xref: /linux/drivers/gpu/drm/i915/i915_drv.h (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29 
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32 
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35 
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/mm_types.h>
44 #include <linux/perf_event.h>
45 #include <linux/pm_qos.h>
46 #include <linux/reservation.h>
47 #include <linux/shmem_fs.h>
48 #include <linux/stackdepot.h>
49 
50 #include <drm/intel-gtt.h>
51 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
52 #include <drm/drm_gem.h>
53 #include <drm/drm_auth.h>
54 #include <drm/drm_cache.h>
55 #include <drm/drm_util.h>
56 #include <drm/drm_dsc.h>
57 #include <drm/drm_connector.h>
58 
59 #include "i915_fixed.h"
60 #include "i915_params.h"
61 #include "i915_reg.h"
62 #include "i915_utils.h"
63 
64 #include "intel_bios.h"
65 #include "intel_device_info.h"
66 #include "intel_display.h"
67 #include "intel_dpll_mgr.h"
68 #include "intel_lrc.h"
69 #include "intel_opregion.h"
70 #include "intel_ringbuffer.h"
71 #include "intel_uncore.h"
72 #include "intel_wopcm.h"
73 #include "intel_workarounds.h"
74 #include "intel_uc.h"
75 
76 #include "i915_gem.h"
77 #include "i915_gem_context.h"
78 #include "i915_gem_fence_reg.h"
79 #include "i915_gem_object.h"
80 #include "i915_gem_gtt.h"
81 #include "i915_gpu_error.h"
82 #include "i915_request.h"
83 #include "i915_scheduler.h"
84 #include "i915_timeline.h"
85 #include "i915_vma.h"
86 
87 #include "intel_gvt.h"
88 
89 /* General customization:
90  */
91 
92 #define DRIVER_NAME		"i915"
93 #define DRIVER_DESC		"Intel Graphics"
94 #define DRIVER_DATE		"20190207"
95 #define DRIVER_TIMESTAMP	1549572331
96 
97 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
98  * WARN_ON()) for hw state sanity checks to check for unexpected conditions
99  * which may not necessarily be a user visible problem.  This will either
100  * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
101  * enable distros and users to tailor their preferred amount of i915 abrt
102  * spam.
103  */
104 #define I915_STATE_WARN(condition, format...) ({			\
105 	int __ret_warn_on = !!(condition);				\
106 	if (unlikely(__ret_warn_on))					\
107 		if (!WARN(i915_modparams.verbose_state_checks, format))	\
108 			DRM_ERROR(format);				\
109 	unlikely(__ret_warn_on);					\
110 })
111 
112 #define I915_STATE_WARN_ON(x)						\
113 	I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
114 
115 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG)
116 
117 bool __i915_inject_load_failure(const char *func, int line);
118 #define i915_inject_load_failure() \
119 	__i915_inject_load_failure(__func__, __LINE__)
120 
121 bool i915_error_injected(void);
122 
123 #else
124 
125 #define i915_inject_load_failure() false
126 #define i915_error_injected() false
127 
128 #endif
129 
130 #define i915_load_error(i915, fmt, ...)					 \
131 	__i915_printk(i915, i915_error_injected() ? KERN_DEBUG : KERN_ERR, \
132 		      fmt, ##__VA_ARGS__)
133 
134 typedef depot_stack_handle_t intel_wakeref_t;
135 
136 enum hpd_pin {
137 	HPD_NONE = 0,
138 	HPD_TV = HPD_NONE,     /* TV is known to be unreliable */
139 	HPD_CRT,
140 	HPD_SDVO_B,
141 	HPD_SDVO_C,
142 	HPD_PORT_A,
143 	HPD_PORT_B,
144 	HPD_PORT_C,
145 	HPD_PORT_D,
146 	HPD_PORT_E,
147 	HPD_PORT_F,
148 	HPD_NUM_PINS
149 };
150 
151 #define for_each_hpd_pin(__pin) \
152 	for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
153 
154 /* Threshold == 5 for long IRQs, 50 for short */
155 #define HPD_STORM_DEFAULT_THRESHOLD 50
156 
157 struct i915_hotplug {
158 	struct work_struct hotplug_work;
159 
160 	struct {
161 		unsigned long last_jiffies;
162 		int count;
163 		enum {
164 			HPD_ENABLED = 0,
165 			HPD_DISABLED = 1,
166 			HPD_MARK_DISABLED = 2
167 		} state;
168 	} stats[HPD_NUM_PINS];
169 	u32 event_bits;
170 	struct delayed_work reenable_work;
171 
172 	u32 long_port_mask;
173 	u32 short_port_mask;
174 	struct work_struct dig_port_work;
175 
176 	struct work_struct poll_init_work;
177 	bool poll_enabled;
178 
179 	unsigned int hpd_storm_threshold;
180 	/* Whether or not to count short HPD IRQs in HPD storms */
181 	u8 hpd_short_storm_enabled;
182 
183 	/*
184 	 * if we get a HPD irq from DP and a HPD irq from non-DP
185 	 * the non-DP HPD could block the workqueue on a mode config
186 	 * mutex getting, that userspace may have taken. However
187 	 * userspace is waiting on the DP workqueue to run which is
188 	 * blocked behind the non-DP one.
189 	 */
190 	struct workqueue_struct *dp_wq;
191 };
192 
193 #define I915_GEM_GPU_DOMAINS \
194 	(I915_GEM_DOMAIN_RENDER | \
195 	 I915_GEM_DOMAIN_SAMPLER | \
196 	 I915_GEM_DOMAIN_COMMAND | \
197 	 I915_GEM_DOMAIN_INSTRUCTION | \
198 	 I915_GEM_DOMAIN_VERTEX)
199 
200 struct drm_i915_private;
201 struct i915_mm_struct;
202 struct i915_mmu_object;
203 
204 struct drm_i915_file_private {
205 	struct drm_i915_private *dev_priv;
206 	struct drm_file *file;
207 
208 	struct {
209 		spinlock_t lock;
210 		struct list_head request_list;
211 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
212  * chosen to prevent the CPU getting more than a frame ahead of the GPU
213  * (when using lax throttling for the frontbuffer). We also use it to
214  * offer free GPU waitboosts for severely congested workloads.
215  */
216 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
217 	} mm;
218 	struct idr context_idr;
219 
220 	struct intel_rps_client {
221 		atomic_t boosts;
222 	} rps_client;
223 
224 	unsigned int bsd_engine;
225 
226 /*
227  * Every context ban increments per client ban score. Also
228  * hangs in short succession increments ban score. If ban threshold
229  * is reached, client is considered banned and submitting more work
230  * will fail. This is a stop gap measure to limit the badly behaving
231  * clients access to gpu. Note that unbannable contexts never increment
232  * the client ban score.
233  */
234 #define I915_CLIENT_SCORE_HANG_FAST	1
235 #define   I915_CLIENT_FAST_HANG_JIFFIES (60 * HZ)
236 #define I915_CLIENT_SCORE_CONTEXT_BAN   3
237 #define I915_CLIENT_SCORE_BANNED	9
238 	/** ban_score: Accumulated score of all ctx bans and fast hangs. */
239 	atomic_t ban_score;
240 	unsigned long hang_timestamp;
241 };
242 
243 /* Interface history:
244  *
245  * 1.1: Original.
246  * 1.2: Add Power Management
247  * 1.3: Add vblank support
248  * 1.4: Fix cmdbuffer path, add heap destroy
249  * 1.5: Add vblank pipe configuration
250  * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
251  *      - Support vertical blank on secondary display pipe
252  */
253 #define DRIVER_MAJOR		1
254 #define DRIVER_MINOR		6
255 #define DRIVER_PATCHLEVEL	0
256 
257 struct intel_overlay;
258 struct intel_overlay_error_state;
259 
260 struct sdvo_device_mapping {
261 	u8 initialized;
262 	u8 dvo_port;
263 	u8 slave_addr;
264 	u8 dvo_wiring;
265 	u8 i2c_pin;
266 	u8 ddc_pin;
267 };
268 
269 struct intel_connector;
270 struct intel_encoder;
271 struct intel_atomic_state;
272 struct intel_crtc_state;
273 struct intel_initial_plane_config;
274 struct intel_crtc;
275 struct intel_limit;
276 struct dpll;
277 struct intel_cdclk_state;
278 
279 struct drm_i915_display_funcs {
280 	void (*get_cdclk)(struct drm_i915_private *dev_priv,
281 			  struct intel_cdclk_state *cdclk_state);
282 	void (*set_cdclk)(struct drm_i915_private *dev_priv,
283 			  const struct intel_cdclk_state *cdclk_state);
284 	int (*get_fifo_size)(struct drm_i915_private *dev_priv,
285 			     enum i9xx_plane_id i9xx_plane);
286 	int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
287 	int (*compute_intermediate_wm)(struct intel_crtc_state *newstate);
288 	void (*initial_watermarks)(struct intel_atomic_state *state,
289 				   struct intel_crtc_state *cstate);
290 	void (*atomic_update_watermarks)(struct intel_atomic_state *state,
291 					 struct intel_crtc_state *cstate);
292 	void (*optimize_watermarks)(struct intel_atomic_state *state,
293 				    struct intel_crtc_state *cstate);
294 	int (*compute_global_watermarks)(struct intel_atomic_state *state);
295 	void (*update_wm)(struct intel_crtc *crtc);
296 	int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
297 	/* Returns the active state of the crtc, and if the crtc is active,
298 	 * fills out the pipe-config with the hw state. */
299 	bool (*get_pipe_config)(struct intel_crtc *,
300 				struct intel_crtc_state *);
301 	void (*get_initial_plane_config)(struct intel_crtc *,
302 					 struct intel_initial_plane_config *);
303 	int (*crtc_compute_clock)(struct intel_crtc *crtc,
304 				  struct intel_crtc_state *crtc_state);
305 	void (*crtc_enable)(struct intel_crtc_state *pipe_config,
306 			    struct drm_atomic_state *old_state);
307 	void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
308 			     struct drm_atomic_state *old_state);
309 	void (*update_crtcs)(struct drm_atomic_state *state);
310 	void (*audio_codec_enable)(struct intel_encoder *encoder,
311 				   const struct intel_crtc_state *crtc_state,
312 				   const struct drm_connector_state *conn_state);
313 	void (*audio_codec_disable)(struct intel_encoder *encoder,
314 				    const struct intel_crtc_state *old_crtc_state,
315 				    const struct drm_connector_state *old_conn_state);
316 	void (*fdi_link_train)(struct intel_crtc *crtc,
317 			       const struct intel_crtc_state *crtc_state);
318 	void (*init_clock_gating)(struct drm_i915_private *dev_priv);
319 	void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
320 	/* clock updates for mode set */
321 	/* cursor updates */
322 	/* render clock increase/decrease */
323 	/* display clock increase/decrease */
324 	/* pll clock increase/decrease */
325 
326 	/*
327 	 * Program double buffered color management registers during
328 	 * vblank evasion. The registers should then latch during the
329 	 * next vblank start, alongside any other double buffered registers
330 	 * involved with the same commit.
331 	 */
332 	void (*color_commit)(const struct intel_crtc_state *crtc_state);
333 	/*
334 	 * Load LUTs (and other single buffered color management
335 	 * registers). Will (hopefully) be called during the vblank
336 	 * following the latching of any double buffered registers
337 	 * involved with the same commit.
338 	 */
339 	void (*load_luts)(const struct intel_crtc_state *crtc_state);
340 };
341 
342 #define CSR_VERSION(major, minor)	((major) << 16 | (minor))
343 #define CSR_VERSION_MAJOR(version)	((version) >> 16)
344 #define CSR_VERSION_MINOR(version)	((version) & 0xffff)
345 
346 struct intel_csr {
347 	struct work_struct work;
348 	const char *fw_path;
349 	u32 required_version;
350 	u32 max_fw_size; /* bytes */
351 	u32 *dmc_payload;
352 	u32 dmc_fw_size; /* dwords */
353 	u32 version;
354 	u32 mmio_count;
355 	i915_reg_t mmioaddr[8];
356 	u32 mmiodata[8];
357 	u32 dc_state;
358 	u32 allowed_dc_mask;
359 	intel_wakeref_t wakeref;
360 };
361 
362 enum i915_cache_level {
363 	I915_CACHE_NONE = 0,
364 	I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
365 	I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
366 			      caches, eg sampler/render caches, and the
367 			      large Last-Level-Cache. LLC is coherent with
368 			      the CPU, but L3 is only visible to the GPU. */
369 	I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
370 };
371 
372 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
373 
374 enum fb_op_origin {
375 	ORIGIN_GTT,
376 	ORIGIN_CPU,
377 	ORIGIN_CS,
378 	ORIGIN_FLIP,
379 	ORIGIN_DIRTYFB,
380 };
381 
382 struct intel_fbc {
383 	/* This is always the inner lock when overlapping with struct_mutex and
384 	 * it's the outer lock when overlapping with stolen_lock. */
385 	struct mutex lock;
386 	unsigned threshold;
387 	unsigned int possible_framebuffer_bits;
388 	unsigned int busy_bits;
389 	unsigned int visible_pipes_mask;
390 	struct intel_crtc *crtc;
391 
392 	struct drm_mm_node compressed_fb;
393 	struct drm_mm_node *compressed_llb;
394 
395 	bool false_color;
396 
397 	bool enabled;
398 	bool active;
399 	bool flip_pending;
400 
401 	bool underrun_detected;
402 	struct work_struct underrun_work;
403 
404 	/*
405 	 * Due to the atomic rules we can't access some structures without the
406 	 * appropriate locking, so we cache information here in order to avoid
407 	 * these problems.
408 	 */
409 	struct intel_fbc_state_cache {
410 		struct i915_vma *vma;
411 		unsigned long flags;
412 
413 		struct {
414 			unsigned int mode_flags;
415 			u32 hsw_bdw_pixel_rate;
416 		} crtc;
417 
418 		struct {
419 			unsigned int rotation;
420 			int src_w;
421 			int src_h;
422 			bool visible;
423 			/*
424 			 * Display surface base address adjustement for
425 			 * pageflips. Note that on gen4+ this only adjusts up
426 			 * to a tile, offsets within a tile are handled in
427 			 * the hw itself (with the TILEOFF register).
428 			 */
429 			int adjusted_x;
430 			int adjusted_y;
431 
432 			int y;
433 
434 			u16 pixel_blend_mode;
435 		} plane;
436 
437 		struct {
438 			const struct drm_format_info *format;
439 			unsigned int stride;
440 		} fb;
441 	} state_cache;
442 
443 	/*
444 	 * This structure contains everything that's relevant to program the
445 	 * hardware registers. When we want to figure out if we need to disable
446 	 * and re-enable FBC for a new configuration we just check if there's
447 	 * something different in the struct. The genx_fbc_activate functions
448 	 * are supposed to read from it in order to program the registers.
449 	 */
450 	struct intel_fbc_reg_params {
451 		struct i915_vma *vma;
452 		unsigned long flags;
453 
454 		struct {
455 			enum pipe pipe;
456 			enum i9xx_plane_id i9xx_plane;
457 			unsigned int fence_y_offset;
458 		} crtc;
459 
460 		struct {
461 			const struct drm_format_info *format;
462 			unsigned int stride;
463 		} fb;
464 
465 		int cfb_size;
466 		unsigned int gen9_wa_cfb_stride;
467 	} params;
468 
469 	const char *no_fbc_reason;
470 };
471 
472 /*
473  * HIGH_RR is the highest eDP panel refresh rate read from EDID
474  * LOW_RR is the lowest eDP panel refresh rate found from EDID
475  * parsing for same resolution.
476  */
477 enum drrs_refresh_rate_type {
478 	DRRS_HIGH_RR,
479 	DRRS_LOW_RR,
480 	DRRS_MAX_RR, /* RR count */
481 };
482 
483 enum drrs_support_type {
484 	DRRS_NOT_SUPPORTED = 0,
485 	STATIC_DRRS_SUPPORT = 1,
486 	SEAMLESS_DRRS_SUPPORT = 2
487 };
488 
489 struct intel_dp;
490 struct i915_drrs {
491 	struct mutex mutex;
492 	struct delayed_work work;
493 	struct intel_dp *dp;
494 	unsigned busy_frontbuffer_bits;
495 	enum drrs_refresh_rate_type refresh_rate_type;
496 	enum drrs_support_type type;
497 };
498 
499 struct i915_psr {
500 	struct mutex lock;
501 
502 #define I915_PSR_DEBUG_MODE_MASK	0x0f
503 #define I915_PSR_DEBUG_DEFAULT		0x00
504 #define I915_PSR_DEBUG_DISABLE		0x01
505 #define I915_PSR_DEBUG_ENABLE		0x02
506 #define I915_PSR_DEBUG_FORCE_PSR1	0x03
507 #define I915_PSR_DEBUG_IRQ		0x10
508 
509 	u32 debug;
510 	bool sink_support;
511 	bool prepared, enabled;
512 	struct intel_dp *dp;
513 	enum pipe pipe;
514 	bool active;
515 	struct work_struct work;
516 	unsigned busy_frontbuffer_bits;
517 	bool sink_psr2_support;
518 	bool link_standby;
519 	bool colorimetry_support;
520 	bool psr2_enabled;
521 	u8 sink_sync_latency;
522 	ktime_t last_entry_attempt;
523 	ktime_t last_exit;
524 	bool sink_not_reliable;
525 	bool irq_aux_error;
526 	u16 su_x_granularity;
527 };
528 
529 enum intel_pch {
530 	PCH_NONE = 0,	/* No PCH present */
531 	PCH_IBX,	/* Ibexpeak PCH */
532 	PCH_CPT,	/* Cougarpoint/Pantherpoint PCH */
533 	PCH_LPT,	/* Lynxpoint/Wildcatpoint PCH */
534 	PCH_SPT,        /* Sunrisepoint PCH */
535 	PCH_KBP,        /* Kaby Lake PCH */
536 	PCH_CNP,        /* Cannon Lake PCH */
537 	PCH_ICP,	/* Ice Lake PCH */
538 	PCH_NOP,	/* PCH without south display */
539 };
540 
541 enum intel_sbi_destination {
542 	SBI_ICLK,
543 	SBI_MPHY,
544 };
545 
546 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
547 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
548 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
549 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
550 #define QUIRK_INCREASE_T12_DELAY (1<<6)
551 #define QUIRK_INCREASE_DDI_DISABLED_TIME (1<<7)
552 
553 struct intel_fbdev;
554 struct intel_fbc_work;
555 
556 struct intel_gmbus {
557 	struct i2c_adapter adapter;
558 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
559 	u32 force_bit;
560 	u32 reg0;
561 	i915_reg_t gpio_reg;
562 	struct i2c_algo_bit_data bit_algo;
563 	struct drm_i915_private *dev_priv;
564 };
565 
566 struct i915_suspend_saved_registers {
567 	u32 saveDSPARB;
568 	u32 saveFBC_CONTROL;
569 	u32 saveCACHE_MODE_0;
570 	u32 saveMI_ARB_STATE;
571 	u32 saveSWF0[16];
572 	u32 saveSWF1[16];
573 	u32 saveSWF3[3];
574 	u64 saveFENCE[I915_MAX_NUM_FENCES];
575 	u32 savePCH_PORT_HOTPLUG;
576 	u16 saveGCDGMBUS;
577 };
578 
579 struct vlv_s0ix_state {
580 	/* GAM */
581 	u32 wr_watermark;
582 	u32 gfx_prio_ctrl;
583 	u32 arb_mode;
584 	u32 gfx_pend_tlb0;
585 	u32 gfx_pend_tlb1;
586 	u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
587 	u32 media_max_req_count;
588 	u32 gfx_max_req_count;
589 	u32 render_hwsp;
590 	u32 ecochk;
591 	u32 bsd_hwsp;
592 	u32 blt_hwsp;
593 	u32 tlb_rd_addr;
594 
595 	/* MBC */
596 	u32 g3dctl;
597 	u32 gsckgctl;
598 	u32 mbctl;
599 
600 	/* GCP */
601 	u32 ucgctl1;
602 	u32 ucgctl3;
603 	u32 rcgctl1;
604 	u32 rcgctl2;
605 	u32 rstctl;
606 	u32 misccpctl;
607 
608 	/* GPM */
609 	u32 gfxpause;
610 	u32 rpdeuhwtc;
611 	u32 rpdeuc;
612 	u32 ecobus;
613 	u32 pwrdwnupctl;
614 	u32 rp_down_timeout;
615 	u32 rp_deucsw;
616 	u32 rcubmabdtmr;
617 	u32 rcedata;
618 	u32 spare2gh;
619 
620 	/* Display 1 CZ domain */
621 	u32 gt_imr;
622 	u32 gt_ier;
623 	u32 pm_imr;
624 	u32 pm_ier;
625 	u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
626 
627 	/* GT SA CZ domain */
628 	u32 tilectl;
629 	u32 gt_fifoctl;
630 	u32 gtlc_wake_ctrl;
631 	u32 gtlc_survive;
632 	u32 pmwgicz;
633 
634 	/* Display 2 CZ domain */
635 	u32 gu_ctl0;
636 	u32 gu_ctl1;
637 	u32 pcbr;
638 	u32 clock_gate_dis2;
639 };
640 
641 struct intel_rps_ei {
642 	ktime_t ktime;
643 	u32 render_c0;
644 	u32 media_c0;
645 };
646 
647 struct intel_rps {
648 	/*
649 	 * work, interrupts_enabled and pm_iir are protected by
650 	 * dev_priv->irq_lock
651 	 */
652 	struct work_struct work;
653 	bool interrupts_enabled;
654 	u32 pm_iir;
655 
656 	/* PM interrupt bits that should never be masked */
657 	u32 pm_intrmsk_mbz;
658 
659 	/* Frequencies are stored in potentially platform dependent multiples.
660 	 * In other words, *_freq needs to be multiplied by X to be interesting.
661 	 * Soft limits are those which are used for the dynamic reclocking done
662 	 * by the driver (raise frequencies under heavy loads, and lower for
663 	 * lighter loads). Hard limits are those imposed by the hardware.
664 	 *
665 	 * A distinction is made for overclocking, which is never enabled by
666 	 * default, and is considered to be above the hard limit if it's
667 	 * possible at all.
668 	 */
669 	u8 cur_freq;		/* Current frequency (cached, may not == HW) */
670 	u8 min_freq_softlimit;	/* Minimum frequency permitted by the driver */
671 	u8 max_freq_softlimit;	/* Max frequency permitted by the driver */
672 	u8 max_freq;		/* Maximum frequency, RP0 if not overclocking */
673 	u8 min_freq;		/* AKA RPn. Minimum frequency */
674 	u8 boost_freq;		/* Frequency to request when wait boosting */
675 	u8 idle_freq;		/* Frequency to request when we are idle */
676 	u8 efficient_freq;	/* AKA RPe. Pre-determined balanced frequency */
677 	u8 rp1_freq;		/* "less than" RP0 power/freqency */
678 	u8 rp0_freq;		/* Non-overclocked max frequency. */
679 	u16 gpll_ref_freq;	/* vlv/chv GPLL reference frequency */
680 
681 	int last_adj;
682 
683 	struct {
684 		struct mutex mutex;
685 
686 		enum { LOW_POWER, BETWEEN, HIGH_POWER } mode;
687 		unsigned int interactive;
688 
689 		u8 up_threshold; /* Current %busy required to uplock */
690 		u8 down_threshold; /* Current %busy required to downclock */
691 	} power;
692 
693 	bool enabled;
694 	atomic_t num_waiters;
695 	atomic_t boosts;
696 
697 	/* manual wa residency calculations */
698 	struct intel_rps_ei ei;
699 };
700 
701 struct intel_rc6 {
702 	bool enabled;
703 	u64 prev_hw_residency[4];
704 	u64 cur_residency[4];
705 };
706 
707 struct intel_llc_pstate {
708 	bool enabled;
709 };
710 
711 struct intel_gen6_power_mgmt {
712 	struct intel_rps rps;
713 	struct intel_rc6 rc6;
714 	struct intel_llc_pstate llc_pstate;
715 };
716 
717 /* defined intel_pm.c */
718 extern spinlock_t mchdev_lock;
719 
720 struct intel_ilk_power_mgmt {
721 	u8 cur_delay;
722 	u8 min_delay;
723 	u8 max_delay;
724 	u8 fmax;
725 	u8 fstart;
726 
727 	u64 last_count1;
728 	unsigned long last_time1;
729 	unsigned long chipset_power;
730 	u64 last_count2;
731 	u64 last_time2;
732 	unsigned long gfx_power;
733 	u8 corr;
734 
735 	int c_m;
736 	int r_t;
737 };
738 
739 struct drm_i915_private;
740 struct i915_power_well;
741 
742 struct i915_power_well_ops {
743 	/*
744 	 * Synchronize the well's hw state to match the current sw state, for
745 	 * example enable/disable it based on the current refcount. Called
746 	 * during driver init and resume time, possibly after first calling
747 	 * the enable/disable handlers.
748 	 */
749 	void (*sync_hw)(struct drm_i915_private *dev_priv,
750 			struct i915_power_well *power_well);
751 	/*
752 	 * Enable the well and resources that depend on it (for example
753 	 * interrupts located on the well). Called after the 0->1 refcount
754 	 * transition.
755 	 */
756 	void (*enable)(struct drm_i915_private *dev_priv,
757 		       struct i915_power_well *power_well);
758 	/*
759 	 * Disable the well and resources that depend on it. Called after
760 	 * the 1->0 refcount transition.
761 	 */
762 	void (*disable)(struct drm_i915_private *dev_priv,
763 			struct i915_power_well *power_well);
764 	/* Returns the hw enabled state. */
765 	bool (*is_enabled)(struct drm_i915_private *dev_priv,
766 			   struct i915_power_well *power_well);
767 };
768 
769 struct i915_power_well_regs {
770 	i915_reg_t bios;
771 	i915_reg_t driver;
772 	i915_reg_t kvmr;
773 	i915_reg_t debug;
774 };
775 
776 /* Power well structure for haswell */
777 struct i915_power_well_desc {
778 	const char *name;
779 	bool always_on;
780 	u64 domains;
781 	/* unique identifier for this power well */
782 	enum i915_power_well_id id;
783 	/*
784 	 * Arbitraty data associated with this power well. Platform and power
785 	 * well specific.
786 	 */
787 	union {
788 		struct {
789 			/*
790 			 * request/status flag index in the PUNIT power well
791 			 * control/status registers.
792 			 */
793 			u8 idx;
794 		} vlv;
795 		struct {
796 			enum dpio_phy phy;
797 		} bxt;
798 		struct {
799 			const struct i915_power_well_regs *regs;
800 			/*
801 			 * request/status flag index in the power well
802 			 * constrol/status registers.
803 			 */
804 			u8 idx;
805 			/* Mask of pipes whose IRQ logic is backed by the pw */
806 			u8 irq_pipe_mask;
807 			/* The pw is backing the VGA functionality */
808 			bool has_vga:1;
809 			bool has_fuses:1;
810 			/*
811 			 * The pw is for an ICL+ TypeC PHY port in
812 			 * Thunderbolt mode.
813 			 */
814 			bool is_tc_tbt:1;
815 		} hsw;
816 	};
817 	const struct i915_power_well_ops *ops;
818 };
819 
820 struct i915_power_well {
821 	const struct i915_power_well_desc *desc;
822 	/* power well enable/disable usage count */
823 	int count;
824 	/* cached hw enabled state */
825 	bool hw_enabled;
826 };
827 
828 struct i915_power_domains {
829 	/*
830 	 * Power wells needed for initialization at driver init and suspend
831 	 * time are on. They are kept on until after the first modeset.
832 	 */
833 	bool initializing;
834 	bool display_core_suspended;
835 	int power_well_count;
836 
837 	intel_wakeref_t wakeref;
838 
839 	struct mutex lock;
840 	int domain_use_count[POWER_DOMAIN_NUM];
841 	struct i915_power_well *power_wells;
842 };
843 
844 #define MAX_L3_SLICES 2
845 struct intel_l3_parity {
846 	u32 *remap_info[MAX_L3_SLICES];
847 	struct work_struct error_work;
848 	int which_slice;
849 };
850 
851 struct i915_gem_mm {
852 	/** Memory allocator for GTT stolen memory */
853 	struct drm_mm stolen;
854 	/** Protects the usage of the GTT stolen memory allocator. This is
855 	 * always the inner lock when overlapping with struct_mutex. */
856 	struct mutex stolen_lock;
857 
858 	/* Protects bound_list/unbound_list and #drm_i915_gem_object.mm.link */
859 	spinlock_t obj_lock;
860 
861 	/** List of all objects in gtt_space. Used to restore gtt
862 	 * mappings on resume */
863 	struct list_head bound_list;
864 	/**
865 	 * List of objects which are not bound to the GTT (thus
866 	 * are idle and not used by the GPU). These objects may or may
867 	 * not actually have any pages attached.
868 	 */
869 	struct list_head unbound_list;
870 
871 	/** List of all objects in gtt_space, currently mmaped by userspace.
872 	 * All objects within this list must also be on bound_list.
873 	 */
874 	struct list_head userfault_list;
875 
876 	/**
877 	 * List of objects which are pending destruction.
878 	 */
879 	struct llist_head free_list;
880 	struct work_struct free_work;
881 	spinlock_t free_lock;
882 	/**
883 	 * Count of objects pending destructions. Used to skip needlessly
884 	 * waiting on an RCU barrier if no objects are waiting to be freed.
885 	 */
886 	atomic_t free_count;
887 
888 	/**
889 	 * Small stash of WC pages
890 	 */
891 	struct pagestash wc_stash;
892 
893 	/**
894 	 * tmpfs instance used for shmem backed objects
895 	 */
896 	struct vfsmount *gemfs;
897 
898 	/** PPGTT used for aliasing the PPGTT with the GTT */
899 	struct i915_hw_ppgtt *aliasing_ppgtt;
900 
901 	struct notifier_block oom_notifier;
902 	struct notifier_block vmap_notifier;
903 	struct shrinker shrinker;
904 
905 	/** LRU list of objects with fence regs on them. */
906 	struct list_head fence_list;
907 
908 	/**
909 	 * Workqueue to fault in userptr pages, flushed by the execbuf
910 	 * when required but otherwise left to userspace to try again
911 	 * on EAGAIN.
912 	 */
913 	struct workqueue_struct *userptr_wq;
914 
915 	u64 unordered_timeline;
916 
917 	/* the indicator for dispatch video commands on two BSD rings */
918 	atomic_t bsd_engine_dispatch_index;
919 
920 	/** Bit 6 swizzling required for X tiling */
921 	u32 bit_6_swizzle_x;
922 	/** Bit 6 swizzling required for Y tiling */
923 	u32 bit_6_swizzle_y;
924 
925 	/* accounting, useful for userland debugging */
926 	spinlock_t object_stat_lock;
927 	u64 object_memory;
928 	u32 object_count;
929 };
930 
931 #define I915_IDLE_ENGINES_TIMEOUT (200) /* in ms */
932 
933 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
934 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
935 
936 #define I915_ENGINE_DEAD_TIMEOUT  (4 * HZ)  /* Seqno, head and subunits dead */
937 #define I915_SEQNO_DEAD_TIMEOUT   (12 * HZ) /* Seqno dead with active head */
938 
939 #define I915_ENGINE_WEDGED_TIMEOUT  (60 * HZ)  /* Reset but no recovery? */
940 
941 struct ddi_vbt_port_info {
942 	int max_tmds_clock;
943 
944 	/*
945 	 * This is an index in the HDMI/DVI DDI buffer translation table.
946 	 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
947 	 * populate this field.
948 	 */
949 #define HDMI_LEVEL_SHIFT_UNKNOWN	0xff
950 	u8 hdmi_level_shift;
951 
952 	u8 supports_dvi:1;
953 	u8 supports_hdmi:1;
954 	u8 supports_dp:1;
955 	u8 supports_edp:1;
956 	u8 supports_typec_usb:1;
957 	u8 supports_tbt:1;
958 
959 	u8 alternate_aux_channel;
960 	u8 alternate_ddc_pin;
961 
962 	u8 dp_boost_level;
963 	u8 hdmi_boost_level;
964 	int dp_max_link_rate;		/* 0 for not limited by VBT */
965 };
966 
967 enum psr_lines_to_wait {
968 	PSR_0_LINES_TO_WAIT = 0,
969 	PSR_1_LINE_TO_WAIT,
970 	PSR_4_LINES_TO_WAIT,
971 	PSR_8_LINES_TO_WAIT
972 };
973 
974 struct intel_vbt_data {
975 	struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
976 	struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
977 
978 	/* Feature bits */
979 	unsigned int int_tv_support:1;
980 	unsigned int lvds_dither:1;
981 	unsigned int int_crt_support:1;
982 	unsigned int lvds_use_ssc:1;
983 	unsigned int int_lvds_support:1;
984 	unsigned int display_clock_mode:1;
985 	unsigned int fdi_rx_polarity_inverted:1;
986 	unsigned int panel_type:4;
987 	int lvds_ssc_freq;
988 	unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
989 	enum drm_panel_orientation orientation;
990 
991 	enum drrs_support_type drrs_type;
992 
993 	struct {
994 		int rate;
995 		int lanes;
996 		int preemphasis;
997 		int vswing;
998 		bool low_vswing;
999 		bool initialized;
1000 		int bpp;
1001 		struct edp_power_seq pps;
1002 	} edp;
1003 
1004 	struct {
1005 		bool enable;
1006 		bool full_link;
1007 		bool require_aux_wakeup;
1008 		int idle_frames;
1009 		enum psr_lines_to_wait lines_to_wait;
1010 		int tp1_wakeup_time_us;
1011 		int tp2_tp3_wakeup_time_us;
1012 	} psr;
1013 
1014 	struct {
1015 		u16 pwm_freq_hz;
1016 		bool present;
1017 		bool active_low_pwm;
1018 		u8 min_brightness;	/* min_brightness/255 of max */
1019 		u8 controller;		/* brightness controller number */
1020 		enum intel_backlight_type type;
1021 	} backlight;
1022 
1023 	/* MIPI DSI */
1024 	struct {
1025 		u16 panel_id;
1026 		struct mipi_config *config;
1027 		struct mipi_pps_data *pps;
1028 		u16 bl_ports;
1029 		u16 cabc_ports;
1030 		u8 seq_version;
1031 		u32 size;
1032 		u8 *data;
1033 		const u8 *sequence[MIPI_SEQ_MAX];
1034 		u8 *deassert_seq; /* Used by fixup_mipi_sequences() */
1035 		enum drm_panel_orientation orientation;
1036 	} dsi;
1037 
1038 	int crt_ddc_pin;
1039 
1040 	int child_dev_num;
1041 	struct child_device_config *child_dev;
1042 
1043 	struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1044 	struct sdvo_device_mapping sdvo_mappings[2];
1045 };
1046 
1047 enum intel_ddb_partitioning {
1048 	INTEL_DDB_PART_1_2,
1049 	INTEL_DDB_PART_5_6, /* IVB+ */
1050 };
1051 
1052 struct intel_wm_level {
1053 	bool enable;
1054 	u32 pri_val;
1055 	u32 spr_val;
1056 	u32 cur_val;
1057 	u32 fbc_val;
1058 };
1059 
1060 struct ilk_wm_values {
1061 	u32 wm_pipe[3];
1062 	u32 wm_lp[3];
1063 	u32 wm_lp_spr[3];
1064 	u32 wm_linetime[3];
1065 	bool enable_fbc_wm;
1066 	enum intel_ddb_partitioning partitioning;
1067 };
1068 
1069 struct g4x_pipe_wm {
1070 	u16 plane[I915_MAX_PLANES];
1071 	u16 fbc;
1072 };
1073 
1074 struct g4x_sr_wm {
1075 	u16 plane;
1076 	u16 cursor;
1077 	u16 fbc;
1078 };
1079 
1080 struct vlv_wm_ddl_values {
1081 	u8 plane[I915_MAX_PLANES];
1082 };
1083 
1084 struct vlv_wm_values {
1085 	struct g4x_pipe_wm pipe[3];
1086 	struct g4x_sr_wm sr;
1087 	struct vlv_wm_ddl_values ddl[3];
1088 	u8 level;
1089 	bool cxsr;
1090 };
1091 
1092 struct g4x_wm_values {
1093 	struct g4x_pipe_wm pipe[2];
1094 	struct g4x_sr_wm sr;
1095 	struct g4x_sr_wm hpll;
1096 	bool cxsr;
1097 	bool hpll_en;
1098 	bool fbc_en;
1099 };
1100 
1101 struct skl_ddb_entry {
1102 	u16 start, end;	/* in number of blocks, 'end' is exclusive */
1103 };
1104 
1105 static inline u16 skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1106 {
1107 	return entry->end - entry->start;
1108 }
1109 
1110 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1111 				       const struct skl_ddb_entry *e2)
1112 {
1113 	if (e1->start == e2->start && e1->end == e2->end)
1114 		return true;
1115 
1116 	return false;
1117 }
1118 
1119 struct skl_ddb_allocation {
1120 	u8 enabled_slices; /* GEN11 has configurable 2 slices */
1121 };
1122 
1123 struct skl_ddb_values {
1124 	unsigned dirty_pipes;
1125 	struct skl_ddb_allocation ddb;
1126 };
1127 
1128 struct skl_wm_level {
1129 	u16 min_ddb_alloc;
1130 	u16 plane_res_b;
1131 	u8 plane_res_l;
1132 	bool plane_en;
1133 };
1134 
1135 /* Stores plane specific WM parameters */
1136 struct skl_wm_params {
1137 	bool x_tiled, y_tiled;
1138 	bool rc_surface;
1139 	bool is_planar;
1140 	u32 width;
1141 	u8 cpp;
1142 	u32 plane_pixel_rate;
1143 	u32 y_min_scanlines;
1144 	u32 plane_bytes_per_line;
1145 	uint_fixed_16_16_t plane_blocks_per_line;
1146 	uint_fixed_16_16_t y_tile_minimum;
1147 	u32 linetime_us;
1148 	u32 dbuf_block_size;
1149 };
1150 
1151 /*
1152  * This struct helps tracking the state needed for runtime PM, which puts the
1153  * device in PCI D3 state. Notice that when this happens, nothing on the
1154  * graphics device works, even register access, so we don't get interrupts nor
1155  * anything else.
1156  *
1157  * Every piece of our code that needs to actually touch the hardware needs to
1158  * either call intel_runtime_pm_get or call intel_display_power_get with the
1159  * appropriate power domain.
1160  *
1161  * Our driver uses the autosuspend delay feature, which means we'll only really
1162  * suspend if we stay with zero refcount for a certain amount of time. The
1163  * default value is currently very conservative (see intel_runtime_pm_enable), but
1164  * it can be changed with the standard runtime PM files from sysfs.
1165  *
1166  * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1167  * goes back to false exactly before we reenable the IRQs. We use this variable
1168  * to check if someone is trying to enable/disable IRQs while they're supposed
1169  * to be disabled. This shouldn't happen and we'll print some error messages in
1170  * case it happens.
1171  *
1172  * For more, read the Documentation/power/runtime_pm.txt.
1173  */
1174 struct i915_runtime_pm {
1175 	atomic_t wakeref_count;
1176 	bool suspended;
1177 	bool irqs_enabled;
1178 
1179 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
1180 	/*
1181 	 * To aide detection of wakeref leaks and general misuse, we
1182 	 * track all wakeref holders. With manual markup (i.e. returning
1183 	 * a cookie to each rpm_get caller which they then supply to their
1184 	 * paired rpm_put) we can remove corresponding pairs of and keep
1185 	 * the array trimmed to active wakerefs.
1186 	 */
1187 	struct intel_runtime_pm_debug {
1188 		spinlock_t lock;
1189 
1190 		depot_stack_handle_t last_acquire;
1191 		depot_stack_handle_t last_release;
1192 
1193 		depot_stack_handle_t *owners;
1194 		unsigned long count;
1195 	} debug;
1196 #endif
1197 };
1198 
1199 enum intel_pipe_crc_source {
1200 	INTEL_PIPE_CRC_SOURCE_NONE,
1201 	INTEL_PIPE_CRC_SOURCE_PLANE1,
1202 	INTEL_PIPE_CRC_SOURCE_PLANE2,
1203 	INTEL_PIPE_CRC_SOURCE_PF,
1204 	INTEL_PIPE_CRC_SOURCE_PIPE,
1205 	/* TV/DP on pre-gen5/vlv can't use the pipe source. */
1206 	INTEL_PIPE_CRC_SOURCE_TV,
1207 	INTEL_PIPE_CRC_SOURCE_DP_B,
1208 	INTEL_PIPE_CRC_SOURCE_DP_C,
1209 	INTEL_PIPE_CRC_SOURCE_DP_D,
1210 	INTEL_PIPE_CRC_SOURCE_AUTO,
1211 	INTEL_PIPE_CRC_SOURCE_MAX,
1212 };
1213 
1214 #define INTEL_PIPE_CRC_ENTRIES_NR	128
1215 struct intel_pipe_crc {
1216 	spinlock_t lock;
1217 	int skipped;
1218 	enum intel_pipe_crc_source source;
1219 };
1220 
1221 struct i915_frontbuffer_tracking {
1222 	spinlock_t lock;
1223 
1224 	/*
1225 	 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1226 	 * scheduled flips.
1227 	 */
1228 	unsigned busy_bits;
1229 	unsigned flip_bits;
1230 };
1231 
1232 struct i915_virtual_gpu {
1233 	bool active;
1234 	u32 caps;
1235 };
1236 
1237 /* used in computing the new watermarks state */
1238 struct intel_wm_config {
1239 	unsigned int num_pipes_active;
1240 	bool sprites_enabled;
1241 	bool sprites_scaled;
1242 };
1243 
1244 struct i915_oa_format {
1245 	u32 format;
1246 	int size;
1247 };
1248 
1249 struct i915_oa_reg {
1250 	i915_reg_t addr;
1251 	u32 value;
1252 };
1253 
1254 struct i915_oa_config {
1255 	char uuid[UUID_STRING_LEN + 1];
1256 	int id;
1257 
1258 	const struct i915_oa_reg *mux_regs;
1259 	u32 mux_regs_len;
1260 	const struct i915_oa_reg *b_counter_regs;
1261 	u32 b_counter_regs_len;
1262 	const struct i915_oa_reg *flex_regs;
1263 	u32 flex_regs_len;
1264 
1265 	struct attribute_group sysfs_metric;
1266 	struct attribute *attrs[2];
1267 	struct device_attribute sysfs_metric_id;
1268 
1269 	atomic_t ref_count;
1270 };
1271 
1272 struct i915_perf_stream;
1273 
1274 /**
1275  * struct i915_perf_stream_ops - the OPs to support a specific stream type
1276  */
1277 struct i915_perf_stream_ops {
1278 	/**
1279 	 * @enable: Enables the collection of HW samples, either in response to
1280 	 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1281 	 * without `I915_PERF_FLAG_DISABLED`.
1282 	 */
1283 	void (*enable)(struct i915_perf_stream *stream);
1284 
1285 	/**
1286 	 * @disable: Disables the collection of HW samples, either in response
1287 	 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1288 	 * the stream.
1289 	 */
1290 	void (*disable)(struct i915_perf_stream *stream);
1291 
1292 	/**
1293 	 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1294 	 * once there is something ready to read() for the stream
1295 	 */
1296 	void (*poll_wait)(struct i915_perf_stream *stream,
1297 			  struct file *file,
1298 			  poll_table *wait);
1299 
1300 	/**
1301 	 * @wait_unlocked: For handling a blocking read, wait until there is
1302 	 * something to ready to read() for the stream. E.g. wait on the same
1303 	 * wait queue that would be passed to poll_wait().
1304 	 */
1305 	int (*wait_unlocked)(struct i915_perf_stream *stream);
1306 
1307 	/**
1308 	 * @read: Copy buffered metrics as records to userspace
1309 	 * **buf**: the userspace, destination buffer
1310 	 * **count**: the number of bytes to copy, requested by userspace
1311 	 * **offset**: zero at the start of the read, updated as the read
1312 	 * proceeds, it represents how many bytes have been copied so far and
1313 	 * the buffer offset for copying the next record.
1314 	 *
1315 	 * Copy as many buffered i915 perf samples and records for this stream
1316 	 * to userspace as will fit in the given buffer.
1317 	 *
1318 	 * Only write complete records; returning -%ENOSPC if there isn't room
1319 	 * for a complete record.
1320 	 *
1321 	 * Return any error condition that results in a short read such as
1322 	 * -%ENOSPC or -%EFAULT, even though these may be squashed before
1323 	 * returning to userspace.
1324 	 */
1325 	int (*read)(struct i915_perf_stream *stream,
1326 		    char __user *buf,
1327 		    size_t count,
1328 		    size_t *offset);
1329 
1330 	/**
1331 	 * @destroy: Cleanup any stream specific resources.
1332 	 *
1333 	 * The stream will always be disabled before this is called.
1334 	 */
1335 	void (*destroy)(struct i915_perf_stream *stream);
1336 };
1337 
1338 /**
1339  * struct i915_perf_stream - state for a single open stream FD
1340  */
1341 struct i915_perf_stream {
1342 	/**
1343 	 * @dev_priv: i915 drm device
1344 	 */
1345 	struct drm_i915_private *dev_priv;
1346 
1347 	/**
1348 	 * @link: Links the stream into ``&drm_i915_private->streams``
1349 	 */
1350 	struct list_head link;
1351 
1352 	/**
1353 	 * @wakeref: As we keep the device awake while the perf stream is
1354 	 * active, we track our runtime pm reference for later release.
1355 	 */
1356 	intel_wakeref_t wakeref;
1357 
1358 	/**
1359 	 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
1360 	 * properties given when opening a stream, representing the contents
1361 	 * of a single sample as read() by userspace.
1362 	 */
1363 	u32 sample_flags;
1364 
1365 	/**
1366 	 * @sample_size: Considering the configured contents of a sample
1367 	 * combined with the required header size, this is the total size
1368 	 * of a single sample record.
1369 	 */
1370 	int sample_size;
1371 
1372 	/**
1373 	 * @ctx: %NULL if measuring system-wide across all contexts or a
1374 	 * specific context that is being monitored.
1375 	 */
1376 	struct i915_gem_context *ctx;
1377 
1378 	/**
1379 	 * @enabled: Whether the stream is currently enabled, considering
1380 	 * whether the stream was opened in a disabled state and based
1381 	 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
1382 	 */
1383 	bool enabled;
1384 
1385 	/**
1386 	 * @ops: The callbacks providing the implementation of this specific
1387 	 * type of configured stream.
1388 	 */
1389 	const struct i915_perf_stream_ops *ops;
1390 
1391 	/**
1392 	 * @oa_config: The OA configuration used by the stream.
1393 	 */
1394 	struct i915_oa_config *oa_config;
1395 };
1396 
1397 /**
1398  * struct i915_oa_ops - Gen specific implementation of an OA unit stream
1399  */
1400 struct i915_oa_ops {
1401 	/**
1402 	 * @is_valid_b_counter_reg: Validates register's address for
1403 	 * programming boolean counters for a particular platform.
1404 	 */
1405 	bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
1406 				       u32 addr);
1407 
1408 	/**
1409 	 * @is_valid_mux_reg: Validates register's address for programming mux
1410 	 * for a particular platform.
1411 	 */
1412 	bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
1413 
1414 	/**
1415 	 * @is_valid_flex_reg: Validates register's address for programming
1416 	 * flex EU filtering for a particular platform.
1417 	 */
1418 	bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
1419 
1420 	/**
1421 	 * @enable_metric_set: Selects and applies any MUX configuration to set
1422 	 * up the Boolean and Custom (B/C) counters that are part of the
1423 	 * counter reports being sampled. May apply system constraints such as
1424 	 * disabling EU clock gating as required.
1425 	 */
1426 	int (*enable_metric_set)(struct i915_perf_stream *stream);
1427 
1428 	/**
1429 	 * @disable_metric_set: Remove system constraints associated with using
1430 	 * the OA unit.
1431 	 */
1432 	void (*disable_metric_set)(struct drm_i915_private *dev_priv);
1433 
1434 	/**
1435 	 * @oa_enable: Enable periodic sampling
1436 	 */
1437 	void (*oa_enable)(struct i915_perf_stream *stream);
1438 
1439 	/**
1440 	 * @oa_disable: Disable periodic sampling
1441 	 */
1442 	void (*oa_disable)(struct i915_perf_stream *stream);
1443 
1444 	/**
1445 	 * @read: Copy data from the circular OA buffer into a given userspace
1446 	 * buffer.
1447 	 */
1448 	int (*read)(struct i915_perf_stream *stream,
1449 		    char __user *buf,
1450 		    size_t count,
1451 		    size_t *offset);
1452 
1453 	/**
1454 	 * @oa_hw_tail_read: read the OA tail pointer register
1455 	 *
1456 	 * In particular this enables us to share all the fiddly code for
1457 	 * handling the OA unit tail pointer race that affects multiple
1458 	 * generations.
1459 	 */
1460 	u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
1461 };
1462 
1463 struct intel_cdclk_state {
1464 	unsigned int cdclk, vco, ref, bypass;
1465 	u8 voltage_level;
1466 };
1467 
1468 struct drm_i915_private {
1469 	struct drm_device drm;
1470 
1471 	struct kmem_cache *objects;
1472 	struct kmem_cache *vmas;
1473 	struct kmem_cache *luts;
1474 	struct kmem_cache *requests;
1475 	struct kmem_cache *dependencies;
1476 	struct kmem_cache *priorities;
1477 
1478 	const struct intel_device_info __info; /* Use INTEL_INFO() to access. */
1479 	struct intel_runtime_info __runtime; /* Use RUNTIME_INFO() to access. */
1480 	struct intel_driver_caps caps;
1481 
1482 	/**
1483 	 * Data Stolen Memory - aka "i915 stolen memory" gives us the start and
1484 	 * end of stolen which we can optionally use to create GEM objects
1485 	 * backed by stolen memory. Note that stolen_usable_size tells us
1486 	 * exactly how much of this we are actually allowed to use, given that
1487 	 * some portion of it is in fact reserved for use by hardware functions.
1488 	 */
1489 	struct resource dsm;
1490 	/**
1491 	 * Reseved portion of Data Stolen Memory
1492 	 */
1493 	struct resource dsm_reserved;
1494 
1495 	/*
1496 	 * Stolen memory is segmented in hardware with different portions
1497 	 * offlimits to certain functions.
1498 	 *
1499 	 * The drm_mm is initialised to the total accessible range, as found
1500 	 * from the PCI config. On Broadwell+, this is further restricted to
1501 	 * avoid the first page! The upper end of stolen memory is reserved for
1502 	 * hardware functions and similarly removed from the accessible range.
1503 	 */
1504 	resource_size_t stolen_usable_size;	/* Total size minus reserved ranges */
1505 
1506 	void __iomem *regs;
1507 
1508 	struct intel_uncore uncore;
1509 
1510 	struct i915_virtual_gpu vgpu;
1511 
1512 	struct intel_gvt *gvt;
1513 
1514 	struct intel_wopcm wopcm;
1515 
1516 	struct intel_huc huc;
1517 	struct intel_guc guc;
1518 
1519 	struct intel_csr csr;
1520 
1521 	struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1522 
1523 	/** gmbus_mutex protects against concurrent usage of the single hw gmbus
1524 	 * controller on different i2c buses. */
1525 	struct mutex gmbus_mutex;
1526 
1527 	/**
1528 	 * Base address of where the gmbus and gpio blocks are located (either
1529 	 * on PCH or on SoC for platforms without PCH).
1530 	 */
1531 	u32 gpio_mmio_base;
1532 
1533 	/* MMIO base address for MIPI regs */
1534 	u32 mipi_mmio_base;
1535 
1536 	u32 psr_mmio_base;
1537 
1538 	u32 pps_mmio_base;
1539 
1540 	wait_queue_head_t gmbus_wait_queue;
1541 
1542 	struct pci_dev *bridge_dev;
1543 	struct intel_engine_cs *engine[I915_NUM_ENGINES];
1544 	/* Context used internally to idle the GPU and setup initial state */
1545 	struct i915_gem_context *kernel_context;
1546 	/* Context only to be used for injecting preemption commands */
1547 	struct i915_gem_context *preempt_context;
1548 	struct intel_engine_cs *engine_class[MAX_ENGINE_CLASS + 1]
1549 					    [MAX_ENGINE_INSTANCE + 1];
1550 
1551 	struct resource mch_res;
1552 
1553 	/* protects the irq masks */
1554 	spinlock_t irq_lock;
1555 
1556 	bool display_irqs_enabled;
1557 
1558 	/* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1559 	struct pm_qos_request pm_qos;
1560 
1561 	/* Sideband mailbox protection */
1562 	struct mutex sb_lock;
1563 
1564 	/** Cached value of IMR to avoid reads in updating the bitfield */
1565 	union {
1566 		u32 irq_mask;
1567 		u32 de_irq_mask[I915_MAX_PIPES];
1568 	};
1569 	u32 gt_irq_mask;
1570 	u32 pm_imr;
1571 	u32 pm_ier;
1572 	u32 pm_rps_events;
1573 	u32 pm_guc_events;
1574 	u32 pipestat_irq_mask[I915_MAX_PIPES];
1575 
1576 	struct i915_hotplug hotplug;
1577 	struct intel_fbc fbc;
1578 	struct i915_drrs drrs;
1579 	struct intel_opregion opregion;
1580 	struct intel_vbt_data vbt;
1581 
1582 	bool preserve_bios_swizzle;
1583 
1584 	/* overlay */
1585 	struct intel_overlay *overlay;
1586 
1587 	/* backlight registers and fields in struct intel_panel */
1588 	struct mutex backlight_lock;
1589 
1590 	/* LVDS info */
1591 	bool no_aux_handshake;
1592 
1593 	/* protects panel power sequencer state */
1594 	struct mutex pps_mutex;
1595 
1596 	struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1597 	int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1598 
1599 	unsigned int fsb_freq, mem_freq, is_ddr3;
1600 	unsigned int skl_preferred_vco_freq;
1601 	unsigned int max_cdclk_freq;
1602 
1603 	unsigned int max_dotclk_freq;
1604 	unsigned int rawclk_freq;
1605 	unsigned int hpll_freq;
1606 	unsigned int fdi_pll_freq;
1607 	unsigned int czclk_freq;
1608 
1609 	struct {
1610 		/*
1611 		 * The current logical cdclk state.
1612 		 * See intel_atomic_state.cdclk.logical
1613 		 *
1614 		 * For reading holding any crtc lock is sufficient,
1615 		 * for writing must hold all of them.
1616 		 */
1617 		struct intel_cdclk_state logical;
1618 		/*
1619 		 * The current actual cdclk state.
1620 		 * See intel_atomic_state.cdclk.actual
1621 		 */
1622 		struct intel_cdclk_state actual;
1623 		/* The current hardware cdclk state */
1624 		struct intel_cdclk_state hw;
1625 	} cdclk;
1626 
1627 	/**
1628 	 * wq - Driver workqueue for GEM.
1629 	 *
1630 	 * NOTE: Work items scheduled here are not allowed to grab any modeset
1631 	 * locks, for otherwise the flushing done in the pageflip code will
1632 	 * result in deadlocks.
1633 	 */
1634 	struct workqueue_struct *wq;
1635 
1636 	/* ordered wq for modesets */
1637 	struct workqueue_struct *modeset_wq;
1638 
1639 	/* Display functions */
1640 	struct drm_i915_display_funcs display;
1641 
1642 	/* PCH chipset type */
1643 	enum intel_pch pch_type;
1644 	unsigned short pch_id;
1645 
1646 	unsigned long quirks;
1647 
1648 	struct drm_atomic_state *modeset_restore_state;
1649 	struct drm_modeset_acquire_ctx reset_ctx;
1650 
1651 	struct i915_ggtt ggtt; /* VM representing the global address space */
1652 
1653 	struct i915_gem_mm mm;
1654 	DECLARE_HASHTABLE(mm_structs, 7);
1655 	struct mutex mm_lock;
1656 
1657 	struct intel_ppat ppat;
1658 
1659 	/* Kernel Modesetting */
1660 
1661 	struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1662 	struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1663 
1664 #ifdef CONFIG_DEBUG_FS
1665 	struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1666 #endif
1667 
1668 	/* dpll and cdclk state is protected by connection_mutex */
1669 	int num_shared_dpll;
1670 	struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1671 	const struct intel_dpll_mgr *dpll_mgr;
1672 
1673 	/*
1674 	 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
1675 	 * Must be global rather than per dpll, because on some platforms
1676 	 * plls share registers.
1677 	 */
1678 	struct mutex dpll_lock;
1679 
1680 	unsigned int active_crtcs;
1681 	/* minimum acceptable cdclk for each pipe */
1682 	int min_cdclk[I915_MAX_PIPES];
1683 	/* minimum acceptable voltage level for each pipe */
1684 	u8 min_voltage_level[I915_MAX_PIPES];
1685 
1686 	int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1687 
1688 	struct i915_wa_list gt_wa_list;
1689 
1690 	struct i915_frontbuffer_tracking fb_tracking;
1691 
1692 	struct intel_atomic_helper {
1693 		struct llist_head free_list;
1694 		struct work_struct free_work;
1695 	} atomic_helper;
1696 
1697 	u16 orig_clock;
1698 
1699 	bool mchbar_need_disable;
1700 
1701 	struct intel_l3_parity l3_parity;
1702 
1703 	/* Cannot be determined by PCIID. You must always read a register. */
1704 	u32 edram_cap;
1705 
1706 	/*
1707 	 * Protects RPS/RC6 register access and PCU communication.
1708 	 * Must be taken after struct_mutex if nested. Note that
1709 	 * this lock may be held for long periods of time when
1710 	 * talking to hw - so only take it when talking to hw!
1711 	 */
1712 	struct mutex pcu_lock;
1713 
1714 	/* gen6+ GT PM state */
1715 	struct intel_gen6_power_mgmt gt_pm;
1716 
1717 	/* ilk-only ips/rps state. Everything in here is protected by the global
1718 	 * mchdev_lock in intel_pm.c */
1719 	struct intel_ilk_power_mgmt ips;
1720 
1721 	struct i915_power_domains power_domains;
1722 
1723 	struct i915_psr psr;
1724 
1725 	struct i915_gpu_error gpu_error;
1726 
1727 	struct drm_i915_gem_object *vlv_pctx;
1728 
1729 	/* list of fbdev register on this device */
1730 	struct intel_fbdev *fbdev;
1731 	struct work_struct fbdev_suspend_work;
1732 
1733 	struct drm_property *broadcast_rgb_property;
1734 	struct drm_property *force_audio_property;
1735 
1736 	/* hda/i915 audio component */
1737 	struct i915_audio_component *audio_component;
1738 	bool audio_component_registered;
1739 	/**
1740 	 * av_mutex - mutex for audio/video sync
1741 	 *
1742 	 */
1743 	struct mutex av_mutex;
1744 
1745 	struct {
1746 		struct mutex mutex;
1747 		struct list_head list;
1748 		struct llist_head free_list;
1749 		struct work_struct free_work;
1750 
1751 		/* The hw wants to have a stable context identifier for the
1752 		 * lifetime of the context (for OA, PASID, faults, etc).
1753 		 * This is limited in execlists to 21 bits.
1754 		 */
1755 		struct ida hw_ida;
1756 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
1757 #define MAX_GUC_CONTEXT_HW_ID (1 << 20) /* exclusive */
1758 #define GEN11_MAX_CONTEXT_HW_ID (1<<11) /* exclusive */
1759 		struct list_head hw_id_list;
1760 	} contexts;
1761 
1762 	u32 fdi_rx_config;
1763 
1764 	/* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
1765 	u32 chv_phy_control;
1766 	/*
1767 	 * Shadows for CHV DPLL_MD regs to keep the state
1768 	 * checker somewhat working in the presence hardware
1769 	 * crappiness (can't read out DPLL_MD for pipes B & C).
1770 	 */
1771 	u32 chv_dpll_md[I915_MAX_PIPES];
1772 	u32 bxt_phy_grc;
1773 
1774 	u32 suspend_count;
1775 	bool power_domains_suspended;
1776 	struct i915_suspend_saved_registers regfile;
1777 	struct vlv_s0ix_state vlv_s0ix_state;
1778 
1779 	enum {
1780 		I915_SAGV_UNKNOWN = 0,
1781 		I915_SAGV_DISABLED,
1782 		I915_SAGV_ENABLED,
1783 		I915_SAGV_NOT_CONTROLLED
1784 	} sagv_status;
1785 
1786 	struct {
1787 		/*
1788 		 * Raw watermark latency values:
1789 		 * in 0.1us units for WM0,
1790 		 * in 0.5us units for WM1+.
1791 		 */
1792 		/* primary */
1793 		u16 pri_latency[5];
1794 		/* sprite */
1795 		u16 spr_latency[5];
1796 		/* cursor */
1797 		u16 cur_latency[5];
1798 		/*
1799 		 * Raw watermark memory latency values
1800 		 * for SKL for all 8 levels
1801 		 * in 1us units.
1802 		 */
1803 		u16 skl_latency[8];
1804 
1805 		/* current hardware state */
1806 		union {
1807 			struct ilk_wm_values hw;
1808 			struct skl_ddb_values skl_hw;
1809 			struct vlv_wm_values vlv;
1810 			struct g4x_wm_values g4x;
1811 		};
1812 
1813 		u8 max_level;
1814 
1815 		/*
1816 		 * Should be held around atomic WM register writing; also
1817 		 * protects * intel_crtc->wm.active and
1818 		 * cstate->wm.need_postvbl_update.
1819 		 */
1820 		struct mutex wm_mutex;
1821 
1822 		/*
1823 		 * Set during HW readout of watermarks/DDB.  Some platforms
1824 		 * need to know when we're still using BIOS-provided values
1825 		 * (which we don't fully trust).
1826 		 */
1827 		bool distrust_bios_wm;
1828 	} wm;
1829 
1830 	struct dram_info {
1831 		bool valid;
1832 		bool is_16gb_dimm;
1833 		u8 num_channels;
1834 		enum dram_rank {
1835 			I915_DRAM_RANK_INVALID = 0,
1836 			I915_DRAM_RANK_SINGLE,
1837 			I915_DRAM_RANK_DUAL
1838 		} rank;
1839 		u32 bandwidth_kbps;
1840 		bool symmetric_memory;
1841 	} dram_info;
1842 
1843 	struct i915_runtime_pm runtime_pm;
1844 
1845 	struct {
1846 		bool initialized;
1847 
1848 		struct kobject *metrics_kobj;
1849 		struct ctl_table_header *sysctl_header;
1850 
1851 		/*
1852 		 * Lock associated with adding/modifying/removing OA configs
1853 		 * in dev_priv->perf.metrics_idr.
1854 		 */
1855 		struct mutex metrics_lock;
1856 
1857 		/*
1858 		 * List of dynamic configurations, you need to hold
1859 		 * dev_priv->perf.metrics_lock to access it.
1860 		 */
1861 		struct idr metrics_idr;
1862 
1863 		/*
1864 		 * Lock associated with anything below within this structure
1865 		 * except exclusive_stream.
1866 		 */
1867 		struct mutex lock;
1868 		struct list_head streams;
1869 
1870 		struct {
1871 			/*
1872 			 * The stream currently using the OA unit. If accessed
1873 			 * outside a syscall associated to its file
1874 			 * descriptor, you need to hold
1875 			 * dev_priv->drm.struct_mutex.
1876 			 */
1877 			struct i915_perf_stream *exclusive_stream;
1878 
1879 			struct intel_context *pinned_ctx;
1880 			u32 specific_ctx_id;
1881 			u32 specific_ctx_id_mask;
1882 
1883 			struct hrtimer poll_check_timer;
1884 			wait_queue_head_t poll_wq;
1885 			bool pollin;
1886 
1887 			/**
1888 			 * For rate limiting any notifications of spurious
1889 			 * invalid OA reports
1890 			 */
1891 			struct ratelimit_state spurious_report_rs;
1892 
1893 			bool periodic;
1894 			int period_exponent;
1895 
1896 			struct i915_oa_config test_config;
1897 
1898 			struct {
1899 				struct i915_vma *vma;
1900 				u8 *vaddr;
1901 				u32 last_ctx_id;
1902 				int format;
1903 				int format_size;
1904 
1905 				/**
1906 				 * Locks reads and writes to all head/tail state
1907 				 *
1908 				 * Consider: the head and tail pointer state
1909 				 * needs to be read consistently from a hrtimer
1910 				 * callback (atomic context) and read() fop
1911 				 * (user context) with tail pointer updates
1912 				 * happening in atomic context and head updates
1913 				 * in user context and the (unlikely)
1914 				 * possibility of read() errors needing to
1915 				 * reset all head/tail state.
1916 				 *
1917 				 * Note: Contention or performance aren't
1918 				 * currently a significant concern here
1919 				 * considering the relatively low frequency of
1920 				 * hrtimer callbacks (5ms period) and that
1921 				 * reads typically only happen in response to a
1922 				 * hrtimer event and likely complete before the
1923 				 * next callback.
1924 				 *
1925 				 * Note: This lock is not held *while* reading
1926 				 * and copying data to userspace so the value
1927 				 * of head observed in htrimer callbacks won't
1928 				 * represent any partial consumption of data.
1929 				 */
1930 				spinlock_t ptr_lock;
1931 
1932 				/**
1933 				 * One 'aging' tail pointer and one 'aged'
1934 				 * tail pointer ready to used for reading.
1935 				 *
1936 				 * Initial values of 0xffffffff are invalid
1937 				 * and imply that an update is required
1938 				 * (and should be ignored by an attempted
1939 				 * read)
1940 				 */
1941 				struct {
1942 					u32 offset;
1943 				} tails[2];
1944 
1945 				/**
1946 				 * Index for the aged tail ready to read()
1947 				 * data up to.
1948 				 */
1949 				unsigned int aged_tail_idx;
1950 
1951 				/**
1952 				 * A monotonic timestamp for when the current
1953 				 * aging tail pointer was read; used to
1954 				 * determine when it is old enough to trust.
1955 				 */
1956 				u64 aging_timestamp;
1957 
1958 				/**
1959 				 * Although we can always read back the head
1960 				 * pointer register, we prefer to avoid
1961 				 * trusting the HW state, just to avoid any
1962 				 * risk that some hardware condition could
1963 				 * somehow bump the head pointer unpredictably
1964 				 * and cause us to forward the wrong OA buffer
1965 				 * data to userspace.
1966 				 */
1967 				u32 head;
1968 			} oa_buffer;
1969 
1970 			u32 gen7_latched_oastatus1;
1971 			u32 ctx_oactxctrl_offset;
1972 			u32 ctx_flexeu0_offset;
1973 
1974 			/**
1975 			 * The RPT_ID/reason field for Gen8+ includes a bit
1976 			 * to determine if the CTX ID in the report is valid
1977 			 * but the specific bit differs between Gen 8 and 9
1978 			 */
1979 			u32 gen8_valid_ctx_bit;
1980 
1981 			struct i915_oa_ops ops;
1982 			const struct i915_oa_format *oa_formats;
1983 		} oa;
1984 	} perf;
1985 
1986 	/* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
1987 	struct {
1988 		void (*resume)(struct drm_i915_private *);
1989 		void (*cleanup_engine)(struct intel_engine_cs *engine);
1990 
1991 		struct i915_gt_timelines {
1992 			struct mutex mutex; /* protects list, tainted by GPU */
1993 			struct list_head active_list;
1994 
1995 			/* Pack multiple timelines' seqnos into the same page */
1996 			spinlock_t hwsp_lock;
1997 			struct list_head hwsp_free_list;
1998 		} timelines;
1999 
2000 		struct list_head active_rings;
2001 		struct list_head closed_vma;
2002 		u32 active_requests;
2003 
2004 		/**
2005 		 * Is the GPU currently considered idle, or busy executing
2006 		 * userspace requests? Whilst idle, we allow runtime power
2007 		 * management to power down the hardware and display clocks.
2008 		 * In order to reduce the effect on performance, there
2009 		 * is a slight delay before we do so.
2010 		 */
2011 		intel_wakeref_t awake;
2012 
2013 		/**
2014 		 * The number of times we have woken up.
2015 		 */
2016 		unsigned int epoch;
2017 #define I915_EPOCH_INVALID 0
2018 
2019 		/**
2020 		 * We leave the user IRQ off as much as possible,
2021 		 * but this means that requests will finish and never
2022 		 * be retired once the system goes idle. Set a timer to
2023 		 * fire periodically while the ring is running. When it
2024 		 * fires, go retire requests.
2025 		 */
2026 		struct delayed_work retire_work;
2027 
2028 		/**
2029 		 * When we detect an idle GPU, we want to turn on
2030 		 * powersaving features. So once we see that there
2031 		 * are no more requests outstanding and no more
2032 		 * arrive within a small period of time, we fire
2033 		 * off the idle_work.
2034 		 */
2035 		struct delayed_work idle_work;
2036 
2037 		ktime_t last_init_time;
2038 
2039 		struct i915_vma *scratch;
2040 	} gt;
2041 
2042 	/* perform PHY state sanity checks? */
2043 	bool chv_phy_assert[2];
2044 
2045 	bool ipc_enabled;
2046 
2047 	/* Used to save the pipe-to-encoder mapping for audio */
2048 	struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2049 
2050 	/* necessary resource sharing with HDMI LPE audio driver. */
2051 	struct {
2052 		struct platform_device *platdev;
2053 		int	irq;
2054 	} lpe_audio;
2055 
2056 	struct i915_pmu pmu;
2057 
2058 	/*
2059 	 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2060 	 * will be rejected. Instead look for a better place.
2061 	 */
2062 };
2063 
2064 struct dram_channel_info {
2065 	struct info {
2066 		u8 size, width;
2067 		enum dram_rank rank;
2068 	} l_info, s_info;
2069 	enum dram_rank rank;
2070 	bool is_16gb_dimm;
2071 };
2072 
2073 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2074 {
2075 	return container_of(dev, struct drm_i915_private, drm);
2076 }
2077 
2078 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2079 {
2080 	return to_i915(dev_get_drvdata(kdev));
2081 }
2082 
2083 static inline struct drm_i915_private *wopcm_to_i915(struct intel_wopcm *wopcm)
2084 {
2085 	return container_of(wopcm, struct drm_i915_private, wopcm);
2086 }
2087 
2088 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2089 {
2090 	return container_of(guc, struct drm_i915_private, guc);
2091 }
2092 
2093 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2094 {
2095 	return container_of(huc, struct drm_i915_private, huc);
2096 }
2097 
2098 /* Simple iterator over all initialised engines */
2099 #define for_each_engine(engine__, dev_priv__, id__) \
2100 	for ((id__) = 0; \
2101 	     (id__) < I915_NUM_ENGINES; \
2102 	     (id__)++) \
2103 		for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2104 
2105 /* Iterator over subset of engines selected by mask */
2106 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2107 	for ((tmp__) = (mask__) & INTEL_INFO(dev_priv__)->ring_mask; \
2108 	     (tmp__) ? \
2109 	     ((engine__) = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : \
2110 	     0;)
2111 
2112 enum hdmi_force_audio {
2113 	HDMI_AUDIO_OFF_DVI = -2,	/* no aux data for HDMI-DVI converter */
2114 	HDMI_AUDIO_OFF,			/* force turn off HDMI audio */
2115 	HDMI_AUDIO_AUTO,		/* trust EDID */
2116 	HDMI_AUDIO_ON,			/* force turn on HDMI audio */
2117 };
2118 
2119 #define I915_GTT_OFFSET_NONE ((u32)-1)
2120 
2121 /*
2122  * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2123  * considered to be the frontbuffer for the given plane interface-wise. This
2124  * doesn't mean that the hw necessarily already scans it out, but that any
2125  * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2126  *
2127  * We have one bit per pipe and per scanout plane type.
2128  */
2129 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2130 #define INTEL_FRONTBUFFER(pipe, plane_id) ({ \
2131 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 32); \
2132 	BUILD_BUG_ON(I915_MAX_PLANES > INTEL_FRONTBUFFER_BITS_PER_PIPE); \
2133 	BIT((plane_id) + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)); \
2134 })
2135 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2136 	BIT(INTEL_FRONTBUFFER_BITS_PER_PIPE - 1 + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2137 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2138 	GENMASK(INTEL_FRONTBUFFER_BITS_PER_PIPE * ((pipe) + 1) - 1, \
2139 		INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2140 
2141 /*
2142  * Optimised SGL iterator for GEM objects
2143  */
2144 static __always_inline struct sgt_iter {
2145 	struct scatterlist *sgp;
2146 	union {
2147 		unsigned long pfn;
2148 		dma_addr_t dma;
2149 	};
2150 	unsigned int curr;
2151 	unsigned int max;
2152 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2153 	struct sgt_iter s = { .sgp = sgl };
2154 
2155 	if (s.sgp) {
2156 		s.max = s.curr = s.sgp->offset;
2157 		s.max += s.sgp->length;
2158 		if (dma)
2159 			s.dma = sg_dma_address(s.sgp);
2160 		else
2161 			s.pfn = page_to_pfn(sg_page(s.sgp));
2162 	}
2163 
2164 	return s;
2165 }
2166 
2167 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2168 {
2169 	++sg;
2170 	if (unlikely(sg_is_chain(sg)))
2171 		sg = sg_chain_ptr(sg);
2172 	return sg;
2173 }
2174 
2175 /**
2176  * __sg_next - return the next scatterlist entry in a list
2177  * @sg:		The current sg entry
2178  *
2179  * Description:
2180  *   If the entry is the last, return NULL; otherwise, step to the next
2181  *   element in the array (@sg@+1). If that's a chain pointer, follow it;
2182  *   otherwise just return the pointer to the current element.
2183  **/
2184 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2185 {
2186 	return sg_is_last(sg) ? NULL : ____sg_next(sg);
2187 }
2188 
2189 /**
2190  * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2191  * @__dmap:	DMA address (output)
2192  * @__iter:	'struct sgt_iter' (iterator state, internal)
2193  * @__sgt:	sg_table to iterate over (input)
2194  */
2195 #define for_each_sgt_dma(__dmap, __iter, __sgt)				\
2196 	for ((__iter) = __sgt_iter((__sgt)->sgl, true);			\
2197 	     ((__dmap) = (__iter).dma + (__iter).curr);			\
2198 	     (((__iter).curr += I915_GTT_PAGE_SIZE) >= (__iter).max) ?	\
2199 	     (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0)
2200 
2201 /**
2202  * for_each_sgt_page - iterate over the pages of the given sg_table
2203  * @__pp:	page pointer (output)
2204  * @__iter:	'struct sgt_iter' (iterator state, internal)
2205  * @__sgt:	sg_table to iterate over (input)
2206  */
2207 #define for_each_sgt_page(__pp, __iter, __sgt)				\
2208 	for ((__iter) = __sgt_iter((__sgt)->sgl, false);		\
2209 	     ((__pp) = (__iter).pfn == 0 ? NULL :			\
2210 	      pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2211 	     (((__iter).curr += PAGE_SIZE) >= (__iter).max) ?		\
2212 	     (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0)
2213 
2214 bool i915_sg_trim(struct sg_table *orig_st);
2215 
2216 static inline unsigned int i915_sg_page_sizes(struct scatterlist *sg)
2217 {
2218 	unsigned int page_sizes;
2219 
2220 	page_sizes = 0;
2221 	while (sg) {
2222 		GEM_BUG_ON(sg->offset);
2223 		GEM_BUG_ON(!IS_ALIGNED(sg->length, PAGE_SIZE));
2224 		page_sizes |= sg->length;
2225 		sg = __sg_next(sg);
2226 	}
2227 
2228 	return page_sizes;
2229 }
2230 
2231 static inline unsigned int i915_sg_segment_size(void)
2232 {
2233 	unsigned int size = swiotlb_max_segment();
2234 
2235 	if (size == 0)
2236 		return SCATTERLIST_MAX_SEGMENT;
2237 
2238 	size = rounddown(size, PAGE_SIZE);
2239 	/* swiotlb_max_segment_size can return 1 byte when it means one page. */
2240 	if (size < PAGE_SIZE)
2241 		size = PAGE_SIZE;
2242 
2243 	return size;
2244 }
2245 
2246 #define INTEL_INFO(dev_priv)	(&(dev_priv)->__info)
2247 #define RUNTIME_INFO(dev_priv)	(&(dev_priv)->__runtime)
2248 #define DRIVER_CAPS(dev_priv)	(&(dev_priv)->caps)
2249 
2250 #define INTEL_GEN(dev_priv)	(INTEL_INFO(dev_priv)->gen)
2251 #define INTEL_DEVID(dev_priv)	(RUNTIME_INFO(dev_priv)->device_id)
2252 
2253 #define REVID_FOREVER		0xff
2254 #define INTEL_REVID(dev_priv)	((dev_priv)->drm.pdev->revision)
2255 
2256 #define INTEL_GEN_MASK(s, e) ( \
2257 	BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \
2258 	BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \
2259 	GENMASK((e) - 1, (s) - 1))
2260 
2261 /* Returns true if Gen is in inclusive range [Start, End] */
2262 #define IS_GEN_RANGE(dev_priv, s, e) \
2263 	(!!(INTEL_INFO(dev_priv)->gen_mask & INTEL_GEN_MASK((s), (e))))
2264 
2265 #define IS_GEN(dev_priv, n) \
2266 	(BUILD_BUG_ON_ZERO(!__builtin_constant_p(n)) + \
2267 	 INTEL_INFO(dev_priv)->gen == (n))
2268 
2269 /*
2270  * Return true if revision is in range [since,until] inclusive.
2271  *
2272  * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2273  */
2274 #define IS_REVID(p, since, until) \
2275 	(INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2276 
2277 #define IS_PLATFORM(dev_priv, p) (INTEL_INFO(dev_priv)->platform_mask & BIT(p))
2278 
2279 #define IS_I830(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I830)
2280 #define IS_I845G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I845G)
2281 #define IS_I85X(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I85X)
2282 #define IS_I865G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I865G)
2283 #define IS_I915G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I915G)
2284 #define IS_I915GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I915GM)
2285 #define IS_I945G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I945G)
2286 #define IS_I945GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I945GM)
2287 #define IS_I965G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I965G)
2288 #define IS_I965GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I965GM)
2289 #define IS_G45(dev_priv)	IS_PLATFORM(dev_priv, INTEL_G45)
2290 #define IS_GM45(dev_priv)	IS_PLATFORM(dev_priv, INTEL_GM45)
2291 #define IS_G4X(dev_priv)	(IS_G45(dev_priv) || IS_GM45(dev_priv))
2292 #define IS_PINEVIEW_G(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa001)
2293 #define IS_PINEVIEW_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa011)
2294 #define IS_PINEVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_PINEVIEW)
2295 #define IS_G33(dev_priv)	IS_PLATFORM(dev_priv, INTEL_G33)
2296 #define IS_IRONLAKE_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0046)
2297 #define IS_IVYBRIDGE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE)
2298 #define IS_IVB_GT1(dev_priv)	(IS_IVYBRIDGE(dev_priv) && \
2299 				 INTEL_INFO(dev_priv)->gt == 1)
2300 #define IS_VALLEYVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW)
2301 #define IS_CHERRYVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW)
2302 #define IS_HASWELL(dev_priv)	IS_PLATFORM(dev_priv, INTEL_HASWELL)
2303 #define IS_BROADWELL(dev_priv)	IS_PLATFORM(dev_priv, INTEL_BROADWELL)
2304 #define IS_SKYLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_SKYLAKE)
2305 #define IS_BROXTON(dev_priv)	IS_PLATFORM(dev_priv, INTEL_BROXTON)
2306 #define IS_KABYLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_KABYLAKE)
2307 #define IS_GEMINILAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_GEMINILAKE)
2308 #define IS_COFFEELAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_COFFEELAKE)
2309 #define IS_CANNONLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_CANNONLAKE)
2310 #define IS_ICELAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_ICELAKE)
2311 #define IS_MOBILE(dev_priv)	(INTEL_INFO(dev_priv)->is_mobile)
2312 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2313 				    (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2314 #define IS_BDW_ULT(dev_priv)	(IS_BROADWELL(dev_priv) && \
2315 				 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 ||	\
2316 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xb ||	\
2317 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2318 /* ULX machines are also considered ULT. */
2319 #define IS_BDW_ULX(dev_priv)	(IS_BROADWELL(dev_priv) && \
2320 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2321 #define IS_BDW_GT3(dev_priv)	(IS_BROADWELL(dev_priv) && \
2322 				 INTEL_INFO(dev_priv)->gt == 3)
2323 #define IS_HSW_ULT(dev_priv)	(IS_HASWELL(dev_priv) && \
2324 				 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2325 #define IS_HSW_GT3(dev_priv)	(IS_HASWELL(dev_priv) && \
2326 				 INTEL_INFO(dev_priv)->gt == 3)
2327 #define IS_HSW_GT1(dev_priv)	(IS_HASWELL(dev_priv) && \
2328 				 INTEL_INFO(dev_priv)->gt == 1)
2329 /* ULX machines are also considered ULT. */
2330 #define IS_HSW_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0A0E || \
2331 				 INTEL_DEVID(dev_priv) == 0x0A1E)
2332 #define IS_SKL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x1906 || \
2333 				 INTEL_DEVID(dev_priv) == 0x1913 || \
2334 				 INTEL_DEVID(dev_priv) == 0x1916 || \
2335 				 INTEL_DEVID(dev_priv) == 0x1921 || \
2336 				 INTEL_DEVID(dev_priv) == 0x1926)
2337 #define IS_SKL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x190E || \
2338 				 INTEL_DEVID(dev_priv) == 0x1915 || \
2339 				 INTEL_DEVID(dev_priv) == 0x191E)
2340 #define IS_KBL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x5906 || \
2341 				 INTEL_DEVID(dev_priv) == 0x5913 || \
2342 				 INTEL_DEVID(dev_priv) == 0x5916 || \
2343 				 INTEL_DEVID(dev_priv) == 0x5921 || \
2344 				 INTEL_DEVID(dev_priv) == 0x5926)
2345 #define IS_KBL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x590E || \
2346 				 INTEL_DEVID(dev_priv) == 0x5915 || \
2347 				 INTEL_DEVID(dev_priv) == 0x591E)
2348 #define IS_AML_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x591C || \
2349 				 INTEL_DEVID(dev_priv) == 0x87C0)
2350 #define IS_SKL_GT2(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2351 				 INTEL_INFO(dev_priv)->gt == 2)
2352 #define IS_SKL_GT3(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2353 				 INTEL_INFO(dev_priv)->gt == 3)
2354 #define IS_SKL_GT4(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2355 				 INTEL_INFO(dev_priv)->gt == 4)
2356 #define IS_KBL_GT2(dev_priv)	(IS_KABYLAKE(dev_priv) && \
2357 				 INTEL_INFO(dev_priv)->gt == 2)
2358 #define IS_KBL_GT3(dev_priv)	(IS_KABYLAKE(dev_priv) && \
2359 				 INTEL_INFO(dev_priv)->gt == 3)
2360 #define IS_CFL_ULT(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2361 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
2362 #define IS_CFL_GT2(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2363 				 INTEL_INFO(dev_priv)->gt == 2)
2364 #define IS_CFL_GT3(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2365 				 INTEL_INFO(dev_priv)->gt == 3)
2366 #define IS_CNL_WITH_PORT_F(dev_priv)   (IS_CANNONLAKE(dev_priv) && \
2367 					(INTEL_DEVID(dev_priv) & 0x0004) == 0x0004)
2368 #define IS_ICL_WITH_PORT_F(dev_priv)   (IS_ICELAKE(dev_priv) && \
2369 					INTEL_DEVID(dev_priv) != 0x8A51)
2370 
2371 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2372 
2373 #define SKL_REVID_A0		0x0
2374 #define SKL_REVID_B0		0x1
2375 #define SKL_REVID_C0		0x2
2376 #define SKL_REVID_D0		0x3
2377 #define SKL_REVID_E0		0x4
2378 #define SKL_REVID_F0		0x5
2379 #define SKL_REVID_G0		0x6
2380 #define SKL_REVID_H0		0x7
2381 
2382 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2383 
2384 #define BXT_REVID_A0		0x0
2385 #define BXT_REVID_A1		0x1
2386 #define BXT_REVID_B0		0x3
2387 #define BXT_REVID_B_LAST	0x8
2388 #define BXT_REVID_C0		0x9
2389 
2390 #define IS_BXT_REVID(dev_priv, since, until) \
2391 	(IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2392 
2393 #define KBL_REVID_A0		0x0
2394 #define KBL_REVID_B0		0x1
2395 #define KBL_REVID_C0		0x2
2396 #define KBL_REVID_D0		0x3
2397 #define KBL_REVID_E0		0x4
2398 
2399 #define IS_KBL_REVID(dev_priv, since, until) \
2400 	(IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2401 
2402 #define GLK_REVID_A0		0x0
2403 #define GLK_REVID_A1		0x1
2404 
2405 #define IS_GLK_REVID(dev_priv, since, until) \
2406 	(IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2407 
2408 #define CNL_REVID_A0		0x0
2409 #define CNL_REVID_B0		0x1
2410 #define CNL_REVID_C0		0x2
2411 
2412 #define IS_CNL_REVID(p, since, until) \
2413 	(IS_CANNONLAKE(p) && IS_REVID(p, since, until))
2414 
2415 #define ICL_REVID_A0		0x0
2416 #define ICL_REVID_A2		0x1
2417 #define ICL_REVID_B0		0x3
2418 #define ICL_REVID_B2		0x4
2419 #define ICL_REVID_C0		0x5
2420 
2421 #define IS_ICL_REVID(p, since, until) \
2422 	(IS_ICELAKE(p) && IS_REVID(p, since, until))
2423 
2424 #define IS_LP(dev_priv)	(INTEL_INFO(dev_priv)->is_lp)
2425 #define IS_GEN9_LP(dev_priv)	(IS_GEN(dev_priv, 9) && IS_LP(dev_priv))
2426 #define IS_GEN9_BC(dev_priv)	(IS_GEN(dev_priv, 9) && !IS_LP(dev_priv))
2427 
2428 #define ENGINE_MASK(id)	BIT(id)
2429 #define RENDER_RING	ENGINE_MASK(RCS)
2430 #define BSD_RING	ENGINE_MASK(VCS)
2431 #define BLT_RING	ENGINE_MASK(BCS)
2432 #define VEBOX_RING	ENGINE_MASK(VECS)
2433 #define BSD2_RING	ENGINE_MASK(VCS2)
2434 #define BSD3_RING	ENGINE_MASK(VCS3)
2435 #define BSD4_RING	ENGINE_MASK(VCS4)
2436 #define VEBOX2_RING	ENGINE_MASK(VECS2)
2437 #define ALL_ENGINES	(~0)
2438 
2439 #define HAS_ENGINE(dev_priv, id) \
2440 	(!!(INTEL_INFO(dev_priv)->ring_mask & ENGINE_MASK(id)))
2441 
2442 #define HAS_BSD(dev_priv)	HAS_ENGINE(dev_priv, VCS)
2443 #define HAS_BSD2(dev_priv)	HAS_ENGINE(dev_priv, VCS2)
2444 #define HAS_BLT(dev_priv)	HAS_ENGINE(dev_priv, BCS)
2445 #define HAS_VEBOX(dev_priv)	HAS_ENGINE(dev_priv, VECS)
2446 
2447 #define HAS_LLC(dev_priv)	(INTEL_INFO(dev_priv)->has_llc)
2448 #define HAS_SNOOP(dev_priv)	(INTEL_INFO(dev_priv)->has_snoop)
2449 #define HAS_EDRAM(dev_priv)	(!!((dev_priv)->edram_cap & EDRAM_ENABLED))
2450 #define HAS_WT(dev_priv)	((IS_HASWELL(dev_priv) || \
2451 				 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
2452 
2453 #define HWS_NEEDS_PHYSICAL(dev_priv)	(INTEL_INFO(dev_priv)->hws_needs_physical)
2454 
2455 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
2456 		(INTEL_INFO(dev_priv)->has_logical_ring_contexts)
2457 #define HAS_LOGICAL_RING_ELSQ(dev_priv) \
2458 		(INTEL_INFO(dev_priv)->has_logical_ring_elsq)
2459 #define HAS_LOGICAL_RING_PREEMPTION(dev_priv) \
2460 		(INTEL_INFO(dev_priv)->has_logical_ring_preemption)
2461 
2462 #define HAS_EXECLISTS(dev_priv) HAS_LOGICAL_RING_CONTEXTS(dev_priv)
2463 
2464 #define INTEL_PPGTT(dev_priv) (INTEL_INFO(dev_priv)->ppgtt)
2465 #define HAS_PPGTT(dev_priv) \
2466 	(INTEL_PPGTT(dev_priv) != INTEL_PPGTT_NONE)
2467 #define HAS_FULL_PPGTT(dev_priv) \
2468 	(INTEL_PPGTT(dev_priv) >= INTEL_PPGTT_FULL)
2469 #define HAS_FULL_48BIT_PPGTT(dev_priv)	\
2470 	(INTEL_PPGTT(dev_priv) >= INTEL_PPGTT_FULL_4LVL)
2471 
2472 #define HAS_PAGE_SIZES(dev_priv, sizes) ({ \
2473 	GEM_BUG_ON((sizes) == 0); \
2474 	((sizes) & ~INTEL_INFO(dev_priv)->page_sizes) == 0; \
2475 })
2476 
2477 #define HAS_OVERLAY(dev_priv)		 (INTEL_INFO(dev_priv)->display.has_overlay)
2478 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
2479 		(INTEL_INFO(dev_priv)->display.overlay_needs_physical)
2480 
2481 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2482 #define HAS_BROKEN_CS_TLB(dev_priv)	(IS_I830(dev_priv) || IS_I845G(dev_priv))
2483 
2484 /* WaRsDisableCoarsePowerGating:skl,cnl */
2485 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2486 	(IS_CANNONLAKE(dev_priv) || \
2487 	 IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
2488 
2489 #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4)
2490 #define HAS_GMBUS_BURST_READ(dev_priv) (INTEL_GEN(dev_priv) >= 10 || \
2491 					IS_GEMINILAKE(dev_priv) || \
2492 					IS_KABYLAKE(dev_priv))
2493 
2494 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2495  * rows, which changed the alignment requirements and fence programming.
2496  */
2497 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN(dev_priv, 2) && \
2498 					 !(IS_I915G(dev_priv) || \
2499 					 IS_I915GM(dev_priv)))
2500 #define SUPPORTS_TV(dev_priv)		(INTEL_INFO(dev_priv)->display.supports_tv)
2501 #define I915_HAS_HOTPLUG(dev_priv)	(INTEL_INFO(dev_priv)->display.has_hotplug)
2502 
2503 #define HAS_FW_BLC(dev_priv) 	(INTEL_GEN(dev_priv) > 2)
2504 #define HAS_FBC(dev_priv)	(INTEL_INFO(dev_priv)->display.has_fbc)
2505 #define HAS_CUR_FBC(dev_priv)	(!HAS_GMCH(dev_priv) && INTEL_GEN(dev_priv) >= 7)
2506 
2507 #define HAS_IPS(dev_priv)	(IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
2508 
2509 #define HAS_DP_MST(dev_priv)	(INTEL_INFO(dev_priv)->display.has_dp_mst)
2510 
2511 #define HAS_DDI(dev_priv)		 (INTEL_INFO(dev_priv)->display.has_ddi)
2512 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) (INTEL_INFO(dev_priv)->has_fpga_dbg)
2513 #define HAS_PSR(dev_priv)		 (INTEL_INFO(dev_priv)->display.has_psr)
2514 
2515 #define HAS_RC6(dev_priv)		 (INTEL_INFO(dev_priv)->has_rc6)
2516 #define HAS_RC6p(dev_priv)		 (INTEL_INFO(dev_priv)->has_rc6p)
2517 #define HAS_RC6pp(dev_priv)		 (false) /* HW was never validated */
2518 
2519 #define HAS_CSR(dev_priv)	(INTEL_INFO(dev_priv)->display.has_csr)
2520 
2521 #define HAS_RUNTIME_PM(dev_priv) (INTEL_INFO(dev_priv)->has_runtime_pm)
2522 #define HAS_64BIT_RELOC(dev_priv) (INTEL_INFO(dev_priv)->has_64bit_reloc)
2523 
2524 #define HAS_IPC(dev_priv)		 (INTEL_INFO(dev_priv)->display.has_ipc)
2525 
2526 /*
2527  * For now, anything with a GuC requires uCode loading, and then supports
2528  * command submission once loaded. But these are logically independent
2529  * properties, so we have separate macros to test them.
2530  */
2531 #define HAS_GUC(dev_priv)	(INTEL_INFO(dev_priv)->has_guc)
2532 #define HAS_GUC_CT(dev_priv)	(INTEL_INFO(dev_priv)->has_guc_ct)
2533 #define HAS_GUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
2534 #define HAS_GUC_SCHED(dev_priv)	(HAS_GUC(dev_priv))
2535 
2536 /* For now, anything with a GuC has also HuC */
2537 #define HAS_HUC(dev_priv)	(HAS_GUC(dev_priv))
2538 #define HAS_HUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
2539 
2540 /* Having a GuC is not the same as using a GuC */
2541 #define USES_GUC(dev_priv)		intel_uc_is_using_guc(dev_priv)
2542 #define USES_GUC_SUBMISSION(dev_priv)	intel_uc_is_using_guc_submission(dev_priv)
2543 #define USES_HUC(dev_priv)		intel_uc_is_using_huc(dev_priv)
2544 
2545 #define HAS_POOLED_EU(dev_priv)	(INTEL_INFO(dev_priv)->has_pooled_eu)
2546 
2547 #define INTEL_PCH_DEVICE_ID_MASK		0xff80
2548 #define INTEL_PCH_IBX_DEVICE_ID_TYPE		0x3b00
2549 #define INTEL_PCH_CPT_DEVICE_ID_TYPE		0x1c00
2550 #define INTEL_PCH_PPT_DEVICE_ID_TYPE		0x1e00
2551 #define INTEL_PCH_LPT_DEVICE_ID_TYPE		0x8c00
2552 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE		0x9c00
2553 #define INTEL_PCH_WPT_DEVICE_ID_TYPE		0x8c80
2554 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE		0x9c80
2555 #define INTEL_PCH_SPT_DEVICE_ID_TYPE		0xA100
2556 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE		0x9D00
2557 #define INTEL_PCH_KBP_DEVICE_ID_TYPE		0xA280
2558 #define INTEL_PCH_CNP_DEVICE_ID_TYPE		0xA300
2559 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE		0x9D80
2560 #define INTEL_PCH_ICP_DEVICE_ID_TYPE		0x3480
2561 #define INTEL_PCH_P2X_DEVICE_ID_TYPE		0x7100
2562 #define INTEL_PCH_P3X_DEVICE_ID_TYPE		0x7000
2563 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE		0x2900 /* qemu q35 has 2918 */
2564 
2565 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
2566 #define INTEL_PCH_ID(dev_priv) ((dev_priv)->pch_id)
2567 #define HAS_PCH_ICP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_ICP)
2568 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
2569 #define HAS_PCH_CNP_LP(dev_priv) \
2570 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
2571 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
2572 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
2573 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
2574 #define HAS_PCH_LPT_LP(dev_priv) \
2575 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
2576 	 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
2577 #define HAS_PCH_LPT_H(dev_priv) \
2578 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
2579 	 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_DEVICE_ID_TYPE)
2580 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
2581 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
2582 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
2583 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
2584 
2585 #define HAS_GMCH(dev_priv) (INTEL_INFO(dev_priv)->display.has_gmch)
2586 
2587 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
2588 
2589 /* DPF == dynamic parity feature */
2590 #define HAS_L3_DPF(dev_priv) (INTEL_INFO(dev_priv)->has_l3_dpf)
2591 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
2592 				 2 : HAS_L3_DPF(dev_priv))
2593 
2594 #define GT_FREQUENCY_MULTIPLIER 50
2595 #define GEN9_FREQ_SCALER 3
2596 
2597 #define HAS_DISPLAY(dev_priv) (INTEL_INFO(dev_priv)->num_pipes > 0)
2598 
2599 #include "i915_trace.h"
2600 
2601 static inline bool intel_vtd_active(void)
2602 {
2603 #ifdef CONFIG_INTEL_IOMMU
2604 	if (intel_iommu_gfx_mapped)
2605 		return true;
2606 #endif
2607 	return false;
2608 }
2609 
2610 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
2611 {
2612 	return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
2613 }
2614 
2615 static inline bool
2616 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
2617 {
2618 	return IS_BROXTON(dev_priv) && intel_vtd_active();
2619 }
2620 
2621 /* i915_drv.c */
2622 void __printf(3, 4)
2623 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2624 	      const char *fmt, ...);
2625 
2626 #define i915_report_error(dev_priv, fmt, ...)				   \
2627 	__i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2628 
2629 #ifdef CONFIG_COMPAT
2630 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2631 			      unsigned long arg);
2632 #else
2633 #define i915_compat_ioctl NULL
2634 #endif
2635 extern const struct dev_pm_ops i915_pm_ops;
2636 
2637 extern int i915_driver_load(struct pci_dev *pdev,
2638 			    const struct pci_device_id *ent);
2639 extern void i915_driver_unload(struct drm_device *dev);
2640 
2641 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2642 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
2643 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2644 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2645 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2646 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2647 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2648 
2649 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
2650 int intel_engines_init(struct drm_i915_private *dev_priv);
2651 
2652 u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv);
2653 
2654 /* intel_hotplug.c */
2655 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
2656 			   u32 pin_mask, u32 long_mask);
2657 void intel_hpd_init(struct drm_i915_private *dev_priv);
2658 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2659 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2660 enum hpd_pin intel_hpd_pin_default(struct drm_i915_private *dev_priv,
2661 				   enum port port);
2662 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2663 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2664 
2665 /* i915_irq.c */
2666 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
2667 {
2668 	unsigned long delay;
2669 
2670 	if (unlikely(!i915_modparams.enable_hangcheck))
2671 		return;
2672 
2673 	/* Don't continually defer the hangcheck so that it is always run at
2674 	 * least once after work has been scheduled on any ring. Otherwise,
2675 	 * we will ignore a hung ring if a second ring is kept busy.
2676 	 */
2677 
2678 	delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
2679 	queue_delayed_work(system_long_wq,
2680 			   &dev_priv->gpu_error.hangcheck_work, delay);
2681 }
2682 
2683 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2684 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
2685 int intel_irq_install(struct drm_i915_private *dev_priv);
2686 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2687 
2688 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
2689 {
2690 	return dev_priv->gvt;
2691 }
2692 
2693 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
2694 {
2695 	return dev_priv->vgpu.active;
2696 }
2697 
2698 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
2699 			      enum pipe pipe);
2700 void
2701 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2702 		     u32 status_mask);
2703 
2704 void
2705 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2706 		      u32 status_mask);
2707 
2708 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
2709 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
2710 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
2711 				   u32 mask,
2712 				   u32 bits);
2713 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
2714 			    u32 interrupt_mask,
2715 			    u32 enabled_irq_mask);
2716 static inline void
2717 ilk_enable_display_irq(struct drm_i915_private *dev_priv, u32 bits)
2718 {
2719 	ilk_update_display_irq(dev_priv, bits, bits);
2720 }
2721 static inline void
2722 ilk_disable_display_irq(struct drm_i915_private *dev_priv, u32 bits)
2723 {
2724 	ilk_update_display_irq(dev_priv, bits, 0);
2725 }
2726 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
2727 			 enum pipe pipe,
2728 			 u32 interrupt_mask,
2729 			 u32 enabled_irq_mask);
2730 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
2731 				       enum pipe pipe, u32 bits)
2732 {
2733 	bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
2734 }
2735 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
2736 					enum pipe pipe, u32 bits)
2737 {
2738 	bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
2739 }
2740 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
2741 				  u32 interrupt_mask,
2742 				  u32 enabled_irq_mask);
2743 static inline void
2744 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, u32 bits)
2745 {
2746 	ibx_display_interrupt_update(dev_priv, bits, bits);
2747 }
2748 static inline void
2749 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, u32 bits)
2750 {
2751 	ibx_display_interrupt_update(dev_priv, bits, 0);
2752 }
2753 
2754 /* i915_gem.c */
2755 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
2756 			  struct drm_file *file_priv);
2757 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
2758 			 struct drm_file *file_priv);
2759 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
2760 			  struct drm_file *file_priv);
2761 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
2762 			struct drm_file *file_priv);
2763 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2764 			struct drm_file *file_priv);
2765 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
2766 			      struct drm_file *file_priv);
2767 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
2768 			     struct drm_file *file_priv);
2769 int i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2770 			      struct drm_file *file_priv);
2771 int i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2772 			       struct drm_file *file_priv);
2773 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2774 			struct drm_file *file_priv);
2775 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
2776 			       struct drm_file *file);
2777 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
2778 			       struct drm_file *file);
2779 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2780 			    struct drm_file *file_priv);
2781 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
2782 			   struct drm_file *file_priv);
2783 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
2784 			      struct drm_file *file_priv);
2785 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
2786 			      struct drm_file *file_priv);
2787 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
2788 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
2789 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
2790 			   struct drm_file *file);
2791 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
2792 				struct drm_file *file_priv);
2793 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
2794 			struct drm_file *file_priv);
2795 void i915_gem_sanitize(struct drm_i915_private *i915);
2796 int i915_gem_init_early(struct drm_i915_private *dev_priv);
2797 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv);
2798 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
2799 int i915_gem_freeze(struct drm_i915_private *dev_priv);
2800 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
2801 
2802 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
2803 void i915_gem_object_free(struct drm_i915_gem_object *obj);
2804 void i915_gem_object_init(struct drm_i915_gem_object *obj,
2805 			 const struct drm_i915_gem_object_ops *ops);
2806 struct drm_i915_gem_object *
2807 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
2808 struct drm_i915_gem_object *
2809 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
2810 				 const void *data, size_t size);
2811 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
2812 void i915_gem_free_object(struct drm_gem_object *obj);
2813 
2814 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
2815 {
2816 	if (!atomic_read(&i915->mm.free_count))
2817 		return;
2818 
2819 	/* A single pass should suffice to release all the freed objects (along
2820 	 * most call paths) , but be a little more paranoid in that freeing
2821 	 * the objects does take a little amount of time, during which the rcu
2822 	 * callbacks could have added new objects into the freed list, and
2823 	 * armed the work again.
2824 	 */
2825 	do {
2826 		rcu_barrier();
2827 	} while (flush_work(&i915->mm.free_work));
2828 }
2829 
2830 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
2831 {
2832 	/*
2833 	 * Similar to objects above (see i915_gem_drain_freed-objects), in
2834 	 * general we have workers that are armed by RCU and then rearm
2835 	 * themselves in their callbacks. To be paranoid, we need to
2836 	 * drain the workqueue a second time after waiting for the RCU
2837 	 * grace period so that we catch work queued via RCU from the first
2838 	 * pass. As neither drain_workqueue() nor flush_workqueue() report
2839 	 * a result, we make an assumption that we only don't require more
2840 	 * than 2 passes to catch all recursive RCU delayed work.
2841 	 *
2842 	 */
2843 	int pass = 2;
2844 	do {
2845 		rcu_barrier();
2846 		drain_workqueue(i915->wq);
2847 	} while (--pass);
2848 }
2849 
2850 struct i915_vma * __must_check
2851 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
2852 			 const struct i915_ggtt_view *view,
2853 			 u64 size,
2854 			 u64 alignment,
2855 			 u64 flags);
2856 
2857 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
2858 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
2859 
2860 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
2861 
2862 static inline int __sg_page_count(const struct scatterlist *sg)
2863 {
2864 	return sg->length >> PAGE_SHIFT;
2865 }
2866 
2867 struct scatterlist *
2868 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
2869 		       unsigned int n, unsigned int *offset);
2870 
2871 struct page *
2872 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
2873 			 unsigned int n);
2874 
2875 struct page *
2876 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
2877 			       unsigned int n);
2878 
2879 dma_addr_t
2880 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
2881 				unsigned long n);
2882 
2883 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2884 				 struct sg_table *pages,
2885 				 unsigned int sg_page_sizes);
2886 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
2887 
2888 static inline int __must_check
2889 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
2890 {
2891 	might_lock(&obj->mm.lock);
2892 
2893 	if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
2894 		return 0;
2895 
2896 	return __i915_gem_object_get_pages(obj);
2897 }
2898 
2899 static inline bool
2900 i915_gem_object_has_pages(struct drm_i915_gem_object *obj)
2901 {
2902 	return !IS_ERR_OR_NULL(READ_ONCE(obj->mm.pages));
2903 }
2904 
2905 static inline void
2906 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
2907 {
2908 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2909 
2910 	atomic_inc(&obj->mm.pages_pin_count);
2911 }
2912 
2913 static inline bool
2914 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
2915 {
2916 	return atomic_read(&obj->mm.pages_pin_count);
2917 }
2918 
2919 static inline void
2920 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
2921 {
2922 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2923 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
2924 
2925 	atomic_dec(&obj->mm.pages_pin_count);
2926 }
2927 
2928 static inline void
2929 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
2930 {
2931 	__i915_gem_object_unpin_pages(obj);
2932 }
2933 
2934 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock/struct_mutex */
2935 	I915_MM_NORMAL = 0,
2936 	I915_MM_SHRINKER /* called "recursively" from direct-reclaim-esque */
2937 };
2938 
2939 int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2940 				enum i915_mm_subclass subclass);
2941 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
2942 
2943 enum i915_map_type {
2944 	I915_MAP_WB = 0,
2945 	I915_MAP_WC,
2946 #define I915_MAP_OVERRIDE BIT(31)
2947 	I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
2948 	I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
2949 };
2950 
2951 static inline enum i915_map_type
2952 i915_coherent_map_type(struct drm_i915_private *i915)
2953 {
2954 	return HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC;
2955 }
2956 
2957 /**
2958  * i915_gem_object_pin_map - return a contiguous mapping of the entire object
2959  * @obj: the object to map into kernel address space
2960  * @type: the type of mapping, used to select pgprot_t
2961  *
2962  * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
2963  * pages and then returns a contiguous mapping of the backing storage into
2964  * the kernel address space. Based on the @type of mapping, the PTE will be
2965  * set to either WriteBack or WriteCombine (via pgprot_t).
2966  *
2967  * The caller is responsible for calling i915_gem_object_unpin_map() when the
2968  * mapping is no longer required.
2969  *
2970  * Returns the pointer through which to access the mapped object, or an
2971  * ERR_PTR() on error.
2972  */
2973 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2974 					   enum i915_map_type type);
2975 
2976 /**
2977  * i915_gem_object_unpin_map - releases an earlier mapping
2978  * @obj: the object to unmap
2979  *
2980  * After pinning the object and mapping its pages, once you are finished
2981  * with your access, call i915_gem_object_unpin_map() to release the pin
2982  * upon the mapping. Once the pin count reaches zero, that mapping may be
2983  * removed.
2984  */
2985 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
2986 {
2987 	i915_gem_object_unpin_pages(obj);
2988 }
2989 
2990 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
2991 				    unsigned int *needs_clflush);
2992 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
2993 				     unsigned int *needs_clflush);
2994 #define CLFLUSH_BEFORE	BIT(0)
2995 #define CLFLUSH_AFTER	BIT(1)
2996 #define CLFLUSH_FLAGS	(CLFLUSH_BEFORE | CLFLUSH_AFTER)
2997 
2998 static inline void
2999 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3000 {
3001 	i915_gem_object_unpin_pages(obj);
3002 }
3003 
3004 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3005 int i915_gem_dumb_create(struct drm_file *file_priv,
3006 			 struct drm_device *dev,
3007 			 struct drm_mode_create_dumb *args);
3008 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3009 		      u32 handle, u64 *offset);
3010 int i915_gem_mmap_gtt_version(void);
3011 
3012 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3013 		       struct drm_i915_gem_object *new,
3014 		       unsigned frontbuffer_bits);
3015 
3016 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3017 
3018 struct i915_request *
3019 i915_gem_find_active_request(struct intel_engine_cs *engine);
3020 
3021 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3022 {
3023 	return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3024 }
3025 
3026 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3027 {
3028 	return unlikely(test_bit(I915_WEDGED, &error->flags));
3029 }
3030 
3031 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3032 {
3033 	return i915_reset_backoff(error) | i915_terminally_wedged(error);
3034 }
3035 
3036 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3037 {
3038 	return READ_ONCE(error->reset_count);
3039 }
3040 
3041 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3042 					  struct intel_engine_cs *engine)
3043 {
3044 	return READ_ONCE(error->reset_engine_count[engine->id]);
3045 }
3046 
3047 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3048 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3049 
3050 void i915_gem_init_mmio(struct drm_i915_private *i915);
3051 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3052 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3053 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3054 void i915_gem_fini(struct drm_i915_private *dev_priv);
3055 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3056 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3057 			   unsigned int flags, long timeout);
3058 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3059 void i915_gem_suspend_late(struct drm_i915_private *dev_priv);
3060 void i915_gem_resume(struct drm_i915_private *dev_priv);
3061 vm_fault_t i915_gem_fault(struct vm_fault *vmf);
3062 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3063 			 unsigned int flags,
3064 			 long timeout,
3065 			 struct intel_rps_client *rps);
3066 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3067 				  unsigned int flags,
3068 				  const struct i915_sched_attr *attr);
3069 #define I915_PRIORITY_DISPLAY I915_USER_PRIORITY(I915_PRIORITY_MAX)
3070 
3071 int __must_check
3072 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3073 int __must_check
3074 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3075 int __must_check
3076 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3077 struct i915_vma * __must_check
3078 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3079 				     u32 alignment,
3080 				     const struct i915_ggtt_view *view,
3081 				     unsigned int flags);
3082 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3083 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3084 				int align);
3085 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3086 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3087 
3088 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3089 				    enum i915_cache_level cache_level);
3090 
3091 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3092 				struct dma_buf *dma_buf);
3093 
3094 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3095 				struct drm_gem_object *gem_obj, int flags);
3096 
3097 static inline struct i915_hw_ppgtt *
3098 i915_vm_to_ppgtt(struct i915_address_space *vm)
3099 {
3100 	return container_of(vm, struct i915_hw_ppgtt, vm);
3101 }
3102 
3103 /* i915_gem_fence_reg.c */
3104 struct drm_i915_fence_reg *
3105 i915_reserve_fence(struct drm_i915_private *dev_priv);
3106 void i915_unreserve_fence(struct drm_i915_fence_reg *fence);
3107 
3108 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3109 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3110 
3111 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3112 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3113 				       struct sg_table *pages);
3114 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3115 					 struct sg_table *pages);
3116 
3117 static inline struct i915_gem_context *
3118 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3119 {
3120 	return idr_find(&file_priv->context_idr, id);
3121 }
3122 
3123 static inline struct i915_gem_context *
3124 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3125 {
3126 	struct i915_gem_context *ctx;
3127 
3128 	rcu_read_lock();
3129 	ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3130 	if (ctx && !kref_get_unless_zero(&ctx->ref))
3131 		ctx = NULL;
3132 	rcu_read_unlock();
3133 
3134 	return ctx;
3135 }
3136 
3137 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3138 			 struct drm_file *file);
3139 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3140 			       struct drm_file *file);
3141 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3142 				  struct drm_file *file);
3143 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3144 			    struct i915_gem_context *ctx,
3145 			    u32 *reg_state);
3146 
3147 /* i915_gem_evict.c */
3148 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3149 					  u64 min_size, u64 alignment,
3150 					  unsigned cache_level,
3151 					  u64 start, u64 end,
3152 					  unsigned flags);
3153 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3154 					 struct drm_mm_node *node,
3155 					 unsigned int flags);
3156 int i915_gem_evict_vm(struct i915_address_space *vm);
3157 
3158 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv);
3159 
3160 /* belongs in i915_gem_gtt.h */
3161 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3162 {
3163 	wmb();
3164 	if (INTEL_GEN(dev_priv) < 6)
3165 		intel_gtt_chipset_flush();
3166 }
3167 
3168 /* i915_gem_stolen.c */
3169 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3170 				struct drm_mm_node *node, u64 size,
3171 				unsigned alignment);
3172 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3173 					 struct drm_mm_node *node, u64 size,
3174 					 unsigned alignment, u64 start,
3175 					 u64 end);
3176 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3177 				 struct drm_mm_node *node);
3178 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3179 void i915_gem_cleanup_stolen(struct drm_i915_private *dev_priv);
3180 struct drm_i915_gem_object *
3181 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv,
3182 			      resource_size_t size);
3183 struct drm_i915_gem_object *
3184 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3185 					       resource_size_t stolen_offset,
3186 					       resource_size_t gtt_offset,
3187 					       resource_size_t size);
3188 
3189 /* i915_gem_internal.c */
3190 struct drm_i915_gem_object *
3191 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3192 				phys_addr_t size);
3193 
3194 /* i915_gem_shrinker.c */
3195 unsigned long i915_gem_shrink(struct drm_i915_private *i915,
3196 			      unsigned long target,
3197 			      unsigned long *nr_scanned,
3198 			      unsigned flags);
3199 #define I915_SHRINK_PURGEABLE 0x1
3200 #define I915_SHRINK_UNBOUND 0x2
3201 #define I915_SHRINK_BOUND 0x4
3202 #define I915_SHRINK_ACTIVE 0x8
3203 #define I915_SHRINK_VMAPS 0x10
3204 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915);
3205 void i915_gem_shrinker_register(struct drm_i915_private *i915);
3206 void i915_gem_shrinker_unregister(struct drm_i915_private *i915);
3207 void i915_gem_shrinker_taints_mutex(struct drm_i915_private *i915,
3208 				    struct mutex *mutex);
3209 
3210 /* i915_gem_tiling.c */
3211 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3212 {
3213 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3214 
3215 	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3216 		i915_gem_object_is_tiled(obj);
3217 }
3218 
3219 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3220 			unsigned int tiling, unsigned int stride);
3221 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3222 			     unsigned int tiling, unsigned int stride);
3223 
3224 /* i915_debugfs.c */
3225 #ifdef CONFIG_DEBUG_FS
3226 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3227 int i915_debugfs_connector_add(struct drm_connector *connector);
3228 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3229 #else
3230 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3231 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3232 { return 0; }
3233 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3234 #endif
3235 
3236 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3237 
3238 /* i915_cmd_parser.c */
3239 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3240 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3241 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3242 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3243 			    struct drm_i915_gem_object *batch_obj,
3244 			    struct drm_i915_gem_object *shadow_batch_obj,
3245 			    u32 batch_start_offset,
3246 			    u32 batch_len,
3247 			    bool is_master);
3248 
3249 /* i915_perf.c */
3250 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3251 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3252 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3253 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3254 
3255 /* i915_suspend.c */
3256 extern int i915_save_state(struct drm_i915_private *dev_priv);
3257 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3258 
3259 /* i915_sysfs.c */
3260 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3261 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3262 
3263 /* intel_lpe_audio.c */
3264 int  intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3265 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3266 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3267 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3268 			    enum pipe pipe, enum port port,
3269 			    const void *eld, int ls_clock, bool dp_output);
3270 
3271 /* intel_i2c.c */
3272 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3273 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3274 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3275 				     unsigned int pin);
3276 extern int intel_gmbus_output_aksv(struct i2c_adapter *adapter);
3277 
3278 extern struct i2c_adapter *
3279 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3280 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3281 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3282 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3283 {
3284 	return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3285 }
3286 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3287 
3288 /* intel_bios.c */
3289 void intel_bios_init(struct drm_i915_private *dev_priv);
3290 void intel_bios_cleanup(struct drm_i915_private *dev_priv);
3291 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3292 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3293 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3294 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3295 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3296 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3297 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3298 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3299 				     enum port port);
3300 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3301 				enum port port);
3302 enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *dev_priv, enum port port);
3303 
3304 /* intel_acpi.c */
3305 #ifdef CONFIG_ACPI
3306 extern void intel_register_dsm_handler(void);
3307 extern void intel_unregister_dsm_handler(void);
3308 #else
3309 static inline void intel_register_dsm_handler(void) { return; }
3310 static inline void intel_unregister_dsm_handler(void) { return; }
3311 #endif /* CONFIG_ACPI */
3312 
3313 /* intel_device_info.c */
3314 static inline struct intel_device_info *
3315 mkwrite_device_info(struct drm_i915_private *dev_priv)
3316 {
3317 	return (struct intel_device_info *)INTEL_INFO(dev_priv);
3318 }
3319 
3320 static inline struct intel_sseu
3321 intel_device_default_sseu(struct drm_i915_private *i915)
3322 {
3323 	const struct sseu_dev_info *sseu = &RUNTIME_INFO(i915)->sseu;
3324 	struct intel_sseu value = {
3325 		.slice_mask = sseu->slice_mask,
3326 		.subslice_mask = sseu->subslice_mask[0],
3327 		.min_eus_per_subslice = sseu->max_eus_per_subslice,
3328 		.max_eus_per_subslice = sseu->max_eus_per_subslice,
3329 	};
3330 
3331 	return value;
3332 }
3333 
3334 /* modesetting */
3335 extern void intel_modeset_init_hw(struct drm_device *dev);
3336 extern int intel_modeset_init(struct drm_device *dev);
3337 extern void intel_modeset_cleanup(struct drm_device *dev);
3338 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3339 				       bool state);
3340 extern void intel_display_resume(struct drm_device *dev);
3341 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3342 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3343 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3344 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3345 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3346 extern void intel_rps_mark_interactive(struct drm_i915_private *i915,
3347 				       bool interactive);
3348 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3349 				  bool enable);
3350 void intel_dsc_enable(struct intel_encoder *encoder,
3351 		      const struct intel_crtc_state *crtc_state);
3352 void intel_dsc_disable(const struct intel_crtc_state *crtc_state);
3353 
3354 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3355 			struct drm_file *file);
3356 
3357 /* overlay */
3358 extern struct intel_overlay_error_state *
3359 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3360 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3361 					    struct intel_overlay_error_state *error);
3362 
3363 extern struct intel_display_error_state *
3364 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3365 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3366 					    struct intel_display_error_state *error);
3367 
3368 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3369 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv, u32 mbox,
3370 				    u32 val, int fast_timeout_us,
3371 				    int slow_timeout_ms);
3372 #define sandybridge_pcode_write(dev_priv, mbox, val)	\
3373 	sandybridge_pcode_write_timeout(dev_priv, mbox, val, 500, 0)
3374 
3375 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
3376 		      u32 reply_mask, u32 reply, int timeout_base_ms);
3377 
3378 /* intel_sideband.c */
3379 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3380 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3381 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3382 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3383 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3384 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3385 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3386 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3387 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3388 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3389 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3390 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3391 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3392 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3393 		   enum intel_sbi_destination destination);
3394 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3395 		     enum intel_sbi_destination destination);
3396 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3397 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3398 
3399 /* intel_dpio_phy.c */
3400 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
3401 			     enum dpio_phy *phy, enum dpio_channel *ch);
3402 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
3403 				  enum port port, u32 margin, u32 scale,
3404 				  u32 enable, u32 deemphasis);
3405 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3406 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3407 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
3408 			    enum dpio_phy phy);
3409 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
3410 			      enum dpio_phy phy);
3411 u8 bxt_ddi_phy_calc_lane_lat_optim_mask(u8 lane_count);
3412 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
3413 				     u8 lane_lat_optim_mask);
3414 u8 bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
3415 
3416 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3417 			      u32 deemph_reg_value, u32 margin_reg_value,
3418 			      bool uniq_trans_scale);
3419 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3420 			      const struct intel_crtc_state *crtc_state,
3421 			      bool reset);
3422 void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
3423 			    const struct intel_crtc_state *crtc_state);
3424 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3425 				const struct intel_crtc_state *crtc_state);
3426 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3427 void chv_phy_post_pll_disable(struct intel_encoder *encoder,
3428 			      const struct intel_crtc_state *old_crtc_state);
3429 
3430 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3431 			      u32 demph_reg_value, u32 preemph_reg_value,
3432 			      u32 uniqtranscale_reg_value, u32 tx3_demph);
3433 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
3434 			    const struct intel_crtc_state *crtc_state);
3435 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3436 				const struct intel_crtc_state *crtc_state);
3437 void vlv_phy_reset_lanes(struct intel_encoder *encoder,
3438 			 const struct intel_crtc_state *old_crtc_state);
3439 
3440 /* intel_combo_phy.c */
3441 void icl_combo_phys_init(struct drm_i915_private *dev_priv);
3442 void icl_combo_phys_uninit(struct drm_i915_private *dev_priv);
3443 void cnl_combo_phys_init(struct drm_i915_private *dev_priv);
3444 void cnl_combo_phys_uninit(struct drm_i915_private *dev_priv);
3445 
3446 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3447 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3448 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
3449 			   const i915_reg_t reg);
3450 
3451 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat1);
3452 
3453 static inline u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
3454 					 const i915_reg_t reg)
3455 {
3456 	return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(dev_priv, reg), 1000);
3457 }
3458 
3459 #define I915_READ8(reg)		dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3460 #define I915_WRITE8(reg, val)	dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3461 
3462 #define I915_READ16(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3463 #define I915_WRITE16(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3464 #define I915_READ16_NOTRACE(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3465 #define I915_WRITE16_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3466 
3467 #define I915_READ(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3468 #define I915_WRITE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3469 #define I915_READ_NOTRACE(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3470 #define I915_WRITE_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3471 
3472 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3473  * will be implemented using 2 32-bit writes in an arbitrary order with
3474  * an arbitrary delay between them. This can cause the hardware to
3475  * act upon the intermediate value, possibly leading to corruption and
3476  * machine death. For this reason we do not support I915_WRITE64, or
3477  * dev_priv->uncore.funcs.mmio_writeq.
3478  *
3479  * When reading a 64-bit value as two 32-bit values, the delay may cause
3480  * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
3481  * occasionally a 64-bit register does not actualy support a full readq
3482  * and must be read using two 32-bit reads.
3483  *
3484  * You have been warned.
3485  */
3486 #define I915_READ64(reg)	dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3487 
3488 #define I915_READ64_2x32(lower_reg, upper_reg) ({			\
3489 	u32 upper, lower, old_upper, loop = 0;				\
3490 	upper = I915_READ(upper_reg);					\
3491 	do {								\
3492 		old_upper = upper;					\
3493 		lower = I915_READ(lower_reg);				\
3494 		upper = I915_READ(upper_reg);				\
3495 	} while (upper != old_upper && loop++ < 2);			\
3496 	(u64)upper << 32 | lower; })
3497 
3498 #define POSTING_READ(reg)	(void)I915_READ_NOTRACE(reg)
3499 #define POSTING_READ16(reg)	(void)I915_READ16_NOTRACE(reg)
3500 
3501 #define __raw_read(x, s) \
3502 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
3503 					     i915_reg_t reg) \
3504 { \
3505 	return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3506 }
3507 
3508 #define __raw_write(x, s) \
3509 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
3510 				       i915_reg_t reg, uint##x##_t val) \
3511 { \
3512 	write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3513 }
3514 __raw_read(8, b)
3515 __raw_read(16, w)
3516 __raw_read(32, l)
3517 __raw_read(64, q)
3518 
3519 __raw_write(8, b)
3520 __raw_write(16, w)
3521 __raw_write(32, l)
3522 __raw_write(64, q)
3523 
3524 #undef __raw_read
3525 #undef __raw_write
3526 
3527 /* These are untraced mmio-accessors that are only valid to be used inside
3528  * critical sections, such as inside IRQ handlers, where forcewake is explicitly
3529  * controlled.
3530  *
3531  * Think twice, and think again, before using these.
3532  *
3533  * As an example, these accessors can possibly be used between:
3534  *
3535  * spin_lock_irq(&dev_priv->uncore.lock);
3536  * intel_uncore_forcewake_get__locked();
3537  *
3538  * and
3539  *
3540  * intel_uncore_forcewake_put__locked();
3541  * spin_unlock_irq(&dev_priv->uncore.lock);
3542  *
3543  *
3544  * Note: some registers may not need forcewake held, so
3545  * intel_uncore_forcewake_{get,put} can be omitted, see
3546  * intel_uncore_forcewake_for_reg().
3547  *
3548  * Certain architectures will die if the same cacheline is concurrently accessed
3549  * by different clients (e.g. on Ivybridge). Access to registers should
3550  * therefore generally be serialised, by either the dev_priv->uncore.lock or
3551  * a more localised lock guarding all access to that bank of registers.
3552  */
3553 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3554 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3555 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
3556 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3557 
3558 /* "Broadcast RGB" property */
3559 #define INTEL_BROADCAST_RGB_AUTO 0
3560 #define INTEL_BROADCAST_RGB_FULL 1
3561 #define INTEL_BROADCAST_RGB_LIMITED 2
3562 
3563 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
3564 {
3565 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3566 		return VLV_VGACNTRL;
3567 	else if (INTEL_GEN(dev_priv) >= 5)
3568 		return CPU_VGACNTRL;
3569 	else
3570 		return VGACNTRL;
3571 }
3572 
3573 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3574 {
3575 	unsigned long j = msecs_to_jiffies(m);
3576 
3577 	return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3578 }
3579 
3580 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3581 {
3582 	/* nsecs_to_jiffies64() does not guard against overflow */
3583 	if (NSEC_PER_SEC % HZ &&
3584 	    div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ)
3585 		return MAX_JIFFY_OFFSET;
3586 
3587         return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3588 }
3589 
3590 /*
3591  * If you need to wait X milliseconds between events A and B, but event B
3592  * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3593  * when event A happened, then just before event B you call this function and
3594  * pass the timestamp as the first argument, and X as the second argument.
3595  */
3596 static inline void
3597 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3598 {
3599 	unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3600 
3601 	/*
3602 	 * Don't re-read the value of "jiffies" every time since it may change
3603 	 * behind our back and break the math.
3604 	 */
3605 	tmp_jiffies = jiffies;
3606 	target_jiffies = timestamp_jiffies +
3607 			 msecs_to_jiffies_timeout(to_wait_ms);
3608 
3609 	if (time_after(target_jiffies, tmp_jiffies)) {
3610 		remaining_jiffies = target_jiffies - tmp_jiffies;
3611 		while (remaining_jiffies)
3612 			remaining_jiffies =
3613 			    schedule_timeout_uninterruptible(remaining_jiffies);
3614 	}
3615 }
3616 
3617 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
3618 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
3619 
3620 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
3621  * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
3622  * perform the operation. To check beforehand, pass in the parameters to
3623  * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
3624  * you only need to pass in the minor offsets, page-aligned pointers are
3625  * always valid.
3626  *
3627  * For just checking for SSE4.1, in the foreknowledge that the future use
3628  * will be correctly aligned, just use i915_has_memcpy_from_wc().
3629  */
3630 #define i915_can_memcpy_from_wc(dst, src, len) \
3631 	i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
3632 
3633 #define i915_has_memcpy_from_wc() \
3634 	i915_memcpy_from_wc(NULL, NULL, 0)
3635 
3636 /* i915_mm.c */
3637 int remap_io_mapping(struct vm_area_struct *vma,
3638 		     unsigned long addr, unsigned long pfn, unsigned long size,
3639 		     struct io_mapping *iomap);
3640 
3641 static inline int intel_hws_csb_write_index(struct drm_i915_private *i915)
3642 {
3643 	if (INTEL_GEN(i915) >= 10)
3644 		return CNL_HWS_CSB_WRITE_INDEX;
3645 	else
3646 		return I915_HWS_CSB_WRITE_INDEX;
3647 }
3648 
3649 static inline u32 i915_scratch_offset(const struct drm_i915_private *i915)
3650 {
3651 	return i915_ggtt_offset(i915->gt.scratch);
3652 }
3653 
3654 #endif
3655