadcrumbs *b = &engine->breadcrumbs;
3806 
3807 		/* The ordering of irq_posted versus applying the barrier
3808 		 * is crucial. The clearing of the current irq_posted must
3809 		 * be visible before we perform the barrier operation,
3810 		 * such that if a subsequent interrupt arrives, irq_posted
3811 		 * is reasserted and our task rewoken (which causes us to
3812 		 * do another __i915_request_irq_complete() immediately
3813 		 * and reapply the barrier). Conversely, if the clear
3814 		 * occurs after the barrier, then an interrupt that arrived
3815 		 * whilst we waited on the barrier would not trigger a
3816 		 * barrier on the next pass, and the read may not see the
3817 		 * seqno update.
3818 		 */
3819 		engine->irq_seqno_barrier(engine);
3820 
3821 		/* If we consume the irq, but we are no longer the bottom-half,
3822 		 * the real bottom-half may not have serialised their own
3823 		 * seqno check with the irq-barrier (i.e. may have inspected
3824 		 * the seqno before we believe it coherent since they see
3825 		 * irq_posted == false but we are still running).
3826 		 */
3827 		spin_lock_irq(&b->irq_lock);
3828 		if (b->irq_wait && b->irq_wait->tsk != current)
3829 			/* Note that if the bottom-half is changed as we
3830 			 * are sending the wake-up, the new bottom-half will
3831 			 * be woken by whomever made the change. We only have
3832 			 * to worry about when we steal the irq-posted for
3833 			 * ourself.
3834 			 */
3835 			wake_up_process(b->irq_wait->tsk);
3836 		spin_unlock_irq(&b->irq_lock);
3837 
3838 		if (__i915_request_completed(rq, seqno))
3839 			return true;
3840 	}
3841 
3842 	return false;
3843 }
3844 
3845 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
3846 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
3847 
3848 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
3849  * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
3850  * perform the operation. To check beforehand, pass in the parameters to
3851  * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
3852  * you only need to pass in the minor offsets, page-aligned pointers are
3853  * always valid.
3854  *
3855  * For just checking for SSE4.1, in the foreknowledge that the future use
3856  * will be correctly aligned, just use i915_has_memcpy_from_wc().
3857  */
3858 #define i915_can_memcpy_from_wc(dst, src, len) \
3859 	i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
3860 
3861 #define i915_has_memcpy_from_wc() \
3862 	i915_memcpy_from_wc(NULL, NULL, 0)
3863 
3864 /* i915_mm.c */
3865 int remap_io_mapping(struct vm_area_struct *vma,
3866 		     unsigned long addr, unsigned long pfn, unsigned long size,
3867 		     struct io_mapping *iomap);
3868 
3869 static inline int intel_hws_csb_write_index(struct drm_i915_private *i915)
3870 {
3871 	if (INTEL_GEN(i915) >= 10)
3872 		return CNL_HWS_CSB_WRITE_INDEX;
3873 	else
3874 		return I915_HWS_CSB_WRITE_INDEX;
3875 }
3876 
3877 static inline u32 i915_scratch_offset(const struct drm_i915_private *i915)
3878 {
3879 	return i915_ggtt_offset(i915->gt.scratch);
3880 }
3881 
3882 #endif
3883