xref: /linux/drivers/gpu/drm/i915/i915_debugfs.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28 
29 #include <linux/debugfs.h>
30 #include <linux/sort.h>
31 #include "intel_drv.h"
32 
33 static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
34 {
35 	return to_i915(node->minor->dev);
36 }
37 
38 static __always_inline void seq_print_param(struct seq_file *m,
39 					    const char *name,
40 					    const char *type,
41 					    const void *x)
42 {
43 	if (!__builtin_strcmp(type, "bool"))
44 		seq_printf(m, "i915.%s=%s\n", name, yesno(*(const bool *)x));
45 	else if (!__builtin_strcmp(type, "int"))
46 		seq_printf(m, "i915.%s=%d\n", name, *(const int *)x);
47 	else if (!__builtin_strcmp(type, "unsigned int"))
48 		seq_printf(m, "i915.%s=%u\n", name, *(const unsigned int *)x);
49 	else if (!__builtin_strcmp(type, "char *"))
50 		seq_printf(m, "i915.%s=%s\n", name, *(const char **)x);
51 	else
52 		BUILD_BUG();
53 }
54 
55 static int i915_capabilities(struct seq_file *m, void *data)
56 {
57 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
58 	const struct intel_device_info *info = INTEL_INFO(dev_priv);
59 
60 	seq_printf(m, "gen: %d\n", INTEL_GEN(dev_priv));
61 	seq_printf(m, "platform: %s\n", intel_platform_name(info->platform));
62 	seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev_priv));
63 
64 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
65 	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
66 #undef PRINT_FLAG
67 
68 	kernel_param_lock(THIS_MODULE);
69 #define PRINT_PARAM(T, x) seq_print_param(m, #x, #T, &i915.x);
70 	I915_PARAMS_FOR_EACH(PRINT_PARAM);
71 #undef PRINT_PARAM
72 	kernel_param_unlock(THIS_MODULE);
73 
74 	return 0;
75 }
76 
77 static char get_active_flag(struct drm_i915_gem_object *obj)
78 {
79 	return i915_gem_object_is_active(obj) ? '*' : ' ';
80 }
81 
82 static char get_pin_flag(struct drm_i915_gem_object *obj)
83 {
84 	return obj->pin_display ? 'p' : ' ';
85 }
86 
87 static char get_tiling_flag(struct drm_i915_gem_object *obj)
88 {
89 	switch (i915_gem_object_get_tiling(obj)) {
90 	default:
91 	case I915_TILING_NONE: return ' ';
92 	case I915_TILING_X: return 'X';
93 	case I915_TILING_Y: return 'Y';
94 	}
95 }
96 
97 static char get_global_flag(struct drm_i915_gem_object *obj)
98 {
99 	return !list_empty(&obj->userfault_link) ? 'g' : ' ';
100 }
101 
102 static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
103 {
104 	return obj->mm.mapping ? 'M' : ' ';
105 }
106 
107 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
108 {
109 	u64 size = 0;
110 	struct i915_vma *vma;
111 
112 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
113 		if (i915_vma_is_ggtt(vma) && drm_mm_node_allocated(&vma->node))
114 			size += vma->node.size;
115 	}
116 
117 	return size;
118 }
119 
120 static void
121 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
122 {
123 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
124 	struct intel_engine_cs *engine;
125 	struct i915_vma *vma;
126 	unsigned int frontbuffer_bits;
127 	int pin_count = 0;
128 
129 	lockdep_assert_held(&obj->base.dev->struct_mutex);
130 
131 	seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x %s%s%s",
132 		   &obj->base,
133 		   get_active_flag(obj),
134 		   get_pin_flag(obj),
135 		   get_tiling_flag(obj),
136 		   get_global_flag(obj),
137 		   get_pin_mapped_flag(obj),
138 		   obj->base.size / 1024,
139 		   obj->base.read_domains,
140 		   obj->base.write_domain,
141 		   i915_cache_level_str(dev_priv, obj->cache_level),
142 		   obj->mm.dirty ? " dirty" : "",
143 		   obj->mm.madv == I915_MADV_DONTNEED ? " purgeable" : "");
144 	if (obj->base.name)
145 		seq_printf(m, " (name: %d)", obj->base.name);
146 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
147 		if (i915_vma_is_pinned(vma))
148 			pin_count++;
149 	}
150 	seq_printf(m, " (pinned x %d)", pin_count);
151 	if (obj->pin_display)
152 		seq_printf(m, " (display)");
153 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
154 		if (!drm_mm_node_allocated(&vma->node))
155 			continue;
156 
157 		seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
158 			   i915_vma_is_ggtt(vma) ? "g" : "pp",
159 			   vma->node.start, vma->node.size);
160 		if (i915_vma_is_ggtt(vma)) {
161 			switch (vma->ggtt_view.type) {
162 			case I915_GGTT_VIEW_NORMAL:
163 				seq_puts(m, ", normal");
164 				break;
165 
166 			case I915_GGTT_VIEW_PARTIAL:
167 				seq_printf(m, ", partial [%08llx+%x]",
168 					   vma->ggtt_view.partial.offset << PAGE_SHIFT,
169 					   vma->ggtt_view.partial.size << PAGE_SHIFT);
170 				break;
171 
172 			case I915_GGTT_VIEW_ROTATED:
173 				seq_printf(m, ", rotated [(%ux%u, stride=%u, offset=%u), (%ux%u, stride=%u, offset=%u)]",
174 					   vma->ggtt_view.rotated.plane[0].width,
175 					   vma->ggtt_view.rotated.plane[0].height,
176 					   vma->ggtt_view.rotated.plane[0].stride,
177 					   vma->ggtt_view.rotated.plane[0].offset,
178 					   vma->ggtt_view.rotated.plane[1].width,
179 					   vma->ggtt_view.rotated.plane[1].height,
180 					   vma->ggtt_view.rotated.plane[1].stride,
181 					   vma->ggtt_view.rotated.plane[1].offset);
182 				break;
183 
184 			default:
185 				MISSING_CASE(vma->ggtt_view.type);
186 				break;
187 			}
188 		}
189 		if (vma->fence)
190 			seq_printf(m, " , fence: %d%s",
191 				   vma->fence->id,
192 				   i915_gem_active_isset(&vma->last_fence) ? "*" : "");
193 		seq_puts(m, ")");
194 	}
195 	if (obj->stolen)
196 		seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
197 
198 	engine = i915_gem_object_last_write_engine(obj);
199 	if (engine)
200 		seq_printf(m, " (%s)", engine->name);
201 
202 	frontbuffer_bits = atomic_read(&obj->frontbuffer_bits);
203 	if (frontbuffer_bits)
204 		seq_printf(m, " (frontbuffer: 0x%03x)", frontbuffer_bits);
205 }
206 
207 static int obj_rank_by_stolen(const void *A, const void *B)
208 {
209 	const struct drm_i915_gem_object *a =
210 		*(const struct drm_i915_gem_object **)A;
211 	const struct drm_i915_gem_object *b =
212 		*(const struct drm_i915_gem_object **)B;
213 
214 	if (a->stolen->start < b->stolen->start)
215 		return -1;
216 	if (a->stolen->start > b->stolen->start)
217 		return 1;
218 	return 0;
219 }
220 
221 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
222 {
223 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
224 	struct drm_device *dev = &dev_priv->drm;
225 	struct drm_i915_gem_object **objects;
226 	struct drm_i915_gem_object *obj;
227 	u64 total_obj_size, total_gtt_size;
228 	unsigned long total, count, n;
229 	int ret;
230 
231 	total = READ_ONCE(dev_priv->mm.object_count);
232 	objects = drm_malloc_ab(total, sizeof(*objects));
233 	if (!objects)
234 		return -ENOMEM;
235 
236 	ret = mutex_lock_interruptible(&dev->struct_mutex);
237 	if (ret)
238 		goto out;
239 
240 	total_obj_size = total_gtt_size = count = 0;
241 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
242 		if (count == total)
243 			break;
244 
245 		if (obj->stolen == NULL)
246 			continue;
247 
248 		objects[count++] = obj;
249 		total_obj_size += obj->base.size;
250 		total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
251 
252 	}
253 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_link) {
254 		if (count == total)
255 			break;
256 
257 		if (obj->stolen == NULL)
258 			continue;
259 
260 		objects[count++] = obj;
261 		total_obj_size += obj->base.size;
262 	}
263 
264 	sort(objects, count, sizeof(*objects), obj_rank_by_stolen, NULL);
265 
266 	seq_puts(m, "Stolen:\n");
267 	for (n = 0; n < count; n++) {
268 		seq_puts(m, "   ");
269 		describe_obj(m, objects[n]);
270 		seq_putc(m, '\n');
271 	}
272 	seq_printf(m, "Total %lu objects, %llu bytes, %llu GTT size\n",
273 		   count, total_obj_size, total_gtt_size);
274 
275 	mutex_unlock(&dev->struct_mutex);
276 out:
277 	drm_free_large(objects);
278 	return ret;
279 }
280 
281 struct file_stats {
282 	struct drm_i915_file_private *file_priv;
283 	unsigned long count;
284 	u64 total, unbound;
285 	u64 global, shared;
286 	u64 active, inactive;
287 };
288 
289 static int per_file_stats(int id, void *ptr, void *data)
290 {
291 	struct drm_i915_gem_object *obj = ptr;
292 	struct file_stats *stats = data;
293 	struct i915_vma *vma;
294 
295 	stats->count++;
296 	stats->total += obj->base.size;
297 	if (!obj->bind_count)
298 		stats->unbound += obj->base.size;
299 	if (obj->base.name || obj->base.dma_buf)
300 		stats->shared += obj->base.size;
301 
302 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
303 		if (!drm_mm_node_allocated(&vma->node))
304 			continue;
305 
306 		if (i915_vma_is_ggtt(vma)) {
307 			stats->global += vma->node.size;
308 		} else {
309 			struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
310 
311 			if (ppgtt->base.file != stats->file_priv)
312 				continue;
313 		}
314 
315 		if (i915_vma_is_active(vma))
316 			stats->active += vma->node.size;
317 		else
318 			stats->inactive += vma->node.size;
319 	}
320 
321 	return 0;
322 }
323 
324 #define print_file_stats(m, name, stats) do { \
325 	if (stats.count) \
326 		seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
327 			   name, \
328 			   stats.count, \
329 			   stats.total, \
330 			   stats.active, \
331 			   stats.inactive, \
332 			   stats.global, \
333 			   stats.shared, \
334 			   stats.unbound); \
335 } while (0)
336 
337 static void print_batch_pool_stats(struct seq_file *m,
338 				   struct drm_i915_private *dev_priv)
339 {
340 	struct drm_i915_gem_object *obj;
341 	struct file_stats stats;
342 	struct intel_engine_cs *engine;
343 	enum intel_engine_id id;
344 	int j;
345 
346 	memset(&stats, 0, sizeof(stats));
347 
348 	for_each_engine(engine, dev_priv, id) {
349 		for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
350 			list_for_each_entry(obj,
351 					    &engine->batch_pool.cache_list[j],
352 					    batch_pool_link)
353 				per_file_stats(0, obj, &stats);
354 		}
355 	}
356 
357 	print_file_stats(m, "[k]batch pool", stats);
358 }
359 
360 static int per_file_ctx_stats(int id, void *ptr, void *data)
361 {
362 	struct i915_gem_context *ctx = ptr;
363 	int n;
364 
365 	for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
366 		if (ctx->engine[n].state)
367 			per_file_stats(0, ctx->engine[n].state->obj, data);
368 		if (ctx->engine[n].ring)
369 			per_file_stats(0, ctx->engine[n].ring->vma->obj, data);
370 	}
371 
372 	return 0;
373 }
374 
375 static void print_context_stats(struct seq_file *m,
376 				struct drm_i915_private *dev_priv)
377 {
378 	struct drm_device *dev = &dev_priv->drm;
379 	struct file_stats stats;
380 	struct drm_file *file;
381 
382 	memset(&stats, 0, sizeof(stats));
383 
384 	mutex_lock(&dev->struct_mutex);
385 	if (dev_priv->kernel_context)
386 		per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
387 
388 	list_for_each_entry(file, &dev->filelist, lhead) {
389 		struct drm_i915_file_private *fpriv = file->driver_priv;
390 		idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
391 	}
392 	mutex_unlock(&dev->struct_mutex);
393 
394 	print_file_stats(m, "[k]contexts", stats);
395 }
396 
397 static int i915_gem_object_info(struct seq_file *m, void *data)
398 {
399 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
400 	struct drm_device *dev = &dev_priv->drm;
401 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
402 	u32 count, mapped_count, purgeable_count, dpy_count;
403 	u64 size, mapped_size, purgeable_size, dpy_size;
404 	struct drm_i915_gem_object *obj;
405 	struct drm_file *file;
406 	int ret;
407 
408 	ret = mutex_lock_interruptible(&dev->struct_mutex);
409 	if (ret)
410 		return ret;
411 
412 	seq_printf(m, "%u objects, %llu bytes\n",
413 		   dev_priv->mm.object_count,
414 		   dev_priv->mm.object_memory);
415 
416 	size = count = 0;
417 	mapped_size = mapped_count = 0;
418 	purgeable_size = purgeable_count = 0;
419 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_link) {
420 		size += obj->base.size;
421 		++count;
422 
423 		if (obj->mm.madv == I915_MADV_DONTNEED) {
424 			purgeable_size += obj->base.size;
425 			++purgeable_count;
426 		}
427 
428 		if (obj->mm.mapping) {
429 			mapped_count++;
430 			mapped_size += obj->base.size;
431 		}
432 	}
433 	seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
434 
435 	size = count = dpy_size = dpy_count = 0;
436 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
437 		size += obj->base.size;
438 		++count;
439 
440 		if (obj->pin_display) {
441 			dpy_size += obj->base.size;
442 			++dpy_count;
443 		}
444 
445 		if (obj->mm.madv == I915_MADV_DONTNEED) {
446 			purgeable_size += obj->base.size;
447 			++purgeable_count;
448 		}
449 
450 		if (obj->mm.mapping) {
451 			mapped_count++;
452 			mapped_size += obj->base.size;
453 		}
454 	}
455 	seq_printf(m, "%u bound objects, %llu bytes\n",
456 		   count, size);
457 	seq_printf(m, "%u purgeable objects, %llu bytes\n",
458 		   purgeable_count, purgeable_size);
459 	seq_printf(m, "%u mapped objects, %llu bytes\n",
460 		   mapped_count, mapped_size);
461 	seq_printf(m, "%u display objects (pinned), %llu bytes\n",
462 		   dpy_count, dpy_size);
463 
464 	seq_printf(m, "%llu [%llu] gtt total\n",
465 		   ggtt->base.total, ggtt->mappable_end);
466 
467 	seq_putc(m, '\n');
468 	print_batch_pool_stats(m, dev_priv);
469 	mutex_unlock(&dev->struct_mutex);
470 
471 	mutex_lock(&dev->filelist_mutex);
472 	print_context_stats(m, dev_priv);
473 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
474 		struct file_stats stats;
475 		struct drm_i915_file_private *file_priv = file->driver_priv;
476 		struct drm_i915_gem_request *request;
477 		struct task_struct *task;
478 
479 		memset(&stats, 0, sizeof(stats));
480 		stats.file_priv = file->driver_priv;
481 		spin_lock(&file->table_lock);
482 		idr_for_each(&file->object_idr, per_file_stats, &stats);
483 		spin_unlock(&file->table_lock);
484 		/*
485 		 * Although we have a valid reference on file->pid, that does
486 		 * not guarantee that the task_struct who called get_pid() is
487 		 * still alive (e.g. get_pid(current) => fork() => exit()).
488 		 * Therefore, we need to protect this ->comm access using RCU.
489 		 */
490 		mutex_lock(&dev->struct_mutex);
491 		request = list_first_entry_or_null(&file_priv->mm.request_list,
492 						   struct drm_i915_gem_request,
493 						   client_link);
494 		rcu_read_lock();
495 		task = pid_task(request && request->ctx->pid ?
496 				request->ctx->pid : file->pid,
497 				PIDTYPE_PID);
498 		print_file_stats(m, task ? task->comm : "<unknown>", stats);
499 		rcu_read_unlock();
500 		mutex_unlock(&dev->struct_mutex);
501 	}
502 	mutex_unlock(&dev->filelist_mutex);
503 
504 	return 0;
505 }
506 
507 static int i915_gem_gtt_info(struct seq_file *m, void *data)
508 {
509 	struct drm_info_node *node = m->private;
510 	struct drm_i915_private *dev_priv = node_to_i915(node);
511 	struct drm_device *dev = &dev_priv->drm;
512 	bool show_pin_display_only = !!node->info_ent->data;
513 	struct drm_i915_gem_object *obj;
514 	u64 total_obj_size, total_gtt_size;
515 	int count, ret;
516 
517 	ret = mutex_lock_interruptible(&dev->struct_mutex);
518 	if (ret)
519 		return ret;
520 
521 	total_obj_size = total_gtt_size = count = 0;
522 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
523 		if (show_pin_display_only && !obj->pin_display)
524 			continue;
525 
526 		seq_puts(m, "   ");
527 		describe_obj(m, obj);
528 		seq_putc(m, '\n');
529 		total_obj_size += obj->base.size;
530 		total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
531 		count++;
532 	}
533 
534 	mutex_unlock(&dev->struct_mutex);
535 
536 	seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
537 		   count, total_obj_size, total_gtt_size);
538 
539 	return 0;
540 }
541 
542 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
543 {
544 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
545 	struct drm_device *dev = &dev_priv->drm;
546 	struct intel_crtc *crtc;
547 	int ret;
548 
549 	ret = mutex_lock_interruptible(&dev->struct_mutex);
550 	if (ret)
551 		return ret;
552 
553 	for_each_intel_crtc(dev, crtc) {
554 		const char pipe = pipe_name(crtc->pipe);
555 		const char plane = plane_name(crtc->plane);
556 		struct intel_flip_work *work;
557 
558 		spin_lock_irq(&dev->event_lock);
559 		work = crtc->flip_work;
560 		if (work == NULL) {
561 			seq_printf(m, "No flip due on pipe %c (plane %c)\n",
562 				   pipe, plane);
563 		} else {
564 			u32 pending;
565 			u32 addr;
566 
567 			pending = atomic_read(&work->pending);
568 			if (pending) {
569 				seq_printf(m, "Flip ioctl preparing on pipe %c (plane %c)\n",
570 					   pipe, plane);
571 			} else {
572 				seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
573 					   pipe, plane);
574 			}
575 			if (work->flip_queued_req) {
576 				struct intel_engine_cs *engine = work->flip_queued_req->engine;
577 
578 				seq_printf(m, "Flip queued on %s at seqno %x, last submitted seqno %x [current breadcrumb %x], completed? %d\n",
579 					   engine->name,
580 					   work->flip_queued_req->global_seqno,
581 					   intel_engine_last_submit(engine),
582 					   intel_engine_get_seqno(engine),
583 					   i915_gem_request_completed(work->flip_queued_req));
584 			} else
585 				seq_printf(m, "Flip not associated with any ring\n");
586 			seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
587 				   work->flip_queued_vblank,
588 				   work->flip_ready_vblank,
589 				   intel_crtc_get_vblank_counter(crtc));
590 			seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
591 
592 			if (INTEL_GEN(dev_priv) >= 4)
593 				addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
594 			else
595 				addr = I915_READ(DSPADDR(crtc->plane));
596 			seq_printf(m, "Current scanout address 0x%08x\n", addr);
597 
598 			if (work->pending_flip_obj) {
599 				seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
600 				seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
601 			}
602 		}
603 		spin_unlock_irq(&dev->event_lock);
604 	}
605 
606 	mutex_unlock(&dev->struct_mutex);
607 
608 	return 0;
609 }
610 
611 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
612 {
613 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
614 	struct drm_device *dev = &dev_priv->drm;
615 	struct drm_i915_gem_object *obj;
616 	struct intel_engine_cs *engine;
617 	enum intel_engine_id id;
618 	int total = 0;
619 	int ret, j;
620 
621 	ret = mutex_lock_interruptible(&dev->struct_mutex);
622 	if (ret)
623 		return ret;
624 
625 	for_each_engine(engine, dev_priv, id) {
626 		for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
627 			int count;
628 
629 			count = 0;
630 			list_for_each_entry(obj,
631 					    &engine->batch_pool.cache_list[j],
632 					    batch_pool_link)
633 				count++;
634 			seq_printf(m, "%s cache[%d]: %d objects\n",
635 				   engine->name, j, count);
636 
637 			list_for_each_entry(obj,
638 					    &engine->batch_pool.cache_list[j],
639 					    batch_pool_link) {
640 				seq_puts(m, "   ");
641 				describe_obj(m, obj);
642 				seq_putc(m, '\n');
643 			}
644 
645 			total += count;
646 		}
647 	}
648 
649 	seq_printf(m, "total: %d\n", total);
650 
651 	mutex_unlock(&dev->struct_mutex);
652 
653 	return 0;
654 }
655 
656 static void print_request(struct seq_file *m,
657 			  struct drm_i915_gem_request *rq,
658 			  const char *prefix)
659 {
660 	seq_printf(m, "%s%x [%x:%x] prio=%d @ %dms: %s\n", prefix,
661 		   rq->global_seqno, rq->ctx->hw_id, rq->fence.seqno,
662 		   rq->priotree.priority,
663 		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
664 		   rq->timeline->common->name);
665 }
666 
667 static int i915_gem_request_info(struct seq_file *m, void *data)
668 {
669 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
670 	struct drm_device *dev = &dev_priv->drm;
671 	struct drm_i915_gem_request *req;
672 	struct intel_engine_cs *engine;
673 	enum intel_engine_id id;
674 	int ret, any;
675 
676 	ret = mutex_lock_interruptible(&dev->struct_mutex);
677 	if (ret)
678 		return ret;
679 
680 	any = 0;
681 	for_each_engine(engine, dev_priv, id) {
682 		int count;
683 
684 		count = 0;
685 		list_for_each_entry(req, &engine->timeline->requests, link)
686 			count++;
687 		if (count == 0)
688 			continue;
689 
690 		seq_printf(m, "%s requests: %d\n", engine->name, count);
691 		list_for_each_entry(req, &engine->timeline->requests, link)
692 			print_request(m, req, "    ");
693 
694 		any++;
695 	}
696 	mutex_unlock(&dev->struct_mutex);
697 
698 	if (any == 0)
699 		seq_puts(m, "No requests\n");
700 
701 	return 0;
702 }
703 
704 static void i915_ring_seqno_info(struct seq_file *m,
705 				 struct intel_engine_cs *engine)
706 {
707 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
708 	struct rb_node *rb;
709 
710 	seq_printf(m, "Current sequence (%s): %x\n",
711 		   engine->name, intel_engine_get_seqno(engine));
712 
713 	spin_lock_irq(&b->rb_lock);
714 	for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
715 		struct intel_wait *w = rb_entry(rb, typeof(*w), node);
716 
717 		seq_printf(m, "Waiting (%s): %s [%d] on %x\n",
718 			   engine->name, w->tsk->comm, w->tsk->pid, w->seqno);
719 	}
720 	spin_unlock_irq(&b->rb_lock);
721 }
722 
723 static int i915_gem_seqno_info(struct seq_file *m, void *data)
724 {
725 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
726 	struct intel_engine_cs *engine;
727 	enum intel_engine_id id;
728 
729 	for_each_engine(engine, dev_priv, id)
730 		i915_ring_seqno_info(m, engine);
731 
732 	return 0;
733 }
734 
735 
736 static int i915_interrupt_info(struct seq_file *m, void *data)
737 {
738 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
739 	struct intel_engine_cs *engine;
740 	enum intel_engine_id id;
741 	int i, pipe;
742 
743 	intel_runtime_pm_get(dev_priv);
744 
745 	if (IS_CHERRYVIEW(dev_priv)) {
746 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
747 			   I915_READ(GEN8_MASTER_IRQ));
748 
749 		seq_printf(m, "Display IER:\t%08x\n",
750 			   I915_READ(VLV_IER));
751 		seq_printf(m, "Display IIR:\t%08x\n",
752 			   I915_READ(VLV_IIR));
753 		seq_printf(m, "Display IIR_RW:\t%08x\n",
754 			   I915_READ(VLV_IIR_RW));
755 		seq_printf(m, "Display IMR:\t%08x\n",
756 			   I915_READ(VLV_IMR));
757 		for_each_pipe(dev_priv, pipe) {
758 			enum intel_display_power_domain power_domain;
759 
760 			power_domain = POWER_DOMAIN_PIPE(pipe);
761 			if (!intel_display_power_get_if_enabled(dev_priv,
762 								power_domain)) {
763 				seq_printf(m, "Pipe %c power disabled\n",
764 					   pipe_name(pipe));
765 				continue;
766 			}
767 
768 			seq_printf(m, "Pipe %c stat:\t%08x\n",
769 				   pipe_name(pipe),
770 				   I915_READ(PIPESTAT(pipe)));
771 
772 			intel_display_power_put(dev_priv, power_domain);
773 		}
774 
775 		intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
776 		seq_printf(m, "Port hotplug:\t%08x\n",
777 			   I915_READ(PORT_HOTPLUG_EN));
778 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
779 			   I915_READ(VLV_DPFLIPSTAT));
780 		seq_printf(m, "DPINVGTT:\t%08x\n",
781 			   I915_READ(DPINVGTT));
782 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
783 
784 		for (i = 0; i < 4; i++) {
785 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
786 				   i, I915_READ(GEN8_GT_IMR(i)));
787 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
788 				   i, I915_READ(GEN8_GT_IIR(i)));
789 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
790 				   i, I915_READ(GEN8_GT_IER(i)));
791 		}
792 
793 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
794 			   I915_READ(GEN8_PCU_IMR));
795 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
796 			   I915_READ(GEN8_PCU_IIR));
797 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
798 			   I915_READ(GEN8_PCU_IER));
799 	} else if (INTEL_GEN(dev_priv) >= 8) {
800 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
801 			   I915_READ(GEN8_MASTER_IRQ));
802 
803 		for (i = 0; i < 4; i++) {
804 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
805 				   i, I915_READ(GEN8_GT_IMR(i)));
806 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
807 				   i, I915_READ(GEN8_GT_IIR(i)));
808 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
809 				   i, I915_READ(GEN8_GT_IER(i)));
810 		}
811 
812 		for_each_pipe(dev_priv, pipe) {
813 			enum intel_display_power_domain power_domain;
814 
815 			power_domain = POWER_DOMAIN_PIPE(pipe);
816 			if (!intel_display_power_get_if_enabled(dev_priv,
817 								power_domain)) {
818 				seq_printf(m, "Pipe %c power disabled\n",
819 					   pipe_name(pipe));
820 				continue;
821 			}
822 			seq_printf(m, "Pipe %c IMR:\t%08x\n",
823 				   pipe_name(pipe),
824 				   I915_READ(GEN8_DE_PIPE_IMR(pipe)));
825 			seq_printf(m, "Pipe %c IIR:\t%08x\n",
826 				   pipe_name(pipe),
827 				   I915_READ(GEN8_DE_PIPE_IIR(pipe)));
828 			seq_printf(m, "Pipe %c IER:\t%08x\n",
829 				   pipe_name(pipe),
830 				   I915_READ(GEN8_DE_PIPE_IER(pipe)));
831 
832 			intel_display_power_put(dev_priv, power_domain);
833 		}
834 
835 		seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
836 			   I915_READ(GEN8_DE_PORT_IMR));
837 		seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
838 			   I915_READ(GEN8_DE_PORT_IIR));
839 		seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
840 			   I915_READ(GEN8_DE_PORT_IER));
841 
842 		seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
843 			   I915_READ(GEN8_DE_MISC_IMR));
844 		seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
845 			   I915_READ(GEN8_DE_MISC_IIR));
846 		seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
847 			   I915_READ(GEN8_DE_MISC_IER));
848 
849 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
850 			   I915_READ(GEN8_PCU_IMR));
851 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
852 			   I915_READ(GEN8_PCU_IIR));
853 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
854 			   I915_READ(GEN8_PCU_IER));
855 	} else if (IS_VALLEYVIEW(dev_priv)) {
856 		seq_printf(m, "Display IER:\t%08x\n",
857 			   I915_READ(VLV_IER));
858 		seq_printf(m, "Display IIR:\t%08x\n",
859 			   I915_READ(VLV_IIR));
860 		seq_printf(m, "Display IIR_RW:\t%08x\n",
861 			   I915_READ(VLV_IIR_RW));
862 		seq_printf(m, "Display IMR:\t%08x\n",
863 			   I915_READ(VLV_IMR));
864 		for_each_pipe(dev_priv, pipe) {
865 			enum intel_display_power_domain power_domain;
866 
867 			power_domain = POWER_DOMAIN_PIPE(pipe);
868 			if (!intel_display_power_get_if_enabled(dev_priv,
869 								power_domain)) {
870 				seq_printf(m, "Pipe %c power disabled\n",
871 					   pipe_name(pipe));
872 				continue;
873 			}
874 
875 			seq_printf(m, "Pipe %c stat:\t%08x\n",
876 				   pipe_name(pipe),
877 				   I915_READ(PIPESTAT(pipe)));
878 			intel_display_power_put(dev_priv, power_domain);
879 		}
880 
881 		seq_printf(m, "Master IER:\t%08x\n",
882 			   I915_READ(VLV_MASTER_IER));
883 
884 		seq_printf(m, "Render IER:\t%08x\n",
885 			   I915_READ(GTIER));
886 		seq_printf(m, "Render IIR:\t%08x\n",
887 			   I915_READ(GTIIR));
888 		seq_printf(m, "Render IMR:\t%08x\n",
889 			   I915_READ(GTIMR));
890 
891 		seq_printf(m, "PM IER:\t\t%08x\n",
892 			   I915_READ(GEN6_PMIER));
893 		seq_printf(m, "PM IIR:\t\t%08x\n",
894 			   I915_READ(GEN6_PMIIR));
895 		seq_printf(m, "PM IMR:\t\t%08x\n",
896 			   I915_READ(GEN6_PMIMR));
897 
898 		seq_printf(m, "Port hotplug:\t%08x\n",
899 			   I915_READ(PORT_HOTPLUG_EN));
900 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
901 			   I915_READ(VLV_DPFLIPSTAT));
902 		seq_printf(m, "DPINVGTT:\t%08x\n",
903 			   I915_READ(DPINVGTT));
904 
905 	} else if (!HAS_PCH_SPLIT(dev_priv)) {
906 		seq_printf(m, "Interrupt enable:    %08x\n",
907 			   I915_READ(IER));
908 		seq_printf(m, "Interrupt identity:  %08x\n",
909 			   I915_READ(IIR));
910 		seq_printf(m, "Interrupt mask:      %08x\n",
911 			   I915_READ(IMR));
912 		for_each_pipe(dev_priv, pipe)
913 			seq_printf(m, "Pipe %c stat:         %08x\n",
914 				   pipe_name(pipe),
915 				   I915_READ(PIPESTAT(pipe)));
916 	} else {
917 		seq_printf(m, "North Display Interrupt enable:		%08x\n",
918 			   I915_READ(DEIER));
919 		seq_printf(m, "North Display Interrupt identity:	%08x\n",
920 			   I915_READ(DEIIR));
921 		seq_printf(m, "North Display Interrupt mask:		%08x\n",
922 			   I915_READ(DEIMR));
923 		seq_printf(m, "South Display Interrupt enable:		%08x\n",
924 			   I915_READ(SDEIER));
925 		seq_printf(m, "South Display Interrupt identity:	%08x\n",
926 			   I915_READ(SDEIIR));
927 		seq_printf(m, "South Display Interrupt mask:		%08x\n",
928 			   I915_READ(SDEIMR));
929 		seq_printf(m, "Graphics Interrupt enable:		%08x\n",
930 			   I915_READ(GTIER));
931 		seq_printf(m, "Graphics Interrupt identity:		%08x\n",
932 			   I915_READ(GTIIR));
933 		seq_printf(m, "Graphics Interrupt mask:		%08x\n",
934 			   I915_READ(GTIMR));
935 	}
936 	for_each_engine(engine, dev_priv, id) {
937 		if (INTEL_GEN(dev_priv) >= 6) {
938 			seq_printf(m,
939 				   "Graphics Interrupt mask (%s):	%08x\n",
940 				   engine->name, I915_READ_IMR(engine));
941 		}
942 		i915_ring_seqno_info(m, engine);
943 	}
944 	intel_runtime_pm_put(dev_priv);
945 
946 	return 0;
947 }
948 
949 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
950 {
951 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
952 	struct drm_device *dev = &dev_priv->drm;
953 	int i, ret;
954 
955 	ret = mutex_lock_interruptible(&dev->struct_mutex);
956 	if (ret)
957 		return ret;
958 
959 	seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
960 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
961 		struct i915_vma *vma = dev_priv->fence_regs[i].vma;
962 
963 		seq_printf(m, "Fence %d, pin count = %d, object = ",
964 			   i, dev_priv->fence_regs[i].pin_count);
965 		if (!vma)
966 			seq_puts(m, "unused");
967 		else
968 			describe_obj(m, vma->obj);
969 		seq_putc(m, '\n');
970 	}
971 
972 	mutex_unlock(&dev->struct_mutex);
973 	return 0;
974 }
975 
976 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
977 static ssize_t gpu_state_read(struct file *file, char __user *ubuf,
978 			      size_t count, loff_t *pos)
979 {
980 	struct i915_gpu_state *error = file->private_data;
981 	struct drm_i915_error_state_buf str;
982 	ssize_t ret;
983 	loff_t tmp;
984 
985 	if (!error)
986 		return 0;
987 
988 	ret = i915_error_state_buf_init(&str, error->i915, count, *pos);
989 	if (ret)
990 		return ret;
991 
992 	ret = i915_error_state_to_str(&str, error);
993 	if (ret)
994 		goto out;
995 
996 	tmp = 0;
997 	ret = simple_read_from_buffer(ubuf, count, &tmp, str.buf, str.bytes);
998 	if (ret < 0)
999 		goto out;
1000 
1001 	*pos = str.start + ret;
1002 out:
1003 	i915_error_state_buf_release(&str);
1004 	return ret;
1005 }
1006 
1007 static int gpu_state_release(struct inode *inode, struct file *file)
1008 {
1009 	i915_gpu_state_put(file->private_data);
1010 	return 0;
1011 }
1012 
1013 static int i915_gpu_info_open(struct inode *inode, struct file *file)
1014 {
1015 	struct drm_i915_private *i915 = inode->i_private;
1016 	struct i915_gpu_state *gpu;
1017 
1018 	intel_runtime_pm_get(i915);
1019 	gpu = i915_capture_gpu_state(i915);
1020 	intel_runtime_pm_put(i915);
1021 	if (!gpu)
1022 		return -ENOMEM;
1023 
1024 	file->private_data = gpu;
1025 	return 0;
1026 }
1027 
1028 static const struct file_operations i915_gpu_info_fops = {
1029 	.owner = THIS_MODULE,
1030 	.open = i915_gpu_info_open,
1031 	.read = gpu_state_read,
1032 	.llseek = default_llseek,
1033 	.release = gpu_state_release,
1034 };
1035 
1036 static ssize_t
1037 i915_error_state_write(struct file *filp,
1038 		       const char __user *ubuf,
1039 		       size_t cnt,
1040 		       loff_t *ppos)
1041 {
1042 	struct i915_gpu_state *error = filp->private_data;
1043 
1044 	if (!error)
1045 		return 0;
1046 
1047 	DRM_DEBUG_DRIVER("Resetting error state\n");
1048 	i915_reset_error_state(error->i915);
1049 
1050 	return cnt;
1051 }
1052 
1053 static int i915_error_state_open(struct inode *inode, struct file *file)
1054 {
1055 	file->private_data = i915_first_error_state(inode->i_private);
1056 	return 0;
1057 }
1058 
1059 static const struct file_operations i915_error_state_fops = {
1060 	.owner = THIS_MODULE,
1061 	.open = i915_error_state_open,
1062 	.read = gpu_state_read,
1063 	.write = i915_error_state_write,
1064 	.llseek = default_llseek,
1065 	.release = gpu_state_release,
1066 };
1067 #endif
1068 
1069 static int
1070 i915_next_seqno_set(void *data, u64 val)
1071 {
1072 	struct drm_i915_private *dev_priv = data;
1073 	struct drm_device *dev = &dev_priv->drm;
1074 	int ret;
1075 
1076 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1077 	if (ret)
1078 		return ret;
1079 
1080 	ret = i915_gem_set_global_seqno(dev, val);
1081 	mutex_unlock(&dev->struct_mutex);
1082 
1083 	return ret;
1084 }
1085 
1086 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1087 			NULL, i915_next_seqno_set,
1088 			"0x%llx\n");
1089 
1090 static int i915_frequency_info(struct seq_file *m, void *unused)
1091 {
1092 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1093 	int ret = 0;
1094 
1095 	intel_runtime_pm_get(dev_priv);
1096 
1097 	if (IS_GEN5(dev_priv)) {
1098 		u16 rgvswctl = I915_READ16(MEMSWCTL);
1099 		u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1100 
1101 		seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1102 		seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1103 		seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1104 			   MEMSTAT_VID_SHIFT);
1105 		seq_printf(m, "Current P-state: %d\n",
1106 			   (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1107 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1108 		u32 freq_sts;
1109 
1110 		mutex_lock(&dev_priv->rps.hw_lock);
1111 		freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1112 		seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1113 		seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1114 
1115 		seq_printf(m, "actual GPU freq: %d MHz\n",
1116 			   intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1117 
1118 		seq_printf(m, "current GPU freq: %d MHz\n",
1119 			   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1120 
1121 		seq_printf(m, "max GPU freq: %d MHz\n",
1122 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1123 
1124 		seq_printf(m, "min GPU freq: %d MHz\n",
1125 			   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1126 
1127 		seq_printf(m, "idle GPU freq: %d MHz\n",
1128 			   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1129 
1130 		seq_printf(m,
1131 			   "efficient (RPe) frequency: %d MHz\n",
1132 			   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1133 		mutex_unlock(&dev_priv->rps.hw_lock);
1134 	} else if (INTEL_GEN(dev_priv) >= 6) {
1135 		u32 rp_state_limits;
1136 		u32 gt_perf_status;
1137 		u32 rp_state_cap;
1138 		u32 rpmodectl, rpinclimit, rpdeclimit;
1139 		u32 rpstat, cagf, reqf;
1140 		u32 rpupei, rpcurup, rpprevup;
1141 		u32 rpdownei, rpcurdown, rpprevdown;
1142 		u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1143 		int max_freq;
1144 
1145 		rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1146 		if (IS_GEN9_LP(dev_priv)) {
1147 			rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1148 			gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1149 		} else {
1150 			rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1151 			gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1152 		}
1153 
1154 		/* RPSTAT1 is in the GT power well */
1155 		intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1156 
1157 		reqf = I915_READ(GEN6_RPNSWREQ);
1158 		if (IS_GEN9(dev_priv))
1159 			reqf >>= 23;
1160 		else {
1161 			reqf &= ~GEN6_TURBO_DISABLE;
1162 			if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1163 				reqf >>= 24;
1164 			else
1165 				reqf >>= 25;
1166 		}
1167 		reqf = intel_gpu_freq(dev_priv, reqf);
1168 
1169 		rpmodectl = I915_READ(GEN6_RP_CONTROL);
1170 		rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1171 		rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1172 
1173 		rpstat = I915_READ(GEN6_RPSTAT1);
1174 		rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
1175 		rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
1176 		rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
1177 		rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
1178 		rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
1179 		rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
1180 		if (IS_GEN9(dev_priv))
1181 			cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1182 		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1183 			cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1184 		else
1185 			cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1186 		cagf = intel_gpu_freq(dev_priv, cagf);
1187 
1188 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1189 
1190 		if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
1191 			pm_ier = I915_READ(GEN6_PMIER);
1192 			pm_imr = I915_READ(GEN6_PMIMR);
1193 			pm_isr = I915_READ(GEN6_PMISR);
1194 			pm_iir = I915_READ(GEN6_PMIIR);
1195 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1196 		} else {
1197 			pm_ier = I915_READ(GEN8_GT_IER(2));
1198 			pm_imr = I915_READ(GEN8_GT_IMR(2));
1199 			pm_isr = I915_READ(GEN8_GT_ISR(2));
1200 			pm_iir = I915_READ(GEN8_GT_IIR(2));
1201 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1202 		}
1203 		seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1204 			   pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1205 		seq_printf(m, "pm_intrmsk_mbz: 0x%08x\n",
1206 			   dev_priv->rps.pm_intrmsk_mbz);
1207 		seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1208 		seq_printf(m, "Render p-state ratio: %d\n",
1209 			   (gt_perf_status & (IS_GEN9(dev_priv) ? 0x1ff00 : 0xff00)) >> 8);
1210 		seq_printf(m, "Render p-state VID: %d\n",
1211 			   gt_perf_status & 0xff);
1212 		seq_printf(m, "Render p-state limit: %d\n",
1213 			   rp_state_limits & 0xff);
1214 		seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1215 		seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1216 		seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1217 		seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1218 		seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1219 		seq_printf(m, "CAGF: %dMHz\n", cagf);
1220 		seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
1221 			   rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
1222 		seq_printf(m, "RP CUR UP: %d (%dus)\n",
1223 			   rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
1224 		seq_printf(m, "RP PREV UP: %d (%dus)\n",
1225 			   rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
1226 		seq_printf(m, "Up threshold: %d%%\n",
1227 			   dev_priv->rps.up_threshold);
1228 
1229 		seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
1230 			   rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
1231 		seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
1232 			   rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
1233 		seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
1234 			   rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
1235 		seq_printf(m, "Down threshold: %d%%\n",
1236 			   dev_priv->rps.down_threshold);
1237 
1238 		max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 0 :
1239 			    rp_state_cap >> 16) & 0xff;
1240 		max_freq *= (IS_GEN9_BC(dev_priv) ? GEN9_FREQ_SCALER : 1);
1241 		seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1242 			   intel_gpu_freq(dev_priv, max_freq));
1243 
1244 		max_freq = (rp_state_cap & 0xff00) >> 8;
1245 		max_freq *= (IS_GEN9_BC(dev_priv) ? GEN9_FREQ_SCALER : 1);
1246 		seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1247 			   intel_gpu_freq(dev_priv, max_freq));
1248 
1249 		max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 16 :
1250 			    rp_state_cap >> 0) & 0xff;
1251 		max_freq *= (IS_GEN9_BC(dev_priv) ? GEN9_FREQ_SCALER : 1);
1252 		seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1253 			   intel_gpu_freq(dev_priv, max_freq));
1254 		seq_printf(m, "Max overclocked frequency: %dMHz\n",
1255 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1256 
1257 		seq_printf(m, "Current freq: %d MHz\n",
1258 			   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1259 		seq_printf(m, "Actual freq: %d MHz\n", cagf);
1260 		seq_printf(m, "Idle freq: %d MHz\n",
1261 			   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1262 		seq_printf(m, "Min freq: %d MHz\n",
1263 			   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1264 		seq_printf(m, "Boost freq: %d MHz\n",
1265 			   intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
1266 		seq_printf(m, "Max freq: %d MHz\n",
1267 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1268 		seq_printf(m,
1269 			   "efficient (RPe) frequency: %d MHz\n",
1270 			   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1271 	} else {
1272 		seq_puts(m, "no P-state info available\n");
1273 	}
1274 
1275 	seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk.hw.cdclk);
1276 	seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1277 	seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1278 
1279 	intel_runtime_pm_put(dev_priv);
1280 	return ret;
1281 }
1282 
1283 static void i915_instdone_info(struct drm_i915_private *dev_priv,
1284 			       struct seq_file *m,
1285 			       struct intel_instdone *instdone)
1286 {
1287 	int slice;
1288 	int subslice;
1289 
1290 	seq_printf(m, "\t\tINSTDONE: 0x%08x\n",
1291 		   instdone->instdone);
1292 
1293 	if (INTEL_GEN(dev_priv) <= 3)
1294 		return;
1295 
1296 	seq_printf(m, "\t\tSC_INSTDONE: 0x%08x\n",
1297 		   instdone->slice_common);
1298 
1299 	if (INTEL_GEN(dev_priv) <= 6)
1300 		return;
1301 
1302 	for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1303 		seq_printf(m, "\t\tSAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
1304 			   slice, subslice, instdone->sampler[slice][subslice]);
1305 
1306 	for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1307 		seq_printf(m, "\t\tROW_INSTDONE[%d][%d]: 0x%08x\n",
1308 			   slice, subslice, instdone->row[slice][subslice]);
1309 }
1310 
1311 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1312 {
1313 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1314 	struct intel_engine_cs *engine;
1315 	u64 acthd[I915_NUM_ENGINES];
1316 	u32 seqno[I915_NUM_ENGINES];
1317 	struct intel_instdone instdone;
1318 	enum intel_engine_id id;
1319 
1320 	if (test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
1321 		seq_puts(m, "Wedged\n");
1322 	if (test_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags))
1323 		seq_puts(m, "Reset in progress: struct_mutex backoff\n");
1324 	if (test_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags))
1325 		seq_puts(m, "Reset in progress: reset handoff to waiter\n");
1326 	if (waitqueue_active(&dev_priv->gpu_error.wait_queue))
1327 		seq_puts(m, "Waiter holding struct mutex\n");
1328 	if (waitqueue_active(&dev_priv->gpu_error.reset_queue))
1329 		seq_puts(m, "struct_mutex blocked for reset\n");
1330 
1331 	if (!i915.enable_hangcheck) {
1332 		seq_puts(m, "Hangcheck disabled\n");
1333 		return 0;
1334 	}
1335 
1336 	intel_runtime_pm_get(dev_priv);
1337 
1338 	for_each_engine(engine, dev_priv, id) {
1339 		acthd[id] = intel_engine_get_active_head(engine);
1340 		seqno[id] = intel_engine_get_seqno(engine);
1341 	}
1342 
1343 	intel_engine_get_instdone(dev_priv->engine[RCS], &instdone);
1344 
1345 	intel_runtime_pm_put(dev_priv);
1346 
1347 	if (timer_pending(&dev_priv->gpu_error.hangcheck_work.timer))
1348 		seq_printf(m, "Hangcheck active, timer fires in %dms\n",
1349 			   jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1350 					    jiffies));
1351 	else if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work))
1352 		seq_puts(m, "Hangcheck active, work pending\n");
1353 	else
1354 		seq_puts(m, "Hangcheck inactive\n");
1355 
1356 	seq_printf(m, "GT active? %s\n", yesno(dev_priv->gt.awake));
1357 
1358 	for_each_engine(engine, dev_priv, id) {
1359 		struct intel_breadcrumbs *b = &engine->breadcrumbs;
1360 		struct rb_node *rb;
1361 
1362 		seq_printf(m, "%s:\n", engine->name);
1363 		seq_printf(m, "\tseqno = %x [current %x, last %x], inflight %d\n",
1364 			   engine->hangcheck.seqno, seqno[id],
1365 			   intel_engine_last_submit(engine),
1366 			   engine->timeline->inflight_seqnos);
1367 		seq_printf(m, "\twaiters? %s, fake irq active? %s, stalled? %s\n",
1368 			   yesno(intel_engine_has_waiter(engine)),
1369 			   yesno(test_bit(engine->id,
1370 					  &dev_priv->gpu_error.missed_irq_rings)),
1371 			   yesno(engine->hangcheck.stalled));
1372 
1373 		spin_lock_irq(&b->rb_lock);
1374 		for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
1375 			struct intel_wait *w = rb_entry(rb, typeof(*w), node);
1376 
1377 			seq_printf(m, "\t%s [%d] waiting for %x\n",
1378 				   w->tsk->comm, w->tsk->pid, w->seqno);
1379 		}
1380 		spin_unlock_irq(&b->rb_lock);
1381 
1382 		seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1383 			   (long long)engine->hangcheck.acthd,
1384 			   (long long)acthd[id]);
1385 		seq_printf(m, "\taction = %s(%d) %d ms ago\n",
1386 			   hangcheck_action_to_str(engine->hangcheck.action),
1387 			   engine->hangcheck.action,
1388 			   jiffies_to_msecs(jiffies -
1389 					    engine->hangcheck.action_timestamp));
1390 
1391 		if (engine->id == RCS) {
1392 			seq_puts(m, "\tinstdone read =\n");
1393 
1394 			i915_instdone_info(dev_priv, m, &instdone);
1395 
1396 			seq_puts(m, "\tinstdone accu =\n");
1397 
1398 			i915_instdone_info(dev_priv, m,
1399 					   &engine->hangcheck.instdone);
1400 		}
1401 	}
1402 
1403 	return 0;
1404 }
1405 
1406 static int ironlake_drpc_info(struct seq_file *m)
1407 {
1408 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1409 	u32 rgvmodectl, rstdbyctl;
1410 	u16 crstandvid;
1411 
1412 	rgvmodectl = I915_READ(MEMMODECTL);
1413 	rstdbyctl = I915_READ(RSTDBYCTL);
1414 	crstandvid = I915_READ16(CRSTANDVID);
1415 
1416 	seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1417 	seq_printf(m, "Boost freq: %d\n",
1418 		   (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1419 		   MEMMODE_BOOST_FREQ_SHIFT);
1420 	seq_printf(m, "HW control enabled: %s\n",
1421 		   yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1422 	seq_printf(m, "SW control enabled: %s\n",
1423 		   yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1424 	seq_printf(m, "Gated voltage change: %s\n",
1425 		   yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1426 	seq_printf(m, "Starting frequency: P%d\n",
1427 		   (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1428 	seq_printf(m, "Max P-state: P%d\n",
1429 		   (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1430 	seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1431 	seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1432 	seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1433 	seq_printf(m, "Render standby enabled: %s\n",
1434 		   yesno(!(rstdbyctl & RCX_SW_EXIT)));
1435 	seq_puts(m, "Current RS state: ");
1436 	switch (rstdbyctl & RSX_STATUS_MASK) {
1437 	case RSX_STATUS_ON:
1438 		seq_puts(m, "on\n");
1439 		break;
1440 	case RSX_STATUS_RC1:
1441 		seq_puts(m, "RC1\n");
1442 		break;
1443 	case RSX_STATUS_RC1E:
1444 		seq_puts(m, "RC1E\n");
1445 		break;
1446 	case RSX_STATUS_RS1:
1447 		seq_puts(m, "RS1\n");
1448 		break;
1449 	case RSX_STATUS_RS2:
1450 		seq_puts(m, "RS2 (RC6)\n");
1451 		break;
1452 	case RSX_STATUS_RS3:
1453 		seq_puts(m, "RC3 (RC6+)\n");
1454 		break;
1455 	default:
1456 		seq_puts(m, "unknown\n");
1457 		break;
1458 	}
1459 
1460 	return 0;
1461 }
1462 
1463 static int i915_forcewake_domains(struct seq_file *m, void *data)
1464 {
1465 	struct drm_i915_private *i915 = node_to_i915(m->private);
1466 	struct intel_uncore_forcewake_domain *fw_domain;
1467 	unsigned int tmp;
1468 
1469 	for_each_fw_domain(fw_domain, i915, tmp)
1470 		seq_printf(m, "%s.wake_count = %u\n",
1471 			   intel_uncore_forcewake_domain_to_str(fw_domain->id),
1472 			   READ_ONCE(fw_domain->wake_count));
1473 
1474 	return 0;
1475 }
1476 
1477 static void print_rc6_res(struct seq_file *m,
1478 			  const char *title,
1479 			  const i915_reg_t reg)
1480 {
1481 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1482 
1483 	seq_printf(m, "%s %u (%llu us)\n",
1484 		   title, I915_READ(reg),
1485 		   intel_rc6_residency_us(dev_priv, reg));
1486 }
1487 
1488 static int vlv_drpc_info(struct seq_file *m)
1489 {
1490 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1491 	u32 rpmodectl1, rcctl1, pw_status;
1492 
1493 	pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1494 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1495 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1496 
1497 	seq_printf(m, "Video Turbo Mode: %s\n",
1498 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1499 	seq_printf(m, "Turbo enabled: %s\n",
1500 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1501 	seq_printf(m, "HW control enabled: %s\n",
1502 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1503 	seq_printf(m, "SW control enabled: %s\n",
1504 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1505 			  GEN6_RP_MEDIA_SW_MODE));
1506 	seq_printf(m, "RC6 Enabled: %s\n",
1507 		   yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1508 					GEN6_RC_CTL_EI_MODE(1))));
1509 	seq_printf(m, "Render Power Well: %s\n",
1510 		   (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1511 	seq_printf(m, "Media Power Well: %s\n",
1512 		   (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1513 
1514 	print_rc6_res(m, "Render RC6 residency since boot:", VLV_GT_RENDER_RC6);
1515 	print_rc6_res(m, "Media RC6 residency since boot:", VLV_GT_MEDIA_RC6);
1516 
1517 	return i915_forcewake_domains(m, NULL);
1518 }
1519 
1520 static int gen6_drpc_info(struct seq_file *m)
1521 {
1522 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1523 	u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1524 	u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
1525 	unsigned forcewake_count;
1526 	int count = 0;
1527 
1528 	forcewake_count = READ_ONCE(dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count);
1529 	if (forcewake_count) {
1530 		seq_puts(m, "RC information inaccurate because somebody "
1531 			    "holds a forcewake reference \n");
1532 	} else {
1533 		/* NB: we cannot use forcewake, else we read the wrong values */
1534 		while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1535 			udelay(10);
1536 		seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1537 	}
1538 
1539 	gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1540 	trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1541 
1542 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1543 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1544 	if (INTEL_GEN(dev_priv) >= 9) {
1545 		gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
1546 		gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
1547 	}
1548 
1549 	mutex_lock(&dev_priv->rps.hw_lock);
1550 	sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1551 	mutex_unlock(&dev_priv->rps.hw_lock);
1552 
1553 	seq_printf(m, "Video Turbo Mode: %s\n",
1554 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1555 	seq_printf(m, "HW control enabled: %s\n",
1556 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1557 	seq_printf(m, "SW control enabled: %s\n",
1558 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1559 			  GEN6_RP_MEDIA_SW_MODE));
1560 	seq_printf(m, "RC1e Enabled: %s\n",
1561 		   yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1562 	seq_printf(m, "RC6 Enabled: %s\n",
1563 		   yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1564 	if (INTEL_GEN(dev_priv) >= 9) {
1565 		seq_printf(m, "Render Well Gating Enabled: %s\n",
1566 			yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
1567 		seq_printf(m, "Media Well Gating Enabled: %s\n",
1568 			yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
1569 	}
1570 	seq_printf(m, "Deep RC6 Enabled: %s\n",
1571 		   yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1572 	seq_printf(m, "Deepest RC6 Enabled: %s\n",
1573 		   yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1574 	seq_puts(m, "Current RC state: ");
1575 	switch (gt_core_status & GEN6_RCn_MASK) {
1576 	case GEN6_RC0:
1577 		if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1578 			seq_puts(m, "Core Power Down\n");
1579 		else
1580 			seq_puts(m, "on\n");
1581 		break;
1582 	case GEN6_RC3:
1583 		seq_puts(m, "RC3\n");
1584 		break;
1585 	case GEN6_RC6:
1586 		seq_puts(m, "RC6\n");
1587 		break;
1588 	case GEN6_RC7:
1589 		seq_puts(m, "RC7\n");
1590 		break;
1591 	default:
1592 		seq_puts(m, "Unknown\n");
1593 		break;
1594 	}
1595 
1596 	seq_printf(m, "Core Power Down: %s\n",
1597 		   yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1598 	if (INTEL_GEN(dev_priv) >= 9) {
1599 		seq_printf(m, "Render Power Well: %s\n",
1600 			(gen9_powergate_status &
1601 			 GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
1602 		seq_printf(m, "Media Power Well: %s\n",
1603 			(gen9_powergate_status &
1604 			 GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
1605 	}
1606 
1607 	/* Not exactly sure what this is */
1608 	print_rc6_res(m, "RC6 \"Locked to RPn\" residency since boot:",
1609 		      GEN6_GT_GFX_RC6_LOCKED);
1610 	print_rc6_res(m, "RC6 residency since boot:", GEN6_GT_GFX_RC6);
1611 	print_rc6_res(m, "RC6+ residency since boot:", GEN6_GT_GFX_RC6p);
1612 	print_rc6_res(m, "RC6++ residency since boot:", GEN6_GT_GFX_RC6pp);
1613 
1614 	seq_printf(m, "RC6   voltage: %dmV\n",
1615 		   GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1616 	seq_printf(m, "RC6+  voltage: %dmV\n",
1617 		   GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1618 	seq_printf(m, "RC6++ voltage: %dmV\n",
1619 		   GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1620 	return i915_forcewake_domains(m, NULL);
1621 }
1622 
1623 static int i915_drpc_info(struct seq_file *m, void *unused)
1624 {
1625 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1626 	int err;
1627 
1628 	intel_runtime_pm_get(dev_priv);
1629 
1630 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1631 		err = vlv_drpc_info(m);
1632 	else if (INTEL_GEN(dev_priv) >= 6)
1633 		err = gen6_drpc_info(m);
1634 	else
1635 		err = ironlake_drpc_info(m);
1636 
1637 	intel_runtime_pm_put(dev_priv);
1638 
1639 	return err;
1640 }
1641 
1642 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1643 {
1644 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1645 
1646 	seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1647 		   dev_priv->fb_tracking.busy_bits);
1648 
1649 	seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1650 		   dev_priv->fb_tracking.flip_bits);
1651 
1652 	return 0;
1653 }
1654 
1655 static int i915_fbc_status(struct seq_file *m, void *unused)
1656 {
1657 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1658 
1659 	if (!HAS_FBC(dev_priv)) {
1660 		seq_puts(m, "FBC unsupported on this chipset\n");
1661 		return 0;
1662 	}
1663 
1664 	intel_runtime_pm_get(dev_priv);
1665 	mutex_lock(&dev_priv->fbc.lock);
1666 
1667 	if (intel_fbc_is_active(dev_priv))
1668 		seq_puts(m, "FBC enabled\n");
1669 	else
1670 		seq_printf(m, "FBC disabled: %s\n",
1671 			   dev_priv->fbc.no_fbc_reason);
1672 
1673 	if (intel_fbc_is_active(dev_priv) && INTEL_GEN(dev_priv) >= 7) {
1674 		uint32_t mask = INTEL_GEN(dev_priv) >= 8 ?
1675 				BDW_FBC_COMPRESSION_MASK :
1676 				IVB_FBC_COMPRESSION_MASK;
1677 		seq_printf(m, "Compressing: %s\n",
1678 			   yesno(I915_READ(FBC_STATUS2) & mask));
1679 	}
1680 
1681 	mutex_unlock(&dev_priv->fbc.lock);
1682 	intel_runtime_pm_put(dev_priv);
1683 
1684 	return 0;
1685 }
1686 
1687 static int i915_fbc_fc_get(void *data, u64 *val)
1688 {
1689 	struct drm_i915_private *dev_priv = data;
1690 
1691 	if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1692 		return -ENODEV;
1693 
1694 	*val = dev_priv->fbc.false_color;
1695 
1696 	return 0;
1697 }
1698 
1699 static int i915_fbc_fc_set(void *data, u64 val)
1700 {
1701 	struct drm_i915_private *dev_priv = data;
1702 	u32 reg;
1703 
1704 	if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1705 		return -ENODEV;
1706 
1707 	mutex_lock(&dev_priv->fbc.lock);
1708 
1709 	reg = I915_READ(ILK_DPFC_CONTROL);
1710 	dev_priv->fbc.false_color = val;
1711 
1712 	I915_WRITE(ILK_DPFC_CONTROL, val ?
1713 		   (reg | FBC_CTL_FALSE_COLOR) :
1714 		   (reg & ~FBC_CTL_FALSE_COLOR));
1715 
1716 	mutex_unlock(&dev_priv->fbc.lock);
1717 	return 0;
1718 }
1719 
1720 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1721 			i915_fbc_fc_get, i915_fbc_fc_set,
1722 			"%llu\n");
1723 
1724 static int i915_ips_status(struct seq_file *m, void *unused)
1725 {
1726 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1727 
1728 	if (!HAS_IPS(dev_priv)) {
1729 		seq_puts(m, "not supported\n");
1730 		return 0;
1731 	}
1732 
1733 	intel_runtime_pm_get(dev_priv);
1734 
1735 	seq_printf(m, "Enabled by kernel parameter: %s\n",
1736 		   yesno(i915.enable_ips));
1737 
1738 	if (INTEL_GEN(dev_priv) >= 8) {
1739 		seq_puts(m, "Currently: unknown\n");
1740 	} else {
1741 		if (I915_READ(IPS_CTL) & IPS_ENABLE)
1742 			seq_puts(m, "Currently: enabled\n");
1743 		else
1744 			seq_puts(m, "Currently: disabled\n");
1745 	}
1746 
1747 	intel_runtime_pm_put(dev_priv);
1748 
1749 	return 0;
1750 }
1751 
1752 static int i915_sr_status(struct seq_file *m, void *unused)
1753 {
1754 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1755 	bool sr_enabled = false;
1756 
1757 	intel_runtime_pm_get(dev_priv);
1758 	intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1759 
1760 	if (INTEL_GEN(dev_priv) >= 9)
1761 		/* no global SR status; inspect per-plane WM */;
1762 	else if (HAS_PCH_SPLIT(dev_priv))
1763 		sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1764 	else if (IS_I965GM(dev_priv) || IS_G4X(dev_priv) ||
1765 		 IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1766 		sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1767 	else if (IS_I915GM(dev_priv))
1768 		sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1769 	else if (IS_PINEVIEW(dev_priv))
1770 		sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1771 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1772 		sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1773 
1774 	intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1775 	intel_runtime_pm_put(dev_priv);
1776 
1777 	seq_printf(m, "self-refresh: %s\n", enableddisabled(sr_enabled));
1778 
1779 	return 0;
1780 }
1781 
1782 static int i915_emon_status(struct seq_file *m, void *unused)
1783 {
1784 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1785 	struct drm_device *dev = &dev_priv->drm;
1786 	unsigned long temp, chipset, gfx;
1787 	int ret;
1788 
1789 	if (!IS_GEN5(dev_priv))
1790 		return -ENODEV;
1791 
1792 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1793 	if (ret)
1794 		return ret;
1795 
1796 	temp = i915_mch_val(dev_priv);
1797 	chipset = i915_chipset_val(dev_priv);
1798 	gfx = i915_gfx_val(dev_priv);
1799 	mutex_unlock(&dev->struct_mutex);
1800 
1801 	seq_printf(m, "GMCH temp: %ld\n", temp);
1802 	seq_printf(m, "Chipset power: %ld\n", chipset);
1803 	seq_printf(m, "GFX power: %ld\n", gfx);
1804 	seq_printf(m, "Total power: %ld\n", chipset + gfx);
1805 
1806 	return 0;
1807 }
1808 
1809 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1810 {
1811 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1812 	int ret = 0;
1813 	int gpu_freq, ia_freq;
1814 	unsigned int max_gpu_freq, min_gpu_freq;
1815 
1816 	if (!HAS_LLC(dev_priv)) {
1817 		seq_puts(m, "unsupported on this chipset\n");
1818 		return 0;
1819 	}
1820 
1821 	intel_runtime_pm_get(dev_priv);
1822 
1823 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1824 	if (ret)
1825 		goto out;
1826 
1827 	if (IS_GEN9_BC(dev_priv)) {
1828 		/* Convert GT frequency to 50 HZ units */
1829 		min_gpu_freq =
1830 			dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1831 		max_gpu_freq =
1832 			dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1833 	} else {
1834 		min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1835 		max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1836 	}
1837 
1838 	seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1839 
1840 	for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1841 		ia_freq = gpu_freq;
1842 		sandybridge_pcode_read(dev_priv,
1843 				       GEN6_PCODE_READ_MIN_FREQ_TABLE,
1844 				       &ia_freq);
1845 		seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1846 			   intel_gpu_freq(dev_priv, (gpu_freq *
1847 						     (IS_GEN9_BC(dev_priv) ?
1848 						      GEN9_FREQ_SCALER : 1))),
1849 			   ((ia_freq >> 0) & 0xff) * 100,
1850 			   ((ia_freq >> 8) & 0xff) * 100);
1851 	}
1852 
1853 	mutex_unlock(&dev_priv->rps.hw_lock);
1854 
1855 out:
1856 	intel_runtime_pm_put(dev_priv);
1857 	return ret;
1858 }
1859 
1860 static int i915_opregion(struct seq_file *m, void *unused)
1861 {
1862 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1863 	struct drm_device *dev = &dev_priv->drm;
1864 	struct intel_opregion *opregion = &dev_priv->opregion;
1865 	int ret;
1866 
1867 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1868 	if (ret)
1869 		goto out;
1870 
1871 	if (opregion->header)
1872 		seq_write(m, opregion->header, OPREGION_SIZE);
1873 
1874 	mutex_unlock(&dev->struct_mutex);
1875 
1876 out:
1877 	return 0;
1878 }
1879 
1880 static int i915_vbt(struct seq_file *m, void *unused)
1881 {
1882 	struct intel_opregion *opregion = &node_to_i915(m->private)->opregion;
1883 
1884 	if (opregion->vbt)
1885 		seq_write(m, opregion->vbt, opregion->vbt_size);
1886 
1887 	return 0;
1888 }
1889 
1890 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1891 {
1892 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1893 	struct drm_device *dev = &dev_priv->drm;
1894 	struct intel_framebuffer *fbdev_fb = NULL;
1895 	struct drm_framebuffer *drm_fb;
1896 	int ret;
1897 
1898 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1899 	if (ret)
1900 		return ret;
1901 
1902 #ifdef CONFIG_DRM_FBDEV_EMULATION
1903 	if (dev_priv->fbdev) {
1904 		fbdev_fb = to_intel_framebuffer(dev_priv->fbdev->helper.fb);
1905 
1906 		seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1907 			   fbdev_fb->base.width,
1908 			   fbdev_fb->base.height,
1909 			   fbdev_fb->base.format->depth,
1910 			   fbdev_fb->base.format->cpp[0] * 8,
1911 			   fbdev_fb->base.modifier,
1912 			   drm_framebuffer_read_refcount(&fbdev_fb->base));
1913 		describe_obj(m, fbdev_fb->obj);
1914 		seq_putc(m, '\n');
1915 	}
1916 #endif
1917 
1918 	mutex_lock(&dev->mode_config.fb_lock);
1919 	drm_for_each_fb(drm_fb, dev) {
1920 		struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1921 		if (fb == fbdev_fb)
1922 			continue;
1923 
1924 		seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1925 			   fb->base.width,
1926 			   fb->base.height,
1927 			   fb->base.format->depth,
1928 			   fb->base.format->cpp[0] * 8,
1929 			   fb->base.modifier,
1930 			   drm_framebuffer_read_refcount(&fb->base));
1931 		describe_obj(m, fb->obj);
1932 		seq_putc(m, '\n');
1933 	}
1934 	mutex_unlock(&dev->mode_config.fb_lock);
1935 	mutex_unlock(&dev->struct_mutex);
1936 
1937 	return 0;
1938 }
1939 
1940 static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
1941 {
1942 	seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u)",
1943 		   ring->space, ring->head, ring->tail);
1944 }
1945 
1946 static int i915_context_status(struct seq_file *m, void *unused)
1947 {
1948 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1949 	struct drm_device *dev = &dev_priv->drm;
1950 	struct intel_engine_cs *engine;
1951 	struct i915_gem_context *ctx;
1952 	enum intel_engine_id id;
1953 	int ret;
1954 
1955 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1956 	if (ret)
1957 		return ret;
1958 
1959 	list_for_each_entry(ctx, &dev_priv->context_list, link) {
1960 		seq_printf(m, "HW context %u ", ctx->hw_id);
1961 		if (ctx->pid) {
1962 			struct task_struct *task;
1963 
1964 			task = get_pid_task(ctx->pid, PIDTYPE_PID);
1965 			if (task) {
1966 				seq_printf(m, "(%s [%d]) ",
1967 					   task->comm, task->pid);
1968 				put_task_struct(task);
1969 			}
1970 		} else if (IS_ERR(ctx->file_priv)) {
1971 			seq_puts(m, "(deleted) ");
1972 		} else {
1973 			seq_puts(m, "(kernel) ");
1974 		}
1975 
1976 		seq_putc(m, ctx->remap_slice ? 'R' : 'r');
1977 		seq_putc(m, '\n');
1978 
1979 		for_each_engine(engine, dev_priv, id) {
1980 			struct intel_context *ce = &ctx->engine[engine->id];
1981 
1982 			seq_printf(m, "%s: ", engine->name);
1983 			seq_putc(m, ce->initialised ? 'I' : 'i');
1984 			if (ce->state)
1985 				describe_obj(m, ce->state->obj);
1986 			if (ce->ring)
1987 				describe_ctx_ring(m, ce->ring);
1988 			seq_putc(m, '\n');
1989 		}
1990 
1991 		seq_putc(m, '\n');
1992 	}
1993 
1994 	mutex_unlock(&dev->struct_mutex);
1995 
1996 	return 0;
1997 }
1998 
1999 static void i915_dump_lrc_obj(struct seq_file *m,
2000 			      struct i915_gem_context *ctx,
2001 			      struct intel_engine_cs *engine)
2002 {
2003 	struct i915_vma *vma = ctx->engine[engine->id].state;
2004 	struct page *page;
2005 	int j;
2006 
2007 	seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
2008 
2009 	if (!vma) {
2010 		seq_puts(m, "\tFake context\n");
2011 		return;
2012 	}
2013 
2014 	if (vma->flags & I915_VMA_GLOBAL_BIND)
2015 		seq_printf(m, "\tBound in GGTT at 0x%08x\n",
2016 			   i915_ggtt_offset(vma));
2017 
2018 	if (i915_gem_object_pin_pages(vma->obj)) {
2019 		seq_puts(m, "\tFailed to get pages for context object\n\n");
2020 		return;
2021 	}
2022 
2023 	page = i915_gem_object_get_page(vma->obj, LRC_STATE_PN);
2024 	if (page) {
2025 		u32 *reg_state = kmap_atomic(page);
2026 
2027 		for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2028 			seq_printf(m,
2029 				   "\t[0x%04x] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2030 				   j * 4,
2031 				   reg_state[j], reg_state[j + 1],
2032 				   reg_state[j + 2], reg_state[j + 3]);
2033 		}
2034 		kunmap_atomic(reg_state);
2035 	}
2036 
2037 	i915_gem_object_unpin_pages(vma->obj);
2038 	seq_putc(m, '\n');
2039 }
2040 
2041 static int i915_dump_lrc(struct seq_file *m, void *unused)
2042 {
2043 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2044 	struct drm_device *dev = &dev_priv->drm;
2045 	struct intel_engine_cs *engine;
2046 	struct i915_gem_context *ctx;
2047 	enum intel_engine_id id;
2048 	int ret;
2049 
2050 	if (!i915.enable_execlists) {
2051 		seq_printf(m, "Logical Ring Contexts are disabled\n");
2052 		return 0;
2053 	}
2054 
2055 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2056 	if (ret)
2057 		return ret;
2058 
2059 	list_for_each_entry(ctx, &dev_priv->context_list, link)
2060 		for_each_engine(engine, dev_priv, id)
2061 			i915_dump_lrc_obj(m, ctx, engine);
2062 
2063 	mutex_unlock(&dev->struct_mutex);
2064 
2065 	return 0;
2066 }
2067 
2068 static const char *swizzle_string(unsigned swizzle)
2069 {
2070 	switch (swizzle) {
2071 	case I915_BIT_6_SWIZZLE_NONE:
2072 		return "none";
2073 	case I915_BIT_6_SWIZZLE_9:
2074 		return "bit9";
2075 	case I915_BIT_6_SWIZZLE_9_10:
2076 		return "bit9/bit10";
2077 	case I915_BIT_6_SWIZZLE_9_11:
2078 		return "bit9/bit11";
2079 	case I915_BIT_6_SWIZZLE_9_10_11:
2080 		return "bit9/bit10/bit11";
2081 	case I915_BIT_6_SWIZZLE_9_17:
2082 		return "bit9/bit17";
2083 	case I915_BIT_6_SWIZZLE_9_10_17:
2084 		return "bit9/bit10/bit17";
2085 	case I915_BIT_6_SWIZZLE_UNKNOWN:
2086 		return "unknown";
2087 	}
2088 
2089 	return "bug";
2090 }
2091 
2092 static int i915_swizzle_info(struct seq_file *m, void *data)
2093 {
2094 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2095 
2096 	intel_runtime_pm_get(dev_priv);
2097 
2098 	seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2099 		   swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2100 	seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2101 		   swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2102 
2103 	if (IS_GEN3(dev_priv) || IS_GEN4(dev_priv)) {
2104 		seq_printf(m, "DDC = 0x%08x\n",
2105 			   I915_READ(DCC));
2106 		seq_printf(m, "DDC2 = 0x%08x\n",
2107 			   I915_READ(DCC2));
2108 		seq_printf(m, "C0DRB3 = 0x%04x\n",
2109 			   I915_READ16(C0DRB3));
2110 		seq_printf(m, "C1DRB3 = 0x%04x\n",
2111 			   I915_READ16(C1DRB3));
2112 	} else if (INTEL_GEN(dev_priv) >= 6) {
2113 		seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2114 			   I915_READ(MAD_DIMM_C0));
2115 		seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2116 			   I915_READ(MAD_DIMM_C1));
2117 		seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2118 			   I915_READ(MAD_DIMM_C2));
2119 		seq_printf(m, "TILECTL = 0x%08x\n",
2120 			   I915_READ(TILECTL));
2121 		if (INTEL_GEN(dev_priv) >= 8)
2122 			seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2123 				   I915_READ(GAMTARBMODE));
2124 		else
2125 			seq_printf(m, "ARB_MODE = 0x%08x\n",
2126 				   I915_READ(ARB_MODE));
2127 		seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2128 			   I915_READ(DISP_ARB_CTL));
2129 	}
2130 
2131 	if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2132 		seq_puts(m, "L-shaped memory detected\n");
2133 
2134 	intel_runtime_pm_put(dev_priv);
2135 
2136 	return 0;
2137 }
2138 
2139 static int per_file_ctx(int id, void *ptr, void *data)
2140 {
2141 	struct i915_gem_context *ctx = ptr;
2142 	struct seq_file *m = data;
2143 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2144 
2145 	if (!ppgtt) {
2146 		seq_printf(m, "  no ppgtt for context %d\n",
2147 			   ctx->user_handle);
2148 		return 0;
2149 	}
2150 
2151 	if (i915_gem_context_is_default(ctx))
2152 		seq_puts(m, "  default context:\n");
2153 	else
2154 		seq_printf(m, "  context %d:\n", ctx->user_handle);
2155 	ppgtt->debug_dump(ppgtt, m);
2156 
2157 	return 0;
2158 }
2159 
2160 static void gen8_ppgtt_info(struct seq_file *m,
2161 			    struct drm_i915_private *dev_priv)
2162 {
2163 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2164 	struct intel_engine_cs *engine;
2165 	enum intel_engine_id id;
2166 	int i;
2167 
2168 	if (!ppgtt)
2169 		return;
2170 
2171 	for_each_engine(engine, dev_priv, id) {
2172 		seq_printf(m, "%s\n", engine->name);
2173 		for (i = 0; i < 4; i++) {
2174 			u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
2175 			pdp <<= 32;
2176 			pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
2177 			seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2178 		}
2179 	}
2180 }
2181 
2182 static void gen6_ppgtt_info(struct seq_file *m,
2183 			    struct drm_i915_private *dev_priv)
2184 {
2185 	struct intel_engine_cs *engine;
2186 	enum intel_engine_id id;
2187 
2188 	if (IS_GEN6(dev_priv))
2189 		seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2190 
2191 	for_each_engine(engine, dev_priv, id) {
2192 		seq_printf(m, "%s\n", engine->name);
2193 		if (IS_GEN7(dev_priv))
2194 			seq_printf(m, "GFX_MODE: 0x%08x\n",
2195 				   I915_READ(RING_MODE_GEN7(engine)));
2196 		seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
2197 			   I915_READ(RING_PP_DIR_BASE(engine)));
2198 		seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
2199 			   I915_READ(RING_PP_DIR_BASE_READ(engine)));
2200 		seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
2201 			   I915_READ(RING_PP_DIR_DCLV(engine)));
2202 	}
2203 	if (dev_priv->mm.aliasing_ppgtt) {
2204 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2205 
2206 		seq_puts(m, "aliasing PPGTT:\n");
2207 		seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2208 
2209 		ppgtt->debug_dump(ppgtt, m);
2210 	}
2211 
2212 	seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2213 }
2214 
2215 static int i915_ppgtt_info(struct seq_file *m, void *data)
2216 {
2217 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2218 	struct drm_device *dev = &dev_priv->drm;
2219 	struct drm_file *file;
2220 	int ret;
2221 
2222 	mutex_lock(&dev->filelist_mutex);
2223 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2224 	if (ret)
2225 		goto out_unlock;
2226 
2227 	intel_runtime_pm_get(dev_priv);
2228 
2229 	if (INTEL_GEN(dev_priv) >= 8)
2230 		gen8_ppgtt_info(m, dev_priv);
2231 	else if (INTEL_GEN(dev_priv) >= 6)
2232 		gen6_ppgtt_info(m, dev_priv);
2233 
2234 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2235 		struct drm_i915_file_private *file_priv = file->driver_priv;
2236 		struct task_struct *task;
2237 
2238 		task = get_pid_task(file->pid, PIDTYPE_PID);
2239 		if (!task) {
2240 			ret = -ESRCH;
2241 			goto out_rpm;
2242 		}
2243 		seq_printf(m, "\nproc: %s\n", task->comm);
2244 		put_task_struct(task);
2245 		idr_for_each(&file_priv->context_idr, per_file_ctx,
2246 			     (void *)(unsigned long)m);
2247 	}
2248 
2249 out_rpm:
2250 	intel_runtime_pm_put(dev_priv);
2251 	mutex_unlock(&dev->struct_mutex);
2252 out_unlock:
2253 	mutex_unlock(&dev->filelist_mutex);
2254 	return ret;
2255 }
2256 
2257 static int count_irq_waiters(struct drm_i915_private *i915)
2258 {
2259 	struct intel_engine_cs *engine;
2260 	enum intel_engine_id id;
2261 	int count = 0;
2262 
2263 	for_each_engine(engine, i915, id)
2264 		count += intel_engine_has_waiter(engine);
2265 
2266 	return count;
2267 }
2268 
2269 static const char *rps_power_to_str(unsigned int power)
2270 {
2271 	static const char * const strings[] = {
2272 		[LOW_POWER] = "low power",
2273 		[BETWEEN] = "mixed",
2274 		[HIGH_POWER] = "high power",
2275 	};
2276 
2277 	if (power >= ARRAY_SIZE(strings) || !strings[power])
2278 		return "unknown";
2279 
2280 	return strings[power];
2281 }
2282 
2283 static int i915_rps_boost_info(struct seq_file *m, void *data)
2284 {
2285 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2286 	struct drm_device *dev = &dev_priv->drm;
2287 	struct drm_file *file;
2288 
2289 	seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2290 	seq_printf(m, "GPU busy? %s [%d requests]\n",
2291 		   yesno(dev_priv->gt.awake), dev_priv->gt.active_requests);
2292 	seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2293 	seq_printf(m, "Frequency requested %d\n",
2294 		   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
2295 	seq_printf(m, "  min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2296 		   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2297 		   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2298 		   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2299 		   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2300 	seq_printf(m, "  idle:%d, efficient:%d, boost:%d\n",
2301 		   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
2302 		   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
2303 		   intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
2304 
2305 	mutex_lock(&dev->filelist_mutex);
2306 	spin_lock(&dev_priv->rps.client_lock);
2307 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2308 		struct drm_i915_file_private *file_priv = file->driver_priv;
2309 		struct task_struct *task;
2310 
2311 		rcu_read_lock();
2312 		task = pid_task(file->pid, PIDTYPE_PID);
2313 		seq_printf(m, "%s [%d]: %d boosts%s\n",
2314 			   task ? task->comm : "<unknown>",
2315 			   task ? task->pid : -1,
2316 			   file_priv->rps.boosts,
2317 			   list_empty(&file_priv->rps.link) ? "" : ", active");
2318 		rcu_read_unlock();
2319 	}
2320 	seq_printf(m, "Kernel (anonymous) boosts: %d\n", dev_priv->rps.boosts);
2321 	spin_unlock(&dev_priv->rps.client_lock);
2322 	mutex_unlock(&dev->filelist_mutex);
2323 
2324 	if (INTEL_GEN(dev_priv) >= 6 &&
2325 	    dev_priv->rps.enabled &&
2326 	    dev_priv->gt.active_requests) {
2327 		u32 rpup, rpupei;
2328 		u32 rpdown, rpdownei;
2329 
2330 		intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2331 		rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
2332 		rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
2333 		rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
2334 		rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
2335 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2336 
2337 		seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
2338 			   rps_power_to_str(dev_priv->rps.power));
2339 		seq_printf(m, "  Avg. up: %d%% [above threshold? %d%%]\n",
2340 			   rpup && rpupei ? 100 * rpup / rpupei : 0,
2341 			   dev_priv->rps.up_threshold);
2342 		seq_printf(m, "  Avg. down: %d%% [below threshold? %d%%]\n",
2343 			   rpdown && rpdownei ? 100 * rpdown / rpdownei : 0,
2344 			   dev_priv->rps.down_threshold);
2345 	} else {
2346 		seq_puts(m, "\nRPS Autotuning inactive\n");
2347 	}
2348 
2349 	return 0;
2350 }
2351 
2352 static int i915_llc(struct seq_file *m, void *data)
2353 {
2354 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2355 	const bool edram = INTEL_GEN(dev_priv) > 8;
2356 
2357 	seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
2358 	seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
2359 		   intel_uncore_edram_size(dev_priv)/1024/1024);
2360 
2361 	return 0;
2362 }
2363 
2364 static int i915_huc_load_status_info(struct seq_file *m, void *data)
2365 {
2366 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2367 	struct intel_uc_fw *huc_fw = &dev_priv->huc.fw;
2368 
2369 	if (!HAS_HUC_UCODE(dev_priv))
2370 		return 0;
2371 
2372 	seq_puts(m, "HuC firmware status:\n");
2373 	seq_printf(m, "\tpath: %s\n", huc_fw->path);
2374 	seq_printf(m, "\tfetch: %s\n",
2375 		intel_uc_fw_status_repr(huc_fw->fetch_status));
2376 	seq_printf(m, "\tload: %s\n",
2377 		intel_uc_fw_status_repr(huc_fw->load_status));
2378 	seq_printf(m, "\tversion wanted: %d.%d\n",
2379 		huc_fw->major_ver_wanted, huc_fw->minor_ver_wanted);
2380 	seq_printf(m, "\tversion found: %d.%d\n",
2381 		huc_fw->major_ver_found, huc_fw->minor_ver_found);
2382 	seq_printf(m, "\theader: offset is %d; size = %d\n",
2383 		huc_fw->header_offset, huc_fw->header_size);
2384 	seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2385 		huc_fw->ucode_offset, huc_fw->ucode_size);
2386 	seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2387 		huc_fw->rsa_offset, huc_fw->rsa_size);
2388 
2389 	intel_runtime_pm_get(dev_priv);
2390 	seq_printf(m, "\nHuC status 0x%08x:\n", I915_READ(HUC_STATUS2));
2391 	intel_runtime_pm_put(dev_priv);
2392 
2393 	return 0;
2394 }
2395 
2396 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2397 {
2398 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2399 	struct intel_uc_fw *guc_fw = &dev_priv->guc.fw;
2400 	u32 tmp, i;
2401 
2402 	if (!HAS_GUC_UCODE(dev_priv))
2403 		return 0;
2404 
2405 	seq_printf(m, "GuC firmware status:\n");
2406 	seq_printf(m, "\tpath: %s\n",
2407 		guc_fw->path);
2408 	seq_printf(m, "\tfetch: %s\n",
2409 		intel_uc_fw_status_repr(guc_fw->fetch_status));
2410 	seq_printf(m, "\tload: %s\n",
2411 		intel_uc_fw_status_repr(guc_fw->load_status));
2412 	seq_printf(m, "\tversion wanted: %d.%d\n",
2413 		guc_fw->major_ver_wanted, guc_fw->minor_ver_wanted);
2414 	seq_printf(m, "\tversion found: %d.%d\n",
2415 		guc_fw->major_ver_found, guc_fw->minor_ver_found);
2416 	seq_printf(m, "\theader: offset is %d; size = %d\n",
2417 		guc_fw->header_offset, guc_fw->header_size);
2418 	seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2419 		guc_fw->ucode_offset, guc_fw->ucode_size);
2420 	seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2421 		guc_fw->rsa_offset, guc_fw->rsa_size);
2422 
2423 	intel_runtime_pm_get(dev_priv);
2424 
2425 	tmp = I915_READ(GUC_STATUS);
2426 
2427 	seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2428 	seq_printf(m, "\tBootrom status = 0x%x\n",
2429 		(tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2430 	seq_printf(m, "\tuKernel status = 0x%x\n",
2431 		(tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2432 	seq_printf(m, "\tMIA Core status = 0x%x\n",
2433 		(tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2434 	seq_puts(m, "\nScratch registers:\n");
2435 	for (i = 0; i < 16; i++)
2436 		seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2437 
2438 	intel_runtime_pm_put(dev_priv);
2439 
2440 	return 0;
2441 }
2442 
2443 static void i915_guc_log_info(struct seq_file *m,
2444 			      struct drm_i915_private *dev_priv)
2445 {
2446 	struct intel_guc *guc = &dev_priv->guc;
2447 
2448 	seq_puts(m, "\nGuC logging stats:\n");
2449 
2450 	seq_printf(m, "\tISR:   flush count %10u, overflow count %10u\n",
2451 		   guc->log.flush_count[GUC_ISR_LOG_BUFFER],
2452 		   guc->log.total_overflow_count[GUC_ISR_LOG_BUFFER]);
2453 
2454 	seq_printf(m, "\tDPC:   flush count %10u, overflow count %10u\n",
2455 		   guc->log.flush_count[GUC_DPC_LOG_BUFFER],
2456 		   guc->log.total_overflow_count[GUC_DPC_LOG_BUFFER]);
2457 
2458 	seq_printf(m, "\tCRASH: flush count %10u, overflow count %10u\n",
2459 		   guc->log.flush_count[GUC_CRASH_DUMP_LOG_BUFFER],
2460 		   guc->log.total_overflow_count[GUC_CRASH_DUMP_LOG_BUFFER]);
2461 
2462 	seq_printf(m, "\tTotal flush interrupt count: %u\n",
2463 		   guc->log.flush_interrupt_count);
2464 
2465 	seq_printf(m, "\tCapture miss count: %u\n",
2466 		   guc->log.capture_miss_count);
2467 }
2468 
2469 static void i915_guc_client_info(struct seq_file *m,
2470 				 struct drm_i915_private *dev_priv,
2471 				 struct i915_guc_client *client)
2472 {
2473 	struct intel_engine_cs *engine;
2474 	enum intel_engine_id id;
2475 	uint64_t tot = 0;
2476 
2477 	seq_printf(m, "\tPriority %d, GuC stage index: %u, PD offset 0x%x\n",
2478 		client->priority, client->stage_id, client->proc_desc_offset);
2479 	seq_printf(m, "\tDoorbell id %d, offset: 0x%lx, cookie 0x%x\n",
2480 		client->doorbell_id, client->doorbell_offset, client->doorbell_cookie);
2481 	seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2482 		client->wq_size, client->wq_offset, client->wq_tail);
2483 
2484 	seq_printf(m, "\tWork queue full: %u\n", client->no_wq_space);
2485 	seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2486 	seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2487 
2488 	for_each_engine(engine, dev_priv, id) {
2489 		u64 submissions = client->submissions[id];
2490 		tot += submissions;
2491 		seq_printf(m, "\tSubmissions: %llu %s\n",
2492 				submissions, engine->name);
2493 	}
2494 	seq_printf(m, "\tTotal: %llu\n", tot);
2495 }
2496 
2497 static int i915_guc_info(struct seq_file *m, void *data)
2498 {
2499 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2500 	const struct intel_guc *guc = &dev_priv->guc;
2501 	struct intel_engine_cs *engine;
2502 	enum intel_engine_id id;
2503 	u64 total;
2504 
2505 	if (!guc->execbuf_client) {
2506 		seq_printf(m, "GuC submission %s\n",
2507 			   HAS_GUC_SCHED(dev_priv) ?
2508 			   "disabled" :
2509 			   "not supported");
2510 		return 0;
2511 	}
2512 
2513 	seq_printf(m, "Doorbell map:\n");
2514 	seq_printf(m, "\t%*pb\n", GUC_NUM_DOORBELLS, guc->doorbell_bitmap);
2515 	seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc->db_cacheline);
2516 
2517 	seq_printf(m, "GuC total action count: %llu\n", guc->action_count);
2518 	seq_printf(m, "GuC action failure count: %u\n", guc->action_fail);
2519 	seq_printf(m, "GuC last action command: 0x%x\n", guc->action_cmd);
2520 	seq_printf(m, "GuC last action status: 0x%x\n", guc->action_status);
2521 	seq_printf(m, "GuC last action error code: %d\n", guc->action_err);
2522 
2523 	total = 0;
2524 	seq_printf(m, "\nGuC submissions:\n");
2525 	for_each_engine(engine, dev_priv, id) {
2526 		u64 submissions = guc->submissions[id];
2527 		total += submissions;
2528 		seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
2529 			engine->name, submissions, guc->last_seqno[id]);
2530 	}
2531 	seq_printf(m, "\t%s: %llu\n", "Total", total);
2532 
2533 	seq_printf(m, "\nGuC execbuf client @ %p:\n", guc->execbuf_client);
2534 	i915_guc_client_info(m, dev_priv, guc->execbuf_client);
2535 
2536 	i915_guc_log_info(m, dev_priv);
2537 
2538 	/* Add more as required ... */
2539 
2540 	return 0;
2541 }
2542 
2543 static int i915_guc_log_dump(struct seq_file *m, void *data)
2544 {
2545 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2546 	struct drm_i915_gem_object *obj;
2547 	int i = 0, pg;
2548 
2549 	if (!dev_priv->guc.log.vma)
2550 		return 0;
2551 
2552 	obj = dev_priv->guc.log.vma->obj;
2553 	for (pg = 0; pg < obj->base.size / PAGE_SIZE; pg++) {
2554 		u32 *log = kmap_atomic(i915_gem_object_get_page(obj, pg));
2555 
2556 		for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2557 			seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2558 				   *(log + i), *(log + i + 1),
2559 				   *(log + i + 2), *(log + i + 3));
2560 
2561 		kunmap_atomic(log);
2562 	}
2563 
2564 	seq_putc(m, '\n');
2565 
2566 	return 0;
2567 }
2568 
2569 static int i915_guc_log_control_get(void *data, u64 *val)
2570 {
2571 	struct drm_device *dev = data;
2572 	struct drm_i915_private *dev_priv = to_i915(dev);
2573 
2574 	if (!dev_priv->guc.log.vma)
2575 		return -EINVAL;
2576 
2577 	*val = i915.guc_log_level;
2578 
2579 	return 0;
2580 }
2581 
2582 static int i915_guc_log_control_set(void *data, u64 val)
2583 {
2584 	struct drm_device *dev = data;
2585 	struct drm_i915_private *dev_priv = to_i915(dev);
2586 	int ret;
2587 
2588 	if (!dev_priv->guc.log.vma)
2589 		return -EINVAL;
2590 
2591 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2592 	if (ret)
2593 		return ret;
2594 
2595 	intel_runtime_pm_get(dev_priv);
2596 	ret = i915_guc_log_control(dev_priv, val);
2597 	intel_runtime_pm_put(dev_priv);
2598 
2599 	mutex_unlock(&dev->struct_mutex);
2600 	return ret;
2601 }
2602 
2603 DEFINE_SIMPLE_ATTRIBUTE(i915_guc_log_control_fops,
2604 			i915_guc_log_control_get, i915_guc_log_control_set,
2605 			"%lld\n");
2606 
2607 static const char *psr2_live_status(u32 val)
2608 {
2609 	static const char * const live_status[] = {
2610 		"IDLE",
2611 		"CAPTURE",
2612 		"CAPTURE_FS",
2613 		"SLEEP",
2614 		"BUFON_FW",
2615 		"ML_UP",
2616 		"SU_STANDBY",
2617 		"FAST_SLEEP",
2618 		"DEEP_SLEEP",
2619 		"BUF_ON",
2620 		"TG_ON"
2621 	};
2622 
2623 	val = (val & EDP_PSR2_STATUS_STATE_MASK) >> EDP_PSR2_STATUS_STATE_SHIFT;
2624 	if (val < ARRAY_SIZE(live_status))
2625 		return live_status[val];
2626 
2627 	return "unknown";
2628 }
2629 
2630 static int i915_edp_psr_status(struct seq_file *m, void *data)
2631 {
2632 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2633 	u32 psrperf = 0;
2634 	u32 stat[3];
2635 	enum pipe pipe;
2636 	bool enabled = false;
2637 
2638 	if (!HAS_PSR(dev_priv)) {
2639 		seq_puts(m, "PSR not supported\n");
2640 		return 0;
2641 	}
2642 
2643 	intel_runtime_pm_get(dev_priv);
2644 
2645 	mutex_lock(&dev_priv->psr.lock);
2646 	seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2647 	seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2648 	seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2649 	seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2650 	seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2651 		   dev_priv->psr.busy_frontbuffer_bits);
2652 	seq_printf(m, "Re-enable work scheduled: %s\n",
2653 		   yesno(work_busy(&dev_priv->psr.work.work)));
2654 
2655 	if (HAS_DDI(dev_priv)) {
2656 		if (dev_priv->psr.psr2_support)
2657 			enabled = I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE;
2658 		else
2659 			enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2660 	} else {
2661 		for_each_pipe(dev_priv, pipe) {
2662 			enum transcoder cpu_transcoder =
2663 				intel_pipe_to_cpu_transcoder(dev_priv, pipe);
2664 			enum intel_display_power_domain power_domain;
2665 
2666 			power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
2667 			if (!intel_display_power_get_if_enabled(dev_priv,
2668 								power_domain))
2669 				continue;
2670 
2671 			stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2672 				VLV_EDP_PSR_CURR_STATE_MASK;
2673 			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2674 			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2675 				enabled = true;
2676 
2677 			intel_display_power_put(dev_priv, power_domain);
2678 		}
2679 	}
2680 
2681 	seq_printf(m, "Main link in standby mode: %s\n",
2682 		   yesno(dev_priv->psr.link_standby));
2683 
2684 	seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2685 
2686 	if (!HAS_DDI(dev_priv))
2687 		for_each_pipe(dev_priv, pipe) {
2688 			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2689 			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2690 				seq_printf(m, " pipe %c", pipe_name(pipe));
2691 		}
2692 	seq_puts(m, "\n");
2693 
2694 	/*
2695 	 * VLV/CHV PSR has no kind of performance counter
2696 	 * SKL+ Perf counter is reset to 0 everytime DC state is entered
2697 	 */
2698 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2699 		psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2700 			EDP_PSR_PERF_CNT_MASK;
2701 
2702 		seq_printf(m, "Performance_Counter: %u\n", psrperf);
2703 	}
2704 	if (dev_priv->psr.psr2_support) {
2705 		u32 psr2 = I915_READ(EDP_PSR2_STATUS_CTL);
2706 
2707 		seq_printf(m, "EDP_PSR2_STATUS_CTL: %x [%s]\n",
2708 			   psr2, psr2_live_status(psr2));
2709 	}
2710 	mutex_unlock(&dev_priv->psr.lock);
2711 
2712 	intel_runtime_pm_put(dev_priv);
2713 	return 0;
2714 }
2715 
2716 static int i915_sink_crc(struct seq_file *m, void *data)
2717 {
2718 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2719 	struct drm_device *dev = &dev_priv->drm;
2720 	struct intel_connector *connector;
2721 	struct drm_connector_list_iter conn_iter;
2722 	struct intel_dp *intel_dp = NULL;
2723 	int ret;
2724 	u8 crc[6];
2725 
2726 	drm_modeset_lock_all(dev);
2727 	drm_connector_list_iter_begin(dev, &conn_iter);
2728 	for_each_intel_connector_iter(connector, &conn_iter) {
2729 		struct drm_crtc *crtc;
2730 
2731 		if (!connector->base.state->best_encoder)
2732 			continue;
2733 
2734 		crtc = connector->base.state->crtc;
2735 		if (!crtc->state->active)
2736 			continue;
2737 
2738 		if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
2739 			continue;
2740 
2741 		intel_dp = enc_to_intel_dp(connector->base.state->best_encoder);
2742 
2743 		ret = intel_dp_sink_crc(intel_dp, crc);
2744 		if (ret)
2745 			goto out;
2746 
2747 		seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2748 			   crc[0], crc[1], crc[2],
2749 			   crc[3], crc[4], crc[5]);
2750 		goto out;
2751 	}
2752 	ret = -ENODEV;
2753 out:
2754 	drm_connector_list_iter_end(&conn_iter);
2755 	drm_modeset_unlock_all(dev);
2756 	return ret;
2757 }
2758 
2759 static int i915_energy_uJ(struct seq_file *m, void *data)
2760 {
2761 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2762 	u64 power;
2763 	u32 units;
2764 
2765 	if (INTEL_GEN(dev_priv) < 6)
2766 		return -ENODEV;
2767 
2768 	intel_runtime_pm_get(dev_priv);
2769 
2770 	rdmsrl(MSR_RAPL_POWER_UNIT, power);
2771 	power = (power & 0x1f00) >> 8;
2772 	units = 1000000 / (1 << power); /* convert to uJ */
2773 	power = I915_READ(MCH_SECP_NRG_STTS);
2774 	power *= units;
2775 
2776 	intel_runtime_pm_put(dev_priv);
2777 
2778 	seq_printf(m, "%llu", (long long unsigned)power);
2779 
2780 	return 0;
2781 }
2782 
2783 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2784 {
2785 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2786 	struct pci_dev *pdev = dev_priv->drm.pdev;
2787 
2788 	if (!HAS_RUNTIME_PM(dev_priv))
2789 		seq_puts(m, "Runtime power management not supported\n");
2790 
2791 	seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
2792 	seq_printf(m, "IRQs disabled: %s\n",
2793 		   yesno(!intel_irqs_enabled(dev_priv)));
2794 #ifdef CONFIG_PM
2795 	seq_printf(m, "Usage count: %d\n",
2796 		   atomic_read(&dev_priv->drm.dev->power.usage_count));
2797 #else
2798 	seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2799 #endif
2800 	seq_printf(m, "PCI device power state: %s [%d]\n",
2801 		   pci_power_name(pdev->current_state),
2802 		   pdev->current_state);
2803 
2804 	return 0;
2805 }
2806 
2807 static int i915_power_domain_info(struct seq_file *m, void *unused)
2808 {
2809 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2810 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2811 	int i;
2812 
2813 	mutex_lock(&power_domains->lock);
2814 
2815 	seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2816 	for (i = 0; i < power_domains->power_well_count; i++) {
2817 		struct i915_power_well *power_well;
2818 		enum intel_display_power_domain power_domain;
2819 
2820 		power_well = &power_domains->power_wells[i];
2821 		seq_printf(m, "%-25s %d\n", power_well->name,
2822 			   power_well->count);
2823 
2824 		for_each_power_domain(power_domain, power_well->domains)
2825 			seq_printf(m, "  %-23s %d\n",
2826 				 intel_display_power_domain_str(power_domain),
2827 				 power_domains->domain_use_count[power_domain]);
2828 	}
2829 
2830 	mutex_unlock(&power_domains->lock);
2831 
2832 	return 0;
2833 }
2834 
2835 static int i915_dmc_info(struct seq_file *m, void *unused)
2836 {
2837 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2838 	struct intel_csr *csr;
2839 
2840 	if (!HAS_CSR(dev_priv)) {
2841 		seq_puts(m, "not supported\n");
2842 		return 0;
2843 	}
2844 
2845 	csr = &dev_priv->csr;
2846 
2847 	intel_runtime_pm_get(dev_priv);
2848 
2849 	seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2850 	seq_printf(m, "path: %s\n", csr->fw_path);
2851 
2852 	if (!csr->dmc_payload)
2853 		goto out;
2854 
2855 	seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2856 		   CSR_VERSION_MINOR(csr->version));
2857 
2858 	if (IS_SKYLAKE(dev_priv) && csr->version >= CSR_VERSION(1, 6)) {
2859 		seq_printf(m, "DC3 -> DC5 count: %d\n",
2860 			   I915_READ(SKL_CSR_DC3_DC5_COUNT));
2861 		seq_printf(m, "DC5 -> DC6 count: %d\n",
2862 			   I915_READ(SKL_CSR_DC5_DC6_COUNT));
2863 	} else if (IS_BROXTON(dev_priv) && csr->version >= CSR_VERSION(1, 4)) {
2864 		seq_printf(m, "DC3 -> DC5 count: %d\n",
2865 			   I915_READ(BXT_CSR_DC3_DC5_COUNT));
2866 	}
2867 
2868 out:
2869 	seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2870 	seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2871 	seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2872 
2873 	intel_runtime_pm_put(dev_priv);
2874 
2875 	return 0;
2876 }
2877 
2878 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2879 				 struct drm_display_mode *mode)
2880 {
2881 	int i;
2882 
2883 	for (i = 0; i < tabs; i++)
2884 		seq_putc(m, '\t');
2885 
2886 	seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2887 		   mode->base.id, mode->name,
2888 		   mode->vrefresh, mode->clock,
2889 		   mode->hdisplay, mode->hsync_start,
2890 		   mode->hsync_end, mode->htotal,
2891 		   mode->vdisplay, mode->vsync_start,
2892 		   mode->vsync_end, mode->vtotal,
2893 		   mode->type, mode->flags);
2894 }
2895 
2896 static void intel_encoder_info(struct seq_file *m,
2897 			       struct intel_crtc *intel_crtc,
2898 			       struct intel_encoder *intel_encoder)
2899 {
2900 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2901 	struct drm_device *dev = &dev_priv->drm;
2902 	struct drm_crtc *crtc = &intel_crtc->base;
2903 	struct intel_connector *intel_connector;
2904 	struct drm_encoder *encoder;
2905 
2906 	encoder = &intel_encoder->base;
2907 	seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2908 		   encoder->base.id, encoder->name);
2909 	for_each_connector_on_encoder(dev, encoder, intel_connector) {
2910 		struct drm_connector *connector = &intel_connector->base;
2911 		seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2912 			   connector->base.id,
2913 			   connector->name,
2914 			   drm_get_connector_status_name(connector->status));
2915 		if (connector->status == connector_status_connected) {
2916 			struct drm_display_mode *mode = &crtc->mode;
2917 			seq_printf(m, ", mode:\n");
2918 			intel_seq_print_mode(m, 2, mode);
2919 		} else {
2920 			seq_putc(m, '\n');
2921 		}
2922 	}
2923 }
2924 
2925 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2926 {
2927 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2928 	struct drm_device *dev = &dev_priv->drm;
2929 	struct drm_crtc *crtc = &intel_crtc->base;
2930 	struct intel_encoder *intel_encoder;
2931 	struct drm_plane_state *plane_state = crtc->primary->state;
2932 	struct drm_framebuffer *fb = plane_state->fb;
2933 
2934 	if (fb)
2935 		seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2936 			   fb->base.id, plane_state->src_x >> 16,
2937 			   plane_state->src_y >> 16, fb->width, fb->height);
2938 	else
2939 		seq_puts(m, "\tprimary plane disabled\n");
2940 	for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2941 		intel_encoder_info(m, intel_crtc, intel_encoder);
2942 }
2943 
2944 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2945 {
2946 	struct drm_display_mode *mode = panel->fixed_mode;
2947 
2948 	seq_printf(m, "\tfixed mode:\n");
2949 	intel_seq_print_mode(m, 2, mode);
2950 }
2951 
2952 static void intel_dp_info(struct seq_file *m,
2953 			  struct intel_connector *intel_connector)
2954 {
2955 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2956 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2957 
2958 	seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2959 	seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2960 	if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
2961 		intel_panel_info(m, &intel_connector->panel);
2962 
2963 	drm_dp_downstream_debug(m, intel_dp->dpcd, intel_dp->downstream_ports,
2964 				&intel_dp->aux);
2965 }
2966 
2967 static void intel_dp_mst_info(struct seq_file *m,
2968 			  struct intel_connector *intel_connector)
2969 {
2970 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2971 	struct intel_dp_mst_encoder *intel_mst =
2972 		enc_to_mst(&intel_encoder->base);
2973 	struct intel_digital_port *intel_dig_port = intel_mst->primary;
2974 	struct intel_dp *intel_dp = &intel_dig_port->dp;
2975 	bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
2976 					intel_connector->port);
2977 
2978 	seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
2979 }
2980 
2981 static void intel_hdmi_info(struct seq_file *m,
2982 			    struct intel_connector *intel_connector)
2983 {
2984 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2985 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2986 
2987 	seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2988 }
2989 
2990 static void intel_lvds_info(struct seq_file *m,
2991 			    struct intel_connector *intel_connector)
2992 {
2993 	intel_panel_info(m, &intel_connector->panel);
2994 }
2995 
2996 static void intel_connector_info(struct seq_file *m,
2997 				 struct drm_connector *connector)
2998 {
2999 	struct intel_connector *intel_connector = to_intel_connector(connector);
3000 	struct intel_encoder *intel_encoder = intel_connector->encoder;
3001 	struct drm_display_mode *mode;
3002 
3003 	seq_printf(m, "connector %d: type %s, status: %s\n",
3004 		   connector->base.id, connector->name,
3005 		   drm_get_connector_status_name(connector->status));
3006 	if (connector->status == connector_status_connected) {
3007 		seq_printf(m, "\tname: %s\n", connector->display_info.name);
3008 		seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
3009 			   connector->display_info.width_mm,
3010 			   connector->display_info.height_mm);
3011 		seq_printf(m, "\tsubpixel order: %s\n",
3012 			   drm_get_subpixel_order_name(connector->display_info.subpixel_order));
3013 		seq_printf(m, "\tCEA rev: %d\n",
3014 			   connector->display_info.cea_rev);
3015 	}
3016 
3017 	if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
3018 		return;
3019 
3020 	switch (connector->connector_type) {
3021 	case DRM_MODE_CONNECTOR_DisplayPort:
3022 	case DRM_MODE_CONNECTOR_eDP:
3023 		if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
3024 			intel_dp_mst_info(m, intel_connector);
3025 		else
3026 			intel_dp_info(m, intel_connector);
3027 		break;
3028 	case DRM_MODE_CONNECTOR_LVDS:
3029 		if (intel_encoder->type == INTEL_OUTPUT_LVDS)
3030 			intel_lvds_info(m, intel_connector);
3031 		break;
3032 	case DRM_MODE_CONNECTOR_HDMIA:
3033 		if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
3034 		    intel_encoder->type == INTEL_OUTPUT_UNKNOWN)
3035 			intel_hdmi_info(m, intel_connector);
3036 		break;
3037 	default:
3038 		break;
3039 	}
3040 
3041 	seq_printf(m, "\tmodes:\n");
3042 	list_for_each_entry(mode, &connector->modes, head)
3043 		intel_seq_print_mode(m, 2, mode);
3044 }
3045 
3046 static bool cursor_active(struct drm_i915_private *dev_priv, int pipe)
3047 {
3048 	u32 state;
3049 
3050 	if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
3051 		state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
3052 	else
3053 		state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
3054 
3055 	return state;
3056 }
3057 
3058 static bool cursor_position(struct drm_i915_private *dev_priv,
3059 			    int pipe, int *x, int *y)
3060 {
3061 	u32 pos;
3062 
3063 	pos = I915_READ(CURPOS(pipe));
3064 
3065 	*x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
3066 	if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
3067 		*x = -*x;
3068 
3069 	*y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
3070 	if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
3071 		*y = -*y;
3072 
3073 	return cursor_active(dev_priv, pipe);
3074 }
3075 
3076 static const char *plane_type(enum drm_plane_type type)
3077 {
3078 	switch (type) {
3079 	case DRM_PLANE_TYPE_OVERLAY:
3080 		return "OVL";
3081 	case DRM_PLANE_TYPE_PRIMARY:
3082 		return "PRI";
3083 	case DRM_PLANE_TYPE_CURSOR:
3084 		return "CUR";
3085 	/*
3086 	 * Deliberately omitting default: to generate compiler warnings
3087 	 * when a new drm_plane_type gets added.
3088 	 */
3089 	}
3090 
3091 	return "unknown";
3092 }
3093 
3094 static const char *plane_rotation(unsigned int rotation)
3095 {
3096 	static char buf[48];
3097 	/*
3098 	 * According to doc only one DRM_ROTATE_ is allowed but this
3099 	 * will print them all to visualize if the values are misused
3100 	 */
3101 	snprintf(buf, sizeof(buf),
3102 		 "%s%s%s%s%s%s(0x%08x)",
3103 		 (rotation & DRM_ROTATE_0) ? "0 " : "",
3104 		 (rotation & DRM_ROTATE_90) ? "90 " : "",
3105 		 (rotation & DRM_ROTATE_180) ? "180 " : "",
3106 		 (rotation & DRM_ROTATE_270) ? "270 " : "",
3107 		 (rotation & DRM_REFLECT_X) ? "FLIPX " : "",
3108 		 (rotation & DRM_REFLECT_Y) ? "FLIPY " : "",
3109 		 rotation);
3110 
3111 	return buf;
3112 }
3113 
3114 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3115 {
3116 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3117 	struct drm_device *dev = &dev_priv->drm;
3118 	struct intel_plane *intel_plane;
3119 
3120 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3121 		struct drm_plane_state *state;
3122 		struct drm_plane *plane = &intel_plane->base;
3123 		struct drm_format_name_buf format_name;
3124 
3125 		if (!plane->state) {
3126 			seq_puts(m, "plane->state is NULL!\n");
3127 			continue;
3128 		}
3129 
3130 		state = plane->state;
3131 
3132 		if (state->fb) {
3133 			drm_get_format_name(state->fb->format->format,
3134 					    &format_name);
3135 		} else {
3136 			sprintf(format_name.str, "N/A");
3137 		}
3138 
3139 		seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3140 			   plane->base.id,
3141 			   plane_type(intel_plane->base.type),
3142 			   state->crtc_x, state->crtc_y,
3143 			   state->crtc_w, state->crtc_h,
3144 			   (state->src_x >> 16),
3145 			   ((state->src_x & 0xffff) * 15625) >> 10,
3146 			   (state->src_y >> 16),
3147 			   ((state->src_y & 0xffff) * 15625) >> 10,
3148 			   (state->src_w >> 16),
3149 			   ((state->src_w & 0xffff) * 15625) >> 10,
3150 			   (state->src_h >> 16),
3151 			   ((state->src_h & 0xffff) * 15625) >> 10,
3152 			   format_name.str,
3153 			   plane_rotation(state->rotation));
3154 	}
3155 }
3156 
3157 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3158 {
3159 	struct intel_crtc_state *pipe_config;
3160 	int num_scalers = intel_crtc->num_scalers;
3161 	int i;
3162 
3163 	pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3164 
3165 	/* Not all platformas have a scaler */
3166 	if (num_scalers) {
3167 		seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3168 			   num_scalers,
3169 			   pipe_config->scaler_state.scaler_users,
3170 			   pipe_config->scaler_state.scaler_id);
3171 
3172 		for (i = 0; i < num_scalers; i++) {
3173 			struct intel_scaler *sc =
3174 					&pipe_config->scaler_state.scalers[i];
3175 
3176 			seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3177 				   i, yesno(sc->in_use), sc->mode);
3178 		}
3179 		seq_puts(m, "\n");
3180 	} else {
3181 		seq_puts(m, "\tNo scalers available on this platform\n");
3182 	}
3183 }
3184 
3185 static int i915_display_info(struct seq_file *m, void *unused)
3186 {
3187 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3188 	struct drm_device *dev = &dev_priv->drm;
3189 	struct intel_crtc *crtc;
3190 	struct drm_connector *connector;
3191 	struct drm_connector_list_iter conn_iter;
3192 
3193 	intel_runtime_pm_get(dev_priv);
3194 	seq_printf(m, "CRTC info\n");
3195 	seq_printf(m, "---------\n");
3196 	for_each_intel_crtc(dev, crtc) {
3197 		bool active;
3198 		struct intel_crtc_state *pipe_config;
3199 		int x, y;
3200 
3201 		drm_modeset_lock(&crtc->base.mutex, NULL);
3202 		pipe_config = to_intel_crtc_state(crtc->base.state);
3203 
3204 		seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3205 			   crtc->base.base.id, pipe_name(crtc->pipe),
3206 			   yesno(pipe_config->base.active),
3207 			   pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3208 			   yesno(pipe_config->dither), pipe_config->pipe_bpp);
3209 
3210 		if (pipe_config->base.active) {
3211 			intel_crtc_info(m, crtc);
3212 
3213 			active = cursor_position(dev_priv, crtc->pipe, &x, &y);
3214 			seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
3215 				   yesno(crtc->cursor_base),
3216 				   x, y, crtc->base.cursor->state->crtc_w,
3217 				   crtc->base.cursor->state->crtc_h,
3218 				   crtc->cursor_addr, yesno(active));
3219 			intel_scaler_info(m, crtc);
3220 			intel_plane_info(m, crtc);
3221 		}
3222 
3223 		seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3224 			   yesno(!crtc->cpu_fifo_underrun_disabled),
3225 			   yesno(!crtc->pch_fifo_underrun_disabled));
3226 		drm_modeset_unlock(&crtc->base.mutex);
3227 	}
3228 
3229 	seq_printf(m, "\n");
3230 	seq_printf(m, "Connector info\n");
3231 	seq_printf(m, "--------------\n");
3232 	mutex_lock(&dev->mode_config.mutex);
3233 	drm_connector_list_iter_begin(dev, &conn_iter);
3234 	drm_for_each_connector_iter(connector, &conn_iter)
3235 		intel_connector_info(m, connector);
3236 	drm_connector_list_iter_end(&conn_iter);
3237 	mutex_unlock(&dev->mode_config.mutex);
3238 
3239 	intel_runtime_pm_put(dev_priv);
3240 
3241 	return 0;
3242 }
3243 
3244 static int i915_engine_info(struct seq_file *m, void *unused)
3245 {
3246 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3247 	struct intel_engine_cs *engine;
3248 	enum intel_engine_id id;
3249 
3250 	intel_runtime_pm_get(dev_priv);
3251 
3252 	seq_printf(m, "GT awake? %s\n",
3253 		   yesno(dev_priv->gt.awake));
3254 	seq_printf(m, "Global active requests: %d\n",
3255 		   dev_priv->gt.active_requests);
3256 
3257 	for_each_engine(engine, dev_priv, id) {
3258 		struct intel_breadcrumbs *b = &engine->breadcrumbs;
3259 		struct drm_i915_gem_request *rq;
3260 		struct rb_node *rb;
3261 		u64 addr;
3262 
3263 		seq_printf(m, "%s\n", engine->name);
3264 		seq_printf(m, "\tcurrent seqno %x, last %x, hangcheck %x [%d ms], inflight %d\n",
3265 			   intel_engine_get_seqno(engine),
3266 			   intel_engine_last_submit(engine),
3267 			   engine->hangcheck.seqno,
3268 			   jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp),
3269 			   engine->timeline->inflight_seqnos);
3270 
3271 		rcu_read_lock();
3272 
3273 		seq_printf(m, "\tRequests:\n");
3274 
3275 		rq = list_first_entry(&engine->timeline->requests,
3276 				      struct drm_i915_gem_request, link);
3277 		if (&rq->link != &engine->timeline->requests)
3278 			print_request(m, rq, "\t\tfirst  ");
3279 
3280 		rq = list_last_entry(&engine->timeline->requests,
3281 				     struct drm_i915_gem_request, link);
3282 		if (&rq->link != &engine->timeline->requests)
3283 			print_request(m, rq, "\t\tlast   ");
3284 
3285 		rq = i915_gem_find_active_request(engine);
3286 		if (rq) {
3287 			print_request(m, rq, "\t\tactive ");
3288 			seq_printf(m,
3289 				   "\t\t[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]\n",
3290 				   rq->head, rq->postfix, rq->tail,
3291 				   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
3292 				   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
3293 		}
3294 
3295 		seq_printf(m, "\tRING_START: 0x%08x [0x%08x]\n",
3296 			   I915_READ(RING_START(engine->mmio_base)),
3297 			   rq ? i915_ggtt_offset(rq->ring->vma) : 0);
3298 		seq_printf(m, "\tRING_HEAD:  0x%08x [0x%08x]\n",
3299 			   I915_READ(RING_HEAD(engine->mmio_base)) & HEAD_ADDR,
3300 			   rq ? rq->ring->head : 0);
3301 		seq_printf(m, "\tRING_TAIL:  0x%08x [0x%08x]\n",
3302 			   I915_READ(RING_TAIL(engine->mmio_base)) & TAIL_ADDR,
3303 			   rq ? rq->ring->tail : 0);
3304 		seq_printf(m, "\tRING_CTL:   0x%08x [%s]\n",
3305 			   I915_READ(RING_CTL(engine->mmio_base)),
3306 			   I915_READ(RING_CTL(engine->mmio_base)) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? "waiting" : "");
3307 
3308 		rcu_read_unlock();
3309 
3310 		addr = intel_engine_get_active_head(engine);
3311 		seq_printf(m, "\tACTHD:  0x%08x_%08x\n",
3312 			   upper_32_bits(addr), lower_32_bits(addr));
3313 		addr = intel_engine_get_last_batch_head(engine);
3314 		seq_printf(m, "\tBBADDR: 0x%08x_%08x\n",
3315 			   upper_32_bits(addr), lower_32_bits(addr));
3316 
3317 		if (i915.enable_execlists) {
3318 			u32 ptr, read, write;
3319 			struct rb_node *rb;
3320 
3321 			seq_printf(m, "\tExeclist status: 0x%08x %08x\n",
3322 				   I915_READ(RING_EXECLIST_STATUS_LO(engine)),
3323 				   I915_READ(RING_EXECLIST_STATUS_HI(engine)));
3324 
3325 			ptr = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
3326 			read = GEN8_CSB_READ_PTR(ptr);
3327 			write = GEN8_CSB_WRITE_PTR(ptr);
3328 			seq_printf(m, "\tExeclist CSB read %d, write %d\n",
3329 				   read, write);
3330 			if (read >= GEN8_CSB_ENTRIES)
3331 				read = 0;
3332 			if (write >= GEN8_CSB_ENTRIES)
3333 				write = 0;
3334 			if (read > write)
3335 				write += GEN8_CSB_ENTRIES;
3336 			while (read < write) {
3337 				unsigned int idx = ++read % GEN8_CSB_ENTRIES;
3338 
3339 				seq_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
3340 					   idx,
3341 					   I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, idx)),
3342 					   I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, idx)));
3343 			}
3344 
3345 			rcu_read_lock();
3346 			rq = READ_ONCE(engine->execlist_port[0].request);
3347 			if (rq) {
3348 				seq_printf(m, "\t\tELSP[0] count=%d, ",
3349 					   engine->execlist_port[0].count);
3350 				print_request(m, rq, "rq: ");
3351 			} else {
3352 				seq_printf(m, "\t\tELSP[0] idle\n");
3353 			}
3354 			rq = READ_ONCE(engine->execlist_port[1].request);
3355 			if (rq) {
3356 				seq_printf(m, "\t\tELSP[1] count=%d, ",
3357 					   engine->execlist_port[1].count);
3358 				print_request(m, rq, "rq: ");
3359 			} else {
3360 				seq_printf(m, "\t\tELSP[1] idle\n");
3361 			}
3362 			rcu_read_unlock();
3363 
3364 			spin_lock_irq(&engine->timeline->lock);
3365 			for (rb = engine->execlist_first; rb; rb = rb_next(rb)) {
3366 				rq = rb_entry(rb, typeof(*rq), priotree.node);
3367 				print_request(m, rq, "\t\tQ ");
3368 			}
3369 			spin_unlock_irq(&engine->timeline->lock);
3370 		} else if (INTEL_GEN(dev_priv) > 6) {
3371 			seq_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
3372 				   I915_READ(RING_PP_DIR_BASE(engine)));
3373 			seq_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
3374 				   I915_READ(RING_PP_DIR_BASE_READ(engine)));
3375 			seq_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
3376 				   I915_READ(RING_PP_DIR_DCLV(engine)));
3377 		}
3378 
3379 		spin_lock_irq(&b->rb_lock);
3380 		for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
3381 			struct intel_wait *w = rb_entry(rb, typeof(*w), node);
3382 
3383 			seq_printf(m, "\t%s [%d] waiting for %x\n",
3384 				   w->tsk->comm, w->tsk->pid, w->seqno);
3385 		}
3386 		spin_unlock_irq(&b->rb_lock);
3387 
3388 		seq_puts(m, "\n");
3389 	}
3390 
3391 	intel_runtime_pm_put(dev_priv);
3392 
3393 	return 0;
3394 }
3395 
3396 static int i915_semaphore_status(struct seq_file *m, void *unused)
3397 {
3398 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3399 	struct drm_device *dev = &dev_priv->drm;
3400 	struct intel_engine_cs *engine;
3401 	int num_rings = INTEL_INFO(dev_priv)->num_rings;
3402 	enum intel_engine_id id;
3403 	int j, ret;
3404 
3405 	if (!i915.semaphores) {
3406 		seq_puts(m, "Semaphores are disabled\n");
3407 		return 0;
3408 	}
3409 
3410 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3411 	if (ret)
3412 		return ret;
3413 	intel_runtime_pm_get(dev_priv);
3414 
3415 	if (IS_BROADWELL(dev_priv)) {
3416 		struct page *page;
3417 		uint64_t *seqno;
3418 
3419 		page = i915_gem_object_get_page(dev_priv->semaphore->obj, 0);
3420 
3421 		seqno = (uint64_t *)kmap_atomic(page);
3422 		for_each_engine(engine, dev_priv, id) {
3423 			uint64_t offset;
3424 
3425 			seq_printf(m, "%s\n", engine->name);
3426 
3427 			seq_puts(m, "  Last signal:");
3428 			for (j = 0; j < num_rings; j++) {
3429 				offset = id * I915_NUM_ENGINES + j;
3430 				seq_printf(m, "0x%08llx (0x%02llx) ",
3431 					   seqno[offset], offset * 8);
3432 			}
3433 			seq_putc(m, '\n');
3434 
3435 			seq_puts(m, "  Last wait:  ");
3436 			for (j = 0; j < num_rings; j++) {
3437 				offset = id + (j * I915_NUM_ENGINES);
3438 				seq_printf(m, "0x%08llx (0x%02llx) ",
3439 					   seqno[offset], offset * 8);
3440 			}
3441 			seq_putc(m, '\n');
3442 
3443 		}
3444 		kunmap_atomic(seqno);
3445 	} else {
3446 		seq_puts(m, "  Last signal:");
3447 		for_each_engine(engine, dev_priv, id)
3448 			for (j = 0; j < num_rings; j++)
3449 				seq_printf(m, "0x%08x\n",
3450 					   I915_READ(engine->semaphore.mbox.signal[j]));
3451 		seq_putc(m, '\n');
3452 	}
3453 
3454 	intel_runtime_pm_put(dev_priv);
3455 	mutex_unlock(&dev->struct_mutex);
3456 	return 0;
3457 }
3458 
3459 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3460 {
3461 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3462 	struct drm_device *dev = &dev_priv->drm;
3463 	int i;
3464 
3465 	drm_modeset_lock_all(dev);
3466 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3467 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3468 
3469 		seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3470 		seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
3471 			   pll->state.crtc_mask, pll->active_mask, yesno(pll->on));
3472 		seq_printf(m, " tracked hardware state:\n");
3473 		seq_printf(m, " dpll:    0x%08x\n", pll->state.hw_state.dpll);
3474 		seq_printf(m, " dpll_md: 0x%08x\n",
3475 			   pll->state.hw_state.dpll_md);
3476 		seq_printf(m, " fp0:     0x%08x\n", pll->state.hw_state.fp0);
3477 		seq_printf(m, " fp1:     0x%08x\n", pll->state.hw_state.fp1);
3478 		seq_printf(m, " wrpll:   0x%08x\n", pll->state.hw_state.wrpll);
3479 	}
3480 	drm_modeset_unlock_all(dev);
3481 
3482 	return 0;
3483 }
3484 
3485 static int i915_wa_registers(struct seq_file *m, void *unused)
3486 {
3487 	int i;
3488 	int ret;
3489 	struct intel_engine_cs *engine;
3490 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3491 	struct drm_device *dev = &dev_priv->drm;
3492 	struct i915_workarounds *workarounds = &dev_priv->workarounds;
3493 	enum intel_engine_id id;
3494 
3495 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3496 	if (ret)
3497 		return ret;
3498 
3499 	intel_runtime_pm_get(dev_priv);
3500 
3501 	seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3502 	for_each_engine(engine, dev_priv, id)
3503 		seq_printf(m, "HW whitelist count for %s: %d\n",
3504 			   engine->name, workarounds->hw_whitelist_count[id]);
3505 	for (i = 0; i < workarounds->count; ++i) {
3506 		i915_reg_t addr;
3507 		u32 mask, value, read;
3508 		bool ok;
3509 
3510 		addr = workarounds->reg[i].addr;
3511 		mask = workarounds->reg[i].mask;
3512 		value = workarounds->reg[i].value;
3513 		read = I915_READ(addr);
3514 		ok = (value & mask) == (read & mask);
3515 		seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3516 			   i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3517 	}
3518 
3519 	intel_runtime_pm_put(dev_priv);
3520 	mutex_unlock(&dev->struct_mutex);
3521 
3522 	return 0;
3523 }
3524 
3525 static int i915_ddb_info(struct seq_file *m, void *unused)
3526 {
3527 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3528 	struct drm_device *dev = &dev_priv->drm;
3529 	struct skl_ddb_allocation *ddb;
3530 	struct skl_ddb_entry *entry;
3531 	enum pipe pipe;
3532 	int plane;
3533 
3534 	if (INTEL_GEN(dev_priv) < 9)
3535 		return 0;
3536 
3537 	drm_modeset_lock_all(dev);
3538 
3539 	ddb = &dev_priv->wm.skl_hw.ddb;
3540 
3541 	seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3542 
3543 	for_each_pipe(dev_priv, pipe) {
3544 		seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3545 
3546 		for_each_universal_plane(dev_priv, pipe, plane) {
3547 			entry = &ddb->plane[pipe][plane];
3548 			seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3549 				   entry->start, entry->end,
3550 				   skl_ddb_entry_size(entry));
3551 		}
3552 
3553 		entry = &ddb->plane[pipe][PLANE_CURSOR];
3554 		seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3555 			   entry->end, skl_ddb_entry_size(entry));
3556 	}
3557 
3558 	drm_modeset_unlock_all(dev);
3559 
3560 	return 0;
3561 }
3562 
3563 static void drrs_status_per_crtc(struct seq_file *m,
3564 				 struct drm_device *dev,
3565 				 struct intel_crtc *intel_crtc)
3566 {
3567 	struct drm_i915_private *dev_priv = to_i915(dev);
3568 	struct i915_drrs *drrs = &dev_priv->drrs;
3569 	int vrefresh = 0;
3570 	struct drm_connector *connector;
3571 	struct drm_connector_list_iter conn_iter;
3572 
3573 	drm_connector_list_iter_begin(dev, &conn_iter);
3574 	drm_for_each_connector_iter(connector, &conn_iter) {
3575 		if (connector->state->crtc != &intel_crtc->base)
3576 			continue;
3577 
3578 		seq_printf(m, "%s:\n", connector->name);
3579 	}
3580 	drm_connector_list_iter_end(&conn_iter);
3581 
3582 	if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3583 		seq_puts(m, "\tVBT: DRRS_type: Static");
3584 	else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3585 		seq_puts(m, "\tVBT: DRRS_type: Seamless");
3586 	else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3587 		seq_puts(m, "\tVBT: DRRS_type: None");
3588 	else
3589 		seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3590 
3591 	seq_puts(m, "\n\n");
3592 
3593 	if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3594 		struct intel_panel *panel;
3595 
3596 		mutex_lock(&drrs->mutex);
3597 		/* DRRS Supported */
3598 		seq_puts(m, "\tDRRS Supported: Yes\n");
3599 
3600 		/* disable_drrs() will make drrs->dp NULL */
3601 		if (!drrs->dp) {
3602 			seq_puts(m, "Idleness DRRS: Disabled");
3603 			mutex_unlock(&drrs->mutex);
3604 			return;
3605 		}
3606 
3607 		panel = &drrs->dp->attached_connector->panel;
3608 		seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3609 					drrs->busy_frontbuffer_bits);
3610 
3611 		seq_puts(m, "\n\t\t");
3612 		if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3613 			seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3614 			vrefresh = panel->fixed_mode->vrefresh;
3615 		} else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3616 			seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3617 			vrefresh = panel->downclock_mode->vrefresh;
3618 		} else {
3619 			seq_printf(m, "DRRS_State: Unknown(%d)\n",
3620 						drrs->refresh_rate_type);
3621 			mutex_unlock(&drrs->mutex);
3622 			return;
3623 		}
3624 		seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3625 
3626 		seq_puts(m, "\n\t\t");
3627 		mutex_unlock(&drrs->mutex);
3628 	} else {
3629 		/* DRRS not supported. Print the VBT parameter*/
3630 		seq_puts(m, "\tDRRS Supported : No");
3631 	}
3632 	seq_puts(m, "\n");
3633 }
3634 
3635 static int i915_drrs_status(struct seq_file *m, void *unused)
3636 {
3637 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3638 	struct drm_device *dev = &dev_priv->drm;
3639 	struct intel_crtc *intel_crtc;
3640 	int active_crtc_cnt = 0;
3641 
3642 	drm_modeset_lock_all(dev);
3643 	for_each_intel_crtc(dev, intel_crtc) {
3644 		if (intel_crtc->base.state->active) {
3645 			active_crtc_cnt++;
3646 			seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3647 
3648 			drrs_status_per_crtc(m, dev, intel_crtc);
3649 		}
3650 	}
3651 	drm_modeset_unlock_all(dev);
3652 
3653 	if (!active_crtc_cnt)
3654 		seq_puts(m, "No active crtc found\n");
3655 
3656 	return 0;
3657 }
3658 
3659 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3660 {
3661 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3662 	struct drm_device *dev = &dev_priv->drm;
3663 	struct intel_encoder *intel_encoder;
3664 	struct intel_digital_port *intel_dig_port;
3665 	struct drm_connector *connector;
3666 	struct drm_connector_list_iter conn_iter;
3667 
3668 	drm_connector_list_iter_begin(dev, &conn_iter);
3669 	drm_for_each_connector_iter(connector, &conn_iter) {
3670 		if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
3671 			continue;
3672 
3673 		intel_encoder = intel_attached_encoder(connector);
3674 		if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
3675 			continue;
3676 
3677 		intel_dig_port = enc_to_dig_port(&intel_encoder->base);
3678 		if (!intel_dig_port->dp.can_mst)
3679 			continue;
3680 
3681 		seq_printf(m, "MST Source Port %c\n",
3682 			   port_name(intel_dig_port->port));
3683 		drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3684 	}
3685 	drm_connector_list_iter_end(&conn_iter);
3686 
3687 	return 0;
3688 }
3689 
3690 static ssize_t i915_displayport_test_active_write(struct file *file,
3691 						  const char __user *ubuf,
3692 						  size_t len, loff_t *offp)
3693 {
3694 	char *input_buffer;
3695 	int status = 0;
3696 	struct drm_device *dev;
3697 	struct drm_connector *connector;
3698 	struct drm_connector_list_iter conn_iter;
3699 	struct intel_dp *intel_dp;
3700 	int val = 0;
3701 
3702 	dev = ((struct seq_file *)file->private_data)->private;
3703 
3704 	if (len == 0)
3705 		return 0;
3706 
3707 	input_buffer = kmalloc(len + 1, GFP_KERNEL);
3708 	if (!input_buffer)
3709 		return -ENOMEM;
3710 
3711 	if (copy_from_user(input_buffer, ubuf, len)) {
3712 		status = -EFAULT;
3713 		goto out;
3714 	}
3715 
3716 	input_buffer[len] = '\0';
3717 	DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
3718 
3719 	drm_connector_list_iter_begin(dev, &conn_iter);
3720 	drm_for_each_connector_iter(connector, &conn_iter) {
3721 		if (connector->connector_type !=
3722 		    DRM_MODE_CONNECTOR_DisplayPort)
3723 			continue;
3724 
3725 		if (connector->status == connector_status_connected &&
3726 		    connector->encoder != NULL) {
3727 			intel_dp = enc_to_intel_dp(connector->encoder);
3728 			status = kstrtoint(input_buffer, 10, &val);
3729 			if (status < 0)
3730 				break;
3731 			DRM_DEBUG_DRIVER("Got %d for test active\n", val);
3732 			/* To prevent erroneous activation of the compliance
3733 			 * testing code, only accept an actual value of 1 here
3734 			 */
3735 			if (val == 1)
3736 				intel_dp->compliance.test_active = 1;
3737 			else
3738 				intel_dp->compliance.test_active = 0;
3739 		}
3740 	}
3741 	drm_connector_list_iter_end(&conn_iter);
3742 out:
3743 	kfree(input_buffer);
3744 	if (status < 0)
3745 		return status;
3746 
3747 	*offp += len;
3748 	return len;
3749 }
3750 
3751 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
3752 {
3753 	struct drm_device *dev = m->private;
3754 	struct drm_connector *connector;
3755 	struct drm_connector_list_iter conn_iter;
3756 	struct intel_dp *intel_dp;
3757 
3758 	drm_connector_list_iter_begin(dev, &conn_iter);
3759 	drm_for_each_connector_iter(connector, &conn_iter) {
3760 		if (connector->connector_type !=
3761 		    DRM_MODE_CONNECTOR_DisplayPort)
3762 			continue;
3763 
3764 		if (connector->status == connector_status_connected &&
3765 		    connector->encoder != NULL) {
3766 			intel_dp = enc_to_intel_dp(connector->encoder);
3767 			if (intel_dp->compliance.test_active)
3768 				seq_puts(m, "1");
3769 			else
3770 				seq_puts(m, "0");
3771 		} else
3772 			seq_puts(m, "0");
3773 	}
3774 	drm_connector_list_iter_end(&conn_iter);
3775 
3776 	return 0;
3777 }
3778 
3779 static int i915_displayport_test_active_open(struct inode *inode,
3780 					     struct file *file)
3781 {
3782 	struct drm_i915_private *dev_priv = inode->i_private;
3783 
3784 	return single_open(file, i915_displayport_test_active_show,
3785 			   &dev_priv->drm);
3786 }
3787 
3788 static const struct file_operations i915_displayport_test_active_fops = {
3789 	.owner = THIS_MODULE,
3790 	.open = i915_displayport_test_active_open,
3791 	.read = seq_read,
3792 	.llseek = seq_lseek,
3793 	.release = single_release,
3794 	.write = i915_displayport_test_active_write
3795 };
3796 
3797 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
3798 {
3799 	struct drm_device *dev = m->private;
3800 	struct drm_connector *connector;
3801 	struct drm_connector_list_iter conn_iter;
3802 	struct intel_dp *intel_dp;
3803 
3804 	drm_connector_list_iter_begin(dev, &conn_iter);
3805 	drm_for_each_connector_iter(connector, &conn_iter) {
3806 		if (connector->connector_type !=
3807 		    DRM_MODE_CONNECTOR_DisplayPort)
3808 			continue;
3809 
3810 		if (connector->status == connector_status_connected &&
3811 		    connector->encoder != NULL) {
3812 			intel_dp = enc_to_intel_dp(connector->encoder);
3813 			if (intel_dp->compliance.test_type ==
3814 			    DP_TEST_LINK_EDID_READ)
3815 				seq_printf(m, "%lx",
3816 					   intel_dp->compliance.test_data.edid);
3817 			else if (intel_dp->compliance.test_type ==
3818 				 DP_TEST_LINK_VIDEO_PATTERN) {
3819 				seq_printf(m, "hdisplay: %d\n",
3820 					   intel_dp->compliance.test_data.hdisplay);
3821 				seq_printf(m, "vdisplay: %d\n",
3822 					   intel_dp->compliance.test_data.vdisplay);
3823 				seq_printf(m, "bpc: %u\n",
3824 					   intel_dp->compliance.test_data.bpc);
3825 			}
3826 		} else
3827 			seq_puts(m, "0");
3828 	}
3829 	drm_connector_list_iter_end(&conn_iter);
3830 
3831 	return 0;
3832 }
3833 static int i915_displayport_test_data_open(struct inode *inode,
3834 					   struct file *file)
3835 {
3836 	struct drm_i915_private *dev_priv = inode->i_private;
3837 
3838 	return single_open(file, i915_displayport_test_data_show,
3839 			   &dev_priv->drm);
3840 }
3841 
3842 static const struct file_operations i915_displayport_test_data_fops = {
3843 	.owner = THIS_MODULE,
3844 	.open = i915_displayport_test_data_open,
3845 	.read = seq_read,
3846 	.llseek = seq_lseek,
3847 	.release = single_release
3848 };
3849 
3850 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
3851 {
3852 	struct drm_device *dev = m->private;
3853 	struct drm_connector *connector;
3854 	struct drm_connector_list_iter conn_iter;
3855 	struct intel_dp *intel_dp;
3856 
3857 	drm_connector_list_iter_begin(dev, &conn_iter);
3858 	drm_for_each_connector_iter(connector, &conn_iter) {
3859 		if (connector->connector_type !=
3860 		    DRM_MODE_CONNECTOR_DisplayPort)
3861 			continue;
3862 
3863 		if (connector->status == connector_status_connected &&
3864 		    connector->encoder != NULL) {
3865 			intel_dp = enc_to_intel_dp(connector->encoder);
3866 			seq_printf(m, "%02lx", intel_dp->compliance.test_type);
3867 		} else
3868 			seq_puts(m, "0");
3869 	}
3870 	drm_connector_list_iter_end(&conn_iter);
3871 
3872 	return 0;
3873 }
3874 
3875 static int i915_displayport_test_type_open(struct inode *inode,
3876 				       struct file *file)
3877 {
3878 	struct drm_i915_private *dev_priv = inode->i_private;
3879 
3880 	return single_open(file, i915_displayport_test_type_show,
3881 			   &dev_priv->drm);
3882 }
3883 
3884 static const struct file_operations i915_displayport_test_type_fops = {
3885 	.owner = THIS_MODULE,
3886 	.open = i915_displayport_test_type_open,
3887 	.read = seq_read,
3888 	.llseek = seq_lseek,
3889 	.release = single_release
3890 };
3891 
3892 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
3893 {
3894 	struct drm_i915_private *dev_priv = m->private;
3895 	struct drm_device *dev = &dev_priv->drm;
3896 	int level;
3897 	int num_levels;
3898 
3899 	if (IS_CHERRYVIEW(dev_priv))
3900 		num_levels = 3;
3901 	else if (IS_VALLEYVIEW(dev_priv))
3902 		num_levels = 1;
3903 	else
3904 		num_levels = ilk_wm_max_level(dev_priv) + 1;
3905 
3906 	drm_modeset_lock_all(dev);
3907 
3908 	for (level = 0; level < num_levels; level++) {
3909 		unsigned int latency = wm[level];
3910 
3911 		/*
3912 		 * - WM1+ latency values in 0.5us units
3913 		 * - latencies are in us on gen9/vlv/chv
3914 		 */
3915 		if (INTEL_GEN(dev_priv) >= 9 || IS_VALLEYVIEW(dev_priv) ||
3916 		    IS_CHERRYVIEW(dev_priv))
3917 			latency *= 10;
3918 		else if (level > 0)
3919 			latency *= 5;
3920 
3921 		seq_printf(m, "WM%d %u (%u.%u usec)\n",
3922 			   level, wm[level], latency / 10, latency % 10);
3923 	}
3924 
3925 	drm_modeset_unlock_all(dev);
3926 }
3927 
3928 static int pri_wm_latency_show(struct seq_file *m, void *data)
3929 {
3930 	struct drm_i915_private *dev_priv = m->private;
3931 	const uint16_t *latencies;
3932 
3933 	if (INTEL_GEN(dev_priv) >= 9)
3934 		latencies = dev_priv->wm.skl_latency;
3935 	else
3936 		latencies = dev_priv->wm.pri_latency;
3937 
3938 	wm_latency_show(m, latencies);
3939 
3940 	return 0;
3941 }
3942 
3943 static int spr_wm_latency_show(struct seq_file *m, void *data)
3944 {
3945 	struct drm_i915_private *dev_priv = m->private;
3946 	const uint16_t *latencies;
3947 
3948 	if (INTEL_GEN(dev_priv) >= 9)
3949 		latencies = dev_priv->wm.skl_latency;
3950 	else
3951 		latencies = dev_priv->wm.spr_latency;
3952 
3953 	wm_latency_show(m, latencies);
3954 
3955 	return 0;
3956 }
3957 
3958 static int cur_wm_latency_show(struct seq_file *m, void *data)
3959 {
3960 	struct drm_i915_private *dev_priv = m->private;
3961 	const uint16_t *latencies;
3962 
3963 	if (INTEL_GEN(dev_priv) >= 9)
3964 		latencies = dev_priv->wm.skl_latency;
3965 	else
3966 		latencies = dev_priv->wm.cur_latency;
3967 
3968 	wm_latency_show(m, latencies);
3969 
3970 	return 0;
3971 }
3972 
3973 static int pri_wm_latency_open(struct inode *inode, struct file *file)
3974 {
3975 	struct drm_i915_private *dev_priv = inode->i_private;
3976 
3977 	if (INTEL_GEN(dev_priv) < 5)
3978 		return -ENODEV;
3979 
3980 	return single_open(file, pri_wm_latency_show, dev_priv);
3981 }
3982 
3983 static int spr_wm_latency_open(struct inode *inode, struct file *file)
3984 {
3985 	struct drm_i915_private *dev_priv = inode->i_private;
3986 
3987 	if (HAS_GMCH_DISPLAY(dev_priv))
3988 		return -ENODEV;
3989 
3990 	return single_open(file, spr_wm_latency_show, dev_priv);
3991 }
3992 
3993 static int cur_wm_latency_open(struct inode *inode, struct file *file)
3994 {
3995 	struct drm_i915_private *dev_priv = inode->i_private;
3996 
3997 	if (HAS_GMCH_DISPLAY(dev_priv))
3998 		return -ENODEV;
3999 
4000 	return single_open(file, cur_wm_latency_show, dev_priv);
4001 }
4002 
4003 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4004 				size_t len, loff_t *offp, uint16_t wm[8])
4005 {
4006 	struct seq_file *m = file->private_data;
4007 	struct drm_i915_private *dev_priv = m->private;
4008 	struct drm_device *dev = &dev_priv->drm;
4009 	uint16_t new[8] = { 0 };
4010 	int num_levels;
4011 	int level;
4012 	int ret;
4013 	char tmp[32];
4014 
4015 	if (IS_CHERRYVIEW(dev_priv))
4016 		num_levels = 3;
4017 	else if (IS_VALLEYVIEW(dev_priv))
4018 		num_levels = 1;
4019 	else
4020 		num_levels = ilk_wm_max_level(dev_priv) + 1;
4021 
4022 	if (len >= sizeof(tmp))
4023 		return -EINVAL;
4024 
4025 	if (copy_from_user(tmp, ubuf, len))
4026 		return -EFAULT;
4027 
4028 	tmp[len] = '\0';
4029 
4030 	ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4031 		     &new[0], &new[1], &new[2], &new[3],
4032 		     &new[4], &new[5], &new[6], &new[7]);
4033 	if (ret != num_levels)
4034 		return -EINVAL;
4035 
4036 	drm_modeset_lock_all(dev);
4037 
4038 	for (level = 0; level < num_levels; level++)
4039 		wm[level] = new[level];
4040 
4041 	drm_modeset_unlock_all(dev);
4042 
4043 	return len;
4044 }
4045 
4046 
4047 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4048 				    size_t len, loff_t *offp)
4049 {
4050 	struct seq_file *m = file->private_data;
4051 	struct drm_i915_private *dev_priv = m->private;
4052 	uint16_t *latencies;
4053 
4054 	if (INTEL_GEN(dev_priv) >= 9)
4055 		latencies = dev_priv->wm.skl_latency;
4056 	else
4057 		latencies = dev_priv->wm.pri_latency;
4058 
4059 	return wm_latency_write(file, ubuf, len, offp, latencies);
4060 }
4061 
4062 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4063 				    size_t len, loff_t *offp)
4064 {
4065 	struct seq_file *m = file->private_data;
4066 	struct drm_i915_private *dev_priv = m->private;
4067 	uint16_t *latencies;
4068 
4069 	if (INTEL_GEN(dev_priv) >= 9)
4070 		latencies = dev_priv->wm.skl_latency;
4071 	else
4072 		latencies = dev_priv->wm.spr_latency;
4073 
4074 	return wm_latency_write(file, ubuf, len, offp, latencies);
4075 }
4076 
4077 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4078 				    size_t len, loff_t *offp)
4079 {
4080 	struct seq_file *m = file->private_data;
4081 	struct drm_i915_private *dev_priv = m->private;
4082 	uint16_t *latencies;
4083 
4084 	if (INTEL_GEN(dev_priv) >= 9)
4085 		latencies = dev_priv->wm.skl_latency;
4086 	else
4087 		latencies = dev_priv->wm.cur_latency;
4088 
4089 	return wm_latency_write(file, ubuf, len, offp, latencies);
4090 }
4091 
4092 static const struct file_operations i915_pri_wm_latency_fops = {
4093 	.owner = THIS_MODULE,
4094 	.open = pri_wm_latency_open,
4095 	.read = seq_read,
4096 	.llseek = seq_lseek,
4097 	.release = single_release,
4098 	.write = pri_wm_latency_write
4099 };
4100 
4101 static const struct file_operations i915_spr_wm_latency_fops = {
4102 	.owner = THIS_MODULE,
4103 	.open = spr_wm_latency_open,
4104 	.read = seq_read,
4105 	.llseek = seq_lseek,
4106 	.release = single_release,
4107 	.write = spr_wm_latency_write
4108 };
4109 
4110 static const struct file_operations i915_cur_wm_latency_fops = {
4111 	.owner = THIS_MODULE,
4112 	.open = cur_wm_latency_open,
4113 	.read = seq_read,
4114 	.llseek = seq_lseek,
4115 	.release = single_release,
4116 	.write = cur_wm_latency_write
4117 };
4118 
4119 static int
4120 i915_wedged_get(void *data, u64 *val)
4121 {
4122 	struct drm_i915_private *dev_priv = data;
4123 
4124 	*val = i915_terminally_wedged(&dev_priv->gpu_error);
4125 
4126 	return 0;
4127 }
4128 
4129 static int
4130 i915_wedged_set(void *data, u64 val)
4131 {
4132 	struct drm_i915_private *i915 = data;
4133 	struct intel_engine_cs *engine;
4134 	unsigned int tmp;
4135 
4136 	/*
4137 	 * There is no safeguard against this debugfs entry colliding
4138 	 * with the hangcheck calling same i915_handle_error() in
4139 	 * parallel, causing an explosion. For now we assume that the
4140 	 * test harness is responsible enough not to inject gpu hangs
4141 	 * while it is writing to 'i915_wedged'
4142 	 */
4143 
4144 	if (i915_reset_backoff(&i915->gpu_error))
4145 		return -EAGAIN;
4146 
4147 	for_each_engine_masked(engine, i915, val, tmp) {
4148 		engine->hangcheck.seqno = intel_engine_get_seqno(engine);
4149 		engine->hangcheck.stalled = true;
4150 	}
4151 
4152 	i915_handle_error(i915, val, "Manually setting wedged to %llu", val);
4153 
4154 	wait_on_bit(&i915->gpu_error.flags,
4155 		    I915_RESET_HANDOFF,
4156 		    TASK_UNINTERRUPTIBLE);
4157 
4158 	return 0;
4159 }
4160 
4161 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4162 			i915_wedged_get, i915_wedged_set,
4163 			"%llu\n");
4164 
4165 static int
4166 fault_irq_set(struct drm_i915_private *i915,
4167 	      unsigned long *irq,
4168 	      unsigned long val)
4169 {
4170 	int err;
4171 
4172 	err = mutex_lock_interruptible(&i915->drm.struct_mutex);
4173 	if (err)
4174 		return err;
4175 
4176 	err = i915_gem_wait_for_idle(i915,
4177 				     I915_WAIT_LOCKED |
4178 				     I915_WAIT_INTERRUPTIBLE);
4179 	if (err)
4180 		goto err_unlock;
4181 
4182 	*irq = val;
4183 	mutex_unlock(&i915->drm.struct_mutex);
4184 
4185 	/* Flush idle worker to disarm irq */
4186 	while (flush_delayed_work(&i915->gt.idle_work))
4187 		;
4188 
4189 	return 0;
4190 
4191 err_unlock:
4192 	mutex_unlock(&i915->drm.struct_mutex);
4193 	return err;
4194 }
4195 
4196 static int
4197 i915_ring_missed_irq_get(void *data, u64 *val)
4198 {
4199 	struct drm_i915_private *dev_priv = data;
4200 
4201 	*val = dev_priv->gpu_error.missed_irq_rings;
4202 	return 0;
4203 }
4204 
4205 static int
4206 i915_ring_missed_irq_set(void *data, u64 val)
4207 {
4208 	struct drm_i915_private *i915 = data;
4209 
4210 	return fault_irq_set(i915, &i915->gpu_error.missed_irq_rings, val);
4211 }
4212 
4213 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4214 			i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4215 			"0x%08llx\n");
4216 
4217 static int
4218 i915_ring_test_irq_get(void *data, u64 *val)
4219 {
4220 	struct drm_i915_private *dev_priv = data;
4221 
4222 	*val = dev_priv->gpu_error.test_irq_rings;
4223 
4224 	return 0;
4225 }
4226 
4227 static int
4228 i915_ring_test_irq_set(void *data, u64 val)
4229 {
4230 	struct drm_i915_private *i915 = data;
4231 
4232 	val &= INTEL_INFO(i915)->ring_mask;
4233 	DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4234 
4235 	return fault_irq_set(i915, &i915->gpu_error.test_irq_rings, val);
4236 }
4237 
4238 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4239 			i915_ring_test_irq_get, i915_ring_test_irq_set,
4240 			"0x%08llx\n");
4241 
4242 #define DROP_UNBOUND 0x1
4243 #define DROP_BOUND 0x2
4244 #define DROP_RETIRE 0x4
4245 #define DROP_ACTIVE 0x8
4246 #define DROP_FREED 0x10
4247 #define DROP_SHRINK_ALL 0x20
4248 #define DROP_ALL (DROP_UNBOUND	| \
4249 		  DROP_BOUND	| \
4250 		  DROP_RETIRE	| \
4251 		  DROP_ACTIVE	| \
4252 		  DROP_FREED	| \
4253 		  DROP_SHRINK_ALL)
4254 static int
4255 i915_drop_caches_get(void *data, u64 *val)
4256 {
4257 	*val = DROP_ALL;
4258 
4259 	return 0;
4260 }
4261 
4262 static int
4263 i915_drop_caches_set(void *data, u64 val)
4264 {
4265 	struct drm_i915_private *dev_priv = data;
4266 	struct drm_device *dev = &dev_priv->drm;
4267 	int ret;
4268 
4269 	DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4270 
4271 	/* No need to check and wait for gpu resets, only libdrm auto-restarts
4272 	 * on ioctls on -EAGAIN. */
4273 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4274 	if (ret)
4275 		return ret;
4276 
4277 	if (val & DROP_ACTIVE) {
4278 		ret = i915_gem_wait_for_idle(dev_priv,
4279 					     I915_WAIT_INTERRUPTIBLE |
4280 					     I915_WAIT_LOCKED);
4281 		if (ret)
4282 			goto unlock;
4283 	}
4284 
4285 	if (val & DROP_RETIRE)
4286 		i915_gem_retire_requests(dev_priv);
4287 
4288 	lockdep_set_current_reclaim_state(GFP_KERNEL);
4289 	if (val & DROP_BOUND)
4290 		i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4291 
4292 	if (val & DROP_UNBOUND)
4293 		i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4294 
4295 	if (val & DROP_SHRINK_ALL)
4296 		i915_gem_shrink_all(dev_priv);
4297 	lockdep_clear_current_reclaim_state();
4298 
4299 unlock:
4300 	mutex_unlock(&dev->struct_mutex);
4301 
4302 	if (val & DROP_FREED) {
4303 		synchronize_rcu();
4304 		i915_gem_drain_freed_objects(dev_priv);
4305 	}
4306 
4307 	return ret;
4308 }
4309 
4310 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4311 			i915_drop_caches_get, i915_drop_caches_set,
4312 			"0x%08llx\n");
4313 
4314 static int
4315 i915_max_freq_get(void *data, u64 *val)
4316 {
4317 	struct drm_i915_private *dev_priv = data;
4318 
4319 	if (INTEL_GEN(dev_priv) < 6)
4320 		return -ENODEV;
4321 
4322 	*val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4323 	return 0;
4324 }
4325 
4326 static int
4327 i915_max_freq_set(void *data, u64 val)
4328 {
4329 	struct drm_i915_private *dev_priv = data;
4330 	u32 hw_max, hw_min;
4331 	int ret;
4332 
4333 	if (INTEL_GEN(dev_priv) < 6)
4334 		return -ENODEV;
4335 
4336 	DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4337 
4338 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4339 	if (ret)
4340 		return ret;
4341 
4342 	/*
4343 	 * Turbo will still be enabled, but won't go above the set value.
4344 	 */
4345 	val = intel_freq_opcode(dev_priv, val);
4346 
4347 	hw_max = dev_priv->rps.max_freq;
4348 	hw_min = dev_priv->rps.min_freq;
4349 
4350 	if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4351 		mutex_unlock(&dev_priv->rps.hw_lock);
4352 		return -EINVAL;
4353 	}
4354 
4355 	dev_priv->rps.max_freq_softlimit = val;
4356 
4357 	if (intel_set_rps(dev_priv, val))
4358 		DRM_DEBUG_DRIVER("failed to update RPS to new softlimit\n");
4359 
4360 	mutex_unlock(&dev_priv->rps.hw_lock);
4361 
4362 	return 0;
4363 }
4364 
4365 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4366 			i915_max_freq_get, i915_max_freq_set,
4367 			"%llu\n");
4368 
4369 static int
4370 i915_min_freq_get(void *data, u64 *val)
4371 {
4372 	struct drm_i915_private *dev_priv = data;
4373 
4374 	if (INTEL_GEN(dev_priv) < 6)
4375 		return -ENODEV;
4376 
4377 	*val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4378 	return 0;
4379 }
4380 
4381 static int
4382 i915_min_freq_set(void *data, u64 val)
4383 {
4384 	struct drm_i915_private *dev_priv = data;
4385 	u32 hw_max, hw_min;
4386 	int ret;
4387 
4388 	if (INTEL_GEN(dev_priv) < 6)
4389 		return -ENODEV;
4390 
4391 	DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4392 
4393 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4394 	if (ret)
4395 		return ret;
4396 
4397 	/*
4398 	 * Turbo will still be enabled, but won't go below the set value.
4399 	 */
4400 	val = intel_freq_opcode(dev_priv, val);
4401 
4402 	hw_max = dev_priv->rps.max_freq;
4403 	hw_min = dev_priv->rps.min_freq;
4404 
4405 	if (val < hw_min ||
4406 	    val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
4407 		mutex_unlock(&dev_priv->rps.hw_lock);
4408 		return -EINVAL;
4409 	}
4410 
4411 	dev_priv->rps.min_freq_softlimit = val;
4412 
4413 	if (intel_set_rps(dev_priv, val))
4414 		DRM_DEBUG_DRIVER("failed to update RPS to new softlimit\n");
4415 
4416 	mutex_unlock(&dev_priv->rps.hw_lock);
4417 
4418 	return 0;
4419 }
4420 
4421 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4422 			i915_min_freq_get, i915_min_freq_set,
4423 			"%llu\n");
4424 
4425 static int
4426 i915_cache_sharing_get(void *data, u64 *val)
4427 {
4428 	struct drm_i915_private *dev_priv = data;
4429 	u32 snpcr;
4430 
4431 	if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
4432 		return -ENODEV;
4433 
4434 	intel_runtime_pm_get(dev_priv);
4435 
4436 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4437 
4438 	intel_runtime_pm_put(dev_priv);
4439 
4440 	*val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4441 
4442 	return 0;
4443 }
4444 
4445 static int
4446 i915_cache_sharing_set(void *data, u64 val)
4447 {
4448 	struct drm_i915_private *dev_priv = data;
4449 	u32 snpcr;
4450 
4451 	if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
4452 		return -ENODEV;
4453 
4454 	if (val > 3)
4455 		return -EINVAL;
4456 
4457 	intel_runtime_pm_get(dev_priv);
4458 	DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4459 
4460 	/* Update the cache sharing policy here as well */
4461 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4462 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
4463 	snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4464 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4465 
4466 	intel_runtime_pm_put(dev_priv);
4467 	return 0;
4468 }
4469 
4470 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4471 			i915_cache_sharing_get, i915_cache_sharing_set,
4472 			"%llu\n");
4473 
4474 static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
4475 					  struct sseu_dev_info *sseu)
4476 {
4477 	int ss_max = 2;
4478 	int ss;
4479 	u32 sig1[ss_max], sig2[ss_max];
4480 
4481 	sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
4482 	sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
4483 	sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
4484 	sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
4485 
4486 	for (ss = 0; ss < ss_max; ss++) {
4487 		unsigned int eu_cnt;
4488 
4489 		if (sig1[ss] & CHV_SS_PG_ENABLE)
4490 			/* skip disabled subslice */
4491 			continue;
4492 
4493 		sseu->slice_mask = BIT(0);
4494 		sseu->subslice_mask |= BIT(ss);
4495 		eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
4496 			 ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
4497 			 ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
4498 			 ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
4499 		sseu->eu_total += eu_cnt;
4500 		sseu->eu_per_subslice = max_t(unsigned int,
4501 					      sseu->eu_per_subslice, eu_cnt);
4502 	}
4503 }
4504 
4505 static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
4506 				    struct sseu_dev_info *sseu)
4507 {
4508 	int s_max = 3, ss_max = 4;
4509 	int s, ss;
4510 	u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
4511 
4512 	/* BXT has a single slice and at most 3 subslices. */
4513 	if (IS_GEN9_LP(dev_priv)) {
4514 		s_max = 1;
4515 		ss_max = 3;
4516 	}
4517 
4518 	for (s = 0; s < s_max; s++) {
4519 		s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
4520 		eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
4521 		eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
4522 	}
4523 
4524 	eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
4525 		     GEN9_PGCTL_SSA_EU19_ACK |
4526 		     GEN9_PGCTL_SSA_EU210_ACK |
4527 		     GEN9_PGCTL_SSA_EU311_ACK;
4528 	eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
4529 		     GEN9_PGCTL_SSB_EU19_ACK |
4530 		     GEN9_PGCTL_SSB_EU210_ACK |
4531 		     GEN9_PGCTL_SSB_EU311_ACK;
4532 
4533 	for (s = 0; s < s_max; s++) {
4534 		if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
4535 			/* skip disabled slice */
4536 			continue;
4537 
4538 		sseu->slice_mask |= BIT(s);
4539 
4540 		if (IS_GEN9_BC(dev_priv))
4541 			sseu->subslice_mask =
4542 				INTEL_INFO(dev_priv)->sseu.subslice_mask;
4543 
4544 		for (ss = 0; ss < ss_max; ss++) {
4545 			unsigned int eu_cnt;
4546 
4547 			if (IS_GEN9_LP(dev_priv)) {
4548 				if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
4549 					/* skip disabled subslice */
4550 					continue;
4551 
4552 				sseu->subslice_mask |= BIT(ss);
4553 			}
4554 
4555 			eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
4556 					       eu_mask[ss%2]);
4557 			sseu->eu_total += eu_cnt;
4558 			sseu->eu_per_subslice = max_t(unsigned int,
4559 						      sseu->eu_per_subslice,
4560 						      eu_cnt);
4561 		}
4562 	}
4563 }
4564 
4565 static void broadwell_sseu_device_status(struct drm_i915_private *dev_priv,
4566 					 struct sseu_dev_info *sseu)
4567 {
4568 	u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
4569 	int s;
4570 
4571 	sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
4572 
4573 	if (sseu->slice_mask) {
4574 		sseu->subslice_mask = INTEL_INFO(dev_priv)->sseu.subslice_mask;
4575 		sseu->eu_per_subslice =
4576 				INTEL_INFO(dev_priv)->sseu.eu_per_subslice;
4577 		sseu->eu_total = sseu->eu_per_subslice *
4578 				 sseu_subslice_total(sseu);
4579 
4580 		/* subtract fused off EU(s) from enabled slice(s) */
4581 		for (s = 0; s < fls(sseu->slice_mask); s++) {
4582 			u8 subslice_7eu =
4583 				INTEL_INFO(dev_priv)->sseu.subslice_7eu[s];
4584 
4585 			sseu->eu_total -= hweight8(subslice_7eu);
4586 		}
4587 	}
4588 }
4589 
4590 static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
4591 				 const struct sseu_dev_info *sseu)
4592 {
4593 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
4594 	const char *type = is_available_info ? "Available" : "Enabled";
4595 
4596 	seq_printf(m, "  %s Slice Mask: %04x\n", type,
4597 		   sseu->slice_mask);
4598 	seq_printf(m, "  %s Slice Total: %u\n", type,
4599 		   hweight8(sseu->slice_mask));
4600 	seq_printf(m, "  %s Subslice Total: %u\n", type,
4601 		   sseu_subslice_total(sseu));
4602 	seq_printf(m, "  %s Subslice Mask: %04x\n", type,
4603 		   sseu->subslice_mask);
4604 	seq_printf(m, "  %s Subslice Per Slice: %u\n", type,
4605 		   hweight8(sseu->subslice_mask));
4606 	seq_printf(m, "  %s EU Total: %u\n", type,
4607 		   sseu->eu_total);
4608 	seq_printf(m, "  %s EU Per Subslice: %u\n", type,
4609 		   sseu->eu_per_subslice);
4610 
4611 	if (!is_available_info)
4612 		return;
4613 
4614 	seq_printf(m, "  Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
4615 	if (HAS_POOLED_EU(dev_priv))
4616 		seq_printf(m, "  Min EU in pool: %u\n", sseu->min_eu_in_pool);
4617 
4618 	seq_printf(m, "  Has Slice Power Gating: %s\n",
4619 		   yesno(sseu->has_slice_pg));
4620 	seq_printf(m, "  Has Subslice Power Gating: %s\n",
4621 		   yesno(sseu->has_subslice_pg));
4622 	seq_printf(m, "  Has EU Power Gating: %s\n",
4623 		   yesno(sseu->has_eu_pg));
4624 }
4625 
4626 static int i915_sseu_status(struct seq_file *m, void *unused)
4627 {
4628 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
4629 	struct sseu_dev_info sseu;
4630 
4631 	if (INTEL_GEN(dev_priv) < 8)
4632 		return -ENODEV;
4633 
4634 	seq_puts(m, "SSEU Device Info\n");
4635 	i915_print_sseu_info(m, true, &INTEL_INFO(dev_priv)->sseu);
4636 
4637 	seq_puts(m, "SSEU Device Status\n");
4638 	memset(&sseu, 0, sizeof(sseu));
4639 
4640 	intel_runtime_pm_get(dev_priv);
4641 
4642 	if (IS_CHERRYVIEW(dev_priv)) {
4643 		cherryview_sseu_device_status(dev_priv, &sseu);
4644 	} else if (IS_BROADWELL(dev_priv)) {
4645 		broadwell_sseu_device_status(dev_priv, &sseu);
4646 	} else if (INTEL_GEN(dev_priv) >= 9) {
4647 		gen9_sseu_device_status(dev_priv, &sseu);
4648 	}
4649 
4650 	intel_runtime_pm_put(dev_priv);
4651 
4652 	i915_print_sseu_info(m, false, &sseu);
4653 
4654 	return 0;
4655 }
4656 
4657 static int i915_forcewake_open(struct inode *inode, struct file *file)
4658 {
4659 	struct drm_i915_private *dev_priv = inode->i_private;
4660 
4661 	if (INTEL_GEN(dev_priv) < 6)
4662 		return 0;
4663 
4664 	intel_runtime_pm_get(dev_priv);
4665 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4666 
4667 	return 0;
4668 }
4669 
4670 static int i915_forcewake_release(struct inode *inode, struct file *file)
4671 {
4672 	struct drm_i915_private *dev_priv = inode->i_private;
4673 
4674 	if (INTEL_GEN(dev_priv) < 6)
4675 		return 0;
4676 
4677 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4678 	intel_runtime_pm_put(dev_priv);
4679 
4680 	return 0;
4681 }
4682 
4683 static const struct file_operations i915_forcewake_fops = {
4684 	.owner = THIS_MODULE,
4685 	.open = i915_forcewake_open,
4686 	.release = i915_forcewake_release,
4687 };
4688 
4689 static int i915_hpd_storm_ctl_show(struct seq_file *m, void *data)
4690 {
4691 	struct drm_i915_private *dev_priv = m->private;
4692 	struct i915_hotplug *hotplug = &dev_priv->hotplug;
4693 
4694 	seq_printf(m, "Threshold: %d\n", hotplug->hpd_storm_threshold);
4695 	seq_printf(m, "Detected: %s\n",
4696 		   yesno(delayed_work_pending(&hotplug->reenable_work)));
4697 
4698 	return 0;
4699 }
4700 
4701 static ssize_t i915_hpd_storm_ctl_write(struct file *file,
4702 					const char __user *ubuf, size_t len,
4703 					loff_t *offp)
4704 {
4705 	struct seq_file *m = file->private_data;
4706 	struct drm_i915_private *dev_priv = m->private;
4707 	struct i915_hotplug *hotplug = &dev_priv->hotplug;
4708 	unsigned int new_threshold;
4709 	int i;
4710 	char *newline;
4711 	char tmp[16];
4712 
4713 	if (len >= sizeof(tmp))
4714 		return -EINVAL;
4715 
4716 	if (copy_from_user(tmp, ubuf, len))
4717 		return -EFAULT;
4718 
4719 	tmp[len] = '\0';
4720 
4721 	/* Strip newline, if any */
4722 	newline = strchr(tmp, '\n');
4723 	if (newline)
4724 		*newline = '\0';
4725 
4726 	if (strcmp(tmp, "reset") == 0)
4727 		new_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4728 	else if (kstrtouint(tmp, 10, &new_threshold) != 0)
4729 		return -EINVAL;
4730 
4731 	if (new_threshold > 0)
4732 		DRM_DEBUG_KMS("Setting HPD storm detection threshold to %d\n",
4733 			      new_threshold);
4734 	else
4735 		DRM_DEBUG_KMS("Disabling HPD storm detection\n");
4736 
4737 	spin_lock_irq(&dev_priv->irq_lock);
4738 	hotplug->hpd_storm_threshold = new_threshold;
4739 	/* Reset the HPD storm stats so we don't accidentally trigger a storm */
4740 	for_each_hpd_pin(i)
4741 		hotplug->stats[i].count = 0;
4742 	spin_unlock_irq(&dev_priv->irq_lock);
4743 
4744 	/* Re-enable hpd immediately if we were in an irq storm */
4745 	flush_delayed_work(&dev_priv->hotplug.reenable_work);
4746 
4747 	return len;
4748 }
4749 
4750 static int i915_hpd_storm_ctl_open(struct inode *inode, struct file *file)
4751 {
4752 	return single_open(file, i915_hpd_storm_ctl_show, inode->i_private);
4753 }
4754 
4755 static const struct file_operations i915_hpd_storm_ctl_fops = {
4756 	.owner = THIS_MODULE,
4757 	.open = i915_hpd_storm_ctl_open,
4758 	.read = seq_read,
4759 	.llseek = seq_lseek,
4760 	.release = single_release,
4761 	.write = i915_hpd_storm_ctl_write
4762 };
4763 
4764 static const struct drm_info_list i915_debugfs_list[] = {
4765 	{"i915_capabilities", i915_capabilities, 0},
4766 	{"i915_gem_objects", i915_gem_object_info, 0},
4767 	{"i915_gem_gtt", i915_gem_gtt_info, 0},
4768 	{"i915_gem_pin_display", i915_gem_gtt_info, 0, (void *)1},
4769 	{"i915_gem_stolen", i915_gem_stolen_list_info },
4770 	{"i915_gem_pageflip", i915_gem_pageflip_info, 0},
4771 	{"i915_gem_request", i915_gem_request_info, 0},
4772 	{"i915_gem_seqno", i915_gem_seqno_info, 0},
4773 	{"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
4774 	{"i915_gem_interrupt", i915_interrupt_info, 0},
4775 	{"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
4776 	{"i915_guc_info", i915_guc_info, 0},
4777 	{"i915_guc_load_status", i915_guc_load_status_info, 0},
4778 	{"i915_guc_log_dump", i915_guc_log_dump, 0},
4779 	{"i915_huc_load_status", i915_huc_load_status_info, 0},
4780 	{"i915_frequency_info", i915_frequency_info, 0},
4781 	{"i915_hangcheck_info", i915_hangcheck_info, 0},
4782 	{"i915_drpc_info", i915_drpc_info, 0},
4783 	{"i915_emon_status", i915_emon_status, 0},
4784 	{"i915_ring_freq_table", i915_ring_freq_table, 0},
4785 	{"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
4786 	{"i915_fbc_status", i915_fbc_status, 0},
4787 	{"i915_ips_status", i915_ips_status, 0},
4788 	{"i915_sr_status", i915_sr_status, 0},
4789 	{"i915_opregion", i915_opregion, 0},
4790 	{"i915_vbt", i915_vbt, 0},
4791 	{"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
4792 	{"i915_context_status", i915_context_status, 0},
4793 	{"i915_dump_lrc", i915_dump_lrc, 0},
4794 	{"i915_forcewake_domains", i915_forcewake_domains, 0},
4795 	{"i915_swizzle_info", i915_swizzle_info, 0},
4796 	{"i915_ppgtt_info", i915_ppgtt_info, 0},
4797 	{"i915_llc", i915_llc, 0},
4798 	{"i915_edp_psr_status", i915_edp_psr_status, 0},
4799 	{"i915_sink_crc_eDP1", i915_sink_crc, 0},
4800 	{"i915_energy_uJ", i915_energy_uJ, 0},
4801 	{"i915_runtime_pm_status", i915_runtime_pm_status, 0},
4802 	{"i915_power_domain_info", i915_power_domain_info, 0},
4803 	{"i915_dmc_info", i915_dmc_info, 0},
4804 	{"i915_display_info", i915_display_info, 0},
4805 	{"i915_engine_info", i915_engine_info, 0},
4806 	{"i915_semaphore_status", i915_semaphore_status, 0},
4807 	{"i915_shared_dplls_info", i915_shared_dplls_info, 0},
4808 	{"i915_dp_mst_info", i915_dp_mst_info, 0},
4809 	{"i915_wa_registers", i915_wa_registers, 0},
4810 	{"i915_ddb_info", i915_ddb_info, 0},
4811 	{"i915_sseu_status", i915_sseu_status, 0},
4812 	{"i915_drrs_status", i915_drrs_status, 0},
4813 	{"i915_rps_boost_info", i915_rps_boost_info, 0},
4814 };
4815 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
4816 
4817 static const struct i915_debugfs_files {
4818 	const char *name;
4819 	const struct file_operations *fops;
4820 } i915_debugfs_files[] = {
4821 	{"i915_wedged", &i915_wedged_fops},
4822 	{"i915_max_freq", &i915_max_freq_fops},
4823 	{"i915_min_freq", &i915_min_freq_fops},
4824 	{"i915_cache_sharing", &i915_cache_sharing_fops},
4825 	{"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
4826 	{"i915_ring_test_irq", &i915_ring_test_irq_fops},
4827 	{"i915_gem_drop_caches", &i915_drop_caches_fops},
4828 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
4829 	{"i915_error_state", &i915_error_state_fops},
4830 	{"i915_gpu_info", &i915_gpu_info_fops},
4831 #endif
4832 	{"i915_next_seqno", &i915_next_seqno_fops},
4833 	{"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
4834 	{"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
4835 	{"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
4836 	{"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
4837 	{"i915_fbc_false_color", &i915_fbc_fc_fops},
4838 	{"i915_dp_test_data", &i915_displayport_test_data_fops},
4839 	{"i915_dp_test_type", &i915_displayport_test_type_fops},
4840 	{"i915_dp_test_active", &i915_displayport_test_active_fops},
4841 	{"i915_guc_log_control", &i915_guc_log_control_fops},
4842 	{"i915_hpd_storm_ctl", &i915_hpd_storm_ctl_fops}
4843 };
4844 
4845 int i915_debugfs_register(struct drm_i915_private *dev_priv)
4846 {
4847 	struct drm_minor *minor = dev_priv->drm.primary;
4848 	struct dentry *ent;
4849 	int ret, i;
4850 
4851 	ent = debugfs_create_file("i915_forcewake_user", S_IRUSR,
4852 				  minor->debugfs_root, to_i915(minor->dev),
4853 				  &i915_forcewake_fops);
4854 	if (!ent)
4855 		return -ENOMEM;
4856 
4857 	ret = intel_pipe_crc_create(minor);
4858 	if (ret)
4859 		return ret;
4860 
4861 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4862 		ent = debugfs_create_file(i915_debugfs_files[i].name,
4863 					  S_IRUGO | S_IWUSR,
4864 					  minor->debugfs_root,
4865 					  to_i915(minor->dev),
4866 					  i915_debugfs_files[i].fops);
4867 		if (!ent)
4868 			return -ENOMEM;
4869 	}
4870 
4871 	return drm_debugfs_create_files(i915_debugfs_list,
4872 					I915_DEBUGFS_ENTRIES,
4873 					minor->debugfs_root, minor);
4874 }
4875 
4876 struct dpcd_block {
4877 	/* DPCD dump start address. */
4878 	unsigned int offset;
4879 	/* DPCD dump end address, inclusive. If unset, .size will be used. */
4880 	unsigned int end;
4881 	/* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
4882 	size_t size;
4883 	/* Only valid for eDP. */
4884 	bool edp;
4885 };
4886 
4887 static const struct dpcd_block i915_dpcd_debug[] = {
4888 	{ .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
4889 	{ .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
4890 	{ .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
4891 	{ .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
4892 	{ .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
4893 	{ .offset = DP_SET_POWER },
4894 	{ .offset = DP_EDP_DPCD_REV },
4895 	{ .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
4896 	{ .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
4897 	{ .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
4898 };
4899 
4900 static int i915_dpcd_show(struct seq_file *m, void *data)
4901 {
4902 	struct drm_connector *connector = m->private;
4903 	struct intel_dp *intel_dp =
4904 		enc_to_intel_dp(&intel_attached_encoder(connector)->base);
4905 	uint8_t buf[16];
4906 	ssize_t err;
4907 	int i;
4908 
4909 	if (connector->status != connector_status_connected)
4910 		return -ENODEV;
4911 
4912 	for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
4913 		const struct dpcd_block *b = &i915_dpcd_debug[i];
4914 		size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
4915 
4916 		if (b->edp &&
4917 		    connector->connector_type != DRM_MODE_CONNECTOR_eDP)
4918 			continue;
4919 
4920 		/* low tech for now */
4921 		if (WARN_ON(size > sizeof(buf)))
4922 			continue;
4923 
4924 		err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
4925 		if (err <= 0) {
4926 			DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
4927 				  size, b->offset, err);
4928 			continue;
4929 		}
4930 
4931 		seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
4932 	}
4933 
4934 	return 0;
4935 }
4936 
4937 static int i915_dpcd_open(struct inode *inode, struct file *file)
4938 {
4939 	return single_open(file, i915_dpcd_show, inode->i_private);
4940 }
4941 
4942 static const struct file_operations i915_dpcd_fops = {
4943 	.owner = THIS_MODULE,
4944 	.open = i915_dpcd_open,
4945 	.read = seq_read,
4946 	.llseek = seq_lseek,
4947 	.release = single_release,
4948 };
4949 
4950 static int i915_panel_show(struct seq_file *m, void *data)
4951 {
4952 	struct drm_connector *connector = m->private;
4953 	struct intel_dp *intel_dp =
4954 		enc_to_intel_dp(&intel_attached_encoder(connector)->base);
4955 
4956 	if (connector->status != connector_status_connected)
4957 		return -ENODEV;
4958 
4959 	seq_printf(m, "Panel power up delay: %d\n",
4960 		   intel_dp->panel_power_up_delay);
4961 	seq_printf(m, "Panel power down delay: %d\n",
4962 		   intel_dp->panel_power_down_delay);
4963 	seq_printf(m, "Backlight on delay: %d\n",
4964 		   intel_dp->backlight_on_delay);
4965 	seq_printf(m, "Backlight off delay: %d\n",
4966 		   intel_dp->backlight_off_delay);
4967 
4968 	return 0;
4969 }
4970 
4971 static int i915_panel_open(struct inode *inode, struct file *file)
4972 {
4973 	return single_open(file, i915_panel_show, inode->i_private);
4974 }
4975 
4976 static const struct file_operations i915_panel_fops = {
4977 	.owner = THIS_MODULE,
4978 	.open = i915_panel_open,
4979 	.read = seq_read,
4980 	.llseek = seq_lseek,
4981 	.release = single_release,
4982 };
4983 
4984 /**
4985  * i915_debugfs_connector_add - add i915 specific connector debugfs files
4986  * @connector: pointer to a registered drm_connector
4987  *
4988  * Cleanup will be done by drm_connector_unregister() through a call to
4989  * drm_debugfs_connector_remove().
4990  *
4991  * Returns 0 on success, negative error codes on error.
4992  */
4993 int i915_debugfs_connector_add(struct drm_connector *connector)
4994 {
4995 	struct dentry *root = connector->debugfs_entry;
4996 
4997 	/* The connector must have been registered beforehands. */
4998 	if (!root)
4999 		return -ENODEV;
5000 
5001 	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5002 	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5003 		debugfs_create_file("i915_dpcd", S_IRUGO, root,
5004 				    connector, &i915_dpcd_fops);
5005 
5006 	if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5007 		debugfs_create_file("i915_panel_timings", S_IRUGO, root,
5008 				    connector, &i915_panel_fops);
5009 
5010 	return 0;
5011 }
5012