1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*- 2 */ 3 /* 4 * 5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. 6 * All Rights Reserved. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a 9 * copy of this software and associated documentation files (the 10 * "Software"), to deal in the Software without restriction, including 11 * without limitation the rights to use, copy, modify, merge, publish, 12 * distribute, sub license, and/or sell copies of the Software, and to 13 * permit persons to whom the Software is furnished to do so, subject to 14 * the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the 17 * next paragraph) shall be included in all copies or substantial portions 18 * of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 27 * 28 */ 29 30 #ifndef _I915_DRV_H_ 31 #define _I915_DRV_H_ 32 33 #include <uapi/drm/i915_drm.h> 34 #include <uapi/drm/drm_fourcc.h> 35 36 #include <linux/io-mapping.h> 37 #include <linux/i2c.h> 38 #include <linux/i2c-algo-bit.h> 39 #include <linux/backlight.h> 40 #include <linux/hash.h> 41 #include <linux/intel-iommu.h> 42 #include <linux/kref.h> 43 #include <linux/perf_event.h> 44 #include <linux/pm_qos.h> 45 #include <linux/reservation.h> 46 #include <linux/shmem_fs.h> 47 48 #include <drm/drmP.h> 49 #include <drm/intel-gtt.h> 50 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */ 51 #include <drm/drm_gem.h> 52 #include <drm/drm_auth.h> 53 #include <drm/drm_cache.h> 54 55 #include "i915_params.h" 56 #include "i915_reg.h" 57 #include "i915_utils.h" 58 59 #include "intel_bios.h" 60 #include "intel_device_info.h" 61 #include "intel_display.h" 62 #include "intel_dpll_mgr.h" 63 #include "intel_lrc.h" 64 #include "intel_opregion.h" 65 #include "intel_ringbuffer.h" 66 #include "intel_uncore.h" 67 #include "intel_wopcm.h" 68 #include "intel_uc.h" 69 70 #include "i915_gem.h" 71 #include "i915_gem_context.h" 72 #include "i915_gem_fence_reg.h" 73 #include "i915_gem_object.h" 74 #include "i915_gem_gtt.h" 75 #include "i915_gpu_error.h" 76 #include "i915_request.h" 77 #include "i915_scheduler.h" 78 #include "i915_timeline.h" 79 #include "i915_vma.h" 80 81 #include "intel_gvt.h" 82 83 /* General customization: 84 */ 85 86 #define DRIVER_NAME "i915" 87 #define DRIVER_DESC "Intel Graphics" 88 #define DRIVER_DATE "20180514" 89 #define DRIVER_TIMESTAMP 1526300884 90 91 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and 92 * WARN_ON()) for hw state sanity checks to check for unexpected conditions 93 * which may not necessarily be a user visible problem. This will either 94 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to 95 * enable distros and users to tailor their preferred amount of i915 abrt 96 * spam. 97 */ 98 #define I915_STATE_WARN(condition, format...) ({ \ 99 int __ret_warn_on = !!(condition); \ 100 if (unlikely(__ret_warn_on)) \ 101 if (!WARN(i915_modparams.verbose_state_checks, format)) \ 102 DRM_ERROR(format); \ 103 unlikely(__ret_warn_on); \ 104 }) 105 106 #define I915_STATE_WARN_ON(x) \ 107 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")") 108 109 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG) 110 bool __i915_inject_load_failure(const char *func, int line); 111 #define i915_inject_load_failure() \ 112 __i915_inject_load_failure(__func__, __LINE__) 113 #else 114 #define i915_inject_load_failure() false 115 #endif 116 117 typedef struct { 118 uint32_t val; 119 } uint_fixed_16_16_t; 120 121 #define FP_16_16_MAX ({ \ 122 uint_fixed_16_16_t fp; \ 123 fp.val = UINT_MAX; \ 124 fp; \ 125 }) 126 127 static inline bool is_fixed16_zero(uint_fixed_16_16_t val) 128 { 129 if (val.val == 0) 130 return true; 131 return false; 132 } 133 134 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val) 135 { 136 uint_fixed_16_16_t fp; 137 138 WARN_ON(val > U16_MAX); 139 140 fp.val = val << 16; 141 return fp; 142 } 143 144 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp) 145 { 146 return DIV_ROUND_UP(fp.val, 1 << 16); 147 } 148 149 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp) 150 { 151 return fp.val >> 16; 152 } 153 154 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1, 155 uint_fixed_16_16_t min2) 156 { 157 uint_fixed_16_16_t min; 158 159 min.val = min(min1.val, min2.val); 160 return min; 161 } 162 163 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1, 164 uint_fixed_16_16_t max2) 165 { 166 uint_fixed_16_16_t max; 167 168 max.val = max(max1.val, max2.val); 169 return max; 170 } 171 172 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val) 173 { 174 uint_fixed_16_16_t fp; 175 WARN_ON(val > U32_MAX); 176 fp.val = (uint32_t) val; 177 return fp; 178 } 179 180 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val, 181 uint_fixed_16_16_t d) 182 { 183 return DIV_ROUND_UP(val.val, d.val); 184 } 185 186 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val, 187 uint_fixed_16_16_t mul) 188 { 189 uint64_t intermediate_val; 190 191 intermediate_val = (uint64_t) val * mul.val; 192 intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16); 193 WARN_ON(intermediate_val > U32_MAX); 194 return (uint32_t) intermediate_val; 195 } 196 197 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val, 198 uint_fixed_16_16_t mul) 199 { 200 uint64_t intermediate_val; 201 202 intermediate_val = (uint64_t) val.val * mul.val; 203 intermediate_val = intermediate_val >> 16; 204 return clamp_u64_to_fixed16(intermediate_val); 205 } 206 207 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d) 208 { 209 uint64_t interm_val; 210 211 interm_val = (uint64_t)val << 16; 212 interm_val = DIV_ROUND_UP_ULL(interm_val, d); 213 return clamp_u64_to_fixed16(interm_val); 214 } 215 216 static inline uint32_t div_round_up_u32_fixed16(uint32_t val, 217 uint_fixed_16_16_t d) 218 { 219 uint64_t interm_val; 220 221 interm_val = (uint64_t)val << 16; 222 interm_val = DIV_ROUND_UP_ULL(interm_val, d.val); 223 WARN_ON(interm_val > U32_MAX); 224 return (uint32_t) interm_val; 225 } 226 227 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val, 228 uint_fixed_16_16_t mul) 229 { 230 uint64_t intermediate_val; 231 232 intermediate_val = (uint64_t) val * mul.val; 233 return clamp_u64_to_fixed16(intermediate_val); 234 } 235 236 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1, 237 uint_fixed_16_16_t add2) 238 { 239 uint64_t interm_sum; 240 241 interm_sum = (uint64_t) add1.val + add2.val; 242 return clamp_u64_to_fixed16(interm_sum); 243 } 244 245 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1, 246 uint32_t add2) 247 { 248 uint64_t interm_sum; 249 uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2); 250 251 interm_sum = (uint64_t) add1.val + interm_add2.val; 252 return clamp_u64_to_fixed16(interm_sum); 253 } 254 255 enum hpd_pin { 256 HPD_NONE = 0, 257 HPD_TV = HPD_NONE, /* TV is known to be unreliable */ 258 HPD_CRT, 259 HPD_SDVO_B, 260 HPD_SDVO_C, 261 HPD_PORT_A, 262 HPD_PORT_B, 263 HPD_PORT_C, 264 HPD_PORT_D, 265 HPD_PORT_E, 266 HPD_PORT_F, 267 HPD_NUM_PINS 268 }; 269 270 #define for_each_hpd_pin(__pin) \ 271 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++) 272 273 #define HPD_STORM_DEFAULT_THRESHOLD 5 274 275 struct i915_hotplug { 276 struct work_struct hotplug_work; 277 278 struct { 279 unsigned long last_jiffies; 280 int count; 281 enum { 282 HPD_ENABLED = 0, 283 HPD_DISABLED = 1, 284 HPD_MARK_DISABLED = 2 285 } state; 286 } stats[HPD_NUM_PINS]; 287 u32 event_bits; 288 struct delayed_work reenable_work; 289 290 struct intel_digital_port *irq_port[I915_MAX_PORTS]; 291 u32 long_port_mask; 292 u32 short_port_mask; 293 struct work_struct dig_port_work; 294 295 struct work_struct poll_init_work; 296 bool poll_enabled; 297 298 unsigned int hpd_storm_threshold; 299 300 /* 301 * if we get a HPD irq from DP and a HPD irq from non-DP 302 * the non-DP HPD could block the workqueue on a mode config 303 * mutex getting, that userspace may have taken. However 304 * userspace is waiting on the DP workqueue to run which is 305 * blocked behind the non-DP one. 306 */ 307 struct workqueue_struct *dp_wq; 308 }; 309 310 #define I915_GEM_GPU_DOMAINS \ 311 (I915_GEM_DOMAIN_RENDER | \ 312 I915_GEM_DOMAIN_SAMPLER | \ 313 I915_GEM_DOMAIN_COMMAND | \ 314 I915_GEM_DOMAIN_INSTRUCTION | \ 315 I915_GEM_DOMAIN_VERTEX) 316 317 struct drm_i915_private; 318 struct i915_mm_struct; 319 struct i915_mmu_object; 320 321 struct drm_i915_file_private { 322 struct drm_i915_private *dev_priv; 323 struct drm_file *file; 324 325 struct { 326 spinlock_t lock; 327 struct list_head request_list; 328 /* 20ms is a fairly arbitrary limit (greater than the average frame time) 329 * chosen to prevent the CPU getting more than a frame ahead of the GPU 330 * (when using lax throttling for the frontbuffer). We also use it to 331 * offer free GPU waitboosts for severely congested workloads. 332 */ 333 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20) 334 } mm; 335 struct idr context_idr; 336 337 struct intel_rps_client { 338 atomic_t boosts; 339 } rps_client; 340 341 unsigned int bsd_engine; 342 343 /* 344 * Every context ban increments per client ban score. Also 345 * hangs in short succession increments ban score. If ban threshold 346 * is reached, client is considered banned and submitting more work 347 * will fail. This is a stop gap measure to limit the badly behaving 348 * clients access to gpu. Note that unbannable contexts never increment 349 * the client ban score. 350 */ 351 #define I915_CLIENT_SCORE_HANG_FAST 1 352 #define I915_CLIENT_FAST_HANG_JIFFIES (60 * HZ) 353 #define I915_CLIENT_SCORE_CONTEXT_BAN 3 354 #define I915_CLIENT_SCORE_BANNED 9 355 /** ban_score: Accumulated score of all ctx bans and fast hangs. */ 356 atomic_t ban_score; 357 unsigned long hang_timestamp; 358 }; 359 360 /* Interface history: 361 * 362 * 1.1: Original. 363 * 1.2: Add Power Management 364 * 1.3: Add vblank support 365 * 1.4: Fix cmdbuffer path, add heap destroy 366 * 1.5: Add vblank pipe configuration 367 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank 368 * - Support vertical blank on secondary display pipe 369 */ 370 #define DRIVER_MAJOR 1 371 #define DRIVER_MINOR 6 372 #define DRIVER_PATCHLEVEL 0 373 374 struct intel_overlay; 375 struct intel_overlay_error_state; 376 377 struct sdvo_device_mapping { 378 u8 initialized; 379 u8 dvo_port; 380 u8 slave_addr; 381 u8 dvo_wiring; 382 u8 i2c_pin; 383 u8 ddc_pin; 384 }; 385 386 struct intel_connector; 387 struct intel_encoder; 388 struct intel_atomic_state; 389 struct intel_crtc_state; 390 struct intel_initial_plane_config; 391 struct intel_crtc; 392 struct intel_limit; 393 struct dpll; 394 struct intel_cdclk_state; 395 396 struct drm_i915_display_funcs { 397 void (*get_cdclk)(struct drm_i915_private *dev_priv, 398 struct intel_cdclk_state *cdclk_state); 399 void (*set_cdclk)(struct drm_i915_private *dev_priv, 400 const struct intel_cdclk_state *cdclk_state); 401 int (*get_fifo_size)(struct drm_i915_private *dev_priv, 402 enum i9xx_plane_id i9xx_plane); 403 int (*compute_pipe_wm)(struct intel_crtc_state *cstate); 404 int (*compute_intermediate_wm)(struct drm_device *dev, 405 struct intel_crtc *intel_crtc, 406 struct intel_crtc_state *newstate); 407 void (*initial_watermarks)(struct intel_atomic_state *state, 408 struct intel_crtc_state *cstate); 409 void (*atomic_update_watermarks)(struct intel_atomic_state *state, 410 struct intel_crtc_state *cstate); 411 void (*optimize_watermarks)(struct intel_atomic_state *state, 412 struct intel_crtc_state *cstate); 413 int (*compute_global_watermarks)(struct drm_atomic_state *state); 414 void (*update_wm)(struct intel_crtc *crtc); 415 int (*modeset_calc_cdclk)(struct drm_atomic_state *state); 416 /* Returns the active state of the crtc, and if the crtc is active, 417 * fills out the pipe-config with the hw state. */ 418 bool (*get_pipe_config)(struct intel_crtc *, 419 struct intel_crtc_state *); 420 void (*get_initial_plane_config)(struct intel_crtc *, 421 struct intel_initial_plane_config *); 422 int (*crtc_compute_clock)(struct intel_crtc *crtc, 423 struct intel_crtc_state *crtc_state); 424 void (*crtc_enable)(struct intel_crtc_state *pipe_config, 425 struct drm_atomic_state *old_state); 426 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state, 427 struct drm_atomic_state *old_state); 428 void (*update_crtcs)(struct drm_atomic_state *state); 429 void (*audio_codec_enable)(struct intel_encoder *encoder, 430 const struct intel_crtc_state *crtc_state, 431 const struct drm_connector_state *conn_state); 432 void (*audio_codec_disable)(struct intel_encoder *encoder, 433 const struct intel_crtc_state *old_crtc_state, 434 const struct drm_connector_state *old_conn_state); 435 void (*fdi_link_train)(struct intel_crtc *crtc, 436 const struct intel_crtc_state *crtc_state); 437 void (*init_clock_gating)(struct drm_i915_private *dev_priv); 438 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv); 439 /* clock updates for mode set */ 440 /* cursor updates */ 441 /* render clock increase/decrease */ 442 /* display clock increase/decrease */ 443 /* pll clock increase/decrease */ 444 445 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state); 446 void (*load_luts)(struct drm_crtc_state *crtc_state); 447 }; 448 449 #define CSR_VERSION(major, minor) ((major) << 16 | (minor)) 450 #define CSR_VERSION_MAJOR(version) ((version) >> 16) 451 #define CSR_VERSION_MINOR(version) ((version) & 0xffff) 452 453 struct intel_csr { 454 struct work_struct work; 455 const char *fw_path; 456 uint32_t *dmc_payload; 457 uint32_t dmc_fw_size; 458 uint32_t version; 459 uint32_t mmio_count; 460 i915_reg_t mmioaddr[8]; 461 uint32_t mmiodata[8]; 462 uint32_t dc_state; 463 uint32_t allowed_dc_mask; 464 }; 465 466 enum i915_cache_level { 467 I915_CACHE_NONE = 0, 468 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */ 469 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc 470 caches, eg sampler/render caches, and the 471 large Last-Level-Cache. LLC is coherent with 472 the CPU, but L3 is only visible to the GPU. */ 473 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */ 474 }; 475 476 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */ 477 478 enum fb_op_origin { 479 ORIGIN_GTT, 480 ORIGIN_CPU, 481 ORIGIN_CS, 482 ORIGIN_FLIP, 483 ORIGIN_DIRTYFB, 484 }; 485 486 struct intel_fbc { 487 /* This is always the inner lock when overlapping with struct_mutex and 488 * it's the outer lock when overlapping with stolen_lock. */ 489 struct mutex lock; 490 unsigned threshold; 491 unsigned int possible_framebuffer_bits; 492 unsigned int busy_bits; 493 unsigned int visible_pipes_mask; 494 struct intel_crtc *crtc; 495 496 struct drm_mm_node compressed_fb; 497 struct drm_mm_node *compressed_llb; 498 499 bool false_color; 500 501 bool enabled; 502 bool active; 503 504 bool underrun_detected; 505 struct work_struct underrun_work; 506 507 /* 508 * Due to the atomic rules we can't access some structures without the 509 * appropriate locking, so we cache information here in order to avoid 510 * these problems. 511 */ 512 struct intel_fbc_state_cache { 513 struct i915_vma *vma; 514 unsigned long flags; 515 516 struct { 517 unsigned int mode_flags; 518 uint32_t hsw_bdw_pixel_rate; 519 } crtc; 520 521 struct { 522 unsigned int rotation; 523 int src_w; 524 int src_h; 525 bool visible; 526 /* 527 * Display surface base address adjustement for 528 * pageflips. Note that on gen4+ this only adjusts up 529 * to a tile, offsets within a tile are handled in 530 * the hw itself (with the TILEOFF register). 531 */ 532 int adjusted_x; 533 int adjusted_y; 534 535 int y; 536 } plane; 537 538 struct { 539 const struct drm_format_info *format; 540 unsigned int stride; 541 } fb; 542 } state_cache; 543 544 /* 545 * This structure contains everything that's relevant to program the 546 * hardware registers. When we want to figure out if we need to disable 547 * and re-enable FBC for a new configuration we just check if there's 548 * something different in the struct. The genx_fbc_activate functions 549 * are supposed to read from it in order to program the registers. 550 */ 551 struct intel_fbc_reg_params { 552 struct i915_vma *vma; 553 unsigned long flags; 554 555 struct { 556 enum pipe pipe; 557 enum i9xx_plane_id i9xx_plane; 558 unsigned int fence_y_offset; 559 } crtc; 560 561 struct { 562 const struct drm_format_info *format; 563 unsigned int stride; 564 } fb; 565 566 int cfb_size; 567 unsigned int gen9_wa_cfb_stride; 568 } params; 569 570 struct intel_fbc_work { 571 bool scheduled; 572 u64 scheduled_vblank; 573 struct work_struct work; 574 } work; 575 576 const char *no_fbc_reason; 577 }; 578 579 /* 580 * HIGH_RR is the highest eDP panel refresh rate read from EDID 581 * LOW_RR is the lowest eDP panel refresh rate found from EDID 582 * parsing for same resolution. 583 */ 584 enum drrs_refresh_rate_type { 585 DRRS_HIGH_RR, 586 DRRS_LOW_RR, 587 DRRS_MAX_RR, /* RR count */ 588 }; 589 590 enum drrs_support_type { 591 DRRS_NOT_SUPPORTED = 0, 592 STATIC_DRRS_SUPPORT = 1, 593 SEAMLESS_DRRS_SUPPORT = 2 594 }; 595 596 struct intel_dp; 597 struct i915_drrs { 598 struct mutex mutex; 599 struct delayed_work work; 600 struct intel_dp *dp; 601 unsigned busy_frontbuffer_bits; 602 enum drrs_refresh_rate_type refresh_rate_type; 603 enum drrs_support_type type; 604 }; 605 606 struct i915_psr { 607 struct mutex lock; 608 bool sink_support; 609 struct intel_dp *enabled; 610 bool active; 611 struct delayed_work work; 612 unsigned busy_frontbuffer_bits; 613 bool sink_psr2_support; 614 bool link_standby; 615 bool colorimetry_support; 616 bool alpm; 617 bool has_hw_tracking; 618 bool psr2_enabled; 619 u8 sink_sync_latency; 620 bool debug; 621 ktime_t last_entry_attempt; 622 ktime_t last_exit; 623 624 void (*enable_source)(struct intel_dp *, 625 const struct intel_crtc_state *); 626 void (*disable_source)(struct intel_dp *, 627 const struct intel_crtc_state *); 628 void (*enable_sink)(struct intel_dp *); 629 void (*activate)(struct intel_dp *); 630 void (*setup_vsc)(struct intel_dp *, const struct intel_crtc_state *); 631 }; 632 633 enum intel_pch { 634 PCH_NONE = 0, /* No PCH present */ 635 PCH_IBX, /* Ibexpeak PCH */ 636 PCH_CPT, /* Cougarpoint/Pantherpoint PCH */ 637 PCH_LPT, /* Lynxpoint/Wildcatpoint PCH */ 638 PCH_SPT, /* Sunrisepoint PCH */ 639 PCH_KBP, /* Kaby Lake PCH */ 640 PCH_CNP, /* Cannon Lake PCH */ 641 PCH_ICP, /* Ice Lake PCH */ 642 PCH_NOP, 643 }; 644 645 enum intel_sbi_destination { 646 SBI_ICLK, 647 SBI_MPHY, 648 }; 649 650 #define QUIRK_LVDS_SSC_DISABLE (1<<1) 651 #define QUIRK_INVERT_BRIGHTNESS (1<<2) 652 #define QUIRK_BACKLIGHT_PRESENT (1<<3) 653 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5) 654 #define QUIRK_INCREASE_T12_DELAY (1<<6) 655 #define QUIRK_INCREASE_DDI_DISABLED_TIME (1<<7) 656 657 struct intel_fbdev; 658 struct intel_fbc_work; 659 660 struct intel_gmbus { 661 struct i2c_adapter adapter; 662 #define GMBUS_FORCE_BIT_RETRY (1U << 31) 663 u32 force_bit; 664 u32 reg0; 665 i915_reg_t gpio_reg; 666 struct i2c_algo_bit_data bit_algo; 667 struct drm_i915_private *dev_priv; 668 }; 669 670 struct i915_suspend_saved_registers { 671 u32 saveDSPARB; 672 u32 saveFBC_CONTROL; 673 u32 saveCACHE_MODE_0; 674 u32 saveMI_ARB_STATE; 675 u32 saveSWF0[16]; 676 u32 saveSWF1[16]; 677 u32 saveSWF3[3]; 678 uint64_t saveFENCE[I915_MAX_NUM_FENCES]; 679 u32 savePCH_PORT_HOTPLUG; 680 u16 saveGCDGMBUS; 681 }; 682 683 struct vlv_s0ix_state { 684 /* GAM */ 685 u32 wr_watermark; 686 u32 gfx_prio_ctrl; 687 u32 arb_mode; 688 u32 gfx_pend_tlb0; 689 u32 gfx_pend_tlb1; 690 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM]; 691 u32 media_max_req_count; 692 u32 gfx_max_req_count; 693 u32 render_hwsp; 694 u32 ecochk; 695 u32 bsd_hwsp; 696 u32 blt_hwsp; 697 u32 tlb_rd_addr; 698 699 /* MBC */ 700 u32 g3dctl; 701 u32 gsckgctl; 702 u32 mbctl; 703 704 /* GCP */ 705 u32 ucgctl1; 706 u32 ucgctl3; 707 u32 rcgctl1; 708 u32 rcgctl2; 709 u32 rstctl; 710 u32 misccpctl; 711 712 /* GPM */ 713 u32 gfxpause; 714 u32 rpdeuhwtc; 715 u32 rpdeuc; 716 u32 ecobus; 717 u32 pwrdwnupctl; 718 u32 rp_down_timeout; 719 u32 rp_deucsw; 720 u32 rcubmabdtmr; 721 u32 rcedata; 722 u32 spare2gh; 723 724 /* Display 1 CZ domain */ 725 u32 gt_imr; 726 u32 gt_ier; 727 u32 pm_imr; 728 u32 pm_ier; 729 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM]; 730 731 /* GT SA CZ domain */ 732 u32 tilectl; 733 u32 gt_fifoctl; 734 u32 gtlc_wake_ctrl; 735 u32 gtlc_survive; 736 u32 pmwgicz; 737 738 /* Display 2 CZ domain */ 739 u32 gu_ctl0; 740 u32 gu_ctl1; 741 u32 pcbr; 742 u32 clock_gate_dis2; 743 }; 744 745 struct intel_rps_ei { 746 ktime_t ktime; 747 u32 render_c0; 748 u32 media_c0; 749 }; 750 751 struct intel_rps { 752 /* 753 * work, interrupts_enabled and pm_iir are protected by 754 * dev_priv->irq_lock 755 */ 756 struct work_struct work; 757 bool interrupts_enabled; 758 u32 pm_iir; 759 760 /* PM interrupt bits that should never be masked */ 761 u32 pm_intrmsk_mbz; 762 763 /* Frequencies are stored in potentially platform dependent multiples. 764 * In other words, *_freq needs to be multiplied by X to be interesting. 765 * Soft limits are those which are used for the dynamic reclocking done 766 * by the driver (raise frequencies under heavy loads, and lower for 767 * lighter loads). Hard limits are those imposed by the hardware. 768 * 769 * A distinction is made for overclocking, which is never enabled by 770 * default, and is considered to be above the hard limit if it's 771 * possible at all. 772 */ 773 u8 cur_freq; /* Current frequency (cached, may not == HW) */ 774 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */ 775 u8 max_freq_softlimit; /* Max frequency permitted by the driver */ 776 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */ 777 u8 min_freq; /* AKA RPn. Minimum frequency */ 778 u8 boost_freq; /* Frequency to request when wait boosting */ 779 u8 idle_freq; /* Frequency to request when we are idle */ 780 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */ 781 u8 rp1_freq; /* "less than" RP0 power/freqency */ 782 u8 rp0_freq; /* Non-overclocked max frequency. */ 783 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */ 784 785 u8 up_threshold; /* Current %busy required to uplock */ 786 u8 down_threshold; /* Current %busy required to downclock */ 787 788 int last_adj; 789 enum { LOW_POWER, BETWEEN, HIGH_POWER } power; 790 791 bool enabled; 792 atomic_t num_waiters; 793 atomic_t boosts; 794 795 /* manual wa residency calculations */ 796 struct intel_rps_ei ei; 797 }; 798 799 struct intel_rc6 { 800 bool enabled; 801 u64 prev_hw_residency[4]; 802 u64 cur_residency[4]; 803 }; 804 805 struct intel_llc_pstate { 806 bool enabled; 807 }; 808 809 struct intel_gen6_power_mgmt { 810 struct intel_rps rps; 811 struct intel_rc6 rc6; 812 struct intel_llc_pstate llc_pstate; 813 }; 814 815 /* defined intel_pm.c */ 816 extern spinlock_t mchdev_lock; 817 818 struct intel_ilk_power_mgmt { 819 u8 cur_delay; 820 u8 min_delay; 821 u8 max_delay; 822 u8 fmax; 823 u8 fstart; 824 825 u64 last_count1; 826 unsigned long last_time1; 827 unsigned long chipset_power; 828 u64 last_count2; 829 u64 last_time2; 830 unsigned long gfx_power; 831 u8 corr; 832 833 int c_m; 834 int r_t; 835 }; 836 837 struct drm_i915_private; 838 struct i915_power_well; 839 840 struct i915_power_well_ops { 841 /* 842 * Synchronize the well's hw state to match the current sw state, for 843 * example enable/disable it based on the current refcount. Called 844 * during driver init and resume time, possibly after first calling 845 * the enable/disable handlers. 846 */ 847 void (*sync_hw)(struct drm_i915_private *dev_priv, 848 struct i915_power_well *power_well); 849 /* 850 * Enable the well and resources that depend on it (for example 851 * interrupts located on the well). Called after the 0->1 refcount 852 * transition. 853 */ 854 void (*enable)(struct drm_i915_private *dev_priv, 855 struct i915_power_well *power_well); 856 /* 857 * Disable the well and resources that depend on it. Called after 858 * the 1->0 refcount transition. 859 */ 860 void (*disable)(struct drm_i915_private *dev_priv, 861 struct i915_power_well *power_well); 862 /* Returns the hw enabled state. */ 863 bool (*is_enabled)(struct drm_i915_private *dev_priv, 864 struct i915_power_well *power_well); 865 }; 866 867 /* Power well structure for haswell */ 868 struct i915_power_well { 869 const char *name; 870 bool always_on; 871 /* power well enable/disable usage count */ 872 int count; 873 /* cached hw enabled state */ 874 bool hw_enabled; 875 u64 domains; 876 /* unique identifier for this power well */ 877 enum i915_power_well_id id; 878 /* 879 * Arbitraty data associated with this power well. Platform and power 880 * well specific. 881 */ 882 union { 883 struct { 884 enum dpio_phy phy; 885 } bxt; 886 struct { 887 /* Mask of pipes whose IRQ logic is backed by the pw */ 888 u8 irq_pipe_mask; 889 /* The pw is backing the VGA functionality */ 890 bool has_vga:1; 891 bool has_fuses:1; 892 } hsw; 893 }; 894 const struct i915_power_well_ops *ops; 895 }; 896 897 struct i915_power_domains { 898 /* 899 * Power wells needed for initialization at driver init and suspend 900 * time are on. They are kept on until after the first modeset. 901 */ 902 bool init_power_on; 903 bool initializing; 904 int power_well_count; 905 906 struct mutex lock; 907 int domain_use_count[POWER_DOMAIN_NUM]; 908 struct i915_power_well *power_wells; 909 }; 910 911 #define MAX_L3_SLICES 2 912 struct intel_l3_parity { 913 u32 *remap_info[MAX_L3_SLICES]; 914 struct work_struct error_work; 915 int which_slice; 916 }; 917 918 struct i915_gem_mm { 919 /** Memory allocator for GTT stolen memory */ 920 struct drm_mm stolen; 921 /** Protects the usage of the GTT stolen memory allocator. This is 922 * always the inner lock when overlapping with struct_mutex. */ 923 struct mutex stolen_lock; 924 925 /* Protects bound_list/unbound_list and #drm_i915_gem_object.mm.link */ 926 spinlock_t obj_lock; 927 928 /** List of all objects in gtt_space. Used to restore gtt 929 * mappings on resume */ 930 struct list_head bound_list; 931 /** 932 * List of objects which are not bound to the GTT (thus 933 * are idle and not used by the GPU). These objects may or may 934 * not actually have any pages attached. 935 */ 936 struct list_head unbound_list; 937 938 /** List of all objects in gtt_space, currently mmaped by userspace. 939 * All objects within this list must also be on bound_list. 940 */ 941 struct list_head userfault_list; 942 943 /** 944 * List of objects which are pending destruction. 945 */ 946 struct llist_head free_list; 947 struct work_struct free_work; 948 spinlock_t free_lock; 949 /** 950 * Count of objects pending destructions. Used to skip needlessly 951 * waiting on an RCU barrier if no objects are waiting to be freed. 952 */ 953 atomic_t free_count; 954 955 /** 956 * Small stash of WC pages 957 */ 958 struct pagevec wc_stash; 959 960 /** 961 * tmpfs instance used for shmem backed objects 962 */ 963 struct vfsmount *gemfs; 964 965 /** PPGTT used for aliasing the PPGTT with the GTT */ 966 struct i915_hw_ppgtt *aliasing_ppgtt; 967 968 struct notifier_block oom_notifier; 969 struct notifier_block vmap_notifier; 970 struct shrinker shrinker; 971 972 /** LRU list of objects with fence regs on them. */ 973 struct list_head fence_list; 974 975 /** 976 * Workqueue to fault in userptr pages, flushed by the execbuf 977 * when required but otherwise left to userspace to try again 978 * on EAGAIN. 979 */ 980 struct workqueue_struct *userptr_wq; 981 982 u64 unordered_timeline; 983 984 /* the indicator for dispatch video commands on two BSD rings */ 985 atomic_t bsd_engine_dispatch_index; 986 987 /** Bit 6 swizzling required for X tiling */ 988 uint32_t bit_6_swizzle_x; 989 /** Bit 6 swizzling required for Y tiling */ 990 uint32_t bit_6_swizzle_y; 991 992 /* accounting, useful for userland debugging */ 993 spinlock_t object_stat_lock; 994 u64 object_memory; 995 u32 object_count; 996 }; 997 998 #define I915_IDLE_ENGINES_TIMEOUT (200) /* in ms */ 999 1000 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */ 1001 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */ 1002 1003 #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */ 1004 #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */ 1005 1006 enum modeset_restore { 1007 MODESET_ON_LID_OPEN, 1008 MODESET_DONE, 1009 MODESET_SUSPENDED, 1010 }; 1011 1012 #define DP_AUX_A 0x40 1013 #define DP_AUX_B 0x10 1014 #define DP_AUX_C 0x20 1015 #define DP_AUX_D 0x30 1016 #define DP_AUX_F 0x60 1017 1018 #define DDC_PIN_B 0x05 1019 #define DDC_PIN_C 0x04 1020 #define DDC_PIN_D 0x06 1021 1022 struct ddi_vbt_port_info { 1023 int max_tmds_clock; 1024 1025 /* 1026 * This is an index in the HDMI/DVI DDI buffer translation table. 1027 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't 1028 * populate this field. 1029 */ 1030 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff 1031 uint8_t hdmi_level_shift; 1032 1033 uint8_t supports_dvi:1; 1034 uint8_t supports_hdmi:1; 1035 uint8_t supports_dp:1; 1036 uint8_t supports_edp:1; 1037 1038 uint8_t alternate_aux_channel; 1039 uint8_t alternate_ddc_pin; 1040 1041 uint8_t dp_boost_level; 1042 uint8_t hdmi_boost_level; 1043 int dp_max_link_rate; /* 0 for not limited by VBT */ 1044 }; 1045 1046 enum psr_lines_to_wait { 1047 PSR_0_LINES_TO_WAIT = 0, 1048 PSR_1_LINE_TO_WAIT, 1049 PSR_4_LINES_TO_WAIT, 1050 PSR_8_LINES_TO_WAIT 1051 }; 1052 1053 struct intel_vbt_data { 1054 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */ 1055 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */ 1056 1057 /* Feature bits */ 1058 unsigned int int_tv_support:1; 1059 unsigned int lvds_dither:1; 1060 unsigned int lvds_vbt:1; 1061 unsigned int int_crt_support:1; 1062 unsigned int lvds_use_ssc:1; 1063 unsigned int display_clock_mode:1; 1064 unsigned int fdi_rx_polarity_inverted:1; 1065 unsigned int panel_type:4; 1066 int lvds_ssc_freq; 1067 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */ 1068 1069 enum drrs_support_type drrs_type; 1070 1071 struct { 1072 int rate; 1073 int lanes; 1074 int preemphasis; 1075 int vswing; 1076 bool low_vswing; 1077 bool initialized; 1078 bool support; 1079 int bpp; 1080 struct edp_power_seq pps; 1081 } edp; 1082 1083 struct { 1084 bool enable; 1085 bool full_link; 1086 bool require_aux_wakeup; 1087 int idle_frames; 1088 enum psr_lines_to_wait lines_to_wait; 1089 int tp1_wakeup_time; 1090 int tp2_tp3_wakeup_time; 1091 } psr; 1092 1093 struct { 1094 u16 pwm_freq_hz; 1095 bool present; 1096 bool active_low_pwm; 1097 u8 min_brightness; /* min_brightness/255 of max */ 1098 u8 controller; /* brightness controller number */ 1099 enum intel_backlight_type type; 1100 } backlight; 1101 1102 /* MIPI DSI */ 1103 struct { 1104 u16 panel_id; 1105 struct mipi_config *config; 1106 struct mipi_pps_data *pps; 1107 u16 bl_ports; 1108 u16 cabc_ports; 1109 u8 seq_version; 1110 u32 size; 1111 u8 *data; 1112 const u8 *sequence[MIPI_SEQ_MAX]; 1113 u8 *deassert_seq; /* Used by fixup_mipi_sequences() */ 1114 } dsi; 1115 1116 int crt_ddc_pin; 1117 1118 int child_dev_num; 1119 struct child_device_config *child_dev; 1120 1121 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS]; 1122 struct sdvo_device_mapping sdvo_mappings[2]; 1123 }; 1124 1125 enum intel_ddb_partitioning { 1126 INTEL_DDB_PART_1_2, 1127 INTEL_DDB_PART_5_6, /* IVB+ */ 1128 }; 1129 1130 struct intel_wm_level { 1131 bool enable; 1132 uint32_t pri_val; 1133 uint32_t spr_val; 1134 uint32_t cur_val; 1135 uint32_t fbc_val; 1136 }; 1137 1138 struct ilk_wm_values { 1139 uint32_t wm_pipe[3]; 1140 uint32_t wm_lp[3]; 1141 uint32_t wm_lp_spr[3]; 1142 uint32_t wm_linetime[3]; 1143 bool enable_fbc_wm; 1144 enum intel_ddb_partitioning partitioning; 1145 }; 1146 1147 struct g4x_pipe_wm { 1148 uint16_t plane[I915_MAX_PLANES]; 1149 uint16_t fbc; 1150 }; 1151 1152 struct g4x_sr_wm { 1153 uint16_t plane; 1154 uint16_t cursor; 1155 uint16_t fbc; 1156 }; 1157 1158 struct vlv_wm_ddl_values { 1159 uint8_t plane[I915_MAX_PLANES]; 1160 }; 1161 1162 struct vlv_wm_values { 1163 struct g4x_pipe_wm pipe[3]; 1164 struct g4x_sr_wm sr; 1165 struct vlv_wm_ddl_values ddl[3]; 1166 uint8_t level; 1167 bool cxsr; 1168 }; 1169 1170 struct g4x_wm_values { 1171 struct g4x_pipe_wm pipe[2]; 1172 struct g4x_sr_wm sr; 1173 struct g4x_sr_wm hpll; 1174 bool cxsr; 1175 bool hpll_en; 1176 bool fbc_en; 1177 }; 1178 1179 struct skl_ddb_entry { 1180 uint16_t start, end; /* in number of blocks, 'end' is exclusive */ 1181 }; 1182 1183 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry) 1184 { 1185 return entry->end - entry->start; 1186 } 1187 1188 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1, 1189 const struct skl_ddb_entry *e2) 1190 { 1191 if (e1->start == e2->start && e1->end == e2->end) 1192 return true; 1193 1194 return false; 1195 } 1196 1197 struct skl_ddb_allocation { 1198 /* packed/y */ 1199 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; 1200 struct skl_ddb_entry uv_plane[I915_MAX_PIPES][I915_MAX_PLANES]; 1201 u8 enabled_slices; /* GEN11 has configurable 2 slices */ 1202 }; 1203 1204 struct skl_ddb_values { 1205 unsigned dirty_pipes; 1206 struct skl_ddb_allocation ddb; 1207 }; 1208 1209 struct skl_wm_level { 1210 bool plane_en; 1211 uint16_t plane_res_b; 1212 uint8_t plane_res_l; 1213 }; 1214 1215 /* Stores plane specific WM parameters */ 1216 struct skl_wm_params { 1217 bool x_tiled, y_tiled; 1218 bool rc_surface; 1219 bool is_planar; 1220 uint32_t width; 1221 uint8_t cpp; 1222 uint32_t plane_pixel_rate; 1223 uint32_t y_min_scanlines; 1224 uint32_t plane_bytes_per_line; 1225 uint_fixed_16_16_t plane_blocks_per_line; 1226 uint_fixed_16_16_t y_tile_minimum; 1227 uint32_t linetime_us; 1228 uint32_t dbuf_block_size; 1229 }; 1230 1231 /* 1232 * This struct helps tracking the state needed for runtime PM, which puts the 1233 * device in PCI D3 state. Notice that when this happens, nothing on the 1234 * graphics device works, even register access, so we don't get interrupts nor 1235 * anything else. 1236 * 1237 * Every piece of our code that needs to actually touch the hardware needs to 1238 * either call intel_runtime_pm_get or call intel_display_power_get with the 1239 * appropriate power domain. 1240 * 1241 * Our driver uses the autosuspend delay feature, which means we'll only really 1242 * suspend if we stay with zero refcount for a certain amount of time. The 1243 * default value is currently very conservative (see intel_runtime_pm_enable), but 1244 * it can be changed with the standard runtime PM files from sysfs. 1245 * 1246 * The irqs_disabled variable becomes true exactly after we disable the IRQs and 1247 * goes back to false exactly before we reenable the IRQs. We use this variable 1248 * to check if someone is trying to enable/disable IRQs while they're supposed 1249 * to be disabled. This shouldn't happen and we'll print some error messages in 1250 * case it happens. 1251 * 1252 * For more, read the Documentation/power/runtime_pm.txt. 1253 */ 1254 struct i915_runtime_pm { 1255 atomic_t wakeref_count; 1256 bool suspended; 1257 bool irqs_enabled; 1258 }; 1259 1260 enum intel_pipe_crc_source { 1261 INTEL_PIPE_CRC_SOURCE_NONE, 1262 INTEL_PIPE_CRC_SOURCE_PLANE1, 1263 INTEL_PIPE_CRC_SOURCE_PLANE2, 1264 INTEL_PIPE_CRC_SOURCE_PF, 1265 INTEL_PIPE_CRC_SOURCE_PIPE, 1266 /* TV/DP on pre-gen5/vlv can't use the pipe source. */ 1267 INTEL_PIPE_CRC_SOURCE_TV, 1268 INTEL_PIPE_CRC_SOURCE_DP_B, 1269 INTEL_PIPE_CRC_SOURCE_DP_C, 1270 INTEL_PIPE_CRC_SOURCE_DP_D, 1271 INTEL_PIPE_CRC_SOURCE_AUTO, 1272 INTEL_PIPE_CRC_SOURCE_MAX, 1273 }; 1274 1275 struct intel_pipe_crc_entry { 1276 uint32_t frame; 1277 uint32_t crc[5]; 1278 }; 1279 1280 #define INTEL_PIPE_CRC_ENTRIES_NR 128 1281 struct intel_pipe_crc { 1282 spinlock_t lock; 1283 bool opened; /* exclusive access to the result file */ 1284 struct intel_pipe_crc_entry *entries; 1285 enum intel_pipe_crc_source source; 1286 int head, tail; 1287 wait_queue_head_t wq; 1288 int skipped; 1289 }; 1290 1291 struct i915_frontbuffer_tracking { 1292 spinlock_t lock; 1293 1294 /* 1295 * Tracking bits for delayed frontbuffer flushing du to gpu activity or 1296 * scheduled flips. 1297 */ 1298 unsigned busy_bits; 1299 unsigned flip_bits; 1300 }; 1301 1302 struct i915_wa_reg { 1303 i915_reg_t addr; 1304 u32 value; 1305 /* bitmask representing WA bits */ 1306 u32 mask; 1307 }; 1308 1309 #define I915_MAX_WA_REGS 16 1310 1311 struct i915_workarounds { 1312 struct i915_wa_reg reg[I915_MAX_WA_REGS]; 1313 u32 count; 1314 }; 1315 1316 struct i915_virtual_gpu { 1317 bool active; 1318 u32 caps; 1319 }; 1320 1321 /* used in computing the new watermarks state */ 1322 struct intel_wm_config { 1323 unsigned int num_pipes_active; 1324 bool sprites_enabled; 1325 bool sprites_scaled; 1326 }; 1327 1328 struct i915_oa_format { 1329 u32 format; 1330 int size; 1331 }; 1332 1333 struct i915_oa_reg { 1334 i915_reg_t addr; 1335 u32 value; 1336 }; 1337 1338 struct i915_oa_config { 1339 char uuid[UUID_STRING_LEN + 1]; 1340 int id; 1341 1342 const struct i915_oa_reg *mux_regs; 1343 u32 mux_regs_len; 1344 const struct i915_oa_reg *b_counter_regs; 1345 u32 b_counter_regs_len; 1346 const struct i915_oa_reg *flex_regs; 1347 u32 flex_regs_len; 1348 1349 struct attribute_group sysfs_metric; 1350 struct attribute *attrs[2]; 1351 struct device_attribute sysfs_metric_id; 1352 1353 atomic_t ref_count; 1354 }; 1355 1356 struct i915_perf_stream; 1357 1358 /** 1359 * struct i915_perf_stream_ops - the OPs to support a specific stream type 1360 */ 1361 struct i915_perf_stream_ops { 1362 /** 1363 * @enable: Enables the collection of HW samples, either in response to 1364 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened 1365 * without `I915_PERF_FLAG_DISABLED`. 1366 */ 1367 void (*enable)(struct i915_perf_stream *stream); 1368 1369 /** 1370 * @disable: Disables the collection of HW samples, either in response 1371 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying 1372 * the stream. 1373 */ 1374 void (*disable)(struct i915_perf_stream *stream); 1375 1376 /** 1377 * @poll_wait: Call poll_wait, passing a wait queue that will be woken 1378 * once there is something ready to read() for the stream 1379 */ 1380 void (*poll_wait)(struct i915_perf_stream *stream, 1381 struct file *file, 1382 poll_table *wait); 1383 1384 /** 1385 * @wait_unlocked: For handling a blocking read, wait until there is 1386 * something to ready to read() for the stream. E.g. wait on the same 1387 * wait queue that would be passed to poll_wait(). 1388 */ 1389 int (*wait_unlocked)(struct i915_perf_stream *stream); 1390 1391 /** 1392 * @read: Copy buffered metrics as records to userspace 1393 * **buf**: the userspace, destination buffer 1394 * **count**: the number of bytes to copy, requested by userspace 1395 * **offset**: zero at the start of the read, updated as the read 1396 * proceeds, it represents how many bytes have been copied so far and 1397 * the buffer offset for copying the next record. 1398 * 1399 * Copy as many buffered i915 perf samples and records for this stream 1400 * to userspace as will fit in the given buffer. 1401 * 1402 * Only write complete records; returning -%ENOSPC if there isn't room 1403 * for a complete record. 1404 * 1405 * Return any error condition that results in a short read such as 1406 * -%ENOSPC or -%EFAULT, even though these may be squashed before 1407 * returning to userspace. 1408 */ 1409 int (*read)(struct i915_perf_stream *stream, 1410 char __user *buf, 1411 size_t count, 1412 size_t *offset); 1413 1414 /** 1415 * @destroy: Cleanup any stream specific resources. 1416 * 1417 * The stream will always be disabled before this is called. 1418 */ 1419 void (*destroy)(struct i915_perf_stream *stream); 1420 }; 1421 1422 /** 1423 * struct i915_perf_stream - state for a single open stream FD 1424 */ 1425 struct i915_perf_stream { 1426 /** 1427 * @dev_priv: i915 drm device 1428 */ 1429 struct drm_i915_private *dev_priv; 1430 1431 /** 1432 * @link: Links the stream into ``&drm_i915_private->streams`` 1433 */ 1434 struct list_head link; 1435 1436 /** 1437 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*` 1438 * properties given when opening a stream, representing the contents 1439 * of a single sample as read() by userspace. 1440 */ 1441 u32 sample_flags; 1442 1443 /** 1444 * @sample_size: Considering the configured contents of a sample 1445 * combined with the required header size, this is the total size 1446 * of a single sample record. 1447 */ 1448 int sample_size; 1449 1450 /** 1451 * @ctx: %NULL if measuring system-wide across all contexts or a 1452 * specific context that is being monitored. 1453 */ 1454 struct i915_gem_context *ctx; 1455 1456 /** 1457 * @enabled: Whether the stream is currently enabled, considering 1458 * whether the stream was opened in a disabled state and based 1459 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls. 1460 */ 1461 bool enabled; 1462 1463 /** 1464 * @ops: The callbacks providing the implementation of this specific 1465 * type of configured stream. 1466 */ 1467 const struct i915_perf_stream_ops *ops; 1468 1469 /** 1470 * @oa_config: The OA configuration used by the stream. 1471 */ 1472 struct i915_oa_config *oa_config; 1473 }; 1474 1475 /** 1476 * struct i915_oa_ops - Gen specific implementation of an OA unit stream 1477 */ 1478 struct i915_oa_ops { 1479 /** 1480 * @is_valid_b_counter_reg: Validates register's address for 1481 * programming boolean counters for a particular platform. 1482 */ 1483 bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv, 1484 u32 addr); 1485 1486 /** 1487 * @is_valid_mux_reg: Validates register's address for programming mux 1488 * for a particular platform. 1489 */ 1490 bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr); 1491 1492 /** 1493 * @is_valid_flex_reg: Validates register's address for programming 1494 * flex EU filtering for a particular platform. 1495 */ 1496 bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr); 1497 1498 /** 1499 * @init_oa_buffer: Resets the head and tail pointers of the 1500 * circular buffer for periodic OA reports. 1501 * 1502 * Called when first opening a stream for OA metrics, but also may be 1503 * called in response to an OA buffer overflow or other error 1504 * condition. 1505 * 1506 * Note it may be necessary to clear the full OA buffer here as part of 1507 * maintaining the invariable that new reports must be written to 1508 * zeroed memory for us to be able to reliable detect if an expected 1509 * report has not yet landed in memory. (At least on Haswell the OA 1510 * buffer tail pointer is not synchronized with reports being visible 1511 * to the CPU) 1512 */ 1513 void (*init_oa_buffer)(struct drm_i915_private *dev_priv); 1514 1515 /** 1516 * @enable_metric_set: Selects and applies any MUX configuration to set 1517 * up the Boolean and Custom (B/C) counters that are part of the 1518 * counter reports being sampled. May apply system constraints such as 1519 * disabling EU clock gating as required. 1520 */ 1521 int (*enable_metric_set)(struct drm_i915_private *dev_priv, 1522 const struct i915_oa_config *oa_config); 1523 1524 /** 1525 * @disable_metric_set: Remove system constraints associated with using 1526 * the OA unit. 1527 */ 1528 void (*disable_metric_set)(struct drm_i915_private *dev_priv); 1529 1530 /** 1531 * @oa_enable: Enable periodic sampling 1532 */ 1533 void (*oa_enable)(struct drm_i915_private *dev_priv); 1534 1535 /** 1536 * @oa_disable: Disable periodic sampling 1537 */ 1538 void (*oa_disable)(struct drm_i915_private *dev_priv); 1539 1540 /** 1541 * @read: Copy data from the circular OA buffer into a given userspace 1542 * buffer. 1543 */ 1544 int (*read)(struct i915_perf_stream *stream, 1545 char __user *buf, 1546 size_t count, 1547 size_t *offset); 1548 1549 /** 1550 * @oa_hw_tail_read: read the OA tail pointer register 1551 * 1552 * In particular this enables us to share all the fiddly code for 1553 * handling the OA unit tail pointer race that affects multiple 1554 * generations. 1555 */ 1556 u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv); 1557 }; 1558 1559 struct intel_cdclk_state { 1560 unsigned int cdclk, vco, ref, bypass; 1561 u8 voltage_level; 1562 }; 1563 1564 struct drm_i915_private { 1565 struct drm_device drm; 1566 1567 struct kmem_cache *objects; 1568 struct kmem_cache *vmas; 1569 struct kmem_cache *luts; 1570 struct kmem_cache *requests; 1571 struct kmem_cache *dependencies; 1572 struct kmem_cache *priorities; 1573 1574 const struct intel_device_info info; 1575 struct intel_driver_caps caps; 1576 1577 /** 1578 * Data Stolen Memory - aka "i915 stolen memory" gives us the start and 1579 * end of stolen which we can optionally use to create GEM objects 1580 * backed by stolen memory. Note that stolen_usable_size tells us 1581 * exactly how much of this we are actually allowed to use, given that 1582 * some portion of it is in fact reserved for use by hardware functions. 1583 */ 1584 struct resource dsm; 1585 /** 1586 * Reseved portion of Data Stolen Memory 1587 */ 1588 struct resource dsm_reserved; 1589 1590 /* 1591 * Stolen memory is segmented in hardware with different portions 1592 * offlimits to certain functions. 1593 * 1594 * The drm_mm is initialised to the total accessible range, as found 1595 * from the PCI config. On Broadwell+, this is further restricted to 1596 * avoid the first page! The upper end of stolen memory is reserved for 1597 * hardware functions and similarly removed from the accessible range. 1598 */ 1599 resource_size_t stolen_usable_size; /* Total size minus reserved ranges */ 1600 1601 void __iomem *regs; 1602 1603 struct intel_uncore uncore; 1604 1605 struct i915_virtual_gpu vgpu; 1606 1607 struct intel_gvt *gvt; 1608 1609 struct intel_wopcm wopcm; 1610 1611 struct intel_huc huc; 1612 struct intel_guc guc; 1613 1614 struct intel_csr csr; 1615 1616 struct intel_gmbus gmbus[GMBUS_NUM_PINS]; 1617 1618 /** gmbus_mutex protects against concurrent usage of the single hw gmbus 1619 * controller on different i2c buses. */ 1620 struct mutex gmbus_mutex; 1621 1622 /** 1623 * Base address of the gmbus and gpio block. 1624 */ 1625 uint32_t gpio_mmio_base; 1626 1627 /* MMIO base address for MIPI regs */ 1628 uint32_t mipi_mmio_base; 1629 1630 uint32_t psr_mmio_base; 1631 1632 uint32_t pps_mmio_base; 1633 1634 wait_queue_head_t gmbus_wait_queue; 1635 1636 struct pci_dev *bridge_dev; 1637 struct intel_engine_cs *engine[I915_NUM_ENGINES]; 1638 /* Context used internally to idle the GPU and setup initial state */ 1639 struct i915_gem_context *kernel_context; 1640 /* Context only to be used for injecting preemption commands */ 1641 struct i915_gem_context *preempt_context; 1642 struct intel_engine_cs *engine_class[MAX_ENGINE_CLASS + 1] 1643 [MAX_ENGINE_INSTANCE + 1]; 1644 1645 struct drm_dma_handle *status_page_dmah; 1646 struct resource mch_res; 1647 1648 /* protects the irq masks */ 1649 spinlock_t irq_lock; 1650 1651 bool display_irqs_enabled; 1652 1653 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */ 1654 struct pm_qos_request pm_qos; 1655 1656 /* Sideband mailbox protection */ 1657 struct mutex sb_lock; 1658 1659 /** Cached value of IMR to avoid reads in updating the bitfield */ 1660 union { 1661 u32 irq_mask; 1662 u32 de_irq_mask[I915_MAX_PIPES]; 1663 }; 1664 u32 gt_irq_mask; 1665 u32 pm_imr; 1666 u32 pm_ier; 1667 u32 pm_rps_events; 1668 u32 pm_guc_events; 1669 u32 pipestat_irq_mask[I915_MAX_PIPES]; 1670 1671 struct i915_hotplug hotplug; 1672 struct intel_fbc fbc; 1673 struct i915_drrs drrs; 1674 struct intel_opregion opregion; 1675 struct intel_vbt_data vbt; 1676 1677 bool preserve_bios_swizzle; 1678 1679 /* overlay */ 1680 struct intel_overlay *overlay; 1681 1682 /* backlight registers and fields in struct intel_panel */ 1683 struct mutex backlight_lock; 1684 1685 /* LVDS info */ 1686 bool no_aux_handshake; 1687 1688 /* protects panel power sequencer state */ 1689 struct mutex pps_mutex; 1690 1691 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */ 1692 int num_fence_regs; /* 8 on pre-965, 16 otherwise */ 1693 1694 unsigned int fsb_freq, mem_freq, is_ddr3; 1695 unsigned int skl_preferred_vco_freq; 1696 unsigned int max_cdclk_freq; 1697 1698 unsigned int max_dotclk_freq; 1699 unsigned int rawclk_freq; 1700 unsigned int hpll_freq; 1701 unsigned int fdi_pll_freq; 1702 unsigned int czclk_freq; 1703 1704 struct { 1705 /* 1706 * The current logical cdclk state. 1707 * See intel_atomic_state.cdclk.logical 1708 * 1709 * For reading holding any crtc lock is sufficient, 1710 * for writing must hold all of them. 1711 */ 1712 struct intel_cdclk_state logical; 1713 /* 1714 * The current actual cdclk state. 1715 * See intel_atomic_state.cdclk.actual 1716 */ 1717 struct intel_cdclk_state actual; 1718 /* The current hardware cdclk state */ 1719 struct intel_cdclk_state hw; 1720 } cdclk; 1721 1722 /** 1723 * wq - Driver workqueue for GEM. 1724 * 1725 * NOTE: Work items scheduled here are not allowed to grab any modeset 1726 * locks, for otherwise the flushing done in the pageflip code will 1727 * result in deadlocks. 1728 */ 1729 struct workqueue_struct *wq; 1730 1731 /* ordered wq for modesets */ 1732 struct workqueue_struct *modeset_wq; 1733 1734 /* Display functions */ 1735 struct drm_i915_display_funcs display; 1736 1737 /* PCH chipset type */ 1738 enum intel_pch pch_type; 1739 unsigned short pch_id; 1740 1741 unsigned long quirks; 1742 1743 enum modeset_restore modeset_restore; 1744 struct mutex modeset_restore_lock; 1745 struct drm_atomic_state *modeset_restore_state; 1746 struct drm_modeset_acquire_ctx reset_ctx; 1747 1748 struct list_head vm_list; /* Global list of all address spaces */ 1749 struct i915_ggtt ggtt; /* VM representing the global address space */ 1750 1751 struct i915_gem_mm mm; 1752 DECLARE_HASHTABLE(mm_structs, 7); 1753 struct mutex mm_lock; 1754 1755 struct intel_ppat ppat; 1756 1757 /* Kernel Modesetting */ 1758 1759 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES]; 1760 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES]; 1761 1762 #ifdef CONFIG_DEBUG_FS 1763 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES]; 1764 #endif 1765 1766 /* dpll and cdclk state is protected by connection_mutex */ 1767 int num_shared_dpll; 1768 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS]; 1769 const struct intel_dpll_mgr *dpll_mgr; 1770 1771 /* 1772 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll. 1773 * Must be global rather than per dpll, because on some platforms 1774 * plls share registers. 1775 */ 1776 struct mutex dpll_lock; 1777 1778 unsigned int active_crtcs; 1779 /* minimum acceptable cdclk for each pipe */ 1780 int min_cdclk[I915_MAX_PIPES]; 1781 /* minimum acceptable voltage level for each pipe */ 1782 u8 min_voltage_level[I915_MAX_PIPES]; 1783 1784 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV]; 1785 1786 struct i915_workarounds workarounds; 1787 1788 struct i915_frontbuffer_tracking fb_tracking; 1789 1790 struct intel_atomic_helper { 1791 struct llist_head free_list; 1792 struct work_struct free_work; 1793 } atomic_helper; 1794 1795 u16 orig_clock; 1796 1797 bool mchbar_need_disable; 1798 1799 struct intel_l3_parity l3_parity; 1800 1801 /* Cannot be determined by PCIID. You must always read a register. */ 1802 u32 edram_cap; 1803 1804 /* 1805 * Protects RPS/RC6 register access and PCU communication. 1806 * Must be taken after struct_mutex if nested. Note that 1807 * this lock may be held for long periods of time when 1808 * talking to hw - so only take it when talking to hw! 1809 */ 1810 struct mutex pcu_lock; 1811 1812 /* gen6+ GT PM state */ 1813 struct intel_gen6_power_mgmt gt_pm; 1814 1815 /* ilk-only ips/rps state. Everything in here is protected by the global 1816 * mchdev_lock in intel_pm.c */ 1817 struct intel_ilk_power_mgmt ips; 1818 1819 struct i915_power_domains power_domains; 1820 1821 struct i915_psr psr; 1822 1823 struct i915_gpu_error gpu_error; 1824 1825 struct drm_i915_gem_object *vlv_pctx; 1826 1827 /* list of fbdev register on this device */ 1828 struct intel_fbdev *fbdev; 1829 struct work_struct fbdev_suspend_work; 1830 1831 struct drm_property *broadcast_rgb_property; 1832 struct drm_property *force_audio_property; 1833 1834 /* hda/i915 audio component */ 1835 struct i915_audio_component *audio_component; 1836 bool audio_component_registered; 1837 /** 1838 * av_mutex - mutex for audio/video sync 1839 * 1840 */ 1841 struct mutex av_mutex; 1842 1843 struct { 1844 struct list_head list; 1845 struct llist_head free_list; 1846 struct work_struct free_work; 1847 1848 /* The hw wants to have a stable context identifier for the 1849 * lifetime of the context (for OA, PASID, faults, etc). 1850 * This is limited in execlists to 21 bits. 1851 */ 1852 struct ida hw_ida; 1853 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */ 1854 #define GEN11_MAX_CONTEXT_HW_ID (1<<11) /* exclusive */ 1855 } contexts; 1856 1857 u32 fdi_rx_config; 1858 1859 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */ 1860 u32 chv_phy_control; 1861 /* 1862 * Shadows for CHV DPLL_MD regs to keep the state 1863 * checker somewhat working in the presence hardware 1864 * crappiness (can't read out DPLL_MD for pipes B & C). 1865 */ 1866 u32 chv_dpll_md[I915_MAX_PIPES]; 1867 u32 bxt_phy_grc; 1868 1869 u32 suspend_count; 1870 bool power_domains_suspended; 1871 struct i915_suspend_saved_registers regfile; 1872 struct vlv_s0ix_state vlv_s0ix_state; 1873 1874 enum { 1875 I915_SAGV_UNKNOWN = 0, 1876 I915_SAGV_DISABLED, 1877 I915_SAGV_ENABLED, 1878 I915_SAGV_NOT_CONTROLLED 1879 } sagv_status; 1880 1881 struct { 1882 /* 1883 * Raw watermark latency values: 1884 * in 0.1us units for WM0, 1885 * in 0.5us units for WM1+. 1886 */ 1887 /* primary */ 1888 uint16_t pri_latency[5]; 1889 /* sprite */ 1890 uint16_t spr_latency[5]; 1891 /* cursor */ 1892 uint16_t cur_latency[5]; 1893 /* 1894 * Raw watermark memory latency values 1895 * for SKL for all 8 levels 1896 * in 1us units. 1897 */ 1898 uint16_t skl_latency[8]; 1899 1900 /* current hardware state */ 1901 union { 1902 struct ilk_wm_values hw; 1903 struct skl_ddb_values skl_hw; 1904 struct vlv_wm_values vlv; 1905 struct g4x_wm_values g4x; 1906 }; 1907 1908 uint8_t max_level; 1909 1910 /* 1911 * Should be held around atomic WM register writing; also 1912 * protects * intel_crtc->wm.active and 1913 * cstate->wm.need_postvbl_update. 1914 */ 1915 struct mutex wm_mutex; 1916 1917 /* 1918 * Set during HW readout of watermarks/DDB. Some platforms 1919 * need to know when we're still using BIOS-provided values 1920 * (which we don't fully trust). 1921 */ 1922 bool distrust_bios_wm; 1923 } wm; 1924 1925 struct i915_runtime_pm runtime_pm; 1926 1927 struct { 1928 bool initialized; 1929 1930 struct kobject *metrics_kobj; 1931 struct ctl_table_header *sysctl_header; 1932 1933 /* 1934 * Lock associated with adding/modifying/removing OA configs 1935 * in dev_priv->perf.metrics_idr. 1936 */ 1937 struct mutex metrics_lock; 1938 1939 /* 1940 * List of dynamic configurations, you need to hold 1941 * dev_priv->perf.metrics_lock to access it. 1942 */ 1943 struct idr metrics_idr; 1944 1945 /* 1946 * Lock associated with anything below within this structure 1947 * except exclusive_stream. 1948 */ 1949 struct mutex lock; 1950 struct list_head streams; 1951 1952 struct { 1953 /* 1954 * The stream currently using the OA unit. If accessed 1955 * outside a syscall associated to its file 1956 * descriptor, you need to hold 1957 * dev_priv->drm.struct_mutex. 1958 */ 1959 struct i915_perf_stream *exclusive_stream; 1960 1961 u32 specific_ctx_id; 1962 1963 struct hrtimer poll_check_timer; 1964 wait_queue_head_t poll_wq; 1965 bool pollin; 1966 1967 /** 1968 * For rate limiting any notifications of spurious 1969 * invalid OA reports 1970 */ 1971 struct ratelimit_state spurious_report_rs; 1972 1973 bool periodic; 1974 int period_exponent; 1975 1976 struct i915_oa_config test_config; 1977 1978 struct { 1979 struct i915_vma *vma; 1980 u8 *vaddr; 1981 u32 last_ctx_id; 1982 int format; 1983 int format_size; 1984 1985 /** 1986 * Locks reads and writes to all head/tail state 1987 * 1988 * Consider: the head and tail pointer state 1989 * needs to be read consistently from a hrtimer 1990 * callback (atomic context) and read() fop 1991 * (user context) with tail pointer updates 1992 * happening in atomic context and head updates 1993 * in user context and the (unlikely) 1994 * possibility of read() errors needing to 1995 * reset all head/tail state. 1996 * 1997 * Note: Contention or performance aren't 1998 * currently a significant concern here 1999 * considering the relatively low frequency of 2000 * hrtimer callbacks (5ms period) and that 2001 * reads typically only happen in response to a 2002 * hrtimer event and likely complete before the 2003 * next callback. 2004 * 2005 * Note: This lock is not held *while* reading 2006 * and copying data to userspace so the value 2007 * of head observed in htrimer callbacks won't 2008 * represent any partial consumption of data. 2009 */ 2010 spinlock_t ptr_lock; 2011 2012 /** 2013 * One 'aging' tail pointer and one 'aged' 2014 * tail pointer ready to used for reading. 2015 * 2016 * Initial values of 0xffffffff are invalid 2017 * and imply that an update is required 2018 * (and should be ignored by an attempted 2019 * read) 2020 */ 2021 struct { 2022 u32 offset; 2023 } tails[2]; 2024 2025 /** 2026 * Index for the aged tail ready to read() 2027 * data up to. 2028 */ 2029 unsigned int aged_tail_idx; 2030 2031 /** 2032 * A monotonic timestamp for when the current 2033 * aging tail pointer was read; used to 2034 * determine when it is old enough to trust. 2035 */ 2036 u64 aging_timestamp; 2037 2038 /** 2039 * Although we can always read back the head 2040 * pointer register, we prefer to avoid 2041 * trusting the HW state, just to avoid any 2042 * risk that some hardware condition could 2043 * somehow bump the head pointer unpredictably 2044 * and cause us to forward the wrong OA buffer 2045 * data to userspace. 2046 */ 2047 u32 head; 2048 } oa_buffer; 2049 2050 u32 gen7_latched_oastatus1; 2051 u32 ctx_oactxctrl_offset; 2052 u32 ctx_flexeu0_offset; 2053 2054 /** 2055 * The RPT_ID/reason field for Gen8+ includes a bit 2056 * to determine if the CTX ID in the report is valid 2057 * but the specific bit differs between Gen 8 and 9 2058 */ 2059 u32 gen8_valid_ctx_bit; 2060 2061 struct i915_oa_ops ops; 2062 const struct i915_oa_format *oa_formats; 2063 } oa; 2064 } perf; 2065 2066 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */ 2067 struct { 2068 void (*resume)(struct drm_i915_private *); 2069 void (*cleanup_engine)(struct intel_engine_cs *engine); 2070 2071 struct list_head timelines; 2072 2073 struct list_head active_rings; 2074 struct list_head closed_vma; 2075 u32 active_requests; 2076 u32 request_serial; 2077 2078 /** 2079 * Is the GPU currently considered idle, or busy executing 2080 * userspace requests? Whilst idle, we allow runtime power 2081 * management to power down the hardware and display clocks. 2082 * In order to reduce the effect on performance, there 2083 * is a slight delay before we do so. 2084 */ 2085 bool awake; 2086 2087 /** 2088 * The number of times we have woken up. 2089 */ 2090 unsigned int epoch; 2091 #define I915_EPOCH_INVALID 0 2092 2093 /** 2094 * We leave the user IRQ off as much as possible, 2095 * but this means that requests will finish and never 2096 * be retired once the system goes idle. Set a timer to 2097 * fire periodically while the ring is running. When it 2098 * fires, go retire requests. 2099 */ 2100 struct delayed_work retire_work; 2101 2102 /** 2103 * When we detect an idle GPU, we want to turn on 2104 * powersaving features. So once we see that there 2105 * are no more requests outstanding and no more 2106 * arrive within a small period of time, we fire 2107 * off the idle_work. 2108 */ 2109 struct delayed_work idle_work; 2110 2111 ktime_t last_init_time; 2112 } gt; 2113 2114 /* perform PHY state sanity checks? */ 2115 bool chv_phy_assert[2]; 2116 2117 bool ipc_enabled; 2118 2119 /* Used to save the pipe-to-encoder mapping for audio */ 2120 struct intel_encoder *av_enc_map[I915_MAX_PIPES]; 2121 2122 /* necessary resource sharing with HDMI LPE audio driver. */ 2123 struct { 2124 struct platform_device *platdev; 2125 int irq; 2126 } lpe_audio; 2127 2128 struct i915_pmu pmu; 2129 2130 /* 2131 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch 2132 * will be rejected. Instead look for a better place. 2133 */ 2134 }; 2135 2136 static inline struct drm_i915_private *to_i915(const struct drm_device *dev) 2137 { 2138 return container_of(dev, struct drm_i915_private, drm); 2139 } 2140 2141 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev) 2142 { 2143 return to_i915(dev_get_drvdata(kdev)); 2144 } 2145 2146 static inline struct drm_i915_private *wopcm_to_i915(struct intel_wopcm *wopcm) 2147 { 2148 return container_of(wopcm, struct drm_i915_private, wopcm); 2149 } 2150 2151 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc) 2152 { 2153 return container_of(guc, struct drm_i915_private, guc); 2154 } 2155 2156 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc) 2157 { 2158 return container_of(huc, struct drm_i915_private, huc); 2159 } 2160 2161 /* Simple iterator over all initialised engines */ 2162 #define for_each_engine(engine__, dev_priv__, id__) \ 2163 for ((id__) = 0; \ 2164 (id__) < I915_NUM_ENGINES; \ 2165 (id__)++) \ 2166 for_each_if ((engine__) = (dev_priv__)->engine[(id__)]) 2167 2168 /* Iterator over subset of engines selected by mask */ 2169 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \ 2170 for ((tmp__) = (mask__) & INTEL_INFO(dev_priv__)->ring_mask; \ 2171 (tmp__) ? \ 2172 ((engine__) = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : \ 2173 0;) 2174 2175 enum hdmi_force_audio { 2176 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */ 2177 HDMI_AUDIO_OFF, /* force turn off HDMI audio */ 2178 HDMI_AUDIO_AUTO, /* trust EDID */ 2179 HDMI_AUDIO_ON, /* force turn on HDMI audio */ 2180 }; 2181 2182 #define I915_GTT_OFFSET_NONE ((u32)-1) 2183 2184 /* 2185 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is 2186 * considered to be the frontbuffer for the given plane interface-wise. This 2187 * doesn't mean that the hw necessarily already scans it out, but that any 2188 * rendering (by the cpu or gpu) will land in the frontbuffer eventually. 2189 * 2190 * We have one bit per pipe and per scanout plane type. 2191 */ 2192 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8 2193 #define INTEL_FRONTBUFFER(pipe, plane_id) ({ \ 2194 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 32); \ 2195 BUILD_BUG_ON(I915_MAX_PLANES > INTEL_FRONTBUFFER_BITS_PER_PIPE); \ 2196 BIT((plane_id) + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)); \ 2197 }) 2198 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \ 2199 BIT(INTEL_FRONTBUFFER_BITS_PER_PIPE - 1 + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)) 2200 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \ 2201 GENMASK(INTEL_FRONTBUFFER_BITS_PER_PIPE * ((pipe) + 1) - 1, \ 2202 INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)) 2203 2204 /* 2205 * Optimised SGL iterator for GEM objects 2206 */ 2207 static __always_inline struct sgt_iter { 2208 struct scatterlist *sgp; 2209 union { 2210 unsigned long pfn; 2211 dma_addr_t dma; 2212 }; 2213 unsigned int curr; 2214 unsigned int max; 2215 } __sgt_iter(struct scatterlist *sgl, bool dma) { 2216 struct sgt_iter s = { .sgp = sgl }; 2217 2218 if (s.sgp) { 2219 s.max = s.curr = s.sgp->offset; 2220 s.max += s.sgp->length; 2221 if (dma) 2222 s.dma = sg_dma_address(s.sgp); 2223 else 2224 s.pfn = page_to_pfn(sg_page(s.sgp)); 2225 } 2226 2227 return s; 2228 } 2229 2230 static inline struct scatterlist *____sg_next(struct scatterlist *sg) 2231 { 2232 ++sg; 2233 if (unlikely(sg_is_chain(sg))) 2234 sg = sg_chain_ptr(sg); 2235 return sg; 2236 } 2237 2238 /** 2239 * __sg_next - return the next scatterlist entry in a list 2240 * @sg: The current sg entry 2241 * 2242 * Description: 2243 * If the entry is the last, return NULL; otherwise, step to the next 2244 * element in the array (@sg@+1). If that's a chain pointer, follow it; 2245 * otherwise just return the pointer to the current element. 2246 **/ 2247 static inline struct scatterlist *__sg_next(struct scatterlist *sg) 2248 { 2249 return sg_is_last(sg) ? NULL : ____sg_next(sg); 2250 } 2251 2252 /** 2253 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table 2254 * @__dmap: DMA address (output) 2255 * @__iter: 'struct sgt_iter' (iterator state, internal) 2256 * @__sgt: sg_table to iterate over (input) 2257 */ 2258 #define for_each_sgt_dma(__dmap, __iter, __sgt) \ 2259 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \ 2260 ((__dmap) = (__iter).dma + (__iter).curr); \ 2261 (((__iter).curr += PAGE_SIZE) >= (__iter).max) ? \ 2262 (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0) 2263 2264 /** 2265 * for_each_sgt_page - iterate over the pages of the given sg_table 2266 * @__pp: page pointer (output) 2267 * @__iter: 'struct sgt_iter' (iterator state, internal) 2268 * @__sgt: sg_table to iterate over (input) 2269 */ 2270 #define for_each_sgt_page(__pp, __iter, __sgt) \ 2271 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \ 2272 ((__pp) = (__iter).pfn == 0 ? NULL : \ 2273 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \ 2274 (((__iter).curr += PAGE_SIZE) >= (__iter).max) ? \ 2275 (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0) 2276 2277 static inline unsigned int i915_sg_page_sizes(struct scatterlist *sg) 2278 { 2279 unsigned int page_sizes; 2280 2281 page_sizes = 0; 2282 while (sg) { 2283 GEM_BUG_ON(sg->offset); 2284 GEM_BUG_ON(!IS_ALIGNED(sg->length, PAGE_SIZE)); 2285 page_sizes |= sg->length; 2286 sg = __sg_next(sg); 2287 } 2288 2289 return page_sizes; 2290 } 2291 2292 static inline unsigned int i915_sg_segment_size(void) 2293 { 2294 unsigned int size = swiotlb_max_segment(); 2295 2296 if (size == 0) 2297 return SCATTERLIST_MAX_SEGMENT; 2298 2299 size = rounddown(size, PAGE_SIZE); 2300 /* swiotlb_max_segment_size can return 1 byte when it means one page. */ 2301 if (size < PAGE_SIZE) 2302 size = PAGE_SIZE; 2303 2304 return size; 2305 } 2306 2307 static inline const struct intel_device_info * 2308 intel_info(const struct drm_i915_private *dev_priv) 2309 { 2310 return &dev_priv->info; 2311 } 2312 2313 #define INTEL_INFO(dev_priv) intel_info((dev_priv)) 2314 2315 #define INTEL_GEN(dev_priv) ((dev_priv)->info.gen) 2316 #define INTEL_DEVID(dev_priv) ((dev_priv)->info.device_id) 2317 2318 #define REVID_FOREVER 0xff 2319 #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision) 2320 2321 #define GEN_FOREVER (0) 2322 2323 #define INTEL_GEN_MASK(s, e) ( \ 2324 BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \ 2325 BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \ 2326 GENMASK((e) != GEN_FOREVER ? (e) - 1 : BITS_PER_LONG - 1, \ 2327 (s) != GEN_FOREVER ? (s) - 1 : 0) \ 2328 ) 2329 2330 /* 2331 * Returns true if Gen is in inclusive range [Start, End]. 2332 * 2333 * Use GEN_FOREVER for unbound start and or end. 2334 */ 2335 #define IS_GEN(dev_priv, s, e) \ 2336 (!!((dev_priv)->info.gen_mask & INTEL_GEN_MASK((s), (e)))) 2337 2338 /* 2339 * Return true if revision is in range [since,until] inclusive. 2340 * 2341 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until. 2342 */ 2343 #define IS_REVID(p, since, until) \ 2344 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until)) 2345 2346 #define IS_PLATFORM(dev_priv, p) ((dev_priv)->info.platform_mask & BIT(p)) 2347 2348 #define IS_I830(dev_priv) IS_PLATFORM(dev_priv, INTEL_I830) 2349 #define IS_I845G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I845G) 2350 #define IS_I85X(dev_priv) IS_PLATFORM(dev_priv, INTEL_I85X) 2351 #define IS_I865G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I865G) 2352 #define IS_I915G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915G) 2353 #define IS_I915GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915GM) 2354 #define IS_I945G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945G) 2355 #define IS_I945GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945GM) 2356 #define IS_I965G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965G) 2357 #define IS_I965GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965GM) 2358 #define IS_G45(dev_priv) IS_PLATFORM(dev_priv, INTEL_G45) 2359 #define IS_GM45(dev_priv) IS_PLATFORM(dev_priv, INTEL_GM45) 2360 #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv)) 2361 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001) 2362 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011) 2363 #define IS_PINEVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_PINEVIEW) 2364 #define IS_G33(dev_priv) IS_PLATFORM(dev_priv, INTEL_G33) 2365 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046) 2366 #define IS_IVYBRIDGE(dev_priv) IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE) 2367 #define IS_IVB_GT1(dev_priv) (IS_IVYBRIDGE(dev_priv) && \ 2368 (dev_priv)->info.gt == 1) 2369 #define IS_VALLEYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW) 2370 #define IS_CHERRYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW) 2371 #define IS_HASWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_HASWELL) 2372 #define IS_BROADWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROADWELL) 2373 #define IS_SKYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_SKYLAKE) 2374 #define IS_BROXTON(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROXTON) 2375 #define IS_KABYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_KABYLAKE) 2376 #define IS_GEMINILAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_GEMINILAKE) 2377 #define IS_COFFEELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_COFFEELAKE) 2378 #define IS_CANNONLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_CANNONLAKE) 2379 #define IS_ICELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_ICELAKE) 2380 #define IS_MOBILE(dev_priv) ((dev_priv)->info.is_mobile) 2381 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \ 2382 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00) 2383 #define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \ 2384 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \ 2385 (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \ 2386 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)) 2387 /* ULX machines are also considered ULT. */ 2388 #define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \ 2389 (INTEL_DEVID(dev_priv) & 0xf) == 0xe) 2390 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \ 2391 (dev_priv)->info.gt == 3) 2392 #define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \ 2393 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00) 2394 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \ 2395 (dev_priv)->info.gt == 3) 2396 /* ULX machines are also considered ULT. */ 2397 #define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \ 2398 INTEL_DEVID(dev_priv) == 0x0A1E) 2399 #define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \ 2400 INTEL_DEVID(dev_priv) == 0x1913 || \ 2401 INTEL_DEVID(dev_priv) == 0x1916 || \ 2402 INTEL_DEVID(dev_priv) == 0x1921 || \ 2403 INTEL_DEVID(dev_priv) == 0x1926) 2404 #define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \ 2405 INTEL_DEVID(dev_priv) == 0x1915 || \ 2406 INTEL_DEVID(dev_priv) == 0x191E) 2407 #define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \ 2408 INTEL_DEVID(dev_priv) == 0x5913 || \ 2409 INTEL_DEVID(dev_priv) == 0x5916 || \ 2410 INTEL_DEVID(dev_priv) == 0x5921 || \ 2411 INTEL_DEVID(dev_priv) == 0x5926) 2412 #define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \ 2413 INTEL_DEVID(dev_priv) == 0x5915 || \ 2414 INTEL_DEVID(dev_priv) == 0x591E) 2415 #define IS_SKL_GT2(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2416 (dev_priv)->info.gt == 2) 2417 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2418 (dev_priv)->info.gt == 3) 2419 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2420 (dev_priv)->info.gt == 4) 2421 #define IS_KBL_GT2(dev_priv) (IS_KABYLAKE(dev_priv) && \ 2422 (dev_priv)->info.gt == 2) 2423 #define IS_KBL_GT3(dev_priv) (IS_KABYLAKE(dev_priv) && \ 2424 (dev_priv)->info.gt == 3) 2425 #define IS_CFL_ULT(dev_priv) (IS_COFFEELAKE(dev_priv) && \ 2426 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0) 2427 #define IS_CFL_GT2(dev_priv) (IS_COFFEELAKE(dev_priv) && \ 2428 (dev_priv)->info.gt == 2) 2429 #define IS_CFL_GT3(dev_priv) (IS_COFFEELAKE(dev_priv) && \ 2430 (dev_priv)->info.gt == 3) 2431 #define IS_CNL_WITH_PORT_F(dev_priv) (IS_CANNONLAKE(dev_priv) && \ 2432 (INTEL_DEVID(dev_priv) & 0x0004) == 0x0004) 2433 2434 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support) 2435 2436 #define SKL_REVID_A0 0x0 2437 #define SKL_REVID_B0 0x1 2438 #define SKL_REVID_C0 0x2 2439 #define SKL_REVID_D0 0x3 2440 #define SKL_REVID_E0 0x4 2441 #define SKL_REVID_F0 0x5 2442 #define SKL_REVID_G0 0x6 2443 #define SKL_REVID_H0 0x7 2444 2445 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until)) 2446 2447 #define BXT_REVID_A0 0x0 2448 #define BXT_REVID_A1 0x1 2449 #define BXT_REVID_B0 0x3 2450 #define BXT_REVID_B_LAST 0x8 2451 #define BXT_REVID_C0 0x9 2452 2453 #define IS_BXT_REVID(dev_priv, since, until) \ 2454 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until)) 2455 2456 #define KBL_REVID_A0 0x0 2457 #define KBL_REVID_B0 0x1 2458 #define KBL_REVID_C0 0x2 2459 #define KBL_REVID_D0 0x3 2460 #define KBL_REVID_E0 0x4 2461 2462 #define IS_KBL_REVID(dev_priv, since, until) \ 2463 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until)) 2464 2465 #define GLK_REVID_A0 0x0 2466 #define GLK_REVID_A1 0x1 2467 2468 #define IS_GLK_REVID(dev_priv, since, until) \ 2469 (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until)) 2470 2471 #define CNL_REVID_A0 0x0 2472 #define CNL_REVID_B0 0x1 2473 #define CNL_REVID_C0 0x2 2474 2475 #define IS_CNL_REVID(p, since, until) \ 2476 (IS_CANNONLAKE(p) && IS_REVID(p, since, until)) 2477 2478 #define ICL_REVID_A0 0x0 2479 #define ICL_REVID_A2 0x1 2480 #define ICL_REVID_B0 0x3 2481 #define ICL_REVID_B2 0x4 2482 #define ICL_REVID_C0 0x5 2483 2484 #define IS_ICL_REVID(p, since, until) \ 2485 (IS_ICELAKE(p) && IS_REVID(p, since, until)) 2486 2487 /* 2488 * The genX designation typically refers to the render engine, so render 2489 * capability related checks should use IS_GEN, while display and other checks 2490 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular 2491 * chips, etc.). 2492 */ 2493 #define IS_GEN2(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(1))) 2494 #define IS_GEN3(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(2))) 2495 #define IS_GEN4(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(3))) 2496 #define IS_GEN5(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(4))) 2497 #define IS_GEN6(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(5))) 2498 #define IS_GEN7(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(6))) 2499 #define IS_GEN8(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(7))) 2500 #define IS_GEN9(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(8))) 2501 #define IS_GEN10(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(9))) 2502 #define IS_GEN11(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(10))) 2503 2504 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp) 2505 #define IS_GEN9_LP(dev_priv) (IS_GEN9(dev_priv) && IS_LP(dev_priv)) 2506 #define IS_GEN9_BC(dev_priv) (IS_GEN9(dev_priv) && !IS_LP(dev_priv)) 2507 2508 #define ENGINE_MASK(id) BIT(id) 2509 #define RENDER_RING ENGINE_MASK(RCS) 2510 #define BSD_RING ENGINE_MASK(VCS) 2511 #define BLT_RING ENGINE_MASK(BCS) 2512 #define VEBOX_RING ENGINE_MASK(VECS) 2513 #define BSD2_RING ENGINE_MASK(VCS2) 2514 #define BSD3_RING ENGINE_MASK(VCS3) 2515 #define BSD4_RING ENGINE_MASK(VCS4) 2516 #define VEBOX2_RING ENGINE_MASK(VECS2) 2517 #define ALL_ENGINES (~0) 2518 2519 #define HAS_ENGINE(dev_priv, id) \ 2520 (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id))) 2521 2522 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS) 2523 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2) 2524 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS) 2525 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS) 2526 2527 #define HAS_LEGACY_SEMAPHORES(dev_priv) IS_GEN7(dev_priv) 2528 2529 #define HAS_LLC(dev_priv) ((dev_priv)->info.has_llc) 2530 #define HAS_SNOOP(dev_priv) ((dev_priv)->info.has_snoop) 2531 #define HAS_EDRAM(dev_priv) (!!((dev_priv)->edram_cap & EDRAM_ENABLED)) 2532 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \ 2533 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv)) 2534 2535 #define HWS_NEEDS_PHYSICAL(dev_priv) ((dev_priv)->info.hws_needs_physical) 2536 2537 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \ 2538 ((dev_priv)->info.has_logical_ring_contexts) 2539 #define HAS_LOGICAL_RING_ELSQ(dev_priv) \ 2540 ((dev_priv)->info.has_logical_ring_elsq) 2541 #define HAS_LOGICAL_RING_PREEMPTION(dev_priv) \ 2542 ((dev_priv)->info.has_logical_ring_preemption) 2543 2544 #define HAS_EXECLISTS(dev_priv) HAS_LOGICAL_RING_CONTEXTS(dev_priv) 2545 2546 #define USES_PPGTT(dev_priv) (i915_modparams.enable_ppgtt) 2547 #define USES_FULL_PPGTT(dev_priv) (i915_modparams.enable_ppgtt >= 2) 2548 #define USES_FULL_48BIT_PPGTT(dev_priv) (i915_modparams.enable_ppgtt == 3) 2549 #define HAS_PAGE_SIZES(dev_priv, sizes) ({ \ 2550 GEM_BUG_ON((sizes) == 0); \ 2551 ((sizes) & ~(dev_priv)->info.page_sizes) == 0; \ 2552 }) 2553 2554 #define HAS_OVERLAY(dev_priv) ((dev_priv)->info.has_overlay) 2555 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \ 2556 ((dev_priv)->info.overlay_needs_physical) 2557 2558 /* Early gen2 have a totally busted CS tlb and require pinned batches. */ 2559 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv)) 2560 2561 /* WaRsDisableCoarsePowerGating:skl,cnl */ 2562 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \ 2563 (IS_CANNONLAKE(dev_priv) || \ 2564 IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv)) 2565 2566 /* 2567 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts 2568 * even when in MSI mode. This results in spurious interrupt warnings if the 2569 * legacy irq no. is shared with another device. The kernel then disables that 2570 * interrupt source and so prevents the other device from working properly. 2571 * 2572 * Since we don't enable MSI anymore on gen4, we can always use GMBUS/AUX 2573 * interrupts. 2574 */ 2575 #define HAS_AUX_IRQ(dev_priv) true 2576 #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4) 2577 2578 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte 2579 * rows, which changed the alignment requirements and fence programming. 2580 */ 2581 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \ 2582 !(IS_I915G(dev_priv) || \ 2583 IS_I915GM(dev_priv))) 2584 #define SUPPORTS_TV(dev_priv) ((dev_priv)->info.supports_tv) 2585 #define I915_HAS_HOTPLUG(dev_priv) ((dev_priv)->info.has_hotplug) 2586 2587 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2) 2588 #define HAS_FBC(dev_priv) ((dev_priv)->info.has_fbc) 2589 #define HAS_CUR_FBC(dev_priv) (!HAS_GMCH_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 7) 2590 2591 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv)) 2592 2593 #define HAS_DP_MST(dev_priv) ((dev_priv)->info.has_dp_mst) 2594 2595 #define HAS_DDI(dev_priv) ((dev_priv)->info.has_ddi) 2596 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg) 2597 #define HAS_PSR(dev_priv) ((dev_priv)->info.has_psr) 2598 2599 #define HAS_RC6(dev_priv) ((dev_priv)->info.has_rc6) 2600 #define HAS_RC6p(dev_priv) ((dev_priv)->info.has_rc6p) 2601 #define HAS_RC6pp(dev_priv) (false) /* HW was never validated */ 2602 2603 #define HAS_CSR(dev_priv) ((dev_priv)->info.has_csr) 2604 2605 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm) 2606 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc) 2607 2608 #define HAS_IPC(dev_priv) ((dev_priv)->info.has_ipc) 2609 2610 /* 2611 * For now, anything with a GuC requires uCode loading, and then supports 2612 * command submission once loaded. But these are logically independent 2613 * properties, so we have separate macros to test them. 2614 */ 2615 #define HAS_GUC(dev_priv) ((dev_priv)->info.has_guc) 2616 #define HAS_GUC_CT(dev_priv) ((dev_priv)->info.has_guc_ct) 2617 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv)) 2618 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv)) 2619 2620 /* For now, anything with a GuC has also HuC */ 2621 #define HAS_HUC(dev_priv) (HAS_GUC(dev_priv)) 2622 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv)) 2623 2624 /* Having a GuC is not the same as using a GuC */ 2625 #define USES_GUC(dev_priv) intel_uc_is_using_guc() 2626 #define USES_GUC_SUBMISSION(dev_priv) intel_uc_is_using_guc_submission() 2627 #define USES_HUC(dev_priv) intel_uc_is_using_huc() 2628 2629 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer) 2630 2631 #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu) 2632 2633 #define INTEL_PCH_DEVICE_ID_MASK 0xff80 2634 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00 2635 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00 2636 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00 2637 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00 2638 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00 2639 #define INTEL_PCH_WPT_DEVICE_ID_TYPE 0x8c80 2640 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE 0x9c80 2641 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100 2642 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00 2643 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA280 2644 #define INTEL_PCH_CNP_DEVICE_ID_TYPE 0xA300 2645 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE 0x9D80 2646 #define INTEL_PCH_ICP_DEVICE_ID_TYPE 0x3480 2647 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100 2648 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000 2649 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */ 2650 2651 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type) 2652 #define INTEL_PCH_ID(dev_priv) ((dev_priv)->pch_id) 2653 #define HAS_PCH_ICP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_ICP) 2654 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP) 2655 #define HAS_PCH_CNP_LP(dev_priv) \ 2656 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE) 2657 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP) 2658 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT) 2659 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT) 2660 #define HAS_PCH_LPT_LP(dev_priv) \ 2661 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \ 2662 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE) 2663 #define HAS_PCH_LPT_H(dev_priv) \ 2664 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_DEVICE_ID_TYPE || \ 2665 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_DEVICE_ID_TYPE) 2666 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT) 2667 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX) 2668 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP) 2669 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE) 2670 2671 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display) 2672 2673 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9) 2674 2675 /* DPF == dynamic parity feature */ 2676 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf) 2677 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \ 2678 2 : HAS_L3_DPF(dev_priv)) 2679 2680 #define GT_FREQUENCY_MULTIPLIER 50 2681 #define GEN9_FREQ_SCALER 3 2682 2683 #include "i915_trace.h" 2684 2685 static inline bool intel_vtd_active(void) 2686 { 2687 #ifdef CONFIG_INTEL_IOMMU 2688 if (intel_iommu_gfx_mapped) 2689 return true; 2690 #endif 2691 return false; 2692 } 2693 2694 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv) 2695 { 2696 return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active(); 2697 } 2698 2699 static inline bool 2700 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv) 2701 { 2702 return IS_BROXTON(dev_priv) && intel_vtd_active(); 2703 } 2704 2705 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv, 2706 int enable_ppgtt); 2707 2708 /* i915_drv.c */ 2709 void __printf(3, 4) 2710 __i915_printk(struct drm_i915_private *dev_priv, const char *level, 2711 const char *fmt, ...); 2712 2713 #define i915_report_error(dev_priv, fmt, ...) \ 2714 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__) 2715 2716 #ifdef CONFIG_COMPAT 2717 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd, 2718 unsigned long arg); 2719 #else 2720 #define i915_compat_ioctl NULL 2721 #endif 2722 extern const struct dev_pm_ops i915_pm_ops; 2723 2724 extern int i915_driver_load(struct pci_dev *pdev, 2725 const struct pci_device_id *ent); 2726 extern void i915_driver_unload(struct drm_device *dev); 2727 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask); 2728 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv); 2729 2730 extern void i915_reset(struct drm_i915_private *i915, 2731 unsigned int stalled_mask, 2732 const char *reason); 2733 extern int i915_reset_engine(struct intel_engine_cs *engine, 2734 const char *reason); 2735 2736 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv); 2737 extern int intel_reset_guc(struct drm_i915_private *dev_priv); 2738 extern int intel_guc_reset_engine(struct intel_guc *guc, 2739 struct intel_engine_cs *engine); 2740 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine); 2741 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv); 2742 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv); 2743 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv); 2744 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv); 2745 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv); 2746 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on); 2747 2748 int intel_engines_init_mmio(struct drm_i915_private *dev_priv); 2749 int intel_engines_init(struct drm_i915_private *dev_priv); 2750 2751 /* intel_hotplug.c */ 2752 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv, 2753 u32 pin_mask, u32 long_mask); 2754 void intel_hpd_init(struct drm_i915_private *dev_priv); 2755 void intel_hpd_init_work(struct drm_i915_private *dev_priv); 2756 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv); 2757 enum port intel_hpd_pin_to_port(struct drm_i915_private *dev_priv, 2758 enum hpd_pin pin); 2759 enum hpd_pin intel_hpd_pin_default(struct drm_i915_private *dev_priv, 2760 enum port port); 2761 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin); 2762 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin); 2763 2764 /* i915_irq.c */ 2765 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv) 2766 { 2767 unsigned long delay; 2768 2769 if (unlikely(!i915_modparams.enable_hangcheck)) 2770 return; 2771 2772 /* Don't continually defer the hangcheck so that it is always run at 2773 * least once after work has been scheduled on any ring. Otherwise, 2774 * we will ignore a hung ring if a second ring is kept busy. 2775 */ 2776 2777 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES); 2778 queue_delayed_work(system_long_wq, 2779 &dev_priv->gpu_error.hangcheck_work, delay); 2780 } 2781 2782 __printf(4, 5) 2783 void i915_handle_error(struct drm_i915_private *dev_priv, 2784 u32 engine_mask, 2785 unsigned long flags, 2786 const char *fmt, ...); 2787 #define I915_ERROR_CAPTURE BIT(0) 2788 2789 extern void intel_irq_init(struct drm_i915_private *dev_priv); 2790 extern void intel_irq_fini(struct drm_i915_private *dev_priv); 2791 int intel_irq_install(struct drm_i915_private *dev_priv); 2792 void intel_irq_uninstall(struct drm_i915_private *dev_priv); 2793 2794 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv) 2795 { 2796 return dev_priv->gvt; 2797 } 2798 2799 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv) 2800 { 2801 return dev_priv->vgpu.active; 2802 } 2803 2804 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv, 2805 enum pipe pipe); 2806 void 2807 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 2808 u32 status_mask); 2809 2810 void 2811 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 2812 u32 status_mask); 2813 2814 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv); 2815 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv); 2816 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv, 2817 uint32_t mask, 2818 uint32_t bits); 2819 void ilk_update_display_irq(struct drm_i915_private *dev_priv, 2820 uint32_t interrupt_mask, 2821 uint32_t enabled_irq_mask); 2822 static inline void 2823 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits) 2824 { 2825 ilk_update_display_irq(dev_priv, bits, bits); 2826 } 2827 static inline void 2828 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits) 2829 { 2830 ilk_update_display_irq(dev_priv, bits, 0); 2831 } 2832 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv, 2833 enum pipe pipe, 2834 uint32_t interrupt_mask, 2835 uint32_t enabled_irq_mask); 2836 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv, 2837 enum pipe pipe, uint32_t bits) 2838 { 2839 bdw_update_pipe_irq(dev_priv, pipe, bits, bits); 2840 } 2841 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv, 2842 enum pipe pipe, uint32_t bits) 2843 { 2844 bdw_update_pipe_irq(dev_priv, pipe, bits, 0); 2845 } 2846 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv, 2847 uint32_t interrupt_mask, 2848 uint32_t enabled_irq_mask); 2849 static inline void 2850 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits) 2851 { 2852 ibx_display_interrupt_update(dev_priv, bits, bits); 2853 } 2854 static inline void 2855 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits) 2856 { 2857 ibx_display_interrupt_update(dev_priv, bits, 0); 2858 } 2859 2860 /* i915_gem.c */ 2861 int i915_gem_create_ioctl(struct drm_device *dev, void *data, 2862 struct drm_file *file_priv); 2863 int i915_gem_pread_ioctl(struct drm_device *dev, void *data, 2864 struct drm_file *file_priv); 2865 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 2866 struct drm_file *file_priv); 2867 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 2868 struct drm_file *file_priv); 2869 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 2870 struct drm_file *file_priv); 2871 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 2872 struct drm_file *file_priv); 2873 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 2874 struct drm_file *file_priv); 2875 int i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data, 2876 struct drm_file *file_priv); 2877 int i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, 2878 struct drm_file *file_priv); 2879 int i915_gem_busy_ioctl(struct drm_device *dev, void *data, 2880 struct drm_file *file_priv); 2881 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 2882 struct drm_file *file); 2883 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 2884 struct drm_file *file); 2885 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 2886 struct drm_file *file_priv); 2887 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 2888 struct drm_file *file_priv); 2889 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data, 2890 struct drm_file *file_priv); 2891 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data, 2892 struct drm_file *file_priv); 2893 int i915_gem_init_userptr(struct drm_i915_private *dev_priv); 2894 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv); 2895 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data, 2896 struct drm_file *file); 2897 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 2898 struct drm_file *file_priv); 2899 int i915_gem_wait_ioctl(struct drm_device *dev, void *data, 2900 struct drm_file *file_priv); 2901 void i915_gem_sanitize(struct drm_i915_private *i915); 2902 int i915_gem_init_early(struct drm_i915_private *dev_priv); 2903 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv); 2904 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv); 2905 int i915_gem_freeze(struct drm_i915_private *dev_priv); 2906 int i915_gem_freeze_late(struct drm_i915_private *dev_priv); 2907 2908 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv); 2909 void i915_gem_object_free(struct drm_i915_gem_object *obj); 2910 void i915_gem_object_init(struct drm_i915_gem_object *obj, 2911 const struct drm_i915_gem_object_ops *ops); 2912 struct drm_i915_gem_object * 2913 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size); 2914 struct drm_i915_gem_object * 2915 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv, 2916 const void *data, size_t size); 2917 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file); 2918 void i915_gem_free_object(struct drm_gem_object *obj); 2919 2920 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915) 2921 { 2922 if (!atomic_read(&i915->mm.free_count)) 2923 return; 2924 2925 /* A single pass should suffice to release all the freed objects (along 2926 * most call paths) , but be a little more paranoid in that freeing 2927 * the objects does take a little amount of time, during which the rcu 2928 * callbacks could have added new objects into the freed list, and 2929 * armed the work again. 2930 */ 2931 do { 2932 rcu_barrier(); 2933 } while (flush_work(&i915->mm.free_work)); 2934 } 2935 2936 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915) 2937 { 2938 /* 2939 * Similar to objects above (see i915_gem_drain_freed-objects), in 2940 * general we have workers that are armed by RCU and then rearm 2941 * themselves in their callbacks. To be paranoid, we need to 2942 * drain the workqueue a second time after waiting for the RCU 2943 * grace period so that we catch work queued via RCU from the first 2944 * pass. As neither drain_workqueue() nor flush_workqueue() report 2945 * a result, we make an assumption that we only don't require more 2946 * than 2 passes to catch all recursive RCU delayed work. 2947 * 2948 */ 2949 int pass = 2; 2950 do { 2951 rcu_barrier(); 2952 drain_workqueue(i915->wq); 2953 } while (--pass); 2954 } 2955 2956 struct i915_vma * __must_check 2957 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, 2958 const struct i915_ggtt_view *view, 2959 u64 size, 2960 u64 alignment, 2961 u64 flags); 2962 2963 int i915_gem_object_unbind(struct drm_i915_gem_object *obj); 2964 void i915_gem_release_mmap(struct drm_i915_gem_object *obj); 2965 2966 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv); 2967 2968 static inline int __sg_page_count(const struct scatterlist *sg) 2969 { 2970 return sg->length >> PAGE_SHIFT; 2971 } 2972 2973 struct scatterlist * 2974 i915_gem_object_get_sg(struct drm_i915_gem_object *obj, 2975 unsigned int n, unsigned int *offset); 2976 2977 struct page * 2978 i915_gem_object_get_page(struct drm_i915_gem_object *obj, 2979 unsigned int n); 2980 2981 struct page * 2982 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, 2983 unsigned int n); 2984 2985 dma_addr_t 2986 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, 2987 unsigned long n); 2988 2989 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj, 2990 struct sg_table *pages, 2991 unsigned int sg_page_sizes); 2992 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj); 2993 2994 static inline int __must_check 2995 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) 2996 { 2997 might_lock(&obj->mm.lock); 2998 2999 if (atomic_inc_not_zero(&obj->mm.pages_pin_count)) 3000 return 0; 3001 3002 return __i915_gem_object_get_pages(obj); 3003 } 3004 3005 static inline bool 3006 i915_gem_object_has_pages(struct drm_i915_gem_object *obj) 3007 { 3008 return !IS_ERR_OR_NULL(READ_ONCE(obj->mm.pages)); 3009 } 3010 3011 static inline void 3012 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) 3013 { 3014 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 3015 3016 atomic_inc(&obj->mm.pages_pin_count); 3017 } 3018 3019 static inline bool 3020 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj) 3021 { 3022 return atomic_read(&obj->mm.pages_pin_count); 3023 } 3024 3025 static inline void 3026 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) 3027 { 3028 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 3029 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 3030 3031 atomic_dec(&obj->mm.pages_pin_count); 3032 } 3033 3034 static inline void 3035 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) 3036 { 3037 __i915_gem_object_unpin_pages(obj); 3038 } 3039 3040 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */ 3041 I915_MM_NORMAL = 0, 3042 I915_MM_SHRINKER 3043 }; 3044 3045 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj, 3046 enum i915_mm_subclass subclass); 3047 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj); 3048 3049 enum i915_map_type { 3050 I915_MAP_WB = 0, 3051 I915_MAP_WC, 3052 #define I915_MAP_OVERRIDE BIT(31) 3053 I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE, 3054 I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE, 3055 }; 3056 3057 /** 3058 * i915_gem_object_pin_map - return a contiguous mapping of the entire object 3059 * @obj: the object to map into kernel address space 3060 * @type: the type of mapping, used to select pgprot_t 3061 * 3062 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's 3063 * pages and then returns a contiguous mapping of the backing storage into 3064 * the kernel address space. Based on the @type of mapping, the PTE will be 3065 * set to either WriteBack or WriteCombine (via pgprot_t). 3066 * 3067 * The caller is responsible for calling i915_gem_object_unpin_map() when the 3068 * mapping is no longer required. 3069 * 3070 * Returns the pointer through which to access the mapped object, or an 3071 * ERR_PTR() on error. 3072 */ 3073 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj, 3074 enum i915_map_type type); 3075 3076 /** 3077 * i915_gem_object_unpin_map - releases an earlier mapping 3078 * @obj: the object to unmap 3079 * 3080 * After pinning the object and mapping its pages, once you are finished 3081 * with your access, call i915_gem_object_unpin_map() to release the pin 3082 * upon the mapping. Once the pin count reaches zero, that mapping may be 3083 * removed. 3084 */ 3085 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj) 3086 { 3087 i915_gem_object_unpin_pages(obj); 3088 } 3089 3090 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, 3091 unsigned int *needs_clflush); 3092 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj, 3093 unsigned int *needs_clflush); 3094 #define CLFLUSH_BEFORE BIT(0) 3095 #define CLFLUSH_AFTER BIT(1) 3096 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER) 3097 3098 static inline void 3099 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj) 3100 { 3101 i915_gem_object_unpin_pages(obj); 3102 } 3103 3104 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev); 3105 void i915_vma_move_to_active(struct i915_vma *vma, 3106 struct i915_request *rq, 3107 unsigned int flags); 3108 int i915_gem_dumb_create(struct drm_file *file_priv, 3109 struct drm_device *dev, 3110 struct drm_mode_create_dumb *args); 3111 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev, 3112 uint32_t handle, uint64_t *offset); 3113 int i915_gem_mmap_gtt_version(void); 3114 3115 void i915_gem_track_fb(struct drm_i915_gem_object *old, 3116 struct drm_i915_gem_object *new, 3117 unsigned frontbuffer_bits); 3118 3119 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno); 3120 3121 struct i915_request * 3122 i915_gem_find_active_request(struct intel_engine_cs *engine); 3123 3124 static inline bool i915_reset_backoff(struct i915_gpu_error *error) 3125 { 3126 return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags)); 3127 } 3128 3129 static inline bool i915_reset_handoff(struct i915_gpu_error *error) 3130 { 3131 return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags)); 3132 } 3133 3134 static inline bool i915_terminally_wedged(struct i915_gpu_error *error) 3135 { 3136 return unlikely(test_bit(I915_WEDGED, &error->flags)); 3137 } 3138 3139 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error) 3140 { 3141 return i915_reset_backoff(error) | i915_terminally_wedged(error); 3142 } 3143 3144 static inline u32 i915_reset_count(struct i915_gpu_error *error) 3145 { 3146 return READ_ONCE(error->reset_count); 3147 } 3148 3149 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error, 3150 struct intel_engine_cs *engine) 3151 { 3152 return READ_ONCE(error->reset_engine_count[engine->id]); 3153 } 3154 3155 struct i915_request * 3156 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine); 3157 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv); 3158 void i915_gem_reset(struct drm_i915_private *dev_priv, 3159 unsigned int stalled_mask); 3160 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine); 3161 void i915_gem_reset_finish(struct drm_i915_private *dev_priv); 3162 void i915_gem_set_wedged(struct drm_i915_private *dev_priv); 3163 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv); 3164 void i915_gem_reset_engine(struct intel_engine_cs *engine, 3165 struct i915_request *request, 3166 bool stalled); 3167 3168 void i915_gem_init_mmio(struct drm_i915_private *i915); 3169 int __must_check i915_gem_init(struct drm_i915_private *dev_priv); 3170 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv); 3171 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv); 3172 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv); 3173 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv, 3174 unsigned int flags); 3175 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv); 3176 void i915_gem_resume(struct drm_i915_private *dev_priv); 3177 int i915_gem_fault(struct vm_fault *vmf); 3178 int i915_gem_object_wait(struct drm_i915_gem_object *obj, 3179 unsigned int flags, 3180 long timeout, 3181 struct intel_rps_client *rps); 3182 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj, 3183 unsigned int flags, 3184 const struct i915_sched_attr *attr); 3185 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX 3186 3187 int __must_check 3188 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write); 3189 int __must_check 3190 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write); 3191 int __must_check 3192 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write); 3193 struct i915_vma * __must_check 3194 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3195 u32 alignment, 3196 const struct i915_ggtt_view *view, 3197 unsigned int flags); 3198 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma); 3199 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, 3200 int align); 3201 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file); 3202 void i915_gem_release(struct drm_device *dev, struct drm_file *file); 3203 3204 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3205 enum i915_cache_level cache_level); 3206 3207 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev, 3208 struct dma_buf *dma_buf); 3209 3210 struct dma_buf *i915_gem_prime_export(struct drm_device *dev, 3211 struct drm_gem_object *gem_obj, int flags); 3212 3213 static inline struct i915_hw_ppgtt * 3214 i915_vm_to_ppgtt(struct i915_address_space *vm) 3215 { 3216 return container_of(vm, struct i915_hw_ppgtt, base); 3217 } 3218 3219 /* i915_gem_fence_reg.c */ 3220 struct drm_i915_fence_reg * 3221 i915_reserve_fence(struct drm_i915_private *dev_priv); 3222 void i915_unreserve_fence(struct drm_i915_fence_reg *fence); 3223 3224 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv); 3225 void i915_gem_restore_fences(struct drm_i915_private *dev_priv); 3226 3227 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv); 3228 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj, 3229 struct sg_table *pages); 3230 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj, 3231 struct sg_table *pages); 3232 3233 static inline struct i915_gem_context * 3234 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id) 3235 { 3236 return idr_find(&file_priv->context_idr, id); 3237 } 3238 3239 static inline struct i915_gem_context * 3240 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id) 3241 { 3242 struct i915_gem_context *ctx; 3243 3244 rcu_read_lock(); 3245 ctx = __i915_gem_context_lookup_rcu(file_priv, id); 3246 if (ctx && !kref_get_unless_zero(&ctx->ref)) 3247 ctx = NULL; 3248 rcu_read_unlock(); 3249 3250 return ctx; 3251 } 3252 3253 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 3254 struct drm_file *file); 3255 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 3256 struct drm_file *file); 3257 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 3258 struct drm_file *file); 3259 void i915_oa_init_reg_state(struct intel_engine_cs *engine, 3260 struct i915_gem_context *ctx, 3261 uint32_t *reg_state); 3262 3263 /* i915_gem_evict.c */ 3264 int __must_check i915_gem_evict_something(struct i915_address_space *vm, 3265 u64 min_size, u64 alignment, 3266 unsigned cache_level, 3267 u64 start, u64 end, 3268 unsigned flags); 3269 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm, 3270 struct drm_mm_node *node, 3271 unsigned int flags); 3272 int i915_gem_evict_vm(struct i915_address_space *vm); 3273 3274 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv); 3275 3276 /* belongs in i915_gem_gtt.h */ 3277 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv) 3278 { 3279 wmb(); 3280 if (INTEL_GEN(dev_priv) < 6) 3281 intel_gtt_chipset_flush(); 3282 } 3283 3284 /* i915_gem_stolen.c */ 3285 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv, 3286 struct drm_mm_node *node, u64 size, 3287 unsigned alignment); 3288 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv, 3289 struct drm_mm_node *node, u64 size, 3290 unsigned alignment, u64 start, 3291 u64 end); 3292 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv, 3293 struct drm_mm_node *node); 3294 int i915_gem_init_stolen(struct drm_i915_private *dev_priv); 3295 void i915_gem_cleanup_stolen(struct drm_device *dev); 3296 struct drm_i915_gem_object * 3297 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, 3298 resource_size_t size); 3299 struct drm_i915_gem_object * 3300 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv, 3301 resource_size_t stolen_offset, 3302 resource_size_t gtt_offset, 3303 resource_size_t size); 3304 3305 /* i915_gem_internal.c */ 3306 struct drm_i915_gem_object * 3307 i915_gem_object_create_internal(struct drm_i915_private *dev_priv, 3308 phys_addr_t size); 3309 3310 /* i915_gem_shrinker.c */ 3311 unsigned long i915_gem_shrink(struct drm_i915_private *i915, 3312 unsigned long target, 3313 unsigned long *nr_scanned, 3314 unsigned flags); 3315 #define I915_SHRINK_PURGEABLE 0x1 3316 #define I915_SHRINK_UNBOUND 0x2 3317 #define I915_SHRINK_BOUND 0x4 3318 #define I915_SHRINK_ACTIVE 0x8 3319 #define I915_SHRINK_VMAPS 0x10 3320 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915); 3321 void i915_gem_shrinker_register(struct drm_i915_private *i915); 3322 void i915_gem_shrinker_unregister(struct drm_i915_private *i915); 3323 3324 3325 /* i915_gem_tiling.c */ 3326 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj) 3327 { 3328 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 3329 3330 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 && 3331 i915_gem_object_is_tiled(obj); 3332 } 3333 3334 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size, 3335 unsigned int tiling, unsigned int stride); 3336 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size, 3337 unsigned int tiling, unsigned int stride); 3338 3339 /* i915_debugfs.c */ 3340 #ifdef CONFIG_DEBUG_FS 3341 int i915_debugfs_register(struct drm_i915_private *dev_priv); 3342 int i915_debugfs_connector_add(struct drm_connector *connector); 3343 void intel_display_crc_init(struct drm_i915_private *dev_priv); 3344 #else 3345 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;} 3346 static inline int i915_debugfs_connector_add(struct drm_connector *connector) 3347 { return 0; } 3348 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {} 3349 #endif 3350 3351 const char *i915_cache_level_str(struct drm_i915_private *i915, int type); 3352 3353 /* i915_cmd_parser.c */ 3354 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv); 3355 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine); 3356 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine); 3357 int intel_engine_cmd_parser(struct intel_engine_cs *engine, 3358 struct drm_i915_gem_object *batch_obj, 3359 struct drm_i915_gem_object *shadow_batch_obj, 3360 u32 batch_start_offset, 3361 u32 batch_len, 3362 bool is_master); 3363 3364 /* i915_perf.c */ 3365 extern void i915_perf_init(struct drm_i915_private *dev_priv); 3366 extern void i915_perf_fini(struct drm_i915_private *dev_priv); 3367 extern void i915_perf_register(struct drm_i915_private *dev_priv); 3368 extern void i915_perf_unregister(struct drm_i915_private *dev_priv); 3369 3370 /* i915_suspend.c */ 3371 extern int i915_save_state(struct drm_i915_private *dev_priv); 3372 extern int i915_restore_state(struct drm_i915_private *dev_priv); 3373 3374 /* i915_sysfs.c */ 3375 void i915_setup_sysfs(struct drm_i915_private *dev_priv); 3376 void i915_teardown_sysfs(struct drm_i915_private *dev_priv); 3377 3378 /* intel_lpe_audio.c */ 3379 int intel_lpe_audio_init(struct drm_i915_private *dev_priv); 3380 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv); 3381 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv); 3382 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv, 3383 enum pipe pipe, enum port port, 3384 const void *eld, int ls_clock, bool dp_output); 3385 3386 /* intel_i2c.c */ 3387 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv); 3388 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv); 3389 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv, 3390 unsigned int pin); 3391 extern int intel_gmbus_output_aksv(struct i2c_adapter *adapter); 3392 3393 extern struct i2c_adapter * 3394 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin); 3395 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed); 3396 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit); 3397 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter) 3398 { 3399 return container_of(adapter, struct intel_gmbus, adapter)->force_bit; 3400 } 3401 extern void intel_i2c_reset(struct drm_i915_private *dev_priv); 3402 3403 /* intel_bios.c */ 3404 void intel_bios_init(struct drm_i915_private *dev_priv); 3405 void intel_bios_cleanup(struct drm_i915_private *dev_priv); 3406 bool intel_bios_is_valid_vbt(const void *buf, size_t size); 3407 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv); 3408 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin); 3409 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port); 3410 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port); 3411 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port); 3412 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port); 3413 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv, 3414 enum port port); 3415 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv, 3416 enum port port); 3417 3418 /* intel_acpi.c */ 3419 #ifdef CONFIG_ACPI 3420 extern void intel_register_dsm_handler(void); 3421 extern void intel_unregister_dsm_handler(void); 3422 #else 3423 static inline void intel_register_dsm_handler(void) { return; } 3424 static inline void intel_unregister_dsm_handler(void) { return; } 3425 #endif /* CONFIG_ACPI */ 3426 3427 /* intel_device_info.c */ 3428 static inline struct intel_device_info * 3429 mkwrite_device_info(struct drm_i915_private *dev_priv) 3430 { 3431 return (struct intel_device_info *)&dev_priv->info; 3432 } 3433 3434 /* modesetting */ 3435 extern void intel_modeset_init_hw(struct drm_device *dev); 3436 extern int intel_modeset_init(struct drm_device *dev); 3437 extern void intel_modeset_cleanup(struct drm_device *dev); 3438 extern int intel_connector_register(struct drm_connector *); 3439 extern void intel_connector_unregister(struct drm_connector *); 3440 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, 3441 bool state); 3442 extern void intel_display_resume(struct drm_device *dev); 3443 extern void i915_redisable_vga(struct drm_i915_private *dev_priv); 3444 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv); 3445 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val); 3446 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv); 3447 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val); 3448 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, 3449 bool enable); 3450 3451 int i915_reg_read_ioctl(struct drm_device *dev, void *data, 3452 struct drm_file *file); 3453 3454 /* overlay */ 3455 extern struct intel_overlay_error_state * 3456 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv); 3457 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e, 3458 struct intel_overlay_error_state *error); 3459 3460 extern struct intel_display_error_state * 3461 intel_display_capture_error_state(struct drm_i915_private *dev_priv); 3462 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e, 3463 struct intel_display_error_state *error); 3464 3465 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val); 3466 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv, u32 mbox, 3467 u32 val, int fast_timeout_us, 3468 int slow_timeout_ms); 3469 #define sandybridge_pcode_write(dev_priv, mbox, val) \ 3470 sandybridge_pcode_write_timeout(dev_priv, mbox, val, 500, 0) 3471 3472 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request, 3473 u32 reply_mask, u32 reply, int timeout_base_ms); 3474 3475 /* intel_sideband.c */ 3476 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr); 3477 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val); 3478 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr); 3479 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg); 3480 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val); 3481 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg); 3482 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3483 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg); 3484 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3485 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg); 3486 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3487 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg); 3488 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val); 3489 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg, 3490 enum intel_sbi_destination destination); 3491 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value, 3492 enum intel_sbi_destination destination); 3493 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg); 3494 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3495 3496 /* intel_dpio_phy.c */ 3497 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port, 3498 enum dpio_phy *phy, enum dpio_channel *ch); 3499 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv, 3500 enum port port, u32 margin, u32 scale, 3501 u32 enable, u32 deemphasis); 3502 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy); 3503 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy); 3504 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv, 3505 enum dpio_phy phy); 3506 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv, 3507 enum dpio_phy phy); 3508 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(uint8_t lane_count); 3509 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder, 3510 uint8_t lane_lat_optim_mask); 3511 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder); 3512 3513 void chv_set_phy_signal_level(struct intel_encoder *encoder, 3514 u32 deemph_reg_value, u32 margin_reg_value, 3515 bool uniq_trans_scale); 3516 void chv_data_lane_soft_reset(struct intel_encoder *encoder, 3517 const struct intel_crtc_state *crtc_state, 3518 bool reset); 3519 void chv_phy_pre_pll_enable(struct intel_encoder *encoder, 3520 const struct intel_crtc_state *crtc_state); 3521 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder, 3522 const struct intel_crtc_state *crtc_state); 3523 void chv_phy_release_cl2_override(struct intel_encoder *encoder); 3524 void chv_phy_post_pll_disable(struct intel_encoder *encoder, 3525 const struct intel_crtc_state *old_crtc_state); 3526 3527 void vlv_set_phy_signal_level(struct intel_encoder *encoder, 3528 u32 demph_reg_value, u32 preemph_reg_value, 3529 u32 uniqtranscale_reg_value, u32 tx3_demph); 3530 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder, 3531 const struct intel_crtc_state *crtc_state); 3532 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder, 3533 const struct intel_crtc_state *crtc_state); 3534 void vlv_phy_reset_lanes(struct intel_encoder *encoder, 3535 const struct intel_crtc_state *old_crtc_state); 3536 3537 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val); 3538 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val); 3539 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv, 3540 const i915_reg_t reg); 3541 3542 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat1); 3543 3544 static inline u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv, 3545 const i915_reg_t reg) 3546 { 3547 return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(dev_priv, reg), 1000); 3548 } 3549 3550 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true) 3551 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true) 3552 3553 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true) 3554 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true) 3555 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false) 3556 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false) 3557 3558 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true) 3559 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true) 3560 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false) 3561 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false) 3562 3563 /* Be very careful with read/write 64-bit values. On 32-bit machines, they 3564 * will be implemented using 2 32-bit writes in an arbitrary order with 3565 * an arbitrary delay between them. This can cause the hardware to 3566 * act upon the intermediate value, possibly leading to corruption and 3567 * machine death. For this reason we do not support I915_WRITE64, or 3568 * dev_priv->uncore.funcs.mmio_writeq. 3569 * 3570 * When reading a 64-bit value as two 32-bit values, the delay may cause 3571 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that 3572 * occasionally a 64-bit register does not actualy support a full readq 3573 * and must be read using two 32-bit reads. 3574 * 3575 * You have been warned. 3576 */ 3577 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true) 3578 3579 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \ 3580 u32 upper, lower, old_upper, loop = 0; \ 3581 upper = I915_READ(upper_reg); \ 3582 do { \ 3583 old_upper = upper; \ 3584 lower = I915_READ(lower_reg); \ 3585 upper = I915_READ(upper_reg); \ 3586 } while (upper != old_upper && loop++ < 2); \ 3587 (u64)upper << 32 | lower; }) 3588 3589 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg) 3590 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg) 3591 3592 #define __raw_read(x, s) \ 3593 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \ 3594 i915_reg_t reg) \ 3595 { \ 3596 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \ 3597 } 3598 3599 #define __raw_write(x, s) \ 3600 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \ 3601 i915_reg_t reg, uint##x##_t val) \ 3602 { \ 3603 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \ 3604 } 3605 __raw_read(8, b) 3606 __raw_read(16, w) 3607 __raw_read(32, l) 3608 __raw_read(64, q) 3609 3610 __raw_write(8, b) 3611 __raw_write(16, w) 3612 __raw_write(32, l) 3613 __raw_write(64, q) 3614 3615 #undef __raw_read 3616 #undef __raw_write 3617 3618 /* These are untraced mmio-accessors that are only valid to be used inside 3619 * critical sections, such as inside IRQ handlers, where forcewake is explicitly 3620 * controlled. 3621 * 3622 * Think twice, and think again, before using these. 3623 * 3624 * As an example, these accessors can possibly be used between: 3625 * 3626 * spin_lock_irq(&dev_priv->uncore.lock); 3627 * intel_uncore_forcewake_get__locked(); 3628 * 3629 * and 3630 * 3631 * intel_uncore_forcewake_put__locked(); 3632 * spin_unlock_irq(&dev_priv->uncore.lock); 3633 * 3634 * 3635 * Note: some registers may not need forcewake held, so 3636 * intel_uncore_forcewake_{get,put} can be omitted, see 3637 * intel_uncore_forcewake_for_reg(). 3638 * 3639 * Certain architectures will die if the same cacheline is concurrently accessed 3640 * by different clients (e.g. on Ivybridge). Access to registers should 3641 * therefore generally be serialised, by either the dev_priv->uncore.lock or 3642 * a more localised lock guarding all access to that bank of registers. 3643 */ 3644 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__)) 3645 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__)) 3646 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__)) 3647 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__) 3648 3649 /* "Broadcast RGB" property */ 3650 #define INTEL_BROADCAST_RGB_AUTO 0 3651 #define INTEL_BROADCAST_RGB_FULL 1 3652 #define INTEL_BROADCAST_RGB_LIMITED 2 3653 3654 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv) 3655 { 3656 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3657 return VLV_VGACNTRL; 3658 else if (INTEL_GEN(dev_priv) >= 5) 3659 return CPU_VGACNTRL; 3660 else 3661 return VGACNTRL; 3662 } 3663 3664 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m) 3665 { 3666 unsigned long j = msecs_to_jiffies(m); 3667 3668 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1); 3669 } 3670 3671 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n) 3672 { 3673 /* nsecs_to_jiffies64() does not guard against overflow */ 3674 if (NSEC_PER_SEC % HZ && 3675 div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ) 3676 return MAX_JIFFY_OFFSET; 3677 3678 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1); 3679 } 3680 3681 static inline unsigned long 3682 timespec_to_jiffies_timeout(const struct timespec *value) 3683 { 3684 unsigned long j = timespec_to_jiffies(value); 3685 3686 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1); 3687 } 3688 3689 /* 3690 * If you need to wait X milliseconds between events A and B, but event B 3691 * doesn't happen exactly after event A, you record the timestamp (jiffies) of 3692 * when event A happened, then just before event B you call this function and 3693 * pass the timestamp as the first argument, and X as the second argument. 3694 */ 3695 static inline void 3696 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms) 3697 { 3698 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies; 3699 3700 /* 3701 * Don't re-read the value of "jiffies" every time since it may change 3702 * behind our back and break the math. 3703 */ 3704 tmp_jiffies = jiffies; 3705 target_jiffies = timestamp_jiffies + 3706 msecs_to_jiffies_timeout(to_wait_ms); 3707 3708 if (time_after(target_jiffies, tmp_jiffies)) { 3709 remaining_jiffies = target_jiffies - tmp_jiffies; 3710 while (remaining_jiffies) 3711 remaining_jiffies = 3712 schedule_timeout_uninterruptible(remaining_jiffies); 3713 } 3714 } 3715 3716 static inline bool 3717 __i915_request_irq_complete(const struct i915_request *rq) 3718 { 3719 struct intel_engine_cs *engine = rq->engine; 3720 u32 seqno; 3721 3722 /* Note that the engine may have wrapped around the seqno, and 3723 * so our request->global_seqno will be ahead of the hardware, 3724 * even though it completed the request before wrapping. We catch 3725 * this by kicking all the waiters before resetting the seqno 3726 * in hardware, and also signal the fence. 3727 */ 3728 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags)) 3729 return true; 3730 3731 /* The request was dequeued before we were awoken. We check after 3732 * inspecting the hw to confirm that this was the same request 3733 * that generated the HWS update. The memory barriers within 3734 * the request execution are sufficient to ensure that a check 3735 * after reading the value from hw matches this request. 3736 */ 3737 seqno = i915_request_global_seqno(rq); 3738 if (!seqno) 3739 return false; 3740 3741 /* Before we do the heavier coherent read of the seqno, 3742 * check the value (hopefully) in the CPU cacheline. 3743 */ 3744 if (__i915_request_completed(rq, seqno)) 3745 return true; 3746 3747 /* Ensure our read of the seqno is coherent so that we 3748 * do not "miss an interrupt" (i.e. if this is the last 3749 * request and the seqno write from the GPU is not visible 3750 * by the time the interrupt fires, we will see that the 3751 * request is incomplete and go back to sleep awaiting 3752 * another interrupt that will never come.) 3753 * 3754 * Strictly, we only need to do this once after an interrupt, 3755 * but it is easier and safer to do it every time the waiter 3756 * is woken. 3757 */ 3758 if (engine->irq_seqno_barrier && 3759 test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) { 3760 struct intel_breadcrumbs *b = &engine->breadcrumbs; 3761 3762 /* The ordering of irq_posted versus applying the barrier 3763 * is crucial. The clearing of the current irq_posted must 3764 * be visible before we perform the barrier operation, 3765 * such that if a subsequent interrupt arrives, irq_posted 3766 * is reasserted and our task rewoken (which causes us to 3767 * do another __i915_request_irq_complete() immediately 3768 * and reapply the barrier). Conversely, if the clear 3769 * occurs after the barrier, then an interrupt that arrived 3770 * whilst we waited on the barrier would not trigger a 3771 * barrier on the next pass, and the read may not see the 3772 * seqno update. 3773 */ 3774 engine->irq_seqno_barrier(engine); 3775 3776 /* If we consume the irq, but we are no longer the bottom-half, 3777 * the real bottom-half may not have serialised their own 3778 * seqno check with the irq-barrier (i.e. may have inspected 3779 * the seqno before we believe it coherent since they see 3780 * irq_posted == false but we are still running). 3781 */ 3782 spin_lock_irq(&b->irq_lock); 3783 if (b->irq_wait && b->irq_wait->tsk != current) 3784 /* Note that if the bottom-half is changed as we 3785 * are sending the wake-up, the new bottom-half will 3786 * be woken by whomever made the change. We only have 3787 * to worry about when we steal the irq-posted for 3788 * ourself. 3789 */ 3790 wake_up_process(b->irq_wait->tsk); 3791 spin_unlock_irq(&b->irq_lock); 3792 3793 if (__i915_request_completed(rq, seqno)) 3794 return true; 3795 } 3796 3797 return false; 3798 } 3799 3800 void i915_memcpy_init_early(struct drm_i915_private *dev_priv); 3801 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len); 3802 3803 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment, 3804 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot 3805 * perform the operation. To check beforehand, pass in the parameters to 3806 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits, 3807 * you only need to pass in the minor offsets, page-aligned pointers are 3808 * always valid. 3809 * 3810 * For just checking for SSE4.1, in the foreknowledge that the future use 3811 * will be correctly aligned, just use i915_has_memcpy_from_wc(). 3812 */ 3813 #define i915_can_memcpy_from_wc(dst, src, len) \ 3814 i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0) 3815 3816 #define i915_has_memcpy_from_wc() \ 3817 i915_memcpy_from_wc(NULL, NULL, 0) 3818 3819 /* i915_mm.c */ 3820 int remap_io_mapping(struct vm_area_struct *vma, 3821 unsigned long addr, unsigned long pfn, unsigned long size, 3822 struct io_mapping *iomap); 3823 3824 static inline int intel_hws_csb_write_index(struct drm_i915_private *i915) 3825 { 3826 if (INTEL_GEN(i915) >= 10) 3827 return CNL_HWS_CSB_WRITE_INDEX; 3828 else 3829 return I915_HWS_CSB_WRITE_INDEX; 3830 } 3831 3832 #endif 3833