1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*- 2 */ 3 /* 4 * 5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. 6 * All Rights Reserved. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a 9 * copy of this software and associated documentation files (the 10 * "Software"), to deal in the Software without restriction, including 11 * without limitation the rights to use, copy, modify, merge, publish, 12 * distribute, sub license, and/or sell copies of the Software, and to 13 * permit persons to whom the Software is furnished to do so, subject to 14 * the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the 17 * next paragraph) shall be included in all copies or substantial portions 18 * of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 27 * 28 */ 29 30 #ifndef _I915_DRV_H_ 31 #define _I915_DRV_H_ 32 33 #include <uapi/drm/i915_drm.h> 34 #include <uapi/drm/drm_fourcc.h> 35 36 #include <linux/io-mapping.h> 37 #include <linux/i2c.h> 38 #include <linux/i2c-algo-bit.h> 39 #include <linux/backlight.h> 40 #include <linux/hash.h> 41 #include <linux/intel-iommu.h> 42 #include <linux/kref.h> 43 #include <linux/mm_types.h> 44 #include <linux/perf_event.h> 45 #include <linux/pm_qos.h> 46 #include <linux/reservation.h> 47 #include <linux/shmem_fs.h> 48 49 #include <drm/drmP.h> 50 #include <drm/intel-gtt.h> 51 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */ 52 #include <drm/drm_gem.h> 53 #include <drm/drm_auth.h> 54 #include <drm/drm_cache.h> 55 #include <drm/drm_util.h> 56 #include <drm/drm_dsc.h> 57 58 #include "i915_fixed.h" 59 #include "i915_params.h" 60 #include "i915_reg.h" 61 #include "i915_utils.h" 62 63 #include "intel_bios.h" 64 #include "intel_device_info.h" 65 #include "intel_display.h" 66 #include "intel_dpll_mgr.h" 67 #include "intel_lrc.h" 68 #include "intel_opregion.h" 69 #include "intel_ringbuffer.h" 70 #include "intel_uncore.h" 71 #include "intel_wopcm.h" 72 #include "intel_workarounds.h" 73 #include "intel_uc.h" 74 75 #include "i915_gem.h" 76 #include "i915_gem_context.h" 77 #include "i915_gem_fence_reg.h" 78 #include "i915_gem_object.h" 79 #include "i915_gem_gtt.h" 80 #include "i915_gpu_error.h" 81 #include "i915_request.h" 82 #include "i915_scheduler.h" 83 #include "i915_timeline.h" 84 #include "i915_vma.h" 85 86 #include "intel_gvt.h" 87 88 /* General customization: 89 */ 90 91 #define DRIVER_NAME "i915" 92 #define DRIVER_DESC "Intel Graphics" 93 #define DRIVER_DATE "20181204" 94 #define DRIVER_TIMESTAMP 1543944377 95 96 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and 97 * WARN_ON()) for hw state sanity checks to check for unexpected conditions 98 * which may not necessarily be a user visible problem. This will either 99 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to 100 * enable distros and users to tailor their preferred amount of i915 abrt 101 * spam. 102 */ 103 #define I915_STATE_WARN(condition, format...) ({ \ 104 int __ret_warn_on = !!(condition); \ 105 if (unlikely(__ret_warn_on)) \ 106 if (!WARN(i915_modparams.verbose_state_checks, format)) \ 107 DRM_ERROR(format); \ 108 unlikely(__ret_warn_on); \ 109 }) 110 111 #define I915_STATE_WARN_ON(x) \ 112 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")") 113 114 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG) 115 116 bool __i915_inject_load_failure(const char *func, int line); 117 #define i915_inject_load_failure() \ 118 __i915_inject_load_failure(__func__, __LINE__) 119 120 bool i915_error_injected(void); 121 122 #else 123 124 #define i915_inject_load_failure() false 125 #define i915_error_injected() false 126 127 #endif 128 129 #define i915_load_error(i915, fmt, ...) \ 130 __i915_printk(i915, i915_error_injected() ? KERN_DEBUG : KERN_ERR, \ 131 fmt, ##__VA_ARGS__) 132 133 enum hpd_pin { 134 HPD_NONE = 0, 135 HPD_TV = HPD_NONE, /* TV is known to be unreliable */ 136 HPD_CRT, 137 HPD_SDVO_B, 138 HPD_SDVO_C, 139 HPD_PORT_A, 140 HPD_PORT_B, 141 HPD_PORT_C, 142 HPD_PORT_D, 143 HPD_PORT_E, 144 HPD_PORT_F, 145 HPD_NUM_PINS 146 }; 147 148 #define for_each_hpd_pin(__pin) \ 149 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++) 150 151 /* Threshold == 5 for long IRQs, 50 for short */ 152 #define HPD_STORM_DEFAULT_THRESHOLD 50 153 154 struct i915_hotplug { 155 struct work_struct hotplug_work; 156 157 struct { 158 unsigned long last_jiffies; 159 int count; 160 enum { 161 HPD_ENABLED = 0, 162 HPD_DISABLED = 1, 163 HPD_MARK_DISABLED = 2 164 } state; 165 } stats[HPD_NUM_PINS]; 166 u32 event_bits; 167 struct delayed_work reenable_work; 168 169 u32 long_port_mask; 170 u32 short_port_mask; 171 struct work_struct dig_port_work; 172 173 struct work_struct poll_init_work; 174 bool poll_enabled; 175 176 unsigned int hpd_storm_threshold; 177 /* Whether or not to count short HPD IRQs in HPD storms */ 178 u8 hpd_short_storm_enabled; 179 180 /* 181 * if we get a HPD irq from DP and a HPD irq from non-DP 182 * the non-DP HPD could block the workqueue on a mode config 183 * mutex getting, that userspace may have taken. However 184 * userspace is waiting on the DP workqueue to run which is 185 * blocked behind the non-DP one. 186 */ 187 struct workqueue_struct *dp_wq; 188 }; 189 190 #define I915_GEM_GPU_DOMAINS \ 191 (I915_GEM_DOMAIN_RENDER | \ 192 I915_GEM_DOMAIN_SAMPLER | \ 193 I915_GEM_DOMAIN_COMMAND | \ 194 I915_GEM_DOMAIN_INSTRUCTION | \ 195 I915_GEM_DOMAIN_VERTEX) 196 197 struct drm_i915_private; 198 struct i915_mm_struct; 199 struct i915_mmu_object; 200 201 struct drm_i915_file_private { 202 struct drm_i915_private *dev_priv; 203 struct drm_file *file; 204 205 struct { 206 spinlock_t lock; 207 struct list_head request_list; 208 /* 20ms is a fairly arbitrary limit (greater than the average frame time) 209 * chosen to prevent the CPU getting more than a frame ahead of the GPU 210 * (when using lax throttling for the frontbuffer). We also use it to 211 * offer free GPU waitboosts for severely congested workloads. 212 */ 213 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20) 214 } mm; 215 struct idr context_idr; 216 217 struct intel_rps_client { 218 atomic_t boosts; 219 } rps_client; 220 221 unsigned int bsd_engine; 222 223 /* 224 * Every context ban increments per client ban score. Also 225 * hangs in short succession increments ban score. If ban threshold 226 * is reached, client is considered banned and submitting more work 227 * will fail. This is a stop gap measure to limit the badly behaving 228 * clients access to gpu. Note that unbannable contexts never increment 229 * the client ban score. 230 */ 231 #define I915_CLIENT_SCORE_HANG_FAST 1 232 #define I915_CLIENT_FAST_HANG_JIFFIES (60 * HZ) 233 #define I915_CLIENT_SCORE_CONTEXT_BAN 3 234 #define I915_CLIENT_SCORE_BANNED 9 235 /** ban_score: Accumulated score of all ctx bans and fast hangs. */ 236 atomic_t ban_score; 237 unsigned long hang_timestamp; 238 }; 239 240 /* Interface history: 241 * 242 * 1.1: Original. 243 * 1.2: Add Power Management 244 * 1.3: Add vblank support 245 * 1.4: Fix cmdbuffer path, add heap destroy 246 * 1.5: Add vblank pipe configuration 247 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank 248 * - Support vertical blank on secondary display pipe 249 */ 250 #define DRIVER_MAJOR 1 251 #define DRIVER_MINOR 6 252 #define DRIVER_PATCHLEVEL 0 253 254 struct intel_overlay; 255 struct intel_overlay_error_state; 256 257 struct sdvo_device_mapping { 258 u8 initialized; 259 u8 dvo_port; 260 u8 slave_addr; 261 u8 dvo_wiring; 262 u8 i2c_pin; 263 u8 ddc_pin; 264 }; 265 266 struct intel_connector; 267 struct intel_encoder; 268 struct intel_atomic_state; 269 struct intel_crtc_state; 270 struct intel_initial_plane_config; 271 struct intel_crtc; 272 struct intel_limit; 273 struct dpll; 274 struct intel_cdclk_state; 275 276 struct drm_i915_display_funcs { 277 void (*get_cdclk)(struct drm_i915_private *dev_priv, 278 struct intel_cdclk_state *cdclk_state); 279 void (*set_cdclk)(struct drm_i915_private *dev_priv, 280 const struct intel_cdclk_state *cdclk_state); 281 int (*get_fifo_size)(struct drm_i915_private *dev_priv, 282 enum i9xx_plane_id i9xx_plane); 283 int (*compute_pipe_wm)(struct intel_crtc_state *cstate); 284 int (*compute_intermediate_wm)(struct drm_device *dev, 285 struct intel_crtc *intel_crtc, 286 struct intel_crtc_state *newstate); 287 void (*initial_watermarks)(struct intel_atomic_state *state, 288 struct intel_crtc_state *cstate); 289 void (*atomic_update_watermarks)(struct intel_atomic_state *state, 290 struct intel_crtc_state *cstate); 291 void (*optimize_watermarks)(struct intel_atomic_state *state, 292 struct intel_crtc_state *cstate); 293 int (*compute_global_watermarks)(struct drm_atomic_state *state); 294 void (*update_wm)(struct intel_crtc *crtc); 295 int (*modeset_calc_cdclk)(struct drm_atomic_state *state); 296 /* Returns the active state of the crtc, and if the crtc is active, 297 * fills out the pipe-config with the hw state. */ 298 bool (*get_pipe_config)(struct intel_crtc *, 299 struct intel_crtc_state *); 300 void (*get_initial_plane_config)(struct intel_crtc *, 301 struct intel_initial_plane_config *); 302 int (*crtc_compute_clock)(struct intel_crtc *crtc, 303 struct intel_crtc_state *crtc_state); 304 void (*crtc_enable)(struct intel_crtc_state *pipe_config, 305 struct drm_atomic_state *old_state); 306 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state, 307 struct drm_atomic_state *old_state); 308 void (*update_crtcs)(struct drm_atomic_state *state); 309 void (*audio_codec_enable)(struct intel_encoder *encoder, 310 const struct intel_crtc_state *crtc_state, 311 const struct drm_connector_state *conn_state); 312 void (*audio_codec_disable)(struct intel_encoder *encoder, 313 const struct intel_crtc_state *old_crtc_state, 314 const struct drm_connector_state *old_conn_state); 315 void (*fdi_link_train)(struct intel_crtc *crtc, 316 const struct intel_crtc_state *crtc_state); 317 void (*init_clock_gating)(struct drm_i915_private *dev_priv); 318 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv); 319 /* clock updates for mode set */ 320 /* cursor updates */ 321 /* render clock increase/decrease */ 322 /* display clock increase/decrease */ 323 /* pll clock increase/decrease */ 324 325 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state); 326 void (*load_luts)(struct drm_crtc_state *crtc_state); 327 }; 328 329 #define CSR_VERSION(major, minor) ((major) << 16 | (minor)) 330 #define CSR_VERSION_MAJOR(version) ((version) >> 16) 331 #define CSR_VERSION_MINOR(version) ((version) & 0xffff) 332 333 struct intel_csr { 334 struct work_struct work; 335 const char *fw_path; 336 uint32_t required_version; 337 uint32_t max_fw_size; /* bytes */ 338 uint32_t *dmc_payload; 339 uint32_t dmc_fw_size; /* dwords */ 340 uint32_t version; 341 uint32_t mmio_count; 342 i915_reg_t mmioaddr[8]; 343 uint32_t mmiodata[8]; 344 uint32_t dc_state; 345 uint32_t allowed_dc_mask; 346 }; 347 348 enum i915_cache_level { 349 I915_CACHE_NONE = 0, 350 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */ 351 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc 352 caches, eg sampler/render caches, and the 353 large Last-Level-Cache. LLC is coherent with 354 the CPU, but L3 is only visible to the GPU. */ 355 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */ 356 }; 357 358 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */ 359 360 enum fb_op_origin { 361 ORIGIN_GTT, 362 ORIGIN_CPU, 363 ORIGIN_CS, 364 ORIGIN_FLIP, 365 ORIGIN_DIRTYFB, 366 }; 367 368 struct intel_fbc { 369 /* This is always the inner lock when overlapping with struct_mutex and 370 * it's the outer lock when overlapping with stolen_lock. */ 371 struct mutex lock; 372 unsigned threshold; 373 unsigned int possible_framebuffer_bits; 374 unsigned int busy_bits; 375 unsigned int visible_pipes_mask; 376 struct intel_crtc *crtc; 377 378 struct drm_mm_node compressed_fb; 379 struct drm_mm_node *compressed_llb; 380 381 bool false_color; 382 383 bool enabled; 384 bool active; 385 bool flip_pending; 386 387 bool underrun_detected; 388 struct work_struct underrun_work; 389 390 /* 391 * Due to the atomic rules we can't access some structures without the 392 * appropriate locking, so we cache information here in order to avoid 393 * these problems. 394 */ 395 struct intel_fbc_state_cache { 396 struct i915_vma *vma; 397 unsigned long flags; 398 399 struct { 400 unsigned int mode_flags; 401 uint32_t hsw_bdw_pixel_rate; 402 } crtc; 403 404 struct { 405 unsigned int rotation; 406 int src_w; 407 int src_h; 408 bool visible; 409 /* 410 * Display surface base address adjustement for 411 * pageflips. Note that on gen4+ this only adjusts up 412 * to a tile, offsets within a tile are handled in 413 * the hw itself (with the TILEOFF register). 414 */ 415 int adjusted_x; 416 int adjusted_y; 417 418 int y; 419 420 uint16_t pixel_blend_mode; 421 } plane; 422 423 struct { 424 const struct drm_format_info *format; 425 unsigned int stride; 426 } fb; 427 } state_cache; 428 429 /* 430 * This structure contains everything that's relevant to program the 431 * hardware registers. When we want to figure out if we need to disable 432 * and re-enable FBC for a new configuration we just check if there's 433 * something different in the struct. The genx_fbc_activate functions 434 * are supposed to read from it in order to program the registers. 435 */ 436 struct intel_fbc_reg_params { 437 struct i915_vma *vma; 438 unsigned long flags; 439 440 struct { 441 enum pipe pipe; 442 enum i9xx_plane_id i9xx_plane; 443 unsigned int fence_y_offset; 444 } crtc; 445 446 struct { 447 const struct drm_format_info *format; 448 unsigned int stride; 449 } fb; 450 451 int cfb_size; 452 unsigned int gen9_wa_cfb_stride; 453 } params; 454 455 const char *no_fbc_reason; 456 }; 457 458 /* 459 * HIGH_RR is the highest eDP panel refresh rate read from EDID 460 * LOW_RR is the lowest eDP panel refresh rate found from EDID 461 * parsing for same resolution. 462 */ 463 enum drrs_refresh_rate_type { 464 DRRS_HIGH_RR, 465 DRRS_LOW_RR, 466 DRRS_MAX_RR, /* RR count */ 467 }; 468 469 enum drrs_support_type { 470 DRRS_NOT_SUPPORTED = 0, 471 STATIC_DRRS_SUPPORT = 1, 472 SEAMLESS_DRRS_SUPPORT = 2 473 }; 474 475 struct intel_dp; 476 struct i915_drrs { 477 struct mutex mutex; 478 struct delayed_work work; 479 struct intel_dp *dp; 480 unsigned busy_frontbuffer_bits; 481 enum drrs_refresh_rate_type refresh_rate_type; 482 enum drrs_support_type type; 483 }; 484 485 struct i915_psr { 486 struct mutex lock; 487 488 #define I915_PSR_DEBUG_MODE_MASK 0x0f 489 #define I915_PSR_DEBUG_DEFAULT 0x00 490 #define I915_PSR_DEBUG_DISABLE 0x01 491 #define I915_PSR_DEBUG_ENABLE 0x02 492 #define I915_PSR_DEBUG_FORCE_PSR1 0x03 493 #define I915_PSR_DEBUG_IRQ 0x10 494 495 u32 debug; 496 bool sink_support; 497 bool prepared, enabled; 498 struct intel_dp *dp; 499 enum pipe pipe; 500 bool active; 501 struct work_struct work; 502 unsigned busy_frontbuffer_bits; 503 bool sink_psr2_support; 504 bool link_standby; 505 bool colorimetry_support; 506 bool psr2_enabled; 507 u8 sink_sync_latency; 508 ktime_t last_entry_attempt; 509 ktime_t last_exit; 510 bool sink_not_reliable; 511 bool irq_aux_error; 512 }; 513 514 enum intel_pch { 515 PCH_NONE = 0, /* No PCH present */ 516 PCH_IBX, /* Ibexpeak PCH */ 517 PCH_CPT, /* Cougarpoint/Pantherpoint PCH */ 518 PCH_LPT, /* Lynxpoint/Wildcatpoint PCH */ 519 PCH_SPT, /* Sunrisepoint PCH */ 520 PCH_KBP, /* Kaby Lake PCH */ 521 PCH_CNP, /* Cannon Lake PCH */ 522 PCH_ICP, /* Ice Lake PCH */ 523 PCH_NOP, /* PCH without south display */ 524 }; 525 526 enum intel_sbi_destination { 527 SBI_ICLK, 528 SBI_MPHY, 529 }; 530 531 #define QUIRK_LVDS_SSC_DISABLE (1<<1) 532 #define QUIRK_INVERT_BRIGHTNESS (1<<2) 533 #define QUIRK_BACKLIGHT_PRESENT (1<<3) 534 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5) 535 #define QUIRK_INCREASE_T12_DELAY (1<<6) 536 #define QUIRK_INCREASE_DDI_DISABLED_TIME (1<<7) 537 538 struct intel_fbdev; 539 struct intel_fbc_work; 540 541 struct intel_gmbus { 542 struct i2c_adapter adapter; 543 #define GMBUS_FORCE_BIT_RETRY (1U << 31) 544 u32 force_bit; 545 u32 reg0; 546 i915_reg_t gpio_reg; 547 struct i2c_algo_bit_data bit_algo; 548 struct drm_i915_private *dev_priv; 549 }; 550 551 struct i915_suspend_saved_registers { 552 u32 saveDSPARB; 553 u32 saveFBC_CONTROL; 554 u32 saveCACHE_MODE_0; 555 u32 saveMI_ARB_STATE; 556 u32 saveSWF0[16]; 557 u32 saveSWF1[16]; 558 u32 saveSWF3[3]; 559 uint64_t saveFENCE[I915_MAX_NUM_FENCES]; 560 u32 savePCH_PORT_HOTPLUG; 561 u16 saveGCDGMBUS; 562 }; 563 564 struct vlv_s0ix_state { 565 /* GAM */ 566 u32 wr_watermark; 567 u32 gfx_prio_ctrl; 568 u32 arb_mode; 569 u32 gfx_pend_tlb0; 570 u32 gfx_pend_tlb1; 571 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM]; 572 u32 media_max_req_count; 573 u32 gfx_max_req_count; 574 u32 render_hwsp; 575 u32 ecochk; 576 u32 bsd_hwsp; 577 u32 blt_hwsp; 578 u32 tlb_rd_addr; 579 580 /* MBC */ 581 u32 g3dctl; 582 u32 gsckgctl; 583 u32 mbctl; 584 585 /* GCP */ 586 u32 ucgctl1; 587 u32 ucgctl3; 588 u32 rcgctl1; 589 u32 rcgctl2; 590 u32 rstctl; 591 u32 misccpctl; 592 593 /* GPM */ 594 u32 gfxpause; 595 u32 rpdeuhwtc; 596 u32 rpdeuc; 597 u32 ecobus; 598 u32 pwrdwnupctl; 599 u32 rp_down_timeout; 600 u32 rp_deucsw; 601 u32 rcubmabdtmr; 602 u32 rcedata; 603 u32 spare2gh; 604 605 /* Display 1 CZ domain */ 606 u32 gt_imr; 607 u32 gt_ier; 608 u32 pm_imr; 609 u32 pm_ier; 610 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM]; 611 612 /* GT SA CZ domain */ 613 u32 tilectl; 614 u32 gt_fifoctl; 615 u32 gtlc_wake_ctrl; 616 u32 gtlc_survive; 617 u32 pmwgicz; 618 619 /* Display 2 CZ domain */ 620 u32 gu_ctl0; 621 u32 gu_ctl1; 622 u32 pcbr; 623 u32 clock_gate_dis2; 624 }; 625 626 struct intel_rps_ei { 627 ktime_t ktime; 628 u32 render_c0; 629 u32 media_c0; 630 }; 631 632 struct intel_rps { 633 /* 634 * work, interrupts_enabled and pm_iir are protected by 635 * dev_priv->irq_lock 636 */ 637 struct work_struct work; 638 bool interrupts_enabled; 639 u32 pm_iir; 640 641 /* PM interrupt bits that should never be masked */ 642 u32 pm_intrmsk_mbz; 643 644 /* Frequencies are stored in potentially platform dependent multiples. 645 * In other words, *_freq needs to be multiplied by X to be interesting. 646 * Soft limits are those which are used for the dynamic reclocking done 647 * by the driver (raise frequencies under heavy loads, and lower for 648 * lighter loads). Hard limits are those imposed by the hardware. 649 * 650 * A distinction is made for overclocking, which is never enabled by 651 * default, and is considered to be above the hard limit if it's 652 * possible at all. 653 */ 654 u8 cur_freq; /* Current frequency (cached, may not == HW) */ 655 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */ 656 u8 max_freq_softlimit; /* Max frequency permitted by the driver */ 657 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */ 658 u8 min_freq; /* AKA RPn. Minimum frequency */ 659 u8 boost_freq; /* Frequency to request when wait boosting */ 660 u8 idle_freq; /* Frequency to request when we are idle */ 661 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */ 662 u8 rp1_freq; /* "less than" RP0 power/freqency */ 663 u8 rp0_freq; /* Non-overclocked max frequency. */ 664 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */ 665 666 int last_adj; 667 668 struct { 669 struct mutex mutex; 670 671 enum { LOW_POWER, BETWEEN, HIGH_POWER } mode; 672 unsigned int interactive; 673 674 u8 up_threshold; /* Current %busy required to uplock */ 675 u8 down_threshold; /* Current %busy required to downclock */ 676 } power; 677 678 bool enabled; 679 atomic_t num_waiters; 680 atomic_t boosts; 681 682 /* manual wa residency calculations */ 683 struct intel_rps_ei ei; 684 }; 685 686 struct intel_rc6 { 687 bool enabled; 688 u64 prev_hw_residency[4]; 689 u64 cur_residency[4]; 690 }; 691 692 struct intel_llc_pstate { 693 bool enabled; 694 }; 695 696 struct intel_gen6_power_mgmt { 697 struct intel_rps rps; 698 struct intel_rc6 rc6; 699 struct intel_llc_pstate llc_pstate; 700 }; 701 702 /* defined intel_pm.c */ 703 extern spinlock_t mchdev_lock; 704 705 struct intel_ilk_power_mgmt { 706 u8 cur_delay; 707 u8 min_delay; 708 u8 max_delay; 709 u8 fmax; 710 u8 fstart; 711 712 u64 last_count1; 713 unsigned long last_time1; 714 unsigned long chipset_power; 715 u64 last_count2; 716 u64 last_time2; 717 unsigned long gfx_power; 718 u8 corr; 719 720 int c_m; 721 int r_t; 722 }; 723 724 struct drm_i915_private; 725 struct i915_power_well; 726 727 struct i915_power_well_ops { 728 /* 729 * Synchronize the well's hw state to match the current sw state, for 730 * example enable/disable it based on the current refcount. Called 731 * during driver init and resume time, possibly after first calling 732 * the enable/disable handlers. 733 */ 734 void (*sync_hw)(struct drm_i915_private *dev_priv, 735 struct i915_power_well *power_well); 736 /* 737 * Enable the well and resources that depend on it (for example 738 * interrupts located on the well). Called after the 0->1 refcount 739 * transition. 740 */ 741 void (*enable)(struct drm_i915_private *dev_priv, 742 struct i915_power_well *power_well); 743 /* 744 * Disable the well and resources that depend on it. Called after 745 * the 1->0 refcount transition. 746 */ 747 void (*disable)(struct drm_i915_private *dev_priv, 748 struct i915_power_well *power_well); 749 /* Returns the hw enabled state. */ 750 bool (*is_enabled)(struct drm_i915_private *dev_priv, 751 struct i915_power_well *power_well); 752 }; 753 754 struct i915_power_well_regs { 755 i915_reg_t bios; 756 i915_reg_t driver; 757 i915_reg_t kvmr; 758 i915_reg_t debug; 759 }; 760 761 /* Power well structure for haswell */ 762 struct i915_power_well_desc { 763 const char *name; 764 bool always_on; 765 u64 domains; 766 /* unique identifier for this power well */ 767 enum i915_power_well_id id; 768 /* 769 * Arbitraty data associated with this power well. Platform and power 770 * well specific. 771 */ 772 union { 773 struct { 774 /* 775 * request/status flag index in the PUNIT power well 776 * control/status registers. 777 */ 778 u8 idx; 779 } vlv; 780 struct { 781 enum dpio_phy phy; 782 } bxt; 783 struct { 784 const struct i915_power_well_regs *regs; 785 /* 786 * request/status flag index in the power well 787 * constrol/status registers. 788 */ 789 u8 idx; 790 /* Mask of pipes whose IRQ logic is backed by the pw */ 791 u8 irq_pipe_mask; 792 /* The pw is backing the VGA functionality */ 793 bool has_vga:1; 794 bool has_fuses:1; 795 /* 796 * The pw is for an ICL+ TypeC PHY port in 797 * Thunderbolt mode. 798 */ 799 bool is_tc_tbt:1; 800 } hsw; 801 }; 802 const struct i915_power_well_ops *ops; 803 }; 804 805 struct i915_power_well { 806 const struct i915_power_well_desc *desc; 807 /* power well enable/disable usage count */ 808 int count; 809 /* cached hw enabled state */ 810 bool hw_enabled; 811 }; 812 813 struct i915_power_domains { 814 /* 815 * Power wells needed for initialization at driver init and suspend 816 * time are on. They are kept on until after the first modeset. 817 */ 818 bool initializing; 819 bool display_core_suspended; 820 int power_well_count; 821 822 struct mutex lock; 823 int domain_use_count[POWER_DOMAIN_NUM]; 824 struct i915_power_well *power_wells; 825 }; 826 827 #define MAX_L3_SLICES 2 828 struct intel_l3_parity { 829 u32 *remap_info[MAX_L3_SLICES]; 830 struct work_struct error_work; 831 int which_slice; 832 }; 833 834 struct i915_gem_mm { 835 /** Memory allocator for GTT stolen memory */ 836 struct drm_mm stolen; 837 /** Protects the usage of the GTT stolen memory allocator. This is 838 * always the inner lock when overlapping with struct_mutex. */ 839 struct mutex stolen_lock; 840 841 /* Protects bound_list/unbound_list and #drm_i915_gem_object.mm.link */ 842 spinlock_t obj_lock; 843 844 /** List of all objects in gtt_space. Used to restore gtt 845 * mappings on resume */ 846 struct list_head bound_list; 847 /** 848 * List of objects which are not bound to the GTT (thus 849 * are idle and not used by the GPU). These objects may or may 850 * not actually have any pages attached. 851 */ 852 struct list_head unbound_list; 853 854 /** List of all objects in gtt_space, currently mmaped by userspace. 855 * All objects within this list must also be on bound_list. 856 */ 857 struct list_head userfault_list; 858 859 /** 860 * List of objects which are pending destruction. 861 */ 862 struct llist_head free_list; 863 struct work_struct free_work; 864 spinlock_t free_lock; 865 /** 866 * Count of objects pending destructions. Used to skip needlessly 867 * waiting on an RCU barrier if no objects are waiting to be freed. 868 */ 869 atomic_t free_count; 870 871 /** 872 * Small stash of WC pages 873 */ 874 struct pagestash wc_stash; 875 876 /** 877 * tmpfs instance used for shmem backed objects 878 */ 879 struct vfsmount *gemfs; 880 881 /** PPGTT used for aliasing the PPGTT with the GTT */ 882 struct i915_hw_ppgtt *aliasing_ppgtt; 883 884 struct notifier_block oom_notifier; 885 struct notifier_block vmap_notifier; 886 struct shrinker shrinker; 887 888 /** LRU list of objects with fence regs on them. */ 889 struct list_head fence_list; 890 891 /** 892 * Workqueue to fault in userptr pages, flushed by the execbuf 893 * when required but otherwise left to userspace to try again 894 * on EAGAIN. 895 */ 896 struct workqueue_struct *userptr_wq; 897 898 u64 unordered_timeline; 899 900 /* the indicator for dispatch video commands on two BSD rings */ 901 atomic_t bsd_engine_dispatch_index; 902 903 /** Bit 6 swizzling required for X tiling */ 904 uint32_t bit_6_swizzle_x; 905 /** Bit 6 swizzling required for Y tiling */ 906 uint32_t bit_6_swizzle_y; 907 908 /* accounting, useful for userland debugging */ 909 spinlock_t object_stat_lock; 910 u64 object_memory; 911 u32 object_count; 912 }; 913 914 #define I915_IDLE_ENGINES_TIMEOUT (200) /* in ms */ 915 916 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */ 917 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */ 918 919 #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */ 920 #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */ 921 922 #define I915_ENGINE_WEDGED_TIMEOUT (60 * HZ) /* Reset but no recovery? */ 923 924 struct ddi_vbt_port_info { 925 int max_tmds_clock; 926 927 /* 928 * This is an index in the HDMI/DVI DDI buffer translation table. 929 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't 930 * populate this field. 931 */ 932 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff 933 uint8_t hdmi_level_shift; 934 935 uint8_t supports_dvi:1; 936 uint8_t supports_hdmi:1; 937 uint8_t supports_dp:1; 938 uint8_t supports_edp:1; 939 940 uint8_t alternate_aux_channel; 941 uint8_t alternate_ddc_pin; 942 943 uint8_t dp_boost_level; 944 uint8_t hdmi_boost_level; 945 int dp_max_link_rate; /* 0 for not limited by VBT */ 946 }; 947 948 enum psr_lines_to_wait { 949 PSR_0_LINES_TO_WAIT = 0, 950 PSR_1_LINE_TO_WAIT, 951 PSR_4_LINES_TO_WAIT, 952 PSR_8_LINES_TO_WAIT 953 }; 954 955 struct intel_vbt_data { 956 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */ 957 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */ 958 959 /* Feature bits */ 960 unsigned int int_tv_support:1; 961 unsigned int lvds_dither:1; 962 unsigned int int_crt_support:1; 963 unsigned int lvds_use_ssc:1; 964 unsigned int int_lvds_support:1; 965 unsigned int display_clock_mode:1; 966 unsigned int fdi_rx_polarity_inverted:1; 967 unsigned int panel_type:4; 968 int lvds_ssc_freq; 969 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */ 970 enum drm_panel_orientation orientation; 971 972 enum drrs_support_type drrs_type; 973 974 struct { 975 int rate; 976 int lanes; 977 int preemphasis; 978 int vswing; 979 bool low_vswing; 980 bool initialized; 981 int bpp; 982 struct edp_power_seq pps; 983 } edp; 984 985 struct { 986 bool enable; 987 bool full_link; 988 bool require_aux_wakeup; 989 int idle_frames; 990 enum psr_lines_to_wait lines_to_wait; 991 int tp1_wakeup_time_us; 992 int tp2_tp3_wakeup_time_us; 993 } psr; 994 995 struct { 996 u16 pwm_freq_hz; 997 bool present; 998 bool active_low_pwm; 999 u8 min_brightness; /* min_brightness/255 of max */ 1000 u8 controller; /* brightness controller number */ 1001 enum intel_backlight_type type; 1002 } backlight; 1003 1004 /* MIPI DSI */ 1005 struct { 1006 u16 panel_id; 1007 struct mipi_config *config; 1008 struct mipi_pps_data *pps; 1009 u16 bl_ports; 1010 u16 cabc_ports; 1011 u8 seq_version; 1012 u32 size; 1013 u8 *data; 1014 const u8 *sequence[MIPI_SEQ_MAX]; 1015 u8 *deassert_seq; /* Used by fixup_mipi_sequences() */ 1016 enum drm_panel_orientation orientation; 1017 } dsi; 1018 1019 int crt_ddc_pin; 1020 1021 int child_dev_num; 1022 struct child_device_config *child_dev; 1023 1024 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS]; 1025 struct sdvo_device_mapping sdvo_mappings[2]; 1026 }; 1027 1028 enum intel_ddb_partitioning { 1029 INTEL_DDB_PART_1_2, 1030 INTEL_DDB_PART_5_6, /* IVB+ */ 1031 }; 1032 1033 struct intel_wm_level { 1034 bool enable; 1035 uint32_t pri_val; 1036 uint32_t spr_val; 1037 uint32_t cur_val; 1038 uint32_t fbc_val; 1039 }; 1040 1041 struct ilk_wm_values { 1042 uint32_t wm_pipe[3]; 1043 uint32_t wm_lp[3]; 1044 uint32_t wm_lp_spr[3]; 1045 uint32_t wm_linetime[3]; 1046 bool enable_fbc_wm; 1047 enum intel_ddb_partitioning partitioning; 1048 }; 1049 1050 struct g4x_pipe_wm { 1051 uint16_t plane[I915_MAX_PLANES]; 1052 uint16_t fbc; 1053 }; 1054 1055 struct g4x_sr_wm { 1056 uint16_t plane; 1057 uint16_t cursor; 1058 uint16_t fbc; 1059 }; 1060 1061 struct vlv_wm_ddl_values { 1062 uint8_t plane[I915_MAX_PLANES]; 1063 }; 1064 1065 struct vlv_wm_values { 1066 struct g4x_pipe_wm pipe[3]; 1067 struct g4x_sr_wm sr; 1068 struct vlv_wm_ddl_values ddl[3]; 1069 uint8_t level; 1070 bool cxsr; 1071 }; 1072 1073 struct g4x_wm_values { 1074 struct g4x_pipe_wm pipe[2]; 1075 struct g4x_sr_wm sr; 1076 struct g4x_sr_wm hpll; 1077 bool cxsr; 1078 bool hpll_en; 1079 bool fbc_en; 1080 }; 1081 1082 struct skl_ddb_entry { 1083 uint16_t start, end; /* in number of blocks, 'end' is exclusive */ 1084 }; 1085 1086 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry) 1087 { 1088 return entry->end - entry->start; 1089 } 1090 1091 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1, 1092 const struct skl_ddb_entry *e2) 1093 { 1094 if (e1->start == e2->start && e1->end == e2->end) 1095 return true; 1096 1097 return false; 1098 } 1099 1100 struct skl_ddb_allocation { 1101 u8 enabled_slices; /* GEN11 has configurable 2 slices */ 1102 }; 1103 1104 struct skl_ddb_values { 1105 unsigned dirty_pipes; 1106 struct skl_ddb_allocation ddb; 1107 }; 1108 1109 struct skl_wm_level { 1110 uint16_t plane_res_b; 1111 uint8_t plane_res_l; 1112 bool plane_en; 1113 }; 1114 1115 /* Stores plane specific WM parameters */ 1116 struct skl_wm_params { 1117 bool x_tiled, y_tiled; 1118 bool rc_surface; 1119 bool is_planar; 1120 uint32_t width; 1121 uint8_t cpp; 1122 uint32_t plane_pixel_rate; 1123 uint32_t y_min_scanlines; 1124 uint32_t plane_bytes_per_line; 1125 uint_fixed_16_16_t plane_blocks_per_line; 1126 uint_fixed_16_16_t y_tile_minimum; 1127 uint32_t linetime_us; 1128 uint32_t dbuf_block_size; 1129 }; 1130 1131 /* 1132 * This struct helps tracking the state needed for runtime PM, which puts the 1133 * device in PCI D3 state. Notice that when this happens, nothing on the 1134 * graphics device works, even register access, so we don't get interrupts nor 1135 * anything else. 1136 * 1137 * Every piece of our code that needs to actually touch the hardware needs to 1138 * either call intel_runtime_pm_get or call intel_display_power_get with the 1139 * appropriate power domain. 1140 * 1141 * Our driver uses the autosuspend delay feature, which means we'll only really 1142 * suspend if we stay with zero refcount for a certain amount of time. The 1143 * default value is currently very conservative (see intel_runtime_pm_enable), but 1144 * it can be changed with the standard runtime PM files from sysfs. 1145 * 1146 * The irqs_disabled variable becomes true exactly after we disable the IRQs and 1147 * goes back to false exactly before we reenable the IRQs. We use this variable 1148 * to check if someone is trying to enable/disable IRQs while they're supposed 1149 * to be disabled. This shouldn't happen and we'll print some error messages in 1150 * case it happens. 1151 * 1152 * For more, read the Documentation/power/runtime_pm.txt. 1153 */ 1154 struct i915_runtime_pm { 1155 atomic_t wakeref_count; 1156 bool suspended; 1157 bool irqs_enabled; 1158 }; 1159 1160 enum intel_pipe_crc_source { 1161 INTEL_PIPE_CRC_SOURCE_NONE, 1162 INTEL_PIPE_CRC_SOURCE_PLANE1, 1163 INTEL_PIPE_CRC_SOURCE_PLANE2, 1164 INTEL_PIPE_CRC_SOURCE_PF, 1165 INTEL_PIPE_CRC_SOURCE_PIPE, 1166 /* TV/DP on pre-gen5/vlv can't use the pipe source. */ 1167 INTEL_PIPE_CRC_SOURCE_TV, 1168 INTEL_PIPE_CRC_SOURCE_DP_B, 1169 INTEL_PIPE_CRC_SOURCE_DP_C, 1170 INTEL_PIPE_CRC_SOURCE_DP_D, 1171 INTEL_PIPE_CRC_SOURCE_AUTO, 1172 INTEL_PIPE_CRC_SOURCE_MAX, 1173 }; 1174 1175 #define INTEL_PIPE_CRC_ENTRIES_NR 128 1176 struct intel_pipe_crc { 1177 spinlock_t lock; 1178 int skipped; 1179 enum intel_pipe_crc_source source; 1180 }; 1181 1182 struct i915_frontbuffer_tracking { 1183 spinlock_t lock; 1184 1185 /* 1186 * Tracking bits for delayed frontbuffer flushing du to gpu activity or 1187 * scheduled flips. 1188 */ 1189 unsigned busy_bits; 1190 unsigned flip_bits; 1191 }; 1192 1193 struct i915_virtual_gpu { 1194 bool active; 1195 u32 caps; 1196 }; 1197 1198 /* used in computing the new watermarks state */ 1199 struct intel_wm_config { 1200 unsigned int num_pipes_active; 1201 bool sprites_enabled; 1202 bool sprites_scaled; 1203 }; 1204 1205 struct i915_oa_format { 1206 u32 format; 1207 int size; 1208 }; 1209 1210 struct i915_oa_reg { 1211 i915_reg_t addr; 1212 u32 value; 1213 }; 1214 1215 struct i915_oa_config { 1216 char uuid[UUID_STRING_LEN + 1]; 1217 int id; 1218 1219 const struct i915_oa_reg *mux_regs; 1220 u32 mux_regs_len; 1221 const struct i915_oa_reg *b_counter_regs; 1222 u32 b_counter_regs_len; 1223 const struct i915_oa_reg *flex_regs; 1224 u32 flex_regs_len; 1225 1226 struct attribute_group sysfs_metric; 1227 struct attribute *attrs[2]; 1228 struct device_attribute sysfs_metric_id; 1229 1230 atomic_t ref_count; 1231 }; 1232 1233 struct i915_perf_stream; 1234 1235 /** 1236 * struct i915_perf_stream_ops - the OPs to support a specific stream type 1237 */ 1238 struct i915_perf_stream_ops { 1239 /** 1240 * @enable: Enables the collection of HW samples, either in response to 1241 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened 1242 * without `I915_PERF_FLAG_DISABLED`. 1243 */ 1244 void (*enable)(struct i915_perf_stream *stream); 1245 1246 /** 1247 * @disable: Disables the collection of HW samples, either in response 1248 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying 1249 * the stream. 1250 */ 1251 void (*disable)(struct i915_perf_stream *stream); 1252 1253 /** 1254 * @poll_wait: Call poll_wait, passing a wait queue that will be woken 1255 * once there is something ready to read() for the stream 1256 */ 1257 void (*poll_wait)(struct i915_perf_stream *stream, 1258 struct file *file, 1259 poll_table *wait); 1260 1261 /** 1262 * @wait_unlocked: For handling a blocking read, wait until there is 1263 * something to ready to read() for the stream. E.g. wait on the same 1264 * wait queue that would be passed to poll_wait(). 1265 */ 1266 int (*wait_unlocked)(struct i915_perf_stream *stream); 1267 1268 /** 1269 * @read: Copy buffered metrics as records to userspace 1270 * **buf**: the userspace, destination buffer 1271 * **count**: the number of bytes to copy, requested by userspace 1272 * **offset**: zero at the start of the read, updated as the read 1273 * proceeds, it represents how many bytes have been copied so far and 1274 * the buffer offset for copying the next record. 1275 * 1276 * Copy as many buffered i915 perf samples and records for this stream 1277 * to userspace as will fit in the given buffer. 1278 * 1279 * Only write complete records; returning -%ENOSPC if there isn't room 1280 * for a complete record. 1281 * 1282 * Return any error condition that results in a short read such as 1283 * -%ENOSPC or -%EFAULT, even though these may be squashed before 1284 * returning to userspace. 1285 */ 1286 int (*read)(struct i915_perf_stream *stream, 1287 char __user *buf, 1288 size_t count, 1289 size_t *offset); 1290 1291 /** 1292 * @destroy: Cleanup any stream specific resources. 1293 * 1294 * The stream will always be disabled before this is called. 1295 */ 1296 void (*destroy)(struct i915_perf_stream *stream); 1297 }; 1298 1299 /** 1300 * struct i915_perf_stream - state for a single open stream FD 1301 */ 1302 struct i915_perf_stream { 1303 /** 1304 * @dev_priv: i915 drm device 1305 */ 1306 struct drm_i915_private *dev_priv; 1307 1308 /** 1309 * @link: Links the stream into ``&drm_i915_private->streams`` 1310 */ 1311 struct list_head link; 1312 1313 /** 1314 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*` 1315 * properties given when opening a stream, representing the contents 1316 * of a single sample as read() by userspace. 1317 */ 1318 u32 sample_flags; 1319 1320 /** 1321 * @sample_size: Considering the configured contents of a sample 1322 * combined with the required header size, this is the total size 1323 * of a single sample record. 1324 */ 1325 int sample_size; 1326 1327 /** 1328 * @ctx: %NULL if measuring system-wide across all contexts or a 1329 * specific context that is being monitored. 1330 */ 1331 struct i915_gem_context *ctx; 1332 1333 /** 1334 * @enabled: Whether the stream is currently enabled, considering 1335 * whether the stream was opened in a disabled state and based 1336 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls. 1337 */ 1338 bool enabled; 1339 1340 /** 1341 * @ops: The callbacks providing the implementation of this specific 1342 * type of configured stream. 1343 */ 1344 const struct i915_perf_stream_ops *ops; 1345 1346 /** 1347 * @oa_config: The OA configuration used by the stream. 1348 */ 1349 struct i915_oa_config *oa_config; 1350 }; 1351 1352 /** 1353 * struct i915_oa_ops - Gen specific implementation of an OA unit stream 1354 */ 1355 struct i915_oa_ops { 1356 /** 1357 * @is_valid_b_counter_reg: Validates register's address for 1358 * programming boolean counters for a particular platform. 1359 */ 1360 bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv, 1361 u32 addr); 1362 1363 /** 1364 * @is_valid_mux_reg: Validates register's address for programming mux 1365 * for a particular platform. 1366 */ 1367 bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr); 1368 1369 /** 1370 * @is_valid_flex_reg: Validates register's address for programming 1371 * flex EU filtering for a particular platform. 1372 */ 1373 bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr); 1374 1375 /** 1376 * @enable_metric_set: Selects and applies any MUX configuration to set 1377 * up the Boolean and Custom (B/C) counters that are part of the 1378 * counter reports being sampled. May apply system constraints such as 1379 * disabling EU clock gating as required. 1380 */ 1381 int (*enable_metric_set)(struct i915_perf_stream *stream); 1382 1383 /** 1384 * @disable_metric_set: Remove system constraints associated with using 1385 * the OA unit. 1386 */ 1387 void (*disable_metric_set)(struct drm_i915_private *dev_priv); 1388 1389 /** 1390 * @oa_enable: Enable periodic sampling 1391 */ 1392 void (*oa_enable)(struct i915_perf_stream *stream); 1393 1394 /** 1395 * @oa_disable: Disable periodic sampling 1396 */ 1397 void (*oa_disable)(struct i915_perf_stream *stream); 1398 1399 /** 1400 * @read: Copy data from the circular OA buffer into a given userspace 1401 * buffer. 1402 */ 1403 int (*read)(struct i915_perf_stream *stream, 1404 char __user *buf, 1405 size_t count, 1406 size_t *offset); 1407 1408 /** 1409 * @oa_hw_tail_read: read the OA tail pointer register 1410 * 1411 * In particular this enables us to share all the fiddly code for 1412 * handling the OA unit tail pointer race that affects multiple 1413 * generations. 1414 */ 1415 u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv); 1416 }; 1417 1418 struct intel_cdclk_state { 1419 unsigned int cdclk, vco, ref, bypass; 1420 u8 voltage_level; 1421 }; 1422 1423 struct drm_i915_private { 1424 struct drm_device drm; 1425 1426 struct kmem_cache *objects; 1427 struct kmem_cache *vmas; 1428 struct kmem_cache *luts; 1429 struct kmem_cache *requests; 1430 struct kmem_cache *dependencies; 1431 struct kmem_cache *priorities; 1432 1433 const struct intel_device_info info; 1434 struct intel_driver_caps caps; 1435 1436 /** 1437 * Data Stolen Memory - aka "i915 stolen memory" gives us the start and 1438 * end of stolen which we can optionally use to create GEM objects 1439 * backed by stolen memory. Note that stolen_usable_size tells us 1440 * exactly how much of this we are actually allowed to use, given that 1441 * some portion of it is in fact reserved for use by hardware functions. 1442 */ 1443 struct resource dsm; 1444 /** 1445 * Reseved portion of Data Stolen Memory 1446 */ 1447 struct resource dsm_reserved; 1448 1449 /* 1450 * Stolen memory is segmented in hardware with different portions 1451 * offlimits to certain functions. 1452 * 1453 * The drm_mm is initialised to the total accessible range, as found 1454 * from the PCI config. On Broadwell+, this is further restricted to 1455 * avoid the first page! The upper end of stolen memory is reserved for 1456 * hardware functions and similarly removed from the accessible range. 1457 */ 1458 resource_size_t stolen_usable_size; /* Total size minus reserved ranges */ 1459 1460 void __iomem *regs; 1461 1462 struct intel_uncore uncore; 1463 1464 struct i915_virtual_gpu vgpu; 1465 1466 struct intel_gvt *gvt; 1467 1468 struct intel_wopcm wopcm; 1469 1470 struct intel_huc huc; 1471 struct intel_guc guc; 1472 1473 struct intel_csr csr; 1474 1475 struct intel_gmbus gmbus[GMBUS_NUM_PINS]; 1476 1477 /** gmbus_mutex protects against concurrent usage of the single hw gmbus 1478 * controller on different i2c buses. */ 1479 struct mutex gmbus_mutex; 1480 1481 /** 1482 * Base address of where the gmbus and gpio blocks are located (either 1483 * on PCH or on SoC for platforms without PCH). 1484 */ 1485 uint32_t gpio_mmio_base; 1486 1487 /* MMIO base address for MIPI regs */ 1488 uint32_t mipi_mmio_base; 1489 1490 uint32_t psr_mmio_base; 1491 1492 uint32_t pps_mmio_base; 1493 1494 wait_queue_head_t gmbus_wait_queue; 1495 1496 struct pci_dev *bridge_dev; 1497 struct intel_engine_cs *engine[I915_NUM_ENGINES]; 1498 /* Context used internally to idle the GPU and setup initial state */ 1499 struct i915_gem_context *kernel_context; 1500 /* Context only to be used for injecting preemption commands */ 1501 struct i915_gem_context *preempt_context; 1502 struct intel_engine_cs *engine_class[MAX_ENGINE_CLASS + 1] 1503 [MAX_ENGINE_INSTANCE + 1]; 1504 1505 struct resource mch_res; 1506 1507 /* protects the irq masks */ 1508 spinlock_t irq_lock; 1509 1510 bool display_irqs_enabled; 1511 1512 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */ 1513 struct pm_qos_request pm_qos; 1514 1515 /* Sideband mailbox protection */ 1516 struct mutex sb_lock; 1517 1518 /** Cached value of IMR to avoid reads in updating the bitfield */ 1519 union { 1520 u32 irq_mask; 1521 u32 de_irq_mask[I915_MAX_PIPES]; 1522 }; 1523 u32 gt_irq_mask; 1524 u32 pm_imr; 1525 u32 pm_ier; 1526 u32 pm_rps_events; 1527 u32 pm_guc_events; 1528 u32 pipestat_irq_mask[I915_MAX_PIPES]; 1529 1530 struct i915_hotplug hotplug; 1531 struct intel_fbc fbc; 1532 struct i915_drrs drrs; 1533 struct intel_opregion opregion; 1534 struct intel_vbt_data vbt; 1535 1536 bool preserve_bios_swizzle; 1537 1538 /* overlay */ 1539 struct intel_overlay *overlay; 1540 1541 /* backlight registers and fields in struct intel_panel */ 1542 struct mutex backlight_lock; 1543 1544 /* LVDS info */ 1545 bool no_aux_handshake; 1546 1547 /* protects panel power sequencer state */ 1548 struct mutex pps_mutex; 1549 1550 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */ 1551 int num_fence_regs; /* 8 on pre-965, 16 otherwise */ 1552 1553 unsigned int fsb_freq, mem_freq, is_ddr3; 1554 unsigned int skl_preferred_vco_freq; 1555 unsigned int max_cdclk_freq; 1556 1557 unsigned int max_dotclk_freq; 1558 unsigned int rawclk_freq; 1559 unsigned int hpll_freq; 1560 unsigned int fdi_pll_freq; 1561 unsigned int czclk_freq; 1562 1563 struct { 1564 /* 1565 * The current logical cdclk state. 1566 * See intel_atomic_state.cdclk.logical 1567 * 1568 * For reading holding any crtc lock is sufficient, 1569 * for writing must hold all of them. 1570 */ 1571 struct intel_cdclk_state logical; 1572 /* 1573 * The current actual cdclk state. 1574 * See intel_atomic_state.cdclk.actual 1575 */ 1576 struct intel_cdclk_state actual; 1577 /* The current hardware cdclk state */ 1578 struct intel_cdclk_state hw; 1579 } cdclk; 1580 1581 /** 1582 * wq - Driver workqueue for GEM. 1583 * 1584 * NOTE: Work items scheduled here are not allowed to grab any modeset 1585 * locks, for otherwise the flushing done in the pageflip code will 1586 * result in deadlocks. 1587 */ 1588 struct workqueue_struct *wq; 1589 1590 /* ordered wq for modesets */ 1591 struct workqueue_struct *modeset_wq; 1592 1593 /* Display functions */ 1594 struct drm_i915_display_funcs display; 1595 1596 /* PCH chipset type */ 1597 enum intel_pch pch_type; 1598 unsigned short pch_id; 1599 1600 unsigned long quirks; 1601 1602 struct drm_atomic_state *modeset_restore_state; 1603 struct drm_modeset_acquire_ctx reset_ctx; 1604 1605 struct i915_ggtt ggtt; /* VM representing the global address space */ 1606 1607 struct i915_gem_mm mm; 1608 DECLARE_HASHTABLE(mm_structs, 7); 1609 struct mutex mm_lock; 1610 1611 struct intel_ppat ppat; 1612 1613 /* Kernel Modesetting */ 1614 1615 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES]; 1616 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES]; 1617 1618 #ifdef CONFIG_DEBUG_FS 1619 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES]; 1620 #endif 1621 1622 /* dpll and cdclk state is protected by connection_mutex */ 1623 int num_shared_dpll; 1624 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS]; 1625 const struct intel_dpll_mgr *dpll_mgr; 1626 1627 /* 1628 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll. 1629 * Must be global rather than per dpll, because on some platforms 1630 * plls share registers. 1631 */ 1632 struct mutex dpll_lock; 1633 1634 unsigned int active_crtcs; 1635 /* minimum acceptable cdclk for each pipe */ 1636 int min_cdclk[I915_MAX_PIPES]; 1637 /* minimum acceptable voltage level for each pipe */ 1638 u8 min_voltage_level[I915_MAX_PIPES]; 1639 1640 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV]; 1641 1642 struct i915_wa_list gt_wa_list; 1643 1644 struct i915_frontbuffer_tracking fb_tracking; 1645 1646 struct intel_atomic_helper { 1647 struct llist_head free_list; 1648 struct work_struct free_work; 1649 } atomic_helper; 1650 1651 u16 orig_clock; 1652 1653 bool mchbar_need_disable; 1654 1655 struct intel_l3_parity l3_parity; 1656 1657 /* Cannot be determined by PCIID. You must always read a register. */ 1658 u32 edram_cap; 1659 1660 /* 1661 * Protects RPS/RC6 register access and PCU communication. 1662 * Must be taken after struct_mutex if nested. Note that 1663 * this lock may be held for long periods of time when 1664 * talking to hw - so only take it when talking to hw! 1665 */ 1666 struct mutex pcu_lock; 1667 1668 /* gen6+ GT PM state */ 1669 struct intel_gen6_power_mgmt gt_pm; 1670 1671 /* ilk-only ips/rps state. Everything in here is protected by the global 1672 * mchdev_lock in intel_pm.c */ 1673 struct intel_ilk_power_mgmt ips; 1674 1675 struct i915_power_domains power_domains; 1676 1677 struct i915_psr psr; 1678 1679 struct i915_gpu_error gpu_error; 1680 1681 struct drm_i915_gem_object *vlv_pctx; 1682 1683 /* list of fbdev register on this device */ 1684 struct intel_fbdev *fbdev; 1685 struct work_struct fbdev_suspend_work; 1686 1687 struct drm_property *broadcast_rgb_property; 1688 struct drm_property *force_audio_property; 1689 1690 /* hda/i915 audio component */ 1691 struct i915_audio_component *audio_component; 1692 bool audio_component_registered; 1693 /** 1694 * av_mutex - mutex for audio/video sync 1695 * 1696 */ 1697 struct mutex av_mutex; 1698 1699 struct { 1700 struct mutex mutex; 1701 struct list_head list; 1702 struct llist_head free_list; 1703 struct work_struct free_work; 1704 1705 /* The hw wants to have a stable context identifier for the 1706 * lifetime of the context (for OA, PASID, faults, etc). 1707 * This is limited in execlists to 21 bits. 1708 */ 1709 struct ida hw_ida; 1710 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */ 1711 #define MAX_GUC_CONTEXT_HW_ID (1 << 20) /* exclusive */ 1712 #define GEN11_MAX_CONTEXT_HW_ID (1<<11) /* exclusive */ 1713 struct list_head hw_id_list; 1714 } contexts; 1715 1716 u32 fdi_rx_config; 1717 1718 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */ 1719 u32 chv_phy_control; 1720 /* 1721 * Shadows for CHV DPLL_MD regs to keep the state 1722 * checker somewhat working in the presence hardware 1723 * crappiness (can't read out DPLL_MD for pipes B & C). 1724 */ 1725 u32 chv_dpll_md[I915_MAX_PIPES]; 1726 u32 bxt_phy_grc; 1727 1728 u32 suspend_count; 1729 bool power_domains_suspended; 1730 struct i915_suspend_saved_registers regfile; 1731 struct vlv_s0ix_state vlv_s0ix_state; 1732 1733 enum { 1734 I915_SAGV_UNKNOWN = 0, 1735 I915_SAGV_DISABLED, 1736 I915_SAGV_ENABLED, 1737 I915_SAGV_NOT_CONTROLLED 1738 } sagv_status; 1739 1740 struct { 1741 /* 1742 * Raw watermark latency values: 1743 * in 0.1us units for WM0, 1744 * in 0.5us units for WM1+. 1745 */ 1746 /* primary */ 1747 uint16_t pri_latency[5]; 1748 /* sprite */ 1749 uint16_t spr_latency[5]; 1750 /* cursor */ 1751 uint16_t cur_latency[5]; 1752 /* 1753 * Raw watermark memory latency values 1754 * for SKL for all 8 levels 1755 * in 1us units. 1756 */ 1757 uint16_t skl_latency[8]; 1758 1759 /* current hardware state */ 1760 union { 1761 struct ilk_wm_values hw; 1762 struct skl_ddb_values skl_hw; 1763 struct vlv_wm_values vlv; 1764 struct g4x_wm_values g4x; 1765 }; 1766 1767 uint8_t max_level; 1768 1769 /* 1770 * Should be held around atomic WM register writing; also 1771 * protects * intel_crtc->wm.active and 1772 * cstate->wm.need_postvbl_update. 1773 */ 1774 struct mutex wm_mutex; 1775 1776 /* 1777 * Set during HW readout of watermarks/DDB. Some platforms 1778 * need to know when we're still using BIOS-provided values 1779 * (which we don't fully trust). 1780 */ 1781 bool distrust_bios_wm; 1782 } wm; 1783 1784 struct dram_info { 1785 bool valid; 1786 bool is_16gb_dimm; 1787 u8 num_channels; 1788 enum dram_rank { 1789 I915_DRAM_RANK_INVALID = 0, 1790 I915_DRAM_RANK_SINGLE, 1791 I915_DRAM_RANK_DUAL 1792 } rank; 1793 u32 bandwidth_kbps; 1794 bool symmetric_memory; 1795 } dram_info; 1796 1797 struct i915_runtime_pm runtime_pm; 1798 1799 struct { 1800 bool initialized; 1801 1802 struct kobject *metrics_kobj; 1803 struct ctl_table_header *sysctl_header; 1804 1805 /* 1806 * Lock associated with adding/modifying/removing OA configs 1807 * in dev_priv->perf.metrics_idr. 1808 */ 1809 struct mutex metrics_lock; 1810 1811 /* 1812 * List of dynamic configurations, you need to hold 1813 * dev_priv->perf.metrics_lock to access it. 1814 */ 1815 struct idr metrics_idr; 1816 1817 /* 1818 * Lock associated with anything below within this structure 1819 * except exclusive_stream. 1820 */ 1821 struct mutex lock; 1822 struct list_head streams; 1823 1824 struct { 1825 /* 1826 * The stream currently using the OA unit. If accessed 1827 * outside a syscall associated to its file 1828 * descriptor, you need to hold 1829 * dev_priv->drm.struct_mutex. 1830 */ 1831 struct i915_perf_stream *exclusive_stream; 1832 1833 struct intel_context *pinned_ctx; 1834 u32 specific_ctx_id; 1835 u32 specific_ctx_id_mask; 1836 1837 struct hrtimer poll_check_timer; 1838 wait_queue_head_t poll_wq; 1839 bool pollin; 1840 1841 /** 1842 * For rate limiting any notifications of spurious 1843 * invalid OA reports 1844 */ 1845 struct ratelimit_state spurious_report_rs; 1846 1847 bool periodic; 1848 int period_exponent; 1849 1850 struct i915_oa_config test_config; 1851 1852 struct { 1853 struct i915_vma *vma; 1854 u8 *vaddr; 1855 u32 last_ctx_id; 1856 int format; 1857 int format_size; 1858 1859 /** 1860 * Locks reads and writes to all head/tail state 1861 * 1862 * Consider: the head and tail pointer state 1863 * needs to be read consistently from a hrtimer 1864 * callback (atomic context) and read() fop 1865 * (user context) with tail pointer updates 1866 * happening in atomic context and head updates 1867 * in user context and the (unlikely) 1868 * possibility of read() errors needing to 1869 * reset all head/tail state. 1870 * 1871 * Note: Contention or performance aren't 1872 * currently a significant concern here 1873 * considering the relatively low frequency of 1874 * hrtimer callbacks (5ms period) and that 1875 * reads typically only happen in response to a 1876 * hrtimer event and likely complete before the 1877 * next callback. 1878 * 1879 * Note: This lock is not held *while* reading 1880 * and copying data to userspace so the value 1881 * of head observed in htrimer callbacks won't 1882 * represent any partial consumption of data. 1883 */ 1884 spinlock_t ptr_lock; 1885 1886 /** 1887 * One 'aging' tail pointer and one 'aged' 1888 * tail pointer ready to used for reading. 1889 * 1890 * Initial values of 0xffffffff are invalid 1891 * and imply that an update is required 1892 * (and should be ignored by an attempted 1893 * read) 1894 */ 1895 struct { 1896 u32 offset; 1897 } tails[2]; 1898 1899 /** 1900 * Index for the aged tail ready to read() 1901 * data up to. 1902 */ 1903 unsigned int aged_tail_idx; 1904 1905 /** 1906 * A monotonic timestamp for when the current 1907 * aging tail pointer was read; used to 1908 * determine when it is old enough to trust. 1909 */ 1910 u64 aging_timestamp; 1911 1912 /** 1913 * Although we can always read back the head 1914 * pointer register, we prefer to avoid 1915 * trusting the HW state, just to avoid any 1916 * risk that some hardware condition could 1917 * somehow bump the head pointer unpredictably 1918 * and cause us to forward the wrong OA buffer 1919 * data to userspace. 1920 */ 1921 u32 head; 1922 } oa_buffer; 1923 1924 u32 gen7_latched_oastatus1; 1925 u32 ctx_oactxctrl_offset; 1926 u32 ctx_flexeu0_offset; 1927 1928 /** 1929 * The RPT_ID/reason field for Gen8+ includes a bit 1930 * to determine if the CTX ID in the report is valid 1931 * but the specific bit differs between Gen 8 and 9 1932 */ 1933 u32 gen8_valid_ctx_bit; 1934 1935 struct i915_oa_ops ops; 1936 const struct i915_oa_format *oa_formats; 1937 } oa; 1938 } perf; 1939 1940 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */ 1941 struct { 1942 void (*resume)(struct drm_i915_private *); 1943 void (*cleanup_engine)(struct intel_engine_cs *engine); 1944 1945 struct list_head timelines; 1946 1947 struct list_head active_rings; 1948 struct list_head closed_vma; 1949 u32 active_requests; 1950 u32 request_serial; 1951 1952 /** 1953 * Is the GPU currently considered idle, or busy executing 1954 * userspace requests? Whilst idle, we allow runtime power 1955 * management to power down the hardware and display clocks. 1956 * In order to reduce the effect on performance, there 1957 * is a slight delay before we do so. 1958 */ 1959 bool awake; 1960 1961 /** 1962 * The number of times we have woken up. 1963 */ 1964 unsigned int epoch; 1965 #define I915_EPOCH_INVALID 0 1966 1967 /** 1968 * We leave the user IRQ off as much as possible, 1969 * but this means that requests will finish and never 1970 * be retired once the system goes idle. Set a timer to 1971 * fire periodically while the ring is running. When it 1972 * fires, go retire requests. 1973 */ 1974 struct delayed_work retire_work; 1975 1976 /** 1977 * When we detect an idle GPU, we want to turn on 1978 * powersaving features. So once we see that there 1979 * are no more requests outstanding and no more 1980 * arrive within a small period of time, we fire 1981 * off the idle_work. 1982 */ 1983 struct delayed_work idle_work; 1984 1985 ktime_t last_init_time; 1986 1987 struct i915_vma *scratch; 1988 } gt; 1989 1990 /* perform PHY state sanity checks? */ 1991 bool chv_phy_assert[2]; 1992 1993 bool ipc_enabled; 1994 1995 /* Used to save the pipe-to-encoder mapping for audio */ 1996 struct intel_encoder *av_enc_map[I915_MAX_PIPES]; 1997 1998 /* necessary resource sharing with HDMI LPE audio driver. */ 1999 struct { 2000 struct platform_device *platdev; 2001 int irq; 2002 } lpe_audio; 2003 2004 struct i915_pmu pmu; 2005 2006 /* 2007 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch 2008 * will be rejected. Instead look for a better place. 2009 */ 2010 }; 2011 2012 struct dram_channel_info { 2013 struct info { 2014 u8 size, width; 2015 enum dram_rank rank; 2016 } l_info, s_info; 2017 enum dram_rank rank; 2018 bool is_16gb_dimm; 2019 }; 2020 2021 static inline struct drm_i915_private *to_i915(const struct drm_device *dev) 2022 { 2023 return container_of(dev, struct drm_i915_private, drm); 2024 } 2025 2026 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev) 2027 { 2028 return to_i915(dev_get_drvdata(kdev)); 2029 } 2030 2031 static inline struct drm_i915_private *wopcm_to_i915(struct intel_wopcm *wopcm) 2032 { 2033 return container_of(wopcm, struct drm_i915_private, wopcm); 2034 } 2035 2036 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc) 2037 { 2038 return container_of(guc, struct drm_i915_private, guc); 2039 } 2040 2041 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc) 2042 { 2043 return container_of(huc, struct drm_i915_private, huc); 2044 } 2045 2046 /* Simple iterator over all initialised engines */ 2047 #define for_each_engine(engine__, dev_priv__, id__) \ 2048 for ((id__) = 0; \ 2049 (id__) < I915_NUM_ENGINES; \ 2050 (id__)++) \ 2051 for_each_if ((engine__) = (dev_priv__)->engine[(id__)]) 2052 2053 /* Iterator over subset of engines selected by mask */ 2054 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \ 2055 for ((tmp__) = (mask__) & INTEL_INFO(dev_priv__)->ring_mask; \ 2056 (tmp__) ? \ 2057 ((engine__) = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : \ 2058 0;) 2059 2060 enum hdmi_force_audio { 2061 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */ 2062 HDMI_AUDIO_OFF, /* force turn off HDMI audio */ 2063 HDMI_AUDIO_AUTO, /* trust EDID */ 2064 HDMI_AUDIO_ON, /* force turn on HDMI audio */ 2065 }; 2066 2067 #define I915_GTT_OFFSET_NONE ((u32)-1) 2068 2069 /* 2070 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is 2071 * considered to be the frontbuffer for the given plane interface-wise. This 2072 * doesn't mean that the hw necessarily already scans it out, but that any 2073 * rendering (by the cpu or gpu) will land in the frontbuffer eventually. 2074 * 2075 * We have one bit per pipe and per scanout plane type. 2076 */ 2077 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8 2078 #define INTEL_FRONTBUFFER(pipe, plane_id) ({ \ 2079 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 32); \ 2080 BUILD_BUG_ON(I915_MAX_PLANES > INTEL_FRONTBUFFER_BITS_PER_PIPE); \ 2081 BIT((plane_id) + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)); \ 2082 }) 2083 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \ 2084 BIT(INTEL_FRONTBUFFER_BITS_PER_PIPE - 1 + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)) 2085 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \ 2086 GENMASK(INTEL_FRONTBUFFER_BITS_PER_PIPE * ((pipe) + 1) - 1, \ 2087 INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)) 2088 2089 /* 2090 * Optimised SGL iterator for GEM objects 2091 */ 2092 static __always_inline struct sgt_iter { 2093 struct scatterlist *sgp; 2094 union { 2095 unsigned long pfn; 2096 dma_addr_t dma; 2097 }; 2098 unsigned int curr; 2099 unsigned int max; 2100 } __sgt_iter(struct scatterlist *sgl, bool dma) { 2101 struct sgt_iter s = { .sgp = sgl }; 2102 2103 if (s.sgp) { 2104 s.max = s.curr = s.sgp->offset; 2105 s.max += s.sgp->length; 2106 if (dma) 2107 s.dma = sg_dma_address(s.sgp); 2108 else 2109 s.pfn = page_to_pfn(sg_page(s.sgp)); 2110 } 2111 2112 return s; 2113 } 2114 2115 static inline struct scatterlist *____sg_next(struct scatterlist *sg) 2116 { 2117 ++sg; 2118 if (unlikely(sg_is_chain(sg))) 2119 sg = sg_chain_ptr(sg); 2120 return sg; 2121 } 2122 2123 /** 2124 * __sg_next - return the next scatterlist entry in a list 2125 * @sg: The current sg entry 2126 * 2127 * Description: 2128 * If the entry is the last, return NULL; otherwise, step to the next 2129 * element in the array (@sg@+1). If that's a chain pointer, follow it; 2130 * otherwise just return the pointer to the current element. 2131 **/ 2132 static inline struct scatterlist *__sg_next(struct scatterlist *sg) 2133 { 2134 return sg_is_last(sg) ? NULL : ____sg_next(sg); 2135 } 2136 2137 /** 2138 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table 2139 * @__dmap: DMA address (output) 2140 * @__iter: 'struct sgt_iter' (iterator state, internal) 2141 * @__sgt: sg_table to iterate over (input) 2142 */ 2143 #define for_each_sgt_dma(__dmap, __iter, __sgt) \ 2144 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \ 2145 ((__dmap) = (__iter).dma + (__iter).curr); \ 2146 (((__iter).curr += I915_GTT_PAGE_SIZE) >= (__iter).max) ? \ 2147 (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0) 2148 2149 /** 2150 * for_each_sgt_page - iterate over the pages of the given sg_table 2151 * @__pp: page pointer (output) 2152 * @__iter: 'struct sgt_iter' (iterator state, internal) 2153 * @__sgt: sg_table to iterate over (input) 2154 */ 2155 #define for_each_sgt_page(__pp, __iter, __sgt) \ 2156 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \ 2157 ((__pp) = (__iter).pfn == 0 ? NULL : \ 2158 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \ 2159 (((__iter).curr += PAGE_SIZE) >= (__iter).max) ? \ 2160 (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0) 2161 2162 bool i915_sg_trim(struct sg_table *orig_st); 2163 2164 static inline unsigned int i915_sg_page_sizes(struct scatterlist *sg) 2165 { 2166 unsigned int page_sizes; 2167 2168 page_sizes = 0; 2169 while (sg) { 2170 GEM_BUG_ON(sg->offset); 2171 GEM_BUG_ON(!IS_ALIGNED(sg->length, PAGE_SIZE)); 2172 page_sizes |= sg->length; 2173 sg = __sg_next(sg); 2174 } 2175 2176 return page_sizes; 2177 } 2178 2179 static inline unsigned int i915_sg_segment_size(void) 2180 { 2181 unsigned int size = swiotlb_max_segment(); 2182 2183 if (size == 0) 2184 return SCATTERLIST_MAX_SEGMENT; 2185 2186 size = rounddown(size, PAGE_SIZE); 2187 /* swiotlb_max_segment_size can return 1 byte when it means one page. */ 2188 if (size < PAGE_SIZE) 2189 size = PAGE_SIZE; 2190 2191 return size; 2192 } 2193 2194 static inline const struct intel_device_info * 2195 intel_info(const struct drm_i915_private *dev_priv) 2196 { 2197 return &dev_priv->info; 2198 } 2199 2200 #define INTEL_INFO(dev_priv) intel_info((dev_priv)) 2201 #define DRIVER_CAPS(dev_priv) (&(dev_priv)->caps) 2202 2203 #define INTEL_GEN(dev_priv) ((dev_priv)->info.gen) 2204 #define INTEL_DEVID(dev_priv) ((dev_priv)->info.device_id) 2205 2206 #define REVID_FOREVER 0xff 2207 #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision) 2208 2209 #define INTEL_GEN_MASK(s, e) ( \ 2210 BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \ 2211 BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \ 2212 GENMASK((e) - 1, (s) - 1)) 2213 2214 /* Returns true if Gen is in inclusive range [Start, End] */ 2215 #define IS_GEN(dev_priv, s, e) \ 2216 (!!((dev_priv)->info.gen_mask & INTEL_GEN_MASK((s), (e)))) 2217 2218 /* 2219 * Return true if revision is in range [since,until] inclusive. 2220 * 2221 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until. 2222 */ 2223 #define IS_REVID(p, since, until) \ 2224 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until)) 2225 2226 #define IS_PLATFORM(dev_priv, p) ((dev_priv)->info.platform_mask & BIT(p)) 2227 2228 #define IS_I830(dev_priv) IS_PLATFORM(dev_priv, INTEL_I830) 2229 #define IS_I845G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I845G) 2230 #define IS_I85X(dev_priv) IS_PLATFORM(dev_priv, INTEL_I85X) 2231 #define IS_I865G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I865G) 2232 #define IS_I915G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915G) 2233 #define IS_I915GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915GM) 2234 #define IS_I945G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945G) 2235 #define IS_I945GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945GM) 2236 #define IS_I965G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965G) 2237 #define IS_I965GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965GM) 2238 #define IS_G45(dev_priv) IS_PLATFORM(dev_priv, INTEL_G45) 2239 #define IS_GM45(dev_priv) IS_PLATFORM(dev_priv, INTEL_GM45) 2240 #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv)) 2241 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001) 2242 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011) 2243 #define IS_PINEVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_PINEVIEW) 2244 #define IS_G33(dev_priv) IS_PLATFORM(dev_priv, INTEL_G33) 2245 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046) 2246 #define IS_IVYBRIDGE(dev_priv) IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE) 2247 #define IS_IVB_GT1(dev_priv) (IS_IVYBRIDGE(dev_priv) && \ 2248 (dev_priv)->info.gt == 1) 2249 #define IS_VALLEYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW) 2250 #define IS_CHERRYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW) 2251 #define IS_HASWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_HASWELL) 2252 #define IS_BROADWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROADWELL) 2253 #define IS_SKYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_SKYLAKE) 2254 #define IS_BROXTON(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROXTON) 2255 #define IS_KABYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_KABYLAKE) 2256 #define IS_GEMINILAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_GEMINILAKE) 2257 #define IS_COFFEELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_COFFEELAKE) 2258 #define IS_CANNONLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_CANNONLAKE) 2259 #define IS_ICELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_ICELAKE) 2260 #define IS_MOBILE(dev_priv) ((dev_priv)->info.is_mobile) 2261 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \ 2262 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00) 2263 #define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \ 2264 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \ 2265 (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \ 2266 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)) 2267 /* ULX machines are also considered ULT. */ 2268 #define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \ 2269 (INTEL_DEVID(dev_priv) & 0xf) == 0xe) 2270 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \ 2271 (dev_priv)->info.gt == 3) 2272 #define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \ 2273 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00) 2274 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \ 2275 (dev_priv)->info.gt == 3) 2276 /* ULX machines are also considered ULT. */ 2277 #define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \ 2278 INTEL_DEVID(dev_priv) == 0x0A1E) 2279 #define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \ 2280 INTEL_DEVID(dev_priv) == 0x1913 || \ 2281 INTEL_DEVID(dev_priv) == 0x1916 || \ 2282 INTEL_DEVID(dev_priv) == 0x1921 || \ 2283 INTEL_DEVID(dev_priv) == 0x1926) 2284 #define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \ 2285 INTEL_DEVID(dev_priv) == 0x1915 || \ 2286 INTEL_DEVID(dev_priv) == 0x191E) 2287 #define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \ 2288 INTEL_DEVID(dev_priv) == 0x5913 || \ 2289 INTEL_DEVID(dev_priv) == 0x5916 || \ 2290 INTEL_DEVID(dev_priv) == 0x5921 || \ 2291 INTEL_DEVID(dev_priv) == 0x5926) 2292 #define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \ 2293 INTEL_DEVID(dev_priv) == 0x5915 || \ 2294 INTEL_DEVID(dev_priv) == 0x591E) 2295 #define IS_AML_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x591C || \ 2296 INTEL_DEVID(dev_priv) == 0x87C0) 2297 #define IS_SKL_GT2(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2298 (dev_priv)->info.gt == 2) 2299 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2300 (dev_priv)->info.gt == 3) 2301 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2302 (dev_priv)->info.gt == 4) 2303 #define IS_KBL_GT2(dev_priv) (IS_KABYLAKE(dev_priv) && \ 2304 (dev_priv)->info.gt == 2) 2305 #define IS_KBL_GT3(dev_priv) (IS_KABYLAKE(dev_priv) && \ 2306 (dev_priv)->info.gt == 3) 2307 #define IS_CFL_ULT(dev_priv) (IS_COFFEELAKE(dev_priv) && \ 2308 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0) 2309 #define IS_CFL_GT2(dev_priv) (IS_COFFEELAKE(dev_priv) && \ 2310 (dev_priv)->info.gt == 2) 2311 #define IS_CFL_GT3(dev_priv) (IS_COFFEELAKE(dev_priv) && \ 2312 (dev_priv)->info.gt == 3) 2313 #define IS_CNL_WITH_PORT_F(dev_priv) (IS_CANNONLAKE(dev_priv) && \ 2314 (INTEL_DEVID(dev_priv) & 0x0004) == 0x0004) 2315 2316 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support) 2317 2318 #define SKL_REVID_A0 0x0 2319 #define SKL_REVID_B0 0x1 2320 #define SKL_REVID_C0 0x2 2321 #define SKL_REVID_D0 0x3 2322 #define SKL_REVID_E0 0x4 2323 #define SKL_REVID_F0 0x5 2324 #define SKL_REVID_G0 0x6 2325 #define SKL_REVID_H0 0x7 2326 2327 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until)) 2328 2329 #define BXT_REVID_A0 0x0 2330 #define BXT_REVID_A1 0x1 2331 #define BXT_REVID_B0 0x3 2332 #define BXT_REVID_B_LAST 0x8 2333 #define BXT_REVID_C0 0x9 2334 2335 #define IS_BXT_REVID(dev_priv, since, until) \ 2336 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until)) 2337 2338 #define KBL_REVID_A0 0x0 2339 #define KBL_REVID_B0 0x1 2340 #define KBL_REVID_C0 0x2 2341 #define KBL_REVID_D0 0x3 2342 #define KBL_REVID_E0 0x4 2343 2344 #define IS_KBL_REVID(dev_priv, since, until) \ 2345 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until)) 2346 2347 #define GLK_REVID_A0 0x0 2348 #define GLK_REVID_A1 0x1 2349 2350 #define IS_GLK_REVID(dev_priv, since, until) \ 2351 (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until)) 2352 2353 #define CNL_REVID_A0 0x0 2354 #define CNL_REVID_B0 0x1 2355 #define CNL_REVID_C0 0x2 2356 2357 #define IS_CNL_REVID(p, since, until) \ 2358 (IS_CANNONLAKE(p) && IS_REVID(p, since, until)) 2359 2360 #define ICL_REVID_A0 0x0 2361 #define ICL_REVID_A2 0x1 2362 #define ICL_REVID_B0 0x3 2363 #define ICL_REVID_B2 0x4 2364 #define ICL_REVID_C0 0x5 2365 2366 #define IS_ICL_REVID(p, since, until) \ 2367 (IS_ICELAKE(p) && IS_REVID(p, since, until)) 2368 2369 /* 2370 * The genX designation typically refers to the render engine, so render 2371 * capability related checks should use IS_GEN, while display and other checks 2372 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular 2373 * chips, etc.). 2374 */ 2375 #define IS_GEN2(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(1))) 2376 #define IS_GEN3(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(2))) 2377 #define IS_GEN4(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(3))) 2378 #define IS_GEN5(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(4))) 2379 #define IS_GEN6(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(5))) 2380 #define IS_GEN7(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(6))) 2381 #define IS_GEN8(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(7))) 2382 #define IS_GEN9(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(8))) 2383 #define IS_GEN10(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(9))) 2384 #define IS_GEN11(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(10))) 2385 2386 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp) 2387 #define IS_GEN9_LP(dev_priv) (IS_GEN9(dev_priv) && IS_LP(dev_priv)) 2388 #define IS_GEN9_BC(dev_priv) (IS_GEN9(dev_priv) && !IS_LP(dev_priv)) 2389 2390 #define ENGINE_MASK(id) BIT(id) 2391 #define RENDER_RING ENGINE_MASK(RCS) 2392 #define BSD_RING ENGINE_MASK(VCS) 2393 #define BLT_RING ENGINE_MASK(BCS) 2394 #define VEBOX_RING ENGINE_MASK(VECS) 2395 #define BSD2_RING ENGINE_MASK(VCS2) 2396 #define BSD3_RING ENGINE_MASK(VCS3) 2397 #define BSD4_RING ENGINE_MASK(VCS4) 2398 #define VEBOX2_RING ENGINE_MASK(VECS2) 2399 #define ALL_ENGINES (~0) 2400 2401 #define HAS_ENGINE(dev_priv, id) \ 2402 (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id))) 2403 2404 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS) 2405 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2) 2406 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS) 2407 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS) 2408 2409 #define HAS_LEGACY_SEMAPHORES(dev_priv) IS_GEN7(dev_priv) 2410 2411 #define HAS_LLC(dev_priv) ((dev_priv)->info.has_llc) 2412 #define HAS_SNOOP(dev_priv) ((dev_priv)->info.has_snoop) 2413 #define HAS_EDRAM(dev_priv) (!!((dev_priv)->edram_cap & EDRAM_ENABLED)) 2414 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \ 2415 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv)) 2416 2417 #define HWS_NEEDS_PHYSICAL(dev_priv) ((dev_priv)->info.hws_needs_physical) 2418 2419 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \ 2420 ((dev_priv)->info.has_logical_ring_contexts) 2421 #define HAS_LOGICAL_RING_ELSQ(dev_priv) \ 2422 ((dev_priv)->info.has_logical_ring_elsq) 2423 #define HAS_LOGICAL_RING_PREEMPTION(dev_priv) \ 2424 ((dev_priv)->info.has_logical_ring_preemption) 2425 2426 #define HAS_EXECLISTS(dev_priv) HAS_LOGICAL_RING_CONTEXTS(dev_priv) 2427 2428 #define INTEL_PPGTT(dev_priv) (INTEL_INFO(dev_priv)->ppgtt) 2429 #define HAS_PPGTT(dev_priv) \ 2430 (INTEL_PPGTT(dev_priv) != INTEL_PPGTT_NONE) 2431 #define HAS_FULL_PPGTT(dev_priv) \ 2432 (INTEL_PPGTT(dev_priv) >= INTEL_PPGTT_FULL) 2433 #define HAS_FULL_48BIT_PPGTT(dev_priv) \ 2434 (INTEL_PPGTT(dev_priv) >= INTEL_PPGTT_FULL_4LVL) 2435 2436 #define HAS_PAGE_SIZES(dev_priv, sizes) ({ \ 2437 GEM_BUG_ON((sizes) == 0); \ 2438 ((sizes) & ~(dev_priv)->info.page_sizes) == 0; \ 2439 }) 2440 2441 #define HAS_OVERLAY(dev_priv) ((dev_priv)->info.display.has_overlay) 2442 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \ 2443 ((dev_priv)->info.display.overlay_needs_physical) 2444 2445 /* Early gen2 have a totally busted CS tlb and require pinned batches. */ 2446 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv)) 2447 2448 /* WaRsDisableCoarsePowerGating:skl,cnl */ 2449 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \ 2450 (IS_CANNONLAKE(dev_priv) || \ 2451 IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv)) 2452 2453 #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4) 2454 #define HAS_GMBUS_BURST_READ(dev_priv) (INTEL_GEN(dev_priv) >= 10 || \ 2455 IS_GEMINILAKE(dev_priv) || \ 2456 IS_KABYLAKE(dev_priv)) 2457 2458 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte 2459 * rows, which changed the alignment requirements and fence programming. 2460 */ 2461 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \ 2462 !(IS_I915G(dev_priv) || \ 2463 IS_I915GM(dev_priv))) 2464 #define SUPPORTS_TV(dev_priv) ((dev_priv)->info.display.supports_tv) 2465 #define I915_HAS_HOTPLUG(dev_priv) ((dev_priv)->info.display.has_hotplug) 2466 2467 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2) 2468 #define HAS_FBC(dev_priv) ((dev_priv)->info.display.has_fbc) 2469 #define HAS_CUR_FBC(dev_priv) (!HAS_GMCH_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 7) 2470 2471 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv)) 2472 2473 #define HAS_DP_MST(dev_priv) ((dev_priv)->info.display.has_dp_mst) 2474 2475 #define HAS_DDI(dev_priv) ((dev_priv)->info.display.has_ddi) 2476 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg) 2477 #define HAS_PSR(dev_priv) ((dev_priv)->info.display.has_psr) 2478 2479 #define HAS_RC6(dev_priv) ((dev_priv)->info.has_rc6) 2480 #define HAS_RC6p(dev_priv) ((dev_priv)->info.has_rc6p) 2481 #define HAS_RC6pp(dev_priv) (false) /* HW was never validated */ 2482 2483 #define HAS_CSR(dev_priv) ((dev_priv)->info.display.has_csr) 2484 2485 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm) 2486 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc) 2487 2488 #define HAS_IPC(dev_priv) ((dev_priv)->info.display.has_ipc) 2489 2490 /* 2491 * For now, anything with a GuC requires uCode loading, and then supports 2492 * command submission once loaded. But these are logically independent 2493 * properties, so we have separate macros to test them. 2494 */ 2495 #define HAS_GUC(dev_priv) ((dev_priv)->info.has_guc) 2496 #define HAS_GUC_CT(dev_priv) ((dev_priv)->info.has_guc_ct) 2497 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv)) 2498 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv)) 2499 2500 /* For now, anything with a GuC has also HuC */ 2501 #define HAS_HUC(dev_priv) (HAS_GUC(dev_priv)) 2502 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv)) 2503 2504 /* Having a GuC is not the same as using a GuC */ 2505 #define USES_GUC(dev_priv) intel_uc_is_using_guc() 2506 #define USES_GUC_SUBMISSION(dev_priv) intel_uc_is_using_guc_submission() 2507 #define USES_HUC(dev_priv) intel_uc_is_using_huc() 2508 2509 #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu) 2510 2511 #define INTEL_PCH_DEVICE_ID_MASK 0xff80 2512 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00 2513 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00 2514 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00 2515 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00 2516 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00 2517 #define INTEL_PCH_WPT_DEVICE_ID_TYPE 0x8c80 2518 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE 0x9c80 2519 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100 2520 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00 2521 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA280 2522 #define INTEL_PCH_CNP_DEVICE_ID_TYPE 0xA300 2523 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE 0x9D80 2524 #define INTEL_PCH_ICP_DEVICE_ID_TYPE 0x3480 2525 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100 2526 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000 2527 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */ 2528 2529 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type) 2530 #define INTEL_PCH_ID(dev_priv) ((dev_priv)->pch_id) 2531 #define HAS_PCH_ICP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_ICP) 2532 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP) 2533 #define HAS_PCH_CNP_LP(dev_priv) \ 2534 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE) 2535 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP) 2536 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT) 2537 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT) 2538 #define HAS_PCH_LPT_LP(dev_priv) \ 2539 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \ 2540 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE) 2541 #define HAS_PCH_LPT_H(dev_priv) \ 2542 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_DEVICE_ID_TYPE || \ 2543 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_DEVICE_ID_TYPE) 2544 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT) 2545 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX) 2546 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP) 2547 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE) 2548 2549 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.display.has_gmch_display) 2550 2551 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9) 2552 2553 /* DPF == dynamic parity feature */ 2554 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf) 2555 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \ 2556 2 : HAS_L3_DPF(dev_priv)) 2557 2558 #define GT_FREQUENCY_MULTIPLIER 50 2559 #define GEN9_FREQ_SCALER 3 2560 2561 #define HAS_DISPLAY(dev_priv) (INTEL_INFO(dev_priv)->num_pipes > 0) 2562 2563 #include "i915_trace.h" 2564 2565 static inline bool intel_vtd_active(void) 2566 { 2567 #ifdef CONFIG_INTEL_IOMMU 2568 if (intel_iommu_gfx_mapped) 2569 return true; 2570 #endif 2571 return false; 2572 } 2573 2574 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv) 2575 { 2576 return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active(); 2577 } 2578 2579 static inline bool 2580 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv) 2581 { 2582 return IS_BROXTON(dev_priv) && intel_vtd_active(); 2583 } 2584 2585 /* i915_drv.c */ 2586 void __printf(3, 4) 2587 __i915_printk(struct drm_i915_private *dev_priv, const char *level, 2588 const char *fmt, ...); 2589 2590 #define i915_report_error(dev_priv, fmt, ...) \ 2591 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__) 2592 2593 #ifdef CONFIG_COMPAT 2594 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd, 2595 unsigned long arg); 2596 #else 2597 #define i915_compat_ioctl NULL 2598 #endif 2599 extern const struct dev_pm_ops i915_pm_ops; 2600 2601 extern int i915_driver_load(struct pci_dev *pdev, 2602 const struct pci_device_id *ent); 2603 extern void i915_driver_unload(struct drm_device *dev); 2604 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask); 2605 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv); 2606 2607 extern void i915_reset(struct drm_i915_private *i915, 2608 unsigned int stalled_mask, 2609 const char *reason); 2610 extern int i915_reset_engine(struct intel_engine_cs *engine, 2611 const char *reason); 2612 2613 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv); 2614 extern int intel_reset_guc(struct drm_i915_private *dev_priv); 2615 extern int intel_guc_reset_engine(struct intel_guc *guc, 2616 struct intel_engine_cs *engine); 2617 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine); 2618 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv); 2619 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv); 2620 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv); 2621 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv); 2622 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv); 2623 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on); 2624 2625 int intel_engines_init_mmio(struct drm_i915_private *dev_priv); 2626 int intel_engines_init(struct drm_i915_private *dev_priv); 2627 2628 u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv); 2629 2630 /* intel_hotplug.c */ 2631 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv, 2632 u32 pin_mask, u32 long_mask); 2633 void intel_hpd_init(struct drm_i915_private *dev_priv); 2634 void intel_hpd_init_work(struct drm_i915_private *dev_priv); 2635 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv); 2636 enum hpd_pin intel_hpd_pin_default(struct drm_i915_private *dev_priv, 2637 enum port port); 2638 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin); 2639 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin); 2640 2641 /* i915_irq.c */ 2642 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv) 2643 { 2644 unsigned long delay; 2645 2646 if (unlikely(!i915_modparams.enable_hangcheck)) 2647 return; 2648 2649 /* Don't continually defer the hangcheck so that it is always run at 2650 * least once after work has been scheduled on any ring. Otherwise, 2651 * we will ignore a hung ring if a second ring is kept busy. 2652 */ 2653 2654 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES); 2655 queue_delayed_work(system_long_wq, 2656 &dev_priv->gpu_error.hangcheck_work, delay); 2657 } 2658 2659 __printf(4, 5) 2660 void i915_handle_error(struct drm_i915_private *dev_priv, 2661 u32 engine_mask, 2662 unsigned long flags, 2663 const char *fmt, ...); 2664 #define I915_ERROR_CAPTURE BIT(0) 2665 2666 extern void intel_irq_init(struct drm_i915_private *dev_priv); 2667 extern void intel_irq_fini(struct drm_i915_private *dev_priv); 2668 int intel_irq_install(struct drm_i915_private *dev_priv); 2669 void intel_irq_uninstall(struct drm_i915_private *dev_priv); 2670 2671 void i915_clear_error_registers(struct drm_i915_private *dev_priv); 2672 2673 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv) 2674 { 2675 return dev_priv->gvt; 2676 } 2677 2678 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv) 2679 { 2680 return dev_priv->vgpu.active; 2681 } 2682 2683 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv, 2684 enum pipe pipe); 2685 void 2686 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 2687 u32 status_mask); 2688 2689 void 2690 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 2691 u32 status_mask); 2692 2693 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv); 2694 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv); 2695 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv, 2696 uint32_t mask, 2697 uint32_t bits); 2698 void ilk_update_display_irq(struct drm_i915_private *dev_priv, 2699 uint32_t interrupt_mask, 2700 uint32_t enabled_irq_mask); 2701 static inline void 2702 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits) 2703 { 2704 ilk_update_display_irq(dev_priv, bits, bits); 2705 } 2706 static inline void 2707 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits) 2708 { 2709 ilk_update_display_irq(dev_priv, bits, 0); 2710 } 2711 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv, 2712 enum pipe pipe, 2713 uint32_t interrupt_mask, 2714 uint32_t enabled_irq_mask); 2715 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv, 2716 enum pipe pipe, uint32_t bits) 2717 { 2718 bdw_update_pipe_irq(dev_priv, pipe, bits, bits); 2719 } 2720 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv, 2721 enum pipe pipe, uint32_t bits) 2722 { 2723 bdw_update_pipe_irq(dev_priv, pipe, bits, 0); 2724 } 2725 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv, 2726 uint32_t interrupt_mask, 2727 uint32_t enabled_irq_mask); 2728 static inline void 2729 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits) 2730 { 2731 ibx_display_interrupt_update(dev_priv, bits, bits); 2732 } 2733 static inline void 2734 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits) 2735 { 2736 ibx_display_interrupt_update(dev_priv, bits, 0); 2737 } 2738 2739 /* i915_gem.c */ 2740 int i915_gem_create_ioctl(struct drm_device *dev, void *data, 2741 struct drm_file *file_priv); 2742 int i915_gem_pread_ioctl(struct drm_device *dev, void *data, 2743 struct drm_file *file_priv); 2744 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 2745 struct drm_file *file_priv); 2746 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 2747 struct drm_file *file_priv); 2748 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 2749 struct drm_file *file_priv); 2750 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 2751 struct drm_file *file_priv); 2752 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 2753 struct drm_file *file_priv); 2754 int i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data, 2755 struct drm_file *file_priv); 2756 int i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, 2757 struct drm_file *file_priv); 2758 int i915_gem_busy_ioctl(struct drm_device *dev, void *data, 2759 struct drm_file *file_priv); 2760 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 2761 struct drm_file *file); 2762 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 2763 struct drm_file *file); 2764 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 2765 struct drm_file *file_priv); 2766 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 2767 struct drm_file *file_priv); 2768 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data, 2769 struct drm_file *file_priv); 2770 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data, 2771 struct drm_file *file_priv); 2772 int i915_gem_init_userptr(struct drm_i915_private *dev_priv); 2773 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv); 2774 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data, 2775 struct drm_file *file); 2776 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 2777 struct drm_file *file_priv); 2778 int i915_gem_wait_ioctl(struct drm_device *dev, void *data, 2779 struct drm_file *file_priv); 2780 void i915_gem_sanitize(struct drm_i915_private *i915); 2781 int i915_gem_init_early(struct drm_i915_private *dev_priv); 2782 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv); 2783 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv); 2784 int i915_gem_freeze(struct drm_i915_private *dev_priv); 2785 int i915_gem_freeze_late(struct drm_i915_private *dev_priv); 2786 2787 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv); 2788 void i915_gem_object_free(struct drm_i915_gem_object *obj); 2789 void i915_gem_object_init(struct drm_i915_gem_object *obj, 2790 const struct drm_i915_gem_object_ops *ops); 2791 struct drm_i915_gem_object * 2792 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size); 2793 struct drm_i915_gem_object * 2794 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv, 2795 const void *data, size_t size); 2796 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file); 2797 void i915_gem_free_object(struct drm_gem_object *obj); 2798 2799 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915) 2800 { 2801 if (!atomic_read(&i915->mm.free_count)) 2802 return; 2803 2804 /* A single pass should suffice to release all the freed objects (along 2805 * most call paths) , but be a little more paranoid in that freeing 2806 * the objects does take a little amount of time, during which the rcu 2807 * callbacks could have added new objects into the freed list, and 2808 * armed the work again. 2809 */ 2810 do { 2811 rcu_barrier(); 2812 } while (flush_work(&i915->mm.free_work)); 2813 } 2814 2815 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915) 2816 { 2817 /* 2818 * Similar to objects above (see i915_gem_drain_freed-objects), in 2819 * general we have workers that are armed by RCU and then rearm 2820 * themselves in their callbacks. To be paranoid, we need to 2821 * drain the workqueue a second time after waiting for the RCU 2822 * grace period so that we catch work queued via RCU from the first 2823 * pass. As neither drain_workqueue() nor flush_workqueue() report 2824 * a result, we make an assumption that we only don't require more 2825 * than 2 passes to catch all recursive RCU delayed work. 2826 * 2827 */ 2828 int pass = 2; 2829 do { 2830 rcu_barrier(); 2831 drain_workqueue(i915->wq); 2832 } while (--pass); 2833 } 2834 2835 struct i915_vma * __must_check 2836 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, 2837 const struct i915_ggtt_view *view, 2838 u64 size, 2839 u64 alignment, 2840 u64 flags); 2841 2842 int i915_gem_object_unbind(struct drm_i915_gem_object *obj); 2843 void i915_gem_release_mmap(struct drm_i915_gem_object *obj); 2844 2845 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv); 2846 2847 static inline int __sg_page_count(const struct scatterlist *sg) 2848 { 2849 return sg->length >> PAGE_SHIFT; 2850 } 2851 2852 struct scatterlist * 2853 i915_gem_object_get_sg(struct drm_i915_gem_object *obj, 2854 unsigned int n, unsigned int *offset); 2855 2856 struct page * 2857 i915_gem_object_get_page(struct drm_i915_gem_object *obj, 2858 unsigned int n); 2859 2860 struct page * 2861 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, 2862 unsigned int n); 2863 2864 dma_addr_t 2865 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, 2866 unsigned long n); 2867 2868 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj, 2869 struct sg_table *pages, 2870 unsigned int sg_page_sizes); 2871 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj); 2872 2873 static inline int __must_check 2874 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) 2875 { 2876 might_lock(&obj->mm.lock); 2877 2878 if (atomic_inc_not_zero(&obj->mm.pages_pin_count)) 2879 return 0; 2880 2881 return __i915_gem_object_get_pages(obj); 2882 } 2883 2884 static inline bool 2885 i915_gem_object_has_pages(struct drm_i915_gem_object *obj) 2886 { 2887 return !IS_ERR_OR_NULL(READ_ONCE(obj->mm.pages)); 2888 } 2889 2890 static inline void 2891 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) 2892 { 2893 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 2894 2895 atomic_inc(&obj->mm.pages_pin_count); 2896 } 2897 2898 static inline bool 2899 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj) 2900 { 2901 return atomic_read(&obj->mm.pages_pin_count); 2902 } 2903 2904 static inline void 2905 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) 2906 { 2907 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 2908 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 2909 2910 atomic_dec(&obj->mm.pages_pin_count); 2911 } 2912 2913 static inline void 2914 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) 2915 { 2916 __i915_gem_object_unpin_pages(obj); 2917 } 2918 2919 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */ 2920 I915_MM_NORMAL = 0, 2921 I915_MM_SHRINKER 2922 }; 2923 2924 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj, 2925 enum i915_mm_subclass subclass); 2926 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj); 2927 2928 enum i915_map_type { 2929 I915_MAP_WB = 0, 2930 I915_MAP_WC, 2931 #define I915_MAP_OVERRIDE BIT(31) 2932 I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE, 2933 I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE, 2934 }; 2935 2936 static inline enum i915_map_type 2937 i915_coherent_map_type(struct drm_i915_private *i915) 2938 { 2939 return HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC; 2940 } 2941 2942 /** 2943 * i915_gem_object_pin_map - return a contiguous mapping of the entire object 2944 * @obj: the object to map into kernel address space 2945 * @type: the type of mapping, used to select pgprot_t 2946 * 2947 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's 2948 * pages and then returns a contiguous mapping of the backing storage into 2949 * the kernel address space. Based on the @type of mapping, the PTE will be 2950 * set to either WriteBack or WriteCombine (via pgprot_t). 2951 * 2952 * The caller is responsible for calling i915_gem_object_unpin_map() when the 2953 * mapping is no longer required. 2954 * 2955 * Returns the pointer through which to access the mapped object, or an 2956 * ERR_PTR() on error. 2957 */ 2958 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj, 2959 enum i915_map_type type); 2960 2961 /** 2962 * i915_gem_object_unpin_map - releases an earlier mapping 2963 * @obj: the object to unmap 2964 * 2965 * After pinning the object and mapping its pages, once you are finished 2966 * with your access, call i915_gem_object_unpin_map() to release the pin 2967 * upon the mapping. Once the pin count reaches zero, that mapping may be 2968 * removed. 2969 */ 2970 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj) 2971 { 2972 i915_gem_object_unpin_pages(obj); 2973 } 2974 2975 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, 2976 unsigned int *needs_clflush); 2977 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj, 2978 unsigned int *needs_clflush); 2979 #define CLFLUSH_BEFORE BIT(0) 2980 #define CLFLUSH_AFTER BIT(1) 2981 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER) 2982 2983 static inline void 2984 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj) 2985 { 2986 i915_gem_object_unpin_pages(obj); 2987 } 2988 2989 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev); 2990 int i915_gem_dumb_create(struct drm_file *file_priv, 2991 struct drm_device *dev, 2992 struct drm_mode_create_dumb *args); 2993 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev, 2994 uint32_t handle, uint64_t *offset); 2995 int i915_gem_mmap_gtt_version(void); 2996 2997 void i915_gem_track_fb(struct drm_i915_gem_object *old, 2998 struct drm_i915_gem_object *new, 2999 unsigned frontbuffer_bits); 3000 3001 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno); 3002 3003 struct i915_request * 3004 i915_gem_find_active_request(struct intel_engine_cs *engine); 3005 3006 static inline bool i915_reset_backoff(struct i915_gpu_error *error) 3007 { 3008 return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags)); 3009 } 3010 3011 static inline bool i915_reset_handoff(struct i915_gpu_error *error) 3012 { 3013 return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags)); 3014 } 3015 3016 static inline bool i915_terminally_wedged(struct i915_gpu_error *error) 3017 { 3018 return unlikely(test_bit(I915_WEDGED, &error->flags)); 3019 } 3020 3021 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error) 3022 { 3023 return i915_reset_backoff(error) | i915_terminally_wedged(error); 3024 } 3025 3026 static inline u32 i915_reset_count(struct i915_gpu_error *error) 3027 { 3028 return READ_ONCE(error->reset_count); 3029 } 3030 3031 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error, 3032 struct intel_engine_cs *engine) 3033 { 3034 return READ_ONCE(error->reset_engine_count[engine->id]); 3035 } 3036 3037 struct i915_request * 3038 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine); 3039 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv); 3040 void i915_gem_reset(struct drm_i915_private *dev_priv, 3041 unsigned int stalled_mask); 3042 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine); 3043 void i915_gem_reset_finish(struct drm_i915_private *dev_priv); 3044 void i915_gem_set_wedged(struct drm_i915_private *dev_priv); 3045 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv); 3046 void i915_gem_reset_engine(struct intel_engine_cs *engine, 3047 struct i915_request *request, 3048 bool stalled); 3049 3050 void i915_gem_init_mmio(struct drm_i915_private *i915); 3051 int __must_check i915_gem_init(struct drm_i915_private *dev_priv); 3052 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv); 3053 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv); 3054 void i915_gem_fini(struct drm_i915_private *dev_priv); 3055 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv); 3056 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv, 3057 unsigned int flags, long timeout); 3058 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv); 3059 void i915_gem_suspend_late(struct drm_i915_private *dev_priv); 3060 void i915_gem_resume(struct drm_i915_private *dev_priv); 3061 vm_fault_t i915_gem_fault(struct vm_fault *vmf); 3062 int i915_gem_object_wait(struct drm_i915_gem_object *obj, 3063 unsigned int flags, 3064 long timeout, 3065 struct intel_rps_client *rps); 3066 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj, 3067 unsigned int flags, 3068 const struct i915_sched_attr *attr); 3069 #define I915_PRIORITY_DISPLAY I915_USER_PRIORITY(I915_PRIORITY_MAX) 3070 3071 int __must_check 3072 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write); 3073 int __must_check 3074 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write); 3075 int __must_check 3076 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write); 3077 struct i915_vma * __must_check 3078 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3079 u32 alignment, 3080 const struct i915_ggtt_view *view, 3081 unsigned int flags); 3082 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma); 3083 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, 3084 int align); 3085 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file); 3086 void i915_gem_release(struct drm_device *dev, struct drm_file *file); 3087 3088 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3089 enum i915_cache_level cache_level); 3090 3091 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev, 3092 struct dma_buf *dma_buf); 3093 3094 struct dma_buf *i915_gem_prime_export(struct drm_device *dev, 3095 struct drm_gem_object *gem_obj, int flags); 3096 3097 static inline struct i915_hw_ppgtt * 3098 i915_vm_to_ppgtt(struct i915_address_space *vm) 3099 { 3100 return container_of(vm, struct i915_hw_ppgtt, vm); 3101 } 3102 3103 /* i915_gem_fence_reg.c */ 3104 struct drm_i915_fence_reg * 3105 i915_reserve_fence(struct drm_i915_private *dev_priv); 3106 void i915_unreserve_fence(struct drm_i915_fence_reg *fence); 3107 3108 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv); 3109 void i915_gem_restore_fences(struct drm_i915_private *dev_priv); 3110 3111 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv); 3112 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj, 3113 struct sg_table *pages); 3114 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj, 3115 struct sg_table *pages); 3116 3117 static inline struct i915_gem_context * 3118 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id) 3119 { 3120 return idr_find(&file_priv->context_idr, id); 3121 } 3122 3123 static inline struct i915_gem_context * 3124 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id) 3125 { 3126 struct i915_gem_context *ctx; 3127 3128 rcu_read_lock(); 3129 ctx = __i915_gem_context_lookup_rcu(file_priv, id); 3130 if (ctx && !kref_get_unless_zero(&ctx->ref)) 3131 ctx = NULL; 3132 rcu_read_unlock(); 3133 3134 return ctx; 3135 } 3136 3137 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 3138 struct drm_file *file); 3139 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 3140 struct drm_file *file); 3141 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 3142 struct drm_file *file); 3143 void i915_oa_init_reg_state(struct intel_engine_cs *engine, 3144 struct i915_gem_context *ctx, 3145 uint32_t *reg_state); 3146 3147 /* i915_gem_evict.c */ 3148 int __must_check i915_gem_evict_something(struct i915_address_space *vm, 3149 u64 min_size, u64 alignment, 3150 unsigned cache_level, 3151 u64 start, u64 end, 3152 unsigned flags); 3153 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm, 3154 struct drm_mm_node *node, 3155 unsigned int flags); 3156 int i915_gem_evict_vm(struct i915_address_space *vm); 3157 3158 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv); 3159 3160 /* belongs in i915_gem_gtt.h */ 3161 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv) 3162 { 3163 wmb(); 3164 if (INTEL_GEN(dev_priv) < 6) 3165 intel_gtt_chipset_flush(); 3166 } 3167 3168 /* i915_gem_stolen.c */ 3169 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv, 3170 struct drm_mm_node *node, u64 size, 3171 unsigned alignment); 3172 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv, 3173 struct drm_mm_node *node, u64 size, 3174 unsigned alignment, u64 start, 3175 u64 end); 3176 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv, 3177 struct drm_mm_node *node); 3178 int i915_gem_init_stolen(struct drm_i915_private *dev_priv); 3179 void i915_gem_cleanup_stolen(struct drm_i915_private *dev_priv); 3180 struct drm_i915_gem_object * 3181 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, 3182 resource_size_t size); 3183 struct drm_i915_gem_object * 3184 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv, 3185 resource_size_t stolen_offset, 3186 resource_size_t gtt_offset, 3187 resource_size_t size); 3188 3189 /* i915_gem_internal.c */ 3190 struct drm_i915_gem_object * 3191 i915_gem_object_create_internal(struct drm_i915_private *dev_priv, 3192 phys_addr_t size); 3193 3194 /* i915_gem_shrinker.c */ 3195 unsigned long i915_gem_shrink(struct drm_i915_private *i915, 3196 unsigned long target, 3197 unsigned long *nr_scanned, 3198 unsigned flags); 3199 #define I915_SHRINK_PURGEABLE 0x1 3200 #define I915_SHRINK_UNBOUND 0x2 3201 #define I915_SHRINK_BOUND 0x4 3202 #define I915_SHRINK_ACTIVE 0x8 3203 #define I915_SHRINK_VMAPS 0x10 3204 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915); 3205 void i915_gem_shrinker_register(struct drm_i915_private *i915); 3206 void i915_gem_shrinker_unregister(struct drm_i915_private *i915); 3207 void i915_gem_shrinker_taints_mutex(struct mutex *mutex); 3208 3209 /* i915_gem_tiling.c */ 3210 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj) 3211 { 3212 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 3213 3214 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 && 3215 i915_gem_object_is_tiled(obj); 3216 } 3217 3218 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size, 3219 unsigned int tiling, unsigned int stride); 3220 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size, 3221 unsigned int tiling, unsigned int stride); 3222 3223 /* i915_debugfs.c */ 3224 #ifdef CONFIG_DEBUG_FS 3225 int i915_debugfs_register(struct drm_i915_private *dev_priv); 3226 int i915_debugfs_connector_add(struct drm_connector *connector); 3227 void intel_display_crc_init(struct drm_i915_private *dev_priv); 3228 #else 3229 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;} 3230 static inline int i915_debugfs_connector_add(struct drm_connector *connector) 3231 { return 0; } 3232 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {} 3233 #endif 3234 3235 const char *i915_cache_level_str(struct drm_i915_private *i915, int type); 3236 3237 /* i915_cmd_parser.c */ 3238 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv); 3239 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine); 3240 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine); 3241 int intel_engine_cmd_parser(struct intel_engine_cs *engine, 3242 struct drm_i915_gem_object *batch_obj, 3243 struct drm_i915_gem_object *shadow_batch_obj, 3244 u32 batch_start_offset, 3245 u32 batch_len, 3246 bool is_master); 3247 3248 /* i915_perf.c */ 3249 extern void i915_perf_init(struct drm_i915_private *dev_priv); 3250 extern void i915_perf_fini(struct drm_i915_private *dev_priv); 3251 extern void i915_perf_register(struct drm_i915_private *dev_priv); 3252 extern void i915_perf_unregister(struct drm_i915_private *dev_priv); 3253 3254 /* i915_suspend.c */ 3255 extern int i915_save_state(struct drm_i915_private *dev_priv); 3256 extern int i915_restore_state(struct drm_i915_private *dev_priv); 3257 3258 /* i915_sysfs.c */ 3259 void i915_setup_sysfs(struct drm_i915_private *dev_priv); 3260 void i915_teardown_sysfs(struct drm_i915_private *dev_priv); 3261 3262 /* intel_lpe_audio.c */ 3263 int intel_lpe_audio_init(struct drm_i915_private *dev_priv); 3264 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv); 3265 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv); 3266 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv, 3267 enum pipe pipe, enum port port, 3268 const void *eld, int ls_clock, bool dp_output); 3269 3270 /* intel_i2c.c */ 3271 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv); 3272 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv); 3273 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv, 3274 unsigned int pin); 3275 extern int intel_gmbus_output_aksv(struct i2c_adapter *adapter); 3276 3277 extern struct i2c_adapter * 3278 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin); 3279 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed); 3280 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit); 3281 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter) 3282 { 3283 return container_of(adapter, struct intel_gmbus, adapter)->force_bit; 3284 } 3285 extern void intel_i2c_reset(struct drm_i915_private *dev_priv); 3286 3287 /* intel_bios.c */ 3288 void intel_bios_init(struct drm_i915_private *dev_priv); 3289 void intel_bios_cleanup(struct drm_i915_private *dev_priv); 3290 bool intel_bios_is_valid_vbt(const void *buf, size_t size); 3291 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv); 3292 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin); 3293 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port); 3294 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port); 3295 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port); 3296 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port); 3297 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv, 3298 enum port port); 3299 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv, 3300 enum port port); 3301 enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *dev_priv, enum port port); 3302 3303 /* intel_acpi.c */ 3304 #ifdef CONFIG_ACPI 3305 extern void intel_register_dsm_handler(void); 3306 extern void intel_unregister_dsm_handler(void); 3307 #else 3308 static inline void intel_register_dsm_handler(void) { return; } 3309 static inline void intel_unregister_dsm_handler(void) { return; } 3310 #endif /* CONFIG_ACPI */ 3311 3312 /* intel_device_info.c */ 3313 static inline struct intel_device_info * 3314 mkwrite_device_info(struct drm_i915_private *dev_priv) 3315 { 3316 return (struct intel_device_info *)&dev_priv->info; 3317 } 3318 3319 /* modesetting */ 3320 extern void intel_modeset_init_hw(struct drm_device *dev); 3321 extern int intel_modeset_init(struct drm_device *dev); 3322 extern void intel_modeset_cleanup(struct drm_device *dev); 3323 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, 3324 bool state); 3325 extern void intel_display_resume(struct drm_device *dev); 3326 extern void i915_redisable_vga(struct drm_i915_private *dev_priv); 3327 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv); 3328 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val); 3329 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv); 3330 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val); 3331 extern void intel_rps_mark_interactive(struct drm_i915_private *i915, 3332 bool interactive); 3333 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, 3334 bool enable); 3335 void intel_dsc_enable(struct intel_encoder *encoder, 3336 const struct intel_crtc_state *crtc_state); 3337 void intel_dsc_disable(const struct intel_crtc_state *crtc_state); 3338 3339 int i915_reg_read_ioctl(struct drm_device *dev, void *data, 3340 struct drm_file *file); 3341 3342 /* overlay */ 3343 extern struct intel_overlay_error_state * 3344 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv); 3345 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e, 3346 struct intel_overlay_error_state *error); 3347 3348 extern struct intel_display_error_state * 3349 intel_display_capture_error_state(struct drm_i915_private *dev_priv); 3350 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e, 3351 struct intel_display_error_state *error); 3352 3353 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val); 3354 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv, u32 mbox, 3355 u32 val, int fast_timeout_us, 3356 int slow_timeout_ms); 3357 #define sandybridge_pcode_write(dev_priv, mbox, val) \ 3358 sandybridge_pcode_write_timeout(dev_priv, mbox, val, 500, 0) 3359 3360 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request, 3361 u32 reply_mask, u32 reply, int timeout_base_ms); 3362 3363 /* intel_sideband.c */ 3364 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr); 3365 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val); 3366 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr); 3367 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg); 3368 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val); 3369 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg); 3370 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3371 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg); 3372 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3373 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg); 3374 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3375 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg); 3376 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val); 3377 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg, 3378 enum intel_sbi_destination destination); 3379 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value, 3380 enum intel_sbi_destination destination); 3381 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg); 3382 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3383 3384 /* intel_dpio_phy.c */ 3385 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port, 3386 enum dpio_phy *phy, enum dpio_channel *ch); 3387 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv, 3388 enum port port, u32 margin, u32 scale, 3389 u32 enable, u32 deemphasis); 3390 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy); 3391 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy); 3392 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv, 3393 enum dpio_phy phy); 3394 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv, 3395 enum dpio_phy phy); 3396 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(uint8_t lane_count); 3397 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder, 3398 uint8_t lane_lat_optim_mask); 3399 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder); 3400 3401 void chv_set_phy_signal_level(struct intel_encoder *encoder, 3402 u32 deemph_reg_value, u32 margin_reg_value, 3403 bool uniq_trans_scale); 3404 void chv_data_lane_soft_reset(struct intel_encoder *encoder, 3405 const struct intel_crtc_state *crtc_state, 3406 bool reset); 3407 void chv_phy_pre_pll_enable(struct intel_encoder *encoder, 3408 const struct intel_crtc_state *crtc_state); 3409 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder, 3410 const struct intel_crtc_state *crtc_state); 3411 void chv_phy_release_cl2_override(struct intel_encoder *encoder); 3412 void chv_phy_post_pll_disable(struct intel_encoder *encoder, 3413 const struct intel_crtc_state *old_crtc_state); 3414 3415 void vlv_set_phy_signal_level(struct intel_encoder *encoder, 3416 u32 demph_reg_value, u32 preemph_reg_value, 3417 u32 uniqtranscale_reg_value, u32 tx3_demph); 3418 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder, 3419 const struct intel_crtc_state *crtc_state); 3420 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder, 3421 const struct intel_crtc_state *crtc_state); 3422 void vlv_phy_reset_lanes(struct intel_encoder *encoder, 3423 const struct intel_crtc_state *old_crtc_state); 3424 3425 /* intel_combo_phy.c */ 3426 void icl_combo_phys_init(struct drm_i915_private *dev_priv); 3427 void icl_combo_phys_uninit(struct drm_i915_private *dev_priv); 3428 void cnl_combo_phys_init(struct drm_i915_private *dev_priv); 3429 void cnl_combo_phys_uninit(struct drm_i915_private *dev_priv); 3430 3431 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val); 3432 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val); 3433 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv, 3434 const i915_reg_t reg); 3435 3436 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat1); 3437 3438 static inline u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv, 3439 const i915_reg_t reg) 3440 { 3441 return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(dev_priv, reg), 1000); 3442 } 3443 3444 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true) 3445 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true) 3446 3447 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true) 3448 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true) 3449 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false) 3450 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false) 3451 3452 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true) 3453 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true) 3454 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false) 3455 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false) 3456 3457 /* Be very careful with read/write 64-bit values. On 32-bit machines, they 3458 * will be implemented using 2 32-bit writes in an arbitrary order with 3459 * an arbitrary delay between them. This can cause the hardware to 3460 * act upon the intermediate value, possibly leading to corruption and 3461 * machine death. For this reason we do not support I915_WRITE64, or 3462 * dev_priv->uncore.funcs.mmio_writeq. 3463 * 3464 * When reading a 64-bit value as two 32-bit values, the delay may cause 3465 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that 3466 * occasionally a 64-bit register does not actualy support a full readq 3467 * and must be read using two 32-bit reads. 3468 * 3469 * You have been warned. 3470 */ 3471 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true) 3472 3473 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \ 3474 u32 upper, lower, old_upper, loop = 0; \ 3475 upper = I915_READ(upper_reg); \ 3476 do { \ 3477 old_upper = upper; \ 3478 lower = I915_READ(lower_reg); \ 3479 upper = I915_READ(upper_reg); \ 3480 } while (upper != old_upper && loop++ < 2); \ 3481 (u64)upper << 32 | lower; }) 3482 3483 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg) 3484 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg) 3485 3486 #define __raw_read(x, s) \ 3487 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \ 3488 i915_reg_t reg) \ 3489 { \ 3490 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \ 3491 } 3492 3493 #define __raw_write(x, s) \ 3494 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \ 3495 i915_reg_t reg, uint##x##_t val) \ 3496 { \ 3497 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \ 3498 } 3499 __raw_read(8, b) 3500 __raw_read(16, w) 3501 __raw_read(32, l) 3502 __raw_read(64, q) 3503 3504 __raw_write(8, b) 3505 __raw_write(16, w) 3506 __raw_write(32, l) 3507 __raw_write(64, q) 3508 3509 #undef __raw_read 3510 #undef __raw_write 3511 3512 /* These are untraced mmio-accessors that are only valid to be used inside 3513 * critical sections, such as inside IRQ handlers, where forcewake is explicitly 3514 * controlled. 3515 * 3516 * Think twice, and think again, before using these. 3517 * 3518 * As an example, these accessors can possibly be used between: 3519 * 3520 * spin_lock_irq(&dev_priv->uncore.lock); 3521 * intel_uncore_forcewake_get__locked(); 3522 * 3523 * and 3524 * 3525 * intel_uncore_forcewake_put__locked(); 3526 * spin_unlock_irq(&dev_priv->uncore.lock); 3527 * 3528 * 3529 * Note: some registers may not need forcewake held, so 3530 * intel_uncore_forcewake_{get,put} can be omitted, see 3531 * intel_uncore_forcewake_for_reg(). 3532 * 3533 * Certain architectures will die if the same cacheline is concurrently accessed 3534 * by different clients (e.g. on Ivybridge). Access to registers should 3535 * therefore generally be serialised, by either the dev_priv->uncore.lock or 3536 * a more localised lock guarding all access to that bank of registers. 3537 */ 3538 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__)) 3539 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__)) 3540 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__)) 3541 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__) 3542 3543 /* "Broadcast RGB" property */ 3544 #define INTEL_BROADCAST_RGB_AUTO 0 3545 #define INTEL_BROADCAST_RGB_FULL 1 3546 #define INTEL_BROADCAST_RGB_LIMITED 2 3547 3548 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv) 3549 { 3550 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3551 return VLV_VGACNTRL; 3552 else if (INTEL_GEN(dev_priv) >= 5) 3553 return CPU_VGACNTRL; 3554 else 3555 return VGACNTRL; 3556 } 3557 3558 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m) 3559 { 3560 unsigned long j = msecs_to_jiffies(m); 3561 3562 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1); 3563 } 3564 3565 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n) 3566 { 3567 /* nsecs_to_jiffies64() does not guard against overflow */ 3568 if (NSEC_PER_SEC % HZ && 3569 div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ) 3570 return MAX_JIFFY_OFFSET; 3571 3572 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1); 3573 } 3574 3575 /* 3576 * If you need to wait X milliseconds between events A and B, but event B 3577 * doesn't happen exactly after event A, you record the timestamp (jiffies) of 3578 * when event A happened, then just before event B you call this function and 3579 * pass the timestamp as the first argument, and X as the second argument. 3580 */ 3581 static inline void 3582 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms) 3583 { 3584 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies; 3585 3586 /* 3587 * Don't re-read the value of "jiffies" every time since it may change 3588 * behind our back and break the math. 3589 */ 3590 tmp_jiffies = jiffies; 3591 target_jiffies = timestamp_jiffies + 3592 msecs_to_jiffies_timeout(to_wait_ms); 3593 3594 if (time_after(target_jiffies, tmp_jiffies)) { 3595 remaining_jiffies = target_jiffies - tmp_jiffies; 3596 while (remaining_jiffies) 3597 remaining_jiffies = 3598 schedule_timeout_uninterruptible(remaining_jiffies); 3599 } 3600 } 3601 3602 static inline bool 3603 __i915_request_irq_complete(const struct i915_request *rq) 3604 { 3605 struct intel_engine_cs *engine = rq->engine; 3606 u32 seqno; 3607 3608 /* Note that the engine may have wrapped around the seqno, and 3609 * so our request->global_seqno will be ahead of the hardware, 3610 * even though it completed the request before wrapping. We catch 3611 * this by kicking all the waiters before resetting the seqno 3612 * in hardware, and also signal the fence. 3613 */ 3614 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags)) 3615 return true; 3616 3617 /* The request was dequeued before we were awoken. We check after 3618 * inspecting the hw to confirm that this was the same request 3619 * that generated the HWS update. The memory barriers within 3620 * the request execution are sufficient to ensure that a check 3621 * after reading the value from hw matches this request. 3622 */ 3623 seqno = i915_request_global_seqno(rq); 3624 if (!seqno) 3625 return false; 3626 3627 /* Before we do the heavier coherent read of the seqno, 3628 * check the value (hopefully) in the CPU cacheline. 3629 */ 3630 if (__i915_request_completed(rq, seqno)) 3631 return true; 3632 3633 /* Ensure our read of the seqno is coherent so that we 3634 * do not "miss an interrupt" (i.e. if this is the last 3635 * request and the seqno write from the GPU is not visible 3636 * by the time the interrupt fires, we will see that the 3637 * request is incomplete and go back to sleep awaiting 3638 * another interrupt that will never come.) 3639 * 3640 * Strictly, we only need to do this once after an interrupt, 3641 * but it is easier and safer to do it every time the waiter 3642 * is woken. 3643 */ 3644 if (engine->irq_seqno_barrier && 3645 test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) { 3646 struct intel_breadcrumbs *b = &engine->breadcrumbs; 3647 3648 /* The ordering of irq_posted versus applying the barrier 3649 * is crucial. The clearing of the current irq_posted must 3650 * be visible before we perform the barrier operation, 3651 * such that if a subsequent interrupt arrives, irq_posted 3652 * is reasserted and our task rewoken (which causes us to 3653 * do another __i915_request_irq_complete() immediately 3654 * and reapply the barrier). Conversely, if the clear 3655 * occurs after the barrier, then an interrupt that arrived 3656 * whilst we waited on the barrier would not trigger a 3657 * barrier on the next pass, and the read may not see the 3658 * seqno update. 3659 */ 3660 engine->irq_seqno_barrier(engine); 3661 3662 /* If we consume the irq, but we are no longer the bottom-half, 3663 * the real bottom-half may not have serialised their own 3664 * seqno check with the irq-barrier (i.e. may have inspected 3665 * the seqno before we believe it coherent since they see 3666 * irq_posted == false but we are still running). 3667 */ 3668 spin_lock_irq(&b->irq_lock); 3669 if (b->irq_wait && b->irq_wait->tsk != current) 3670 /* Note that if the bottom-half is changed as we 3671 * are sending the wake-up, the new bottom-half will 3672 * be woken by whomever made the change. We only have 3673 * to worry about when we steal the irq-posted for 3674 * ourself. 3675 */ 3676 wake_up_process(b->irq_wait->tsk); 3677 spin_unlock_irq(&b->irq_lock); 3678 3679 if (__i915_request_completed(rq, seqno)) 3680 return true; 3681 } 3682 3683 return false; 3684 } 3685 3686 void i915_memcpy_init_early(struct drm_i915_private *dev_priv); 3687 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len); 3688 3689 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment, 3690 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot 3691 * perform the operation. To check beforehand, pass in the parameters to 3692 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits, 3693 * you only need to pass in the minor offsets, page-aligned pointers are 3694 * always valid. 3695 * 3696 * For just checking for SSE4.1, in the foreknowledge that the future use 3697 * will be correctly aligned, just use i915_has_memcpy_from_wc(). 3698 */ 3699 #define i915_can_memcpy_from_wc(dst, src, len) \ 3700 i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0) 3701 3702 #define i915_has_memcpy_from_wc() \ 3703 i915_memcpy_from_wc(NULL, NULL, 0) 3704 3705 /* i915_mm.c */ 3706 int remap_io_mapping(struct vm_area_struct *vma, 3707 unsigned long addr, unsigned long pfn, unsigned long size, 3708 struct io_mapping *iomap); 3709 3710 static inline int intel_hws_csb_write_index(struct drm_i915_private *i915) 3711 { 3712 if (INTEL_GEN(i915) >= 10) 3713 return CNL_HWS_CSB_WRITE_INDEX; 3714 else 3715 return I915_HWS_CSB_WRITE_INDEX; 3716 } 3717 3718 static inline u32 i915_scratch_offset(const struct drm_i915_private *i915) 3719 { 3720 return i915_ggtt_offset(i915->gt.scratch); 3721 } 3722 3723 #endif 3724