1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*- 2 */ 3 /* 4 * 5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. 6 * All Rights Reserved. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a 9 * copy of this software and associated documentation files (the 10 * "Software"), to deal in the Software without restriction, including 11 * without limitation the rights to use, copy, modify, merge, publish, 12 * distribute, sub license, and/or sell copies of the Software, and to 13 * permit persons to whom the Software is furnished to do so, subject to 14 * the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the 17 * next paragraph) shall be included in all copies or substantial portions 18 * of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 27 * 28 */ 29 30 #ifndef _I915_DRV_H_ 31 #define _I915_DRV_H_ 32 33 #include <uapi/drm/i915_drm.h> 34 #include <uapi/drm/drm_fourcc.h> 35 36 #include <drm/drmP.h> 37 #include "i915_params.h" 38 #include "i915_reg.h" 39 #include "intel_bios.h" 40 #include "intel_ringbuffer.h" 41 #include "intel_lrc.h" 42 #include "i915_gem_gtt.h" 43 #include "i915_gem_render_state.h" 44 #include <linux/io-mapping.h> 45 #include <linux/i2c.h> 46 #include <linux/i2c-algo-bit.h> 47 #include <drm/intel-gtt.h> 48 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */ 49 #include <drm/drm_gem.h> 50 #include <linux/backlight.h> 51 #include <linux/hashtable.h> 52 #include <linux/intel-iommu.h> 53 #include <linux/kref.h> 54 #include <linux/pm_qos.h> 55 #include "intel_guc.h" 56 57 /* General customization: 58 */ 59 60 #define DRIVER_NAME "i915" 61 #define DRIVER_DESC "Intel Graphics" 62 #define DRIVER_DATE "20160124" 63 64 #undef WARN_ON 65 /* Many gcc seem to no see through this and fall over :( */ 66 #if 0 67 #define WARN_ON(x) ({ \ 68 bool __i915_warn_cond = (x); \ 69 if (__builtin_constant_p(__i915_warn_cond)) \ 70 BUILD_BUG_ON(__i915_warn_cond); \ 71 WARN(__i915_warn_cond, "WARN_ON(" #x ")"); }) 72 #else 73 #define WARN_ON(x) WARN((x), "%s", "WARN_ON(" __stringify(x) ")") 74 #endif 75 76 #undef WARN_ON_ONCE 77 #define WARN_ON_ONCE(x) WARN_ONCE((x), "%s", "WARN_ON_ONCE(" __stringify(x) ")") 78 79 #define MISSING_CASE(x) WARN(1, "Missing switch case (%lu) in %s\n", \ 80 (long) (x), __func__); 81 82 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and 83 * WARN_ON()) for hw state sanity checks to check for unexpected conditions 84 * which may not necessarily be a user visible problem. This will either 85 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to 86 * enable distros and users to tailor their preferred amount of i915 abrt 87 * spam. 88 */ 89 #define I915_STATE_WARN(condition, format...) ({ \ 90 int __ret_warn_on = !!(condition); \ 91 if (unlikely(__ret_warn_on)) \ 92 if (!WARN(i915.verbose_state_checks, format)) \ 93 DRM_ERROR(format); \ 94 unlikely(__ret_warn_on); \ 95 }) 96 97 #define I915_STATE_WARN_ON(x) \ 98 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")") 99 100 static inline const char *yesno(bool v) 101 { 102 return v ? "yes" : "no"; 103 } 104 105 static inline const char *onoff(bool v) 106 { 107 return v ? "on" : "off"; 108 } 109 110 enum pipe { 111 INVALID_PIPE = -1, 112 PIPE_A = 0, 113 PIPE_B, 114 PIPE_C, 115 _PIPE_EDP, 116 I915_MAX_PIPES = _PIPE_EDP 117 }; 118 #define pipe_name(p) ((p) + 'A') 119 120 enum transcoder { 121 TRANSCODER_A = 0, 122 TRANSCODER_B, 123 TRANSCODER_C, 124 TRANSCODER_EDP, 125 I915_MAX_TRANSCODERS 126 }; 127 #define transcoder_name(t) ((t) + 'A') 128 129 /* 130 * I915_MAX_PLANES in the enum below is the maximum (across all platforms) 131 * number of planes per CRTC. Not all platforms really have this many planes, 132 * which means some arrays of size I915_MAX_PLANES may have unused entries 133 * between the topmost sprite plane and the cursor plane. 134 */ 135 enum plane { 136 PLANE_A = 0, 137 PLANE_B, 138 PLANE_C, 139 PLANE_CURSOR, 140 I915_MAX_PLANES, 141 }; 142 #define plane_name(p) ((p) + 'A') 143 144 #define sprite_name(p, s) ((p) * INTEL_INFO(dev)->num_sprites[(p)] + (s) + 'A') 145 146 enum port { 147 PORT_A = 0, 148 PORT_B, 149 PORT_C, 150 PORT_D, 151 PORT_E, 152 I915_MAX_PORTS 153 }; 154 #define port_name(p) ((p) + 'A') 155 156 #define I915_NUM_PHYS_VLV 2 157 158 enum dpio_channel { 159 DPIO_CH0, 160 DPIO_CH1 161 }; 162 163 enum dpio_phy { 164 DPIO_PHY0, 165 DPIO_PHY1 166 }; 167 168 enum intel_display_power_domain { 169 POWER_DOMAIN_PIPE_A, 170 POWER_DOMAIN_PIPE_B, 171 POWER_DOMAIN_PIPE_C, 172 POWER_DOMAIN_PIPE_A_PANEL_FITTER, 173 POWER_DOMAIN_PIPE_B_PANEL_FITTER, 174 POWER_DOMAIN_PIPE_C_PANEL_FITTER, 175 POWER_DOMAIN_TRANSCODER_A, 176 POWER_DOMAIN_TRANSCODER_B, 177 POWER_DOMAIN_TRANSCODER_C, 178 POWER_DOMAIN_TRANSCODER_EDP, 179 POWER_DOMAIN_PORT_DDI_A_LANES, 180 POWER_DOMAIN_PORT_DDI_B_LANES, 181 POWER_DOMAIN_PORT_DDI_C_LANES, 182 POWER_DOMAIN_PORT_DDI_D_LANES, 183 POWER_DOMAIN_PORT_DDI_E_LANES, 184 POWER_DOMAIN_PORT_DSI, 185 POWER_DOMAIN_PORT_CRT, 186 POWER_DOMAIN_PORT_OTHER, 187 POWER_DOMAIN_VGA, 188 POWER_DOMAIN_AUDIO, 189 POWER_DOMAIN_PLLS, 190 POWER_DOMAIN_AUX_A, 191 POWER_DOMAIN_AUX_B, 192 POWER_DOMAIN_AUX_C, 193 POWER_DOMAIN_AUX_D, 194 POWER_DOMAIN_GMBUS, 195 POWER_DOMAIN_MODESET, 196 POWER_DOMAIN_INIT, 197 198 POWER_DOMAIN_NUM, 199 }; 200 201 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A) 202 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \ 203 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER) 204 #define POWER_DOMAIN_TRANSCODER(tran) \ 205 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \ 206 (tran) + POWER_DOMAIN_TRANSCODER_A) 207 208 enum hpd_pin { 209 HPD_NONE = 0, 210 HPD_TV = HPD_NONE, /* TV is known to be unreliable */ 211 HPD_CRT, 212 HPD_SDVO_B, 213 HPD_SDVO_C, 214 HPD_PORT_A, 215 HPD_PORT_B, 216 HPD_PORT_C, 217 HPD_PORT_D, 218 HPD_PORT_E, 219 HPD_NUM_PINS 220 }; 221 222 #define for_each_hpd_pin(__pin) \ 223 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++) 224 225 struct i915_hotplug { 226 struct work_struct hotplug_work; 227 228 struct { 229 unsigned long last_jiffies; 230 int count; 231 enum { 232 HPD_ENABLED = 0, 233 HPD_DISABLED = 1, 234 HPD_MARK_DISABLED = 2 235 } state; 236 } stats[HPD_NUM_PINS]; 237 u32 event_bits; 238 struct delayed_work reenable_work; 239 240 struct intel_digital_port *irq_port[I915_MAX_PORTS]; 241 u32 long_port_mask; 242 u32 short_port_mask; 243 struct work_struct dig_port_work; 244 245 /* 246 * if we get a HPD irq from DP and a HPD irq from non-DP 247 * the non-DP HPD could block the workqueue on a mode config 248 * mutex getting, that userspace may have taken. However 249 * userspace is waiting on the DP workqueue to run which is 250 * blocked behind the non-DP one. 251 */ 252 struct workqueue_struct *dp_wq; 253 }; 254 255 #define I915_GEM_GPU_DOMAINS \ 256 (I915_GEM_DOMAIN_RENDER | \ 257 I915_GEM_DOMAIN_SAMPLER | \ 258 I915_GEM_DOMAIN_COMMAND | \ 259 I915_GEM_DOMAIN_INSTRUCTION | \ 260 I915_GEM_DOMAIN_VERTEX) 261 262 #define for_each_pipe(__dev_priv, __p) \ 263 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) 264 #define for_each_plane(__dev_priv, __pipe, __p) \ 265 for ((__p) = 0; \ 266 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \ 267 (__p)++) 268 #define for_each_sprite(__dev_priv, __p, __s) \ 269 for ((__s) = 0; \ 270 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \ 271 (__s)++) 272 273 #define for_each_crtc(dev, crtc) \ 274 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) 275 276 #define for_each_intel_plane(dev, intel_plane) \ 277 list_for_each_entry(intel_plane, \ 278 &dev->mode_config.plane_list, \ 279 base.head) 280 281 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \ 282 list_for_each_entry(intel_plane, \ 283 &(dev)->mode_config.plane_list, \ 284 base.head) \ 285 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe) 286 287 #define for_each_intel_crtc(dev, intel_crtc) \ 288 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) 289 290 #define for_each_intel_encoder(dev, intel_encoder) \ 291 list_for_each_entry(intel_encoder, \ 292 &(dev)->mode_config.encoder_list, \ 293 base.head) 294 295 #define for_each_intel_connector(dev, intel_connector) \ 296 list_for_each_entry(intel_connector, \ 297 &dev->mode_config.connector_list, \ 298 base.head) 299 300 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \ 301 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \ 302 for_each_if ((intel_encoder)->base.crtc == (__crtc)) 303 304 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \ 305 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \ 306 for_each_if ((intel_connector)->base.encoder == (__encoder)) 307 308 #define for_each_power_domain(domain, mask) \ 309 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \ 310 for_each_if ((1 << (domain)) & (mask)) 311 312 struct drm_i915_private; 313 struct i915_mm_struct; 314 struct i915_mmu_object; 315 316 struct drm_i915_file_private { 317 struct drm_i915_private *dev_priv; 318 struct drm_file *file; 319 320 struct { 321 spinlock_t lock; 322 struct list_head request_list; 323 /* 20ms is a fairly arbitrary limit (greater than the average frame time) 324 * chosen to prevent the CPU getting more than a frame ahead of the GPU 325 * (when using lax throttling for the frontbuffer). We also use it to 326 * offer free GPU waitboosts for severely congested workloads. 327 */ 328 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20) 329 } mm; 330 struct idr context_idr; 331 332 struct intel_rps_client { 333 struct list_head link; 334 unsigned boosts; 335 } rps; 336 337 unsigned int bsd_ring; 338 }; 339 340 enum intel_dpll_id { 341 DPLL_ID_PRIVATE = -1, /* non-shared dpll in use */ 342 /* real shared dpll ids must be >= 0 */ 343 DPLL_ID_PCH_PLL_A = 0, 344 DPLL_ID_PCH_PLL_B = 1, 345 /* hsw/bdw */ 346 DPLL_ID_WRPLL1 = 0, 347 DPLL_ID_WRPLL2 = 1, 348 DPLL_ID_SPLL = 2, 349 350 /* skl */ 351 DPLL_ID_SKL_DPLL1 = 0, 352 DPLL_ID_SKL_DPLL2 = 1, 353 DPLL_ID_SKL_DPLL3 = 2, 354 }; 355 #define I915_NUM_PLLS 3 356 357 struct intel_dpll_hw_state { 358 /* i9xx, pch plls */ 359 uint32_t dpll; 360 uint32_t dpll_md; 361 uint32_t fp0; 362 uint32_t fp1; 363 364 /* hsw, bdw */ 365 uint32_t wrpll; 366 uint32_t spll; 367 368 /* skl */ 369 /* 370 * DPLL_CTRL1 has 6 bits for each each this DPLL. We store those in 371 * lower part of ctrl1 and they get shifted into position when writing 372 * the register. This allows us to easily compare the state to share 373 * the DPLL. 374 */ 375 uint32_t ctrl1; 376 /* HDMI only, 0 when used for DP */ 377 uint32_t cfgcr1, cfgcr2; 378 379 /* bxt */ 380 uint32_t ebb0, ebb4, pll0, pll1, pll2, pll3, pll6, pll8, pll9, pll10, 381 pcsdw12; 382 }; 383 384 struct intel_shared_dpll_config { 385 unsigned crtc_mask; /* mask of CRTCs sharing this PLL */ 386 struct intel_dpll_hw_state hw_state; 387 }; 388 389 struct intel_shared_dpll { 390 struct intel_shared_dpll_config config; 391 392 int active; /* count of number of active CRTCs (i.e. DPMS on) */ 393 bool on; /* is the PLL actually active? Disabled during modeset */ 394 const char *name; 395 /* should match the index in the dev_priv->shared_dplls array */ 396 enum intel_dpll_id id; 397 /* The mode_set hook is optional and should be used together with the 398 * intel_prepare_shared_dpll function. */ 399 void (*mode_set)(struct drm_i915_private *dev_priv, 400 struct intel_shared_dpll *pll); 401 void (*enable)(struct drm_i915_private *dev_priv, 402 struct intel_shared_dpll *pll); 403 void (*disable)(struct drm_i915_private *dev_priv, 404 struct intel_shared_dpll *pll); 405 bool (*get_hw_state)(struct drm_i915_private *dev_priv, 406 struct intel_shared_dpll *pll, 407 struct intel_dpll_hw_state *hw_state); 408 }; 409 410 #define SKL_DPLL0 0 411 #define SKL_DPLL1 1 412 #define SKL_DPLL2 2 413 #define SKL_DPLL3 3 414 415 /* Used by dp and fdi links */ 416 struct intel_link_m_n { 417 uint32_t tu; 418 uint32_t gmch_m; 419 uint32_t gmch_n; 420 uint32_t link_m; 421 uint32_t link_n; 422 }; 423 424 void intel_link_compute_m_n(int bpp, int nlanes, 425 int pixel_clock, int link_clock, 426 struct intel_link_m_n *m_n); 427 428 /* Interface history: 429 * 430 * 1.1: Original. 431 * 1.2: Add Power Management 432 * 1.3: Add vblank support 433 * 1.4: Fix cmdbuffer path, add heap destroy 434 * 1.5: Add vblank pipe configuration 435 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank 436 * - Support vertical blank on secondary display pipe 437 */ 438 #define DRIVER_MAJOR 1 439 #define DRIVER_MINOR 6 440 #define DRIVER_PATCHLEVEL 0 441 442 #define WATCH_LISTS 0 443 444 struct opregion_header; 445 struct opregion_acpi; 446 struct opregion_swsci; 447 struct opregion_asle; 448 449 struct intel_opregion { 450 struct opregion_header *header; 451 struct opregion_acpi *acpi; 452 struct opregion_swsci *swsci; 453 u32 swsci_gbda_sub_functions; 454 u32 swsci_sbcb_sub_functions; 455 struct opregion_asle *asle; 456 void *rvda; 457 const void *vbt; 458 u32 vbt_size; 459 u32 *lid_state; 460 struct work_struct asle_work; 461 }; 462 #define OPREGION_SIZE (8*1024) 463 464 struct intel_overlay; 465 struct intel_overlay_error_state; 466 467 #define I915_FENCE_REG_NONE -1 468 #define I915_MAX_NUM_FENCES 32 469 /* 32 fences + sign bit for FENCE_REG_NONE */ 470 #define I915_MAX_NUM_FENCE_BITS 6 471 472 struct drm_i915_fence_reg { 473 struct list_head lru_list; 474 struct drm_i915_gem_object *obj; 475 int pin_count; 476 }; 477 478 struct sdvo_device_mapping { 479 u8 initialized; 480 u8 dvo_port; 481 u8 slave_addr; 482 u8 dvo_wiring; 483 u8 i2c_pin; 484 u8 ddc_pin; 485 }; 486 487 struct intel_display_error_state; 488 489 struct drm_i915_error_state { 490 struct kref ref; 491 struct timeval time; 492 493 char error_msg[128]; 494 int iommu; 495 u32 reset_count; 496 u32 suspend_count; 497 498 /* Generic register state */ 499 u32 eir; 500 u32 pgtbl_er; 501 u32 ier; 502 u32 gtier[4]; 503 u32 ccid; 504 u32 derrmr; 505 u32 forcewake; 506 u32 error; /* gen6+ */ 507 u32 err_int; /* gen7 */ 508 u32 fault_data0; /* gen8, gen9 */ 509 u32 fault_data1; /* gen8, gen9 */ 510 u32 done_reg; 511 u32 gac_eco; 512 u32 gam_ecochk; 513 u32 gab_ctl; 514 u32 gfx_mode; 515 u32 extra_instdone[I915_NUM_INSTDONE_REG]; 516 u64 fence[I915_MAX_NUM_FENCES]; 517 struct intel_overlay_error_state *overlay; 518 struct intel_display_error_state *display; 519 struct drm_i915_error_object *semaphore_obj; 520 521 struct drm_i915_error_ring { 522 bool valid; 523 /* Software tracked state */ 524 bool waiting; 525 int hangcheck_score; 526 enum intel_ring_hangcheck_action hangcheck_action; 527 int num_requests; 528 529 /* our own tracking of ring head and tail */ 530 u32 cpu_ring_head; 531 u32 cpu_ring_tail; 532 533 u32 semaphore_seqno[I915_NUM_RINGS - 1]; 534 535 /* Register state */ 536 u32 start; 537 u32 tail; 538 u32 head; 539 u32 ctl; 540 u32 hws; 541 u32 ipeir; 542 u32 ipehr; 543 u32 instdone; 544 u32 bbstate; 545 u32 instpm; 546 u32 instps; 547 u32 seqno; 548 u64 bbaddr; 549 u64 acthd; 550 u32 fault_reg; 551 u64 faddr; 552 u32 rc_psmi; /* sleep state */ 553 u32 semaphore_mboxes[I915_NUM_RINGS - 1]; 554 555 struct drm_i915_error_object { 556 int page_count; 557 u64 gtt_offset; 558 u32 *pages[0]; 559 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page; 560 561 struct drm_i915_error_request { 562 long jiffies; 563 u32 seqno; 564 u32 tail; 565 } *requests; 566 567 struct { 568 u32 gfx_mode; 569 union { 570 u64 pdp[4]; 571 u32 pp_dir_base; 572 }; 573 } vm_info; 574 575 pid_t pid; 576 char comm[TASK_COMM_LEN]; 577 } ring[I915_NUM_RINGS]; 578 579 struct drm_i915_error_buffer { 580 u32 size; 581 u32 name; 582 u32 rseqno[I915_NUM_RINGS], wseqno; 583 u64 gtt_offset; 584 u32 read_domains; 585 u32 write_domain; 586 s32 fence_reg:I915_MAX_NUM_FENCE_BITS; 587 s32 pinned:2; 588 u32 tiling:2; 589 u32 dirty:1; 590 u32 purgeable:1; 591 u32 userptr:1; 592 s32 ring:4; 593 u32 cache_level:3; 594 } **active_bo, **pinned_bo; 595 596 u32 *active_bo_count, *pinned_bo_count; 597 u32 vm_count; 598 }; 599 600 struct intel_connector; 601 struct intel_encoder; 602 struct intel_crtc_state; 603 struct intel_initial_plane_config; 604 struct intel_crtc; 605 struct intel_limit; 606 struct dpll; 607 608 struct drm_i915_display_funcs { 609 int (*get_display_clock_speed)(struct drm_device *dev); 610 int (*get_fifo_size)(struct drm_device *dev, int plane); 611 /** 612 * find_dpll() - Find the best values for the PLL 613 * @limit: limits for the PLL 614 * @crtc: current CRTC 615 * @target: target frequency in kHz 616 * @refclk: reference clock frequency in kHz 617 * @match_clock: if provided, @best_clock P divider must 618 * match the P divider from @match_clock 619 * used for LVDS downclocking 620 * @best_clock: best PLL values found 621 * 622 * Returns true on success, false on failure. 623 */ 624 bool (*find_dpll)(const struct intel_limit *limit, 625 struct intel_crtc_state *crtc_state, 626 int target, int refclk, 627 struct dpll *match_clock, 628 struct dpll *best_clock); 629 int (*compute_pipe_wm)(struct intel_crtc *crtc, 630 struct drm_atomic_state *state); 631 void (*program_watermarks)(struct intel_crtc_state *cstate); 632 void (*update_wm)(struct drm_crtc *crtc); 633 int (*modeset_calc_cdclk)(struct drm_atomic_state *state); 634 void (*modeset_commit_cdclk)(struct drm_atomic_state *state); 635 /* Returns the active state of the crtc, and if the crtc is active, 636 * fills out the pipe-config with the hw state. */ 637 bool (*get_pipe_config)(struct intel_crtc *, 638 struct intel_crtc_state *); 639 void (*get_initial_plane_config)(struct intel_crtc *, 640 struct intel_initial_plane_config *); 641 int (*crtc_compute_clock)(struct intel_crtc *crtc, 642 struct intel_crtc_state *crtc_state); 643 void (*crtc_enable)(struct drm_crtc *crtc); 644 void (*crtc_disable)(struct drm_crtc *crtc); 645 void (*audio_codec_enable)(struct drm_connector *connector, 646 struct intel_encoder *encoder, 647 const struct drm_display_mode *adjusted_mode); 648 void (*audio_codec_disable)(struct intel_encoder *encoder); 649 void (*fdi_link_train)(struct drm_crtc *crtc); 650 void (*init_clock_gating)(struct drm_device *dev); 651 int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc, 652 struct drm_framebuffer *fb, 653 struct drm_i915_gem_object *obj, 654 struct drm_i915_gem_request *req, 655 uint32_t flags); 656 void (*hpd_irq_setup)(struct drm_device *dev); 657 /* clock updates for mode set */ 658 /* cursor updates */ 659 /* render clock increase/decrease */ 660 /* display clock increase/decrease */ 661 /* pll clock increase/decrease */ 662 }; 663 664 enum forcewake_domain_id { 665 FW_DOMAIN_ID_RENDER = 0, 666 FW_DOMAIN_ID_BLITTER, 667 FW_DOMAIN_ID_MEDIA, 668 669 FW_DOMAIN_ID_COUNT 670 }; 671 672 enum forcewake_domains { 673 FORCEWAKE_RENDER = (1 << FW_DOMAIN_ID_RENDER), 674 FORCEWAKE_BLITTER = (1 << FW_DOMAIN_ID_BLITTER), 675 FORCEWAKE_MEDIA = (1 << FW_DOMAIN_ID_MEDIA), 676 FORCEWAKE_ALL = (FORCEWAKE_RENDER | 677 FORCEWAKE_BLITTER | 678 FORCEWAKE_MEDIA) 679 }; 680 681 struct intel_uncore_funcs { 682 void (*force_wake_get)(struct drm_i915_private *dev_priv, 683 enum forcewake_domains domains); 684 void (*force_wake_put)(struct drm_i915_private *dev_priv, 685 enum forcewake_domains domains); 686 687 uint8_t (*mmio_readb)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace); 688 uint16_t (*mmio_readw)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace); 689 uint32_t (*mmio_readl)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace); 690 uint64_t (*mmio_readq)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace); 691 692 void (*mmio_writeb)(struct drm_i915_private *dev_priv, i915_reg_t r, 693 uint8_t val, bool trace); 694 void (*mmio_writew)(struct drm_i915_private *dev_priv, i915_reg_t r, 695 uint16_t val, bool trace); 696 void (*mmio_writel)(struct drm_i915_private *dev_priv, i915_reg_t r, 697 uint32_t val, bool trace); 698 void (*mmio_writeq)(struct drm_i915_private *dev_priv, i915_reg_t r, 699 uint64_t val, bool trace); 700 }; 701 702 struct intel_uncore { 703 spinlock_t lock; /** lock is also taken in irq contexts. */ 704 705 struct intel_uncore_funcs funcs; 706 707 unsigned fifo_count; 708 enum forcewake_domains fw_domains; 709 710 struct intel_uncore_forcewake_domain { 711 struct drm_i915_private *i915; 712 enum forcewake_domain_id id; 713 unsigned wake_count; 714 struct timer_list timer; 715 i915_reg_t reg_set; 716 u32 val_set; 717 u32 val_clear; 718 i915_reg_t reg_ack; 719 i915_reg_t reg_post; 720 u32 val_reset; 721 } fw_domain[FW_DOMAIN_ID_COUNT]; 722 723 int unclaimed_mmio_check; 724 }; 725 726 /* Iterate over initialised fw domains */ 727 #define for_each_fw_domain_mask(domain__, mask__, dev_priv__, i__) \ 728 for ((i__) = 0, (domain__) = &(dev_priv__)->uncore.fw_domain[0]; \ 729 (i__) < FW_DOMAIN_ID_COUNT; \ 730 (i__)++, (domain__) = &(dev_priv__)->uncore.fw_domain[i__]) \ 731 for_each_if (((mask__) & (dev_priv__)->uncore.fw_domains) & (1 << (i__))) 732 733 #define for_each_fw_domain(domain__, dev_priv__, i__) \ 734 for_each_fw_domain_mask(domain__, FORCEWAKE_ALL, dev_priv__, i__) 735 736 #define CSR_VERSION(major, minor) ((major) << 16 | (minor)) 737 #define CSR_VERSION_MAJOR(version) ((version) >> 16) 738 #define CSR_VERSION_MINOR(version) ((version) & 0xffff) 739 740 struct intel_csr { 741 struct work_struct work; 742 const char *fw_path; 743 uint32_t *dmc_payload; 744 uint32_t dmc_fw_size; 745 uint32_t version; 746 uint32_t mmio_count; 747 i915_reg_t mmioaddr[8]; 748 uint32_t mmiodata[8]; 749 }; 750 751 #define DEV_INFO_FOR_EACH_FLAG(func, sep) \ 752 func(is_mobile) sep \ 753 func(is_i85x) sep \ 754 func(is_i915g) sep \ 755 func(is_i945gm) sep \ 756 func(is_g33) sep \ 757 func(need_gfx_hws) sep \ 758 func(is_g4x) sep \ 759 func(is_pineview) sep \ 760 func(is_broadwater) sep \ 761 func(is_crestline) sep \ 762 func(is_ivybridge) sep \ 763 func(is_valleyview) sep \ 764 func(is_cherryview) sep \ 765 func(is_haswell) sep \ 766 func(is_skylake) sep \ 767 func(is_broxton) sep \ 768 func(is_kabylake) sep \ 769 func(is_preliminary) sep \ 770 func(has_fbc) sep \ 771 func(has_pipe_cxsr) sep \ 772 func(has_hotplug) sep \ 773 func(cursor_needs_physical) sep \ 774 func(has_overlay) sep \ 775 func(overlay_needs_physical) sep \ 776 func(supports_tv) sep \ 777 func(has_llc) sep \ 778 func(has_ddi) sep \ 779 func(has_fpga_dbg) 780 781 #define DEFINE_FLAG(name) u8 name:1 782 #define SEP_SEMICOLON ; 783 784 struct intel_device_info { 785 u32 display_mmio_offset; 786 u16 device_id; 787 u8 num_pipes:3; 788 u8 num_sprites[I915_MAX_PIPES]; 789 u8 gen; 790 u8 ring_mask; /* Rings supported by the HW */ 791 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG, SEP_SEMICOLON); 792 /* Register offsets for the various display pipes and transcoders */ 793 int pipe_offsets[I915_MAX_TRANSCODERS]; 794 int trans_offsets[I915_MAX_TRANSCODERS]; 795 int palette_offsets[I915_MAX_PIPES]; 796 int cursor_offsets[I915_MAX_PIPES]; 797 798 /* Slice/subslice/EU info */ 799 u8 slice_total; 800 u8 subslice_total; 801 u8 subslice_per_slice; 802 u8 eu_total; 803 u8 eu_per_subslice; 804 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */ 805 u8 subslice_7eu[3]; 806 u8 has_slice_pg:1; 807 u8 has_subslice_pg:1; 808 u8 has_eu_pg:1; 809 }; 810 811 #undef DEFINE_FLAG 812 #undef SEP_SEMICOLON 813 814 enum i915_cache_level { 815 I915_CACHE_NONE = 0, 816 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */ 817 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc 818 caches, eg sampler/render caches, and the 819 large Last-Level-Cache. LLC is coherent with 820 the CPU, but L3 is only visible to the GPU. */ 821 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */ 822 }; 823 824 struct i915_ctx_hang_stats { 825 /* This context had batch pending when hang was declared */ 826 unsigned batch_pending; 827 828 /* This context had batch active when hang was declared */ 829 unsigned batch_active; 830 831 /* Time when this context was last blamed for a GPU reset */ 832 unsigned long guilty_ts; 833 834 /* If the contexts causes a second GPU hang within this time, 835 * it is permanently banned from submitting any more work. 836 */ 837 unsigned long ban_period_seconds; 838 839 /* This context is banned to submit more work */ 840 bool banned; 841 }; 842 843 /* This must match up with the value previously used for execbuf2.rsvd1. */ 844 #define DEFAULT_CONTEXT_HANDLE 0 845 846 #define CONTEXT_NO_ZEROMAP (1<<0) 847 /** 848 * struct intel_context - as the name implies, represents a context. 849 * @ref: reference count. 850 * @user_handle: userspace tracking identity for this context. 851 * @remap_slice: l3 row remapping information. 852 * @flags: context specific flags: 853 * CONTEXT_NO_ZEROMAP: do not allow mapping things to page 0. 854 * @file_priv: filp associated with this context (NULL for global default 855 * context). 856 * @hang_stats: information about the role of this context in possible GPU 857 * hangs. 858 * @ppgtt: virtual memory space used by this context. 859 * @legacy_hw_ctx: render context backing object and whether it is correctly 860 * initialized (legacy ring submission mechanism only). 861 * @link: link in the global list of contexts. 862 * 863 * Contexts are memory images used by the hardware to store copies of their 864 * internal state. 865 */ 866 struct intel_context { 867 struct kref ref; 868 int user_handle; 869 uint8_t remap_slice; 870 struct drm_i915_private *i915; 871 int flags; 872 struct drm_i915_file_private *file_priv; 873 struct i915_ctx_hang_stats hang_stats; 874 struct i915_hw_ppgtt *ppgtt; 875 876 /* Legacy ring buffer submission */ 877 struct { 878 struct drm_i915_gem_object *rcs_state; 879 bool initialized; 880 } legacy_hw_ctx; 881 882 /* Execlists */ 883 struct { 884 struct drm_i915_gem_object *state; 885 struct intel_ringbuffer *ringbuf; 886 int pin_count; 887 struct i915_vma *lrc_vma; 888 u64 lrc_desc; 889 uint32_t *lrc_reg_state; 890 } engine[I915_NUM_RINGS]; 891 892 struct list_head link; 893 }; 894 895 enum fb_op_origin { 896 ORIGIN_GTT, 897 ORIGIN_CPU, 898 ORIGIN_CS, 899 ORIGIN_FLIP, 900 ORIGIN_DIRTYFB, 901 }; 902 903 struct i915_fbc { 904 /* This is always the inner lock when overlapping with struct_mutex and 905 * it's the outer lock when overlapping with stolen_lock. */ 906 struct mutex lock; 907 unsigned threshold; 908 unsigned int fb_id; 909 unsigned int possible_framebuffer_bits; 910 unsigned int busy_bits; 911 struct intel_crtc *crtc; 912 int y; 913 914 struct drm_mm_node compressed_fb; 915 struct drm_mm_node *compressed_llb; 916 917 bool false_color; 918 919 bool enabled; 920 bool active; 921 922 struct intel_fbc_work { 923 bool scheduled; 924 struct work_struct work; 925 struct drm_framebuffer *fb; 926 unsigned long enable_jiffies; 927 } work; 928 929 const char *no_fbc_reason; 930 931 bool (*is_active)(struct drm_i915_private *dev_priv); 932 void (*activate)(struct intel_crtc *crtc); 933 void (*deactivate)(struct drm_i915_private *dev_priv); 934 }; 935 936 /** 937 * HIGH_RR is the highest eDP panel refresh rate read from EDID 938 * LOW_RR is the lowest eDP panel refresh rate found from EDID 939 * parsing for same resolution. 940 */ 941 enum drrs_refresh_rate_type { 942 DRRS_HIGH_RR, 943 DRRS_LOW_RR, 944 DRRS_MAX_RR, /* RR count */ 945 }; 946 947 enum drrs_support_type { 948 DRRS_NOT_SUPPORTED = 0, 949 STATIC_DRRS_SUPPORT = 1, 950 SEAMLESS_DRRS_SUPPORT = 2 951 }; 952 953 struct intel_dp; 954 struct i915_drrs { 955 struct mutex mutex; 956 struct delayed_work work; 957 struct intel_dp *dp; 958 unsigned busy_frontbuffer_bits; 959 enum drrs_refresh_rate_type refresh_rate_type; 960 enum drrs_support_type type; 961 }; 962 963 struct i915_psr { 964 struct mutex lock; 965 bool sink_support; 966 bool source_ok; 967 struct intel_dp *enabled; 968 bool active; 969 struct delayed_work work; 970 unsigned busy_frontbuffer_bits; 971 bool psr2_support; 972 bool aux_frame_sync; 973 }; 974 975 enum intel_pch { 976 PCH_NONE = 0, /* No PCH present */ 977 PCH_IBX, /* Ibexpeak PCH */ 978 PCH_CPT, /* Cougarpoint PCH */ 979 PCH_LPT, /* Lynxpoint PCH */ 980 PCH_SPT, /* Sunrisepoint PCH */ 981 PCH_NOP, 982 }; 983 984 enum intel_sbi_destination { 985 SBI_ICLK, 986 SBI_MPHY, 987 }; 988 989 #define QUIRK_PIPEA_FORCE (1<<0) 990 #define QUIRK_LVDS_SSC_DISABLE (1<<1) 991 #define QUIRK_INVERT_BRIGHTNESS (1<<2) 992 #define QUIRK_BACKLIGHT_PRESENT (1<<3) 993 #define QUIRK_PIPEB_FORCE (1<<4) 994 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5) 995 996 struct intel_fbdev; 997 struct intel_fbc_work; 998 999 struct intel_gmbus { 1000 struct i2c_adapter adapter; 1001 u32 force_bit; 1002 u32 reg0; 1003 i915_reg_t gpio_reg; 1004 struct i2c_algo_bit_data bit_algo; 1005 struct drm_i915_private *dev_priv; 1006 }; 1007 1008 struct i915_suspend_saved_registers { 1009 u32 saveDSPARB; 1010 u32 saveLVDS; 1011 u32 savePP_ON_DELAYS; 1012 u32 savePP_OFF_DELAYS; 1013 u32 savePP_ON; 1014 u32 savePP_OFF; 1015 u32 savePP_CONTROL; 1016 u32 savePP_DIVISOR; 1017 u32 saveFBC_CONTROL; 1018 u32 saveCACHE_MODE_0; 1019 u32 saveMI_ARB_STATE; 1020 u32 saveSWF0[16]; 1021 u32 saveSWF1[16]; 1022 u32 saveSWF3[3]; 1023 uint64_t saveFENCE[I915_MAX_NUM_FENCES]; 1024 u32 savePCH_PORT_HOTPLUG; 1025 u16 saveGCDGMBUS; 1026 }; 1027 1028 struct vlv_s0ix_state { 1029 /* GAM */ 1030 u32 wr_watermark; 1031 u32 gfx_prio_ctrl; 1032 u32 arb_mode; 1033 u32 gfx_pend_tlb0; 1034 u32 gfx_pend_tlb1; 1035 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM]; 1036 u32 media_max_req_count; 1037 u32 gfx_max_req_count; 1038 u32 render_hwsp; 1039 u32 ecochk; 1040 u32 bsd_hwsp; 1041 u32 blt_hwsp; 1042 u32 tlb_rd_addr; 1043 1044 /* MBC */ 1045 u32 g3dctl; 1046 u32 gsckgctl; 1047 u32 mbctl; 1048 1049 /* GCP */ 1050 u32 ucgctl1; 1051 u32 ucgctl3; 1052 u32 rcgctl1; 1053 u32 rcgctl2; 1054 u32 rstctl; 1055 u32 misccpctl; 1056 1057 /* GPM */ 1058 u32 gfxpause; 1059 u32 rpdeuhwtc; 1060 u32 rpdeuc; 1061 u32 ecobus; 1062 u32 pwrdwnupctl; 1063 u32 rp_down_timeout; 1064 u32 rp_deucsw; 1065 u32 rcubmabdtmr; 1066 u32 rcedata; 1067 u32 spare2gh; 1068 1069 /* Display 1 CZ domain */ 1070 u32 gt_imr; 1071 u32 gt_ier; 1072 u32 pm_imr; 1073 u32 pm_ier; 1074 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM]; 1075 1076 /* GT SA CZ domain */ 1077 u32 tilectl; 1078 u32 gt_fifoctl; 1079 u32 gtlc_wake_ctrl; 1080 u32 gtlc_survive; 1081 u32 pmwgicz; 1082 1083 /* Display 2 CZ domain */ 1084 u32 gu_ctl0; 1085 u32 gu_ctl1; 1086 u32 pcbr; 1087 u32 clock_gate_dis2; 1088 }; 1089 1090 struct intel_rps_ei { 1091 u32 cz_clock; 1092 u32 render_c0; 1093 u32 media_c0; 1094 }; 1095 1096 struct intel_gen6_power_mgmt { 1097 /* 1098 * work, interrupts_enabled and pm_iir are protected by 1099 * dev_priv->irq_lock 1100 */ 1101 struct work_struct work; 1102 bool interrupts_enabled; 1103 u32 pm_iir; 1104 1105 /* Frequencies are stored in potentially platform dependent multiples. 1106 * In other words, *_freq needs to be multiplied by X to be interesting. 1107 * Soft limits are those which are used for the dynamic reclocking done 1108 * by the driver (raise frequencies under heavy loads, and lower for 1109 * lighter loads). Hard limits are those imposed by the hardware. 1110 * 1111 * A distinction is made for overclocking, which is never enabled by 1112 * default, and is considered to be above the hard limit if it's 1113 * possible at all. 1114 */ 1115 u8 cur_freq; /* Current frequency (cached, may not == HW) */ 1116 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */ 1117 u8 max_freq_softlimit; /* Max frequency permitted by the driver */ 1118 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */ 1119 u8 min_freq; /* AKA RPn. Minimum frequency */ 1120 u8 idle_freq; /* Frequency to request when we are idle */ 1121 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */ 1122 u8 rp1_freq; /* "less than" RP0 power/freqency */ 1123 u8 rp0_freq; /* Non-overclocked max frequency. */ 1124 1125 u8 up_threshold; /* Current %busy required to uplock */ 1126 u8 down_threshold; /* Current %busy required to downclock */ 1127 1128 int last_adj; 1129 enum { LOW_POWER, BETWEEN, HIGH_POWER } power; 1130 1131 spinlock_t client_lock; 1132 struct list_head clients; 1133 bool client_boost; 1134 1135 bool enabled; 1136 struct delayed_work delayed_resume_work; 1137 unsigned boosts; 1138 1139 struct intel_rps_client semaphores, mmioflips; 1140 1141 /* manual wa residency calculations */ 1142 struct intel_rps_ei up_ei, down_ei; 1143 1144 /* 1145 * Protects RPS/RC6 register access and PCU communication. 1146 * Must be taken after struct_mutex if nested. Note that 1147 * this lock may be held for long periods of time when 1148 * talking to hw - so only take it when talking to hw! 1149 */ 1150 struct mutex hw_lock; 1151 }; 1152 1153 /* defined intel_pm.c */ 1154 extern spinlock_t mchdev_lock; 1155 1156 struct intel_ilk_power_mgmt { 1157 u8 cur_delay; 1158 u8 min_delay; 1159 u8 max_delay; 1160 u8 fmax; 1161 u8 fstart; 1162 1163 u64 last_count1; 1164 unsigned long last_time1; 1165 unsigned long chipset_power; 1166 u64 last_count2; 1167 u64 last_time2; 1168 unsigned long gfx_power; 1169 u8 corr; 1170 1171 int c_m; 1172 int r_t; 1173 }; 1174 1175 struct drm_i915_private; 1176 struct i915_power_well; 1177 1178 struct i915_power_well_ops { 1179 /* 1180 * Synchronize the well's hw state to match the current sw state, for 1181 * example enable/disable it based on the current refcount. Called 1182 * during driver init and resume time, possibly after first calling 1183 * the enable/disable handlers. 1184 */ 1185 void (*sync_hw)(struct drm_i915_private *dev_priv, 1186 struct i915_power_well *power_well); 1187 /* 1188 * Enable the well and resources that depend on it (for example 1189 * interrupts located on the well). Called after the 0->1 refcount 1190 * transition. 1191 */ 1192 void (*enable)(struct drm_i915_private *dev_priv, 1193 struct i915_power_well *power_well); 1194 /* 1195 * Disable the well and resources that depend on it. Called after 1196 * the 1->0 refcount transition. 1197 */ 1198 void (*disable)(struct drm_i915_private *dev_priv, 1199 struct i915_power_well *power_well); 1200 /* Returns the hw enabled state. */ 1201 bool (*is_enabled)(struct drm_i915_private *dev_priv, 1202 struct i915_power_well *power_well); 1203 }; 1204 1205 /* Power well structure for haswell */ 1206 struct i915_power_well { 1207 const char *name; 1208 bool always_on; 1209 /* power well enable/disable usage count */ 1210 int count; 1211 /* cached hw enabled state */ 1212 bool hw_enabled; 1213 unsigned long domains; 1214 unsigned long data; 1215 const struct i915_power_well_ops *ops; 1216 }; 1217 1218 struct i915_power_domains { 1219 /* 1220 * Power wells needed for initialization at driver init and suspend 1221 * time are on. They are kept on until after the first modeset. 1222 */ 1223 bool init_power_on; 1224 bool initializing; 1225 int power_well_count; 1226 1227 struct mutex lock; 1228 int domain_use_count[POWER_DOMAIN_NUM]; 1229 struct i915_power_well *power_wells; 1230 }; 1231 1232 #define MAX_L3_SLICES 2 1233 struct intel_l3_parity { 1234 u32 *remap_info[MAX_L3_SLICES]; 1235 struct work_struct error_work; 1236 int which_slice; 1237 }; 1238 1239 struct i915_gem_mm { 1240 /** Memory allocator for GTT stolen memory */ 1241 struct drm_mm stolen; 1242 /** Protects the usage of the GTT stolen memory allocator. This is 1243 * always the inner lock when overlapping with struct_mutex. */ 1244 struct mutex stolen_lock; 1245 1246 /** List of all objects in gtt_space. Used to restore gtt 1247 * mappings on resume */ 1248 struct list_head bound_list; 1249 /** 1250 * List of objects which are not bound to the GTT (thus 1251 * are idle and not used by the GPU) but still have 1252 * (presumably uncached) pages still attached. 1253 */ 1254 struct list_head unbound_list; 1255 1256 /** Usable portion of the GTT for GEM */ 1257 unsigned long stolen_base; /* limited to low memory (32-bit) */ 1258 1259 /** PPGTT used for aliasing the PPGTT with the GTT */ 1260 struct i915_hw_ppgtt *aliasing_ppgtt; 1261 1262 struct notifier_block oom_notifier; 1263 struct shrinker shrinker; 1264 bool shrinker_no_lock_stealing; 1265 1266 /** LRU list of objects with fence regs on them. */ 1267 struct list_head fence_list; 1268 1269 /** 1270 * We leave the user IRQ off as much as possible, 1271 * but this means that requests will finish and never 1272 * be retired once the system goes idle. Set a timer to 1273 * fire periodically while the ring is running. When it 1274 * fires, go retire requests. 1275 */ 1276 struct delayed_work retire_work; 1277 1278 /** 1279 * When we detect an idle GPU, we want to turn on 1280 * powersaving features. So once we see that there 1281 * are no more requests outstanding and no more 1282 * arrive within a small period of time, we fire 1283 * off the idle_work. 1284 */ 1285 struct delayed_work idle_work; 1286 1287 /** 1288 * Are we in a non-interruptible section of code like 1289 * modesetting? 1290 */ 1291 bool interruptible; 1292 1293 /** 1294 * Is the GPU currently considered idle, or busy executing userspace 1295 * requests? Whilst idle, we attempt to power down the hardware and 1296 * display clocks. In order to reduce the effect on performance, there 1297 * is a slight delay before we do so. 1298 */ 1299 bool busy; 1300 1301 /* the indicator for dispatch video commands on two BSD rings */ 1302 unsigned int bsd_ring_dispatch_index; 1303 1304 /** Bit 6 swizzling required for X tiling */ 1305 uint32_t bit_6_swizzle_x; 1306 /** Bit 6 swizzling required for Y tiling */ 1307 uint32_t bit_6_swizzle_y; 1308 1309 /* accounting, useful for userland debugging */ 1310 spinlock_t object_stat_lock; 1311 size_t object_memory; 1312 u32 object_count; 1313 }; 1314 1315 struct drm_i915_error_state_buf { 1316 struct drm_i915_private *i915; 1317 unsigned bytes; 1318 unsigned size; 1319 int err; 1320 u8 *buf; 1321 loff_t start; 1322 loff_t pos; 1323 }; 1324 1325 struct i915_error_state_file_priv { 1326 struct drm_device *dev; 1327 struct drm_i915_error_state *error; 1328 }; 1329 1330 struct i915_gpu_error { 1331 /* For hangcheck timer */ 1332 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */ 1333 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD) 1334 /* Hang gpu twice in this window and your context gets banned */ 1335 #define DRM_I915_CTX_BAN_PERIOD DIV_ROUND_UP(8*DRM_I915_HANGCHECK_PERIOD, 1000) 1336 1337 struct workqueue_struct *hangcheck_wq; 1338 struct delayed_work hangcheck_work; 1339 1340 /* For reset and error_state handling. */ 1341 spinlock_t lock; 1342 /* Protected by the above dev->gpu_error.lock. */ 1343 struct drm_i915_error_state *first_error; 1344 1345 unsigned long missed_irq_rings; 1346 1347 /** 1348 * State variable controlling the reset flow and count 1349 * 1350 * This is a counter which gets incremented when reset is triggered, 1351 * and again when reset has been handled. So odd values (lowest bit set) 1352 * means that reset is in progress and even values that 1353 * (reset_counter >> 1):th reset was successfully completed. 1354 * 1355 * If reset is not completed succesfully, the I915_WEDGE bit is 1356 * set meaning that hardware is terminally sour and there is no 1357 * recovery. All waiters on the reset_queue will be woken when 1358 * that happens. 1359 * 1360 * This counter is used by the wait_seqno code to notice that reset 1361 * event happened and it needs to restart the entire ioctl (since most 1362 * likely the seqno it waited for won't ever signal anytime soon). 1363 * 1364 * This is important for lock-free wait paths, where no contended lock 1365 * naturally enforces the correct ordering between the bail-out of the 1366 * waiter and the gpu reset work code. 1367 */ 1368 atomic_t reset_counter; 1369 1370 #define I915_RESET_IN_PROGRESS_FLAG 1 1371 #define I915_WEDGED (1 << 31) 1372 1373 /** 1374 * Waitqueue to signal when the reset has completed. Used by clients 1375 * that wait for dev_priv->mm.wedged to settle. 1376 */ 1377 wait_queue_head_t reset_queue; 1378 1379 /* Userspace knobs for gpu hang simulation; 1380 * combines both a ring mask, and extra flags 1381 */ 1382 u32 stop_rings; 1383 #define I915_STOP_RING_ALLOW_BAN (1 << 31) 1384 #define I915_STOP_RING_ALLOW_WARN (1 << 30) 1385 1386 /* For missed irq/seqno simulation. */ 1387 unsigned int test_irq_rings; 1388 1389 /* Used to prevent gem_check_wedged returning -EAGAIN during gpu reset */ 1390 bool reload_in_reset; 1391 }; 1392 1393 enum modeset_restore { 1394 MODESET_ON_LID_OPEN, 1395 MODESET_DONE, 1396 MODESET_SUSPENDED, 1397 }; 1398 1399 #define DP_AUX_A 0x40 1400 #define DP_AUX_B 0x10 1401 #define DP_AUX_C 0x20 1402 #define DP_AUX_D 0x30 1403 1404 #define DDC_PIN_B 0x05 1405 #define DDC_PIN_C 0x04 1406 #define DDC_PIN_D 0x06 1407 1408 struct ddi_vbt_port_info { 1409 /* 1410 * This is an index in the HDMI/DVI DDI buffer translation table. 1411 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't 1412 * populate this field. 1413 */ 1414 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff 1415 uint8_t hdmi_level_shift; 1416 1417 uint8_t supports_dvi:1; 1418 uint8_t supports_hdmi:1; 1419 uint8_t supports_dp:1; 1420 1421 uint8_t alternate_aux_channel; 1422 uint8_t alternate_ddc_pin; 1423 1424 uint8_t dp_boost_level; 1425 uint8_t hdmi_boost_level; 1426 }; 1427 1428 enum psr_lines_to_wait { 1429 PSR_0_LINES_TO_WAIT = 0, 1430 PSR_1_LINE_TO_WAIT, 1431 PSR_4_LINES_TO_WAIT, 1432 PSR_8_LINES_TO_WAIT 1433 }; 1434 1435 struct intel_vbt_data { 1436 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */ 1437 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */ 1438 1439 /* Feature bits */ 1440 unsigned int int_tv_support:1; 1441 unsigned int lvds_dither:1; 1442 unsigned int lvds_vbt:1; 1443 unsigned int int_crt_support:1; 1444 unsigned int lvds_use_ssc:1; 1445 unsigned int display_clock_mode:1; 1446 unsigned int fdi_rx_polarity_inverted:1; 1447 unsigned int has_mipi:1; 1448 int lvds_ssc_freq; 1449 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */ 1450 1451 enum drrs_support_type drrs_type; 1452 1453 /* eDP */ 1454 int edp_rate; 1455 int edp_lanes; 1456 int edp_preemphasis; 1457 int edp_vswing; 1458 bool edp_initialized; 1459 bool edp_support; 1460 int edp_bpp; 1461 struct edp_power_seq edp_pps; 1462 1463 struct { 1464 bool full_link; 1465 bool require_aux_wakeup; 1466 int idle_frames; 1467 enum psr_lines_to_wait lines_to_wait; 1468 int tp1_wakeup_time; 1469 int tp2_tp3_wakeup_time; 1470 } psr; 1471 1472 struct { 1473 u16 pwm_freq_hz; 1474 bool present; 1475 bool active_low_pwm; 1476 u8 min_brightness; /* min_brightness/255 of max */ 1477 } backlight; 1478 1479 /* MIPI DSI */ 1480 struct { 1481 u16 port; 1482 u16 panel_id; 1483 struct mipi_config *config; 1484 struct mipi_pps_data *pps; 1485 u8 seq_version; 1486 u32 size; 1487 u8 *data; 1488 const u8 *sequence[MIPI_SEQ_MAX]; 1489 } dsi; 1490 1491 int crt_ddc_pin; 1492 1493 int child_dev_num; 1494 union child_device_config *child_dev; 1495 1496 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS]; 1497 }; 1498 1499 enum intel_ddb_partitioning { 1500 INTEL_DDB_PART_1_2, 1501 INTEL_DDB_PART_5_6, /* IVB+ */ 1502 }; 1503 1504 struct intel_wm_level { 1505 bool enable; 1506 uint32_t pri_val; 1507 uint32_t spr_val; 1508 uint32_t cur_val; 1509 uint32_t fbc_val; 1510 }; 1511 1512 struct ilk_wm_values { 1513 uint32_t wm_pipe[3]; 1514 uint32_t wm_lp[3]; 1515 uint32_t wm_lp_spr[3]; 1516 uint32_t wm_linetime[3]; 1517 bool enable_fbc_wm; 1518 enum intel_ddb_partitioning partitioning; 1519 }; 1520 1521 struct vlv_pipe_wm { 1522 uint16_t primary; 1523 uint16_t sprite[2]; 1524 uint8_t cursor; 1525 }; 1526 1527 struct vlv_sr_wm { 1528 uint16_t plane; 1529 uint8_t cursor; 1530 }; 1531 1532 struct vlv_wm_values { 1533 struct vlv_pipe_wm pipe[3]; 1534 struct vlv_sr_wm sr; 1535 struct { 1536 uint8_t cursor; 1537 uint8_t sprite[2]; 1538 uint8_t primary; 1539 } ddl[3]; 1540 uint8_t level; 1541 bool cxsr; 1542 }; 1543 1544 struct skl_ddb_entry { 1545 uint16_t start, end; /* in number of blocks, 'end' is exclusive */ 1546 }; 1547 1548 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry) 1549 { 1550 return entry->end - entry->start; 1551 } 1552 1553 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1, 1554 const struct skl_ddb_entry *e2) 1555 { 1556 if (e1->start == e2->start && e1->end == e2->end) 1557 return true; 1558 1559 return false; 1560 } 1561 1562 struct skl_ddb_allocation { 1563 struct skl_ddb_entry pipe[I915_MAX_PIPES]; 1564 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */ 1565 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES]; 1566 }; 1567 1568 struct skl_wm_values { 1569 bool dirty[I915_MAX_PIPES]; 1570 struct skl_ddb_allocation ddb; 1571 uint32_t wm_linetime[I915_MAX_PIPES]; 1572 uint32_t plane[I915_MAX_PIPES][I915_MAX_PLANES][8]; 1573 uint32_t plane_trans[I915_MAX_PIPES][I915_MAX_PLANES]; 1574 }; 1575 1576 struct skl_wm_level { 1577 bool plane_en[I915_MAX_PLANES]; 1578 uint16_t plane_res_b[I915_MAX_PLANES]; 1579 uint8_t plane_res_l[I915_MAX_PLANES]; 1580 }; 1581 1582 /* 1583 * This struct helps tracking the state needed for runtime PM, which puts the 1584 * device in PCI D3 state. Notice that when this happens, nothing on the 1585 * graphics device works, even register access, so we don't get interrupts nor 1586 * anything else. 1587 * 1588 * Every piece of our code that needs to actually touch the hardware needs to 1589 * either call intel_runtime_pm_get or call intel_display_power_get with the 1590 * appropriate power domain. 1591 * 1592 * Our driver uses the autosuspend delay feature, which means we'll only really 1593 * suspend if we stay with zero refcount for a certain amount of time. The 1594 * default value is currently very conservative (see intel_runtime_pm_enable), but 1595 * it can be changed with the standard runtime PM files from sysfs. 1596 * 1597 * The irqs_disabled variable becomes true exactly after we disable the IRQs and 1598 * goes back to false exactly before we reenable the IRQs. We use this variable 1599 * to check if someone is trying to enable/disable IRQs while they're supposed 1600 * to be disabled. This shouldn't happen and we'll print some error messages in 1601 * case it happens. 1602 * 1603 * For more, read the Documentation/power/runtime_pm.txt. 1604 */ 1605 struct i915_runtime_pm { 1606 atomic_t wakeref_count; 1607 atomic_t atomic_seq; 1608 bool suspended; 1609 bool irqs_enabled; 1610 }; 1611 1612 enum intel_pipe_crc_source { 1613 INTEL_PIPE_CRC_SOURCE_NONE, 1614 INTEL_PIPE_CRC_SOURCE_PLANE1, 1615 INTEL_PIPE_CRC_SOURCE_PLANE2, 1616 INTEL_PIPE_CRC_SOURCE_PF, 1617 INTEL_PIPE_CRC_SOURCE_PIPE, 1618 /* TV/DP on pre-gen5/vlv can't use the pipe source. */ 1619 INTEL_PIPE_CRC_SOURCE_TV, 1620 INTEL_PIPE_CRC_SOURCE_DP_B, 1621 INTEL_PIPE_CRC_SOURCE_DP_C, 1622 INTEL_PIPE_CRC_SOURCE_DP_D, 1623 INTEL_PIPE_CRC_SOURCE_AUTO, 1624 INTEL_PIPE_CRC_SOURCE_MAX, 1625 }; 1626 1627 struct intel_pipe_crc_entry { 1628 uint32_t frame; 1629 uint32_t crc[5]; 1630 }; 1631 1632 #define INTEL_PIPE_CRC_ENTRIES_NR 128 1633 struct intel_pipe_crc { 1634 spinlock_t lock; 1635 bool opened; /* exclusive access to the result file */ 1636 struct intel_pipe_crc_entry *entries; 1637 enum intel_pipe_crc_source source; 1638 int head, tail; 1639 wait_queue_head_t wq; 1640 }; 1641 1642 struct i915_frontbuffer_tracking { 1643 struct mutex lock; 1644 1645 /* 1646 * Tracking bits for delayed frontbuffer flushing du to gpu activity or 1647 * scheduled flips. 1648 */ 1649 unsigned busy_bits; 1650 unsigned flip_bits; 1651 }; 1652 1653 struct i915_wa_reg { 1654 i915_reg_t addr; 1655 u32 value; 1656 /* bitmask representing WA bits */ 1657 u32 mask; 1658 }; 1659 1660 #define I915_MAX_WA_REGS 16 1661 1662 struct i915_workarounds { 1663 struct i915_wa_reg reg[I915_MAX_WA_REGS]; 1664 u32 count; 1665 }; 1666 1667 struct i915_virtual_gpu { 1668 bool active; 1669 }; 1670 1671 struct i915_execbuffer_params { 1672 struct drm_device *dev; 1673 struct drm_file *file; 1674 uint32_t dispatch_flags; 1675 uint32_t args_batch_start_offset; 1676 uint64_t batch_obj_vm_offset; 1677 struct intel_engine_cs *ring; 1678 struct drm_i915_gem_object *batch_obj; 1679 struct intel_context *ctx; 1680 struct drm_i915_gem_request *request; 1681 }; 1682 1683 /* used in computing the new watermarks state */ 1684 struct intel_wm_config { 1685 unsigned int num_pipes_active; 1686 bool sprites_enabled; 1687 bool sprites_scaled; 1688 }; 1689 1690 struct drm_i915_private { 1691 struct drm_device *dev; 1692 struct kmem_cache *objects; 1693 struct kmem_cache *vmas; 1694 struct kmem_cache *requests; 1695 1696 const struct intel_device_info info; 1697 1698 int relative_constants_mode; 1699 1700 void __iomem *regs; 1701 1702 struct intel_uncore uncore; 1703 1704 struct i915_virtual_gpu vgpu; 1705 1706 struct intel_guc guc; 1707 1708 struct intel_csr csr; 1709 1710 struct intel_gmbus gmbus[GMBUS_NUM_PINS]; 1711 1712 /** gmbus_mutex protects against concurrent usage of the single hw gmbus 1713 * controller on different i2c buses. */ 1714 struct mutex gmbus_mutex; 1715 1716 /** 1717 * Base address of the gmbus and gpio block. 1718 */ 1719 uint32_t gpio_mmio_base; 1720 1721 /* MMIO base address for MIPI regs */ 1722 uint32_t mipi_mmio_base; 1723 1724 uint32_t psr_mmio_base; 1725 1726 wait_queue_head_t gmbus_wait_queue; 1727 1728 struct pci_dev *bridge_dev; 1729 struct intel_engine_cs ring[I915_NUM_RINGS]; 1730 struct drm_i915_gem_object *semaphore_obj; 1731 uint32_t last_seqno, next_seqno; 1732 1733 struct drm_dma_handle *status_page_dmah; 1734 struct resource mch_res; 1735 1736 /* protects the irq masks */ 1737 spinlock_t irq_lock; 1738 1739 /* protects the mmio flip data */ 1740 spinlock_t mmio_flip_lock; 1741 1742 bool display_irqs_enabled; 1743 1744 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */ 1745 struct pm_qos_request pm_qos; 1746 1747 /* Sideband mailbox protection */ 1748 struct mutex sb_lock; 1749 1750 /** Cached value of IMR to avoid reads in updating the bitfield */ 1751 union { 1752 u32 irq_mask; 1753 u32 de_irq_mask[I915_MAX_PIPES]; 1754 }; 1755 u32 gt_irq_mask; 1756 u32 pm_irq_mask; 1757 u32 pm_rps_events; 1758 u32 pipestat_irq_mask[I915_MAX_PIPES]; 1759 1760 struct i915_hotplug hotplug; 1761 struct i915_fbc fbc; 1762 struct i915_drrs drrs; 1763 struct intel_opregion opregion; 1764 struct intel_vbt_data vbt; 1765 1766 bool preserve_bios_swizzle; 1767 1768 /* overlay */ 1769 struct intel_overlay *overlay; 1770 1771 /* backlight registers and fields in struct intel_panel */ 1772 struct mutex backlight_lock; 1773 1774 /* LVDS info */ 1775 bool no_aux_handshake; 1776 1777 /* protects panel power sequencer state */ 1778 struct mutex pps_mutex; 1779 1780 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */ 1781 int num_fence_regs; /* 8 on pre-965, 16 otherwise */ 1782 1783 unsigned int fsb_freq, mem_freq, is_ddr3; 1784 unsigned int skl_boot_cdclk; 1785 unsigned int cdclk_freq, max_cdclk_freq, atomic_cdclk_freq; 1786 unsigned int max_dotclk_freq; 1787 unsigned int hpll_freq; 1788 unsigned int czclk_freq; 1789 1790 /** 1791 * wq - Driver workqueue for GEM. 1792 * 1793 * NOTE: Work items scheduled here are not allowed to grab any modeset 1794 * locks, for otherwise the flushing done in the pageflip code will 1795 * result in deadlocks. 1796 */ 1797 struct workqueue_struct *wq; 1798 1799 /* Display functions */ 1800 struct drm_i915_display_funcs display; 1801 1802 /* PCH chipset type */ 1803 enum intel_pch pch_type; 1804 unsigned short pch_id; 1805 1806 unsigned long quirks; 1807 1808 enum modeset_restore modeset_restore; 1809 struct mutex modeset_restore_lock; 1810 1811 struct list_head vm_list; /* Global list of all address spaces */ 1812 struct i915_gtt gtt; /* VM representing the global address space */ 1813 1814 struct i915_gem_mm mm; 1815 DECLARE_HASHTABLE(mm_structs, 7); 1816 struct mutex mm_lock; 1817 1818 /* Kernel Modesetting */ 1819 1820 struct sdvo_device_mapping sdvo_mappings[2]; 1821 1822 struct drm_crtc *plane_to_crtc_mapping[I915_MAX_PIPES]; 1823 struct drm_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES]; 1824 wait_queue_head_t pending_flip_queue; 1825 1826 #ifdef CONFIG_DEBUG_FS 1827 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES]; 1828 #endif 1829 1830 /* dpll and cdclk state is protected by connection_mutex */ 1831 int num_shared_dpll; 1832 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS]; 1833 1834 unsigned int active_crtcs; 1835 unsigned int min_pixclk[I915_MAX_PIPES]; 1836 1837 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV]; 1838 1839 struct i915_workarounds workarounds; 1840 1841 /* Reclocking support */ 1842 bool render_reclock_avail; 1843 1844 struct i915_frontbuffer_tracking fb_tracking; 1845 1846 u16 orig_clock; 1847 1848 bool mchbar_need_disable; 1849 1850 struct intel_l3_parity l3_parity; 1851 1852 /* Cannot be determined by PCIID. You must always read a register. */ 1853 size_t ellc_size; 1854 1855 /* gen6+ rps state */ 1856 struct intel_gen6_power_mgmt rps; 1857 1858 /* ilk-only ips/rps state. Everything in here is protected by the global 1859 * mchdev_lock in intel_pm.c */ 1860 struct intel_ilk_power_mgmt ips; 1861 1862 struct i915_power_domains power_domains; 1863 1864 struct i915_psr psr; 1865 1866 struct i915_gpu_error gpu_error; 1867 1868 struct drm_i915_gem_object *vlv_pctx; 1869 1870 #ifdef CONFIG_DRM_FBDEV_EMULATION 1871 /* list of fbdev register on this device */ 1872 struct intel_fbdev *fbdev; 1873 struct work_struct fbdev_suspend_work; 1874 #endif 1875 1876 struct drm_property *broadcast_rgb_property; 1877 struct drm_property *force_audio_property; 1878 1879 /* hda/i915 audio component */ 1880 struct i915_audio_component *audio_component; 1881 bool audio_component_registered; 1882 /** 1883 * av_mutex - mutex for audio/video sync 1884 * 1885 */ 1886 struct mutex av_mutex; 1887 1888 uint32_t hw_context_size; 1889 struct list_head context_list; 1890 1891 u32 fdi_rx_config; 1892 1893 u32 chv_phy_control; 1894 1895 u32 suspend_count; 1896 bool suspended_to_idle; 1897 struct i915_suspend_saved_registers regfile; 1898 struct vlv_s0ix_state vlv_s0ix_state; 1899 1900 struct { 1901 /* 1902 * Raw watermark latency values: 1903 * in 0.1us units for WM0, 1904 * in 0.5us units for WM1+. 1905 */ 1906 /* primary */ 1907 uint16_t pri_latency[5]; 1908 /* sprite */ 1909 uint16_t spr_latency[5]; 1910 /* cursor */ 1911 uint16_t cur_latency[5]; 1912 /* 1913 * Raw watermark memory latency values 1914 * for SKL for all 8 levels 1915 * in 1us units. 1916 */ 1917 uint16_t skl_latency[8]; 1918 1919 /* Committed wm config */ 1920 struct intel_wm_config config; 1921 1922 /* 1923 * The skl_wm_values structure is a bit too big for stack 1924 * allocation, so we keep the staging struct where we store 1925 * intermediate results here instead. 1926 */ 1927 struct skl_wm_values skl_results; 1928 1929 /* current hardware state */ 1930 union { 1931 struct ilk_wm_values hw; 1932 struct skl_wm_values skl_hw; 1933 struct vlv_wm_values vlv; 1934 }; 1935 1936 uint8_t max_level; 1937 } wm; 1938 1939 struct i915_runtime_pm pm; 1940 1941 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */ 1942 struct { 1943 int (*execbuf_submit)(struct i915_execbuffer_params *params, 1944 struct drm_i915_gem_execbuffer2 *args, 1945 struct list_head *vmas); 1946 int (*init_rings)(struct drm_device *dev); 1947 void (*cleanup_ring)(struct intel_engine_cs *ring); 1948 void (*stop_ring)(struct intel_engine_cs *ring); 1949 } gt; 1950 1951 struct intel_context *kernel_context; 1952 1953 bool edp_low_vswing; 1954 1955 /* perform PHY state sanity checks? */ 1956 bool chv_phy_assert[2]; 1957 1958 struct intel_encoder *dig_port_map[I915_MAX_PORTS]; 1959 1960 /* 1961 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch 1962 * will be rejected. Instead look for a better place. 1963 */ 1964 }; 1965 1966 static inline struct drm_i915_private *to_i915(const struct drm_device *dev) 1967 { 1968 return dev->dev_private; 1969 } 1970 1971 static inline struct drm_i915_private *dev_to_i915(struct device *dev) 1972 { 1973 return to_i915(dev_get_drvdata(dev)); 1974 } 1975 1976 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc) 1977 { 1978 return container_of(guc, struct drm_i915_private, guc); 1979 } 1980 1981 /* Iterate over initialised rings */ 1982 #define for_each_ring(ring__, dev_priv__, i__) \ 1983 for ((i__) = 0; (i__) < I915_NUM_RINGS; (i__)++) \ 1984 for_each_if ((((ring__) = &(dev_priv__)->ring[(i__)]), intel_ring_initialized((ring__)))) 1985 1986 enum hdmi_force_audio { 1987 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */ 1988 HDMI_AUDIO_OFF, /* force turn off HDMI audio */ 1989 HDMI_AUDIO_AUTO, /* trust EDID */ 1990 HDMI_AUDIO_ON, /* force turn on HDMI audio */ 1991 }; 1992 1993 #define I915_GTT_OFFSET_NONE ((u32)-1) 1994 1995 struct drm_i915_gem_object_ops { 1996 /* Interface between the GEM object and its backing storage. 1997 * get_pages() is called once prior to the use of the associated set 1998 * of pages before to binding them into the GTT, and put_pages() is 1999 * called after we no longer need them. As we expect there to be 2000 * associated cost with migrating pages between the backing storage 2001 * and making them available for the GPU (e.g. clflush), we may hold 2002 * onto the pages after they are no longer referenced by the GPU 2003 * in case they may be used again shortly (for example migrating the 2004 * pages to a different memory domain within the GTT). put_pages() 2005 * will therefore most likely be called when the object itself is 2006 * being released or under memory pressure (where we attempt to 2007 * reap pages for the shrinker). 2008 */ 2009 int (*get_pages)(struct drm_i915_gem_object *); 2010 void (*put_pages)(struct drm_i915_gem_object *); 2011 int (*dmabuf_export)(struct drm_i915_gem_object *); 2012 void (*release)(struct drm_i915_gem_object *); 2013 }; 2014 2015 /* 2016 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is 2017 * considered to be the frontbuffer for the given plane interface-wise. This 2018 * doesn't mean that the hw necessarily already scans it out, but that any 2019 * rendering (by the cpu or gpu) will land in the frontbuffer eventually. 2020 * 2021 * We have one bit per pipe and per scanout plane type. 2022 */ 2023 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5 2024 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8 2025 #define INTEL_FRONTBUFFER_BITS \ 2026 (INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES) 2027 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \ 2028 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))) 2029 #define INTEL_FRONTBUFFER_CURSOR(pipe) \ 2030 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))) 2031 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \ 2032 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))) 2033 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \ 2034 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))) 2035 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \ 2036 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))) 2037 2038 struct drm_i915_gem_object { 2039 struct drm_gem_object base; 2040 2041 const struct drm_i915_gem_object_ops *ops; 2042 2043 /** List of VMAs backed by this object */ 2044 struct list_head vma_list; 2045 2046 /** Stolen memory for this object, instead of being backed by shmem. */ 2047 struct drm_mm_node *stolen; 2048 struct list_head global_list; 2049 2050 struct list_head ring_list[I915_NUM_RINGS]; 2051 /** Used in execbuf to temporarily hold a ref */ 2052 struct list_head obj_exec_link; 2053 2054 struct list_head batch_pool_link; 2055 2056 /** 2057 * This is set if the object is on the active lists (has pending 2058 * rendering and so a non-zero seqno), and is not set if it i s on 2059 * inactive (ready to be unbound) list. 2060 */ 2061 unsigned int active:I915_NUM_RINGS; 2062 2063 /** 2064 * This is set if the object has been written to since last bound 2065 * to the GTT 2066 */ 2067 unsigned int dirty:1; 2068 2069 /** 2070 * Fence register bits (if any) for this object. Will be set 2071 * as needed when mapped into the GTT. 2072 * Protected by dev->struct_mutex. 2073 */ 2074 signed int fence_reg:I915_MAX_NUM_FENCE_BITS; 2075 2076 /** 2077 * Advice: are the backing pages purgeable? 2078 */ 2079 unsigned int madv:2; 2080 2081 /** 2082 * Current tiling mode for the object. 2083 */ 2084 unsigned int tiling_mode:2; 2085 /** 2086 * Whether the tiling parameters for the currently associated fence 2087 * register have changed. Note that for the purposes of tracking 2088 * tiling changes we also treat the unfenced register, the register 2089 * slot that the object occupies whilst it executes a fenced 2090 * command (such as BLT on gen2/3), as a "fence". 2091 */ 2092 unsigned int fence_dirty:1; 2093 2094 /** 2095 * Is the object at the current location in the gtt mappable and 2096 * fenceable? Used to avoid costly recalculations. 2097 */ 2098 unsigned int map_and_fenceable:1; 2099 2100 /** 2101 * Whether the current gtt mapping needs to be mappable (and isn't just 2102 * mappable by accident). Track pin and fault separate for a more 2103 * accurate mappable working set. 2104 */ 2105 unsigned int fault_mappable:1; 2106 2107 /* 2108 * Is the object to be mapped as read-only to the GPU 2109 * Only honoured if hardware has relevant pte bit 2110 */ 2111 unsigned long gt_ro:1; 2112 unsigned int cache_level:3; 2113 unsigned int cache_dirty:1; 2114 2115 unsigned int frontbuffer_bits:INTEL_FRONTBUFFER_BITS; 2116 2117 unsigned int pin_display; 2118 2119 struct sg_table *pages; 2120 int pages_pin_count; 2121 struct get_page { 2122 struct scatterlist *sg; 2123 int last; 2124 } get_page; 2125 2126 /* prime dma-buf support */ 2127 void *dma_buf_vmapping; 2128 int vmapping_count; 2129 2130 /** Breadcrumb of last rendering to the buffer. 2131 * There can only be one writer, but we allow for multiple readers. 2132 * If there is a writer that necessarily implies that all other 2133 * read requests are complete - but we may only be lazily clearing 2134 * the read requests. A read request is naturally the most recent 2135 * request on a ring, so we may have two different write and read 2136 * requests on one ring where the write request is older than the 2137 * read request. This allows for the CPU to read from an active 2138 * buffer by only waiting for the write to complete. 2139 * */ 2140 struct drm_i915_gem_request *last_read_req[I915_NUM_RINGS]; 2141 struct drm_i915_gem_request *last_write_req; 2142 /** Breadcrumb of last fenced GPU access to the buffer. */ 2143 struct drm_i915_gem_request *last_fenced_req; 2144 2145 /** Current tiling stride for the object, if it's tiled. */ 2146 uint32_t stride; 2147 2148 /** References from framebuffers, locks out tiling changes. */ 2149 unsigned long framebuffer_references; 2150 2151 /** Record of address bit 17 of each page at last unbind. */ 2152 unsigned long *bit_17; 2153 2154 union { 2155 /** for phy allocated objects */ 2156 struct drm_dma_handle *phys_handle; 2157 2158 struct i915_gem_userptr { 2159 uintptr_t ptr; 2160 unsigned read_only :1; 2161 unsigned workers :4; 2162 #define I915_GEM_USERPTR_MAX_WORKERS 15 2163 2164 struct i915_mm_struct *mm; 2165 struct i915_mmu_object *mmu_object; 2166 struct work_struct *work; 2167 } userptr; 2168 }; 2169 }; 2170 #define to_intel_bo(x) container_of(x, struct drm_i915_gem_object, base) 2171 2172 void i915_gem_track_fb(struct drm_i915_gem_object *old, 2173 struct drm_i915_gem_object *new, 2174 unsigned frontbuffer_bits); 2175 2176 /** 2177 * Request queue structure. 2178 * 2179 * The request queue allows us to note sequence numbers that have been emitted 2180 * and may be associated with active buffers to be retired. 2181 * 2182 * By keeping this list, we can avoid having to do questionable sequence 2183 * number comparisons on buffer last_read|write_seqno. It also allows an 2184 * emission time to be associated with the request for tracking how far ahead 2185 * of the GPU the submission is. 2186 * 2187 * The requests are reference counted, so upon creation they should have an 2188 * initial reference taken using kref_init 2189 */ 2190 struct drm_i915_gem_request { 2191 struct kref ref; 2192 2193 /** On Which ring this request was generated */ 2194 struct drm_i915_private *i915; 2195 struct intel_engine_cs *ring; 2196 2197 /** GEM sequence number associated with the previous request, 2198 * when the HWS breadcrumb is equal to this the GPU is processing 2199 * this request. 2200 */ 2201 u32 previous_seqno; 2202 2203 /** GEM sequence number associated with this request, 2204 * when the HWS breadcrumb is equal or greater than this the GPU 2205 * has finished processing this request. 2206 */ 2207 u32 seqno; 2208 2209 /** Position in the ringbuffer of the start of the request */ 2210 u32 head; 2211 2212 /** 2213 * Position in the ringbuffer of the start of the postfix. 2214 * This is required to calculate the maximum available ringbuffer 2215 * space without overwriting the postfix. 2216 */ 2217 u32 postfix; 2218 2219 /** Position in the ringbuffer of the end of the whole request */ 2220 u32 tail; 2221 2222 /** 2223 * Context and ring buffer related to this request 2224 * Contexts are refcounted, so when this request is associated with a 2225 * context, we must increment the context's refcount, to guarantee that 2226 * it persists while any request is linked to it. Requests themselves 2227 * are also refcounted, so the request will only be freed when the last 2228 * reference to it is dismissed, and the code in 2229 * i915_gem_request_free() will then decrement the refcount on the 2230 * context. 2231 */ 2232 struct intel_context *ctx; 2233 struct intel_ringbuffer *ringbuf; 2234 2235 /** Batch buffer related to this request if any (used for 2236 error state dump only) */ 2237 struct drm_i915_gem_object *batch_obj; 2238 2239 /** Time at which this request was emitted, in jiffies. */ 2240 unsigned long emitted_jiffies; 2241 2242 /** global list entry for this request */ 2243 struct list_head list; 2244 2245 struct drm_i915_file_private *file_priv; 2246 /** file_priv list entry for this request */ 2247 struct list_head client_list; 2248 2249 /** process identifier submitting this request */ 2250 struct pid *pid; 2251 2252 /** 2253 * The ELSP only accepts two elements at a time, so we queue 2254 * context/tail pairs on a given queue (ring->execlist_queue) until the 2255 * hardware is available. The queue serves a double purpose: we also use 2256 * it to keep track of the up to 2 contexts currently in the hardware 2257 * (usually one in execution and the other queued up by the GPU): We 2258 * only remove elements from the head of the queue when the hardware 2259 * informs us that an element has been completed. 2260 * 2261 * All accesses to the queue are mediated by a spinlock 2262 * (ring->execlist_lock). 2263 */ 2264 2265 /** Execlist link in the submission queue.*/ 2266 struct list_head execlist_link; 2267 2268 /** Execlists no. of times this request has been sent to the ELSP */ 2269 int elsp_submitted; 2270 2271 }; 2272 2273 struct drm_i915_gem_request * __must_check 2274 i915_gem_request_alloc(struct intel_engine_cs *engine, 2275 struct intel_context *ctx); 2276 void i915_gem_request_cancel(struct drm_i915_gem_request *req); 2277 void i915_gem_request_free(struct kref *req_ref); 2278 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req, 2279 struct drm_file *file); 2280 2281 static inline uint32_t 2282 i915_gem_request_get_seqno(struct drm_i915_gem_request *req) 2283 { 2284 return req ? req->seqno : 0; 2285 } 2286 2287 static inline struct intel_engine_cs * 2288 i915_gem_request_get_ring(struct drm_i915_gem_request *req) 2289 { 2290 return req ? req->ring : NULL; 2291 } 2292 2293 static inline struct drm_i915_gem_request * 2294 i915_gem_request_reference(struct drm_i915_gem_request *req) 2295 { 2296 if (req) 2297 kref_get(&req->ref); 2298 return req; 2299 } 2300 2301 static inline void 2302 i915_gem_request_unreference(struct drm_i915_gem_request *req) 2303 { 2304 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex)); 2305 kref_put(&req->ref, i915_gem_request_free); 2306 } 2307 2308 static inline void 2309 i915_gem_request_unreference__unlocked(struct drm_i915_gem_request *req) 2310 { 2311 struct drm_device *dev; 2312 2313 if (!req) 2314 return; 2315 2316 dev = req->ring->dev; 2317 if (kref_put_mutex(&req->ref, i915_gem_request_free, &dev->struct_mutex)) 2318 mutex_unlock(&dev->struct_mutex); 2319 } 2320 2321 static inline void i915_gem_request_assign(struct drm_i915_gem_request **pdst, 2322 struct drm_i915_gem_request *src) 2323 { 2324 if (src) 2325 i915_gem_request_reference(src); 2326 2327 if (*pdst) 2328 i915_gem_request_unreference(*pdst); 2329 2330 *pdst = src; 2331 } 2332 2333 /* 2334 * XXX: i915_gem_request_completed should be here but currently needs the 2335 * definition of i915_seqno_passed() which is below. It will be moved in 2336 * a later patch when the call to i915_seqno_passed() is obsoleted... 2337 */ 2338 2339 /* 2340 * A command that requires special handling by the command parser. 2341 */ 2342 struct drm_i915_cmd_descriptor { 2343 /* 2344 * Flags describing how the command parser processes the command. 2345 * 2346 * CMD_DESC_FIXED: The command has a fixed length if this is set, 2347 * a length mask if not set 2348 * CMD_DESC_SKIP: The command is allowed but does not follow the 2349 * standard length encoding for the opcode range in 2350 * which it falls 2351 * CMD_DESC_REJECT: The command is never allowed 2352 * CMD_DESC_REGISTER: The command should be checked against the 2353 * register whitelist for the appropriate ring 2354 * CMD_DESC_MASTER: The command is allowed if the submitting process 2355 * is the DRM master 2356 */ 2357 u32 flags; 2358 #define CMD_DESC_FIXED (1<<0) 2359 #define CMD_DESC_SKIP (1<<1) 2360 #define CMD_DESC_REJECT (1<<2) 2361 #define CMD_DESC_REGISTER (1<<3) 2362 #define CMD_DESC_BITMASK (1<<4) 2363 #define CMD_DESC_MASTER (1<<5) 2364 2365 /* 2366 * The command's unique identification bits and the bitmask to get them. 2367 * This isn't strictly the opcode field as defined in the spec and may 2368 * also include type, subtype, and/or subop fields. 2369 */ 2370 struct { 2371 u32 value; 2372 u32 mask; 2373 } cmd; 2374 2375 /* 2376 * The command's length. The command is either fixed length (i.e. does 2377 * not include a length field) or has a length field mask. The flag 2378 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has 2379 * a length mask. All command entries in a command table must include 2380 * length information. 2381 */ 2382 union { 2383 u32 fixed; 2384 u32 mask; 2385 } length; 2386 2387 /* 2388 * Describes where to find a register address in the command to check 2389 * against the ring's register whitelist. Only valid if flags has the 2390 * CMD_DESC_REGISTER bit set. 2391 * 2392 * A non-zero step value implies that the command may access multiple 2393 * registers in sequence (e.g. LRI), in that case step gives the 2394 * distance in dwords between individual offset fields. 2395 */ 2396 struct { 2397 u32 offset; 2398 u32 mask; 2399 u32 step; 2400 } reg; 2401 2402 #define MAX_CMD_DESC_BITMASKS 3 2403 /* 2404 * Describes command checks where a particular dword is masked and 2405 * compared against an expected value. If the command does not match 2406 * the expected value, the parser rejects it. Only valid if flags has 2407 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero 2408 * are valid. 2409 * 2410 * If the check specifies a non-zero condition_mask then the parser 2411 * only performs the check when the bits specified by condition_mask 2412 * are non-zero. 2413 */ 2414 struct { 2415 u32 offset; 2416 u32 mask; 2417 u32 expected; 2418 u32 condition_offset; 2419 u32 condition_mask; 2420 } bits[MAX_CMD_DESC_BITMASKS]; 2421 }; 2422 2423 /* 2424 * A table of commands requiring special handling by the command parser. 2425 * 2426 * Each ring has an array of tables. Each table consists of an array of command 2427 * descriptors, which must be sorted with command opcodes in ascending order. 2428 */ 2429 struct drm_i915_cmd_table { 2430 const struct drm_i915_cmd_descriptor *table; 2431 int count; 2432 }; 2433 2434 /* Note that the (struct drm_i915_private *) cast is just to shut up gcc. */ 2435 #define __I915__(p) ({ \ 2436 struct drm_i915_private *__p; \ 2437 if (__builtin_types_compatible_p(typeof(*p), struct drm_i915_private)) \ 2438 __p = (struct drm_i915_private *)p; \ 2439 else if (__builtin_types_compatible_p(typeof(*p), struct drm_device)) \ 2440 __p = to_i915((struct drm_device *)p); \ 2441 else \ 2442 BUILD_BUG(); \ 2443 __p; \ 2444 }) 2445 #define INTEL_INFO(p) (&__I915__(p)->info) 2446 #define INTEL_DEVID(p) (INTEL_INFO(p)->device_id) 2447 #define INTEL_REVID(p) (__I915__(p)->dev->pdev->revision) 2448 2449 #define REVID_FOREVER 0xff 2450 /* 2451 * Return true if revision is in range [since,until] inclusive. 2452 * 2453 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until. 2454 */ 2455 #define IS_REVID(p, since, until) \ 2456 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until)) 2457 2458 #define IS_I830(dev) (INTEL_DEVID(dev) == 0x3577) 2459 #define IS_845G(dev) (INTEL_DEVID(dev) == 0x2562) 2460 #define IS_I85X(dev) (INTEL_INFO(dev)->is_i85x) 2461 #define IS_I865G(dev) (INTEL_DEVID(dev) == 0x2572) 2462 #define IS_I915G(dev) (INTEL_INFO(dev)->is_i915g) 2463 #define IS_I915GM(dev) (INTEL_DEVID(dev) == 0x2592) 2464 #define IS_I945G(dev) (INTEL_DEVID(dev) == 0x2772) 2465 #define IS_I945GM(dev) (INTEL_INFO(dev)->is_i945gm) 2466 #define IS_BROADWATER(dev) (INTEL_INFO(dev)->is_broadwater) 2467 #define IS_CRESTLINE(dev) (INTEL_INFO(dev)->is_crestline) 2468 #define IS_GM45(dev) (INTEL_DEVID(dev) == 0x2A42) 2469 #define IS_G4X(dev) (INTEL_INFO(dev)->is_g4x) 2470 #define IS_PINEVIEW_G(dev) (INTEL_DEVID(dev) == 0xa001) 2471 #define IS_PINEVIEW_M(dev) (INTEL_DEVID(dev) == 0xa011) 2472 #define IS_PINEVIEW(dev) (INTEL_INFO(dev)->is_pineview) 2473 #define IS_G33(dev) (INTEL_INFO(dev)->is_g33) 2474 #define IS_IRONLAKE_M(dev) (INTEL_DEVID(dev) == 0x0046) 2475 #define IS_IVYBRIDGE(dev) (INTEL_INFO(dev)->is_ivybridge) 2476 #define IS_IVB_GT1(dev) (INTEL_DEVID(dev) == 0x0156 || \ 2477 INTEL_DEVID(dev) == 0x0152 || \ 2478 INTEL_DEVID(dev) == 0x015a) 2479 #define IS_VALLEYVIEW(dev) (INTEL_INFO(dev)->is_valleyview) 2480 #define IS_CHERRYVIEW(dev) (INTEL_INFO(dev)->is_cherryview) 2481 #define IS_HASWELL(dev) (INTEL_INFO(dev)->is_haswell) 2482 #define IS_BROADWELL(dev) (!INTEL_INFO(dev)->is_cherryview && IS_GEN8(dev)) 2483 #define IS_SKYLAKE(dev) (INTEL_INFO(dev)->is_skylake) 2484 #define IS_BROXTON(dev) (INTEL_INFO(dev)->is_broxton) 2485 #define IS_KABYLAKE(dev) (INTEL_INFO(dev)->is_kabylake) 2486 #define IS_MOBILE(dev) (INTEL_INFO(dev)->is_mobile) 2487 #define IS_HSW_EARLY_SDV(dev) (IS_HASWELL(dev) && \ 2488 (INTEL_DEVID(dev) & 0xFF00) == 0x0C00) 2489 #define IS_BDW_ULT(dev) (IS_BROADWELL(dev) && \ 2490 ((INTEL_DEVID(dev) & 0xf) == 0x6 || \ 2491 (INTEL_DEVID(dev) & 0xf) == 0xb || \ 2492 (INTEL_DEVID(dev) & 0xf) == 0xe)) 2493 /* ULX machines are also considered ULT. */ 2494 #define IS_BDW_ULX(dev) (IS_BROADWELL(dev) && \ 2495 (INTEL_DEVID(dev) & 0xf) == 0xe) 2496 #define IS_BDW_GT3(dev) (IS_BROADWELL(dev) && \ 2497 (INTEL_DEVID(dev) & 0x00F0) == 0x0020) 2498 #define IS_HSW_ULT(dev) (IS_HASWELL(dev) && \ 2499 (INTEL_DEVID(dev) & 0xFF00) == 0x0A00) 2500 #define IS_HSW_GT3(dev) (IS_HASWELL(dev) && \ 2501 (INTEL_DEVID(dev) & 0x00F0) == 0x0020) 2502 /* ULX machines are also considered ULT. */ 2503 #define IS_HSW_ULX(dev) (INTEL_DEVID(dev) == 0x0A0E || \ 2504 INTEL_DEVID(dev) == 0x0A1E) 2505 #define IS_SKL_ULT(dev) (INTEL_DEVID(dev) == 0x1906 || \ 2506 INTEL_DEVID(dev) == 0x1913 || \ 2507 INTEL_DEVID(dev) == 0x1916 || \ 2508 INTEL_DEVID(dev) == 0x1921 || \ 2509 INTEL_DEVID(dev) == 0x1926) 2510 #define IS_SKL_ULX(dev) (INTEL_DEVID(dev) == 0x190E || \ 2511 INTEL_DEVID(dev) == 0x1915 || \ 2512 INTEL_DEVID(dev) == 0x191E) 2513 #define IS_KBL_ULT(dev) (INTEL_DEVID(dev) == 0x5906 || \ 2514 INTEL_DEVID(dev) == 0x5913 || \ 2515 INTEL_DEVID(dev) == 0x5916 || \ 2516 INTEL_DEVID(dev) == 0x5921 || \ 2517 INTEL_DEVID(dev) == 0x5926) 2518 #define IS_KBL_ULX(dev) (INTEL_DEVID(dev) == 0x590E || \ 2519 INTEL_DEVID(dev) == 0x5915 || \ 2520 INTEL_DEVID(dev) == 0x591E) 2521 #define IS_SKL_GT3(dev) (IS_SKYLAKE(dev) && \ 2522 (INTEL_DEVID(dev) & 0x00F0) == 0x0020) 2523 #define IS_SKL_GT4(dev) (IS_SKYLAKE(dev) && \ 2524 (INTEL_DEVID(dev) & 0x00F0) == 0x0030) 2525 2526 #define IS_PRELIMINARY_HW(intel_info) ((intel_info)->is_preliminary) 2527 2528 #define SKL_REVID_A0 0x0 2529 #define SKL_REVID_B0 0x1 2530 #define SKL_REVID_C0 0x2 2531 #define SKL_REVID_D0 0x3 2532 #define SKL_REVID_E0 0x4 2533 #define SKL_REVID_F0 0x5 2534 2535 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until)) 2536 2537 #define BXT_REVID_A0 0x0 2538 #define BXT_REVID_A1 0x1 2539 #define BXT_REVID_B0 0x3 2540 #define BXT_REVID_C0 0x9 2541 2542 #define IS_BXT_REVID(p, since, until) (IS_BROXTON(p) && IS_REVID(p, since, until)) 2543 2544 /* 2545 * The genX designation typically refers to the render engine, so render 2546 * capability related checks should use IS_GEN, while display and other checks 2547 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular 2548 * chips, etc.). 2549 */ 2550 #define IS_GEN2(dev) (INTEL_INFO(dev)->gen == 2) 2551 #define IS_GEN3(dev) (INTEL_INFO(dev)->gen == 3) 2552 #define IS_GEN4(dev) (INTEL_INFO(dev)->gen == 4) 2553 #define IS_GEN5(dev) (INTEL_INFO(dev)->gen == 5) 2554 #define IS_GEN6(dev) (INTEL_INFO(dev)->gen == 6) 2555 #define IS_GEN7(dev) (INTEL_INFO(dev)->gen == 7) 2556 #define IS_GEN8(dev) (INTEL_INFO(dev)->gen == 8) 2557 #define IS_GEN9(dev) (INTEL_INFO(dev)->gen == 9) 2558 2559 #define RENDER_RING (1<<RCS) 2560 #define BSD_RING (1<<VCS) 2561 #define BLT_RING (1<<BCS) 2562 #define VEBOX_RING (1<<VECS) 2563 #define BSD2_RING (1<<VCS2) 2564 #define HAS_BSD(dev) (INTEL_INFO(dev)->ring_mask & BSD_RING) 2565 #define HAS_BSD2(dev) (INTEL_INFO(dev)->ring_mask & BSD2_RING) 2566 #define HAS_BLT(dev) (INTEL_INFO(dev)->ring_mask & BLT_RING) 2567 #define HAS_VEBOX(dev) (INTEL_INFO(dev)->ring_mask & VEBOX_RING) 2568 #define HAS_LLC(dev) (INTEL_INFO(dev)->has_llc) 2569 #define HAS_WT(dev) ((IS_HASWELL(dev) || IS_BROADWELL(dev)) && \ 2570 __I915__(dev)->ellc_size) 2571 #define I915_NEED_GFX_HWS(dev) (INTEL_INFO(dev)->need_gfx_hws) 2572 2573 #define HAS_HW_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 6) 2574 #define HAS_LOGICAL_RING_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 8) 2575 #define USES_PPGTT(dev) (i915.enable_ppgtt) 2576 #define USES_FULL_PPGTT(dev) (i915.enable_ppgtt >= 2) 2577 #define USES_FULL_48BIT_PPGTT(dev) (i915.enable_ppgtt == 3) 2578 2579 #define HAS_OVERLAY(dev) (INTEL_INFO(dev)->has_overlay) 2580 #define OVERLAY_NEEDS_PHYSICAL(dev) (INTEL_INFO(dev)->overlay_needs_physical) 2581 2582 /* Early gen2 have a totally busted CS tlb and require pinned batches. */ 2583 #define HAS_BROKEN_CS_TLB(dev) (IS_I830(dev) || IS_845G(dev)) 2584 2585 /* WaRsDisableCoarsePowerGating:skl,bxt */ 2586 #define NEEDS_WaRsDisableCoarsePowerGating(dev) (IS_BXT_REVID(dev, 0, BXT_REVID_A1) || \ 2587 ((IS_SKL_GT3(dev) || IS_SKL_GT4(dev)) && \ 2588 IS_SKL_REVID(dev, 0, SKL_REVID_F0))) 2589 /* 2590 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts 2591 * even when in MSI mode. This results in spurious interrupt warnings if the 2592 * legacy irq no. is shared with another device. The kernel then disables that 2593 * interrupt source and so prevents the other device from working properly. 2594 */ 2595 #define HAS_AUX_IRQ(dev) (INTEL_INFO(dev)->gen >= 5) 2596 #define HAS_GMBUS_IRQ(dev) (INTEL_INFO(dev)->gen >= 5) 2597 2598 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte 2599 * rows, which changed the alignment requirements and fence programming. 2600 */ 2601 #define HAS_128_BYTE_Y_TILING(dev) (!IS_GEN2(dev) && !(IS_I915G(dev) || \ 2602 IS_I915GM(dev))) 2603 #define SUPPORTS_TV(dev) (INTEL_INFO(dev)->supports_tv) 2604 #define I915_HAS_HOTPLUG(dev) (INTEL_INFO(dev)->has_hotplug) 2605 2606 #define HAS_FW_BLC(dev) (INTEL_INFO(dev)->gen > 2) 2607 #define HAS_PIPE_CXSR(dev) (INTEL_INFO(dev)->has_pipe_cxsr) 2608 #define HAS_FBC(dev) (INTEL_INFO(dev)->has_fbc) 2609 2610 #define HAS_IPS(dev) (IS_HSW_ULT(dev) || IS_BROADWELL(dev)) 2611 2612 #define HAS_DP_MST(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \ 2613 INTEL_INFO(dev)->gen >= 9) 2614 2615 #define HAS_DDI(dev) (INTEL_INFO(dev)->has_ddi) 2616 #define HAS_FPGA_DBG_UNCLAIMED(dev) (INTEL_INFO(dev)->has_fpga_dbg) 2617 #define HAS_PSR(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \ 2618 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev) || \ 2619 IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) 2620 #define HAS_RUNTIME_PM(dev) (IS_GEN6(dev) || IS_HASWELL(dev) || \ 2621 IS_BROADWELL(dev) || IS_VALLEYVIEW(dev) || \ 2622 IS_CHERRYVIEW(dev) || IS_SKYLAKE(dev) || \ 2623 IS_KABYLAKE(dev)) 2624 #define HAS_RC6(dev) (INTEL_INFO(dev)->gen >= 6) 2625 #define HAS_RC6p(dev) (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev)) 2626 2627 #define HAS_CSR(dev) (IS_GEN9(dev)) 2628 2629 #define HAS_GUC_UCODE(dev) (IS_GEN9(dev) && !IS_KABYLAKE(dev)) 2630 #define HAS_GUC_SCHED(dev) (IS_GEN9(dev) && !IS_KABYLAKE(dev)) 2631 2632 #define HAS_RESOURCE_STREAMER(dev) (IS_HASWELL(dev) || \ 2633 INTEL_INFO(dev)->gen >= 8) 2634 2635 #define HAS_CORE_RING_FREQ(dev) (INTEL_INFO(dev)->gen >= 6 && \ 2636 !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && \ 2637 !IS_BROXTON(dev)) 2638 2639 #define INTEL_PCH_DEVICE_ID_MASK 0xff00 2640 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00 2641 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00 2642 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00 2643 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00 2644 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00 2645 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100 2646 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00 2647 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100 2648 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */ 2649 2650 #define INTEL_PCH_TYPE(dev) (__I915__(dev)->pch_type) 2651 #define HAS_PCH_SPT(dev) (INTEL_PCH_TYPE(dev) == PCH_SPT) 2652 #define HAS_PCH_LPT(dev) (INTEL_PCH_TYPE(dev) == PCH_LPT) 2653 #define HAS_PCH_LPT_LP(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) 2654 #define HAS_PCH_LPT_H(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) 2655 #define HAS_PCH_CPT(dev) (INTEL_PCH_TYPE(dev) == PCH_CPT) 2656 #define HAS_PCH_IBX(dev) (INTEL_PCH_TYPE(dev) == PCH_IBX) 2657 #define HAS_PCH_NOP(dev) (INTEL_PCH_TYPE(dev) == PCH_NOP) 2658 #define HAS_PCH_SPLIT(dev) (INTEL_PCH_TYPE(dev) != PCH_NONE) 2659 2660 #define HAS_GMCH_DISPLAY(dev) (INTEL_INFO(dev)->gen < 5 || \ 2661 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) 2662 2663 /* DPF == dynamic parity feature */ 2664 #define HAS_L3_DPF(dev) (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) 2665 #define NUM_L3_SLICES(dev) (IS_HSW_GT3(dev) ? 2 : HAS_L3_DPF(dev)) 2666 2667 #define GT_FREQUENCY_MULTIPLIER 50 2668 #define GEN9_FREQ_SCALER 3 2669 2670 #include "i915_trace.h" 2671 2672 extern const struct drm_ioctl_desc i915_ioctls[]; 2673 extern int i915_max_ioctl; 2674 2675 extern int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state); 2676 extern int i915_resume_switcheroo(struct drm_device *dev); 2677 2678 /* i915_dma.c */ 2679 extern int i915_driver_load(struct drm_device *, unsigned long flags); 2680 extern int i915_driver_unload(struct drm_device *); 2681 extern int i915_driver_open(struct drm_device *dev, struct drm_file *file); 2682 extern void i915_driver_lastclose(struct drm_device * dev); 2683 extern void i915_driver_preclose(struct drm_device *dev, 2684 struct drm_file *file); 2685 extern void i915_driver_postclose(struct drm_device *dev, 2686 struct drm_file *file); 2687 #ifdef CONFIG_COMPAT 2688 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd, 2689 unsigned long arg); 2690 #endif 2691 extern int intel_gpu_reset(struct drm_device *dev); 2692 extern bool intel_has_gpu_reset(struct drm_device *dev); 2693 extern int i915_reset(struct drm_device *dev); 2694 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv); 2695 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv); 2696 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv); 2697 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv); 2698 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on); 2699 2700 /* intel_hotplug.c */ 2701 void intel_hpd_irq_handler(struct drm_device *dev, u32 pin_mask, u32 long_mask); 2702 void intel_hpd_init(struct drm_i915_private *dev_priv); 2703 void intel_hpd_init_work(struct drm_i915_private *dev_priv); 2704 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv); 2705 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port); 2706 2707 /* i915_irq.c */ 2708 void i915_queue_hangcheck(struct drm_device *dev); 2709 __printf(3, 4) 2710 void i915_handle_error(struct drm_device *dev, bool wedged, 2711 const char *fmt, ...); 2712 2713 extern void intel_irq_init(struct drm_i915_private *dev_priv); 2714 int intel_irq_install(struct drm_i915_private *dev_priv); 2715 void intel_irq_uninstall(struct drm_i915_private *dev_priv); 2716 2717 extern void intel_uncore_sanitize(struct drm_device *dev); 2718 extern void intel_uncore_early_sanitize(struct drm_device *dev, 2719 bool restore_forcewake); 2720 extern void intel_uncore_init(struct drm_device *dev); 2721 extern bool intel_uncore_unclaimed_mmio(struct drm_i915_private *dev_priv); 2722 extern bool intel_uncore_arm_unclaimed_mmio_detection(struct drm_i915_private *dev_priv); 2723 extern void intel_uncore_fini(struct drm_device *dev); 2724 extern void intel_uncore_forcewake_reset(struct drm_device *dev, bool restore); 2725 const char *intel_uncore_forcewake_domain_to_str(const enum forcewake_domain_id id); 2726 void intel_uncore_forcewake_get(struct drm_i915_private *dev_priv, 2727 enum forcewake_domains domains); 2728 void intel_uncore_forcewake_put(struct drm_i915_private *dev_priv, 2729 enum forcewake_domains domains); 2730 /* Like above but the caller must manage the uncore.lock itself. 2731 * Must be used with I915_READ_FW and friends. 2732 */ 2733 void intel_uncore_forcewake_get__locked(struct drm_i915_private *dev_priv, 2734 enum forcewake_domains domains); 2735 void intel_uncore_forcewake_put__locked(struct drm_i915_private *dev_priv, 2736 enum forcewake_domains domains); 2737 void assert_forcewakes_inactive(struct drm_i915_private *dev_priv); 2738 static inline bool intel_vgpu_active(struct drm_device *dev) 2739 { 2740 return to_i915(dev)->vgpu.active; 2741 } 2742 2743 void 2744 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 2745 u32 status_mask); 2746 2747 void 2748 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 2749 u32 status_mask); 2750 2751 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv); 2752 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv); 2753 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv, 2754 uint32_t mask, 2755 uint32_t bits); 2756 void ilk_update_display_irq(struct drm_i915_private *dev_priv, 2757 uint32_t interrupt_mask, 2758 uint32_t enabled_irq_mask); 2759 static inline void 2760 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits) 2761 { 2762 ilk_update_display_irq(dev_priv, bits, bits); 2763 } 2764 static inline void 2765 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits) 2766 { 2767 ilk_update_display_irq(dev_priv, bits, 0); 2768 } 2769 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv, 2770 enum pipe pipe, 2771 uint32_t interrupt_mask, 2772 uint32_t enabled_irq_mask); 2773 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv, 2774 enum pipe pipe, uint32_t bits) 2775 { 2776 bdw_update_pipe_irq(dev_priv, pipe, bits, bits); 2777 } 2778 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv, 2779 enum pipe pipe, uint32_t bits) 2780 { 2781 bdw_update_pipe_irq(dev_priv, pipe, bits, 0); 2782 } 2783 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv, 2784 uint32_t interrupt_mask, 2785 uint32_t enabled_irq_mask); 2786 static inline void 2787 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits) 2788 { 2789 ibx_display_interrupt_update(dev_priv, bits, bits); 2790 } 2791 static inline void 2792 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits) 2793 { 2794 ibx_display_interrupt_update(dev_priv, bits, 0); 2795 } 2796 2797 2798 /* i915_gem.c */ 2799 int i915_gem_create_ioctl(struct drm_device *dev, void *data, 2800 struct drm_file *file_priv); 2801 int i915_gem_pread_ioctl(struct drm_device *dev, void *data, 2802 struct drm_file *file_priv); 2803 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 2804 struct drm_file *file_priv); 2805 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 2806 struct drm_file *file_priv); 2807 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 2808 struct drm_file *file_priv); 2809 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 2810 struct drm_file *file_priv); 2811 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 2812 struct drm_file *file_priv); 2813 void i915_gem_execbuffer_move_to_active(struct list_head *vmas, 2814 struct drm_i915_gem_request *req); 2815 void i915_gem_execbuffer_retire_commands(struct i915_execbuffer_params *params); 2816 int i915_gem_ringbuffer_submission(struct i915_execbuffer_params *params, 2817 struct drm_i915_gem_execbuffer2 *args, 2818 struct list_head *vmas); 2819 int i915_gem_execbuffer(struct drm_device *dev, void *data, 2820 struct drm_file *file_priv); 2821 int i915_gem_execbuffer2(struct drm_device *dev, void *data, 2822 struct drm_file *file_priv); 2823 int i915_gem_busy_ioctl(struct drm_device *dev, void *data, 2824 struct drm_file *file_priv); 2825 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 2826 struct drm_file *file); 2827 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 2828 struct drm_file *file); 2829 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 2830 struct drm_file *file_priv); 2831 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 2832 struct drm_file *file_priv); 2833 int i915_gem_set_tiling(struct drm_device *dev, void *data, 2834 struct drm_file *file_priv); 2835 int i915_gem_get_tiling(struct drm_device *dev, void *data, 2836 struct drm_file *file_priv); 2837 int i915_gem_init_userptr(struct drm_device *dev); 2838 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data, 2839 struct drm_file *file); 2840 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 2841 struct drm_file *file_priv); 2842 int i915_gem_wait_ioctl(struct drm_device *dev, void *data, 2843 struct drm_file *file_priv); 2844 void i915_gem_load(struct drm_device *dev); 2845 void *i915_gem_object_alloc(struct drm_device *dev); 2846 void i915_gem_object_free(struct drm_i915_gem_object *obj); 2847 void i915_gem_object_init(struct drm_i915_gem_object *obj, 2848 const struct drm_i915_gem_object_ops *ops); 2849 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev, 2850 size_t size); 2851 struct drm_i915_gem_object *i915_gem_object_create_from_data( 2852 struct drm_device *dev, const void *data, size_t size); 2853 void i915_gem_free_object(struct drm_gem_object *obj); 2854 void i915_gem_vma_destroy(struct i915_vma *vma); 2855 2856 /* Flags used by pin/bind&friends. */ 2857 #define PIN_MAPPABLE (1<<0) 2858 #define PIN_NONBLOCK (1<<1) 2859 #define PIN_GLOBAL (1<<2) 2860 #define PIN_OFFSET_BIAS (1<<3) 2861 #define PIN_USER (1<<4) 2862 #define PIN_UPDATE (1<<5) 2863 #define PIN_ZONE_4G (1<<6) 2864 #define PIN_HIGH (1<<7) 2865 #define PIN_OFFSET_FIXED (1<<8) 2866 #define PIN_OFFSET_MASK (~4095) 2867 int __must_check 2868 i915_gem_object_pin(struct drm_i915_gem_object *obj, 2869 struct i915_address_space *vm, 2870 uint32_t alignment, 2871 uint64_t flags); 2872 int __must_check 2873 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, 2874 const struct i915_ggtt_view *view, 2875 uint32_t alignment, 2876 uint64_t flags); 2877 2878 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level, 2879 u32 flags); 2880 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma); 2881 int __must_check i915_vma_unbind(struct i915_vma *vma); 2882 /* 2883 * BEWARE: Do not use the function below unless you can _absolutely_ 2884 * _guarantee_ VMA in question is _not in use_ anywhere. 2885 */ 2886 int __must_check __i915_vma_unbind_no_wait(struct i915_vma *vma); 2887 int i915_gem_object_put_pages(struct drm_i915_gem_object *obj); 2888 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv); 2889 void i915_gem_release_mmap(struct drm_i915_gem_object *obj); 2890 2891 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, 2892 int *needs_clflush); 2893 2894 int __must_check i915_gem_object_get_pages(struct drm_i915_gem_object *obj); 2895 2896 static inline int __sg_page_count(struct scatterlist *sg) 2897 { 2898 return sg->length >> PAGE_SHIFT; 2899 } 2900 2901 struct page * 2902 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n); 2903 2904 static inline struct page * 2905 i915_gem_object_get_page(struct drm_i915_gem_object *obj, int n) 2906 { 2907 if (WARN_ON(n >= obj->base.size >> PAGE_SHIFT)) 2908 return NULL; 2909 2910 if (n < obj->get_page.last) { 2911 obj->get_page.sg = obj->pages->sgl; 2912 obj->get_page.last = 0; 2913 } 2914 2915 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) { 2916 obj->get_page.last += __sg_page_count(obj->get_page.sg++); 2917 if (unlikely(sg_is_chain(obj->get_page.sg))) 2918 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg); 2919 } 2920 2921 return nth_page(sg_page(obj->get_page.sg), n - obj->get_page.last); 2922 } 2923 2924 static inline void i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) 2925 { 2926 BUG_ON(obj->pages == NULL); 2927 obj->pages_pin_count++; 2928 } 2929 static inline void i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) 2930 { 2931 BUG_ON(obj->pages_pin_count == 0); 2932 obj->pages_pin_count--; 2933 } 2934 2935 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev); 2936 int i915_gem_object_sync(struct drm_i915_gem_object *obj, 2937 struct intel_engine_cs *to, 2938 struct drm_i915_gem_request **to_req); 2939 void i915_vma_move_to_active(struct i915_vma *vma, 2940 struct drm_i915_gem_request *req); 2941 int i915_gem_dumb_create(struct drm_file *file_priv, 2942 struct drm_device *dev, 2943 struct drm_mode_create_dumb *args); 2944 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev, 2945 uint32_t handle, uint64_t *offset); 2946 /** 2947 * Returns true if seq1 is later than seq2. 2948 */ 2949 static inline bool 2950 i915_seqno_passed(uint32_t seq1, uint32_t seq2) 2951 { 2952 return (int32_t)(seq1 - seq2) >= 0; 2953 } 2954 2955 static inline bool i915_gem_request_started(struct drm_i915_gem_request *req, 2956 bool lazy_coherency) 2957 { 2958 u32 seqno = req->ring->get_seqno(req->ring, lazy_coherency); 2959 return i915_seqno_passed(seqno, req->previous_seqno); 2960 } 2961 2962 static inline bool i915_gem_request_completed(struct drm_i915_gem_request *req, 2963 bool lazy_coherency) 2964 { 2965 u32 seqno = req->ring->get_seqno(req->ring, lazy_coherency); 2966 return i915_seqno_passed(seqno, req->seqno); 2967 } 2968 2969 int __must_check i915_gem_get_seqno(struct drm_device *dev, u32 *seqno); 2970 int __must_check i915_gem_set_seqno(struct drm_device *dev, u32 seqno); 2971 2972 struct drm_i915_gem_request * 2973 i915_gem_find_active_request(struct intel_engine_cs *ring); 2974 2975 bool i915_gem_retire_requests(struct drm_device *dev); 2976 void i915_gem_retire_requests_ring(struct intel_engine_cs *ring); 2977 int __must_check i915_gem_check_wedge(struct i915_gpu_error *error, 2978 bool interruptible); 2979 2980 static inline bool i915_reset_in_progress(struct i915_gpu_error *error) 2981 { 2982 return unlikely(atomic_read(&error->reset_counter) 2983 & (I915_RESET_IN_PROGRESS_FLAG | I915_WEDGED)); 2984 } 2985 2986 static inline bool i915_terminally_wedged(struct i915_gpu_error *error) 2987 { 2988 return atomic_read(&error->reset_counter) & I915_WEDGED; 2989 } 2990 2991 static inline u32 i915_reset_count(struct i915_gpu_error *error) 2992 { 2993 return ((atomic_read(&error->reset_counter) & ~I915_WEDGED) + 1) / 2; 2994 } 2995 2996 static inline bool i915_stop_ring_allow_ban(struct drm_i915_private *dev_priv) 2997 { 2998 return dev_priv->gpu_error.stop_rings == 0 || 2999 dev_priv->gpu_error.stop_rings & I915_STOP_RING_ALLOW_BAN; 3000 } 3001 3002 static inline bool i915_stop_ring_allow_warn(struct drm_i915_private *dev_priv) 3003 { 3004 return dev_priv->gpu_error.stop_rings == 0 || 3005 dev_priv->gpu_error.stop_rings & I915_STOP_RING_ALLOW_WARN; 3006 } 3007 3008 void i915_gem_reset(struct drm_device *dev); 3009 bool i915_gem_clflush_object(struct drm_i915_gem_object *obj, bool force); 3010 int __must_check i915_gem_init(struct drm_device *dev); 3011 int i915_gem_init_rings(struct drm_device *dev); 3012 int __must_check i915_gem_init_hw(struct drm_device *dev); 3013 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice); 3014 void i915_gem_init_swizzling(struct drm_device *dev); 3015 void i915_gem_cleanup_ringbuffer(struct drm_device *dev); 3016 int __must_check i915_gpu_idle(struct drm_device *dev); 3017 int __must_check i915_gem_suspend(struct drm_device *dev); 3018 void __i915_add_request(struct drm_i915_gem_request *req, 3019 struct drm_i915_gem_object *batch_obj, 3020 bool flush_caches); 3021 #define i915_add_request(req) \ 3022 __i915_add_request(req, NULL, true) 3023 #define i915_add_request_no_flush(req) \ 3024 __i915_add_request(req, NULL, false) 3025 int __i915_wait_request(struct drm_i915_gem_request *req, 3026 unsigned reset_counter, 3027 bool interruptible, 3028 s64 *timeout, 3029 struct intel_rps_client *rps); 3030 int __must_check i915_wait_request(struct drm_i915_gem_request *req); 3031 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf); 3032 int __must_check 3033 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, 3034 bool readonly); 3035 int __must_check 3036 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, 3037 bool write); 3038 int __must_check 3039 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write); 3040 int __must_check 3041 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3042 u32 alignment, 3043 const struct i915_ggtt_view *view); 3044 void i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj, 3045 const struct i915_ggtt_view *view); 3046 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, 3047 int align); 3048 int i915_gem_open(struct drm_device *dev, struct drm_file *file); 3049 void i915_gem_release(struct drm_device *dev, struct drm_file *file); 3050 3051 uint32_t 3052 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode); 3053 uint32_t 3054 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size, 3055 int tiling_mode, bool fenced); 3056 3057 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3058 enum i915_cache_level cache_level); 3059 3060 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev, 3061 struct dma_buf *dma_buf); 3062 3063 struct dma_buf *i915_gem_prime_export(struct drm_device *dev, 3064 struct drm_gem_object *gem_obj, int flags); 3065 3066 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o, 3067 const struct i915_ggtt_view *view); 3068 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o, 3069 struct i915_address_space *vm); 3070 static inline u64 3071 i915_gem_obj_ggtt_offset(struct drm_i915_gem_object *o) 3072 { 3073 return i915_gem_obj_ggtt_offset_view(o, &i915_ggtt_view_normal); 3074 } 3075 3076 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o); 3077 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o, 3078 const struct i915_ggtt_view *view); 3079 bool i915_gem_obj_bound(struct drm_i915_gem_object *o, 3080 struct i915_address_space *vm); 3081 3082 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o, 3083 struct i915_address_space *vm); 3084 struct i915_vma * 3085 i915_gem_obj_to_vma(struct drm_i915_gem_object *obj, 3086 struct i915_address_space *vm); 3087 struct i915_vma * 3088 i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj, 3089 const struct i915_ggtt_view *view); 3090 3091 struct i915_vma * 3092 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj, 3093 struct i915_address_space *vm); 3094 struct i915_vma * 3095 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj, 3096 const struct i915_ggtt_view *view); 3097 3098 static inline struct i915_vma * 3099 i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj) 3100 { 3101 return i915_gem_obj_to_ggtt_view(obj, &i915_ggtt_view_normal); 3102 } 3103 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj); 3104 3105 /* Some GGTT VM helpers */ 3106 #define i915_obj_to_ggtt(obj) \ 3107 (&((struct drm_i915_private *)(obj)->base.dev->dev_private)->gtt.base) 3108 static inline bool i915_is_ggtt(struct i915_address_space *vm) 3109 { 3110 struct i915_address_space *ggtt = 3111 &((struct drm_i915_private *)(vm)->dev->dev_private)->gtt.base; 3112 return vm == ggtt; 3113 } 3114 3115 static inline struct i915_hw_ppgtt * 3116 i915_vm_to_ppgtt(struct i915_address_space *vm) 3117 { 3118 WARN_ON(i915_is_ggtt(vm)); 3119 3120 return container_of(vm, struct i915_hw_ppgtt, base); 3121 } 3122 3123 3124 static inline bool i915_gem_obj_ggtt_bound(struct drm_i915_gem_object *obj) 3125 { 3126 return i915_gem_obj_ggtt_bound_view(obj, &i915_ggtt_view_normal); 3127 } 3128 3129 static inline unsigned long 3130 i915_gem_obj_ggtt_size(struct drm_i915_gem_object *obj) 3131 { 3132 return i915_gem_obj_size(obj, i915_obj_to_ggtt(obj)); 3133 } 3134 3135 static inline int __must_check 3136 i915_gem_obj_ggtt_pin(struct drm_i915_gem_object *obj, 3137 uint32_t alignment, 3138 unsigned flags) 3139 { 3140 return i915_gem_object_pin(obj, i915_obj_to_ggtt(obj), 3141 alignment, flags | PIN_GLOBAL); 3142 } 3143 3144 static inline int 3145 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj) 3146 { 3147 return i915_vma_unbind(i915_gem_obj_to_ggtt(obj)); 3148 } 3149 3150 void i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj, 3151 const struct i915_ggtt_view *view); 3152 static inline void 3153 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj) 3154 { 3155 i915_gem_object_ggtt_unpin_view(obj, &i915_ggtt_view_normal); 3156 } 3157 3158 /* i915_gem_fence.c */ 3159 int __must_check i915_gem_object_get_fence(struct drm_i915_gem_object *obj); 3160 int __must_check i915_gem_object_put_fence(struct drm_i915_gem_object *obj); 3161 3162 bool i915_gem_object_pin_fence(struct drm_i915_gem_object *obj); 3163 void i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj); 3164 3165 void i915_gem_restore_fences(struct drm_device *dev); 3166 3167 void i915_gem_detect_bit_6_swizzle(struct drm_device *dev); 3168 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj); 3169 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj); 3170 3171 /* i915_gem_context.c */ 3172 int __must_check i915_gem_context_init(struct drm_device *dev); 3173 void i915_gem_context_fini(struct drm_device *dev); 3174 void i915_gem_context_reset(struct drm_device *dev); 3175 int i915_gem_context_open(struct drm_device *dev, struct drm_file *file); 3176 int i915_gem_context_enable(struct drm_i915_gem_request *req); 3177 void i915_gem_context_close(struct drm_device *dev, struct drm_file *file); 3178 int i915_switch_context(struct drm_i915_gem_request *req); 3179 struct intel_context * 3180 i915_gem_context_get(struct drm_i915_file_private *file_priv, u32 id); 3181 void i915_gem_context_free(struct kref *ctx_ref); 3182 struct drm_i915_gem_object * 3183 i915_gem_alloc_context_obj(struct drm_device *dev, size_t size); 3184 static inline void i915_gem_context_reference(struct intel_context *ctx) 3185 { 3186 kref_get(&ctx->ref); 3187 } 3188 3189 static inline void i915_gem_context_unreference(struct intel_context *ctx) 3190 { 3191 kref_put(&ctx->ref, i915_gem_context_free); 3192 } 3193 3194 static inline bool i915_gem_context_is_default(const struct intel_context *c) 3195 { 3196 return c->user_handle == DEFAULT_CONTEXT_HANDLE; 3197 } 3198 3199 int i915_gem_context_create_ioctl(struct drm_device *dev, void *data, 3200 struct drm_file *file); 3201 int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data, 3202 struct drm_file *file); 3203 int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data, 3204 struct drm_file *file_priv); 3205 int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data, 3206 struct drm_file *file_priv); 3207 3208 /* i915_gem_evict.c */ 3209 int __must_check i915_gem_evict_something(struct drm_device *dev, 3210 struct i915_address_space *vm, 3211 int min_size, 3212 unsigned alignment, 3213 unsigned cache_level, 3214 unsigned long start, 3215 unsigned long end, 3216 unsigned flags); 3217 int __must_check i915_gem_evict_for_vma(struct i915_vma *target); 3218 int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle); 3219 3220 /* belongs in i915_gem_gtt.h */ 3221 static inline void i915_gem_chipset_flush(struct drm_device *dev) 3222 { 3223 if (INTEL_INFO(dev)->gen < 6) 3224 intel_gtt_chipset_flush(); 3225 } 3226 3227 /* i915_gem_stolen.c */ 3228 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv, 3229 struct drm_mm_node *node, u64 size, 3230 unsigned alignment); 3231 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv, 3232 struct drm_mm_node *node, u64 size, 3233 unsigned alignment, u64 start, 3234 u64 end); 3235 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv, 3236 struct drm_mm_node *node); 3237 int i915_gem_init_stolen(struct drm_device *dev); 3238 void i915_gem_cleanup_stolen(struct drm_device *dev); 3239 struct drm_i915_gem_object * 3240 i915_gem_object_create_stolen(struct drm_device *dev, u32 size); 3241 struct drm_i915_gem_object * 3242 i915_gem_object_create_stolen_for_preallocated(struct drm_device *dev, 3243 u32 stolen_offset, 3244 u32 gtt_offset, 3245 u32 size); 3246 3247 /* i915_gem_shrinker.c */ 3248 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv, 3249 unsigned long target, 3250 unsigned flags); 3251 #define I915_SHRINK_PURGEABLE 0x1 3252 #define I915_SHRINK_UNBOUND 0x2 3253 #define I915_SHRINK_BOUND 0x4 3254 #define I915_SHRINK_ACTIVE 0x8 3255 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv); 3256 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv); 3257 3258 3259 /* i915_gem_tiling.c */ 3260 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj) 3261 { 3262 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 3263 3264 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 && 3265 obj->tiling_mode != I915_TILING_NONE; 3266 } 3267 3268 /* i915_gem_debug.c */ 3269 #if WATCH_LISTS 3270 int i915_verify_lists(struct drm_device *dev); 3271 #else 3272 #define i915_verify_lists(dev) 0 3273 #endif 3274 3275 /* i915_debugfs.c */ 3276 int i915_debugfs_init(struct drm_minor *minor); 3277 void i915_debugfs_cleanup(struct drm_minor *minor); 3278 #ifdef CONFIG_DEBUG_FS 3279 int i915_debugfs_connector_add(struct drm_connector *connector); 3280 void intel_display_crc_init(struct drm_device *dev); 3281 #else 3282 static inline int i915_debugfs_connector_add(struct drm_connector *connector) 3283 { return 0; } 3284 static inline void intel_display_crc_init(struct drm_device *dev) {} 3285 #endif 3286 3287 /* i915_gpu_error.c */ 3288 __printf(2, 3) 3289 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...); 3290 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr, 3291 const struct i915_error_state_file_priv *error); 3292 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb, 3293 struct drm_i915_private *i915, 3294 size_t count, loff_t pos); 3295 static inline void i915_error_state_buf_release( 3296 struct drm_i915_error_state_buf *eb) 3297 { 3298 kfree(eb->buf); 3299 } 3300 void i915_capture_error_state(struct drm_device *dev, bool wedge, 3301 const char *error_msg); 3302 void i915_error_state_get(struct drm_device *dev, 3303 struct i915_error_state_file_priv *error_priv); 3304 void i915_error_state_put(struct i915_error_state_file_priv *error_priv); 3305 void i915_destroy_error_state(struct drm_device *dev); 3306 3307 void i915_get_extra_instdone(struct drm_device *dev, uint32_t *instdone); 3308 const char *i915_cache_level_str(struct drm_i915_private *i915, int type); 3309 3310 /* i915_cmd_parser.c */ 3311 int i915_cmd_parser_get_version(void); 3312 int i915_cmd_parser_init_ring(struct intel_engine_cs *ring); 3313 void i915_cmd_parser_fini_ring(struct intel_engine_cs *ring); 3314 bool i915_needs_cmd_parser(struct intel_engine_cs *ring); 3315 int i915_parse_cmds(struct intel_engine_cs *ring, 3316 struct drm_i915_gem_object *batch_obj, 3317 struct drm_i915_gem_object *shadow_batch_obj, 3318 u32 batch_start_offset, 3319 u32 batch_len, 3320 bool is_master); 3321 3322 /* i915_suspend.c */ 3323 extern int i915_save_state(struct drm_device *dev); 3324 extern int i915_restore_state(struct drm_device *dev); 3325 3326 /* i915_sysfs.c */ 3327 void i915_setup_sysfs(struct drm_device *dev_priv); 3328 void i915_teardown_sysfs(struct drm_device *dev_priv); 3329 3330 /* intel_i2c.c */ 3331 extern int intel_setup_gmbus(struct drm_device *dev); 3332 extern void intel_teardown_gmbus(struct drm_device *dev); 3333 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv, 3334 unsigned int pin); 3335 3336 extern struct i2c_adapter * 3337 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin); 3338 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed); 3339 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit); 3340 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter) 3341 { 3342 return container_of(adapter, struct intel_gmbus, adapter)->force_bit; 3343 } 3344 extern void intel_i2c_reset(struct drm_device *dev); 3345 3346 /* intel_bios.c */ 3347 int intel_bios_init(struct drm_i915_private *dev_priv); 3348 bool intel_bios_is_valid_vbt(const void *buf, size_t size); 3349 3350 /* intel_opregion.c */ 3351 #ifdef CONFIG_ACPI 3352 extern int intel_opregion_setup(struct drm_device *dev); 3353 extern void intel_opregion_init(struct drm_device *dev); 3354 extern void intel_opregion_fini(struct drm_device *dev); 3355 extern void intel_opregion_asle_intr(struct drm_device *dev); 3356 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, 3357 bool enable); 3358 extern int intel_opregion_notify_adapter(struct drm_device *dev, 3359 pci_power_t state); 3360 #else 3361 static inline int intel_opregion_setup(struct drm_device *dev) { return 0; } 3362 static inline void intel_opregion_init(struct drm_device *dev) { return; } 3363 static inline void intel_opregion_fini(struct drm_device *dev) { return; } 3364 static inline void intel_opregion_asle_intr(struct drm_device *dev) { return; } 3365 static inline int 3366 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable) 3367 { 3368 return 0; 3369 } 3370 static inline int 3371 intel_opregion_notify_adapter(struct drm_device *dev, pci_power_t state) 3372 { 3373 return 0; 3374 } 3375 #endif 3376 3377 /* intel_acpi.c */ 3378 #ifdef CONFIG_ACPI 3379 extern void intel_register_dsm_handler(void); 3380 extern void intel_unregister_dsm_handler(void); 3381 #else 3382 static inline void intel_register_dsm_handler(void) { return; } 3383 static inline void intel_unregister_dsm_handler(void) { return; } 3384 #endif /* CONFIG_ACPI */ 3385 3386 /* modesetting */ 3387 extern void intel_modeset_init_hw(struct drm_device *dev); 3388 extern void intel_modeset_init(struct drm_device *dev); 3389 extern void intel_modeset_gem_init(struct drm_device *dev); 3390 extern void intel_modeset_cleanup(struct drm_device *dev); 3391 extern void intel_connector_unregister(struct intel_connector *); 3392 extern int intel_modeset_vga_set_state(struct drm_device *dev, bool state); 3393 extern void intel_display_resume(struct drm_device *dev); 3394 extern void i915_redisable_vga(struct drm_device *dev); 3395 extern void i915_redisable_vga_power_on(struct drm_device *dev); 3396 extern bool ironlake_set_drps(struct drm_device *dev, u8 val); 3397 extern void intel_init_pch_refclk(struct drm_device *dev); 3398 extern void intel_set_rps(struct drm_device *dev, u8 val); 3399 extern void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, 3400 bool enable); 3401 extern void intel_detect_pch(struct drm_device *dev); 3402 extern int intel_enable_rc6(const struct drm_device *dev); 3403 3404 extern bool i915_semaphore_is_enabled(struct drm_device *dev); 3405 int i915_reg_read_ioctl(struct drm_device *dev, void *data, 3406 struct drm_file *file); 3407 int i915_get_reset_stats_ioctl(struct drm_device *dev, void *data, 3408 struct drm_file *file); 3409 3410 /* overlay */ 3411 extern struct intel_overlay_error_state *intel_overlay_capture_error_state(struct drm_device *dev); 3412 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e, 3413 struct intel_overlay_error_state *error); 3414 3415 extern struct intel_display_error_state *intel_display_capture_error_state(struct drm_device *dev); 3416 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e, 3417 struct drm_device *dev, 3418 struct intel_display_error_state *error); 3419 3420 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val); 3421 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val); 3422 3423 /* intel_sideband.c */ 3424 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr); 3425 void vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val); 3426 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr); 3427 u32 vlv_gpio_nc_read(struct drm_i915_private *dev_priv, u32 reg); 3428 void vlv_gpio_nc_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3429 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg); 3430 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3431 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg); 3432 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3433 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg); 3434 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3435 u32 vlv_gps_core_read(struct drm_i915_private *dev_priv, u32 reg); 3436 void vlv_gps_core_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3437 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg); 3438 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val); 3439 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg, 3440 enum intel_sbi_destination destination); 3441 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value, 3442 enum intel_sbi_destination destination); 3443 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg); 3444 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3445 3446 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val); 3447 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val); 3448 3449 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true) 3450 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true) 3451 3452 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true) 3453 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true) 3454 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false) 3455 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false) 3456 3457 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true) 3458 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true) 3459 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false) 3460 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false) 3461 3462 /* Be very careful with read/write 64-bit values. On 32-bit machines, they 3463 * will be implemented using 2 32-bit writes in an arbitrary order with 3464 * an arbitrary delay between them. This can cause the hardware to 3465 * act upon the intermediate value, possibly leading to corruption and 3466 * machine death. You have been warned. 3467 */ 3468 #define I915_WRITE64(reg, val) dev_priv->uncore.funcs.mmio_writeq(dev_priv, (reg), (val), true) 3469 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true) 3470 3471 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \ 3472 u32 upper, lower, old_upper, loop = 0; \ 3473 upper = I915_READ(upper_reg); \ 3474 do { \ 3475 old_upper = upper; \ 3476 lower = I915_READ(lower_reg); \ 3477 upper = I915_READ(upper_reg); \ 3478 } while (upper != old_upper && loop++ < 2); \ 3479 (u64)upper << 32 | lower; }) 3480 3481 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg) 3482 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg) 3483 3484 #define __raw_read(x, s) \ 3485 static inline uint##x##_t __raw_i915_read##x(struct drm_i915_private *dev_priv, \ 3486 i915_reg_t reg) \ 3487 { \ 3488 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \ 3489 } 3490 3491 #define __raw_write(x, s) \ 3492 static inline void __raw_i915_write##x(struct drm_i915_private *dev_priv, \ 3493 i915_reg_t reg, uint##x##_t val) \ 3494 { \ 3495 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \ 3496 } 3497 __raw_read(8, b) 3498 __raw_read(16, w) 3499 __raw_read(32, l) 3500 __raw_read(64, q) 3501 3502 __raw_write(8, b) 3503 __raw_write(16, w) 3504 __raw_write(32, l) 3505 __raw_write(64, q) 3506 3507 #undef __raw_read 3508 #undef __raw_write 3509 3510 /* These are untraced mmio-accessors that are only valid to be used inside 3511 * criticial sections inside IRQ handlers where forcewake is explicitly 3512 * controlled. 3513 * Think twice, and think again, before using these. 3514 * Note: Should only be used between intel_uncore_forcewake_irqlock() and 3515 * intel_uncore_forcewake_irqunlock(). 3516 */ 3517 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__)) 3518 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__)) 3519 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__) 3520 3521 /* "Broadcast RGB" property */ 3522 #define INTEL_BROADCAST_RGB_AUTO 0 3523 #define INTEL_BROADCAST_RGB_FULL 1 3524 #define INTEL_BROADCAST_RGB_LIMITED 2 3525 3526 static inline i915_reg_t i915_vgacntrl_reg(struct drm_device *dev) 3527 { 3528 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) 3529 return VLV_VGACNTRL; 3530 else if (INTEL_INFO(dev)->gen >= 5) 3531 return CPU_VGACNTRL; 3532 else 3533 return VGACNTRL; 3534 } 3535 3536 static inline void __user *to_user_ptr(u64 address) 3537 { 3538 return (void __user *)(uintptr_t)address; 3539 } 3540 3541 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m) 3542 { 3543 unsigned long j = msecs_to_jiffies(m); 3544 3545 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1); 3546 } 3547 3548 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n) 3549 { 3550 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1); 3551 } 3552 3553 static inline unsigned long 3554 timespec_to_jiffies_timeout(const struct timespec *value) 3555 { 3556 unsigned long j = timespec_to_jiffies(value); 3557 3558 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1); 3559 } 3560 3561 /* 3562 * If you need to wait X milliseconds between events A and B, but event B 3563 * doesn't happen exactly after event A, you record the timestamp (jiffies) of 3564 * when event A happened, then just before event B you call this function and 3565 * pass the timestamp as the first argument, and X as the second argument. 3566 */ 3567 static inline void 3568 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms) 3569 { 3570 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies; 3571 3572 /* 3573 * Don't re-read the value of "jiffies" every time since it may change 3574 * behind our back and break the math. 3575 */ 3576 tmp_jiffies = jiffies; 3577 target_jiffies = timestamp_jiffies + 3578 msecs_to_jiffies_timeout(to_wait_ms); 3579 3580 if (time_after(target_jiffies, tmp_jiffies)) { 3581 remaining_jiffies = target_jiffies - tmp_jiffies; 3582 while (remaining_jiffies) 3583 remaining_jiffies = 3584 schedule_timeout_uninterruptible(remaining_jiffies); 3585 } 3586 } 3587 3588 static inline void i915_trace_irq_get(struct intel_engine_cs *ring, 3589 struct drm_i915_gem_request *req) 3590 { 3591 if (ring->trace_irq_req == NULL && ring->irq_get(ring)) 3592 i915_gem_request_assign(&ring->trace_irq_req, req); 3593 } 3594 3595 #endif 3596