xref: /linux/drivers/gpu/drm/i915/i915_drv.h (revision af50e4ba34f4c45e92535364133d4deb5931c1c5)
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29 
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32 
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35 
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/perf_event.h>
44 #include <linux/pm_qos.h>
45 #include <linux/reservation.h>
46 #include <linux/shmem_fs.h>
47 
48 #include <drm/drmP.h>
49 #include <drm/intel-gtt.h>
50 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
51 #include <drm/drm_gem.h>
52 #include <drm/drm_auth.h>
53 #include <drm/drm_cache.h>
54 
55 #include "i915_params.h"
56 #include "i915_reg.h"
57 #include "i915_utils.h"
58 
59 #include "intel_bios.h"
60 #include "intel_device_info.h"
61 #include "intel_display.h"
62 #include "intel_dpll_mgr.h"
63 #include "intel_lrc.h"
64 #include "intel_opregion.h"
65 #include "intel_ringbuffer.h"
66 #include "intel_uncore.h"
67 #include "intel_uc.h"
68 
69 #include "i915_gem.h"
70 #include "i915_gem_context.h"
71 #include "i915_gem_fence_reg.h"
72 #include "i915_gem_object.h"
73 #include "i915_gem_gtt.h"
74 #include "i915_gem_timeline.h"
75 
76 #include "i915_request.h"
77 #include "i915_vma.h"
78 
79 #include "intel_gvt.h"
80 
81 /* General customization:
82  */
83 
84 #define DRIVER_NAME		"i915"
85 #define DRIVER_DESC		"Intel Graphics"
86 #define DRIVER_DATE		"20180308"
87 #define DRIVER_TIMESTAMP	1520513379
88 
89 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
90  * WARN_ON()) for hw state sanity checks to check for unexpected conditions
91  * which may not necessarily be a user visible problem.  This will either
92  * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
93  * enable distros and users to tailor their preferred amount of i915 abrt
94  * spam.
95  */
96 #define I915_STATE_WARN(condition, format...) ({			\
97 	int __ret_warn_on = !!(condition);				\
98 	if (unlikely(__ret_warn_on))					\
99 		if (!WARN(i915_modparams.verbose_state_checks, format))	\
100 			DRM_ERROR(format);				\
101 	unlikely(__ret_warn_on);					\
102 })
103 
104 #define I915_STATE_WARN_ON(x)						\
105 	I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
106 
107 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG)
108 bool __i915_inject_load_failure(const char *func, int line);
109 #define i915_inject_load_failure() \
110 	__i915_inject_load_failure(__func__, __LINE__)
111 #else
112 #define i915_inject_load_failure() false
113 #endif
114 
115 typedef struct {
116 	uint32_t val;
117 } uint_fixed_16_16_t;
118 
119 #define FP_16_16_MAX ({ \
120 	uint_fixed_16_16_t fp; \
121 	fp.val = UINT_MAX; \
122 	fp; \
123 })
124 
125 static inline bool is_fixed16_zero(uint_fixed_16_16_t val)
126 {
127 	if (val.val == 0)
128 		return true;
129 	return false;
130 }
131 
132 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val)
133 {
134 	uint_fixed_16_16_t fp;
135 
136 	WARN_ON(val > U16_MAX);
137 
138 	fp.val = val << 16;
139 	return fp;
140 }
141 
142 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp)
143 {
144 	return DIV_ROUND_UP(fp.val, 1 << 16);
145 }
146 
147 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp)
148 {
149 	return fp.val >> 16;
150 }
151 
152 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1,
153 						 uint_fixed_16_16_t min2)
154 {
155 	uint_fixed_16_16_t min;
156 
157 	min.val = min(min1.val, min2.val);
158 	return min;
159 }
160 
161 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1,
162 						 uint_fixed_16_16_t max2)
163 {
164 	uint_fixed_16_16_t max;
165 
166 	max.val = max(max1.val, max2.val);
167 	return max;
168 }
169 
170 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val)
171 {
172 	uint_fixed_16_16_t fp;
173 	WARN_ON(val > U32_MAX);
174 	fp.val = (uint32_t) val;
175 	return fp;
176 }
177 
178 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val,
179 					    uint_fixed_16_16_t d)
180 {
181 	return DIV_ROUND_UP(val.val, d.val);
182 }
183 
184 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val,
185 						uint_fixed_16_16_t mul)
186 {
187 	uint64_t intermediate_val;
188 
189 	intermediate_val = (uint64_t) val * mul.val;
190 	intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16);
191 	WARN_ON(intermediate_val > U32_MAX);
192 	return (uint32_t) intermediate_val;
193 }
194 
195 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val,
196 					     uint_fixed_16_16_t mul)
197 {
198 	uint64_t intermediate_val;
199 
200 	intermediate_val = (uint64_t) val.val * mul.val;
201 	intermediate_val = intermediate_val >> 16;
202 	return clamp_u64_to_fixed16(intermediate_val);
203 }
204 
205 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d)
206 {
207 	uint64_t interm_val;
208 
209 	interm_val = (uint64_t)val << 16;
210 	interm_val = DIV_ROUND_UP_ULL(interm_val, d);
211 	return clamp_u64_to_fixed16(interm_val);
212 }
213 
214 static inline uint32_t div_round_up_u32_fixed16(uint32_t val,
215 						uint_fixed_16_16_t d)
216 {
217 	uint64_t interm_val;
218 
219 	interm_val = (uint64_t)val << 16;
220 	interm_val = DIV_ROUND_UP_ULL(interm_val, d.val);
221 	WARN_ON(interm_val > U32_MAX);
222 	return (uint32_t) interm_val;
223 }
224 
225 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val,
226 						     uint_fixed_16_16_t mul)
227 {
228 	uint64_t intermediate_val;
229 
230 	intermediate_val = (uint64_t) val * mul.val;
231 	return clamp_u64_to_fixed16(intermediate_val);
232 }
233 
234 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1,
235 					     uint_fixed_16_16_t add2)
236 {
237 	uint64_t interm_sum;
238 
239 	interm_sum = (uint64_t) add1.val + add2.val;
240 	return clamp_u64_to_fixed16(interm_sum);
241 }
242 
243 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1,
244 						 uint32_t add2)
245 {
246 	uint64_t interm_sum;
247 	uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2);
248 
249 	interm_sum = (uint64_t) add1.val + interm_add2.val;
250 	return clamp_u64_to_fixed16(interm_sum);
251 }
252 
253 enum hpd_pin {
254 	HPD_NONE = 0,
255 	HPD_TV = HPD_NONE,     /* TV is known to be unreliable */
256 	HPD_CRT,
257 	HPD_SDVO_B,
258 	HPD_SDVO_C,
259 	HPD_PORT_A,
260 	HPD_PORT_B,
261 	HPD_PORT_C,
262 	HPD_PORT_D,
263 	HPD_PORT_E,
264 	HPD_NUM_PINS
265 };
266 
267 #define for_each_hpd_pin(__pin) \
268 	for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
269 
270 #define HPD_STORM_DEFAULT_THRESHOLD 5
271 
272 struct i915_hotplug {
273 	struct work_struct hotplug_work;
274 
275 	struct {
276 		unsigned long last_jiffies;
277 		int count;
278 		enum {
279 			HPD_ENABLED = 0,
280 			HPD_DISABLED = 1,
281 			HPD_MARK_DISABLED = 2
282 		} state;
283 	} stats[HPD_NUM_PINS];
284 	u32 event_bits;
285 	struct delayed_work reenable_work;
286 
287 	struct intel_digital_port *irq_port[I915_MAX_PORTS];
288 	u32 long_port_mask;
289 	u32 short_port_mask;
290 	struct work_struct dig_port_work;
291 
292 	struct work_struct poll_init_work;
293 	bool poll_enabled;
294 
295 	unsigned int hpd_storm_threshold;
296 
297 	/*
298 	 * if we get a HPD irq from DP and a HPD irq from non-DP
299 	 * the non-DP HPD could block the workqueue on a mode config
300 	 * mutex getting, that userspace may have taken. However
301 	 * userspace is waiting on the DP workqueue to run which is
302 	 * blocked behind the non-DP one.
303 	 */
304 	struct workqueue_struct *dp_wq;
305 };
306 
307 #define I915_GEM_GPU_DOMAINS \
308 	(I915_GEM_DOMAIN_RENDER | \
309 	 I915_GEM_DOMAIN_SAMPLER | \
310 	 I915_GEM_DOMAIN_COMMAND | \
311 	 I915_GEM_DOMAIN_INSTRUCTION | \
312 	 I915_GEM_DOMAIN_VERTEX)
313 
314 struct drm_i915_private;
315 struct i915_mm_struct;
316 struct i915_mmu_object;
317 
318 struct drm_i915_file_private {
319 	struct drm_i915_private *dev_priv;
320 	struct drm_file *file;
321 
322 	struct {
323 		spinlock_t lock;
324 		struct list_head request_list;
325 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
326  * chosen to prevent the CPU getting more than a frame ahead of the GPU
327  * (when using lax throttling for the frontbuffer). We also use it to
328  * offer free GPU waitboosts for severely congested workloads.
329  */
330 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
331 	} mm;
332 	struct idr context_idr;
333 
334 	struct intel_rps_client {
335 		atomic_t boosts;
336 	} rps_client;
337 
338 	unsigned int bsd_engine;
339 
340 /* Client can have a maximum of 3 contexts banned before
341  * it is denied of creating new contexts. As one context
342  * ban needs 4 consecutive hangs, and more if there is
343  * progress in between, this is a last resort stop gap measure
344  * to limit the badly behaving clients access to gpu.
345  */
346 #define I915_MAX_CLIENT_CONTEXT_BANS 3
347 	atomic_t context_bans;
348 };
349 
350 /* Interface history:
351  *
352  * 1.1: Original.
353  * 1.2: Add Power Management
354  * 1.3: Add vblank support
355  * 1.4: Fix cmdbuffer path, add heap destroy
356  * 1.5: Add vblank pipe configuration
357  * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
358  *      - Support vertical blank on secondary display pipe
359  */
360 #define DRIVER_MAJOR		1
361 #define DRIVER_MINOR		6
362 #define DRIVER_PATCHLEVEL	0
363 
364 struct intel_overlay;
365 struct intel_overlay_error_state;
366 
367 struct sdvo_device_mapping {
368 	u8 initialized;
369 	u8 dvo_port;
370 	u8 slave_addr;
371 	u8 dvo_wiring;
372 	u8 i2c_pin;
373 	u8 ddc_pin;
374 };
375 
376 struct intel_connector;
377 struct intel_encoder;
378 struct intel_atomic_state;
379 struct intel_crtc_state;
380 struct intel_initial_plane_config;
381 struct intel_crtc;
382 struct intel_limit;
383 struct dpll;
384 struct intel_cdclk_state;
385 
386 struct drm_i915_display_funcs {
387 	void (*get_cdclk)(struct drm_i915_private *dev_priv,
388 			  struct intel_cdclk_state *cdclk_state);
389 	void (*set_cdclk)(struct drm_i915_private *dev_priv,
390 			  const struct intel_cdclk_state *cdclk_state);
391 	int (*get_fifo_size)(struct drm_i915_private *dev_priv,
392 			     enum i9xx_plane_id i9xx_plane);
393 	int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
394 	int (*compute_intermediate_wm)(struct drm_device *dev,
395 				       struct intel_crtc *intel_crtc,
396 				       struct intel_crtc_state *newstate);
397 	void (*initial_watermarks)(struct intel_atomic_state *state,
398 				   struct intel_crtc_state *cstate);
399 	void (*atomic_update_watermarks)(struct intel_atomic_state *state,
400 					 struct intel_crtc_state *cstate);
401 	void (*optimize_watermarks)(struct intel_atomic_state *state,
402 				    struct intel_crtc_state *cstate);
403 	int (*compute_global_watermarks)(struct drm_atomic_state *state);
404 	void (*update_wm)(struct intel_crtc *crtc);
405 	int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
406 	/* Returns the active state of the crtc, and if the crtc is active,
407 	 * fills out the pipe-config with the hw state. */
408 	bool (*get_pipe_config)(struct intel_crtc *,
409 				struct intel_crtc_state *);
410 	void (*get_initial_plane_config)(struct intel_crtc *,
411 					 struct intel_initial_plane_config *);
412 	int (*crtc_compute_clock)(struct intel_crtc *crtc,
413 				  struct intel_crtc_state *crtc_state);
414 	void (*crtc_enable)(struct intel_crtc_state *pipe_config,
415 			    struct drm_atomic_state *old_state);
416 	void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
417 			     struct drm_atomic_state *old_state);
418 	void (*update_crtcs)(struct drm_atomic_state *state);
419 	void (*audio_codec_enable)(struct intel_encoder *encoder,
420 				   const struct intel_crtc_state *crtc_state,
421 				   const struct drm_connector_state *conn_state);
422 	void (*audio_codec_disable)(struct intel_encoder *encoder,
423 				    const struct intel_crtc_state *old_crtc_state,
424 				    const struct drm_connector_state *old_conn_state);
425 	void (*fdi_link_train)(struct intel_crtc *crtc,
426 			       const struct intel_crtc_state *crtc_state);
427 	void (*init_clock_gating)(struct drm_i915_private *dev_priv);
428 	void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
429 	/* clock updates for mode set */
430 	/* cursor updates */
431 	/* render clock increase/decrease */
432 	/* display clock increase/decrease */
433 	/* pll clock increase/decrease */
434 
435 	void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
436 	void (*load_luts)(struct drm_crtc_state *crtc_state);
437 };
438 
439 #define CSR_VERSION(major, minor)	((major) << 16 | (minor))
440 #define CSR_VERSION_MAJOR(version)	((version) >> 16)
441 #define CSR_VERSION_MINOR(version)	((version) & 0xffff)
442 
443 struct intel_csr {
444 	struct work_struct work;
445 	const char *fw_path;
446 	uint32_t *dmc_payload;
447 	uint32_t dmc_fw_size;
448 	uint32_t version;
449 	uint32_t mmio_count;
450 	i915_reg_t mmioaddr[8];
451 	uint32_t mmiodata[8];
452 	uint32_t dc_state;
453 	uint32_t allowed_dc_mask;
454 };
455 
456 struct intel_display_error_state;
457 
458 struct i915_gpu_state {
459 	struct kref ref;
460 	ktime_t time;
461 	ktime_t boottime;
462 	ktime_t uptime;
463 
464 	struct drm_i915_private *i915;
465 
466 	char error_msg[128];
467 	bool simulated;
468 	bool awake;
469 	bool wakelock;
470 	bool suspended;
471 	int iommu;
472 	u32 reset_count;
473 	u32 suspend_count;
474 	struct intel_device_info device_info;
475 	struct intel_driver_caps driver_caps;
476 	struct i915_params params;
477 
478 	struct i915_error_uc {
479 		struct intel_uc_fw guc_fw;
480 		struct intel_uc_fw huc_fw;
481 		struct drm_i915_error_object *guc_log;
482 	} uc;
483 
484 	/* Generic register state */
485 	u32 eir;
486 	u32 pgtbl_er;
487 	u32 ier;
488 	u32 gtier[4], ngtier;
489 	u32 ccid;
490 	u32 derrmr;
491 	u32 forcewake;
492 	u32 error; /* gen6+ */
493 	u32 err_int; /* gen7 */
494 	u32 fault_data0; /* gen8, gen9 */
495 	u32 fault_data1; /* gen8, gen9 */
496 	u32 done_reg;
497 	u32 gac_eco;
498 	u32 gam_ecochk;
499 	u32 gab_ctl;
500 	u32 gfx_mode;
501 
502 	u32 nfence;
503 	u64 fence[I915_MAX_NUM_FENCES];
504 	struct intel_overlay_error_state *overlay;
505 	struct intel_display_error_state *display;
506 
507 	struct drm_i915_error_engine {
508 		int engine_id;
509 		/* Software tracked state */
510 		bool idle;
511 		bool waiting;
512 		int num_waiters;
513 		unsigned long hangcheck_timestamp;
514 		bool hangcheck_stalled;
515 		enum intel_engine_hangcheck_action hangcheck_action;
516 		struct i915_address_space *vm;
517 		int num_requests;
518 		u32 reset_count;
519 
520 		/* position of active request inside the ring */
521 		u32 rq_head, rq_post, rq_tail;
522 
523 		/* our own tracking of ring head and tail */
524 		u32 cpu_ring_head;
525 		u32 cpu_ring_tail;
526 
527 		u32 last_seqno;
528 
529 		/* Register state */
530 		u32 start;
531 		u32 tail;
532 		u32 head;
533 		u32 ctl;
534 		u32 mode;
535 		u32 hws;
536 		u32 ipeir;
537 		u32 ipehr;
538 		u32 bbstate;
539 		u32 instpm;
540 		u32 instps;
541 		u32 seqno;
542 		u64 bbaddr;
543 		u64 acthd;
544 		u32 fault_reg;
545 		u64 faddr;
546 		u32 rc_psmi; /* sleep state */
547 		u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
548 		struct intel_instdone instdone;
549 
550 		struct drm_i915_error_context {
551 			char comm[TASK_COMM_LEN];
552 			pid_t pid;
553 			u32 handle;
554 			u32 hw_id;
555 			int priority;
556 			int ban_score;
557 			int active;
558 			int guilty;
559 			bool bannable;
560 		} context;
561 
562 		struct drm_i915_error_object {
563 			u64 gtt_offset;
564 			u64 gtt_size;
565 			int page_count;
566 			int unused;
567 			u32 *pages[0];
568 		} *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
569 
570 		struct drm_i915_error_object **user_bo;
571 		long user_bo_count;
572 
573 		struct drm_i915_error_object *wa_ctx;
574 		struct drm_i915_error_object *default_state;
575 
576 		struct drm_i915_error_request {
577 			long jiffies;
578 			pid_t pid;
579 			u32 context;
580 			int priority;
581 			int ban_score;
582 			u32 seqno;
583 			u32 head;
584 			u32 tail;
585 		} *requests, execlist[EXECLIST_MAX_PORTS];
586 		unsigned int num_ports;
587 
588 		struct drm_i915_error_waiter {
589 			char comm[TASK_COMM_LEN];
590 			pid_t pid;
591 			u32 seqno;
592 		} *waiters;
593 
594 		struct {
595 			u32 gfx_mode;
596 			union {
597 				u64 pdp[4];
598 				u32 pp_dir_base;
599 			};
600 		} vm_info;
601 	} engine[I915_NUM_ENGINES];
602 
603 	struct drm_i915_error_buffer {
604 		u32 size;
605 		u32 name;
606 		u32 rseqno[I915_NUM_ENGINES], wseqno;
607 		u64 gtt_offset;
608 		u32 read_domains;
609 		u32 write_domain;
610 		s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
611 		u32 tiling:2;
612 		u32 dirty:1;
613 		u32 purgeable:1;
614 		u32 userptr:1;
615 		s32 engine:4;
616 		u32 cache_level:3;
617 	} *active_bo[I915_NUM_ENGINES], *pinned_bo;
618 	u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count;
619 	struct i915_address_space *active_vm[I915_NUM_ENGINES];
620 };
621 
622 enum i915_cache_level {
623 	I915_CACHE_NONE = 0,
624 	I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
625 	I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
626 			      caches, eg sampler/render caches, and the
627 			      large Last-Level-Cache. LLC is coherent with
628 			      the CPU, but L3 is only visible to the GPU. */
629 	I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
630 };
631 
632 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
633 
634 enum fb_op_origin {
635 	ORIGIN_GTT,
636 	ORIGIN_CPU,
637 	ORIGIN_CS,
638 	ORIGIN_FLIP,
639 	ORIGIN_DIRTYFB,
640 };
641 
642 struct intel_fbc {
643 	/* This is always the inner lock when overlapping with struct_mutex and
644 	 * it's the outer lock when overlapping with stolen_lock. */
645 	struct mutex lock;
646 	unsigned threshold;
647 	unsigned int possible_framebuffer_bits;
648 	unsigned int busy_bits;
649 	unsigned int visible_pipes_mask;
650 	struct intel_crtc *crtc;
651 
652 	struct drm_mm_node compressed_fb;
653 	struct drm_mm_node *compressed_llb;
654 
655 	bool false_color;
656 
657 	bool enabled;
658 	bool active;
659 
660 	bool underrun_detected;
661 	struct work_struct underrun_work;
662 
663 	/*
664 	 * Due to the atomic rules we can't access some structures without the
665 	 * appropriate locking, so we cache information here in order to avoid
666 	 * these problems.
667 	 */
668 	struct intel_fbc_state_cache {
669 		struct i915_vma *vma;
670 		unsigned long flags;
671 
672 		struct {
673 			unsigned int mode_flags;
674 			uint32_t hsw_bdw_pixel_rate;
675 		} crtc;
676 
677 		struct {
678 			unsigned int rotation;
679 			int src_w;
680 			int src_h;
681 			bool visible;
682 			/*
683 			 * Display surface base address adjustement for
684 			 * pageflips. Note that on gen4+ this only adjusts up
685 			 * to a tile, offsets within a tile are handled in
686 			 * the hw itself (with the TILEOFF register).
687 			 */
688 			int adjusted_x;
689 			int adjusted_y;
690 
691 			int y;
692 		} plane;
693 
694 		struct {
695 			const struct drm_format_info *format;
696 			unsigned int stride;
697 		} fb;
698 	} state_cache;
699 
700 	/*
701 	 * This structure contains everything that's relevant to program the
702 	 * hardware registers. When we want to figure out if we need to disable
703 	 * and re-enable FBC for a new configuration we just check if there's
704 	 * something different in the struct. The genx_fbc_activate functions
705 	 * are supposed to read from it in order to program the registers.
706 	 */
707 	struct intel_fbc_reg_params {
708 		struct i915_vma *vma;
709 		unsigned long flags;
710 
711 		struct {
712 			enum pipe pipe;
713 			enum i9xx_plane_id i9xx_plane;
714 			unsigned int fence_y_offset;
715 		} crtc;
716 
717 		struct {
718 			const struct drm_format_info *format;
719 			unsigned int stride;
720 		} fb;
721 
722 		int cfb_size;
723 		unsigned int gen9_wa_cfb_stride;
724 	} params;
725 
726 	struct intel_fbc_work {
727 		bool scheduled;
728 		u64 scheduled_vblank;
729 		struct work_struct work;
730 	} work;
731 
732 	const char *no_fbc_reason;
733 };
734 
735 /*
736  * HIGH_RR is the highest eDP panel refresh rate read from EDID
737  * LOW_RR is the lowest eDP panel refresh rate found from EDID
738  * parsing for same resolution.
739  */
740 enum drrs_refresh_rate_type {
741 	DRRS_HIGH_RR,
742 	DRRS_LOW_RR,
743 	DRRS_MAX_RR, /* RR count */
744 };
745 
746 enum drrs_support_type {
747 	DRRS_NOT_SUPPORTED = 0,
748 	STATIC_DRRS_SUPPORT = 1,
749 	SEAMLESS_DRRS_SUPPORT = 2
750 };
751 
752 struct intel_dp;
753 struct i915_drrs {
754 	struct mutex mutex;
755 	struct delayed_work work;
756 	struct intel_dp *dp;
757 	unsigned busy_frontbuffer_bits;
758 	enum drrs_refresh_rate_type refresh_rate_type;
759 	enum drrs_support_type type;
760 };
761 
762 struct i915_psr {
763 	struct mutex lock;
764 	bool sink_support;
765 	struct intel_dp *enabled;
766 	bool active;
767 	struct delayed_work work;
768 	unsigned busy_frontbuffer_bits;
769 	bool psr2_support;
770 	bool aux_frame_sync;
771 	bool link_standby;
772 	bool y_cord_support;
773 	bool colorimetry_support;
774 	bool alpm;
775 
776 	void (*enable_source)(struct intel_dp *,
777 			      const struct intel_crtc_state *);
778 	void (*disable_source)(struct intel_dp *,
779 			       const struct intel_crtc_state *);
780 	void (*enable_sink)(struct intel_dp *);
781 	void (*activate)(struct intel_dp *);
782 	void (*setup_vsc)(struct intel_dp *, const struct intel_crtc_state *);
783 };
784 
785 enum intel_pch {
786 	PCH_NONE = 0,	/* No PCH present */
787 	PCH_IBX,	/* Ibexpeak PCH */
788 	PCH_CPT,	/* Cougarpoint/Pantherpoint PCH */
789 	PCH_LPT,	/* Lynxpoint/Wildcatpoint PCH */
790 	PCH_SPT,        /* Sunrisepoint PCH */
791 	PCH_KBP,        /* Kaby Lake PCH */
792 	PCH_CNP,        /* Cannon Lake PCH */
793 	PCH_ICP,	/* Ice Lake PCH */
794 	PCH_NOP,
795 };
796 
797 enum intel_sbi_destination {
798 	SBI_ICLK,
799 	SBI_MPHY,
800 };
801 
802 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
803 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
804 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
805 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
806 #define QUIRK_INCREASE_T12_DELAY (1<<6)
807 
808 struct intel_fbdev;
809 struct intel_fbc_work;
810 
811 struct intel_gmbus {
812 	struct i2c_adapter adapter;
813 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
814 	u32 force_bit;
815 	u32 reg0;
816 	i915_reg_t gpio_reg;
817 	struct i2c_algo_bit_data bit_algo;
818 	struct drm_i915_private *dev_priv;
819 };
820 
821 struct i915_suspend_saved_registers {
822 	u32 saveDSPARB;
823 	u32 saveFBC_CONTROL;
824 	u32 saveCACHE_MODE_0;
825 	u32 saveMI_ARB_STATE;
826 	u32 saveSWF0[16];
827 	u32 saveSWF1[16];
828 	u32 saveSWF3[3];
829 	uint64_t saveFENCE[I915_MAX_NUM_FENCES];
830 	u32 savePCH_PORT_HOTPLUG;
831 	u16 saveGCDGMBUS;
832 };
833 
834 struct vlv_s0ix_state {
835 	/* GAM */
836 	u32 wr_watermark;
837 	u32 gfx_prio_ctrl;
838 	u32 arb_mode;
839 	u32 gfx_pend_tlb0;
840 	u32 gfx_pend_tlb1;
841 	u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
842 	u32 media_max_req_count;
843 	u32 gfx_max_req_count;
844 	u32 render_hwsp;
845 	u32 ecochk;
846 	u32 bsd_hwsp;
847 	u32 blt_hwsp;
848 	u32 tlb_rd_addr;
849 
850 	/* MBC */
851 	u32 g3dctl;
852 	u32 gsckgctl;
853 	u32 mbctl;
854 
855 	/* GCP */
856 	u32 ucgctl1;
857 	u32 ucgctl3;
858 	u32 rcgctl1;
859 	u32 rcgctl2;
860 	u32 rstctl;
861 	u32 misccpctl;
862 
863 	/* GPM */
864 	u32 gfxpause;
865 	u32 rpdeuhwtc;
866 	u32 rpdeuc;
867 	u32 ecobus;
868 	u32 pwrdwnupctl;
869 	u32 rp_down_timeout;
870 	u32 rp_deucsw;
871 	u32 rcubmabdtmr;
872 	u32 rcedata;
873 	u32 spare2gh;
874 
875 	/* Display 1 CZ domain */
876 	u32 gt_imr;
877 	u32 gt_ier;
878 	u32 pm_imr;
879 	u32 pm_ier;
880 	u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
881 
882 	/* GT SA CZ domain */
883 	u32 tilectl;
884 	u32 gt_fifoctl;
885 	u32 gtlc_wake_ctrl;
886 	u32 gtlc_survive;
887 	u32 pmwgicz;
888 
889 	/* Display 2 CZ domain */
890 	u32 gu_ctl0;
891 	u32 gu_ctl1;
892 	u32 pcbr;
893 	u32 clock_gate_dis2;
894 };
895 
896 struct intel_rps_ei {
897 	ktime_t ktime;
898 	u32 render_c0;
899 	u32 media_c0;
900 };
901 
902 struct intel_rps {
903 	/*
904 	 * work, interrupts_enabled and pm_iir are protected by
905 	 * dev_priv->irq_lock
906 	 */
907 	struct work_struct work;
908 	bool interrupts_enabled;
909 	u32 pm_iir;
910 
911 	/* PM interrupt bits that should never be masked */
912 	u32 pm_intrmsk_mbz;
913 
914 	/* Frequencies are stored in potentially platform dependent multiples.
915 	 * In other words, *_freq needs to be multiplied by X to be interesting.
916 	 * Soft limits are those which are used for the dynamic reclocking done
917 	 * by the driver (raise frequencies under heavy loads, and lower for
918 	 * lighter loads). Hard limits are those imposed by the hardware.
919 	 *
920 	 * A distinction is made for overclocking, which is never enabled by
921 	 * default, and is considered to be above the hard limit if it's
922 	 * possible at all.
923 	 */
924 	u8 cur_freq;		/* Current frequency (cached, may not == HW) */
925 	u8 min_freq_softlimit;	/* Minimum frequency permitted by the driver */
926 	u8 max_freq_softlimit;	/* Max frequency permitted by the driver */
927 	u8 max_freq;		/* Maximum frequency, RP0 if not overclocking */
928 	u8 min_freq;		/* AKA RPn. Minimum frequency */
929 	u8 boost_freq;		/* Frequency to request when wait boosting */
930 	u8 idle_freq;		/* Frequency to request when we are idle */
931 	u8 efficient_freq;	/* AKA RPe. Pre-determined balanced frequency */
932 	u8 rp1_freq;		/* "less than" RP0 power/freqency */
933 	u8 rp0_freq;		/* Non-overclocked max frequency. */
934 	u16 gpll_ref_freq;	/* vlv/chv GPLL reference frequency */
935 
936 	u8 up_threshold; /* Current %busy required to uplock */
937 	u8 down_threshold; /* Current %busy required to downclock */
938 
939 	int last_adj;
940 	enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
941 
942 	bool enabled;
943 	atomic_t num_waiters;
944 	atomic_t boosts;
945 
946 	/* manual wa residency calculations */
947 	struct intel_rps_ei ei;
948 };
949 
950 struct intel_rc6 {
951 	bool enabled;
952 	u64 prev_hw_residency[4];
953 	u64 cur_residency[4];
954 };
955 
956 struct intel_llc_pstate {
957 	bool enabled;
958 };
959 
960 struct intel_gen6_power_mgmt {
961 	struct intel_rps rps;
962 	struct intel_rc6 rc6;
963 	struct intel_llc_pstate llc_pstate;
964 };
965 
966 /* defined intel_pm.c */
967 extern spinlock_t mchdev_lock;
968 
969 struct intel_ilk_power_mgmt {
970 	u8 cur_delay;
971 	u8 min_delay;
972 	u8 max_delay;
973 	u8 fmax;
974 	u8 fstart;
975 
976 	u64 last_count1;
977 	unsigned long last_time1;
978 	unsigned long chipset_power;
979 	u64 last_count2;
980 	u64 last_time2;
981 	unsigned long gfx_power;
982 	u8 corr;
983 
984 	int c_m;
985 	int r_t;
986 };
987 
988 struct drm_i915_private;
989 struct i915_power_well;
990 
991 struct i915_power_well_ops {
992 	/*
993 	 * Synchronize the well's hw state to match the current sw state, for
994 	 * example enable/disable it based on the current refcount. Called
995 	 * during driver init and resume time, possibly after first calling
996 	 * the enable/disable handlers.
997 	 */
998 	void (*sync_hw)(struct drm_i915_private *dev_priv,
999 			struct i915_power_well *power_well);
1000 	/*
1001 	 * Enable the well and resources that depend on it (for example
1002 	 * interrupts located on the well). Called after the 0->1 refcount
1003 	 * transition.
1004 	 */
1005 	void (*enable)(struct drm_i915_private *dev_priv,
1006 		       struct i915_power_well *power_well);
1007 	/*
1008 	 * Disable the well and resources that depend on it. Called after
1009 	 * the 1->0 refcount transition.
1010 	 */
1011 	void (*disable)(struct drm_i915_private *dev_priv,
1012 			struct i915_power_well *power_well);
1013 	/* Returns the hw enabled state. */
1014 	bool (*is_enabled)(struct drm_i915_private *dev_priv,
1015 			   struct i915_power_well *power_well);
1016 };
1017 
1018 /* Power well structure for haswell */
1019 struct i915_power_well {
1020 	const char *name;
1021 	bool always_on;
1022 	/* power well enable/disable usage count */
1023 	int count;
1024 	/* cached hw enabled state */
1025 	bool hw_enabled;
1026 	u64 domains;
1027 	/* unique identifier for this power well */
1028 	enum i915_power_well_id id;
1029 	/*
1030 	 * Arbitraty data associated with this power well. Platform and power
1031 	 * well specific.
1032 	 */
1033 	union {
1034 		struct {
1035 			enum dpio_phy phy;
1036 		} bxt;
1037 		struct {
1038 			/* Mask of pipes whose IRQ logic is backed by the pw */
1039 			u8 irq_pipe_mask;
1040 			/* The pw is backing the VGA functionality */
1041 			bool has_vga:1;
1042 			bool has_fuses:1;
1043 		} hsw;
1044 	};
1045 	const struct i915_power_well_ops *ops;
1046 };
1047 
1048 struct i915_power_domains {
1049 	/*
1050 	 * Power wells needed for initialization at driver init and suspend
1051 	 * time are on. They are kept on until after the first modeset.
1052 	 */
1053 	bool init_power_on;
1054 	bool initializing;
1055 	int power_well_count;
1056 
1057 	struct mutex lock;
1058 	int domain_use_count[POWER_DOMAIN_NUM];
1059 	struct i915_power_well *power_wells;
1060 };
1061 
1062 #define MAX_L3_SLICES 2
1063 struct intel_l3_parity {
1064 	u32 *remap_info[MAX_L3_SLICES];
1065 	struct work_struct error_work;
1066 	int which_slice;
1067 };
1068 
1069 struct i915_gem_mm {
1070 	/** Memory allocator for GTT stolen memory */
1071 	struct drm_mm stolen;
1072 	/** Protects the usage of the GTT stolen memory allocator. This is
1073 	 * always the inner lock when overlapping with struct_mutex. */
1074 	struct mutex stolen_lock;
1075 
1076 	/* Protects bound_list/unbound_list and #drm_i915_gem_object.mm.link */
1077 	spinlock_t obj_lock;
1078 
1079 	/** List of all objects in gtt_space. Used to restore gtt
1080 	 * mappings on resume */
1081 	struct list_head bound_list;
1082 	/**
1083 	 * List of objects which are not bound to the GTT (thus
1084 	 * are idle and not used by the GPU). These objects may or may
1085 	 * not actually have any pages attached.
1086 	 */
1087 	struct list_head unbound_list;
1088 
1089 	/** List of all objects in gtt_space, currently mmaped by userspace.
1090 	 * All objects within this list must also be on bound_list.
1091 	 */
1092 	struct list_head userfault_list;
1093 
1094 	/**
1095 	 * List of objects which are pending destruction.
1096 	 */
1097 	struct llist_head free_list;
1098 	struct work_struct free_work;
1099 	spinlock_t free_lock;
1100 	/**
1101 	 * Count of objects pending destructions. Used to skip needlessly
1102 	 * waiting on an RCU barrier if no objects are waiting to be freed.
1103 	 */
1104 	atomic_t free_count;
1105 
1106 	/**
1107 	 * Small stash of WC pages
1108 	 */
1109 	struct pagevec wc_stash;
1110 
1111 	/**
1112 	 * tmpfs instance used for shmem backed objects
1113 	 */
1114 	struct vfsmount *gemfs;
1115 
1116 	/** PPGTT used for aliasing the PPGTT with the GTT */
1117 	struct i915_hw_ppgtt *aliasing_ppgtt;
1118 
1119 	struct notifier_block oom_notifier;
1120 	struct notifier_block vmap_notifier;
1121 	struct shrinker shrinker;
1122 
1123 	/** LRU list of objects with fence regs on them. */
1124 	struct list_head fence_list;
1125 
1126 	/**
1127 	 * Workqueue to fault in userptr pages, flushed by the execbuf
1128 	 * when required but otherwise left to userspace to try again
1129 	 * on EAGAIN.
1130 	 */
1131 	struct workqueue_struct *userptr_wq;
1132 
1133 	u64 unordered_timeline;
1134 
1135 	/* the indicator for dispatch video commands on two BSD rings */
1136 	atomic_t bsd_engine_dispatch_index;
1137 
1138 	/** Bit 6 swizzling required for X tiling */
1139 	uint32_t bit_6_swizzle_x;
1140 	/** Bit 6 swizzling required for Y tiling */
1141 	uint32_t bit_6_swizzle_y;
1142 
1143 	/* accounting, useful for userland debugging */
1144 	spinlock_t object_stat_lock;
1145 	u64 object_memory;
1146 	u32 object_count;
1147 };
1148 
1149 struct drm_i915_error_state_buf {
1150 	struct drm_i915_private *i915;
1151 	unsigned bytes;
1152 	unsigned size;
1153 	int err;
1154 	u8 *buf;
1155 	loff_t start;
1156 	loff_t pos;
1157 };
1158 
1159 #define I915_IDLE_ENGINES_TIMEOUT (200) /* in ms */
1160 
1161 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1162 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1163 
1164 #define I915_ENGINE_DEAD_TIMEOUT  (4 * HZ)  /* Seqno, head and subunits dead */
1165 #define I915_SEQNO_DEAD_TIMEOUT   (12 * HZ) /* Seqno dead with active head */
1166 
1167 struct i915_gpu_error {
1168 	/* For hangcheck timer */
1169 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1170 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1171 
1172 	struct delayed_work hangcheck_work;
1173 
1174 	/* For reset and error_state handling. */
1175 	spinlock_t lock;
1176 	/* Protected by the above dev->gpu_error.lock. */
1177 	struct i915_gpu_state *first_error;
1178 
1179 	atomic_t pending_fb_pin;
1180 
1181 	unsigned long missed_irq_rings;
1182 
1183 	/**
1184 	 * State variable controlling the reset flow and count
1185 	 *
1186 	 * This is a counter which gets incremented when reset is triggered,
1187 	 *
1188 	 * Before the reset commences, the I915_RESET_BACKOFF bit is set
1189 	 * meaning that any waiters holding onto the struct_mutex should
1190 	 * relinquish the lock immediately in order for the reset to start.
1191 	 *
1192 	 * If reset is not completed succesfully, the I915_WEDGE bit is
1193 	 * set meaning that hardware is terminally sour and there is no
1194 	 * recovery. All waiters on the reset_queue will be woken when
1195 	 * that happens.
1196 	 *
1197 	 * This counter is used by the wait_seqno code to notice that reset
1198 	 * event happened and it needs to restart the entire ioctl (since most
1199 	 * likely the seqno it waited for won't ever signal anytime soon).
1200 	 *
1201 	 * This is important for lock-free wait paths, where no contended lock
1202 	 * naturally enforces the correct ordering between the bail-out of the
1203 	 * waiter and the gpu reset work code.
1204 	 */
1205 	unsigned long reset_count;
1206 
1207 	/**
1208 	 * flags: Control various stages of the GPU reset
1209 	 *
1210 	 * #I915_RESET_BACKOFF - When we start a reset, we want to stop any
1211 	 * other users acquiring the struct_mutex. To do this we set the
1212 	 * #I915_RESET_BACKOFF bit in the error flags when we detect a reset
1213 	 * and then check for that bit before acquiring the struct_mutex (in
1214 	 * i915_mutex_lock_interruptible()?). I915_RESET_BACKOFF serves a
1215 	 * secondary role in preventing two concurrent global reset attempts.
1216 	 *
1217 	 * #I915_RESET_HANDOFF - To perform the actual GPU reset, we need the
1218 	 * struct_mutex. We try to acquire the struct_mutex in the reset worker,
1219 	 * but it may be held by some long running waiter (that we cannot
1220 	 * interrupt without causing trouble). Once we are ready to do the GPU
1221 	 * reset, we set the I915_RESET_HANDOFF bit and wakeup any waiters. If
1222 	 * they already hold the struct_mutex and want to participate they can
1223 	 * inspect the bit and do the reset directly, otherwise the worker
1224 	 * waits for the struct_mutex.
1225 	 *
1226 	 * #I915_RESET_ENGINE[num_engines] - Since the driver doesn't need to
1227 	 * acquire the struct_mutex to reset an engine, we need an explicit
1228 	 * flag to prevent two concurrent reset attempts in the same engine.
1229 	 * As the number of engines continues to grow, allocate the flags from
1230 	 * the most significant bits.
1231 	 *
1232 	 * #I915_WEDGED - If reset fails and we can no longer use the GPU,
1233 	 * we set the #I915_WEDGED bit. Prior to command submission, e.g.
1234 	 * i915_request_alloc(), this bit is checked and the sequence
1235 	 * aborted (with -EIO reported to userspace) if set.
1236 	 */
1237 	unsigned long flags;
1238 #define I915_RESET_BACKOFF	0
1239 #define I915_RESET_HANDOFF	1
1240 #define I915_RESET_MODESET	2
1241 #define I915_WEDGED		(BITS_PER_LONG - 1)
1242 #define I915_RESET_ENGINE	(I915_WEDGED - I915_NUM_ENGINES)
1243 
1244 	/** Number of times an engine has been reset */
1245 	u32 reset_engine_count[I915_NUM_ENGINES];
1246 
1247 	/**
1248 	 * Waitqueue to signal when a hang is detected. Used to for waiters
1249 	 * to release the struct_mutex for the reset to procede.
1250 	 */
1251 	wait_queue_head_t wait_queue;
1252 
1253 	/**
1254 	 * Waitqueue to signal when the reset has completed. Used by clients
1255 	 * that wait for dev_priv->mm.wedged to settle.
1256 	 */
1257 	wait_queue_head_t reset_queue;
1258 
1259 	/* For missed irq/seqno simulation. */
1260 	unsigned long test_irq_rings;
1261 };
1262 
1263 enum modeset_restore {
1264 	MODESET_ON_LID_OPEN,
1265 	MODESET_DONE,
1266 	MODESET_SUSPENDED,
1267 };
1268 
1269 #define DP_AUX_A 0x40
1270 #define DP_AUX_B 0x10
1271 #define DP_AUX_C 0x20
1272 #define DP_AUX_D 0x30
1273 #define DP_AUX_F 0x60
1274 
1275 #define DDC_PIN_B  0x05
1276 #define DDC_PIN_C  0x04
1277 #define DDC_PIN_D  0x06
1278 
1279 struct ddi_vbt_port_info {
1280 	int max_tmds_clock;
1281 
1282 	/*
1283 	 * This is an index in the HDMI/DVI DDI buffer translation table.
1284 	 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1285 	 * populate this field.
1286 	 */
1287 #define HDMI_LEVEL_SHIFT_UNKNOWN	0xff
1288 	uint8_t hdmi_level_shift;
1289 
1290 	uint8_t supports_dvi:1;
1291 	uint8_t supports_hdmi:1;
1292 	uint8_t supports_dp:1;
1293 	uint8_t supports_edp:1;
1294 
1295 	uint8_t alternate_aux_channel;
1296 	uint8_t alternate_ddc_pin;
1297 
1298 	uint8_t dp_boost_level;
1299 	uint8_t hdmi_boost_level;
1300 	int dp_max_link_rate;		/* 0 for not limited by VBT */
1301 };
1302 
1303 enum psr_lines_to_wait {
1304 	PSR_0_LINES_TO_WAIT = 0,
1305 	PSR_1_LINE_TO_WAIT,
1306 	PSR_4_LINES_TO_WAIT,
1307 	PSR_8_LINES_TO_WAIT
1308 };
1309 
1310 struct intel_vbt_data {
1311 	struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1312 	struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1313 
1314 	/* Feature bits */
1315 	unsigned int int_tv_support:1;
1316 	unsigned int lvds_dither:1;
1317 	unsigned int lvds_vbt:1;
1318 	unsigned int int_crt_support:1;
1319 	unsigned int lvds_use_ssc:1;
1320 	unsigned int display_clock_mode:1;
1321 	unsigned int fdi_rx_polarity_inverted:1;
1322 	unsigned int panel_type:4;
1323 	int lvds_ssc_freq;
1324 	unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1325 
1326 	enum drrs_support_type drrs_type;
1327 
1328 	struct {
1329 		int rate;
1330 		int lanes;
1331 		int preemphasis;
1332 		int vswing;
1333 		bool low_vswing;
1334 		bool initialized;
1335 		bool support;
1336 		int bpp;
1337 		struct edp_power_seq pps;
1338 	} edp;
1339 
1340 	struct {
1341 		bool full_link;
1342 		bool require_aux_wakeup;
1343 		int idle_frames;
1344 		enum psr_lines_to_wait lines_to_wait;
1345 		int tp1_wakeup_time;
1346 		int tp2_tp3_wakeup_time;
1347 	} psr;
1348 
1349 	struct {
1350 		u16 pwm_freq_hz;
1351 		bool present;
1352 		bool active_low_pwm;
1353 		u8 min_brightness;	/* min_brightness/255 of max */
1354 		u8 controller;		/* brightness controller number */
1355 		enum intel_backlight_type type;
1356 	} backlight;
1357 
1358 	/* MIPI DSI */
1359 	struct {
1360 		u16 panel_id;
1361 		struct mipi_config *config;
1362 		struct mipi_pps_data *pps;
1363 		u16 bl_ports;
1364 		u16 cabc_ports;
1365 		u8 seq_version;
1366 		u32 size;
1367 		u8 *data;
1368 		const u8 *sequence[MIPI_SEQ_MAX];
1369 		u8 *deassert_seq; /* Used by fixup_mipi_sequences() */
1370 	} dsi;
1371 
1372 	int crt_ddc_pin;
1373 
1374 	int child_dev_num;
1375 	struct child_device_config *child_dev;
1376 
1377 	struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1378 	struct sdvo_device_mapping sdvo_mappings[2];
1379 };
1380 
1381 enum intel_ddb_partitioning {
1382 	INTEL_DDB_PART_1_2,
1383 	INTEL_DDB_PART_5_6, /* IVB+ */
1384 };
1385 
1386 struct intel_wm_level {
1387 	bool enable;
1388 	uint32_t pri_val;
1389 	uint32_t spr_val;
1390 	uint32_t cur_val;
1391 	uint32_t fbc_val;
1392 };
1393 
1394 struct ilk_wm_values {
1395 	uint32_t wm_pipe[3];
1396 	uint32_t wm_lp[3];
1397 	uint32_t wm_lp_spr[3];
1398 	uint32_t wm_linetime[3];
1399 	bool enable_fbc_wm;
1400 	enum intel_ddb_partitioning partitioning;
1401 };
1402 
1403 struct g4x_pipe_wm {
1404 	uint16_t plane[I915_MAX_PLANES];
1405 	uint16_t fbc;
1406 };
1407 
1408 struct g4x_sr_wm {
1409 	uint16_t plane;
1410 	uint16_t cursor;
1411 	uint16_t fbc;
1412 };
1413 
1414 struct vlv_wm_ddl_values {
1415 	uint8_t plane[I915_MAX_PLANES];
1416 };
1417 
1418 struct vlv_wm_values {
1419 	struct g4x_pipe_wm pipe[3];
1420 	struct g4x_sr_wm sr;
1421 	struct vlv_wm_ddl_values ddl[3];
1422 	uint8_t level;
1423 	bool cxsr;
1424 };
1425 
1426 struct g4x_wm_values {
1427 	struct g4x_pipe_wm pipe[2];
1428 	struct g4x_sr_wm sr;
1429 	struct g4x_sr_wm hpll;
1430 	bool cxsr;
1431 	bool hpll_en;
1432 	bool fbc_en;
1433 };
1434 
1435 struct skl_ddb_entry {
1436 	uint16_t start, end;	/* in number of blocks, 'end' is exclusive */
1437 };
1438 
1439 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1440 {
1441 	return entry->end - entry->start;
1442 }
1443 
1444 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1445 				       const struct skl_ddb_entry *e2)
1446 {
1447 	if (e1->start == e2->start && e1->end == e2->end)
1448 		return true;
1449 
1450 	return false;
1451 }
1452 
1453 struct skl_ddb_allocation {
1454 	struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1455 	struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1456 };
1457 
1458 struct skl_wm_values {
1459 	unsigned dirty_pipes;
1460 	struct skl_ddb_allocation ddb;
1461 };
1462 
1463 struct skl_wm_level {
1464 	bool plane_en;
1465 	uint16_t plane_res_b;
1466 	uint8_t plane_res_l;
1467 };
1468 
1469 /* Stores plane specific WM parameters */
1470 struct skl_wm_params {
1471 	bool x_tiled, y_tiled;
1472 	bool rc_surface;
1473 	uint32_t width;
1474 	uint8_t cpp;
1475 	uint32_t plane_pixel_rate;
1476 	uint32_t y_min_scanlines;
1477 	uint32_t plane_bytes_per_line;
1478 	uint_fixed_16_16_t plane_blocks_per_line;
1479 	uint_fixed_16_16_t y_tile_minimum;
1480 	uint32_t linetime_us;
1481 	uint32_t dbuf_block_size;
1482 };
1483 
1484 /*
1485  * This struct helps tracking the state needed for runtime PM, which puts the
1486  * device in PCI D3 state. Notice that when this happens, nothing on the
1487  * graphics device works, even register access, so we don't get interrupts nor
1488  * anything else.
1489  *
1490  * Every piece of our code that needs to actually touch the hardware needs to
1491  * either call intel_runtime_pm_get or call intel_display_power_get with the
1492  * appropriate power domain.
1493  *
1494  * Our driver uses the autosuspend delay feature, which means we'll only really
1495  * suspend if we stay with zero refcount for a certain amount of time. The
1496  * default value is currently very conservative (see intel_runtime_pm_enable), but
1497  * it can be changed with the standard runtime PM files from sysfs.
1498  *
1499  * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1500  * goes back to false exactly before we reenable the IRQs. We use this variable
1501  * to check if someone is trying to enable/disable IRQs while they're supposed
1502  * to be disabled. This shouldn't happen and we'll print some error messages in
1503  * case it happens.
1504  *
1505  * For more, read the Documentation/power/runtime_pm.txt.
1506  */
1507 struct i915_runtime_pm {
1508 	atomic_t wakeref_count;
1509 	bool suspended;
1510 	bool irqs_enabled;
1511 };
1512 
1513 enum intel_pipe_crc_source {
1514 	INTEL_PIPE_CRC_SOURCE_NONE,
1515 	INTEL_PIPE_CRC_SOURCE_PLANE1,
1516 	INTEL_PIPE_CRC_SOURCE_PLANE2,
1517 	INTEL_PIPE_CRC_SOURCE_PF,
1518 	INTEL_PIPE_CRC_SOURCE_PIPE,
1519 	/* TV/DP on pre-gen5/vlv can't use the pipe source. */
1520 	INTEL_PIPE_CRC_SOURCE_TV,
1521 	INTEL_PIPE_CRC_SOURCE_DP_B,
1522 	INTEL_PIPE_CRC_SOURCE_DP_C,
1523 	INTEL_PIPE_CRC_SOURCE_DP_D,
1524 	INTEL_PIPE_CRC_SOURCE_AUTO,
1525 	INTEL_PIPE_CRC_SOURCE_MAX,
1526 };
1527 
1528 struct intel_pipe_crc_entry {
1529 	uint32_t frame;
1530 	uint32_t crc[5];
1531 };
1532 
1533 #define INTEL_PIPE_CRC_ENTRIES_NR	128
1534 struct intel_pipe_crc {
1535 	spinlock_t lock;
1536 	bool opened;		/* exclusive access to the result file */
1537 	struct intel_pipe_crc_entry *entries;
1538 	enum intel_pipe_crc_source source;
1539 	int head, tail;
1540 	wait_queue_head_t wq;
1541 	int skipped;
1542 };
1543 
1544 struct i915_frontbuffer_tracking {
1545 	spinlock_t lock;
1546 
1547 	/*
1548 	 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1549 	 * scheduled flips.
1550 	 */
1551 	unsigned busy_bits;
1552 	unsigned flip_bits;
1553 };
1554 
1555 struct i915_wa_reg {
1556 	i915_reg_t addr;
1557 	u32 value;
1558 	/* bitmask representing WA bits */
1559 	u32 mask;
1560 };
1561 
1562 #define I915_MAX_WA_REGS 16
1563 
1564 struct i915_workarounds {
1565 	struct i915_wa_reg reg[I915_MAX_WA_REGS];
1566 	u32 count;
1567 	u32 hw_whitelist_count[I915_NUM_ENGINES];
1568 };
1569 
1570 struct i915_virtual_gpu {
1571 	bool active;
1572 	u32 caps;
1573 };
1574 
1575 /* used in computing the new watermarks state */
1576 struct intel_wm_config {
1577 	unsigned int num_pipes_active;
1578 	bool sprites_enabled;
1579 	bool sprites_scaled;
1580 };
1581 
1582 struct i915_oa_format {
1583 	u32 format;
1584 	int size;
1585 };
1586 
1587 struct i915_oa_reg {
1588 	i915_reg_t addr;
1589 	u32 value;
1590 };
1591 
1592 struct i915_oa_config {
1593 	char uuid[UUID_STRING_LEN + 1];
1594 	int id;
1595 
1596 	const struct i915_oa_reg *mux_regs;
1597 	u32 mux_regs_len;
1598 	const struct i915_oa_reg *b_counter_regs;
1599 	u32 b_counter_regs_len;
1600 	const struct i915_oa_reg *flex_regs;
1601 	u32 flex_regs_len;
1602 
1603 	struct attribute_group sysfs_metric;
1604 	struct attribute *attrs[2];
1605 	struct device_attribute sysfs_metric_id;
1606 
1607 	atomic_t ref_count;
1608 };
1609 
1610 struct i915_perf_stream;
1611 
1612 /**
1613  * struct i915_perf_stream_ops - the OPs to support a specific stream type
1614  */
1615 struct i915_perf_stream_ops {
1616 	/**
1617 	 * @enable: Enables the collection of HW samples, either in response to
1618 	 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1619 	 * without `I915_PERF_FLAG_DISABLED`.
1620 	 */
1621 	void (*enable)(struct i915_perf_stream *stream);
1622 
1623 	/**
1624 	 * @disable: Disables the collection of HW samples, either in response
1625 	 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1626 	 * the stream.
1627 	 */
1628 	void (*disable)(struct i915_perf_stream *stream);
1629 
1630 	/**
1631 	 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1632 	 * once there is something ready to read() for the stream
1633 	 */
1634 	void (*poll_wait)(struct i915_perf_stream *stream,
1635 			  struct file *file,
1636 			  poll_table *wait);
1637 
1638 	/**
1639 	 * @wait_unlocked: For handling a blocking read, wait until there is
1640 	 * something to ready to read() for the stream. E.g. wait on the same
1641 	 * wait queue that would be passed to poll_wait().
1642 	 */
1643 	int (*wait_unlocked)(struct i915_perf_stream *stream);
1644 
1645 	/**
1646 	 * @read: Copy buffered metrics as records to userspace
1647 	 * **buf**: the userspace, destination buffer
1648 	 * **count**: the number of bytes to copy, requested by userspace
1649 	 * **offset**: zero at the start of the read, updated as the read
1650 	 * proceeds, it represents how many bytes have been copied so far and
1651 	 * the buffer offset for copying the next record.
1652 	 *
1653 	 * Copy as many buffered i915 perf samples and records for this stream
1654 	 * to userspace as will fit in the given buffer.
1655 	 *
1656 	 * Only write complete records; returning -%ENOSPC if there isn't room
1657 	 * for a complete record.
1658 	 *
1659 	 * Return any error condition that results in a short read such as
1660 	 * -%ENOSPC or -%EFAULT, even though these may be squashed before
1661 	 * returning to userspace.
1662 	 */
1663 	int (*read)(struct i915_perf_stream *stream,
1664 		    char __user *buf,
1665 		    size_t count,
1666 		    size_t *offset);
1667 
1668 	/**
1669 	 * @destroy: Cleanup any stream specific resources.
1670 	 *
1671 	 * The stream will always be disabled before this is called.
1672 	 */
1673 	void (*destroy)(struct i915_perf_stream *stream);
1674 };
1675 
1676 /**
1677  * struct i915_perf_stream - state for a single open stream FD
1678  */
1679 struct i915_perf_stream {
1680 	/**
1681 	 * @dev_priv: i915 drm device
1682 	 */
1683 	struct drm_i915_private *dev_priv;
1684 
1685 	/**
1686 	 * @link: Links the stream into ``&drm_i915_private->streams``
1687 	 */
1688 	struct list_head link;
1689 
1690 	/**
1691 	 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
1692 	 * properties given when opening a stream, representing the contents
1693 	 * of a single sample as read() by userspace.
1694 	 */
1695 	u32 sample_flags;
1696 
1697 	/**
1698 	 * @sample_size: Considering the configured contents of a sample
1699 	 * combined with the required header size, this is the total size
1700 	 * of a single sample record.
1701 	 */
1702 	int sample_size;
1703 
1704 	/**
1705 	 * @ctx: %NULL if measuring system-wide across all contexts or a
1706 	 * specific context that is being monitored.
1707 	 */
1708 	struct i915_gem_context *ctx;
1709 
1710 	/**
1711 	 * @enabled: Whether the stream is currently enabled, considering
1712 	 * whether the stream was opened in a disabled state and based
1713 	 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
1714 	 */
1715 	bool enabled;
1716 
1717 	/**
1718 	 * @ops: The callbacks providing the implementation of this specific
1719 	 * type of configured stream.
1720 	 */
1721 	const struct i915_perf_stream_ops *ops;
1722 
1723 	/**
1724 	 * @oa_config: The OA configuration used by the stream.
1725 	 */
1726 	struct i915_oa_config *oa_config;
1727 };
1728 
1729 /**
1730  * struct i915_oa_ops - Gen specific implementation of an OA unit stream
1731  */
1732 struct i915_oa_ops {
1733 	/**
1734 	 * @is_valid_b_counter_reg: Validates register's address for
1735 	 * programming boolean counters for a particular platform.
1736 	 */
1737 	bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
1738 				       u32 addr);
1739 
1740 	/**
1741 	 * @is_valid_mux_reg: Validates register's address for programming mux
1742 	 * for a particular platform.
1743 	 */
1744 	bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
1745 
1746 	/**
1747 	 * @is_valid_flex_reg: Validates register's address for programming
1748 	 * flex EU filtering for a particular platform.
1749 	 */
1750 	bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
1751 
1752 	/**
1753 	 * @init_oa_buffer: Resets the head and tail pointers of the
1754 	 * circular buffer for periodic OA reports.
1755 	 *
1756 	 * Called when first opening a stream for OA metrics, but also may be
1757 	 * called in response to an OA buffer overflow or other error
1758 	 * condition.
1759 	 *
1760 	 * Note it may be necessary to clear the full OA buffer here as part of
1761 	 * maintaining the invariable that new reports must be written to
1762 	 * zeroed memory for us to be able to reliable detect if an expected
1763 	 * report has not yet landed in memory.  (At least on Haswell the OA
1764 	 * buffer tail pointer is not synchronized with reports being visible
1765 	 * to the CPU)
1766 	 */
1767 	void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
1768 
1769 	/**
1770 	 * @enable_metric_set: Selects and applies any MUX configuration to set
1771 	 * up the Boolean and Custom (B/C) counters that are part of the
1772 	 * counter reports being sampled. May apply system constraints such as
1773 	 * disabling EU clock gating as required.
1774 	 */
1775 	int (*enable_metric_set)(struct drm_i915_private *dev_priv,
1776 				 const struct i915_oa_config *oa_config);
1777 
1778 	/**
1779 	 * @disable_metric_set: Remove system constraints associated with using
1780 	 * the OA unit.
1781 	 */
1782 	void (*disable_metric_set)(struct drm_i915_private *dev_priv);
1783 
1784 	/**
1785 	 * @oa_enable: Enable periodic sampling
1786 	 */
1787 	void (*oa_enable)(struct drm_i915_private *dev_priv);
1788 
1789 	/**
1790 	 * @oa_disable: Disable periodic sampling
1791 	 */
1792 	void (*oa_disable)(struct drm_i915_private *dev_priv);
1793 
1794 	/**
1795 	 * @read: Copy data from the circular OA buffer into a given userspace
1796 	 * buffer.
1797 	 */
1798 	int (*read)(struct i915_perf_stream *stream,
1799 		    char __user *buf,
1800 		    size_t count,
1801 		    size_t *offset);
1802 
1803 	/**
1804 	 * @oa_hw_tail_read: read the OA tail pointer register
1805 	 *
1806 	 * In particular this enables us to share all the fiddly code for
1807 	 * handling the OA unit tail pointer race that affects multiple
1808 	 * generations.
1809 	 */
1810 	u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
1811 };
1812 
1813 struct intel_cdclk_state {
1814 	unsigned int cdclk, vco, ref, bypass;
1815 	u8 voltage_level;
1816 };
1817 
1818 struct drm_i915_private {
1819 	struct drm_device drm;
1820 
1821 	struct kmem_cache *objects;
1822 	struct kmem_cache *vmas;
1823 	struct kmem_cache *luts;
1824 	struct kmem_cache *requests;
1825 	struct kmem_cache *dependencies;
1826 	struct kmem_cache *priorities;
1827 
1828 	const struct intel_device_info info;
1829 	struct intel_driver_caps caps;
1830 
1831 	/**
1832 	 * Data Stolen Memory - aka "i915 stolen memory" gives us the start and
1833 	 * end of stolen which we can optionally use to create GEM objects
1834 	 * backed by stolen memory. Note that stolen_usable_size tells us
1835 	 * exactly how much of this we are actually allowed to use, given that
1836 	 * some portion of it is in fact reserved for use by hardware functions.
1837 	 */
1838 	struct resource dsm;
1839 	/**
1840 	 * Reseved portion of Data Stolen Memory
1841 	 */
1842 	struct resource dsm_reserved;
1843 
1844 	/*
1845 	 * Stolen memory is segmented in hardware with different portions
1846 	 * offlimits to certain functions.
1847 	 *
1848 	 * The drm_mm is initialised to the total accessible range, as found
1849 	 * from the PCI config. On Broadwell+, this is further restricted to
1850 	 * avoid the first page! The upper end of stolen memory is reserved for
1851 	 * hardware functions and similarly removed from the accessible range.
1852 	 */
1853 	resource_size_t stolen_usable_size;	/* Total size minus reserved ranges */
1854 
1855 	void __iomem *regs;
1856 
1857 	struct intel_uncore uncore;
1858 
1859 	struct i915_virtual_gpu vgpu;
1860 
1861 	struct intel_gvt *gvt;
1862 
1863 	struct intel_huc huc;
1864 	struct intel_guc guc;
1865 
1866 	struct intel_csr csr;
1867 
1868 	struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1869 
1870 	/** gmbus_mutex protects against concurrent usage of the single hw gmbus
1871 	 * controller on different i2c buses. */
1872 	struct mutex gmbus_mutex;
1873 
1874 	/**
1875 	 * Base address of the gmbus and gpio block.
1876 	 */
1877 	uint32_t gpio_mmio_base;
1878 
1879 	/* MMIO base address for MIPI regs */
1880 	uint32_t mipi_mmio_base;
1881 
1882 	uint32_t psr_mmio_base;
1883 
1884 	uint32_t pps_mmio_base;
1885 
1886 	wait_queue_head_t gmbus_wait_queue;
1887 
1888 	struct pci_dev *bridge_dev;
1889 	struct intel_engine_cs *engine[I915_NUM_ENGINES];
1890 	/* Context used internally to idle the GPU and setup initial state */
1891 	struct i915_gem_context *kernel_context;
1892 	/* Context only to be used for injecting preemption commands */
1893 	struct i915_gem_context *preempt_context;
1894 	struct intel_engine_cs *engine_class[MAX_ENGINE_CLASS + 1]
1895 					    [MAX_ENGINE_INSTANCE + 1];
1896 
1897 	struct drm_dma_handle *status_page_dmah;
1898 	struct resource mch_res;
1899 
1900 	/* protects the irq masks */
1901 	spinlock_t irq_lock;
1902 
1903 	bool display_irqs_enabled;
1904 
1905 	/* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1906 	struct pm_qos_request pm_qos;
1907 
1908 	/* Sideband mailbox protection */
1909 	struct mutex sb_lock;
1910 
1911 	/** Cached value of IMR to avoid reads in updating the bitfield */
1912 	union {
1913 		u32 irq_mask;
1914 		u32 de_irq_mask[I915_MAX_PIPES];
1915 	};
1916 	u32 gt_irq_mask;
1917 	u32 pm_imr;
1918 	u32 pm_ier;
1919 	u32 pm_rps_events;
1920 	u32 pm_guc_events;
1921 	u32 pipestat_irq_mask[I915_MAX_PIPES];
1922 
1923 	struct i915_hotplug hotplug;
1924 	struct intel_fbc fbc;
1925 	struct i915_drrs drrs;
1926 	struct intel_opregion opregion;
1927 	struct intel_vbt_data vbt;
1928 
1929 	bool preserve_bios_swizzle;
1930 
1931 	/* overlay */
1932 	struct intel_overlay *overlay;
1933 
1934 	/* backlight registers and fields in struct intel_panel */
1935 	struct mutex backlight_lock;
1936 
1937 	/* LVDS info */
1938 	bool no_aux_handshake;
1939 
1940 	/* protects panel power sequencer state */
1941 	struct mutex pps_mutex;
1942 
1943 	struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1944 	int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1945 
1946 	unsigned int fsb_freq, mem_freq, is_ddr3;
1947 	unsigned int skl_preferred_vco_freq;
1948 	unsigned int max_cdclk_freq;
1949 
1950 	unsigned int max_dotclk_freq;
1951 	unsigned int rawclk_freq;
1952 	unsigned int hpll_freq;
1953 	unsigned int fdi_pll_freq;
1954 	unsigned int czclk_freq;
1955 
1956 	struct {
1957 		/*
1958 		 * The current logical cdclk state.
1959 		 * See intel_atomic_state.cdclk.logical
1960 		 *
1961 		 * For reading holding any crtc lock is sufficient,
1962 		 * for writing must hold all of them.
1963 		 */
1964 		struct intel_cdclk_state logical;
1965 		/*
1966 		 * The current actual cdclk state.
1967 		 * See intel_atomic_state.cdclk.actual
1968 		 */
1969 		struct intel_cdclk_state actual;
1970 		/* The current hardware cdclk state */
1971 		struct intel_cdclk_state hw;
1972 	} cdclk;
1973 
1974 	/**
1975 	 * wq - Driver workqueue for GEM.
1976 	 *
1977 	 * NOTE: Work items scheduled here are not allowed to grab any modeset
1978 	 * locks, for otherwise the flushing done in the pageflip code will
1979 	 * result in deadlocks.
1980 	 */
1981 	struct workqueue_struct *wq;
1982 
1983 	/* ordered wq for modesets */
1984 	struct workqueue_struct *modeset_wq;
1985 
1986 	/* Display functions */
1987 	struct drm_i915_display_funcs display;
1988 
1989 	/* PCH chipset type */
1990 	enum intel_pch pch_type;
1991 	unsigned short pch_id;
1992 
1993 	unsigned long quirks;
1994 
1995 	enum modeset_restore modeset_restore;
1996 	struct mutex modeset_restore_lock;
1997 	struct drm_atomic_state *modeset_restore_state;
1998 	struct drm_modeset_acquire_ctx reset_ctx;
1999 
2000 	struct list_head vm_list; /* Global list of all address spaces */
2001 	struct i915_ggtt ggtt; /* VM representing the global address space */
2002 
2003 	struct i915_gem_mm mm;
2004 	DECLARE_HASHTABLE(mm_structs, 7);
2005 	struct mutex mm_lock;
2006 
2007 	struct intel_ppat ppat;
2008 
2009 	/* Kernel Modesetting */
2010 
2011 	struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
2012 	struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
2013 
2014 #ifdef CONFIG_DEBUG_FS
2015 	struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
2016 #endif
2017 
2018 	/* dpll and cdclk state is protected by connection_mutex */
2019 	int num_shared_dpll;
2020 	struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
2021 	const struct intel_dpll_mgr *dpll_mgr;
2022 
2023 	/*
2024 	 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
2025 	 * Must be global rather than per dpll, because on some platforms
2026 	 * plls share registers.
2027 	 */
2028 	struct mutex dpll_lock;
2029 
2030 	unsigned int active_crtcs;
2031 	/* minimum acceptable cdclk for each pipe */
2032 	int min_cdclk[I915_MAX_PIPES];
2033 	/* minimum acceptable voltage level for each pipe */
2034 	u8 min_voltage_level[I915_MAX_PIPES];
2035 
2036 	int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
2037 
2038 	struct i915_workarounds workarounds;
2039 
2040 	struct i915_frontbuffer_tracking fb_tracking;
2041 
2042 	struct intel_atomic_helper {
2043 		struct llist_head free_list;
2044 		struct work_struct free_work;
2045 	} atomic_helper;
2046 
2047 	u16 orig_clock;
2048 
2049 	bool mchbar_need_disable;
2050 
2051 	struct intel_l3_parity l3_parity;
2052 
2053 	/* Cannot be determined by PCIID. You must always read a register. */
2054 	u32 edram_cap;
2055 
2056 	/*
2057 	 * Protects RPS/RC6 register access and PCU communication.
2058 	 * Must be taken after struct_mutex if nested. Note that
2059 	 * this lock may be held for long periods of time when
2060 	 * talking to hw - so only take it when talking to hw!
2061 	 */
2062 	struct mutex pcu_lock;
2063 
2064 	/* gen6+ GT PM state */
2065 	struct intel_gen6_power_mgmt gt_pm;
2066 
2067 	/* ilk-only ips/rps state. Everything in here is protected by the global
2068 	 * mchdev_lock in intel_pm.c */
2069 	struct intel_ilk_power_mgmt ips;
2070 
2071 	struct i915_power_domains power_domains;
2072 
2073 	struct i915_psr psr;
2074 
2075 	struct i915_gpu_error gpu_error;
2076 
2077 	struct drm_i915_gem_object *vlv_pctx;
2078 
2079 	/* list of fbdev register on this device */
2080 	struct intel_fbdev *fbdev;
2081 	struct work_struct fbdev_suspend_work;
2082 
2083 	struct drm_property *broadcast_rgb_property;
2084 	struct drm_property *force_audio_property;
2085 
2086 	/* hda/i915 audio component */
2087 	struct i915_audio_component *audio_component;
2088 	bool audio_component_registered;
2089 	/**
2090 	 * av_mutex - mutex for audio/video sync
2091 	 *
2092 	 */
2093 	struct mutex av_mutex;
2094 
2095 	struct {
2096 		struct list_head list;
2097 		struct llist_head free_list;
2098 		struct work_struct free_work;
2099 
2100 		/* The hw wants to have a stable context identifier for the
2101 		 * lifetime of the context (for OA, PASID, faults, etc).
2102 		 * This is limited in execlists to 21 bits.
2103 		 */
2104 		struct ida hw_ida;
2105 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
2106 #define GEN11_MAX_CONTEXT_HW_ID (1<<11) /* exclusive */
2107 	} contexts;
2108 
2109 	u32 fdi_rx_config;
2110 
2111 	/* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
2112 	u32 chv_phy_control;
2113 	/*
2114 	 * Shadows for CHV DPLL_MD regs to keep the state
2115 	 * checker somewhat working in the presence hardware
2116 	 * crappiness (can't read out DPLL_MD for pipes B & C).
2117 	 */
2118 	u32 chv_dpll_md[I915_MAX_PIPES];
2119 	u32 bxt_phy_grc;
2120 
2121 	u32 suspend_count;
2122 	bool power_domains_suspended;
2123 	struct i915_suspend_saved_registers regfile;
2124 	struct vlv_s0ix_state vlv_s0ix_state;
2125 
2126 	enum {
2127 		I915_SAGV_UNKNOWN = 0,
2128 		I915_SAGV_DISABLED,
2129 		I915_SAGV_ENABLED,
2130 		I915_SAGV_NOT_CONTROLLED
2131 	} sagv_status;
2132 
2133 	struct {
2134 		/*
2135 		 * Raw watermark latency values:
2136 		 * in 0.1us units for WM0,
2137 		 * in 0.5us units for WM1+.
2138 		 */
2139 		/* primary */
2140 		uint16_t pri_latency[5];
2141 		/* sprite */
2142 		uint16_t spr_latency[5];
2143 		/* cursor */
2144 		uint16_t cur_latency[5];
2145 		/*
2146 		 * Raw watermark memory latency values
2147 		 * for SKL for all 8 levels
2148 		 * in 1us units.
2149 		 */
2150 		uint16_t skl_latency[8];
2151 
2152 		/* current hardware state */
2153 		union {
2154 			struct ilk_wm_values hw;
2155 			struct skl_wm_values skl_hw;
2156 			struct vlv_wm_values vlv;
2157 			struct g4x_wm_values g4x;
2158 		};
2159 
2160 		uint8_t max_level;
2161 
2162 		/*
2163 		 * Should be held around atomic WM register writing; also
2164 		 * protects * intel_crtc->wm.active and
2165 		 * cstate->wm.need_postvbl_update.
2166 		 */
2167 		struct mutex wm_mutex;
2168 
2169 		/*
2170 		 * Set during HW readout of watermarks/DDB.  Some platforms
2171 		 * need to know when we're still using BIOS-provided values
2172 		 * (which we don't fully trust).
2173 		 */
2174 		bool distrust_bios_wm;
2175 	} wm;
2176 
2177 	struct i915_runtime_pm runtime_pm;
2178 
2179 	struct {
2180 		bool initialized;
2181 
2182 		struct kobject *metrics_kobj;
2183 		struct ctl_table_header *sysctl_header;
2184 
2185 		/*
2186 		 * Lock associated with adding/modifying/removing OA configs
2187 		 * in dev_priv->perf.metrics_idr.
2188 		 */
2189 		struct mutex metrics_lock;
2190 
2191 		/*
2192 		 * List of dynamic configurations, you need to hold
2193 		 * dev_priv->perf.metrics_lock to access it.
2194 		 */
2195 		struct idr metrics_idr;
2196 
2197 		/*
2198 		 * Lock associated with anything below within this structure
2199 		 * except exclusive_stream.
2200 		 */
2201 		struct mutex lock;
2202 		struct list_head streams;
2203 
2204 		struct {
2205 			/*
2206 			 * The stream currently using the OA unit. If accessed
2207 			 * outside a syscall associated to its file
2208 			 * descriptor, you need to hold
2209 			 * dev_priv->drm.struct_mutex.
2210 			 */
2211 			struct i915_perf_stream *exclusive_stream;
2212 
2213 			u32 specific_ctx_id;
2214 
2215 			struct hrtimer poll_check_timer;
2216 			wait_queue_head_t poll_wq;
2217 			bool pollin;
2218 
2219 			/**
2220 			 * For rate limiting any notifications of spurious
2221 			 * invalid OA reports
2222 			 */
2223 			struct ratelimit_state spurious_report_rs;
2224 
2225 			bool periodic;
2226 			int period_exponent;
2227 
2228 			struct i915_oa_config test_config;
2229 
2230 			struct {
2231 				struct i915_vma *vma;
2232 				u8 *vaddr;
2233 				u32 last_ctx_id;
2234 				int format;
2235 				int format_size;
2236 
2237 				/**
2238 				 * Locks reads and writes to all head/tail state
2239 				 *
2240 				 * Consider: the head and tail pointer state
2241 				 * needs to be read consistently from a hrtimer
2242 				 * callback (atomic context) and read() fop
2243 				 * (user context) with tail pointer updates
2244 				 * happening in atomic context and head updates
2245 				 * in user context and the (unlikely)
2246 				 * possibility of read() errors needing to
2247 				 * reset all head/tail state.
2248 				 *
2249 				 * Note: Contention or performance aren't
2250 				 * currently a significant concern here
2251 				 * considering the relatively low frequency of
2252 				 * hrtimer callbacks (5ms period) and that
2253 				 * reads typically only happen in response to a
2254 				 * hrtimer event and likely complete before the
2255 				 * next callback.
2256 				 *
2257 				 * Note: This lock is not held *while* reading
2258 				 * and copying data to userspace so the value
2259 				 * of head observed in htrimer callbacks won't
2260 				 * represent any partial consumption of data.
2261 				 */
2262 				spinlock_t ptr_lock;
2263 
2264 				/**
2265 				 * One 'aging' tail pointer and one 'aged'
2266 				 * tail pointer ready to used for reading.
2267 				 *
2268 				 * Initial values of 0xffffffff are invalid
2269 				 * and imply that an update is required
2270 				 * (and should be ignored by an attempted
2271 				 * read)
2272 				 */
2273 				struct {
2274 					u32 offset;
2275 				} tails[2];
2276 
2277 				/**
2278 				 * Index for the aged tail ready to read()
2279 				 * data up to.
2280 				 */
2281 				unsigned int aged_tail_idx;
2282 
2283 				/**
2284 				 * A monotonic timestamp for when the current
2285 				 * aging tail pointer was read; used to
2286 				 * determine when it is old enough to trust.
2287 				 */
2288 				u64 aging_timestamp;
2289 
2290 				/**
2291 				 * Although we can always read back the head
2292 				 * pointer register, we prefer to avoid
2293 				 * trusting the HW state, just to avoid any
2294 				 * risk that some hardware condition could
2295 				 * somehow bump the head pointer unpredictably
2296 				 * and cause us to forward the wrong OA buffer
2297 				 * data to userspace.
2298 				 */
2299 				u32 head;
2300 			} oa_buffer;
2301 
2302 			u32 gen7_latched_oastatus1;
2303 			u32 ctx_oactxctrl_offset;
2304 			u32 ctx_flexeu0_offset;
2305 
2306 			/**
2307 			 * The RPT_ID/reason field for Gen8+ includes a bit
2308 			 * to determine if the CTX ID in the report is valid
2309 			 * but the specific bit differs between Gen 8 and 9
2310 			 */
2311 			u32 gen8_valid_ctx_bit;
2312 
2313 			struct i915_oa_ops ops;
2314 			const struct i915_oa_format *oa_formats;
2315 		} oa;
2316 	} perf;
2317 
2318 	/* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2319 	struct {
2320 		void (*resume)(struct drm_i915_private *);
2321 		void (*cleanup_engine)(struct intel_engine_cs *engine);
2322 
2323 		struct list_head timelines;
2324 		struct i915_gem_timeline global_timeline;
2325 		u32 active_requests;
2326 
2327 		/**
2328 		 * Is the GPU currently considered idle, or busy executing
2329 		 * userspace requests? Whilst idle, we allow runtime power
2330 		 * management to power down the hardware and display clocks.
2331 		 * In order to reduce the effect on performance, there
2332 		 * is a slight delay before we do so.
2333 		 */
2334 		bool awake;
2335 
2336 		/**
2337 		 * The number of times we have woken up.
2338 		 */
2339 		unsigned int epoch;
2340 #define I915_EPOCH_INVALID 0
2341 
2342 		/**
2343 		 * We leave the user IRQ off as much as possible,
2344 		 * but this means that requests will finish and never
2345 		 * be retired once the system goes idle. Set a timer to
2346 		 * fire periodically while the ring is running. When it
2347 		 * fires, go retire requests.
2348 		 */
2349 		struct delayed_work retire_work;
2350 
2351 		/**
2352 		 * When we detect an idle GPU, we want to turn on
2353 		 * powersaving features. So once we see that there
2354 		 * are no more requests outstanding and no more
2355 		 * arrive within a small period of time, we fire
2356 		 * off the idle_work.
2357 		 */
2358 		struct delayed_work idle_work;
2359 
2360 		ktime_t last_init_time;
2361 	} gt;
2362 
2363 	/* perform PHY state sanity checks? */
2364 	bool chv_phy_assert[2];
2365 
2366 	bool ipc_enabled;
2367 
2368 	/* Used to save the pipe-to-encoder mapping for audio */
2369 	struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2370 
2371 	/* necessary resource sharing with HDMI LPE audio driver. */
2372 	struct {
2373 		struct platform_device *platdev;
2374 		int	irq;
2375 	} lpe_audio;
2376 
2377 	struct i915_pmu pmu;
2378 
2379 	/*
2380 	 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2381 	 * will be rejected. Instead look for a better place.
2382 	 */
2383 };
2384 
2385 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2386 {
2387 	return container_of(dev, struct drm_i915_private, drm);
2388 }
2389 
2390 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2391 {
2392 	return to_i915(dev_get_drvdata(kdev));
2393 }
2394 
2395 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2396 {
2397 	return container_of(guc, struct drm_i915_private, guc);
2398 }
2399 
2400 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2401 {
2402 	return container_of(huc, struct drm_i915_private, huc);
2403 }
2404 
2405 /* Simple iterator over all initialised engines */
2406 #define for_each_engine(engine__, dev_priv__, id__) \
2407 	for ((id__) = 0; \
2408 	     (id__) < I915_NUM_ENGINES; \
2409 	     (id__)++) \
2410 		for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2411 
2412 /* Iterator over subset of engines selected by mask */
2413 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2414 	for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask;	\
2415 	     tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; )
2416 
2417 enum hdmi_force_audio {
2418 	HDMI_AUDIO_OFF_DVI = -2,	/* no aux data for HDMI-DVI converter */
2419 	HDMI_AUDIO_OFF,			/* force turn off HDMI audio */
2420 	HDMI_AUDIO_AUTO,		/* trust EDID */
2421 	HDMI_AUDIO_ON,			/* force turn on HDMI audio */
2422 };
2423 
2424 #define I915_GTT_OFFSET_NONE ((u32)-1)
2425 
2426 /*
2427  * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2428  * considered to be the frontbuffer for the given plane interface-wise. This
2429  * doesn't mean that the hw necessarily already scans it out, but that any
2430  * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2431  *
2432  * We have one bit per pipe and per scanout plane type.
2433  */
2434 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2435 #define INTEL_FRONTBUFFER(pipe, plane_id) ({ \
2436 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 32); \
2437 	BUILD_BUG_ON(I915_MAX_PLANES > INTEL_FRONTBUFFER_BITS_PER_PIPE); \
2438 	BIT((plane_id) + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)); \
2439 })
2440 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2441 	BIT(INTEL_FRONTBUFFER_BITS_PER_PIPE - 1 + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2442 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2443 	GENMASK(INTEL_FRONTBUFFER_BITS_PER_PIPE * ((pipe) + 1) - 1, \
2444 		INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2445 
2446 /*
2447  * Optimised SGL iterator for GEM objects
2448  */
2449 static __always_inline struct sgt_iter {
2450 	struct scatterlist *sgp;
2451 	union {
2452 		unsigned long pfn;
2453 		dma_addr_t dma;
2454 	};
2455 	unsigned int curr;
2456 	unsigned int max;
2457 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2458 	struct sgt_iter s = { .sgp = sgl };
2459 
2460 	if (s.sgp) {
2461 		s.max = s.curr = s.sgp->offset;
2462 		s.max += s.sgp->length;
2463 		if (dma)
2464 			s.dma = sg_dma_address(s.sgp);
2465 		else
2466 			s.pfn = page_to_pfn(sg_page(s.sgp));
2467 	}
2468 
2469 	return s;
2470 }
2471 
2472 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2473 {
2474 	++sg;
2475 	if (unlikely(sg_is_chain(sg)))
2476 		sg = sg_chain_ptr(sg);
2477 	return sg;
2478 }
2479 
2480 /**
2481  * __sg_next - return the next scatterlist entry in a list
2482  * @sg:		The current sg entry
2483  *
2484  * Description:
2485  *   If the entry is the last, return NULL; otherwise, step to the next
2486  *   element in the array (@sg@+1). If that's a chain pointer, follow it;
2487  *   otherwise just return the pointer to the current element.
2488  **/
2489 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2490 {
2491 #ifdef CONFIG_DEBUG_SG
2492 	BUG_ON(sg->sg_magic != SG_MAGIC);
2493 #endif
2494 	return sg_is_last(sg) ? NULL : ____sg_next(sg);
2495 }
2496 
2497 /**
2498  * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2499  * @__dmap:	DMA address (output)
2500  * @__iter:	'struct sgt_iter' (iterator state, internal)
2501  * @__sgt:	sg_table to iterate over (input)
2502  */
2503 #define for_each_sgt_dma(__dmap, __iter, __sgt)				\
2504 	for ((__iter) = __sgt_iter((__sgt)->sgl, true);			\
2505 	     ((__dmap) = (__iter).dma + (__iter).curr);			\
2506 	     (((__iter).curr += PAGE_SIZE) >= (__iter).max) ?		\
2507 	     (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0)
2508 
2509 /**
2510  * for_each_sgt_page - iterate over the pages of the given sg_table
2511  * @__pp:	page pointer (output)
2512  * @__iter:	'struct sgt_iter' (iterator state, internal)
2513  * @__sgt:	sg_table to iterate over (input)
2514  */
2515 #define for_each_sgt_page(__pp, __iter, __sgt)				\
2516 	for ((__iter) = __sgt_iter((__sgt)->sgl, false);		\
2517 	     ((__pp) = (__iter).pfn == 0 ? NULL :			\
2518 	      pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2519 	     (((__iter).curr += PAGE_SIZE) >= (__iter).max) ?		\
2520 	     (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0)
2521 
2522 static inline unsigned int i915_sg_page_sizes(struct scatterlist *sg)
2523 {
2524 	unsigned int page_sizes;
2525 
2526 	page_sizes = 0;
2527 	while (sg) {
2528 		GEM_BUG_ON(sg->offset);
2529 		GEM_BUG_ON(!IS_ALIGNED(sg->length, PAGE_SIZE));
2530 		page_sizes |= sg->length;
2531 		sg = __sg_next(sg);
2532 	}
2533 
2534 	return page_sizes;
2535 }
2536 
2537 static inline unsigned int i915_sg_segment_size(void)
2538 {
2539 	unsigned int size = swiotlb_max_segment();
2540 
2541 	if (size == 0)
2542 		return SCATTERLIST_MAX_SEGMENT;
2543 
2544 	size = rounddown(size, PAGE_SIZE);
2545 	/* swiotlb_max_segment_size can return 1 byte when it means one page. */
2546 	if (size < PAGE_SIZE)
2547 		size = PAGE_SIZE;
2548 
2549 	return size;
2550 }
2551 
2552 static inline const struct intel_device_info *
2553 intel_info(const struct drm_i915_private *dev_priv)
2554 {
2555 	return &dev_priv->info;
2556 }
2557 
2558 #define INTEL_INFO(dev_priv)	intel_info((dev_priv))
2559 
2560 #define INTEL_GEN(dev_priv)	((dev_priv)->info.gen)
2561 #define INTEL_DEVID(dev_priv)	((dev_priv)->info.device_id)
2562 
2563 #define REVID_FOREVER		0xff
2564 #define INTEL_REVID(dev_priv)	((dev_priv)->drm.pdev->revision)
2565 
2566 #define GEN_FOREVER (0)
2567 
2568 #define INTEL_GEN_MASK(s, e) ( \
2569 	BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \
2570 	BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \
2571 	GENMASK((e) != GEN_FOREVER ? (e) - 1 : BITS_PER_LONG - 1, \
2572 		(s) != GEN_FOREVER ? (s) - 1 : 0) \
2573 )
2574 
2575 /*
2576  * Returns true if Gen is in inclusive range [Start, End].
2577  *
2578  * Use GEN_FOREVER for unbound start and or end.
2579  */
2580 #define IS_GEN(dev_priv, s, e) \
2581 	(!!((dev_priv)->info.gen_mask & INTEL_GEN_MASK((s), (e))))
2582 
2583 /*
2584  * Return true if revision is in range [since,until] inclusive.
2585  *
2586  * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2587  */
2588 #define IS_REVID(p, since, until) \
2589 	(INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2590 
2591 #define IS_PLATFORM(dev_priv, p) ((dev_priv)->info.platform_mask & BIT(p))
2592 
2593 #define IS_I830(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I830)
2594 #define IS_I845G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I845G)
2595 #define IS_I85X(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I85X)
2596 #define IS_I865G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I865G)
2597 #define IS_I915G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I915G)
2598 #define IS_I915GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I915GM)
2599 #define IS_I945G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I945G)
2600 #define IS_I945GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I945GM)
2601 #define IS_I965G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I965G)
2602 #define IS_I965GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I965GM)
2603 #define IS_G45(dev_priv)	IS_PLATFORM(dev_priv, INTEL_G45)
2604 #define IS_GM45(dev_priv)	IS_PLATFORM(dev_priv, INTEL_GM45)
2605 #define IS_G4X(dev_priv)	(IS_G45(dev_priv) || IS_GM45(dev_priv))
2606 #define IS_PINEVIEW_G(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa001)
2607 #define IS_PINEVIEW_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa011)
2608 #define IS_PINEVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_PINEVIEW)
2609 #define IS_G33(dev_priv)	IS_PLATFORM(dev_priv, INTEL_G33)
2610 #define IS_IRONLAKE_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0046)
2611 #define IS_IVYBRIDGE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE)
2612 #define IS_IVB_GT1(dev_priv)	(IS_IVYBRIDGE(dev_priv) && \
2613 				 (dev_priv)->info.gt == 1)
2614 #define IS_VALLEYVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW)
2615 #define IS_CHERRYVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW)
2616 #define IS_HASWELL(dev_priv)	IS_PLATFORM(dev_priv, INTEL_HASWELL)
2617 #define IS_BROADWELL(dev_priv)	IS_PLATFORM(dev_priv, INTEL_BROADWELL)
2618 #define IS_SKYLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_SKYLAKE)
2619 #define IS_BROXTON(dev_priv)	IS_PLATFORM(dev_priv, INTEL_BROXTON)
2620 #define IS_KABYLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_KABYLAKE)
2621 #define IS_GEMINILAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_GEMINILAKE)
2622 #define IS_COFFEELAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_COFFEELAKE)
2623 #define IS_CANNONLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_CANNONLAKE)
2624 #define IS_ICELAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_ICELAKE)
2625 #define IS_MOBILE(dev_priv)	((dev_priv)->info.is_mobile)
2626 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2627 				    (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2628 #define IS_BDW_ULT(dev_priv)	(IS_BROADWELL(dev_priv) && \
2629 				 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 ||	\
2630 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xb ||	\
2631 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2632 /* ULX machines are also considered ULT. */
2633 #define IS_BDW_ULX(dev_priv)	(IS_BROADWELL(dev_priv) && \
2634 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2635 #define IS_BDW_GT3(dev_priv)	(IS_BROADWELL(dev_priv) && \
2636 				 (dev_priv)->info.gt == 3)
2637 #define IS_HSW_ULT(dev_priv)	(IS_HASWELL(dev_priv) && \
2638 				 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2639 #define IS_HSW_GT3(dev_priv)	(IS_HASWELL(dev_priv) && \
2640 				 (dev_priv)->info.gt == 3)
2641 /* ULX machines are also considered ULT. */
2642 #define IS_HSW_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0A0E || \
2643 				 INTEL_DEVID(dev_priv) == 0x0A1E)
2644 #define IS_SKL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x1906 || \
2645 				 INTEL_DEVID(dev_priv) == 0x1913 || \
2646 				 INTEL_DEVID(dev_priv) == 0x1916 || \
2647 				 INTEL_DEVID(dev_priv) == 0x1921 || \
2648 				 INTEL_DEVID(dev_priv) == 0x1926)
2649 #define IS_SKL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x190E || \
2650 				 INTEL_DEVID(dev_priv) == 0x1915 || \
2651 				 INTEL_DEVID(dev_priv) == 0x191E)
2652 #define IS_KBL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x5906 || \
2653 				 INTEL_DEVID(dev_priv) == 0x5913 || \
2654 				 INTEL_DEVID(dev_priv) == 0x5916 || \
2655 				 INTEL_DEVID(dev_priv) == 0x5921 || \
2656 				 INTEL_DEVID(dev_priv) == 0x5926)
2657 #define IS_KBL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x590E || \
2658 				 INTEL_DEVID(dev_priv) == 0x5915 || \
2659 				 INTEL_DEVID(dev_priv) == 0x591E)
2660 #define IS_SKL_GT2(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2661 				 (dev_priv)->info.gt == 2)
2662 #define IS_SKL_GT3(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2663 				 (dev_priv)->info.gt == 3)
2664 #define IS_SKL_GT4(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2665 				 (dev_priv)->info.gt == 4)
2666 #define IS_KBL_GT2(dev_priv)	(IS_KABYLAKE(dev_priv) && \
2667 				 (dev_priv)->info.gt == 2)
2668 #define IS_KBL_GT3(dev_priv)	(IS_KABYLAKE(dev_priv) && \
2669 				 (dev_priv)->info.gt == 3)
2670 #define IS_CFL_ULT(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2671 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
2672 #define IS_CFL_GT2(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2673 				 (dev_priv)->info.gt == 2)
2674 #define IS_CFL_GT3(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2675 				 (dev_priv)->info.gt == 3)
2676 #define IS_CNL_WITH_PORT_F(dev_priv)   (IS_CANNONLAKE(dev_priv) && \
2677 					(INTEL_DEVID(dev_priv) & 0x0004) == 0x0004)
2678 
2679 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2680 
2681 #define SKL_REVID_A0		0x0
2682 #define SKL_REVID_B0		0x1
2683 #define SKL_REVID_C0		0x2
2684 #define SKL_REVID_D0		0x3
2685 #define SKL_REVID_E0		0x4
2686 #define SKL_REVID_F0		0x5
2687 #define SKL_REVID_G0		0x6
2688 #define SKL_REVID_H0		0x7
2689 
2690 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2691 
2692 #define BXT_REVID_A0		0x0
2693 #define BXT_REVID_A1		0x1
2694 #define BXT_REVID_B0		0x3
2695 #define BXT_REVID_B_LAST	0x8
2696 #define BXT_REVID_C0		0x9
2697 
2698 #define IS_BXT_REVID(dev_priv, since, until) \
2699 	(IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2700 
2701 #define KBL_REVID_A0		0x0
2702 #define KBL_REVID_B0		0x1
2703 #define KBL_REVID_C0		0x2
2704 #define KBL_REVID_D0		0x3
2705 #define KBL_REVID_E0		0x4
2706 
2707 #define IS_KBL_REVID(dev_priv, since, until) \
2708 	(IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2709 
2710 #define GLK_REVID_A0		0x0
2711 #define GLK_REVID_A1		0x1
2712 
2713 #define IS_GLK_REVID(dev_priv, since, until) \
2714 	(IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2715 
2716 #define CNL_REVID_A0		0x0
2717 #define CNL_REVID_B0		0x1
2718 #define CNL_REVID_C0		0x2
2719 
2720 #define IS_CNL_REVID(p, since, until) \
2721 	(IS_CANNONLAKE(p) && IS_REVID(p, since, until))
2722 
2723 /*
2724  * The genX designation typically refers to the render engine, so render
2725  * capability related checks should use IS_GEN, while display and other checks
2726  * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2727  * chips, etc.).
2728  */
2729 #define IS_GEN2(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(1)))
2730 #define IS_GEN3(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(2)))
2731 #define IS_GEN4(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(3)))
2732 #define IS_GEN5(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(4)))
2733 #define IS_GEN6(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(5)))
2734 #define IS_GEN7(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(6)))
2735 #define IS_GEN8(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(7)))
2736 #define IS_GEN9(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(8)))
2737 #define IS_GEN10(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(9)))
2738 #define IS_GEN11(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(10)))
2739 
2740 #define IS_LP(dev_priv)	(INTEL_INFO(dev_priv)->is_lp)
2741 #define IS_GEN9_LP(dev_priv)	(IS_GEN9(dev_priv) && IS_LP(dev_priv))
2742 #define IS_GEN9_BC(dev_priv)	(IS_GEN9(dev_priv) && !IS_LP(dev_priv))
2743 
2744 #define ENGINE_MASK(id)	BIT(id)
2745 #define RENDER_RING	ENGINE_MASK(RCS)
2746 #define BSD_RING	ENGINE_MASK(VCS)
2747 #define BLT_RING	ENGINE_MASK(BCS)
2748 #define VEBOX_RING	ENGINE_MASK(VECS)
2749 #define BSD2_RING	ENGINE_MASK(VCS2)
2750 #define BSD3_RING	ENGINE_MASK(VCS3)
2751 #define BSD4_RING	ENGINE_MASK(VCS4)
2752 #define VEBOX2_RING	ENGINE_MASK(VECS2)
2753 #define ALL_ENGINES	(~0)
2754 
2755 #define HAS_ENGINE(dev_priv, id) \
2756 	(!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
2757 
2758 #define HAS_BSD(dev_priv)	HAS_ENGINE(dev_priv, VCS)
2759 #define HAS_BSD2(dev_priv)	HAS_ENGINE(dev_priv, VCS2)
2760 #define HAS_BLT(dev_priv)	HAS_ENGINE(dev_priv, BCS)
2761 #define HAS_VEBOX(dev_priv)	HAS_ENGINE(dev_priv, VECS)
2762 
2763 #define HAS_LEGACY_SEMAPHORES(dev_priv) IS_GEN7(dev_priv)
2764 
2765 #define HAS_LLC(dev_priv)	((dev_priv)->info.has_llc)
2766 #define HAS_SNOOP(dev_priv)	((dev_priv)->info.has_snoop)
2767 #define HAS_EDRAM(dev_priv)	(!!((dev_priv)->edram_cap & EDRAM_ENABLED))
2768 #define HAS_WT(dev_priv)	((IS_HASWELL(dev_priv) || \
2769 				 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
2770 
2771 #define HWS_NEEDS_PHYSICAL(dev_priv)	((dev_priv)->info.hws_needs_physical)
2772 
2773 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
2774 		((dev_priv)->info.has_logical_ring_contexts)
2775 #define HAS_LOGICAL_RING_ELSQ(dev_priv) \
2776 		((dev_priv)->info.has_logical_ring_elsq)
2777 #define HAS_LOGICAL_RING_PREEMPTION(dev_priv) \
2778 		((dev_priv)->info.has_logical_ring_preemption)
2779 
2780 #define HAS_EXECLISTS(dev_priv) HAS_LOGICAL_RING_CONTEXTS(dev_priv)
2781 
2782 #define USES_PPGTT(dev_priv)		(i915_modparams.enable_ppgtt)
2783 #define USES_FULL_PPGTT(dev_priv)	(i915_modparams.enable_ppgtt >= 2)
2784 #define USES_FULL_48BIT_PPGTT(dev_priv)	(i915_modparams.enable_ppgtt == 3)
2785 #define HAS_PAGE_SIZES(dev_priv, sizes) ({ \
2786 	GEM_BUG_ON((sizes) == 0); \
2787 	((sizes) & ~(dev_priv)->info.page_sizes) == 0; \
2788 })
2789 
2790 #define HAS_OVERLAY(dev_priv)		 ((dev_priv)->info.has_overlay)
2791 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
2792 		((dev_priv)->info.overlay_needs_physical)
2793 
2794 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2795 #define HAS_BROKEN_CS_TLB(dev_priv)	(IS_I830(dev_priv) || IS_I845G(dev_priv))
2796 
2797 /* WaRsDisableCoarsePowerGating:skl,cnl */
2798 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2799 	(IS_CANNONLAKE(dev_priv) || \
2800 	 IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
2801 
2802 /*
2803  * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2804  * even when in MSI mode. This results in spurious interrupt warnings if the
2805  * legacy irq no. is shared with another device. The kernel then disables that
2806  * interrupt source and so prevents the other device from working properly.
2807  *
2808  * Since we don't enable MSI anymore on gen4, we can always use GMBUS/AUX
2809  * interrupts.
2810  */
2811 #define HAS_AUX_IRQ(dev_priv)   true
2812 #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4)
2813 
2814 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2815  * rows, which changed the alignment requirements and fence programming.
2816  */
2817 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
2818 					 !(IS_I915G(dev_priv) || \
2819 					 IS_I915GM(dev_priv)))
2820 #define SUPPORTS_TV(dev_priv)		((dev_priv)->info.supports_tv)
2821 #define I915_HAS_HOTPLUG(dev_priv)	((dev_priv)->info.has_hotplug)
2822 
2823 #define HAS_FW_BLC(dev_priv) 	(INTEL_GEN(dev_priv) > 2)
2824 #define HAS_FBC(dev_priv)	((dev_priv)->info.has_fbc)
2825 #define HAS_CUR_FBC(dev_priv)	(!HAS_GMCH_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 7)
2826 
2827 #define HAS_IPS(dev_priv)	(IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
2828 
2829 #define HAS_DP_MST(dev_priv)	((dev_priv)->info.has_dp_mst)
2830 
2831 #define HAS_DDI(dev_priv)		 ((dev_priv)->info.has_ddi)
2832 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
2833 #define HAS_PSR(dev_priv)		 ((dev_priv)->info.has_psr)
2834 
2835 #define HAS_RC6(dev_priv)		 ((dev_priv)->info.has_rc6)
2836 #define HAS_RC6p(dev_priv)		 ((dev_priv)->info.has_rc6p)
2837 #define HAS_RC6pp(dev_priv)		 (false) /* HW was never validated */
2838 
2839 #define HAS_CSR(dev_priv)	((dev_priv)->info.has_csr)
2840 
2841 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
2842 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
2843 
2844 #define HAS_IPC(dev_priv)		 ((dev_priv)->info.has_ipc)
2845 
2846 /*
2847  * For now, anything with a GuC requires uCode loading, and then supports
2848  * command submission once loaded. But these are logically independent
2849  * properties, so we have separate macros to test them.
2850  */
2851 #define HAS_GUC(dev_priv)	((dev_priv)->info.has_guc)
2852 #define HAS_GUC_CT(dev_priv)	((dev_priv)->info.has_guc_ct)
2853 #define HAS_GUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
2854 #define HAS_GUC_SCHED(dev_priv)	(HAS_GUC(dev_priv))
2855 
2856 /* For now, anything with a GuC has also HuC */
2857 #define HAS_HUC(dev_priv)	(HAS_GUC(dev_priv))
2858 #define HAS_HUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
2859 
2860 /* Having a GuC is not the same as using a GuC */
2861 #define USES_GUC(dev_priv)		intel_uc_is_using_guc()
2862 #define USES_GUC_SUBMISSION(dev_priv)	intel_uc_is_using_guc_submission()
2863 #define USES_HUC(dev_priv)		intel_uc_is_using_huc()
2864 
2865 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
2866 
2867 #define HAS_POOLED_EU(dev_priv)	((dev_priv)->info.has_pooled_eu)
2868 
2869 #define INTEL_PCH_DEVICE_ID_MASK		0xff80
2870 #define INTEL_PCH_IBX_DEVICE_ID_TYPE		0x3b00
2871 #define INTEL_PCH_CPT_DEVICE_ID_TYPE		0x1c00
2872 #define INTEL_PCH_PPT_DEVICE_ID_TYPE		0x1e00
2873 #define INTEL_PCH_LPT_DEVICE_ID_TYPE		0x8c00
2874 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE		0x9c00
2875 #define INTEL_PCH_WPT_DEVICE_ID_TYPE		0x8c80
2876 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE		0x9c80
2877 #define INTEL_PCH_SPT_DEVICE_ID_TYPE		0xA100
2878 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE		0x9D00
2879 #define INTEL_PCH_KBP_DEVICE_ID_TYPE		0xA280
2880 #define INTEL_PCH_CNP_DEVICE_ID_TYPE		0xA300
2881 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE		0x9D80
2882 #define INTEL_PCH_ICP_DEVICE_ID_TYPE		0x3480
2883 #define INTEL_PCH_P2X_DEVICE_ID_TYPE		0x7100
2884 #define INTEL_PCH_P3X_DEVICE_ID_TYPE		0x7000
2885 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE		0x2900 /* qemu q35 has 2918 */
2886 
2887 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
2888 #define INTEL_PCH_ID(dev_priv) ((dev_priv)->pch_id)
2889 #define HAS_PCH_ICP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_ICP)
2890 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
2891 #define HAS_PCH_CNP_LP(dev_priv) \
2892 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
2893 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
2894 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
2895 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
2896 #define HAS_PCH_LPT_LP(dev_priv) \
2897 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
2898 	 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
2899 #define HAS_PCH_LPT_H(dev_priv) \
2900 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
2901 	 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_DEVICE_ID_TYPE)
2902 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
2903 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
2904 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
2905 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
2906 
2907 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
2908 
2909 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
2910 
2911 /* DPF == dynamic parity feature */
2912 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
2913 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
2914 				 2 : HAS_L3_DPF(dev_priv))
2915 
2916 #define GT_FREQUENCY_MULTIPLIER 50
2917 #define GEN9_FREQ_SCALER 3
2918 
2919 #include "i915_trace.h"
2920 
2921 static inline bool intel_vtd_active(void)
2922 {
2923 #ifdef CONFIG_INTEL_IOMMU
2924 	if (intel_iommu_gfx_mapped)
2925 		return true;
2926 #endif
2927 	return false;
2928 }
2929 
2930 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
2931 {
2932 	return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
2933 }
2934 
2935 static inline bool
2936 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
2937 {
2938 	return IS_BROXTON(dev_priv) && intel_vtd_active();
2939 }
2940 
2941 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
2942 				int enable_ppgtt);
2943 
2944 /* i915_drv.c */
2945 void __printf(3, 4)
2946 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2947 	      const char *fmt, ...);
2948 
2949 #define i915_report_error(dev_priv, fmt, ...)				   \
2950 	__i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2951 
2952 #ifdef CONFIG_COMPAT
2953 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2954 			      unsigned long arg);
2955 #else
2956 #define i915_compat_ioctl NULL
2957 #endif
2958 extern const struct dev_pm_ops i915_pm_ops;
2959 
2960 extern int i915_driver_load(struct pci_dev *pdev,
2961 			    const struct pci_device_id *ent);
2962 extern void i915_driver_unload(struct drm_device *dev);
2963 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
2964 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
2965 
2966 #define I915_RESET_QUIET BIT(0)
2967 extern void i915_reset(struct drm_i915_private *i915, unsigned int flags);
2968 extern int i915_reset_engine(struct intel_engine_cs *engine,
2969 			     unsigned int flags);
2970 
2971 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv);
2972 extern int intel_reset_guc(struct drm_i915_private *dev_priv);
2973 extern int intel_guc_reset_engine(struct intel_guc *guc,
2974 				  struct intel_engine_cs *engine);
2975 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2976 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
2977 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2978 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2979 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2980 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2981 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2982 
2983 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
2984 int intel_engines_init(struct drm_i915_private *dev_priv);
2985 
2986 /* intel_hotplug.c */
2987 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
2988 			   u32 pin_mask, u32 long_mask);
2989 void intel_hpd_init(struct drm_i915_private *dev_priv);
2990 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2991 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2992 enum port intel_hpd_pin_to_port(struct drm_i915_private *dev_priv,
2993 				enum hpd_pin pin);
2994 enum hpd_pin intel_hpd_pin_default(struct drm_i915_private *dev_priv,
2995 				   enum port port);
2996 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2997 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2998 
2999 /* i915_irq.c */
3000 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
3001 {
3002 	unsigned long delay;
3003 
3004 	if (unlikely(!i915_modparams.enable_hangcheck))
3005 		return;
3006 
3007 	/* Don't continually defer the hangcheck so that it is always run at
3008 	 * least once after work has been scheduled on any ring. Otherwise,
3009 	 * we will ignore a hung ring if a second ring is kept busy.
3010 	 */
3011 
3012 	delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
3013 	queue_delayed_work(system_long_wq,
3014 			   &dev_priv->gpu_error.hangcheck_work, delay);
3015 }
3016 
3017 __printf(3, 4)
3018 void i915_handle_error(struct drm_i915_private *dev_priv,
3019 		       u32 engine_mask,
3020 		       const char *fmt, ...);
3021 
3022 extern void intel_irq_init(struct drm_i915_private *dev_priv);
3023 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
3024 int intel_irq_install(struct drm_i915_private *dev_priv);
3025 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
3026 
3027 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3028 {
3029 	return dev_priv->gvt;
3030 }
3031 
3032 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3033 {
3034 	return dev_priv->vgpu.active;
3035 }
3036 
3037 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
3038 			      enum pipe pipe);
3039 void
3040 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3041 		     u32 status_mask);
3042 
3043 void
3044 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3045 		      u32 status_mask);
3046 
3047 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3048 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3049 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3050 				   uint32_t mask,
3051 				   uint32_t bits);
3052 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3053 			    uint32_t interrupt_mask,
3054 			    uint32_t enabled_irq_mask);
3055 static inline void
3056 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3057 {
3058 	ilk_update_display_irq(dev_priv, bits, bits);
3059 }
3060 static inline void
3061 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3062 {
3063 	ilk_update_display_irq(dev_priv, bits, 0);
3064 }
3065 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3066 			 enum pipe pipe,
3067 			 uint32_t interrupt_mask,
3068 			 uint32_t enabled_irq_mask);
3069 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3070 				       enum pipe pipe, uint32_t bits)
3071 {
3072 	bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3073 }
3074 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3075 					enum pipe pipe, uint32_t bits)
3076 {
3077 	bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3078 }
3079 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3080 				  uint32_t interrupt_mask,
3081 				  uint32_t enabled_irq_mask);
3082 static inline void
3083 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3084 {
3085 	ibx_display_interrupt_update(dev_priv, bits, bits);
3086 }
3087 static inline void
3088 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3089 {
3090 	ibx_display_interrupt_update(dev_priv, bits, 0);
3091 }
3092 
3093 /* i915_gem.c */
3094 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3095 			  struct drm_file *file_priv);
3096 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3097 			 struct drm_file *file_priv);
3098 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3099 			  struct drm_file *file_priv);
3100 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3101 			struct drm_file *file_priv);
3102 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3103 			struct drm_file *file_priv);
3104 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3105 			      struct drm_file *file_priv);
3106 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3107 			     struct drm_file *file_priv);
3108 int i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
3109 			      struct drm_file *file_priv);
3110 int i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3111 			       struct drm_file *file_priv);
3112 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3113 			struct drm_file *file_priv);
3114 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3115 			       struct drm_file *file);
3116 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3117 			       struct drm_file *file);
3118 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3119 			    struct drm_file *file_priv);
3120 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3121 			   struct drm_file *file_priv);
3122 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
3123 			      struct drm_file *file_priv);
3124 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
3125 			      struct drm_file *file_priv);
3126 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3127 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
3128 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3129 			   struct drm_file *file);
3130 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3131 				struct drm_file *file_priv);
3132 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3133 			struct drm_file *file_priv);
3134 void i915_gem_sanitize(struct drm_i915_private *i915);
3135 int i915_gem_load_init(struct drm_i915_private *dev_priv);
3136 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv);
3137 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3138 int i915_gem_freeze(struct drm_i915_private *dev_priv);
3139 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3140 
3141 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
3142 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3143 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3144 			 const struct drm_i915_gem_object_ops *ops);
3145 struct drm_i915_gem_object *
3146 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
3147 struct drm_i915_gem_object *
3148 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
3149 				 const void *data, size_t size);
3150 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3151 void i915_gem_free_object(struct drm_gem_object *obj);
3152 
3153 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
3154 {
3155 	if (!atomic_read(&i915->mm.free_count))
3156 		return;
3157 
3158 	/* A single pass should suffice to release all the freed objects (along
3159 	 * most call paths) , but be a little more paranoid in that freeing
3160 	 * the objects does take a little amount of time, during which the rcu
3161 	 * callbacks could have added new objects into the freed list, and
3162 	 * armed the work again.
3163 	 */
3164 	do {
3165 		rcu_barrier();
3166 	} while (flush_work(&i915->mm.free_work));
3167 }
3168 
3169 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
3170 {
3171 	/*
3172 	 * Similar to objects above (see i915_gem_drain_freed-objects), in
3173 	 * general we have workers that are armed by RCU and then rearm
3174 	 * themselves in their callbacks. To be paranoid, we need to
3175 	 * drain the workqueue a second time after waiting for the RCU
3176 	 * grace period so that we catch work queued via RCU from the first
3177 	 * pass. As neither drain_workqueue() nor flush_workqueue() report
3178 	 * a result, we make an assumption that we only don't require more
3179 	 * than 2 passes to catch all recursive RCU delayed work.
3180 	 *
3181 	 */
3182 	int pass = 2;
3183 	do {
3184 		rcu_barrier();
3185 		drain_workqueue(i915->wq);
3186 	} while (--pass);
3187 }
3188 
3189 struct i915_vma * __must_check
3190 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3191 			 const struct i915_ggtt_view *view,
3192 			 u64 size,
3193 			 u64 alignment,
3194 			 u64 flags);
3195 
3196 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3197 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3198 
3199 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
3200 
3201 static inline int __sg_page_count(const struct scatterlist *sg)
3202 {
3203 	return sg->length >> PAGE_SHIFT;
3204 }
3205 
3206 struct scatterlist *
3207 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
3208 		       unsigned int n, unsigned int *offset);
3209 
3210 struct page *
3211 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
3212 			 unsigned int n);
3213 
3214 struct page *
3215 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
3216 			       unsigned int n);
3217 
3218 dma_addr_t
3219 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
3220 				unsigned long n);
3221 
3222 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3223 				 struct sg_table *pages,
3224 				 unsigned int sg_page_sizes);
3225 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3226 
3227 static inline int __must_check
3228 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3229 {
3230 	might_lock(&obj->mm.lock);
3231 
3232 	if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3233 		return 0;
3234 
3235 	return __i915_gem_object_get_pages(obj);
3236 }
3237 
3238 static inline bool
3239 i915_gem_object_has_pages(struct drm_i915_gem_object *obj)
3240 {
3241 	return !IS_ERR_OR_NULL(READ_ONCE(obj->mm.pages));
3242 }
3243 
3244 static inline void
3245 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3246 {
3247 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
3248 
3249 	atomic_inc(&obj->mm.pages_pin_count);
3250 }
3251 
3252 static inline bool
3253 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3254 {
3255 	return atomic_read(&obj->mm.pages_pin_count);
3256 }
3257 
3258 static inline void
3259 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3260 {
3261 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
3262 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3263 
3264 	atomic_dec(&obj->mm.pages_pin_count);
3265 }
3266 
3267 static inline void
3268 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3269 {
3270 	__i915_gem_object_unpin_pages(obj);
3271 }
3272 
3273 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3274 	I915_MM_NORMAL = 0,
3275 	I915_MM_SHRINKER
3276 };
3277 
3278 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3279 				 enum i915_mm_subclass subclass);
3280 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3281 
3282 enum i915_map_type {
3283 	I915_MAP_WB = 0,
3284 	I915_MAP_WC,
3285 #define I915_MAP_OVERRIDE BIT(31)
3286 	I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
3287 	I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
3288 };
3289 
3290 /**
3291  * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3292  * @obj: the object to map into kernel address space
3293  * @type: the type of mapping, used to select pgprot_t
3294  *
3295  * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3296  * pages and then returns a contiguous mapping of the backing storage into
3297  * the kernel address space. Based on the @type of mapping, the PTE will be
3298  * set to either WriteBack or WriteCombine (via pgprot_t).
3299  *
3300  * The caller is responsible for calling i915_gem_object_unpin_map() when the
3301  * mapping is no longer required.
3302  *
3303  * Returns the pointer through which to access the mapped object, or an
3304  * ERR_PTR() on error.
3305  */
3306 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3307 					   enum i915_map_type type);
3308 
3309 /**
3310  * i915_gem_object_unpin_map - releases an earlier mapping
3311  * @obj: the object to unmap
3312  *
3313  * After pinning the object and mapping its pages, once you are finished
3314  * with your access, call i915_gem_object_unpin_map() to release the pin
3315  * upon the mapping. Once the pin count reaches zero, that mapping may be
3316  * removed.
3317  */
3318 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3319 {
3320 	i915_gem_object_unpin_pages(obj);
3321 }
3322 
3323 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3324 				    unsigned int *needs_clflush);
3325 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3326 				     unsigned int *needs_clflush);
3327 #define CLFLUSH_BEFORE	BIT(0)
3328 #define CLFLUSH_AFTER	BIT(1)
3329 #define CLFLUSH_FLAGS	(CLFLUSH_BEFORE | CLFLUSH_AFTER)
3330 
3331 static inline void
3332 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3333 {
3334 	i915_gem_object_unpin_pages(obj);
3335 }
3336 
3337 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3338 void i915_vma_move_to_active(struct i915_vma *vma,
3339 			     struct i915_request *rq,
3340 			     unsigned int flags);
3341 int i915_gem_dumb_create(struct drm_file *file_priv,
3342 			 struct drm_device *dev,
3343 			 struct drm_mode_create_dumb *args);
3344 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3345 		      uint32_t handle, uint64_t *offset);
3346 int i915_gem_mmap_gtt_version(void);
3347 
3348 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3349 		       struct drm_i915_gem_object *new,
3350 		       unsigned frontbuffer_bits);
3351 
3352 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3353 
3354 struct i915_request *
3355 i915_gem_find_active_request(struct intel_engine_cs *engine);
3356 
3357 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3358 {
3359 	return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3360 }
3361 
3362 static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3363 {
3364 	return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3365 }
3366 
3367 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3368 {
3369 	return unlikely(test_bit(I915_WEDGED, &error->flags));
3370 }
3371 
3372 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3373 {
3374 	return i915_reset_backoff(error) | i915_terminally_wedged(error);
3375 }
3376 
3377 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3378 {
3379 	return READ_ONCE(error->reset_count);
3380 }
3381 
3382 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3383 					  struct intel_engine_cs *engine)
3384 {
3385 	return READ_ONCE(error->reset_engine_count[engine->id]);
3386 }
3387 
3388 struct i915_request *
3389 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine);
3390 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3391 void i915_gem_reset(struct drm_i915_private *dev_priv);
3392 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine);
3393 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3394 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3395 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3396 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3397 			   struct i915_request *request);
3398 
3399 void i915_gem_init_mmio(struct drm_i915_private *i915);
3400 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3401 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3402 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3403 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3404 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3405 			   unsigned int flags);
3406 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3407 void i915_gem_resume(struct drm_i915_private *dev_priv);
3408 int i915_gem_fault(struct vm_fault *vmf);
3409 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3410 			 unsigned int flags,
3411 			 long timeout,
3412 			 struct intel_rps_client *rps);
3413 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3414 				  unsigned int flags,
3415 				  int priority);
3416 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3417 
3418 int __must_check
3419 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3420 int __must_check
3421 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3422 int __must_check
3423 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3424 struct i915_vma * __must_check
3425 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3426 				     u32 alignment,
3427 				     const struct i915_ggtt_view *view,
3428 				     unsigned int flags);
3429 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3430 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3431 				int align);
3432 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3433 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3434 
3435 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3436 				    enum i915_cache_level cache_level);
3437 
3438 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3439 				struct dma_buf *dma_buf);
3440 
3441 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3442 				struct drm_gem_object *gem_obj, int flags);
3443 
3444 static inline struct i915_hw_ppgtt *
3445 i915_vm_to_ppgtt(struct i915_address_space *vm)
3446 {
3447 	return container_of(vm, struct i915_hw_ppgtt, base);
3448 }
3449 
3450 /* i915_gem_fence_reg.c */
3451 struct drm_i915_fence_reg *
3452 i915_reserve_fence(struct drm_i915_private *dev_priv);
3453 void i915_unreserve_fence(struct drm_i915_fence_reg *fence);
3454 
3455 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3456 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3457 
3458 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3459 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3460 				       struct sg_table *pages);
3461 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3462 					 struct sg_table *pages);
3463 
3464 static inline struct i915_gem_context *
3465 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3466 {
3467 	return idr_find(&file_priv->context_idr, id);
3468 }
3469 
3470 static inline struct i915_gem_context *
3471 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3472 {
3473 	struct i915_gem_context *ctx;
3474 
3475 	rcu_read_lock();
3476 	ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3477 	if (ctx && !kref_get_unless_zero(&ctx->ref))
3478 		ctx = NULL;
3479 	rcu_read_unlock();
3480 
3481 	return ctx;
3482 }
3483 
3484 static inline struct intel_timeline *
3485 i915_gem_context_lookup_timeline(struct i915_gem_context *ctx,
3486 				 struct intel_engine_cs *engine)
3487 {
3488 	struct i915_address_space *vm;
3489 
3490 	vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base;
3491 	return &vm->timeline.engine[engine->id];
3492 }
3493 
3494 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3495 			 struct drm_file *file);
3496 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3497 			       struct drm_file *file);
3498 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3499 				  struct drm_file *file);
3500 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3501 			    struct i915_gem_context *ctx,
3502 			    uint32_t *reg_state);
3503 
3504 /* i915_gem_evict.c */
3505 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3506 					  u64 min_size, u64 alignment,
3507 					  unsigned cache_level,
3508 					  u64 start, u64 end,
3509 					  unsigned flags);
3510 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3511 					 struct drm_mm_node *node,
3512 					 unsigned int flags);
3513 int i915_gem_evict_vm(struct i915_address_space *vm);
3514 
3515 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv);
3516 
3517 /* belongs in i915_gem_gtt.h */
3518 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3519 {
3520 	wmb();
3521 	if (INTEL_GEN(dev_priv) < 6)
3522 		intel_gtt_chipset_flush();
3523 }
3524 
3525 /* i915_gem_stolen.c */
3526 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3527 				struct drm_mm_node *node, u64 size,
3528 				unsigned alignment);
3529 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3530 					 struct drm_mm_node *node, u64 size,
3531 					 unsigned alignment, u64 start,
3532 					 u64 end);
3533 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3534 				 struct drm_mm_node *node);
3535 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3536 void i915_gem_cleanup_stolen(struct drm_device *dev);
3537 struct drm_i915_gem_object *
3538 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv,
3539 			      resource_size_t size);
3540 struct drm_i915_gem_object *
3541 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3542 					       resource_size_t stolen_offset,
3543 					       resource_size_t gtt_offset,
3544 					       resource_size_t size);
3545 
3546 /* i915_gem_internal.c */
3547 struct drm_i915_gem_object *
3548 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3549 				phys_addr_t size);
3550 
3551 /* i915_gem_shrinker.c */
3552 unsigned long i915_gem_shrink(struct drm_i915_private *i915,
3553 			      unsigned long target,
3554 			      unsigned long *nr_scanned,
3555 			      unsigned flags);
3556 #define I915_SHRINK_PURGEABLE 0x1
3557 #define I915_SHRINK_UNBOUND 0x2
3558 #define I915_SHRINK_BOUND 0x4
3559 #define I915_SHRINK_ACTIVE 0x8
3560 #define I915_SHRINK_VMAPS 0x10
3561 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915);
3562 void i915_gem_shrinker_register(struct drm_i915_private *i915);
3563 void i915_gem_shrinker_unregister(struct drm_i915_private *i915);
3564 
3565 
3566 /* i915_gem_tiling.c */
3567 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3568 {
3569 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3570 
3571 	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3572 		i915_gem_object_is_tiled(obj);
3573 }
3574 
3575 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3576 			unsigned int tiling, unsigned int stride);
3577 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3578 			     unsigned int tiling, unsigned int stride);
3579 
3580 /* i915_debugfs.c */
3581 #ifdef CONFIG_DEBUG_FS
3582 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3583 int i915_debugfs_connector_add(struct drm_connector *connector);
3584 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3585 #else
3586 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3587 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3588 { return 0; }
3589 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3590 #endif
3591 
3592 /* i915_gpu_error.c */
3593 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
3594 
3595 __printf(2, 3)
3596 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3597 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3598 			    const struct i915_gpu_state *gpu);
3599 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3600 			      struct drm_i915_private *i915,
3601 			      size_t count, loff_t pos);
3602 static inline void i915_error_state_buf_release(
3603 	struct drm_i915_error_state_buf *eb)
3604 {
3605 	kfree(eb->buf);
3606 }
3607 
3608 struct i915_gpu_state *i915_capture_gpu_state(struct drm_i915_private *i915);
3609 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3610 			      u32 engine_mask,
3611 			      const char *error_msg);
3612 
3613 static inline struct i915_gpu_state *
3614 i915_gpu_state_get(struct i915_gpu_state *gpu)
3615 {
3616 	kref_get(&gpu->ref);
3617 	return gpu;
3618 }
3619 
3620 void __i915_gpu_state_free(struct kref *kref);
3621 static inline void i915_gpu_state_put(struct i915_gpu_state *gpu)
3622 {
3623 	if (gpu)
3624 		kref_put(&gpu->ref, __i915_gpu_state_free);
3625 }
3626 
3627 struct i915_gpu_state *i915_first_error_state(struct drm_i915_private *i915);
3628 void i915_reset_error_state(struct drm_i915_private *i915);
3629 
3630 #else
3631 
3632 static inline void i915_capture_error_state(struct drm_i915_private *dev_priv,
3633 					    u32 engine_mask,
3634 					    const char *error_msg)
3635 {
3636 }
3637 
3638 static inline struct i915_gpu_state *
3639 i915_first_error_state(struct drm_i915_private *i915)
3640 {
3641 	return NULL;
3642 }
3643 
3644 static inline void i915_reset_error_state(struct drm_i915_private *i915)
3645 {
3646 }
3647 
3648 #endif
3649 
3650 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3651 
3652 /* i915_cmd_parser.c */
3653 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3654 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3655 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3656 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3657 			    struct drm_i915_gem_object *batch_obj,
3658 			    struct drm_i915_gem_object *shadow_batch_obj,
3659 			    u32 batch_start_offset,
3660 			    u32 batch_len,
3661 			    bool is_master);
3662 
3663 /* i915_perf.c */
3664 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3665 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3666 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3667 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3668 
3669 /* i915_suspend.c */
3670 extern int i915_save_state(struct drm_i915_private *dev_priv);
3671 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3672 
3673 /* i915_sysfs.c */
3674 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3675 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3676 
3677 /* intel_lpe_audio.c */
3678 int  intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3679 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3680 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3681 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3682 			    enum pipe pipe, enum port port,
3683 			    const void *eld, int ls_clock, bool dp_output);
3684 
3685 /* intel_i2c.c */
3686 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3687 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3688 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3689 				     unsigned int pin);
3690 extern int intel_gmbus_output_aksv(struct i2c_adapter *adapter);
3691 
3692 extern struct i2c_adapter *
3693 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3694 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3695 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3696 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3697 {
3698 	return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3699 }
3700 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3701 
3702 /* intel_bios.c */
3703 void intel_bios_init(struct drm_i915_private *dev_priv);
3704 void intel_bios_cleanup(struct drm_i915_private *dev_priv);
3705 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3706 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3707 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3708 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3709 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3710 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3711 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3712 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3713 				     enum port port);
3714 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3715 				enum port port);
3716 
3717 /* intel_acpi.c */
3718 #ifdef CONFIG_ACPI
3719 extern void intel_register_dsm_handler(void);
3720 extern void intel_unregister_dsm_handler(void);
3721 #else
3722 static inline void intel_register_dsm_handler(void) { return; }
3723 static inline void intel_unregister_dsm_handler(void) { return; }
3724 #endif /* CONFIG_ACPI */
3725 
3726 /* intel_device_info.c */
3727 static inline struct intel_device_info *
3728 mkwrite_device_info(struct drm_i915_private *dev_priv)
3729 {
3730 	return (struct intel_device_info *)&dev_priv->info;
3731 }
3732 
3733 /* modesetting */
3734 extern void intel_modeset_init_hw(struct drm_device *dev);
3735 extern int intel_modeset_init(struct drm_device *dev);
3736 extern void intel_modeset_cleanup(struct drm_device *dev);
3737 extern int intel_connector_register(struct drm_connector *);
3738 extern void intel_connector_unregister(struct drm_connector *);
3739 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3740 				       bool state);
3741 extern void intel_display_resume(struct drm_device *dev);
3742 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3743 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3744 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3745 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3746 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3747 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3748 				  bool enable);
3749 
3750 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3751 			struct drm_file *file);
3752 
3753 /* overlay */
3754 extern struct intel_overlay_error_state *
3755 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3756 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3757 					    struct intel_overlay_error_state *error);
3758 
3759 extern struct intel_display_error_state *
3760 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3761 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3762 					    struct intel_display_error_state *error);
3763 
3764 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3765 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv, u32 mbox,
3766 				    u32 val, int fast_timeout_us,
3767 				    int slow_timeout_ms);
3768 #define sandybridge_pcode_write(dev_priv, mbox, val)	\
3769 	sandybridge_pcode_write_timeout(dev_priv, mbox, val, 500, 0)
3770 
3771 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
3772 		      u32 reply_mask, u32 reply, int timeout_base_ms);
3773 
3774 /* intel_sideband.c */
3775 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3776 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3777 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3778 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3779 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3780 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3781 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3782 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3783 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3784 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3785 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3786 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3787 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3788 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3789 		   enum intel_sbi_destination destination);
3790 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3791 		     enum intel_sbi_destination destination);
3792 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3793 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3794 
3795 /* intel_dpio_phy.c */
3796 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
3797 			     enum dpio_phy *phy, enum dpio_channel *ch);
3798 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
3799 				  enum port port, u32 margin, u32 scale,
3800 				  u32 enable, u32 deemphasis);
3801 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3802 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3803 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
3804 			    enum dpio_phy phy);
3805 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
3806 			      enum dpio_phy phy);
3807 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(uint8_t lane_count);
3808 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
3809 				     uint8_t lane_lat_optim_mask);
3810 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
3811 
3812 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3813 			      u32 deemph_reg_value, u32 margin_reg_value,
3814 			      bool uniq_trans_scale);
3815 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3816 			      const struct intel_crtc_state *crtc_state,
3817 			      bool reset);
3818 void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
3819 			    const struct intel_crtc_state *crtc_state);
3820 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3821 				const struct intel_crtc_state *crtc_state);
3822 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3823 void chv_phy_post_pll_disable(struct intel_encoder *encoder,
3824 			      const struct intel_crtc_state *old_crtc_state);
3825 
3826 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3827 			      u32 demph_reg_value, u32 preemph_reg_value,
3828 			      u32 uniqtranscale_reg_value, u32 tx3_demph);
3829 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
3830 			    const struct intel_crtc_state *crtc_state);
3831 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3832 				const struct intel_crtc_state *crtc_state);
3833 void vlv_phy_reset_lanes(struct intel_encoder *encoder,
3834 			 const struct intel_crtc_state *old_crtc_state);
3835 
3836 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3837 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3838 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
3839 			   const i915_reg_t reg);
3840 
3841 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat1);
3842 
3843 static inline u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
3844 					 const i915_reg_t reg)
3845 {
3846 	return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(dev_priv, reg), 1000);
3847 }
3848 
3849 #define I915_READ8(reg)		dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3850 #define I915_WRITE8(reg, val)	dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3851 
3852 #define I915_READ16(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3853 #define I915_WRITE16(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3854 #define I915_READ16_NOTRACE(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3855 #define I915_WRITE16_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3856 
3857 #define I915_READ(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3858 #define I915_WRITE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3859 #define I915_READ_NOTRACE(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3860 #define I915_WRITE_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3861 
3862 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3863  * will be implemented using 2 32-bit writes in an arbitrary order with
3864  * an arbitrary delay between them. This can cause the hardware to
3865  * act upon the intermediate value, possibly leading to corruption and
3866  * machine death. For this reason we do not support I915_WRITE64, or
3867  * dev_priv->uncore.funcs.mmio_writeq.
3868  *
3869  * When reading a 64-bit value as two 32-bit values, the delay may cause
3870  * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
3871  * occasionally a 64-bit register does not actualy support a full readq
3872  * and must be read using two 32-bit reads.
3873  *
3874  * You have been warned.
3875  */
3876 #define I915_READ64(reg)	dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3877 
3878 #define I915_READ64_2x32(lower_reg, upper_reg) ({			\
3879 	u32 upper, lower, old_upper, loop = 0;				\
3880 	upper = I915_READ(upper_reg);					\
3881 	do {								\
3882 		old_upper = upper;					\
3883 		lower = I915_READ(lower_reg);				\
3884 		upper = I915_READ(upper_reg);				\
3885 	} while (upper != old_upper && loop++ < 2);			\
3886 	(u64)upper << 32 | lower; })
3887 
3888 #define POSTING_READ(reg)	(void)I915_READ_NOTRACE(reg)
3889 #define POSTING_READ16(reg)	(void)I915_READ16_NOTRACE(reg)
3890 
3891 #define __raw_read(x, s) \
3892 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
3893 					     i915_reg_t reg) \
3894 { \
3895 	return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3896 }
3897 
3898 #define __raw_write(x, s) \
3899 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
3900 				       i915_reg_t reg, uint##x##_t val) \
3901 { \
3902 	write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3903 }
3904 __raw_read(8, b)
3905 __raw_read(16, w)
3906 __raw_read(32, l)
3907 __raw_read(64, q)
3908 
3909 __raw_write(8, b)
3910 __raw_write(16, w)
3911 __raw_write(32, l)
3912 __raw_write(64, q)
3913 
3914 #undef __raw_read
3915 #undef __raw_write
3916 
3917 /* These are untraced mmio-accessors that are only valid to be used inside
3918  * critical sections, such as inside IRQ handlers, where forcewake is explicitly
3919  * controlled.
3920  *
3921  * Think twice, and think again, before using these.
3922  *
3923  * As an example, these accessors can possibly be used between:
3924  *
3925  * spin_lock_irq(&dev_priv->uncore.lock);
3926  * intel_uncore_forcewake_get__locked();
3927  *
3928  * and
3929  *
3930  * intel_uncore_forcewake_put__locked();
3931  * spin_unlock_irq(&dev_priv->uncore.lock);
3932  *
3933  *
3934  * Note: some registers may not need forcewake held, so
3935  * intel_uncore_forcewake_{get,put} can be omitted, see
3936  * intel_uncore_forcewake_for_reg().
3937  *
3938  * Certain architectures will die if the same cacheline is concurrently accessed
3939  * by different clients (e.g. on Ivybridge). Access to registers should
3940  * therefore generally be serialised, by either the dev_priv->uncore.lock or
3941  * a more localised lock guarding all access to that bank of registers.
3942  */
3943 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3944 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3945 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
3946 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3947 
3948 /* "Broadcast RGB" property */
3949 #define INTEL_BROADCAST_RGB_AUTO 0
3950 #define INTEL_BROADCAST_RGB_FULL 1
3951 #define INTEL_BROADCAST_RGB_LIMITED 2
3952 
3953 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
3954 {
3955 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3956 		return VLV_VGACNTRL;
3957 	else if (INTEL_GEN(dev_priv) >= 5)
3958 		return CPU_VGACNTRL;
3959 	else
3960 		return VGACNTRL;
3961 }
3962 
3963 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3964 {
3965 	unsigned long j = msecs_to_jiffies(m);
3966 
3967 	return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3968 }
3969 
3970 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3971 {
3972 	/* nsecs_to_jiffies64() does not guard against overflow */
3973 	if (NSEC_PER_SEC % HZ &&
3974 	    div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ)
3975 		return MAX_JIFFY_OFFSET;
3976 
3977         return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3978 }
3979 
3980 static inline unsigned long
3981 timespec_to_jiffies_timeout(const struct timespec *value)
3982 {
3983 	unsigned long j = timespec_to_jiffies(value);
3984 
3985 	return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3986 }
3987 
3988 /*
3989  * If you need to wait X milliseconds between events A and B, but event B
3990  * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3991  * when event A happened, then just before event B you call this function and
3992  * pass the timestamp as the first argument, and X as the second argument.
3993  */
3994 static inline void
3995 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3996 {
3997 	unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3998 
3999 	/*
4000 	 * Don't re-read the value of "jiffies" every time since it may change
4001 	 * behind our back and break the math.
4002 	 */
4003 	tmp_jiffies = jiffies;
4004 	target_jiffies = timestamp_jiffies +
4005 			 msecs_to_jiffies_timeout(to_wait_ms);
4006 
4007 	if (time_after(target_jiffies, tmp_jiffies)) {
4008 		remaining_jiffies = target_jiffies - tmp_jiffies;
4009 		while (remaining_jiffies)
4010 			remaining_jiffies =
4011 			    schedule_timeout_uninterruptible(remaining_jiffies);
4012 	}
4013 }
4014 
4015 static inline bool
4016 __i915_request_irq_complete(const struct i915_request *rq)
4017 {
4018 	struct intel_engine_cs *engine = rq->engine;
4019 	u32 seqno;
4020 
4021 	/* Note that the engine may have wrapped around the seqno, and
4022 	 * so our request->global_seqno will be ahead of the hardware,
4023 	 * even though it completed the request before wrapping. We catch
4024 	 * this by kicking all the waiters before resetting the seqno
4025 	 * in hardware, and also signal the fence.
4026 	 */
4027 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
4028 		return true;
4029 
4030 	/* The request was dequeued before we were awoken. We check after
4031 	 * inspecting the hw to confirm that this was the same request
4032 	 * that generated the HWS update. The memory barriers within
4033 	 * the request execution are sufficient to ensure that a check
4034 	 * after reading the value from hw matches this request.
4035 	 */
4036 	seqno = i915_request_global_seqno(rq);
4037 	if (!seqno)
4038 		return false;
4039 
4040 	/* Before we do the heavier coherent read of the seqno,
4041 	 * check the value (hopefully) in the CPU cacheline.
4042 	 */
4043 	if (__i915_request_completed(rq, seqno))
4044 		return true;
4045 
4046 	/* Ensure our read of the seqno is coherent so that we
4047 	 * do not "miss an interrupt" (i.e. if this is the last
4048 	 * request and the seqno write from the GPU is not visible
4049 	 * by the time the interrupt fires, we will see that the
4050 	 * request is incomplete and go back to sleep awaiting
4051 	 * another interrupt that will never come.)
4052 	 *
4053 	 * Strictly, we only need to do this once after an interrupt,
4054 	 * but it is easier and safer to do it every time the waiter
4055 	 * is woken.
4056 	 */
4057 	if (engine->irq_seqno_barrier &&
4058 	    test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
4059 		struct intel_breadcrumbs *b = &engine->breadcrumbs;
4060 
4061 		/* The ordering of irq_posted versus applying the barrier
4062 		 * is crucial. The clearing of the current irq_posted must
4063 		 * be visible before we perform the barrier operation,
4064 		 * such that if a subsequent interrupt arrives, irq_posted
4065 		 * is reasserted and our task rewoken (which causes us to
4066 		 * do another __i915_request_irq_complete() immediately
4067 		 * and reapply the barrier). Conversely, if the clear
4068 		 * occurs after the barrier, then an interrupt that arrived
4069 		 * whilst we waited on the barrier would not trigger a
4070 		 * barrier on the next pass, and the read may not see the
4071 		 * seqno update.
4072 		 */
4073 		engine->irq_seqno_barrier(engine);
4074 
4075 		/* If we consume the irq, but we are no longer the bottom-half,
4076 		 * the real bottom-half may not have serialised their own
4077 		 * seqno check with the irq-barrier (i.e. may have inspected
4078 		 * the seqno before we believe it coherent since they see
4079 		 * irq_posted == false but we are still running).
4080 		 */
4081 		spin_lock_irq(&b->irq_lock);
4082 		if (b->irq_wait && b->irq_wait->tsk != current)
4083 			/* Note that if the bottom-half is changed as we
4084 			 * are sending the wake-up, the new bottom-half will
4085 			 * be woken by whomever made the change. We only have
4086 			 * to worry about when we steal the irq-posted for
4087 			 * ourself.
4088 			 */
4089 			wake_up_process(b->irq_wait->tsk);
4090 		spin_unlock_irq(&b->irq_lock);
4091 
4092 		if (__i915_request_completed(rq, seqno))
4093 			return true;
4094 	}
4095 
4096 	return false;
4097 }
4098 
4099 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
4100 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
4101 
4102 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
4103  * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
4104  * perform the operation. To check beforehand, pass in the parameters to
4105  * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
4106  * you only need to pass in the minor offsets, page-aligned pointers are
4107  * always valid.
4108  *
4109  * For just checking for SSE4.1, in the foreknowledge that the future use
4110  * will be correctly aligned, just use i915_has_memcpy_from_wc().
4111  */
4112 #define i915_can_memcpy_from_wc(dst, src, len) \
4113 	i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
4114 
4115 #define i915_has_memcpy_from_wc() \
4116 	i915_memcpy_from_wc(NULL, NULL, 0)
4117 
4118 /* i915_mm.c */
4119 int remap_io_mapping(struct vm_area_struct *vma,
4120 		     unsigned long addr, unsigned long pfn, unsigned long size,
4121 		     struct io_mapping *iomap);
4122 
4123 static inline int intel_hws_csb_write_index(struct drm_i915_private *i915)
4124 {
4125 	if (INTEL_GEN(i915) >= 10)
4126 		return CNL_HWS_CSB_WRITE_INDEX;
4127 	else
4128 		return I915_HWS_CSB_WRITE_INDEX;
4129 }
4130 
4131 #endif
4132