xref: /linux/drivers/gpu/drm/i915/i915_debugfs.c (revision e08a1d97d33e2ac05cd368b955f9fdc2823f15fd)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28 
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42 
43 static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
44 {
45 	return to_i915(node->minor->dev);
46 }
47 
48 /* As the drm_debugfs_init() routines are called before dev->dev_private is
49  * allocated we need to hook into the minor for release. */
50 static int
51 drm_add_fake_info_node(struct drm_minor *minor,
52 		       struct dentry *ent,
53 		       const void *key)
54 {
55 	struct drm_info_node *node;
56 
57 	node = kmalloc(sizeof(*node), GFP_KERNEL);
58 	if (node == NULL) {
59 		debugfs_remove(ent);
60 		return -ENOMEM;
61 	}
62 
63 	node->minor = minor;
64 	node->dent = ent;
65 	node->info_ent = (void *)key;
66 
67 	mutex_lock(&minor->debugfs_lock);
68 	list_add(&node->list, &minor->debugfs_list);
69 	mutex_unlock(&minor->debugfs_lock);
70 
71 	return 0;
72 }
73 
74 static int i915_capabilities(struct seq_file *m, void *data)
75 {
76 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
77 	const struct intel_device_info *info = INTEL_INFO(dev_priv);
78 
79 	seq_printf(m, "gen: %d\n", INTEL_GEN(dev_priv));
80 	seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev_priv));
81 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
82 	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
83 #undef PRINT_FLAG
84 
85 	return 0;
86 }
87 
88 static char get_active_flag(struct drm_i915_gem_object *obj)
89 {
90 	return i915_gem_object_is_active(obj) ? '*' : ' ';
91 }
92 
93 static char get_pin_flag(struct drm_i915_gem_object *obj)
94 {
95 	return obj->pin_display ? 'p' : ' ';
96 }
97 
98 static char get_tiling_flag(struct drm_i915_gem_object *obj)
99 {
100 	switch (i915_gem_object_get_tiling(obj)) {
101 	default:
102 	case I915_TILING_NONE: return ' ';
103 	case I915_TILING_X: return 'X';
104 	case I915_TILING_Y: return 'Y';
105 	}
106 }
107 
108 static char get_global_flag(struct drm_i915_gem_object *obj)
109 {
110 	return obj->fault_mappable ? 'g' : ' ';
111 }
112 
113 static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
114 {
115 	return obj->mapping ? 'M' : ' ';
116 }
117 
118 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
119 {
120 	u64 size = 0;
121 	struct i915_vma *vma;
122 
123 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
124 		if (i915_vma_is_ggtt(vma) && drm_mm_node_allocated(&vma->node))
125 			size += vma->node.size;
126 	}
127 
128 	return size;
129 }
130 
131 static void
132 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
133 {
134 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
135 	struct intel_engine_cs *engine;
136 	struct i915_vma *vma;
137 	unsigned int frontbuffer_bits;
138 	int pin_count = 0;
139 	enum intel_engine_id id;
140 
141 	lockdep_assert_held(&obj->base.dev->struct_mutex);
142 
143 	seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x [ ",
144 		   &obj->base,
145 		   get_active_flag(obj),
146 		   get_pin_flag(obj),
147 		   get_tiling_flag(obj),
148 		   get_global_flag(obj),
149 		   get_pin_mapped_flag(obj),
150 		   obj->base.size / 1024,
151 		   obj->base.read_domains,
152 		   obj->base.write_domain);
153 	for_each_engine(engine, dev_priv, id)
154 		seq_printf(m, "%x ",
155 			   i915_gem_active_get_seqno(&obj->last_read[id],
156 						     &obj->base.dev->struct_mutex));
157 	seq_printf(m, "] %x %s%s%s",
158 		   i915_gem_active_get_seqno(&obj->last_write,
159 					     &obj->base.dev->struct_mutex),
160 		   i915_cache_level_str(dev_priv, obj->cache_level),
161 		   obj->dirty ? " dirty" : "",
162 		   obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
163 	if (obj->base.name)
164 		seq_printf(m, " (name: %d)", obj->base.name);
165 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
166 		if (i915_vma_is_pinned(vma))
167 			pin_count++;
168 	}
169 	seq_printf(m, " (pinned x %d)", pin_count);
170 	if (obj->pin_display)
171 		seq_printf(m, " (display)");
172 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
173 		if (!drm_mm_node_allocated(&vma->node))
174 			continue;
175 
176 		seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
177 			   i915_vma_is_ggtt(vma) ? "g" : "pp",
178 			   vma->node.start, vma->node.size);
179 		if (i915_vma_is_ggtt(vma))
180 			seq_printf(m, ", type: %u", vma->ggtt_view.type);
181 		if (vma->fence)
182 			seq_printf(m, " , fence: %d%s",
183 				   vma->fence->id,
184 				   i915_gem_active_isset(&vma->last_fence) ? "*" : "");
185 		seq_puts(m, ")");
186 	}
187 	if (obj->stolen)
188 		seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
189 
190 	engine = i915_gem_active_get_engine(&obj->last_write,
191 					    &dev_priv->drm.struct_mutex);
192 	if (engine)
193 		seq_printf(m, " (%s)", engine->name);
194 
195 	frontbuffer_bits = atomic_read(&obj->frontbuffer_bits);
196 	if (frontbuffer_bits)
197 		seq_printf(m, " (frontbuffer: 0x%03x)", frontbuffer_bits);
198 }
199 
200 static int obj_rank_by_stolen(void *priv,
201 			      struct list_head *A, struct list_head *B)
202 {
203 	struct drm_i915_gem_object *a =
204 		container_of(A, struct drm_i915_gem_object, obj_exec_link);
205 	struct drm_i915_gem_object *b =
206 		container_of(B, struct drm_i915_gem_object, obj_exec_link);
207 
208 	if (a->stolen->start < b->stolen->start)
209 		return -1;
210 	if (a->stolen->start > b->stolen->start)
211 		return 1;
212 	return 0;
213 }
214 
215 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
216 {
217 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
218 	struct drm_device *dev = &dev_priv->drm;
219 	struct drm_i915_gem_object *obj;
220 	u64 total_obj_size, total_gtt_size;
221 	LIST_HEAD(stolen);
222 	int count, ret;
223 
224 	ret = mutex_lock_interruptible(&dev->struct_mutex);
225 	if (ret)
226 		return ret;
227 
228 	total_obj_size = total_gtt_size = count = 0;
229 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
230 		if (obj->stolen == NULL)
231 			continue;
232 
233 		list_add(&obj->obj_exec_link, &stolen);
234 
235 		total_obj_size += obj->base.size;
236 		total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
237 		count++;
238 	}
239 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
240 		if (obj->stolen == NULL)
241 			continue;
242 
243 		list_add(&obj->obj_exec_link, &stolen);
244 
245 		total_obj_size += obj->base.size;
246 		count++;
247 	}
248 	list_sort(NULL, &stolen, obj_rank_by_stolen);
249 	seq_puts(m, "Stolen:\n");
250 	while (!list_empty(&stolen)) {
251 		obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
252 		seq_puts(m, "   ");
253 		describe_obj(m, obj);
254 		seq_putc(m, '\n');
255 		list_del_init(&obj->obj_exec_link);
256 	}
257 	mutex_unlock(&dev->struct_mutex);
258 
259 	seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
260 		   count, total_obj_size, total_gtt_size);
261 	return 0;
262 }
263 
264 struct file_stats {
265 	struct drm_i915_file_private *file_priv;
266 	unsigned long count;
267 	u64 total, unbound;
268 	u64 global, shared;
269 	u64 active, inactive;
270 };
271 
272 static int per_file_stats(int id, void *ptr, void *data)
273 {
274 	struct drm_i915_gem_object *obj = ptr;
275 	struct file_stats *stats = data;
276 	struct i915_vma *vma;
277 
278 	stats->count++;
279 	stats->total += obj->base.size;
280 	if (!obj->bind_count)
281 		stats->unbound += obj->base.size;
282 	if (obj->base.name || obj->base.dma_buf)
283 		stats->shared += obj->base.size;
284 
285 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
286 		if (!drm_mm_node_allocated(&vma->node))
287 			continue;
288 
289 		if (i915_vma_is_ggtt(vma)) {
290 			stats->global += vma->node.size;
291 		} else {
292 			struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
293 
294 			if (ppgtt->base.file != stats->file_priv)
295 				continue;
296 		}
297 
298 		if (i915_vma_is_active(vma))
299 			stats->active += vma->node.size;
300 		else
301 			stats->inactive += vma->node.size;
302 	}
303 
304 	return 0;
305 }
306 
307 #define print_file_stats(m, name, stats) do { \
308 	if (stats.count) \
309 		seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
310 			   name, \
311 			   stats.count, \
312 			   stats.total, \
313 			   stats.active, \
314 			   stats.inactive, \
315 			   stats.global, \
316 			   stats.shared, \
317 			   stats.unbound); \
318 } while (0)
319 
320 static void print_batch_pool_stats(struct seq_file *m,
321 				   struct drm_i915_private *dev_priv)
322 {
323 	struct drm_i915_gem_object *obj;
324 	struct file_stats stats;
325 	struct intel_engine_cs *engine;
326 	enum intel_engine_id id;
327 	int j;
328 
329 	memset(&stats, 0, sizeof(stats));
330 
331 	for_each_engine(engine, dev_priv, id) {
332 		for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
333 			list_for_each_entry(obj,
334 					    &engine->batch_pool.cache_list[j],
335 					    batch_pool_link)
336 				per_file_stats(0, obj, &stats);
337 		}
338 	}
339 
340 	print_file_stats(m, "[k]batch pool", stats);
341 }
342 
343 static int per_file_ctx_stats(int id, void *ptr, void *data)
344 {
345 	struct i915_gem_context *ctx = ptr;
346 	int n;
347 
348 	for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
349 		if (ctx->engine[n].state)
350 			per_file_stats(0, ctx->engine[n].state->obj, data);
351 		if (ctx->engine[n].ring)
352 			per_file_stats(0, ctx->engine[n].ring->vma->obj, data);
353 	}
354 
355 	return 0;
356 }
357 
358 static void print_context_stats(struct seq_file *m,
359 				struct drm_i915_private *dev_priv)
360 {
361 	struct drm_device *dev = &dev_priv->drm;
362 	struct file_stats stats;
363 	struct drm_file *file;
364 
365 	memset(&stats, 0, sizeof(stats));
366 
367 	mutex_lock(&dev->struct_mutex);
368 	if (dev_priv->kernel_context)
369 		per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
370 
371 	list_for_each_entry(file, &dev->filelist, lhead) {
372 		struct drm_i915_file_private *fpriv = file->driver_priv;
373 		idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
374 	}
375 	mutex_unlock(&dev->struct_mutex);
376 
377 	print_file_stats(m, "[k]contexts", stats);
378 }
379 
380 static int i915_gem_object_info(struct seq_file *m, void *data)
381 {
382 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
383 	struct drm_device *dev = &dev_priv->drm;
384 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
385 	u32 count, mapped_count, purgeable_count, dpy_count;
386 	u64 size, mapped_size, purgeable_size, dpy_size;
387 	struct drm_i915_gem_object *obj;
388 	struct drm_file *file;
389 	int ret;
390 
391 	ret = mutex_lock_interruptible(&dev->struct_mutex);
392 	if (ret)
393 		return ret;
394 
395 	seq_printf(m, "%u objects, %llu bytes\n",
396 		   dev_priv->mm.object_count,
397 		   dev_priv->mm.object_memory);
398 
399 	size = count = 0;
400 	mapped_size = mapped_count = 0;
401 	purgeable_size = purgeable_count = 0;
402 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
403 		size += obj->base.size;
404 		++count;
405 
406 		if (obj->madv == I915_MADV_DONTNEED) {
407 			purgeable_size += obj->base.size;
408 			++purgeable_count;
409 		}
410 
411 		if (obj->mapping) {
412 			mapped_count++;
413 			mapped_size += obj->base.size;
414 		}
415 	}
416 	seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
417 
418 	size = count = dpy_size = dpy_count = 0;
419 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
420 		size += obj->base.size;
421 		++count;
422 
423 		if (obj->pin_display) {
424 			dpy_size += obj->base.size;
425 			++dpy_count;
426 		}
427 
428 		if (obj->madv == I915_MADV_DONTNEED) {
429 			purgeable_size += obj->base.size;
430 			++purgeable_count;
431 		}
432 
433 		if (obj->mapping) {
434 			mapped_count++;
435 			mapped_size += obj->base.size;
436 		}
437 	}
438 	seq_printf(m, "%u bound objects, %llu bytes\n",
439 		   count, size);
440 	seq_printf(m, "%u purgeable objects, %llu bytes\n",
441 		   purgeable_count, purgeable_size);
442 	seq_printf(m, "%u mapped objects, %llu bytes\n",
443 		   mapped_count, mapped_size);
444 	seq_printf(m, "%u display objects (pinned), %llu bytes\n",
445 		   dpy_count, dpy_size);
446 
447 	seq_printf(m, "%llu [%llu] gtt total\n",
448 		   ggtt->base.total, ggtt->mappable_end - ggtt->base.start);
449 
450 	seq_putc(m, '\n');
451 	print_batch_pool_stats(m, dev_priv);
452 	mutex_unlock(&dev->struct_mutex);
453 
454 	mutex_lock(&dev->filelist_mutex);
455 	print_context_stats(m, dev_priv);
456 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
457 		struct file_stats stats;
458 		struct drm_i915_file_private *file_priv = file->driver_priv;
459 		struct drm_i915_gem_request *request;
460 		struct task_struct *task;
461 
462 		memset(&stats, 0, sizeof(stats));
463 		stats.file_priv = file->driver_priv;
464 		spin_lock(&file->table_lock);
465 		idr_for_each(&file->object_idr, per_file_stats, &stats);
466 		spin_unlock(&file->table_lock);
467 		/*
468 		 * Although we have a valid reference on file->pid, that does
469 		 * not guarantee that the task_struct who called get_pid() is
470 		 * still alive (e.g. get_pid(current) => fork() => exit()).
471 		 * Therefore, we need to protect this ->comm access using RCU.
472 		 */
473 		mutex_lock(&dev->struct_mutex);
474 		request = list_first_entry_or_null(&file_priv->mm.request_list,
475 						   struct drm_i915_gem_request,
476 						   client_list);
477 		rcu_read_lock();
478 		task = pid_task(request && request->ctx->pid ?
479 				request->ctx->pid : file->pid,
480 				PIDTYPE_PID);
481 		print_file_stats(m, task ? task->comm : "<unknown>", stats);
482 		rcu_read_unlock();
483 		mutex_unlock(&dev->struct_mutex);
484 	}
485 	mutex_unlock(&dev->filelist_mutex);
486 
487 	return 0;
488 }
489 
490 static int i915_gem_gtt_info(struct seq_file *m, void *data)
491 {
492 	struct drm_info_node *node = m->private;
493 	struct drm_i915_private *dev_priv = node_to_i915(node);
494 	struct drm_device *dev = &dev_priv->drm;
495 	bool show_pin_display_only = !!node->info_ent->data;
496 	struct drm_i915_gem_object *obj;
497 	u64 total_obj_size, total_gtt_size;
498 	int count, ret;
499 
500 	ret = mutex_lock_interruptible(&dev->struct_mutex);
501 	if (ret)
502 		return ret;
503 
504 	total_obj_size = total_gtt_size = count = 0;
505 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
506 		if (show_pin_display_only && !obj->pin_display)
507 			continue;
508 
509 		seq_puts(m, "   ");
510 		describe_obj(m, obj);
511 		seq_putc(m, '\n');
512 		total_obj_size += obj->base.size;
513 		total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
514 		count++;
515 	}
516 
517 	mutex_unlock(&dev->struct_mutex);
518 
519 	seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
520 		   count, total_obj_size, total_gtt_size);
521 
522 	return 0;
523 }
524 
525 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
526 {
527 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
528 	struct drm_device *dev = &dev_priv->drm;
529 	struct intel_crtc *crtc;
530 	int ret;
531 
532 	ret = mutex_lock_interruptible(&dev->struct_mutex);
533 	if (ret)
534 		return ret;
535 
536 	for_each_intel_crtc(dev, crtc) {
537 		const char pipe = pipe_name(crtc->pipe);
538 		const char plane = plane_name(crtc->plane);
539 		struct intel_flip_work *work;
540 
541 		spin_lock_irq(&dev->event_lock);
542 		work = crtc->flip_work;
543 		if (work == NULL) {
544 			seq_printf(m, "No flip due on pipe %c (plane %c)\n",
545 				   pipe, plane);
546 		} else {
547 			u32 pending;
548 			u32 addr;
549 
550 			pending = atomic_read(&work->pending);
551 			if (pending) {
552 				seq_printf(m, "Flip ioctl preparing on pipe %c (plane %c)\n",
553 					   pipe, plane);
554 			} else {
555 				seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
556 					   pipe, plane);
557 			}
558 			if (work->flip_queued_req) {
559 				struct intel_engine_cs *engine = i915_gem_request_get_engine(work->flip_queued_req);
560 
561 				seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
562 					   engine->name,
563 					   i915_gem_request_get_seqno(work->flip_queued_req),
564 					   dev_priv->next_seqno,
565 					   intel_engine_get_seqno(engine),
566 					   i915_gem_request_completed(work->flip_queued_req));
567 			} else
568 				seq_printf(m, "Flip not associated with any ring\n");
569 			seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
570 				   work->flip_queued_vblank,
571 				   work->flip_ready_vblank,
572 				   intel_crtc_get_vblank_counter(crtc));
573 			seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
574 
575 			if (INTEL_GEN(dev_priv) >= 4)
576 				addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
577 			else
578 				addr = I915_READ(DSPADDR(crtc->plane));
579 			seq_printf(m, "Current scanout address 0x%08x\n", addr);
580 
581 			if (work->pending_flip_obj) {
582 				seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
583 				seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
584 			}
585 		}
586 		spin_unlock_irq(&dev->event_lock);
587 	}
588 
589 	mutex_unlock(&dev->struct_mutex);
590 
591 	return 0;
592 }
593 
594 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
595 {
596 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
597 	struct drm_device *dev = &dev_priv->drm;
598 	struct drm_i915_gem_object *obj;
599 	struct intel_engine_cs *engine;
600 	enum intel_engine_id id;
601 	int total = 0;
602 	int ret, j;
603 
604 	ret = mutex_lock_interruptible(&dev->struct_mutex);
605 	if (ret)
606 		return ret;
607 
608 	for_each_engine(engine, dev_priv, id) {
609 		for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
610 			int count;
611 
612 			count = 0;
613 			list_for_each_entry(obj,
614 					    &engine->batch_pool.cache_list[j],
615 					    batch_pool_link)
616 				count++;
617 			seq_printf(m, "%s cache[%d]: %d objects\n",
618 				   engine->name, j, count);
619 
620 			list_for_each_entry(obj,
621 					    &engine->batch_pool.cache_list[j],
622 					    batch_pool_link) {
623 				seq_puts(m, "   ");
624 				describe_obj(m, obj);
625 				seq_putc(m, '\n');
626 			}
627 
628 			total += count;
629 		}
630 	}
631 
632 	seq_printf(m, "total: %d\n", total);
633 
634 	mutex_unlock(&dev->struct_mutex);
635 
636 	return 0;
637 }
638 
639 static void print_request(struct seq_file *m,
640 			  struct drm_i915_gem_request *rq,
641 			  const char *prefix)
642 {
643 	struct pid *pid = rq->ctx->pid;
644 	struct task_struct *task;
645 
646 	rcu_read_lock();
647 	task = pid ? pid_task(pid, PIDTYPE_PID) : NULL;
648 	seq_printf(m, "%s%x [%x:%x] @ %d: %s [%d]\n", prefix,
649 		   rq->fence.seqno, rq->ctx->hw_id, rq->fence.seqno,
650 		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
651 		   task ? task->comm : "<unknown>",
652 		   task ? task->pid : -1);
653 	rcu_read_unlock();
654 }
655 
656 static int i915_gem_request_info(struct seq_file *m, void *data)
657 {
658 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
659 	struct drm_device *dev = &dev_priv->drm;
660 	struct drm_i915_gem_request *req;
661 	struct intel_engine_cs *engine;
662 	enum intel_engine_id id;
663 	int ret, any;
664 
665 	ret = mutex_lock_interruptible(&dev->struct_mutex);
666 	if (ret)
667 		return ret;
668 
669 	any = 0;
670 	for_each_engine(engine, dev_priv, id) {
671 		int count;
672 
673 		count = 0;
674 		list_for_each_entry(req, &engine->request_list, link)
675 			count++;
676 		if (count == 0)
677 			continue;
678 
679 		seq_printf(m, "%s requests: %d\n", engine->name, count);
680 		list_for_each_entry(req, &engine->request_list, link)
681 			print_request(m, req, "    ");
682 
683 		any++;
684 	}
685 	mutex_unlock(&dev->struct_mutex);
686 
687 	if (any == 0)
688 		seq_puts(m, "No requests\n");
689 
690 	return 0;
691 }
692 
693 static void i915_ring_seqno_info(struct seq_file *m,
694 				 struct intel_engine_cs *engine)
695 {
696 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
697 	struct rb_node *rb;
698 
699 	seq_printf(m, "Current sequence (%s): %x\n",
700 		   engine->name, intel_engine_get_seqno(engine));
701 
702 	spin_lock(&b->lock);
703 	for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
704 		struct intel_wait *w = container_of(rb, typeof(*w), node);
705 
706 		seq_printf(m, "Waiting (%s): %s [%d] on %x\n",
707 			   engine->name, w->tsk->comm, w->tsk->pid, w->seqno);
708 	}
709 	spin_unlock(&b->lock);
710 }
711 
712 static int i915_gem_seqno_info(struct seq_file *m, void *data)
713 {
714 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
715 	struct intel_engine_cs *engine;
716 	enum intel_engine_id id;
717 
718 	for_each_engine(engine, dev_priv, id)
719 		i915_ring_seqno_info(m, engine);
720 
721 	return 0;
722 }
723 
724 
725 static int i915_interrupt_info(struct seq_file *m, void *data)
726 {
727 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
728 	struct intel_engine_cs *engine;
729 	enum intel_engine_id id;
730 	int i, pipe;
731 
732 	intel_runtime_pm_get(dev_priv);
733 
734 	if (IS_CHERRYVIEW(dev_priv)) {
735 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
736 			   I915_READ(GEN8_MASTER_IRQ));
737 
738 		seq_printf(m, "Display IER:\t%08x\n",
739 			   I915_READ(VLV_IER));
740 		seq_printf(m, "Display IIR:\t%08x\n",
741 			   I915_READ(VLV_IIR));
742 		seq_printf(m, "Display IIR_RW:\t%08x\n",
743 			   I915_READ(VLV_IIR_RW));
744 		seq_printf(m, "Display IMR:\t%08x\n",
745 			   I915_READ(VLV_IMR));
746 		for_each_pipe(dev_priv, pipe)
747 			seq_printf(m, "Pipe %c stat:\t%08x\n",
748 				   pipe_name(pipe),
749 				   I915_READ(PIPESTAT(pipe)));
750 
751 		seq_printf(m, "Port hotplug:\t%08x\n",
752 			   I915_READ(PORT_HOTPLUG_EN));
753 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
754 			   I915_READ(VLV_DPFLIPSTAT));
755 		seq_printf(m, "DPINVGTT:\t%08x\n",
756 			   I915_READ(DPINVGTT));
757 
758 		for (i = 0; i < 4; i++) {
759 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
760 				   i, I915_READ(GEN8_GT_IMR(i)));
761 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
762 				   i, I915_READ(GEN8_GT_IIR(i)));
763 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
764 				   i, I915_READ(GEN8_GT_IER(i)));
765 		}
766 
767 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
768 			   I915_READ(GEN8_PCU_IMR));
769 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
770 			   I915_READ(GEN8_PCU_IIR));
771 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
772 			   I915_READ(GEN8_PCU_IER));
773 	} else if (INTEL_GEN(dev_priv) >= 8) {
774 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
775 			   I915_READ(GEN8_MASTER_IRQ));
776 
777 		for (i = 0; i < 4; i++) {
778 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
779 				   i, I915_READ(GEN8_GT_IMR(i)));
780 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
781 				   i, I915_READ(GEN8_GT_IIR(i)));
782 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
783 				   i, I915_READ(GEN8_GT_IER(i)));
784 		}
785 
786 		for_each_pipe(dev_priv, pipe) {
787 			enum intel_display_power_domain power_domain;
788 
789 			power_domain = POWER_DOMAIN_PIPE(pipe);
790 			if (!intel_display_power_get_if_enabled(dev_priv,
791 								power_domain)) {
792 				seq_printf(m, "Pipe %c power disabled\n",
793 					   pipe_name(pipe));
794 				continue;
795 			}
796 			seq_printf(m, "Pipe %c IMR:\t%08x\n",
797 				   pipe_name(pipe),
798 				   I915_READ(GEN8_DE_PIPE_IMR(pipe)));
799 			seq_printf(m, "Pipe %c IIR:\t%08x\n",
800 				   pipe_name(pipe),
801 				   I915_READ(GEN8_DE_PIPE_IIR(pipe)));
802 			seq_printf(m, "Pipe %c IER:\t%08x\n",
803 				   pipe_name(pipe),
804 				   I915_READ(GEN8_DE_PIPE_IER(pipe)));
805 
806 			intel_display_power_put(dev_priv, power_domain);
807 		}
808 
809 		seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
810 			   I915_READ(GEN8_DE_PORT_IMR));
811 		seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
812 			   I915_READ(GEN8_DE_PORT_IIR));
813 		seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
814 			   I915_READ(GEN8_DE_PORT_IER));
815 
816 		seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
817 			   I915_READ(GEN8_DE_MISC_IMR));
818 		seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
819 			   I915_READ(GEN8_DE_MISC_IIR));
820 		seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
821 			   I915_READ(GEN8_DE_MISC_IER));
822 
823 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
824 			   I915_READ(GEN8_PCU_IMR));
825 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
826 			   I915_READ(GEN8_PCU_IIR));
827 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
828 			   I915_READ(GEN8_PCU_IER));
829 	} else if (IS_VALLEYVIEW(dev_priv)) {
830 		seq_printf(m, "Display IER:\t%08x\n",
831 			   I915_READ(VLV_IER));
832 		seq_printf(m, "Display IIR:\t%08x\n",
833 			   I915_READ(VLV_IIR));
834 		seq_printf(m, "Display IIR_RW:\t%08x\n",
835 			   I915_READ(VLV_IIR_RW));
836 		seq_printf(m, "Display IMR:\t%08x\n",
837 			   I915_READ(VLV_IMR));
838 		for_each_pipe(dev_priv, pipe)
839 			seq_printf(m, "Pipe %c stat:\t%08x\n",
840 				   pipe_name(pipe),
841 				   I915_READ(PIPESTAT(pipe)));
842 
843 		seq_printf(m, "Master IER:\t%08x\n",
844 			   I915_READ(VLV_MASTER_IER));
845 
846 		seq_printf(m, "Render IER:\t%08x\n",
847 			   I915_READ(GTIER));
848 		seq_printf(m, "Render IIR:\t%08x\n",
849 			   I915_READ(GTIIR));
850 		seq_printf(m, "Render IMR:\t%08x\n",
851 			   I915_READ(GTIMR));
852 
853 		seq_printf(m, "PM IER:\t\t%08x\n",
854 			   I915_READ(GEN6_PMIER));
855 		seq_printf(m, "PM IIR:\t\t%08x\n",
856 			   I915_READ(GEN6_PMIIR));
857 		seq_printf(m, "PM IMR:\t\t%08x\n",
858 			   I915_READ(GEN6_PMIMR));
859 
860 		seq_printf(m, "Port hotplug:\t%08x\n",
861 			   I915_READ(PORT_HOTPLUG_EN));
862 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
863 			   I915_READ(VLV_DPFLIPSTAT));
864 		seq_printf(m, "DPINVGTT:\t%08x\n",
865 			   I915_READ(DPINVGTT));
866 
867 	} else if (!HAS_PCH_SPLIT(dev_priv)) {
868 		seq_printf(m, "Interrupt enable:    %08x\n",
869 			   I915_READ(IER));
870 		seq_printf(m, "Interrupt identity:  %08x\n",
871 			   I915_READ(IIR));
872 		seq_printf(m, "Interrupt mask:      %08x\n",
873 			   I915_READ(IMR));
874 		for_each_pipe(dev_priv, pipe)
875 			seq_printf(m, "Pipe %c stat:         %08x\n",
876 				   pipe_name(pipe),
877 				   I915_READ(PIPESTAT(pipe)));
878 	} else {
879 		seq_printf(m, "North Display Interrupt enable:		%08x\n",
880 			   I915_READ(DEIER));
881 		seq_printf(m, "North Display Interrupt identity:	%08x\n",
882 			   I915_READ(DEIIR));
883 		seq_printf(m, "North Display Interrupt mask:		%08x\n",
884 			   I915_READ(DEIMR));
885 		seq_printf(m, "South Display Interrupt enable:		%08x\n",
886 			   I915_READ(SDEIER));
887 		seq_printf(m, "South Display Interrupt identity:	%08x\n",
888 			   I915_READ(SDEIIR));
889 		seq_printf(m, "South Display Interrupt mask:		%08x\n",
890 			   I915_READ(SDEIMR));
891 		seq_printf(m, "Graphics Interrupt enable:		%08x\n",
892 			   I915_READ(GTIER));
893 		seq_printf(m, "Graphics Interrupt identity:		%08x\n",
894 			   I915_READ(GTIIR));
895 		seq_printf(m, "Graphics Interrupt mask:		%08x\n",
896 			   I915_READ(GTIMR));
897 	}
898 	for_each_engine(engine, dev_priv, id) {
899 		if (INTEL_GEN(dev_priv) >= 6) {
900 			seq_printf(m,
901 				   "Graphics Interrupt mask (%s):	%08x\n",
902 				   engine->name, I915_READ_IMR(engine));
903 		}
904 		i915_ring_seqno_info(m, engine);
905 	}
906 	intel_runtime_pm_put(dev_priv);
907 
908 	return 0;
909 }
910 
911 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
912 {
913 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
914 	struct drm_device *dev = &dev_priv->drm;
915 	int i, ret;
916 
917 	ret = mutex_lock_interruptible(&dev->struct_mutex);
918 	if (ret)
919 		return ret;
920 
921 	seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
922 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
923 		struct i915_vma *vma = dev_priv->fence_regs[i].vma;
924 
925 		seq_printf(m, "Fence %d, pin count = %d, object = ",
926 			   i, dev_priv->fence_regs[i].pin_count);
927 		if (!vma)
928 			seq_puts(m, "unused");
929 		else
930 			describe_obj(m, vma->obj);
931 		seq_putc(m, '\n');
932 	}
933 
934 	mutex_unlock(&dev->struct_mutex);
935 	return 0;
936 }
937 
938 static int i915_hws_info(struct seq_file *m, void *data)
939 {
940 	struct drm_info_node *node = m->private;
941 	struct drm_i915_private *dev_priv = node_to_i915(node);
942 	struct intel_engine_cs *engine;
943 	const u32 *hws;
944 	int i;
945 
946 	engine = dev_priv->engine[(uintptr_t)node->info_ent->data];
947 	hws = engine->status_page.page_addr;
948 	if (hws == NULL)
949 		return 0;
950 
951 	for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
952 		seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
953 			   i * 4,
954 			   hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
955 	}
956 	return 0;
957 }
958 
959 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
960 
961 static ssize_t
962 i915_error_state_write(struct file *filp,
963 		       const char __user *ubuf,
964 		       size_t cnt,
965 		       loff_t *ppos)
966 {
967 	struct i915_error_state_file_priv *error_priv = filp->private_data;
968 
969 	DRM_DEBUG_DRIVER("Resetting error state\n");
970 	i915_destroy_error_state(error_priv->dev);
971 
972 	return cnt;
973 }
974 
975 static int i915_error_state_open(struct inode *inode, struct file *file)
976 {
977 	struct drm_i915_private *dev_priv = inode->i_private;
978 	struct i915_error_state_file_priv *error_priv;
979 
980 	error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
981 	if (!error_priv)
982 		return -ENOMEM;
983 
984 	error_priv->dev = &dev_priv->drm;
985 
986 	i915_error_state_get(&dev_priv->drm, error_priv);
987 
988 	file->private_data = error_priv;
989 
990 	return 0;
991 }
992 
993 static int i915_error_state_release(struct inode *inode, struct file *file)
994 {
995 	struct i915_error_state_file_priv *error_priv = file->private_data;
996 
997 	i915_error_state_put(error_priv);
998 	kfree(error_priv);
999 
1000 	return 0;
1001 }
1002 
1003 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1004 				     size_t count, loff_t *pos)
1005 {
1006 	struct i915_error_state_file_priv *error_priv = file->private_data;
1007 	struct drm_i915_error_state_buf error_str;
1008 	loff_t tmp_pos = 0;
1009 	ssize_t ret_count = 0;
1010 	int ret;
1011 
1012 	ret = i915_error_state_buf_init(&error_str,
1013 					to_i915(error_priv->dev), count, *pos);
1014 	if (ret)
1015 		return ret;
1016 
1017 	ret = i915_error_state_to_str(&error_str, error_priv);
1018 	if (ret)
1019 		goto out;
1020 
1021 	ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1022 					    error_str.buf,
1023 					    error_str.bytes);
1024 
1025 	if (ret_count < 0)
1026 		ret = ret_count;
1027 	else
1028 		*pos = error_str.start + ret_count;
1029 out:
1030 	i915_error_state_buf_release(&error_str);
1031 	return ret ?: ret_count;
1032 }
1033 
1034 static const struct file_operations i915_error_state_fops = {
1035 	.owner = THIS_MODULE,
1036 	.open = i915_error_state_open,
1037 	.read = i915_error_state_read,
1038 	.write = i915_error_state_write,
1039 	.llseek = default_llseek,
1040 	.release = i915_error_state_release,
1041 };
1042 
1043 #endif
1044 
1045 static int
1046 i915_next_seqno_get(void *data, u64 *val)
1047 {
1048 	struct drm_i915_private *dev_priv = data;
1049 	int ret;
1050 
1051 	ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
1052 	if (ret)
1053 		return ret;
1054 
1055 	*val = dev_priv->next_seqno;
1056 	mutex_unlock(&dev_priv->drm.struct_mutex);
1057 
1058 	return 0;
1059 }
1060 
1061 static int
1062 i915_next_seqno_set(void *data, u64 val)
1063 {
1064 	struct drm_i915_private *dev_priv = data;
1065 	struct drm_device *dev = &dev_priv->drm;
1066 	int ret;
1067 
1068 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1069 	if (ret)
1070 		return ret;
1071 
1072 	ret = i915_gem_set_seqno(dev, val);
1073 	mutex_unlock(&dev->struct_mutex);
1074 
1075 	return ret;
1076 }
1077 
1078 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1079 			i915_next_seqno_get, i915_next_seqno_set,
1080 			"0x%llx\n");
1081 
1082 static int i915_frequency_info(struct seq_file *m, void *unused)
1083 {
1084 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1085 	struct drm_device *dev = &dev_priv->drm;
1086 	int ret = 0;
1087 
1088 	intel_runtime_pm_get(dev_priv);
1089 
1090 	if (IS_GEN5(dev_priv)) {
1091 		u16 rgvswctl = I915_READ16(MEMSWCTL);
1092 		u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1093 
1094 		seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1095 		seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1096 		seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1097 			   MEMSTAT_VID_SHIFT);
1098 		seq_printf(m, "Current P-state: %d\n",
1099 			   (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1100 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1101 		u32 freq_sts;
1102 
1103 		mutex_lock(&dev_priv->rps.hw_lock);
1104 		freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1105 		seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1106 		seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1107 
1108 		seq_printf(m, "actual GPU freq: %d MHz\n",
1109 			   intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1110 
1111 		seq_printf(m, "current GPU freq: %d MHz\n",
1112 			   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1113 
1114 		seq_printf(m, "max GPU freq: %d MHz\n",
1115 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1116 
1117 		seq_printf(m, "min GPU freq: %d MHz\n",
1118 			   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1119 
1120 		seq_printf(m, "idle GPU freq: %d MHz\n",
1121 			   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1122 
1123 		seq_printf(m,
1124 			   "efficient (RPe) frequency: %d MHz\n",
1125 			   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1126 		mutex_unlock(&dev_priv->rps.hw_lock);
1127 	} else if (INTEL_GEN(dev_priv) >= 6) {
1128 		u32 rp_state_limits;
1129 		u32 gt_perf_status;
1130 		u32 rp_state_cap;
1131 		u32 rpmodectl, rpinclimit, rpdeclimit;
1132 		u32 rpstat, cagf, reqf;
1133 		u32 rpupei, rpcurup, rpprevup;
1134 		u32 rpdownei, rpcurdown, rpprevdown;
1135 		u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1136 		int max_freq;
1137 
1138 		rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1139 		if (IS_BROXTON(dev_priv)) {
1140 			rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1141 			gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1142 		} else {
1143 			rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1144 			gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1145 		}
1146 
1147 		/* RPSTAT1 is in the GT power well */
1148 		ret = mutex_lock_interruptible(&dev->struct_mutex);
1149 		if (ret)
1150 			goto out;
1151 
1152 		intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1153 
1154 		reqf = I915_READ(GEN6_RPNSWREQ);
1155 		if (IS_GEN9(dev_priv))
1156 			reqf >>= 23;
1157 		else {
1158 			reqf &= ~GEN6_TURBO_DISABLE;
1159 			if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1160 				reqf >>= 24;
1161 			else
1162 				reqf >>= 25;
1163 		}
1164 		reqf = intel_gpu_freq(dev_priv, reqf);
1165 
1166 		rpmodectl = I915_READ(GEN6_RP_CONTROL);
1167 		rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1168 		rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1169 
1170 		rpstat = I915_READ(GEN6_RPSTAT1);
1171 		rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
1172 		rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
1173 		rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
1174 		rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
1175 		rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
1176 		rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
1177 		if (IS_GEN9(dev_priv))
1178 			cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1179 		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1180 			cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1181 		else
1182 			cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1183 		cagf = intel_gpu_freq(dev_priv, cagf);
1184 
1185 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1186 		mutex_unlock(&dev->struct_mutex);
1187 
1188 		if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
1189 			pm_ier = I915_READ(GEN6_PMIER);
1190 			pm_imr = I915_READ(GEN6_PMIMR);
1191 			pm_isr = I915_READ(GEN6_PMISR);
1192 			pm_iir = I915_READ(GEN6_PMIIR);
1193 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1194 		} else {
1195 			pm_ier = I915_READ(GEN8_GT_IER(2));
1196 			pm_imr = I915_READ(GEN8_GT_IMR(2));
1197 			pm_isr = I915_READ(GEN8_GT_ISR(2));
1198 			pm_iir = I915_READ(GEN8_GT_IIR(2));
1199 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1200 		}
1201 		seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1202 			   pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1203 		seq_printf(m, "pm_intr_keep: 0x%08x\n", dev_priv->rps.pm_intr_keep);
1204 		seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1205 		seq_printf(m, "Render p-state ratio: %d\n",
1206 			   (gt_perf_status & (IS_GEN9(dev_priv) ? 0x1ff00 : 0xff00)) >> 8);
1207 		seq_printf(m, "Render p-state VID: %d\n",
1208 			   gt_perf_status & 0xff);
1209 		seq_printf(m, "Render p-state limit: %d\n",
1210 			   rp_state_limits & 0xff);
1211 		seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1212 		seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1213 		seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1214 		seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1215 		seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1216 		seq_printf(m, "CAGF: %dMHz\n", cagf);
1217 		seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
1218 			   rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
1219 		seq_printf(m, "RP CUR UP: %d (%dus)\n",
1220 			   rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
1221 		seq_printf(m, "RP PREV UP: %d (%dus)\n",
1222 			   rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
1223 		seq_printf(m, "Up threshold: %d%%\n",
1224 			   dev_priv->rps.up_threshold);
1225 
1226 		seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
1227 			   rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
1228 		seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
1229 			   rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
1230 		seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
1231 			   rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
1232 		seq_printf(m, "Down threshold: %d%%\n",
1233 			   dev_priv->rps.down_threshold);
1234 
1235 		max_freq = (IS_BROXTON(dev_priv) ? rp_state_cap >> 0 :
1236 			    rp_state_cap >> 16) & 0xff;
1237 		max_freq *= (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1238 			     GEN9_FREQ_SCALER : 1);
1239 		seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1240 			   intel_gpu_freq(dev_priv, max_freq));
1241 
1242 		max_freq = (rp_state_cap & 0xff00) >> 8;
1243 		max_freq *= (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1244 			     GEN9_FREQ_SCALER : 1);
1245 		seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1246 			   intel_gpu_freq(dev_priv, max_freq));
1247 
1248 		max_freq = (IS_BROXTON(dev_priv) ? rp_state_cap >> 16 :
1249 			    rp_state_cap >> 0) & 0xff;
1250 		max_freq *= (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1251 			     GEN9_FREQ_SCALER : 1);
1252 		seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1253 			   intel_gpu_freq(dev_priv, max_freq));
1254 		seq_printf(m, "Max overclocked frequency: %dMHz\n",
1255 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1256 
1257 		seq_printf(m, "Current freq: %d MHz\n",
1258 			   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1259 		seq_printf(m, "Actual freq: %d MHz\n", cagf);
1260 		seq_printf(m, "Idle freq: %d MHz\n",
1261 			   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1262 		seq_printf(m, "Min freq: %d MHz\n",
1263 			   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1264 		seq_printf(m, "Boost freq: %d MHz\n",
1265 			   intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
1266 		seq_printf(m, "Max freq: %d MHz\n",
1267 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1268 		seq_printf(m,
1269 			   "efficient (RPe) frequency: %d MHz\n",
1270 			   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1271 	} else {
1272 		seq_puts(m, "no P-state info available\n");
1273 	}
1274 
1275 	seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1276 	seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1277 	seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1278 
1279 out:
1280 	intel_runtime_pm_put(dev_priv);
1281 	return ret;
1282 }
1283 
1284 static void i915_instdone_info(struct drm_i915_private *dev_priv,
1285 			       struct seq_file *m,
1286 			       struct intel_instdone *instdone)
1287 {
1288 	int slice;
1289 	int subslice;
1290 
1291 	seq_printf(m, "\t\tINSTDONE: 0x%08x\n",
1292 		   instdone->instdone);
1293 
1294 	if (INTEL_GEN(dev_priv) <= 3)
1295 		return;
1296 
1297 	seq_printf(m, "\t\tSC_INSTDONE: 0x%08x\n",
1298 		   instdone->slice_common);
1299 
1300 	if (INTEL_GEN(dev_priv) <= 6)
1301 		return;
1302 
1303 	for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1304 		seq_printf(m, "\t\tSAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
1305 			   slice, subslice, instdone->sampler[slice][subslice]);
1306 
1307 	for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1308 		seq_printf(m, "\t\tROW_INSTDONE[%d][%d]: 0x%08x\n",
1309 			   slice, subslice, instdone->row[slice][subslice]);
1310 }
1311 
1312 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1313 {
1314 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1315 	struct intel_engine_cs *engine;
1316 	u64 acthd[I915_NUM_ENGINES];
1317 	u32 seqno[I915_NUM_ENGINES];
1318 	struct intel_instdone instdone;
1319 	enum intel_engine_id id;
1320 
1321 	if (test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
1322 		seq_printf(m, "Wedged\n");
1323 	if (test_bit(I915_RESET_IN_PROGRESS, &dev_priv->gpu_error.flags))
1324 		seq_printf(m, "Reset in progress\n");
1325 	if (waitqueue_active(&dev_priv->gpu_error.wait_queue))
1326 		seq_printf(m, "Waiter holding struct mutex\n");
1327 	if (waitqueue_active(&dev_priv->gpu_error.reset_queue))
1328 		seq_printf(m, "struct_mutex blocked for reset\n");
1329 
1330 	if (!i915.enable_hangcheck) {
1331 		seq_printf(m, "Hangcheck disabled\n");
1332 		return 0;
1333 	}
1334 
1335 	intel_runtime_pm_get(dev_priv);
1336 
1337 	for_each_engine(engine, dev_priv, id) {
1338 		acthd[id] = intel_engine_get_active_head(engine);
1339 		seqno[id] = intel_engine_get_seqno(engine);
1340 	}
1341 
1342 	intel_engine_get_instdone(dev_priv->engine[RCS], &instdone);
1343 
1344 	intel_runtime_pm_put(dev_priv);
1345 
1346 	if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1347 		seq_printf(m, "Hangcheck active, fires in %dms\n",
1348 			   jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1349 					    jiffies));
1350 	} else
1351 		seq_printf(m, "Hangcheck inactive\n");
1352 
1353 	for_each_engine(engine, dev_priv, id) {
1354 		struct intel_breadcrumbs *b = &engine->breadcrumbs;
1355 		struct rb_node *rb;
1356 
1357 		seq_printf(m, "%s:\n", engine->name);
1358 		seq_printf(m, "\tseqno = %x [current %x, last %x]\n",
1359 			   engine->hangcheck.seqno,
1360 			   seqno[id],
1361 			   engine->last_submitted_seqno);
1362 		seq_printf(m, "\twaiters? %s, fake irq active? %s\n",
1363 			   yesno(intel_engine_has_waiter(engine)),
1364 			   yesno(test_bit(engine->id,
1365 					  &dev_priv->gpu_error.missed_irq_rings)));
1366 		spin_lock(&b->lock);
1367 		for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
1368 			struct intel_wait *w = container_of(rb, typeof(*w), node);
1369 
1370 			seq_printf(m, "\t%s [%d] waiting for %x\n",
1371 				   w->tsk->comm, w->tsk->pid, w->seqno);
1372 		}
1373 		spin_unlock(&b->lock);
1374 
1375 		seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1376 			   (long long)engine->hangcheck.acthd,
1377 			   (long long)acthd[id]);
1378 		seq_printf(m, "\tscore = %d\n", engine->hangcheck.score);
1379 		seq_printf(m, "\taction = %d\n", engine->hangcheck.action);
1380 
1381 		if (engine->id == RCS) {
1382 			seq_puts(m, "\tinstdone read =\n");
1383 
1384 			i915_instdone_info(dev_priv, m, &instdone);
1385 
1386 			seq_puts(m, "\tinstdone accu =\n");
1387 
1388 			i915_instdone_info(dev_priv, m,
1389 					   &engine->hangcheck.instdone);
1390 		}
1391 	}
1392 
1393 	return 0;
1394 }
1395 
1396 static int ironlake_drpc_info(struct seq_file *m)
1397 {
1398 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1399 	struct drm_device *dev = &dev_priv->drm;
1400 	u32 rgvmodectl, rstdbyctl;
1401 	u16 crstandvid;
1402 	int ret;
1403 
1404 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1405 	if (ret)
1406 		return ret;
1407 	intel_runtime_pm_get(dev_priv);
1408 
1409 	rgvmodectl = I915_READ(MEMMODECTL);
1410 	rstdbyctl = I915_READ(RSTDBYCTL);
1411 	crstandvid = I915_READ16(CRSTANDVID);
1412 
1413 	intel_runtime_pm_put(dev_priv);
1414 	mutex_unlock(&dev->struct_mutex);
1415 
1416 	seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1417 	seq_printf(m, "Boost freq: %d\n",
1418 		   (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1419 		   MEMMODE_BOOST_FREQ_SHIFT);
1420 	seq_printf(m, "HW control enabled: %s\n",
1421 		   yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1422 	seq_printf(m, "SW control enabled: %s\n",
1423 		   yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1424 	seq_printf(m, "Gated voltage change: %s\n",
1425 		   yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1426 	seq_printf(m, "Starting frequency: P%d\n",
1427 		   (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1428 	seq_printf(m, "Max P-state: P%d\n",
1429 		   (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1430 	seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1431 	seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1432 	seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1433 	seq_printf(m, "Render standby enabled: %s\n",
1434 		   yesno(!(rstdbyctl & RCX_SW_EXIT)));
1435 	seq_puts(m, "Current RS state: ");
1436 	switch (rstdbyctl & RSX_STATUS_MASK) {
1437 	case RSX_STATUS_ON:
1438 		seq_puts(m, "on\n");
1439 		break;
1440 	case RSX_STATUS_RC1:
1441 		seq_puts(m, "RC1\n");
1442 		break;
1443 	case RSX_STATUS_RC1E:
1444 		seq_puts(m, "RC1E\n");
1445 		break;
1446 	case RSX_STATUS_RS1:
1447 		seq_puts(m, "RS1\n");
1448 		break;
1449 	case RSX_STATUS_RS2:
1450 		seq_puts(m, "RS2 (RC6)\n");
1451 		break;
1452 	case RSX_STATUS_RS3:
1453 		seq_puts(m, "RC3 (RC6+)\n");
1454 		break;
1455 	default:
1456 		seq_puts(m, "unknown\n");
1457 		break;
1458 	}
1459 
1460 	return 0;
1461 }
1462 
1463 static int i915_forcewake_domains(struct seq_file *m, void *data)
1464 {
1465 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1466 	struct intel_uncore_forcewake_domain *fw_domain;
1467 
1468 	spin_lock_irq(&dev_priv->uncore.lock);
1469 	for_each_fw_domain(fw_domain, dev_priv) {
1470 		seq_printf(m, "%s.wake_count = %u\n",
1471 			   intel_uncore_forcewake_domain_to_str(fw_domain->id),
1472 			   fw_domain->wake_count);
1473 	}
1474 	spin_unlock_irq(&dev_priv->uncore.lock);
1475 
1476 	return 0;
1477 }
1478 
1479 static int vlv_drpc_info(struct seq_file *m)
1480 {
1481 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1482 	u32 rpmodectl1, rcctl1, pw_status;
1483 
1484 	intel_runtime_pm_get(dev_priv);
1485 
1486 	pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1487 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1488 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1489 
1490 	intel_runtime_pm_put(dev_priv);
1491 
1492 	seq_printf(m, "Video Turbo Mode: %s\n",
1493 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1494 	seq_printf(m, "Turbo enabled: %s\n",
1495 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1496 	seq_printf(m, "HW control enabled: %s\n",
1497 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1498 	seq_printf(m, "SW control enabled: %s\n",
1499 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1500 			  GEN6_RP_MEDIA_SW_MODE));
1501 	seq_printf(m, "RC6 Enabled: %s\n",
1502 		   yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1503 					GEN6_RC_CTL_EI_MODE(1))));
1504 	seq_printf(m, "Render Power Well: %s\n",
1505 		   (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1506 	seq_printf(m, "Media Power Well: %s\n",
1507 		   (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1508 
1509 	seq_printf(m, "Render RC6 residency since boot: %u\n",
1510 		   I915_READ(VLV_GT_RENDER_RC6));
1511 	seq_printf(m, "Media RC6 residency since boot: %u\n",
1512 		   I915_READ(VLV_GT_MEDIA_RC6));
1513 
1514 	return i915_forcewake_domains(m, NULL);
1515 }
1516 
1517 static int gen6_drpc_info(struct seq_file *m)
1518 {
1519 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1520 	struct drm_device *dev = &dev_priv->drm;
1521 	u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1522 	u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
1523 	unsigned forcewake_count;
1524 	int count = 0, ret;
1525 
1526 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1527 	if (ret)
1528 		return ret;
1529 	intel_runtime_pm_get(dev_priv);
1530 
1531 	spin_lock_irq(&dev_priv->uncore.lock);
1532 	forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1533 	spin_unlock_irq(&dev_priv->uncore.lock);
1534 
1535 	if (forcewake_count) {
1536 		seq_puts(m, "RC information inaccurate because somebody "
1537 			    "holds a forcewake reference \n");
1538 	} else {
1539 		/* NB: we cannot use forcewake, else we read the wrong values */
1540 		while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1541 			udelay(10);
1542 		seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1543 	}
1544 
1545 	gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1546 	trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1547 
1548 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1549 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1550 	if (INTEL_GEN(dev_priv) >= 9) {
1551 		gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
1552 		gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
1553 	}
1554 	mutex_unlock(&dev->struct_mutex);
1555 	mutex_lock(&dev_priv->rps.hw_lock);
1556 	sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1557 	mutex_unlock(&dev_priv->rps.hw_lock);
1558 
1559 	intel_runtime_pm_put(dev_priv);
1560 
1561 	seq_printf(m, "Video Turbo Mode: %s\n",
1562 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1563 	seq_printf(m, "HW control enabled: %s\n",
1564 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1565 	seq_printf(m, "SW control enabled: %s\n",
1566 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1567 			  GEN6_RP_MEDIA_SW_MODE));
1568 	seq_printf(m, "RC1e Enabled: %s\n",
1569 		   yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1570 	seq_printf(m, "RC6 Enabled: %s\n",
1571 		   yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1572 	if (INTEL_GEN(dev_priv) >= 9) {
1573 		seq_printf(m, "Render Well Gating Enabled: %s\n",
1574 			yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
1575 		seq_printf(m, "Media Well Gating Enabled: %s\n",
1576 			yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
1577 	}
1578 	seq_printf(m, "Deep RC6 Enabled: %s\n",
1579 		   yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1580 	seq_printf(m, "Deepest RC6 Enabled: %s\n",
1581 		   yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1582 	seq_puts(m, "Current RC state: ");
1583 	switch (gt_core_status & GEN6_RCn_MASK) {
1584 	case GEN6_RC0:
1585 		if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1586 			seq_puts(m, "Core Power Down\n");
1587 		else
1588 			seq_puts(m, "on\n");
1589 		break;
1590 	case GEN6_RC3:
1591 		seq_puts(m, "RC3\n");
1592 		break;
1593 	case GEN6_RC6:
1594 		seq_puts(m, "RC6\n");
1595 		break;
1596 	case GEN6_RC7:
1597 		seq_puts(m, "RC7\n");
1598 		break;
1599 	default:
1600 		seq_puts(m, "Unknown\n");
1601 		break;
1602 	}
1603 
1604 	seq_printf(m, "Core Power Down: %s\n",
1605 		   yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1606 	if (INTEL_GEN(dev_priv) >= 9) {
1607 		seq_printf(m, "Render Power Well: %s\n",
1608 			(gen9_powergate_status &
1609 			 GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
1610 		seq_printf(m, "Media Power Well: %s\n",
1611 			(gen9_powergate_status &
1612 			 GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
1613 	}
1614 
1615 	/* Not exactly sure what this is */
1616 	seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1617 		   I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1618 	seq_printf(m, "RC6 residency since boot: %u\n",
1619 		   I915_READ(GEN6_GT_GFX_RC6));
1620 	seq_printf(m, "RC6+ residency since boot: %u\n",
1621 		   I915_READ(GEN6_GT_GFX_RC6p));
1622 	seq_printf(m, "RC6++ residency since boot: %u\n",
1623 		   I915_READ(GEN6_GT_GFX_RC6pp));
1624 
1625 	seq_printf(m, "RC6   voltage: %dmV\n",
1626 		   GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1627 	seq_printf(m, "RC6+  voltage: %dmV\n",
1628 		   GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1629 	seq_printf(m, "RC6++ voltage: %dmV\n",
1630 		   GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1631 	return i915_forcewake_domains(m, NULL);
1632 }
1633 
1634 static int i915_drpc_info(struct seq_file *m, void *unused)
1635 {
1636 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1637 
1638 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1639 		return vlv_drpc_info(m);
1640 	else if (INTEL_GEN(dev_priv) >= 6)
1641 		return gen6_drpc_info(m);
1642 	else
1643 		return ironlake_drpc_info(m);
1644 }
1645 
1646 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1647 {
1648 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1649 
1650 	seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1651 		   dev_priv->fb_tracking.busy_bits);
1652 
1653 	seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1654 		   dev_priv->fb_tracking.flip_bits);
1655 
1656 	return 0;
1657 }
1658 
1659 static int i915_fbc_status(struct seq_file *m, void *unused)
1660 {
1661 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1662 
1663 	if (!HAS_FBC(dev_priv)) {
1664 		seq_puts(m, "FBC unsupported on this chipset\n");
1665 		return 0;
1666 	}
1667 
1668 	intel_runtime_pm_get(dev_priv);
1669 	mutex_lock(&dev_priv->fbc.lock);
1670 
1671 	if (intel_fbc_is_active(dev_priv))
1672 		seq_puts(m, "FBC enabled\n");
1673 	else
1674 		seq_printf(m, "FBC disabled: %s\n",
1675 			   dev_priv->fbc.no_fbc_reason);
1676 
1677 	if (intel_fbc_is_active(dev_priv) &&
1678 	    INTEL_GEN(dev_priv) >= 7)
1679 		seq_printf(m, "Compressing: %s\n",
1680 			   yesno(I915_READ(FBC_STATUS2) &
1681 				 FBC_COMPRESSION_MASK));
1682 
1683 	mutex_unlock(&dev_priv->fbc.lock);
1684 	intel_runtime_pm_put(dev_priv);
1685 
1686 	return 0;
1687 }
1688 
1689 static int i915_fbc_fc_get(void *data, u64 *val)
1690 {
1691 	struct drm_i915_private *dev_priv = data;
1692 
1693 	if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1694 		return -ENODEV;
1695 
1696 	*val = dev_priv->fbc.false_color;
1697 
1698 	return 0;
1699 }
1700 
1701 static int i915_fbc_fc_set(void *data, u64 val)
1702 {
1703 	struct drm_i915_private *dev_priv = data;
1704 	u32 reg;
1705 
1706 	if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1707 		return -ENODEV;
1708 
1709 	mutex_lock(&dev_priv->fbc.lock);
1710 
1711 	reg = I915_READ(ILK_DPFC_CONTROL);
1712 	dev_priv->fbc.false_color = val;
1713 
1714 	I915_WRITE(ILK_DPFC_CONTROL, val ?
1715 		   (reg | FBC_CTL_FALSE_COLOR) :
1716 		   (reg & ~FBC_CTL_FALSE_COLOR));
1717 
1718 	mutex_unlock(&dev_priv->fbc.lock);
1719 	return 0;
1720 }
1721 
1722 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1723 			i915_fbc_fc_get, i915_fbc_fc_set,
1724 			"%llu\n");
1725 
1726 static int i915_ips_status(struct seq_file *m, void *unused)
1727 {
1728 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1729 
1730 	if (!HAS_IPS(dev_priv)) {
1731 		seq_puts(m, "not supported\n");
1732 		return 0;
1733 	}
1734 
1735 	intel_runtime_pm_get(dev_priv);
1736 
1737 	seq_printf(m, "Enabled by kernel parameter: %s\n",
1738 		   yesno(i915.enable_ips));
1739 
1740 	if (INTEL_GEN(dev_priv) >= 8) {
1741 		seq_puts(m, "Currently: unknown\n");
1742 	} else {
1743 		if (I915_READ(IPS_CTL) & IPS_ENABLE)
1744 			seq_puts(m, "Currently: enabled\n");
1745 		else
1746 			seq_puts(m, "Currently: disabled\n");
1747 	}
1748 
1749 	intel_runtime_pm_put(dev_priv);
1750 
1751 	return 0;
1752 }
1753 
1754 static int i915_sr_status(struct seq_file *m, void *unused)
1755 {
1756 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1757 	bool sr_enabled = false;
1758 
1759 	intel_runtime_pm_get(dev_priv);
1760 
1761 	if (HAS_PCH_SPLIT(dev_priv))
1762 		sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1763 	else if (IS_CRESTLINE(dev_priv) || IS_G4X(dev_priv) ||
1764 		 IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1765 		sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1766 	else if (IS_I915GM(dev_priv))
1767 		sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1768 	else if (IS_PINEVIEW(dev_priv))
1769 		sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1770 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1771 		sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1772 
1773 	intel_runtime_pm_put(dev_priv);
1774 
1775 	seq_printf(m, "self-refresh: %s\n",
1776 		   sr_enabled ? "enabled" : "disabled");
1777 
1778 	return 0;
1779 }
1780 
1781 static int i915_emon_status(struct seq_file *m, void *unused)
1782 {
1783 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1784 	struct drm_device *dev = &dev_priv->drm;
1785 	unsigned long temp, chipset, gfx;
1786 	int ret;
1787 
1788 	if (!IS_GEN5(dev_priv))
1789 		return -ENODEV;
1790 
1791 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1792 	if (ret)
1793 		return ret;
1794 
1795 	temp = i915_mch_val(dev_priv);
1796 	chipset = i915_chipset_val(dev_priv);
1797 	gfx = i915_gfx_val(dev_priv);
1798 	mutex_unlock(&dev->struct_mutex);
1799 
1800 	seq_printf(m, "GMCH temp: %ld\n", temp);
1801 	seq_printf(m, "Chipset power: %ld\n", chipset);
1802 	seq_printf(m, "GFX power: %ld\n", gfx);
1803 	seq_printf(m, "Total power: %ld\n", chipset + gfx);
1804 
1805 	return 0;
1806 }
1807 
1808 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1809 {
1810 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1811 	int ret = 0;
1812 	int gpu_freq, ia_freq;
1813 	unsigned int max_gpu_freq, min_gpu_freq;
1814 
1815 	if (!HAS_LLC(dev_priv)) {
1816 		seq_puts(m, "unsupported on this chipset\n");
1817 		return 0;
1818 	}
1819 
1820 	intel_runtime_pm_get(dev_priv);
1821 
1822 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1823 	if (ret)
1824 		goto out;
1825 
1826 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
1827 		/* Convert GT frequency to 50 HZ units */
1828 		min_gpu_freq =
1829 			dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1830 		max_gpu_freq =
1831 			dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1832 	} else {
1833 		min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1834 		max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1835 	}
1836 
1837 	seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1838 
1839 	for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1840 		ia_freq = gpu_freq;
1841 		sandybridge_pcode_read(dev_priv,
1842 				       GEN6_PCODE_READ_MIN_FREQ_TABLE,
1843 				       &ia_freq);
1844 		seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1845 			   intel_gpu_freq(dev_priv, (gpu_freq *
1846 				(IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1847 				 GEN9_FREQ_SCALER : 1))),
1848 			   ((ia_freq >> 0) & 0xff) * 100,
1849 			   ((ia_freq >> 8) & 0xff) * 100);
1850 	}
1851 
1852 	mutex_unlock(&dev_priv->rps.hw_lock);
1853 
1854 out:
1855 	intel_runtime_pm_put(dev_priv);
1856 	return ret;
1857 }
1858 
1859 static int i915_opregion(struct seq_file *m, void *unused)
1860 {
1861 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1862 	struct drm_device *dev = &dev_priv->drm;
1863 	struct intel_opregion *opregion = &dev_priv->opregion;
1864 	int ret;
1865 
1866 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1867 	if (ret)
1868 		goto out;
1869 
1870 	if (opregion->header)
1871 		seq_write(m, opregion->header, OPREGION_SIZE);
1872 
1873 	mutex_unlock(&dev->struct_mutex);
1874 
1875 out:
1876 	return 0;
1877 }
1878 
1879 static int i915_vbt(struct seq_file *m, void *unused)
1880 {
1881 	struct intel_opregion *opregion = &node_to_i915(m->private)->opregion;
1882 
1883 	if (opregion->vbt)
1884 		seq_write(m, opregion->vbt, opregion->vbt_size);
1885 
1886 	return 0;
1887 }
1888 
1889 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1890 {
1891 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1892 	struct drm_device *dev = &dev_priv->drm;
1893 	struct intel_framebuffer *fbdev_fb = NULL;
1894 	struct drm_framebuffer *drm_fb;
1895 	int ret;
1896 
1897 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1898 	if (ret)
1899 		return ret;
1900 
1901 #ifdef CONFIG_DRM_FBDEV_EMULATION
1902 	if (dev_priv->fbdev) {
1903 		fbdev_fb = to_intel_framebuffer(dev_priv->fbdev->helper.fb);
1904 
1905 		seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1906 			   fbdev_fb->base.width,
1907 			   fbdev_fb->base.height,
1908 			   fbdev_fb->base.depth,
1909 			   fbdev_fb->base.bits_per_pixel,
1910 			   fbdev_fb->base.modifier[0],
1911 			   drm_framebuffer_read_refcount(&fbdev_fb->base));
1912 		describe_obj(m, fbdev_fb->obj);
1913 		seq_putc(m, '\n');
1914 	}
1915 #endif
1916 
1917 	mutex_lock(&dev->mode_config.fb_lock);
1918 	drm_for_each_fb(drm_fb, dev) {
1919 		struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1920 		if (fb == fbdev_fb)
1921 			continue;
1922 
1923 		seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1924 			   fb->base.width,
1925 			   fb->base.height,
1926 			   fb->base.depth,
1927 			   fb->base.bits_per_pixel,
1928 			   fb->base.modifier[0],
1929 			   drm_framebuffer_read_refcount(&fb->base));
1930 		describe_obj(m, fb->obj);
1931 		seq_putc(m, '\n');
1932 	}
1933 	mutex_unlock(&dev->mode_config.fb_lock);
1934 	mutex_unlock(&dev->struct_mutex);
1935 
1936 	return 0;
1937 }
1938 
1939 static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
1940 {
1941 	seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1942 		   ring->space, ring->head, ring->tail,
1943 		   ring->last_retired_head);
1944 }
1945 
1946 static int i915_context_status(struct seq_file *m, void *unused)
1947 {
1948 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1949 	struct drm_device *dev = &dev_priv->drm;
1950 	struct intel_engine_cs *engine;
1951 	struct i915_gem_context *ctx;
1952 	enum intel_engine_id id;
1953 	int ret;
1954 
1955 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1956 	if (ret)
1957 		return ret;
1958 
1959 	list_for_each_entry(ctx, &dev_priv->context_list, link) {
1960 		seq_printf(m, "HW context %u ", ctx->hw_id);
1961 		if (ctx->pid) {
1962 			struct task_struct *task;
1963 
1964 			task = get_pid_task(ctx->pid, PIDTYPE_PID);
1965 			if (task) {
1966 				seq_printf(m, "(%s [%d]) ",
1967 					   task->comm, task->pid);
1968 				put_task_struct(task);
1969 			}
1970 		} else if (IS_ERR(ctx->file_priv)) {
1971 			seq_puts(m, "(deleted) ");
1972 		} else {
1973 			seq_puts(m, "(kernel) ");
1974 		}
1975 
1976 		seq_putc(m, ctx->remap_slice ? 'R' : 'r');
1977 		seq_putc(m, '\n');
1978 
1979 		for_each_engine(engine, dev_priv, id) {
1980 			struct intel_context *ce = &ctx->engine[engine->id];
1981 
1982 			seq_printf(m, "%s: ", engine->name);
1983 			seq_putc(m, ce->initialised ? 'I' : 'i');
1984 			if (ce->state)
1985 				describe_obj(m, ce->state->obj);
1986 			if (ce->ring)
1987 				describe_ctx_ring(m, ce->ring);
1988 			seq_putc(m, '\n');
1989 		}
1990 
1991 		seq_putc(m, '\n');
1992 	}
1993 
1994 	mutex_unlock(&dev->struct_mutex);
1995 
1996 	return 0;
1997 }
1998 
1999 static void i915_dump_lrc_obj(struct seq_file *m,
2000 			      struct i915_gem_context *ctx,
2001 			      struct intel_engine_cs *engine)
2002 {
2003 	struct i915_vma *vma = ctx->engine[engine->id].state;
2004 	struct page *page;
2005 	int j;
2006 
2007 	seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
2008 
2009 	if (!vma) {
2010 		seq_puts(m, "\tFake context\n");
2011 		return;
2012 	}
2013 
2014 	if (vma->flags & I915_VMA_GLOBAL_BIND)
2015 		seq_printf(m, "\tBound in GGTT at 0x%08x\n",
2016 			   i915_ggtt_offset(vma));
2017 
2018 	if (i915_gem_object_get_pages(vma->obj)) {
2019 		seq_puts(m, "\tFailed to get pages for context object\n\n");
2020 		return;
2021 	}
2022 
2023 	page = i915_gem_object_get_page(vma->obj, LRC_STATE_PN);
2024 	if (page) {
2025 		u32 *reg_state = kmap_atomic(page);
2026 
2027 		for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2028 			seq_printf(m,
2029 				   "\t[0x%04x] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2030 				   j * 4,
2031 				   reg_state[j], reg_state[j + 1],
2032 				   reg_state[j + 2], reg_state[j + 3]);
2033 		}
2034 		kunmap_atomic(reg_state);
2035 	}
2036 
2037 	seq_putc(m, '\n');
2038 }
2039 
2040 static int i915_dump_lrc(struct seq_file *m, void *unused)
2041 {
2042 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2043 	struct drm_device *dev = &dev_priv->drm;
2044 	struct intel_engine_cs *engine;
2045 	struct i915_gem_context *ctx;
2046 	enum intel_engine_id id;
2047 	int ret;
2048 
2049 	if (!i915.enable_execlists) {
2050 		seq_printf(m, "Logical Ring Contexts are disabled\n");
2051 		return 0;
2052 	}
2053 
2054 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2055 	if (ret)
2056 		return ret;
2057 
2058 	list_for_each_entry(ctx, &dev_priv->context_list, link)
2059 		for_each_engine(engine, dev_priv, id)
2060 			i915_dump_lrc_obj(m, ctx, engine);
2061 
2062 	mutex_unlock(&dev->struct_mutex);
2063 
2064 	return 0;
2065 }
2066 
2067 static const char *swizzle_string(unsigned swizzle)
2068 {
2069 	switch (swizzle) {
2070 	case I915_BIT_6_SWIZZLE_NONE:
2071 		return "none";
2072 	case I915_BIT_6_SWIZZLE_9:
2073 		return "bit9";
2074 	case I915_BIT_6_SWIZZLE_9_10:
2075 		return "bit9/bit10";
2076 	case I915_BIT_6_SWIZZLE_9_11:
2077 		return "bit9/bit11";
2078 	case I915_BIT_6_SWIZZLE_9_10_11:
2079 		return "bit9/bit10/bit11";
2080 	case I915_BIT_6_SWIZZLE_9_17:
2081 		return "bit9/bit17";
2082 	case I915_BIT_6_SWIZZLE_9_10_17:
2083 		return "bit9/bit10/bit17";
2084 	case I915_BIT_6_SWIZZLE_UNKNOWN:
2085 		return "unknown";
2086 	}
2087 
2088 	return "bug";
2089 }
2090 
2091 static int i915_swizzle_info(struct seq_file *m, void *data)
2092 {
2093 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2094 	struct drm_device *dev = &dev_priv->drm;
2095 	int ret;
2096 
2097 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2098 	if (ret)
2099 		return ret;
2100 	intel_runtime_pm_get(dev_priv);
2101 
2102 	seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2103 		   swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2104 	seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2105 		   swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2106 
2107 	if (IS_GEN3(dev_priv) || IS_GEN4(dev_priv)) {
2108 		seq_printf(m, "DDC = 0x%08x\n",
2109 			   I915_READ(DCC));
2110 		seq_printf(m, "DDC2 = 0x%08x\n",
2111 			   I915_READ(DCC2));
2112 		seq_printf(m, "C0DRB3 = 0x%04x\n",
2113 			   I915_READ16(C0DRB3));
2114 		seq_printf(m, "C1DRB3 = 0x%04x\n",
2115 			   I915_READ16(C1DRB3));
2116 	} else if (INTEL_GEN(dev_priv) >= 6) {
2117 		seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2118 			   I915_READ(MAD_DIMM_C0));
2119 		seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2120 			   I915_READ(MAD_DIMM_C1));
2121 		seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2122 			   I915_READ(MAD_DIMM_C2));
2123 		seq_printf(m, "TILECTL = 0x%08x\n",
2124 			   I915_READ(TILECTL));
2125 		if (INTEL_GEN(dev_priv) >= 8)
2126 			seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2127 				   I915_READ(GAMTARBMODE));
2128 		else
2129 			seq_printf(m, "ARB_MODE = 0x%08x\n",
2130 				   I915_READ(ARB_MODE));
2131 		seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2132 			   I915_READ(DISP_ARB_CTL));
2133 	}
2134 
2135 	if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2136 		seq_puts(m, "L-shaped memory detected\n");
2137 
2138 	intel_runtime_pm_put(dev_priv);
2139 	mutex_unlock(&dev->struct_mutex);
2140 
2141 	return 0;
2142 }
2143 
2144 static int per_file_ctx(int id, void *ptr, void *data)
2145 {
2146 	struct i915_gem_context *ctx = ptr;
2147 	struct seq_file *m = data;
2148 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2149 
2150 	if (!ppgtt) {
2151 		seq_printf(m, "  no ppgtt for context %d\n",
2152 			   ctx->user_handle);
2153 		return 0;
2154 	}
2155 
2156 	if (i915_gem_context_is_default(ctx))
2157 		seq_puts(m, "  default context:\n");
2158 	else
2159 		seq_printf(m, "  context %d:\n", ctx->user_handle);
2160 	ppgtt->debug_dump(ppgtt, m);
2161 
2162 	return 0;
2163 }
2164 
2165 static void gen8_ppgtt_info(struct seq_file *m,
2166 			    struct drm_i915_private *dev_priv)
2167 {
2168 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2169 	struct intel_engine_cs *engine;
2170 	enum intel_engine_id id;
2171 	int i;
2172 
2173 	if (!ppgtt)
2174 		return;
2175 
2176 	for_each_engine(engine, dev_priv, id) {
2177 		seq_printf(m, "%s\n", engine->name);
2178 		for (i = 0; i < 4; i++) {
2179 			u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
2180 			pdp <<= 32;
2181 			pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
2182 			seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2183 		}
2184 	}
2185 }
2186 
2187 static void gen6_ppgtt_info(struct seq_file *m,
2188 			    struct drm_i915_private *dev_priv)
2189 {
2190 	struct intel_engine_cs *engine;
2191 	enum intel_engine_id id;
2192 
2193 	if (IS_GEN6(dev_priv))
2194 		seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2195 
2196 	for_each_engine(engine, dev_priv, id) {
2197 		seq_printf(m, "%s\n", engine->name);
2198 		if (IS_GEN7(dev_priv))
2199 			seq_printf(m, "GFX_MODE: 0x%08x\n",
2200 				   I915_READ(RING_MODE_GEN7(engine)));
2201 		seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
2202 			   I915_READ(RING_PP_DIR_BASE(engine)));
2203 		seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
2204 			   I915_READ(RING_PP_DIR_BASE_READ(engine)));
2205 		seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
2206 			   I915_READ(RING_PP_DIR_DCLV(engine)));
2207 	}
2208 	if (dev_priv->mm.aliasing_ppgtt) {
2209 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2210 
2211 		seq_puts(m, "aliasing PPGTT:\n");
2212 		seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2213 
2214 		ppgtt->debug_dump(ppgtt, m);
2215 	}
2216 
2217 	seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2218 }
2219 
2220 static int i915_ppgtt_info(struct seq_file *m, void *data)
2221 {
2222 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2223 	struct drm_device *dev = &dev_priv->drm;
2224 	struct drm_file *file;
2225 	int ret;
2226 
2227 	mutex_lock(&dev->filelist_mutex);
2228 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2229 	if (ret)
2230 		goto out_unlock;
2231 
2232 	intel_runtime_pm_get(dev_priv);
2233 
2234 	if (INTEL_GEN(dev_priv) >= 8)
2235 		gen8_ppgtt_info(m, dev_priv);
2236 	else if (INTEL_GEN(dev_priv) >= 6)
2237 		gen6_ppgtt_info(m, dev_priv);
2238 
2239 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2240 		struct drm_i915_file_private *file_priv = file->driver_priv;
2241 		struct task_struct *task;
2242 
2243 		task = get_pid_task(file->pid, PIDTYPE_PID);
2244 		if (!task) {
2245 			ret = -ESRCH;
2246 			goto out_rpm;
2247 		}
2248 		seq_printf(m, "\nproc: %s\n", task->comm);
2249 		put_task_struct(task);
2250 		idr_for_each(&file_priv->context_idr, per_file_ctx,
2251 			     (void *)(unsigned long)m);
2252 	}
2253 
2254 out_rpm:
2255 	intel_runtime_pm_put(dev_priv);
2256 	mutex_unlock(&dev->struct_mutex);
2257 out_unlock:
2258 	mutex_unlock(&dev->filelist_mutex);
2259 	return ret;
2260 }
2261 
2262 static int count_irq_waiters(struct drm_i915_private *i915)
2263 {
2264 	struct intel_engine_cs *engine;
2265 	enum intel_engine_id id;
2266 	int count = 0;
2267 
2268 	for_each_engine(engine, i915, id)
2269 		count += intel_engine_has_waiter(engine);
2270 
2271 	return count;
2272 }
2273 
2274 static const char *rps_power_to_str(unsigned int power)
2275 {
2276 	static const char * const strings[] = {
2277 		[LOW_POWER] = "low power",
2278 		[BETWEEN] = "mixed",
2279 		[HIGH_POWER] = "high power",
2280 	};
2281 
2282 	if (power >= ARRAY_SIZE(strings) || !strings[power])
2283 		return "unknown";
2284 
2285 	return strings[power];
2286 }
2287 
2288 static int i915_rps_boost_info(struct seq_file *m, void *data)
2289 {
2290 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2291 	struct drm_device *dev = &dev_priv->drm;
2292 	struct drm_file *file;
2293 
2294 	seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2295 	seq_printf(m, "GPU busy? %s [%x]\n",
2296 		   yesno(dev_priv->gt.awake), dev_priv->gt.active_engines);
2297 	seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2298 	seq_printf(m, "Frequency requested %d\n",
2299 		   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
2300 	seq_printf(m, "  min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2301 		   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2302 		   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2303 		   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2304 		   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2305 	seq_printf(m, "  idle:%d, efficient:%d, boost:%d\n",
2306 		   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
2307 		   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
2308 		   intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
2309 
2310 	mutex_lock(&dev->filelist_mutex);
2311 	spin_lock(&dev_priv->rps.client_lock);
2312 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2313 		struct drm_i915_file_private *file_priv = file->driver_priv;
2314 		struct task_struct *task;
2315 
2316 		rcu_read_lock();
2317 		task = pid_task(file->pid, PIDTYPE_PID);
2318 		seq_printf(m, "%s [%d]: %d boosts%s\n",
2319 			   task ? task->comm : "<unknown>",
2320 			   task ? task->pid : -1,
2321 			   file_priv->rps.boosts,
2322 			   list_empty(&file_priv->rps.link) ? "" : ", active");
2323 		rcu_read_unlock();
2324 	}
2325 	seq_printf(m, "Kernel (anonymous) boosts: %d\n", dev_priv->rps.boosts);
2326 	spin_unlock(&dev_priv->rps.client_lock);
2327 	mutex_unlock(&dev->filelist_mutex);
2328 
2329 	if (INTEL_GEN(dev_priv) >= 6 &&
2330 	    dev_priv->rps.enabled &&
2331 	    dev_priv->gt.active_engines) {
2332 		u32 rpup, rpupei;
2333 		u32 rpdown, rpdownei;
2334 
2335 		intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2336 		rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
2337 		rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
2338 		rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
2339 		rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
2340 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2341 
2342 		seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
2343 			   rps_power_to_str(dev_priv->rps.power));
2344 		seq_printf(m, "  Avg. up: %d%% [above threshold? %d%%]\n",
2345 			   100 * rpup / rpupei,
2346 			   dev_priv->rps.up_threshold);
2347 		seq_printf(m, "  Avg. down: %d%% [below threshold? %d%%]\n",
2348 			   100 * rpdown / rpdownei,
2349 			   dev_priv->rps.down_threshold);
2350 	} else {
2351 		seq_puts(m, "\nRPS Autotuning inactive\n");
2352 	}
2353 
2354 	return 0;
2355 }
2356 
2357 static int i915_llc(struct seq_file *m, void *data)
2358 {
2359 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2360 	const bool edram = INTEL_GEN(dev_priv) > 8;
2361 
2362 	seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
2363 	seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
2364 		   intel_uncore_edram_size(dev_priv)/1024/1024);
2365 
2366 	return 0;
2367 }
2368 
2369 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2370 {
2371 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2372 	struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
2373 	u32 tmp, i;
2374 
2375 	if (!HAS_GUC_UCODE(dev_priv))
2376 		return 0;
2377 
2378 	seq_printf(m, "GuC firmware status:\n");
2379 	seq_printf(m, "\tpath: %s\n",
2380 		guc_fw->guc_fw_path);
2381 	seq_printf(m, "\tfetch: %s\n",
2382 		intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
2383 	seq_printf(m, "\tload: %s\n",
2384 		intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
2385 	seq_printf(m, "\tversion wanted: %d.%d\n",
2386 		guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
2387 	seq_printf(m, "\tversion found: %d.%d\n",
2388 		guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
2389 	seq_printf(m, "\theader: offset is %d; size = %d\n",
2390 		guc_fw->header_offset, guc_fw->header_size);
2391 	seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2392 		guc_fw->ucode_offset, guc_fw->ucode_size);
2393 	seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2394 		guc_fw->rsa_offset, guc_fw->rsa_size);
2395 
2396 	tmp = I915_READ(GUC_STATUS);
2397 
2398 	seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2399 	seq_printf(m, "\tBootrom status = 0x%x\n",
2400 		(tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2401 	seq_printf(m, "\tuKernel status = 0x%x\n",
2402 		(tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2403 	seq_printf(m, "\tMIA Core status = 0x%x\n",
2404 		(tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2405 	seq_puts(m, "\nScratch registers:\n");
2406 	for (i = 0; i < 16; i++)
2407 		seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2408 
2409 	return 0;
2410 }
2411 
2412 static void i915_guc_client_info(struct seq_file *m,
2413 				 struct drm_i915_private *dev_priv,
2414 				 struct i915_guc_client *client)
2415 {
2416 	struct intel_engine_cs *engine;
2417 	enum intel_engine_id id;
2418 	uint64_t tot = 0;
2419 
2420 	seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2421 		client->priority, client->ctx_index, client->proc_desc_offset);
2422 	seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2423 		client->doorbell_id, client->doorbell_offset, client->cookie);
2424 	seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2425 		client->wq_size, client->wq_offset, client->wq_tail);
2426 
2427 	seq_printf(m, "\tWork queue full: %u\n", client->no_wq_space);
2428 	seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2429 	seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2430 
2431 	for_each_engine(engine, dev_priv, id) {
2432 		u64 submissions = client->submissions[id];
2433 		tot += submissions;
2434 		seq_printf(m, "\tSubmissions: %llu %s\n",
2435 				submissions, engine->name);
2436 	}
2437 	seq_printf(m, "\tTotal: %llu\n", tot);
2438 }
2439 
2440 static int i915_guc_info(struct seq_file *m, void *data)
2441 {
2442 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2443 	struct drm_device *dev = &dev_priv->drm;
2444 	struct intel_guc guc;
2445 	struct i915_guc_client client = {};
2446 	struct intel_engine_cs *engine;
2447 	enum intel_engine_id id;
2448 	u64 total = 0;
2449 
2450 	if (!HAS_GUC_SCHED(dev_priv))
2451 		return 0;
2452 
2453 	if (mutex_lock_interruptible(&dev->struct_mutex))
2454 		return 0;
2455 
2456 	/* Take a local copy of the GuC data, so we can dump it at leisure */
2457 	guc = dev_priv->guc;
2458 	if (guc.execbuf_client)
2459 		client = *guc.execbuf_client;
2460 
2461 	mutex_unlock(&dev->struct_mutex);
2462 
2463 	seq_printf(m, "Doorbell map:\n");
2464 	seq_printf(m, "\t%*pb\n", GUC_MAX_DOORBELLS, guc.doorbell_bitmap);
2465 	seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc.db_cacheline);
2466 
2467 	seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
2468 	seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
2469 	seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
2470 	seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
2471 	seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
2472 
2473 	seq_printf(m, "\nGuC submissions:\n");
2474 	for_each_engine(engine, dev_priv, id) {
2475 		u64 submissions = guc.submissions[id];
2476 		total += submissions;
2477 		seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
2478 			engine->name, submissions, guc.last_seqno[id]);
2479 	}
2480 	seq_printf(m, "\t%s: %llu\n", "Total", total);
2481 
2482 	seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
2483 	i915_guc_client_info(m, dev_priv, &client);
2484 
2485 	/* Add more as required ... */
2486 
2487 	return 0;
2488 }
2489 
2490 static int i915_guc_log_dump(struct seq_file *m, void *data)
2491 {
2492 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2493 	struct drm_i915_gem_object *obj;
2494 	int i = 0, pg;
2495 
2496 	if (!dev_priv->guc.log_vma)
2497 		return 0;
2498 
2499 	obj = dev_priv->guc.log_vma->obj;
2500 	for (pg = 0; pg < obj->base.size / PAGE_SIZE; pg++) {
2501 		u32 *log = kmap_atomic(i915_gem_object_get_page(obj, pg));
2502 
2503 		for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2504 			seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2505 				   *(log + i), *(log + i + 1),
2506 				   *(log + i + 2), *(log + i + 3));
2507 
2508 		kunmap_atomic(log);
2509 	}
2510 
2511 	seq_putc(m, '\n');
2512 
2513 	return 0;
2514 }
2515 
2516 static int i915_edp_psr_status(struct seq_file *m, void *data)
2517 {
2518 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2519 	u32 psrperf = 0;
2520 	u32 stat[3];
2521 	enum pipe pipe;
2522 	bool enabled = false;
2523 
2524 	if (!HAS_PSR(dev_priv)) {
2525 		seq_puts(m, "PSR not supported\n");
2526 		return 0;
2527 	}
2528 
2529 	intel_runtime_pm_get(dev_priv);
2530 
2531 	mutex_lock(&dev_priv->psr.lock);
2532 	seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2533 	seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2534 	seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2535 	seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2536 	seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2537 		   dev_priv->psr.busy_frontbuffer_bits);
2538 	seq_printf(m, "Re-enable work scheduled: %s\n",
2539 		   yesno(work_busy(&dev_priv->psr.work.work)));
2540 
2541 	if (HAS_DDI(dev_priv))
2542 		enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2543 	else {
2544 		for_each_pipe(dev_priv, pipe) {
2545 			stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2546 				VLV_EDP_PSR_CURR_STATE_MASK;
2547 			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2548 			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2549 				enabled = true;
2550 		}
2551 	}
2552 
2553 	seq_printf(m, "Main link in standby mode: %s\n",
2554 		   yesno(dev_priv->psr.link_standby));
2555 
2556 	seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2557 
2558 	if (!HAS_DDI(dev_priv))
2559 		for_each_pipe(dev_priv, pipe) {
2560 			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2561 			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2562 				seq_printf(m, " pipe %c", pipe_name(pipe));
2563 		}
2564 	seq_puts(m, "\n");
2565 
2566 	/*
2567 	 * VLV/CHV PSR has no kind of performance counter
2568 	 * SKL+ Perf counter is reset to 0 everytime DC state is entered
2569 	 */
2570 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2571 		psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2572 			EDP_PSR_PERF_CNT_MASK;
2573 
2574 		seq_printf(m, "Performance_Counter: %u\n", psrperf);
2575 	}
2576 	mutex_unlock(&dev_priv->psr.lock);
2577 
2578 	intel_runtime_pm_put(dev_priv);
2579 	return 0;
2580 }
2581 
2582 static int i915_sink_crc(struct seq_file *m, void *data)
2583 {
2584 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2585 	struct drm_device *dev = &dev_priv->drm;
2586 	struct intel_connector *connector;
2587 	struct intel_dp *intel_dp = NULL;
2588 	int ret;
2589 	u8 crc[6];
2590 
2591 	drm_modeset_lock_all(dev);
2592 	for_each_intel_connector(dev, connector) {
2593 		struct drm_crtc *crtc;
2594 
2595 		if (!connector->base.state->best_encoder)
2596 			continue;
2597 
2598 		crtc = connector->base.state->crtc;
2599 		if (!crtc->state->active)
2600 			continue;
2601 
2602 		if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
2603 			continue;
2604 
2605 		intel_dp = enc_to_intel_dp(connector->base.state->best_encoder);
2606 
2607 		ret = intel_dp_sink_crc(intel_dp, crc);
2608 		if (ret)
2609 			goto out;
2610 
2611 		seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2612 			   crc[0], crc[1], crc[2],
2613 			   crc[3], crc[4], crc[5]);
2614 		goto out;
2615 	}
2616 	ret = -ENODEV;
2617 out:
2618 	drm_modeset_unlock_all(dev);
2619 	return ret;
2620 }
2621 
2622 static int i915_energy_uJ(struct seq_file *m, void *data)
2623 {
2624 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2625 	u64 power;
2626 	u32 units;
2627 
2628 	if (INTEL_GEN(dev_priv) < 6)
2629 		return -ENODEV;
2630 
2631 	intel_runtime_pm_get(dev_priv);
2632 
2633 	rdmsrl(MSR_RAPL_POWER_UNIT, power);
2634 	power = (power & 0x1f00) >> 8;
2635 	units = 1000000 / (1 << power); /* convert to uJ */
2636 	power = I915_READ(MCH_SECP_NRG_STTS);
2637 	power *= units;
2638 
2639 	intel_runtime_pm_put(dev_priv);
2640 
2641 	seq_printf(m, "%llu", (long long unsigned)power);
2642 
2643 	return 0;
2644 }
2645 
2646 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2647 {
2648 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2649 	struct pci_dev *pdev = dev_priv->drm.pdev;
2650 
2651 	if (!HAS_RUNTIME_PM(dev_priv))
2652 		seq_puts(m, "Runtime power management not supported\n");
2653 
2654 	seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
2655 	seq_printf(m, "IRQs disabled: %s\n",
2656 		   yesno(!intel_irqs_enabled(dev_priv)));
2657 #ifdef CONFIG_PM
2658 	seq_printf(m, "Usage count: %d\n",
2659 		   atomic_read(&dev_priv->drm.dev->power.usage_count));
2660 #else
2661 	seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2662 #endif
2663 	seq_printf(m, "PCI device power state: %s [%d]\n",
2664 		   pci_power_name(pdev->current_state),
2665 		   pdev->current_state);
2666 
2667 	return 0;
2668 }
2669 
2670 static int i915_power_domain_info(struct seq_file *m, void *unused)
2671 {
2672 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2673 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2674 	int i;
2675 
2676 	mutex_lock(&power_domains->lock);
2677 
2678 	seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2679 	for (i = 0; i < power_domains->power_well_count; i++) {
2680 		struct i915_power_well *power_well;
2681 		enum intel_display_power_domain power_domain;
2682 
2683 		power_well = &power_domains->power_wells[i];
2684 		seq_printf(m, "%-25s %d\n", power_well->name,
2685 			   power_well->count);
2686 
2687 		for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2688 		     power_domain++) {
2689 			if (!(BIT(power_domain) & power_well->domains))
2690 				continue;
2691 
2692 			seq_printf(m, "  %-23s %d\n",
2693 				 intel_display_power_domain_str(power_domain),
2694 				 power_domains->domain_use_count[power_domain]);
2695 		}
2696 	}
2697 
2698 	mutex_unlock(&power_domains->lock);
2699 
2700 	return 0;
2701 }
2702 
2703 static int i915_dmc_info(struct seq_file *m, void *unused)
2704 {
2705 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2706 	struct intel_csr *csr;
2707 
2708 	if (!HAS_CSR(dev_priv)) {
2709 		seq_puts(m, "not supported\n");
2710 		return 0;
2711 	}
2712 
2713 	csr = &dev_priv->csr;
2714 
2715 	intel_runtime_pm_get(dev_priv);
2716 
2717 	seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2718 	seq_printf(m, "path: %s\n", csr->fw_path);
2719 
2720 	if (!csr->dmc_payload)
2721 		goto out;
2722 
2723 	seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2724 		   CSR_VERSION_MINOR(csr->version));
2725 
2726 	if (IS_SKYLAKE(dev_priv) && csr->version >= CSR_VERSION(1, 6)) {
2727 		seq_printf(m, "DC3 -> DC5 count: %d\n",
2728 			   I915_READ(SKL_CSR_DC3_DC5_COUNT));
2729 		seq_printf(m, "DC5 -> DC6 count: %d\n",
2730 			   I915_READ(SKL_CSR_DC5_DC6_COUNT));
2731 	} else if (IS_BROXTON(dev_priv) && csr->version >= CSR_VERSION(1, 4)) {
2732 		seq_printf(m, "DC3 -> DC5 count: %d\n",
2733 			   I915_READ(BXT_CSR_DC3_DC5_COUNT));
2734 	}
2735 
2736 out:
2737 	seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2738 	seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2739 	seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2740 
2741 	intel_runtime_pm_put(dev_priv);
2742 
2743 	return 0;
2744 }
2745 
2746 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2747 				 struct drm_display_mode *mode)
2748 {
2749 	int i;
2750 
2751 	for (i = 0; i < tabs; i++)
2752 		seq_putc(m, '\t');
2753 
2754 	seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2755 		   mode->base.id, mode->name,
2756 		   mode->vrefresh, mode->clock,
2757 		   mode->hdisplay, mode->hsync_start,
2758 		   mode->hsync_end, mode->htotal,
2759 		   mode->vdisplay, mode->vsync_start,
2760 		   mode->vsync_end, mode->vtotal,
2761 		   mode->type, mode->flags);
2762 }
2763 
2764 static void intel_encoder_info(struct seq_file *m,
2765 			       struct intel_crtc *intel_crtc,
2766 			       struct intel_encoder *intel_encoder)
2767 {
2768 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2769 	struct drm_device *dev = &dev_priv->drm;
2770 	struct drm_crtc *crtc = &intel_crtc->base;
2771 	struct intel_connector *intel_connector;
2772 	struct drm_encoder *encoder;
2773 
2774 	encoder = &intel_encoder->base;
2775 	seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2776 		   encoder->base.id, encoder->name);
2777 	for_each_connector_on_encoder(dev, encoder, intel_connector) {
2778 		struct drm_connector *connector = &intel_connector->base;
2779 		seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2780 			   connector->base.id,
2781 			   connector->name,
2782 			   drm_get_connector_status_name(connector->status));
2783 		if (connector->status == connector_status_connected) {
2784 			struct drm_display_mode *mode = &crtc->mode;
2785 			seq_printf(m, ", mode:\n");
2786 			intel_seq_print_mode(m, 2, mode);
2787 		} else {
2788 			seq_putc(m, '\n');
2789 		}
2790 	}
2791 }
2792 
2793 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2794 {
2795 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2796 	struct drm_device *dev = &dev_priv->drm;
2797 	struct drm_crtc *crtc = &intel_crtc->base;
2798 	struct intel_encoder *intel_encoder;
2799 	struct drm_plane_state *plane_state = crtc->primary->state;
2800 	struct drm_framebuffer *fb = plane_state->fb;
2801 
2802 	if (fb)
2803 		seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2804 			   fb->base.id, plane_state->src_x >> 16,
2805 			   plane_state->src_y >> 16, fb->width, fb->height);
2806 	else
2807 		seq_puts(m, "\tprimary plane disabled\n");
2808 	for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2809 		intel_encoder_info(m, intel_crtc, intel_encoder);
2810 }
2811 
2812 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2813 {
2814 	struct drm_display_mode *mode = panel->fixed_mode;
2815 
2816 	seq_printf(m, "\tfixed mode:\n");
2817 	intel_seq_print_mode(m, 2, mode);
2818 }
2819 
2820 static void intel_dp_info(struct seq_file *m,
2821 			  struct intel_connector *intel_connector)
2822 {
2823 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2824 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2825 
2826 	seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2827 	seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2828 	if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
2829 		intel_panel_info(m, &intel_connector->panel);
2830 
2831 	drm_dp_downstream_debug(m, intel_dp->dpcd, intel_dp->downstream_ports,
2832 				&intel_dp->aux);
2833 }
2834 
2835 static void intel_hdmi_info(struct seq_file *m,
2836 			    struct intel_connector *intel_connector)
2837 {
2838 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2839 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2840 
2841 	seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2842 }
2843 
2844 static void intel_lvds_info(struct seq_file *m,
2845 			    struct intel_connector *intel_connector)
2846 {
2847 	intel_panel_info(m, &intel_connector->panel);
2848 }
2849 
2850 static void intel_connector_info(struct seq_file *m,
2851 				 struct drm_connector *connector)
2852 {
2853 	struct intel_connector *intel_connector = to_intel_connector(connector);
2854 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2855 	struct drm_display_mode *mode;
2856 
2857 	seq_printf(m, "connector %d: type %s, status: %s\n",
2858 		   connector->base.id, connector->name,
2859 		   drm_get_connector_status_name(connector->status));
2860 	if (connector->status == connector_status_connected) {
2861 		seq_printf(m, "\tname: %s\n", connector->display_info.name);
2862 		seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2863 			   connector->display_info.width_mm,
2864 			   connector->display_info.height_mm);
2865 		seq_printf(m, "\tsubpixel order: %s\n",
2866 			   drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2867 		seq_printf(m, "\tCEA rev: %d\n",
2868 			   connector->display_info.cea_rev);
2869 	}
2870 
2871 	if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
2872 		return;
2873 
2874 	switch (connector->connector_type) {
2875 	case DRM_MODE_CONNECTOR_DisplayPort:
2876 	case DRM_MODE_CONNECTOR_eDP:
2877 		intel_dp_info(m, intel_connector);
2878 		break;
2879 	case DRM_MODE_CONNECTOR_LVDS:
2880 		if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2881 			intel_lvds_info(m, intel_connector);
2882 		break;
2883 	case DRM_MODE_CONNECTOR_HDMIA:
2884 		if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
2885 		    intel_encoder->type == INTEL_OUTPUT_UNKNOWN)
2886 			intel_hdmi_info(m, intel_connector);
2887 		break;
2888 	default:
2889 		break;
2890 	}
2891 
2892 	seq_printf(m, "\tmodes:\n");
2893 	list_for_each_entry(mode, &connector->modes, head)
2894 		intel_seq_print_mode(m, 2, mode);
2895 }
2896 
2897 static bool cursor_active(struct drm_i915_private *dev_priv, int pipe)
2898 {
2899 	u32 state;
2900 
2901 	if (IS_845G(dev_priv) || IS_I865G(dev_priv))
2902 		state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
2903 	else
2904 		state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2905 
2906 	return state;
2907 }
2908 
2909 static bool cursor_position(struct drm_i915_private *dev_priv,
2910 			    int pipe, int *x, int *y)
2911 {
2912 	u32 pos;
2913 
2914 	pos = I915_READ(CURPOS(pipe));
2915 
2916 	*x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2917 	if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2918 		*x = -*x;
2919 
2920 	*y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2921 	if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2922 		*y = -*y;
2923 
2924 	return cursor_active(dev_priv, pipe);
2925 }
2926 
2927 static const char *plane_type(enum drm_plane_type type)
2928 {
2929 	switch (type) {
2930 	case DRM_PLANE_TYPE_OVERLAY:
2931 		return "OVL";
2932 	case DRM_PLANE_TYPE_PRIMARY:
2933 		return "PRI";
2934 	case DRM_PLANE_TYPE_CURSOR:
2935 		return "CUR";
2936 	/*
2937 	 * Deliberately omitting default: to generate compiler warnings
2938 	 * when a new drm_plane_type gets added.
2939 	 */
2940 	}
2941 
2942 	return "unknown";
2943 }
2944 
2945 static const char *plane_rotation(unsigned int rotation)
2946 {
2947 	static char buf[48];
2948 	/*
2949 	 * According to doc only one DRM_ROTATE_ is allowed but this
2950 	 * will print them all to visualize if the values are misused
2951 	 */
2952 	snprintf(buf, sizeof(buf),
2953 		 "%s%s%s%s%s%s(0x%08x)",
2954 		 (rotation & DRM_ROTATE_0) ? "0 " : "",
2955 		 (rotation & DRM_ROTATE_90) ? "90 " : "",
2956 		 (rotation & DRM_ROTATE_180) ? "180 " : "",
2957 		 (rotation & DRM_ROTATE_270) ? "270 " : "",
2958 		 (rotation & DRM_REFLECT_X) ? "FLIPX " : "",
2959 		 (rotation & DRM_REFLECT_Y) ? "FLIPY " : "",
2960 		 rotation);
2961 
2962 	return buf;
2963 }
2964 
2965 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2966 {
2967 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2968 	struct drm_device *dev = &dev_priv->drm;
2969 	struct intel_plane *intel_plane;
2970 
2971 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2972 		struct drm_plane_state *state;
2973 		struct drm_plane *plane = &intel_plane->base;
2974 		char *format_name;
2975 
2976 		if (!plane->state) {
2977 			seq_puts(m, "plane->state is NULL!\n");
2978 			continue;
2979 		}
2980 
2981 		state = plane->state;
2982 
2983 		if (state->fb) {
2984 			format_name = drm_get_format_name(state->fb->pixel_format);
2985 		} else {
2986 			format_name = kstrdup("N/A", GFP_KERNEL);
2987 		}
2988 
2989 		seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
2990 			   plane->base.id,
2991 			   plane_type(intel_plane->base.type),
2992 			   state->crtc_x, state->crtc_y,
2993 			   state->crtc_w, state->crtc_h,
2994 			   (state->src_x >> 16),
2995 			   ((state->src_x & 0xffff) * 15625) >> 10,
2996 			   (state->src_y >> 16),
2997 			   ((state->src_y & 0xffff) * 15625) >> 10,
2998 			   (state->src_w >> 16),
2999 			   ((state->src_w & 0xffff) * 15625) >> 10,
3000 			   (state->src_h >> 16),
3001 			   ((state->src_h & 0xffff) * 15625) >> 10,
3002 			   format_name,
3003 			   plane_rotation(state->rotation));
3004 
3005 		kfree(format_name);
3006 	}
3007 }
3008 
3009 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3010 {
3011 	struct intel_crtc_state *pipe_config;
3012 	int num_scalers = intel_crtc->num_scalers;
3013 	int i;
3014 
3015 	pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3016 
3017 	/* Not all platformas have a scaler */
3018 	if (num_scalers) {
3019 		seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3020 			   num_scalers,
3021 			   pipe_config->scaler_state.scaler_users,
3022 			   pipe_config->scaler_state.scaler_id);
3023 
3024 		for (i = 0; i < SKL_NUM_SCALERS; i++) {
3025 			struct intel_scaler *sc =
3026 					&pipe_config->scaler_state.scalers[i];
3027 
3028 			seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3029 				   i, yesno(sc->in_use), sc->mode);
3030 		}
3031 		seq_puts(m, "\n");
3032 	} else {
3033 		seq_puts(m, "\tNo scalers available on this platform\n");
3034 	}
3035 }
3036 
3037 static int i915_display_info(struct seq_file *m, void *unused)
3038 {
3039 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3040 	struct drm_device *dev = &dev_priv->drm;
3041 	struct intel_crtc *crtc;
3042 	struct drm_connector *connector;
3043 
3044 	intel_runtime_pm_get(dev_priv);
3045 	drm_modeset_lock_all(dev);
3046 	seq_printf(m, "CRTC info\n");
3047 	seq_printf(m, "---------\n");
3048 	for_each_intel_crtc(dev, crtc) {
3049 		bool active;
3050 		struct intel_crtc_state *pipe_config;
3051 		int x, y;
3052 
3053 		pipe_config = to_intel_crtc_state(crtc->base.state);
3054 
3055 		seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3056 			   crtc->base.base.id, pipe_name(crtc->pipe),
3057 			   yesno(pipe_config->base.active),
3058 			   pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3059 			   yesno(pipe_config->dither), pipe_config->pipe_bpp);
3060 
3061 		if (pipe_config->base.active) {
3062 			intel_crtc_info(m, crtc);
3063 
3064 			active = cursor_position(dev_priv, crtc->pipe, &x, &y);
3065 			seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
3066 				   yesno(crtc->cursor_base),
3067 				   x, y, crtc->base.cursor->state->crtc_w,
3068 				   crtc->base.cursor->state->crtc_h,
3069 				   crtc->cursor_addr, yesno(active));
3070 			intel_scaler_info(m, crtc);
3071 			intel_plane_info(m, crtc);
3072 		}
3073 
3074 		seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3075 			   yesno(!crtc->cpu_fifo_underrun_disabled),
3076 			   yesno(!crtc->pch_fifo_underrun_disabled));
3077 	}
3078 
3079 	seq_printf(m, "\n");
3080 	seq_printf(m, "Connector info\n");
3081 	seq_printf(m, "--------------\n");
3082 	list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3083 		intel_connector_info(m, connector);
3084 	}
3085 	drm_modeset_unlock_all(dev);
3086 	intel_runtime_pm_put(dev_priv);
3087 
3088 	return 0;
3089 }
3090 
3091 static int i915_engine_info(struct seq_file *m, void *unused)
3092 {
3093 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3094 	struct intel_engine_cs *engine;
3095 	enum intel_engine_id id;
3096 
3097 	for_each_engine(engine, dev_priv, id) {
3098 		struct intel_breadcrumbs *b = &engine->breadcrumbs;
3099 		struct drm_i915_gem_request *rq;
3100 		struct rb_node *rb;
3101 		u64 addr;
3102 
3103 		seq_printf(m, "%s\n", engine->name);
3104 		seq_printf(m, "\tcurrent seqno %x, last %x, hangcheck %x [score %d]\n",
3105 			   intel_engine_get_seqno(engine),
3106 			   engine->last_submitted_seqno,
3107 			   engine->hangcheck.seqno,
3108 			   engine->hangcheck.score);
3109 
3110 		rcu_read_lock();
3111 
3112 		seq_printf(m, "\tRequests:\n");
3113 
3114 		rq = list_first_entry(&engine->request_list,
3115 				struct drm_i915_gem_request, link);
3116 		if (&rq->link != &engine->request_list)
3117 			print_request(m, rq, "\t\tfirst  ");
3118 
3119 		rq = list_last_entry(&engine->request_list,
3120 				struct drm_i915_gem_request, link);
3121 		if (&rq->link != &engine->request_list)
3122 			print_request(m, rq, "\t\tlast   ");
3123 
3124 		rq = i915_gem_find_active_request(engine);
3125 		if (rq) {
3126 			print_request(m, rq, "\t\tactive ");
3127 			seq_printf(m,
3128 				   "\t\t[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]\n",
3129 				   rq->head, rq->postfix, rq->tail,
3130 				   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
3131 				   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
3132 		}
3133 
3134 		seq_printf(m, "\tRING_START: 0x%08x [0x%08x]\n",
3135 			   I915_READ(RING_START(engine->mmio_base)),
3136 			   rq ? i915_ggtt_offset(rq->ring->vma) : 0);
3137 		seq_printf(m, "\tRING_HEAD:  0x%08x [0x%08x]\n",
3138 			   I915_READ(RING_HEAD(engine->mmio_base)) & HEAD_ADDR,
3139 			   rq ? rq->ring->head : 0);
3140 		seq_printf(m, "\tRING_TAIL:  0x%08x [0x%08x]\n",
3141 			   I915_READ(RING_TAIL(engine->mmio_base)) & TAIL_ADDR,
3142 			   rq ? rq->ring->tail : 0);
3143 		seq_printf(m, "\tRING_CTL:   0x%08x [%s]\n",
3144 			   I915_READ(RING_CTL(engine->mmio_base)),
3145 			   I915_READ(RING_CTL(engine->mmio_base)) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? "waiting" : "");
3146 
3147 		rcu_read_unlock();
3148 
3149 		addr = intel_engine_get_active_head(engine);
3150 		seq_printf(m, "\tACTHD:  0x%08x_%08x\n",
3151 			   upper_32_bits(addr), lower_32_bits(addr));
3152 		addr = intel_engine_get_last_batch_head(engine);
3153 		seq_printf(m, "\tBBADDR: 0x%08x_%08x\n",
3154 			   upper_32_bits(addr), lower_32_bits(addr));
3155 
3156 		if (i915.enable_execlists) {
3157 			u32 ptr, read, write;
3158 
3159 			seq_printf(m, "\tExeclist status: 0x%08x %08x\n",
3160 				   I915_READ(RING_EXECLIST_STATUS_LO(engine)),
3161 				   I915_READ(RING_EXECLIST_STATUS_HI(engine)));
3162 
3163 			ptr = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
3164 			read = GEN8_CSB_READ_PTR(ptr);
3165 			write = GEN8_CSB_WRITE_PTR(ptr);
3166 			seq_printf(m, "\tExeclist CSB read %d, write %d\n",
3167 				   read, write);
3168 			if (read >= GEN8_CSB_ENTRIES)
3169 				read = 0;
3170 			if (write >= GEN8_CSB_ENTRIES)
3171 				write = 0;
3172 			if (read > write)
3173 				write += GEN8_CSB_ENTRIES;
3174 			while (read < write) {
3175 				unsigned int idx = ++read % GEN8_CSB_ENTRIES;
3176 
3177 				seq_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
3178 					   idx,
3179 					   I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, idx)),
3180 					   I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, idx)));
3181 			}
3182 
3183 			rcu_read_lock();
3184 			rq = READ_ONCE(engine->execlist_port[0].request);
3185 			if (rq)
3186 				print_request(m, rq, "\t\tELSP[0] ");
3187 			else
3188 				seq_printf(m, "\t\tELSP[0] idle\n");
3189 			rq = READ_ONCE(engine->execlist_port[1].request);
3190 			if (rq)
3191 				print_request(m, rq, "\t\tELSP[1] ");
3192 			else
3193 				seq_printf(m, "\t\tELSP[1] idle\n");
3194 			rcu_read_unlock();
3195 		} else if (INTEL_GEN(dev_priv) > 6) {
3196 			seq_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
3197 				   I915_READ(RING_PP_DIR_BASE(engine)));
3198 			seq_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
3199 				   I915_READ(RING_PP_DIR_BASE_READ(engine)));
3200 			seq_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
3201 				   I915_READ(RING_PP_DIR_DCLV(engine)));
3202 		}
3203 
3204 		spin_lock(&b->lock);
3205 		for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
3206 			struct intel_wait *w = container_of(rb, typeof(*w), node);
3207 
3208 			seq_printf(m, "\t%s [%d] waiting for %x\n",
3209 				   w->tsk->comm, w->tsk->pid, w->seqno);
3210 		}
3211 		spin_unlock(&b->lock);
3212 
3213 		seq_puts(m, "\n");
3214 	}
3215 
3216 	return 0;
3217 }
3218 
3219 static int i915_semaphore_status(struct seq_file *m, void *unused)
3220 {
3221 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3222 	struct drm_device *dev = &dev_priv->drm;
3223 	struct intel_engine_cs *engine;
3224 	int num_rings = INTEL_INFO(dev_priv)->num_rings;
3225 	enum intel_engine_id id;
3226 	int j, ret;
3227 
3228 	if (!i915.semaphores) {
3229 		seq_puts(m, "Semaphores are disabled\n");
3230 		return 0;
3231 	}
3232 
3233 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3234 	if (ret)
3235 		return ret;
3236 	intel_runtime_pm_get(dev_priv);
3237 
3238 	if (IS_BROADWELL(dev_priv)) {
3239 		struct page *page;
3240 		uint64_t *seqno;
3241 
3242 		page = i915_gem_object_get_page(dev_priv->semaphore->obj, 0);
3243 
3244 		seqno = (uint64_t *)kmap_atomic(page);
3245 		for_each_engine(engine, dev_priv, id) {
3246 			uint64_t offset;
3247 
3248 			seq_printf(m, "%s\n", engine->name);
3249 
3250 			seq_puts(m, "  Last signal:");
3251 			for (j = 0; j < num_rings; j++) {
3252 				offset = id * I915_NUM_ENGINES + j;
3253 				seq_printf(m, "0x%08llx (0x%02llx) ",
3254 					   seqno[offset], offset * 8);
3255 			}
3256 			seq_putc(m, '\n');
3257 
3258 			seq_puts(m, "  Last wait:  ");
3259 			for (j = 0; j < num_rings; j++) {
3260 				offset = id + (j * I915_NUM_ENGINES);
3261 				seq_printf(m, "0x%08llx (0x%02llx) ",
3262 					   seqno[offset], offset * 8);
3263 			}
3264 			seq_putc(m, '\n');
3265 
3266 		}
3267 		kunmap_atomic(seqno);
3268 	} else {
3269 		seq_puts(m, "  Last signal:");
3270 		for_each_engine(engine, dev_priv, id)
3271 			for (j = 0; j < num_rings; j++)
3272 				seq_printf(m, "0x%08x\n",
3273 					   I915_READ(engine->semaphore.mbox.signal[j]));
3274 		seq_putc(m, '\n');
3275 	}
3276 
3277 	seq_puts(m, "\nSync seqno:\n");
3278 	for_each_engine(engine, dev_priv, id) {
3279 		for (j = 0; j < num_rings; j++)
3280 			seq_printf(m, "  0x%08x ",
3281 				   engine->semaphore.sync_seqno[j]);
3282 		seq_putc(m, '\n');
3283 	}
3284 	seq_putc(m, '\n');
3285 
3286 	intel_runtime_pm_put(dev_priv);
3287 	mutex_unlock(&dev->struct_mutex);
3288 	return 0;
3289 }
3290 
3291 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3292 {
3293 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3294 	struct drm_device *dev = &dev_priv->drm;
3295 	int i;
3296 
3297 	drm_modeset_lock_all(dev);
3298 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3299 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3300 
3301 		seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3302 		seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
3303 			   pll->config.crtc_mask, pll->active_mask, yesno(pll->on));
3304 		seq_printf(m, " tracked hardware state:\n");
3305 		seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
3306 		seq_printf(m, " dpll_md: 0x%08x\n",
3307 			   pll->config.hw_state.dpll_md);
3308 		seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
3309 		seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
3310 		seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
3311 	}
3312 	drm_modeset_unlock_all(dev);
3313 
3314 	return 0;
3315 }
3316 
3317 static int i915_wa_registers(struct seq_file *m, void *unused)
3318 {
3319 	int i;
3320 	int ret;
3321 	struct intel_engine_cs *engine;
3322 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3323 	struct drm_device *dev = &dev_priv->drm;
3324 	struct i915_workarounds *workarounds = &dev_priv->workarounds;
3325 	enum intel_engine_id id;
3326 
3327 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3328 	if (ret)
3329 		return ret;
3330 
3331 	intel_runtime_pm_get(dev_priv);
3332 
3333 	seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3334 	for_each_engine(engine, dev_priv, id)
3335 		seq_printf(m, "HW whitelist count for %s: %d\n",
3336 			   engine->name, workarounds->hw_whitelist_count[id]);
3337 	for (i = 0; i < workarounds->count; ++i) {
3338 		i915_reg_t addr;
3339 		u32 mask, value, read;
3340 		bool ok;
3341 
3342 		addr = workarounds->reg[i].addr;
3343 		mask = workarounds->reg[i].mask;
3344 		value = workarounds->reg[i].value;
3345 		read = I915_READ(addr);
3346 		ok = (value & mask) == (read & mask);
3347 		seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3348 			   i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3349 	}
3350 
3351 	intel_runtime_pm_put(dev_priv);
3352 	mutex_unlock(&dev->struct_mutex);
3353 
3354 	return 0;
3355 }
3356 
3357 static int i915_ddb_info(struct seq_file *m, void *unused)
3358 {
3359 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3360 	struct drm_device *dev = &dev_priv->drm;
3361 	struct skl_ddb_allocation *ddb;
3362 	struct skl_ddb_entry *entry;
3363 	enum pipe pipe;
3364 	int plane;
3365 
3366 	if (INTEL_GEN(dev_priv) < 9)
3367 		return 0;
3368 
3369 	drm_modeset_lock_all(dev);
3370 
3371 	ddb = &dev_priv->wm.skl_hw.ddb;
3372 
3373 	seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3374 
3375 	for_each_pipe(dev_priv, pipe) {
3376 		seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3377 
3378 		for_each_plane(dev_priv, pipe, plane) {
3379 			entry = &ddb->plane[pipe][plane];
3380 			seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3381 				   entry->start, entry->end,
3382 				   skl_ddb_entry_size(entry));
3383 		}
3384 
3385 		entry = &ddb->plane[pipe][PLANE_CURSOR];
3386 		seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3387 			   entry->end, skl_ddb_entry_size(entry));
3388 	}
3389 
3390 	drm_modeset_unlock_all(dev);
3391 
3392 	return 0;
3393 }
3394 
3395 static void drrs_status_per_crtc(struct seq_file *m,
3396 				 struct drm_device *dev,
3397 				 struct intel_crtc *intel_crtc)
3398 {
3399 	struct drm_i915_private *dev_priv = to_i915(dev);
3400 	struct i915_drrs *drrs = &dev_priv->drrs;
3401 	int vrefresh = 0;
3402 	struct drm_connector *connector;
3403 
3404 	drm_for_each_connector(connector, dev) {
3405 		if (connector->state->crtc != &intel_crtc->base)
3406 			continue;
3407 
3408 		seq_printf(m, "%s:\n", connector->name);
3409 	}
3410 
3411 	if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3412 		seq_puts(m, "\tVBT: DRRS_type: Static");
3413 	else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3414 		seq_puts(m, "\tVBT: DRRS_type: Seamless");
3415 	else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3416 		seq_puts(m, "\tVBT: DRRS_type: None");
3417 	else
3418 		seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3419 
3420 	seq_puts(m, "\n\n");
3421 
3422 	if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3423 		struct intel_panel *panel;
3424 
3425 		mutex_lock(&drrs->mutex);
3426 		/* DRRS Supported */
3427 		seq_puts(m, "\tDRRS Supported: Yes\n");
3428 
3429 		/* disable_drrs() will make drrs->dp NULL */
3430 		if (!drrs->dp) {
3431 			seq_puts(m, "Idleness DRRS: Disabled");
3432 			mutex_unlock(&drrs->mutex);
3433 			return;
3434 		}
3435 
3436 		panel = &drrs->dp->attached_connector->panel;
3437 		seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3438 					drrs->busy_frontbuffer_bits);
3439 
3440 		seq_puts(m, "\n\t\t");
3441 		if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3442 			seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3443 			vrefresh = panel->fixed_mode->vrefresh;
3444 		} else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3445 			seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3446 			vrefresh = panel->downclock_mode->vrefresh;
3447 		} else {
3448 			seq_printf(m, "DRRS_State: Unknown(%d)\n",
3449 						drrs->refresh_rate_type);
3450 			mutex_unlock(&drrs->mutex);
3451 			return;
3452 		}
3453 		seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3454 
3455 		seq_puts(m, "\n\t\t");
3456 		mutex_unlock(&drrs->mutex);
3457 	} else {
3458 		/* DRRS not supported. Print the VBT parameter*/
3459 		seq_puts(m, "\tDRRS Supported : No");
3460 	}
3461 	seq_puts(m, "\n");
3462 }
3463 
3464 static int i915_drrs_status(struct seq_file *m, void *unused)
3465 {
3466 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3467 	struct drm_device *dev = &dev_priv->drm;
3468 	struct intel_crtc *intel_crtc;
3469 	int active_crtc_cnt = 0;
3470 
3471 	drm_modeset_lock_all(dev);
3472 	for_each_intel_crtc(dev, intel_crtc) {
3473 		if (intel_crtc->base.state->active) {
3474 			active_crtc_cnt++;
3475 			seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3476 
3477 			drrs_status_per_crtc(m, dev, intel_crtc);
3478 		}
3479 	}
3480 	drm_modeset_unlock_all(dev);
3481 
3482 	if (!active_crtc_cnt)
3483 		seq_puts(m, "No active crtc found\n");
3484 
3485 	return 0;
3486 }
3487 
3488 struct pipe_crc_info {
3489 	const char *name;
3490 	struct drm_i915_private *dev_priv;
3491 	enum pipe pipe;
3492 };
3493 
3494 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3495 {
3496 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3497 	struct drm_device *dev = &dev_priv->drm;
3498 	struct intel_encoder *intel_encoder;
3499 	struct intel_digital_port *intel_dig_port;
3500 	struct drm_connector *connector;
3501 
3502 	drm_modeset_lock_all(dev);
3503 	drm_for_each_connector(connector, dev) {
3504 		if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
3505 			continue;
3506 
3507 		intel_encoder = intel_attached_encoder(connector);
3508 		if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
3509 			continue;
3510 
3511 		intel_dig_port = enc_to_dig_port(&intel_encoder->base);
3512 		if (!intel_dig_port->dp.can_mst)
3513 			continue;
3514 
3515 		seq_printf(m, "MST Source Port %c\n",
3516 			   port_name(intel_dig_port->port));
3517 		drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3518 	}
3519 	drm_modeset_unlock_all(dev);
3520 	return 0;
3521 }
3522 
3523 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3524 {
3525 	struct pipe_crc_info *info = inode->i_private;
3526 	struct drm_i915_private *dev_priv = info->dev_priv;
3527 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3528 
3529 	if (info->pipe >= INTEL_INFO(dev_priv)->num_pipes)
3530 		return -ENODEV;
3531 
3532 	spin_lock_irq(&pipe_crc->lock);
3533 
3534 	if (pipe_crc->opened) {
3535 		spin_unlock_irq(&pipe_crc->lock);
3536 		return -EBUSY; /* already open */
3537 	}
3538 
3539 	pipe_crc->opened = true;
3540 	filep->private_data = inode->i_private;
3541 
3542 	spin_unlock_irq(&pipe_crc->lock);
3543 
3544 	return 0;
3545 }
3546 
3547 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3548 {
3549 	struct pipe_crc_info *info = inode->i_private;
3550 	struct drm_i915_private *dev_priv = info->dev_priv;
3551 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3552 
3553 	spin_lock_irq(&pipe_crc->lock);
3554 	pipe_crc->opened = false;
3555 	spin_unlock_irq(&pipe_crc->lock);
3556 
3557 	return 0;
3558 }
3559 
3560 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3561 #define PIPE_CRC_LINE_LEN	(6 * 8 + 5 + 1)
3562 /* account for \'0' */
3563 #define PIPE_CRC_BUFFER_LEN	(PIPE_CRC_LINE_LEN + 1)
3564 
3565 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3566 {
3567 	assert_spin_locked(&pipe_crc->lock);
3568 	return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3569 			INTEL_PIPE_CRC_ENTRIES_NR);
3570 }
3571 
3572 static ssize_t
3573 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3574 		   loff_t *pos)
3575 {
3576 	struct pipe_crc_info *info = filep->private_data;
3577 	struct drm_i915_private *dev_priv = info->dev_priv;
3578 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3579 	char buf[PIPE_CRC_BUFFER_LEN];
3580 	int n_entries;
3581 	ssize_t bytes_read;
3582 
3583 	/*
3584 	 * Don't allow user space to provide buffers not big enough to hold
3585 	 * a line of data.
3586 	 */
3587 	if (count < PIPE_CRC_LINE_LEN)
3588 		return -EINVAL;
3589 
3590 	if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3591 		return 0;
3592 
3593 	/* nothing to read */
3594 	spin_lock_irq(&pipe_crc->lock);
3595 	while (pipe_crc_data_count(pipe_crc) == 0) {
3596 		int ret;
3597 
3598 		if (filep->f_flags & O_NONBLOCK) {
3599 			spin_unlock_irq(&pipe_crc->lock);
3600 			return -EAGAIN;
3601 		}
3602 
3603 		ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3604 				pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3605 		if (ret) {
3606 			spin_unlock_irq(&pipe_crc->lock);
3607 			return ret;
3608 		}
3609 	}
3610 
3611 	/* We now have one or more entries to read */
3612 	n_entries = count / PIPE_CRC_LINE_LEN;
3613 
3614 	bytes_read = 0;
3615 	while (n_entries > 0) {
3616 		struct intel_pipe_crc_entry *entry =
3617 			&pipe_crc->entries[pipe_crc->tail];
3618 
3619 		if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3620 			     INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3621 			break;
3622 
3623 		BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3624 		pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3625 
3626 		bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3627 				       "%8u %8x %8x %8x %8x %8x\n",
3628 				       entry->frame, entry->crc[0],
3629 				       entry->crc[1], entry->crc[2],
3630 				       entry->crc[3], entry->crc[4]);
3631 
3632 		spin_unlock_irq(&pipe_crc->lock);
3633 
3634 		if (copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN))
3635 			return -EFAULT;
3636 
3637 		user_buf += PIPE_CRC_LINE_LEN;
3638 		n_entries--;
3639 
3640 		spin_lock_irq(&pipe_crc->lock);
3641 	}
3642 
3643 	spin_unlock_irq(&pipe_crc->lock);
3644 
3645 	return bytes_read;
3646 }
3647 
3648 static const struct file_operations i915_pipe_crc_fops = {
3649 	.owner = THIS_MODULE,
3650 	.open = i915_pipe_crc_open,
3651 	.read = i915_pipe_crc_read,
3652 	.release = i915_pipe_crc_release,
3653 };
3654 
3655 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3656 	{
3657 		.name = "i915_pipe_A_crc",
3658 		.pipe = PIPE_A,
3659 	},
3660 	{
3661 		.name = "i915_pipe_B_crc",
3662 		.pipe = PIPE_B,
3663 	},
3664 	{
3665 		.name = "i915_pipe_C_crc",
3666 		.pipe = PIPE_C,
3667 	},
3668 };
3669 
3670 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3671 				enum pipe pipe)
3672 {
3673 	struct drm_i915_private *dev_priv = to_i915(minor->dev);
3674 	struct dentry *ent;
3675 	struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3676 
3677 	info->dev_priv = dev_priv;
3678 	ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3679 				  &i915_pipe_crc_fops);
3680 	if (!ent)
3681 		return -ENOMEM;
3682 
3683 	return drm_add_fake_info_node(minor, ent, info);
3684 }
3685 
3686 static const char * const pipe_crc_sources[] = {
3687 	"none",
3688 	"plane1",
3689 	"plane2",
3690 	"pf",
3691 	"pipe",
3692 	"TV",
3693 	"DP-B",
3694 	"DP-C",
3695 	"DP-D",
3696 	"auto",
3697 };
3698 
3699 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3700 {
3701 	BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3702 	return pipe_crc_sources[source];
3703 }
3704 
3705 static int display_crc_ctl_show(struct seq_file *m, void *data)
3706 {
3707 	struct drm_i915_private *dev_priv = m->private;
3708 	int i;
3709 
3710 	for (i = 0; i < I915_MAX_PIPES; i++)
3711 		seq_printf(m, "%c %s\n", pipe_name(i),
3712 			   pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3713 
3714 	return 0;
3715 }
3716 
3717 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3718 {
3719 	return single_open(file, display_crc_ctl_show, inode->i_private);
3720 }
3721 
3722 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3723 				 uint32_t *val)
3724 {
3725 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3726 		*source = INTEL_PIPE_CRC_SOURCE_PIPE;
3727 
3728 	switch (*source) {
3729 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3730 		*val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3731 		break;
3732 	case INTEL_PIPE_CRC_SOURCE_NONE:
3733 		*val = 0;
3734 		break;
3735 	default:
3736 		return -EINVAL;
3737 	}
3738 
3739 	return 0;
3740 }
3741 
3742 static int i9xx_pipe_crc_auto_source(struct drm_i915_private *dev_priv,
3743 				     enum pipe pipe,
3744 				     enum intel_pipe_crc_source *source)
3745 {
3746 	struct drm_device *dev = &dev_priv->drm;
3747 	struct intel_encoder *encoder;
3748 	struct intel_crtc *crtc;
3749 	struct intel_digital_port *dig_port;
3750 	int ret = 0;
3751 
3752 	*source = INTEL_PIPE_CRC_SOURCE_PIPE;
3753 
3754 	drm_modeset_lock_all(dev);
3755 	for_each_intel_encoder(dev, encoder) {
3756 		if (!encoder->base.crtc)
3757 			continue;
3758 
3759 		crtc = to_intel_crtc(encoder->base.crtc);
3760 
3761 		if (crtc->pipe != pipe)
3762 			continue;
3763 
3764 		switch (encoder->type) {
3765 		case INTEL_OUTPUT_TVOUT:
3766 			*source = INTEL_PIPE_CRC_SOURCE_TV;
3767 			break;
3768 		case INTEL_OUTPUT_DP:
3769 		case INTEL_OUTPUT_EDP:
3770 			dig_port = enc_to_dig_port(&encoder->base);
3771 			switch (dig_port->port) {
3772 			case PORT_B:
3773 				*source = INTEL_PIPE_CRC_SOURCE_DP_B;
3774 				break;
3775 			case PORT_C:
3776 				*source = INTEL_PIPE_CRC_SOURCE_DP_C;
3777 				break;
3778 			case PORT_D:
3779 				*source = INTEL_PIPE_CRC_SOURCE_DP_D;
3780 				break;
3781 			default:
3782 				WARN(1, "nonexisting DP port %c\n",
3783 				     port_name(dig_port->port));
3784 				break;
3785 			}
3786 			break;
3787 		default:
3788 			break;
3789 		}
3790 	}
3791 	drm_modeset_unlock_all(dev);
3792 
3793 	return ret;
3794 }
3795 
3796 static int vlv_pipe_crc_ctl_reg(struct drm_i915_private *dev_priv,
3797 				enum pipe pipe,
3798 				enum intel_pipe_crc_source *source,
3799 				uint32_t *val)
3800 {
3801 	bool need_stable_symbols = false;
3802 
3803 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3804 		int ret = i9xx_pipe_crc_auto_source(dev_priv, pipe, source);
3805 		if (ret)
3806 			return ret;
3807 	}
3808 
3809 	switch (*source) {
3810 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3811 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3812 		break;
3813 	case INTEL_PIPE_CRC_SOURCE_DP_B:
3814 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3815 		need_stable_symbols = true;
3816 		break;
3817 	case INTEL_PIPE_CRC_SOURCE_DP_C:
3818 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3819 		need_stable_symbols = true;
3820 		break;
3821 	case INTEL_PIPE_CRC_SOURCE_DP_D:
3822 		if (!IS_CHERRYVIEW(dev_priv))
3823 			return -EINVAL;
3824 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3825 		need_stable_symbols = true;
3826 		break;
3827 	case INTEL_PIPE_CRC_SOURCE_NONE:
3828 		*val = 0;
3829 		break;
3830 	default:
3831 		return -EINVAL;
3832 	}
3833 
3834 	/*
3835 	 * When the pipe CRC tap point is after the transcoders we need
3836 	 * to tweak symbol-level features to produce a deterministic series of
3837 	 * symbols for a given frame. We need to reset those features only once
3838 	 * a frame (instead of every nth symbol):
3839 	 *   - DC-balance: used to ensure a better clock recovery from the data
3840 	 *     link (SDVO)
3841 	 *   - DisplayPort scrambling: used for EMI reduction
3842 	 */
3843 	if (need_stable_symbols) {
3844 		uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3845 
3846 		tmp |= DC_BALANCE_RESET_VLV;
3847 		switch (pipe) {
3848 		case PIPE_A:
3849 			tmp |= PIPE_A_SCRAMBLE_RESET;
3850 			break;
3851 		case PIPE_B:
3852 			tmp |= PIPE_B_SCRAMBLE_RESET;
3853 			break;
3854 		case PIPE_C:
3855 			tmp |= PIPE_C_SCRAMBLE_RESET;
3856 			break;
3857 		default:
3858 			return -EINVAL;
3859 		}
3860 		I915_WRITE(PORT_DFT2_G4X, tmp);
3861 	}
3862 
3863 	return 0;
3864 }
3865 
3866 static int i9xx_pipe_crc_ctl_reg(struct drm_i915_private *dev_priv,
3867 				 enum pipe pipe,
3868 				 enum intel_pipe_crc_source *source,
3869 				 uint32_t *val)
3870 {
3871 	bool need_stable_symbols = false;
3872 
3873 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3874 		int ret = i9xx_pipe_crc_auto_source(dev_priv, pipe, source);
3875 		if (ret)
3876 			return ret;
3877 	}
3878 
3879 	switch (*source) {
3880 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3881 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3882 		break;
3883 	case INTEL_PIPE_CRC_SOURCE_TV:
3884 		if (!SUPPORTS_TV(dev_priv))
3885 			return -EINVAL;
3886 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3887 		break;
3888 	case INTEL_PIPE_CRC_SOURCE_DP_B:
3889 		if (!IS_G4X(dev_priv))
3890 			return -EINVAL;
3891 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3892 		need_stable_symbols = true;
3893 		break;
3894 	case INTEL_PIPE_CRC_SOURCE_DP_C:
3895 		if (!IS_G4X(dev_priv))
3896 			return -EINVAL;
3897 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3898 		need_stable_symbols = true;
3899 		break;
3900 	case INTEL_PIPE_CRC_SOURCE_DP_D:
3901 		if (!IS_G4X(dev_priv))
3902 			return -EINVAL;
3903 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3904 		need_stable_symbols = true;
3905 		break;
3906 	case INTEL_PIPE_CRC_SOURCE_NONE:
3907 		*val = 0;
3908 		break;
3909 	default:
3910 		return -EINVAL;
3911 	}
3912 
3913 	/*
3914 	 * When the pipe CRC tap point is after the transcoders we need
3915 	 * to tweak symbol-level features to produce a deterministic series of
3916 	 * symbols for a given frame. We need to reset those features only once
3917 	 * a frame (instead of every nth symbol):
3918 	 *   - DC-balance: used to ensure a better clock recovery from the data
3919 	 *     link (SDVO)
3920 	 *   - DisplayPort scrambling: used for EMI reduction
3921 	 */
3922 	if (need_stable_symbols) {
3923 		uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3924 
3925 		WARN_ON(!IS_G4X(dev_priv));
3926 
3927 		I915_WRITE(PORT_DFT_I9XX,
3928 			   I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3929 
3930 		if (pipe == PIPE_A)
3931 			tmp |= PIPE_A_SCRAMBLE_RESET;
3932 		else
3933 			tmp |= PIPE_B_SCRAMBLE_RESET;
3934 
3935 		I915_WRITE(PORT_DFT2_G4X, tmp);
3936 	}
3937 
3938 	return 0;
3939 }
3940 
3941 static void vlv_undo_pipe_scramble_reset(struct drm_i915_private *dev_priv,
3942 					 enum pipe pipe)
3943 {
3944 	uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3945 
3946 	switch (pipe) {
3947 	case PIPE_A:
3948 		tmp &= ~PIPE_A_SCRAMBLE_RESET;
3949 		break;
3950 	case PIPE_B:
3951 		tmp &= ~PIPE_B_SCRAMBLE_RESET;
3952 		break;
3953 	case PIPE_C:
3954 		tmp &= ~PIPE_C_SCRAMBLE_RESET;
3955 		break;
3956 	default:
3957 		return;
3958 	}
3959 	if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3960 		tmp &= ~DC_BALANCE_RESET_VLV;
3961 	I915_WRITE(PORT_DFT2_G4X, tmp);
3962 
3963 }
3964 
3965 static void g4x_undo_pipe_scramble_reset(struct drm_i915_private *dev_priv,
3966 					 enum pipe pipe)
3967 {
3968 	uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3969 
3970 	if (pipe == PIPE_A)
3971 		tmp &= ~PIPE_A_SCRAMBLE_RESET;
3972 	else
3973 		tmp &= ~PIPE_B_SCRAMBLE_RESET;
3974 	I915_WRITE(PORT_DFT2_G4X, tmp);
3975 
3976 	if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3977 		I915_WRITE(PORT_DFT_I9XX,
3978 			   I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3979 	}
3980 }
3981 
3982 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3983 				uint32_t *val)
3984 {
3985 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3986 		*source = INTEL_PIPE_CRC_SOURCE_PIPE;
3987 
3988 	switch (*source) {
3989 	case INTEL_PIPE_CRC_SOURCE_PLANE1:
3990 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3991 		break;
3992 	case INTEL_PIPE_CRC_SOURCE_PLANE2:
3993 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3994 		break;
3995 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3996 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3997 		break;
3998 	case INTEL_PIPE_CRC_SOURCE_NONE:
3999 		*val = 0;
4000 		break;
4001 	default:
4002 		return -EINVAL;
4003 	}
4004 
4005 	return 0;
4006 }
4007 
4008 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_i915_private *dev_priv,
4009 					bool enable)
4010 {
4011 	struct drm_device *dev = &dev_priv->drm;
4012 	struct intel_crtc *crtc =
4013 		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
4014 	struct intel_crtc_state *pipe_config;
4015 	struct drm_atomic_state *state;
4016 	int ret = 0;
4017 
4018 	drm_modeset_lock_all(dev);
4019 	state = drm_atomic_state_alloc(dev);
4020 	if (!state) {
4021 		ret = -ENOMEM;
4022 		goto out;
4023 	}
4024 
4025 	state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
4026 	pipe_config = intel_atomic_get_crtc_state(state, crtc);
4027 	if (IS_ERR(pipe_config)) {
4028 		ret = PTR_ERR(pipe_config);
4029 		goto out;
4030 	}
4031 
4032 	pipe_config->pch_pfit.force_thru = enable;
4033 	if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
4034 	    pipe_config->pch_pfit.enabled != enable)
4035 		pipe_config->base.connectors_changed = true;
4036 
4037 	ret = drm_atomic_commit(state);
4038 out:
4039 	WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
4040 	drm_modeset_unlock_all(dev);
4041 	drm_atomic_state_put(state);
4042 }
4043 
4044 static int ivb_pipe_crc_ctl_reg(struct drm_i915_private *dev_priv,
4045 				enum pipe pipe,
4046 				enum intel_pipe_crc_source *source,
4047 				uint32_t *val)
4048 {
4049 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
4050 		*source = INTEL_PIPE_CRC_SOURCE_PF;
4051 
4052 	switch (*source) {
4053 	case INTEL_PIPE_CRC_SOURCE_PLANE1:
4054 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
4055 		break;
4056 	case INTEL_PIPE_CRC_SOURCE_PLANE2:
4057 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
4058 		break;
4059 	case INTEL_PIPE_CRC_SOURCE_PF:
4060 		if (IS_HASWELL(dev_priv) && pipe == PIPE_A)
4061 			hsw_trans_edp_pipe_A_crc_wa(dev_priv, true);
4062 
4063 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
4064 		break;
4065 	case INTEL_PIPE_CRC_SOURCE_NONE:
4066 		*val = 0;
4067 		break;
4068 	default:
4069 		return -EINVAL;
4070 	}
4071 
4072 	return 0;
4073 }
4074 
4075 static int pipe_crc_set_source(struct drm_i915_private *dev_priv,
4076 			       enum pipe pipe,
4077 			       enum intel_pipe_crc_source source)
4078 {
4079 	struct drm_device *dev = &dev_priv->drm;
4080 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4081 	struct intel_crtc *crtc =
4082 			to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
4083 	enum intel_display_power_domain power_domain;
4084 	u32 val = 0; /* shut up gcc */
4085 	int ret;
4086 
4087 	if (pipe_crc->source == source)
4088 		return 0;
4089 
4090 	/* forbid changing the source without going back to 'none' */
4091 	if (pipe_crc->source && source)
4092 		return -EINVAL;
4093 
4094 	power_domain = POWER_DOMAIN_PIPE(pipe);
4095 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) {
4096 		DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
4097 		return -EIO;
4098 	}
4099 
4100 	if (IS_GEN2(dev_priv))
4101 		ret = i8xx_pipe_crc_ctl_reg(&source, &val);
4102 	else if (INTEL_GEN(dev_priv) < 5)
4103 		ret = i9xx_pipe_crc_ctl_reg(dev_priv, pipe, &source, &val);
4104 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4105 		ret = vlv_pipe_crc_ctl_reg(dev_priv, pipe, &source, &val);
4106 	else if (IS_GEN5(dev_priv) || IS_GEN6(dev_priv))
4107 		ret = ilk_pipe_crc_ctl_reg(&source, &val);
4108 	else
4109 		ret = ivb_pipe_crc_ctl_reg(dev_priv, pipe, &source, &val);
4110 
4111 	if (ret != 0)
4112 		goto out;
4113 
4114 	/* none -> real source transition */
4115 	if (source) {
4116 		struct intel_pipe_crc_entry *entries;
4117 
4118 		DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
4119 				 pipe_name(pipe), pipe_crc_source_name(source));
4120 
4121 		entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
4122 				  sizeof(pipe_crc->entries[0]),
4123 				  GFP_KERNEL);
4124 		if (!entries) {
4125 			ret = -ENOMEM;
4126 			goto out;
4127 		}
4128 
4129 		/*
4130 		 * When IPS gets enabled, the pipe CRC changes. Since IPS gets
4131 		 * enabled and disabled dynamically based on package C states,
4132 		 * user space can't make reliable use of the CRCs, so let's just
4133 		 * completely disable it.
4134 		 */
4135 		hsw_disable_ips(crtc);
4136 
4137 		spin_lock_irq(&pipe_crc->lock);
4138 		kfree(pipe_crc->entries);
4139 		pipe_crc->entries = entries;
4140 		pipe_crc->head = 0;
4141 		pipe_crc->tail = 0;
4142 		spin_unlock_irq(&pipe_crc->lock);
4143 	}
4144 
4145 	pipe_crc->source = source;
4146 
4147 	I915_WRITE(PIPE_CRC_CTL(pipe), val);
4148 	POSTING_READ(PIPE_CRC_CTL(pipe));
4149 
4150 	/* real source -> none transition */
4151 	if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
4152 		struct intel_pipe_crc_entry *entries;
4153 		struct intel_crtc *crtc =
4154 			to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
4155 
4156 		DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
4157 				 pipe_name(pipe));
4158 
4159 		drm_modeset_lock(&crtc->base.mutex, NULL);
4160 		if (crtc->base.state->active)
4161 			intel_wait_for_vblank(dev, pipe);
4162 		drm_modeset_unlock(&crtc->base.mutex);
4163 
4164 		spin_lock_irq(&pipe_crc->lock);
4165 		entries = pipe_crc->entries;
4166 		pipe_crc->entries = NULL;
4167 		pipe_crc->head = 0;
4168 		pipe_crc->tail = 0;
4169 		spin_unlock_irq(&pipe_crc->lock);
4170 
4171 		kfree(entries);
4172 
4173 		if (IS_G4X(dev_priv))
4174 			g4x_undo_pipe_scramble_reset(dev_priv, pipe);
4175 		else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4176 			vlv_undo_pipe_scramble_reset(dev_priv, pipe);
4177 		else if (IS_HASWELL(dev_priv) && pipe == PIPE_A)
4178 			hsw_trans_edp_pipe_A_crc_wa(dev_priv, false);
4179 
4180 		hsw_enable_ips(crtc);
4181 	}
4182 
4183 	ret = 0;
4184 
4185 out:
4186 	intel_display_power_put(dev_priv, power_domain);
4187 
4188 	return ret;
4189 }
4190 
4191 /*
4192  * Parse pipe CRC command strings:
4193  *   command: wsp* object wsp+ name wsp+ source wsp*
4194  *   object: 'pipe'
4195  *   name: (A | B | C)
4196  *   source: (none | plane1 | plane2 | pf)
4197  *   wsp: (#0x20 | #0x9 | #0xA)+
4198  *
4199  * eg.:
4200  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
4201  *  "pipe A none"    ->  Stop CRC
4202  */
4203 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
4204 {
4205 	int n_words = 0;
4206 
4207 	while (*buf) {
4208 		char *end;
4209 
4210 		/* skip leading white space */
4211 		buf = skip_spaces(buf);
4212 		if (!*buf)
4213 			break;	/* end of buffer */
4214 
4215 		/* find end of word */
4216 		for (end = buf; *end && !isspace(*end); end++)
4217 			;
4218 
4219 		if (n_words == max_words) {
4220 			DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
4221 					 max_words);
4222 			return -EINVAL;	/* ran out of words[] before bytes */
4223 		}
4224 
4225 		if (*end)
4226 			*end++ = '\0';
4227 		words[n_words++] = buf;
4228 		buf = end;
4229 	}
4230 
4231 	return n_words;
4232 }
4233 
4234 enum intel_pipe_crc_object {
4235 	PIPE_CRC_OBJECT_PIPE,
4236 };
4237 
4238 static const char * const pipe_crc_objects[] = {
4239 	"pipe",
4240 };
4241 
4242 static int
4243 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
4244 {
4245 	int i;
4246 
4247 	for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
4248 		if (!strcmp(buf, pipe_crc_objects[i])) {
4249 			*o = i;
4250 			return 0;
4251 		    }
4252 
4253 	return -EINVAL;
4254 }
4255 
4256 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
4257 {
4258 	const char name = buf[0];
4259 
4260 	if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
4261 		return -EINVAL;
4262 
4263 	*pipe = name - 'A';
4264 
4265 	return 0;
4266 }
4267 
4268 static int
4269 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
4270 {
4271 	int i;
4272 
4273 	for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
4274 		if (!strcmp(buf, pipe_crc_sources[i])) {
4275 			*s = i;
4276 			return 0;
4277 		    }
4278 
4279 	return -EINVAL;
4280 }
4281 
4282 static int display_crc_ctl_parse(struct drm_i915_private *dev_priv,
4283 				 char *buf, size_t len)
4284 {
4285 #define N_WORDS 3
4286 	int n_words;
4287 	char *words[N_WORDS];
4288 	enum pipe pipe;
4289 	enum intel_pipe_crc_object object;
4290 	enum intel_pipe_crc_source source;
4291 
4292 	n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
4293 	if (n_words != N_WORDS) {
4294 		DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
4295 				 N_WORDS);
4296 		return -EINVAL;
4297 	}
4298 
4299 	if (display_crc_ctl_parse_object(words[0], &object) < 0) {
4300 		DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
4301 		return -EINVAL;
4302 	}
4303 
4304 	if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
4305 		DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
4306 		return -EINVAL;
4307 	}
4308 
4309 	if (display_crc_ctl_parse_source(words[2], &source) < 0) {
4310 		DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
4311 		return -EINVAL;
4312 	}
4313 
4314 	return pipe_crc_set_source(dev_priv, pipe, source);
4315 }
4316 
4317 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
4318 				     size_t len, loff_t *offp)
4319 {
4320 	struct seq_file *m = file->private_data;
4321 	struct drm_i915_private *dev_priv = m->private;
4322 	char *tmpbuf;
4323 	int ret;
4324 
4325 	if (len == 0)
4326 		return 0;
4327 
4328 	if (len > PAGE_SIZE - 1) {
4329 		DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
4330 				 PAGE_SIZE);
4331 		return -E2BIG;
4332 	}
4333 
4334 	tmpbuf = kmalloc(len + 1, GFP_KERNEL);
4335 	if (!tmpbuf)
4336 		return -ENOMEM;
4337 
4338 	if (copy_from_user(tmpbuf, ubuf, len)) {
4339 		ret = -EFAULT;
4340 		goto out;
4341 	}
4342 	tmpbuf[len] = '\0';
4343 
4344 	ret = display_crc_ctl_parse(dev_priv, tmpbuf, len);
4345 
4346 out:
4347 	kfree(tmpbuf);
4348 	if (ret < 0)
4349 		return ret;
4350 
4351 	*offp += len;
4352 	return len;
4353 }
4354 
4355 static const struct file_operations i915_display_crc_ctl_fops = {
4356 	.owner = THIS_MODULE,
4357 	.open = display_crc_ctl_open,
4358 	.read = seq_read,
4359 	.llseek = seq_lseek,
4360 	.release = single_release,
4361 	.write = display_crc_ctl_write
4362 };
4363 
4364 static ssize_t i915_displayport_test_active_write(struct file *file,
4365 						  const char __user *ubuf,
4366 						  size_t len, loff_t *offp)
4367 {
4368 	char *input_buffer;
4369 	int status = 0;
4370 	struct drm_device *dev;
4371 	struct drm_connector *connector;
4372 	struct list_head *connector_list;
4373 	struct intel_dp *intel_dp;
4374 	int val = 0;
4375 
4376 	dev = ((struct seq_file *)file->private_data)->private;
4377 
4378 	connector_list = &dev->mode_config.connector_list;
4379 
4380 	if (len == 0)
4381 		return 0;
4382 
4383 	input_buffer = kmalloc(len + 1, GFP_KERNEL);
4384 	if (!input_buffer)
4385 		return -ENOMEM;
4386 
4387 	if (copy_from_user(input_buffer, ubuf, len)) {
4388 		status = -EFAULT;
4389 		goto out;
4390 	}
4391 
4392 	input_buffer[len] = '\0';
4393 	DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4394 
4395 	list_for_each_entry(connector, connector_list, head) {
4396 		if (connector->connector_type !=
4397 		    DRM_MODE_CONNECTOR_DisplayPort)
4398 			continue;
4399 
4400 		if (connector->status == connector_status_connected &&
4401 		    connector->encoder != NULL) {
4402 			intel_dp = enc_to_intel_dp(connector->encoder);
4403 			status = kstrtoint(input_buffer, 10, &val);
4404 			if (status < 0)
4405 				goto out;
4406 			DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4407 			/* To prevent erroneous activation of the compliance
4408 			 * testing code, only accept an actual value of 1 here
4409 			 */
4410 			if (val == 1)
4411 				intel_dp->compliance_test_active = 1;
4412 			else
4413 				intel_dp->compliance_test_active = 0;
4414 		}
4415 	}
4416 out:
4417 	kfree(input_buffer);
4418 	if (status < 0)
4419 		return status;
4420 
4421 	*offp += len;
4422 	return len;
4423 }
4424 
4425 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4426 {
4427 	struct drm_device *dev = m->private;
4428 	struct drm_connector *connector;
4429 	struct list_head *connector_list = &dev->mode_config.connector_list;
4430 	struct intel_dp *intel_dp;
4431 
4432 	list_for_each_entry(connector, connector_list, head) {
4433 		if (connector->connector_type !=
4434 		    DRM_MODE_CONNECTOR_DisplayPort)
4435 			continue;
4436 
4437 		if (connector->status == connector_status_connected &&
4438 		    connector->encoder != NULL) {
4439 			intel_dp = enc_to_intel_dp(connector->encoder);
4440 			if (intel_dp->compliance_test_active)
4441 				seq_puts(m, "1");
4442 			else
4443 				seq_puts(m, "0");
4444 		} else
4445 			seq_puts(m, "0");
4446 	}
4447 
4448 	return 0;
4449 }
4450 
4451 static int i915_displayport_test_active_open(struct inode *inode,
4452 					     struct file *file)
4453 {
4454 	struct drm_i915_private *dev_priv = inode->i_private;
4455 
4456 	return single_open(file, i915_displayport_test_active_show,
4457 			   &dev_priv->drm);
4458 }
4459 
4460 static const struct file_operations i915_displayport_test_active_fops = {
4461 	.owner = THIS_MODULE,
4462 	.open = i915_displayport_test_active_open,
4463 	.read = seq_read,
4464 	.llseek = seq_lseek,
4465 	.release = single_release,
4466 	.write = i915_displayport_test_active_write
4467 };
4468 
4469 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4470 {
4471 	struct drm_device *dev = m->private;
4472 	struct drm_connector *connector;
4473 	struct list_head *connector_list = &dev->mode_config.connector_list;
4474 	struct intel_dp *intel_dp;
4475 
4476 	list_for_each_entry(connector, connector_list, head) {
4477 		if (connector->connector_type !=
4478 		    DRM_MODE_CONNECTOR_DisplayPort)
4479 			continue;
4480 
4481 		if (connector->status == connector_status_connected &&
4482 		    connector->encoder != NULL) {
4483 			intel_dp = enc_to_intel_dp(connector->encoder);
4484 			seq_printf(m, "%lx", intel_dp->compliance_test_data);
4485 		} else
4486 			seq_puts(m, "0");
4487 	}
4488 
4489 	return 0;
4490 }
4491 static int i915_displayport_test_data_open(struct inode *inode,
4492 					   struct file *file)
4493 {
4494 	struct drm_i915_private *dev_priv = inode->i_private;
4495 
4496 	return single_open(file, i915_displayport_test_data_show,
4497 			   &dev_priv->drm);
4498 }
4499 
4500 static const struct file_operations i915_displayport_test_data_fops = {
4501 	.owner = THIS_MODULE,
4502 	.open = i915_displayport_test_data_open,
4503 	.read = seq_read,
4504 	.llseek = seq_lseek,
4505 	.release = single_release
4506 };
4507 
4508 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4509 {
4510 	struct drm_device *dev = m->private;
4511 	struct drm_connector *connector;
4512 	struct list_head *connector_list = &dev->mode_config.connector_list;
4513 	struct intel_dp *intel_dp;
4514 
4515 	list_for_each_entry(connector, connector_list, head) {
4516 		if (connector->connector_type !=
4517 		    DRM_MODE_CONNECTOR_DisplayPort)
4518 			continue;
4519 
4520 		if (connector->status == connector_status_connected &&
4521 		    connector->encoder != NULL) {
4522 			intel_dp = enc_to_intel_dp(connector->encoder);
4523 			seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4524 		} else
4525 			seq_puts(m, "0");
4526 	}
4527 
4528 	return 0;
4529 }
4530 
4531 static int i915_displayport_test_type_open(struct inode *inode,
4532 				       struct file *file)
4533 {
4534 	struct drm_i915_private *dev_priv = inode->i_private;
4535 
4536 	return single_open(file, i915_displayport_test_type_show,
4537 			   &dev_priv->drm);
4538 }
4539 
4540 static const struct file_operations i915_displayport_test_type_fops = {
4541 	.owner = THIS_MODULE,
4542 	.open = i915_displayport_test_type_open,
4543 	.read = seq_read,
4544 	.llseek = seq_lseek,
4545 	.release = single_release
4546 };
4547 
4548 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4549 {
4550 	struct drm_i915_private *dev_priv = m->private;
4551 	struct drm_device *dev = &dev_priv->drm;
4552 	int level;
4553 	int num_levels;
4554 
4555 	if (IS_CHERRYVIEW(dev_priv))
4556 		num_levels = 3;
4557 	else if (IS_VALLEYVIEW(dev_priv))
4558 		num_levels = 1;
4559 	else
4560 		num_levels = ilk_wm_max_level(dev_priv) + 1;
4561 
4562 	drm_modeset_lock_all(dev);
4563 
4564 	for (level = 0; level < num_levels; level++) {
4565 		unsigned int latency = wm[level];
4566 
4567 		/*
4568 		 * - WM1+ latency values in 0.5us units
4569 		 * - latencies are in us on gen9/vlv/chv
4570 		 */
4571 		if (INTEL_GEN(dev_priv) >= 9 || IS_VALLEYVIEW(dev_priv) ||
4572 		    IS_CHERRYVIEW(dev_priv))
4573 			latency *= 10;
4574 		else if (level > 0)
4575 			latency *= 5;
4576 
4577 		seq_printf(m, "WM%d %u (%u.%u usec)\n",
4578 			   level, wm[level], latency / 10, latency % 10);
4579 	}
4580 
4581 	drm_modeset_unlock_all(dev);
4582 }
4583 
4584 static int pri_wm_latency_show(struct seq_file *m, void *data)
4585 {
4586 	struct drm_i915_private *dev_priv = m->private;
4587 	const uint16_t *latencies;
4588 
4589 	if (INTEL_GEN(dev_priv) >= 9)
4590 		latencies = dev_priv->wm.skl_latency;
4591 	else
4592 		latencies = dev_priv->wm.pri_latency;
4593 
4594 	wm_latency_show(m, latencies);
4595 
4596 	return 0;
4597 }
4598 
4599 static int spr_wm_latency_show(struct seq_file *m, void *data)
4600 {
4601 	struct drm_i915_private *dev_priv = m->private;
4602 	const uint16_t *latencies;
4603 
4604 	if (INTEL_GEN(dev_priv) >= 9)
4605 		latencies = dev_priv->wm.skl_latency;
4606 	else
4607 		latencies = dev_priv->wm.spr_latency;
4608 
4609 	wm_latency_show(m, latencies);
4610 
4611 	return 0;
4612 }
4613 
4614 static int cur_wm_latency_show(struct seq_file *m, void *data)
4615 {
4616 	struct drm_i915_private *dev_priv = m->private;
4617 	const uint16_t *latencies;
4618 
4619 	if (INTEL_GEN(dev_priv) >= 9)
4620 		latencies = dev_priv->wm.skl_latency;
4621 	else
4622 		latencies = dev_priv->wm.cur_latency;
4623 
4624 	wm_latency_show(m, latencies);
4625 
4626 	return 0;
4627 }
4628 
4629 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4630 {
4631 	struct drm_i915_private *dev_priv = inode->i_private;
4632 
4633 	if (INTEL_GEN(dev_priv) < 5)
4634 		return -ENODEV;
4635 
4636 	return single_open(file, pri_wm_latency_show, dev_priv);
4637 }
4638 
4639 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4640 {
4641 	struct drm_i915_private *dev_priv = inode->i_private;
4642 
4643 	if (HAS_GMCH_DISPLAY(dev_priv))
4644 		return -ENODEV;
4645 
4646 	return single_open(file, spr_wm_latency_show, dev_priv);
4647 }
4648 
4649 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4650 {
4651 	struct drm_i915_private *dev_priv = inode->i_private;
4652 
4653 	if (HAS_GMCH_DISPLAY(dev_priv))
4654 		return -ENODEV;
4655 
4656 	return single_open(file, cur_wm_latency_show, dev_priv);
4657 }
4658 
4659 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4660 				size_t len, loff_t *offp, uint16_t wm[8])
4661 {
4662 	struct seq_file *m = file->private_data;
4663 	struct drm_i915_private *dev_priv = m->private;
4664 	struct drm_device *dev = &dev_priv->drm;
4665 	uint16_t new[8] = { 0 };
4666 	int num_levels;
4667 	int level;
4668 	int ret;
4669 	char tmp[32];
4670 
4671 	if (IS_CHERRYVIEW(dev_priv))
4672 		num_levels = 3;
4673 	else if (IS_VALLEYVIEW(dev_priv))
4674 		num_levels = 1;
4675 	else
4676 		num_levels = ilk_wm_max_level(dev_priv) + 1;
4677 
4678 	if (len >= sizeof(tmp))
4679 		return -EINVAL;
4680 
4681 	if (copy_from_user(tmp, ubuf, len))
4682 		return -EFAULT;
4683 
4684 	tmp[len] = '\0';
4685 
4686 	ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4687 		     &new[0], &new[1], &new[2], &new[3],
4688 		     &new[4], &new[5], &new[6], &new[7]);
4689 	if (ret != num_levels)
4690 		return -EINVAL;
4691 
4692 	drm_modeset_lock_all(dev);
4693 
4694 	for (level = 0; level < num_levels; level++)
4695 		wm[level] = new[level];
4696 
4697 	drm_modeset_unlock_all(dev);
4698 
4699 	return len;
4700 }
4701 
4702 
4703 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4704 				    size_t len, loff_t *offp)
4705 {
4706 	struct seq_file *m = file->private_data;
4707 	struct drm_i915_private *dev_priv = m->private;
4708 	uint16_t *latencies;
4709 
4710 	if (INTEL_GEN(dev_priv) >= 9)
4711 		latencies = dev_priv->wm.skl_latency;
4712 	else
4713 		latencies = dev_priv->wm.pri_latency;
4714 
4715 	return wm_latency_write(file, ubuf, len, offp, latencies);
4716 }
4717 
4718 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4719 				    size_t len, loff_t *offp)
4720 {
4721 	struct seq_file *m = file->private_data;
4722 	struct drm_i915_private *dev_priv = m->private;
4723 	uint16_t *latencies;
4724 
4725 	if (INTEL_GEN(dev_priv) >= 9)
4726 		latencies = dev_priv->wm.skl_latency;
4727 	else
4728 		latencies = dev_priv->wm.spr_latency;
4729 
4730 	return wm_latency_write(file, ubuf, len, offp, latencies);
4731 }
4732 
4733 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4734 				    size_t len, loff_t *offp)
4735 {
4736 	struct seq_file *m = file->private_data;
4737 	struct drm_i915_private *dev_priv = m->private;
4738 	uint16_t *latencies;
4739 
4740 	if (INTEL_GEN(dev_priv) >= 9)
4741 		latencies = dev_priv->wm.skl_latency;
4742 	else
4743 		latencies = dev_priv->wm.cur_latency;
4744 
4745 	return wm_latency_write(file, ubuf, len, offp, latencies);
4746 }
4747 
4748 static const struct file_operations i915_pri_wm_latency_fops = {
4749 	.owner = THIS_MODULE,
4750 	.open = pri_wm_latency_open,
4751 	.read = seq_read,
4752 	.llseek = seq_lseek,
4753 	.release = single_release,
4754 	.write = pri_wm_latency_write
4755 };
4756 
4757 static const struct file_operations i915_spr_wm_latency_fops = {
4758 	.owner = THIS_MODULE,
4759 	.open = spr_wm_latency_open,
4760 	.read = seq_read,
4761 	.llseek = seq_lseek,
4762 	.release = single_release,
4763 	.write = spr_wm_latency_write
4764 };
4765 
4766 static const struct file_operations i915_cur_wm_latency_fops = {
4767 	.owner = THIS_MODULE,
4768 	.open = cur_wm_latency_open,
4769 	.read = seq_read,
4770 	.llseek = seq_lseek,
4771 	.release = single_release,
4772 	.write = cur_wm_latency_write
4773 };
4774 
4775 static int
4776 i915_wedged_get(void *data, u64 *val)
4777 {
4778 	struct drm_i915_private *dev_priv = data;
4779 
4780 	*val = i915_terminally_wedged(&dev_priv->gpu_error);
4781 
4782 	return 0;
4783 }
4784 
4785 static int
4786 i915_wedged_set(void *data, u64 val)
4787 {
4788 	struct drm_i915_private *dev_priv = data;
4789 
4790 	/*
4791 	 * There is no safeguard against this debugfs entry colliding
4792 	 * with the hangcheck calling same i915_handle_error() in
4793 	 * parallel, causing an explosion. For now we assume that the
4794 	 * test harness is responsible enough not to inject gpu hangs
4795 	 * while it is writing to 'i915_wedged'
4796 	 */
4797 
4798 	if (i915_reset_in_progress(&dev_priv->gpu_error))
4799 		return -EAGAIN;
4800 
4801 	intel_runtime_pm_get(dev_priv);
4802 
4803 	i915_handle_error(dev_priv, val,
4804 			  "Manually setting wedged to %llu", val);
4805 
4806 	intel_runtime_pm_put(dev_priv);
4807 
4808 	return 0;
4809 }
4810 
4811 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4812 			i915_wedged_get, i915_wedged_set,
4813 			"%llu\n");
4814 
4815 static int
4816 i915_ring_missed_irq_get(void *data, u64 *val)
4817 {
4818 	struct drm_i915_private *dev_priv = data;
4819 
4820 	*val = dev_priv->gpu_error.missed_irq_rings;
4821 	return 0;
4822 }
4823 
4824 static int
4825 i915_ring_missed_irq_set(void *data, u64 val)
4826 {
4827 	struct drm_i915_private *dev_priv = data;
4828 	struct drm_device *dev = &dev_priv->drm;
4829 	int ret;
4830 
4831 	/* Lock against concurrent debugfs callers */
4832 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4833 	if (ret)
4834 		return ret;
4835 	dev_priv->gpu_error.missed_irq_rings = val;
4836 	mutex_unlock(&dev->struct_mutex);
4837 
4838 	return 0;
4839 }
4840 
4841 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4842 			i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4843 			"0x%08llx\n");
4844 
4845 static int
4846 i915_ring_test_irq_get(void *data, u64 *val)
4847 {
4848 	struct drm_i915_private *dev_priv = data;
4849 
4850 	*val = dev_priv->gpu_error.test_irq_rings;
4851 
4852 	return 0;
4853 }
4854 
4855 static int
4856 i915_ring_test_irq_set(void *data, u64 val)
4857 {
4858 	struct drm_i915_private *dev_priv = data;
4859 
4860 	val &= INTEL_INFO(dev_priv)->ring_mask;
4861 	DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4862 	dev_priv->gpu_error.test_irq_rings = val;
4863 
4864 	return 0;
4865 }
4866 
4867 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4868 			i915_ring_test_irq_get, i915_ring_test_irq_set,
4869 			"0x%08llx\n");
4870 
4871 #define DROP_UNBOUND 0x1
4872 #define DROP_BOUND 0x2
4873 #define DROP_RETIRE 0x4
4874 #define DROP_ACTIVE 0x8
4875 #define DROP_ALL (DROP_UNBOUND | \
4876 		  DROP_BOUND | \
4877 		  DROP_RETIRE | \
4878 		  DROP_ACTIVE)
4879 static int
4880 i915_drop_caches_get(void *data, u64 *val)
4881 {
4882 	*val = DROP_ALL;
4883 
4884 	return 0;
4885 }
4886 
4887 static int
4888 i915_drop_caches_set(void *data, u64 val)
4889 {
4890 	struct drm_i915_private *dev_priv = data;
4891 	struct drm_device *dev = &dev_priv->drm;
4892 	int ret;
4893 
4894 	DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4895 
4896 	/* No need to check and wait for gpu resets, only libdrm auto-restarts
4897 	 * on ioctls on -EAGAIN. */
4898 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4899 	if (ret)
4900 		return ret;
4901 
4902 	if (val & DROP_ACTIVE) {
4903 		ret = i915_gem_wait_for_idle(dev_priv,
4904 					     I915_WAIT_INTERRUPTIBLE |
4905 					     I915_WAIT_LOCKED);
4906 		if (ret)
4907 			goto unlock;
4908 	}
4909 
4910 	if (val & (DROP_RETIRE | DROP_ACTIVE))
4911 		i915_gem_retire_requests(dev_priv);
4912 
4913 	if (val & DROP_BOUND)
4914 		i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4915 
4916 	if (val & DROP_UNBOUND)
4917 		i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4918 
4919 unlock:
4920 	mutex_unlock(&dev->struct_mutex);
4921 
4922 	return ret;
4923 }
4924 
4925 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4926 			i915_drop_caches_get, i915_drop_caches_set,
4927 			"0x%08llx\n");
4928 
4929 static int
4930 i915_max_freq_get(void *data, u64 *val)
4931 {
4932 	struct drm_i915_private *dev_priv = data;
4933 
4934 	if (INTEL_GEN(dev_priv) < 6)
4935 		return -ENODEV;
4936 
4937 	*val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4938 	return 0;
4939 }
4940 
4941 static int
4942 i915_max_freq_set(void *data, u64 val)
4943 {
4944 	struct drm_i915_private *dev_priv = data;
4945 	u32 hw_max, hw_min;
4946 	int ret;
4947 
4948 	if (INTEL_GEN(dev_priv) < 6)
4949 		return -ENODEV;
4950 
4951 	DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4952 
4953 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4954 	if (ret)
4955 		return ret;
4956 
4957 	/*
4958 	 * Turbo will still be enabled, but won't go above the set value.
4959 	 */
4960 	val = intel_freq_opcode(dev_priv, val);
4961 
4962 	hw_max = dev_priv->rps.max_freq;
4963 	hw_min = dev_priv->rps.min_freq;
4964 
4965 	if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4966 		mutex_unlock(&dev_priv->rps.hw_lock);
4967 		return -EINVAL;
4968 	}
4969 
4970 	dev_priv->rps.max_freq_softlimit = val;
4971 
4972 	intel_set_rps(dev_priv, val);
4973 
4974 	mutex_unlock(&dev_priv->rps.hw_lock);
4975 
4976 	return 0;
4977 }
4978 
4979 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4980 			i915_max_freq_get, i915_max_freq_set,
4981 			"%llu\n");
4982 
4983 static int
4984 i915_min_freq_get(void *data, u64 *val)
4985 {
4986 	struct drm_i915_private *dev_priv = data;
4987 
4988 	if (INTEL_GEN(dev_priv) < 6)
4989 		return -ENODEV;
4990 
4991 	*val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4992 	return 0;
4993 }
4994 
4995 static int
4996 i915_min_freq_set(void *data, u64 val)
4997 {
4998 	struct drm_i915_private *dev_priv = data;
4999 	u32 hw_max, hw_min;
5000 	int ret;
5001 
5002 	if (INTEL_GEN(dev_priv) < 6)
5003 		return -ENODEV;
5004 
5005 	DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
5006 
5007 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
5008 	if (ret)
5009 		return ret;
5010 
5011 	/*
5012 	 * Turbo will still be enabled, but won't go below the set value.
5013 	 */
5014 	val = intel_freq_opcode(dev_priv, val);
5015 
5016 	hw_max = dev_priv->rps.max_freq;
5017 	hw_min = dev_priv->rps.min_freq;
5018 
5019 	if (val < hw_min ||
5020 	    val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
5021 		mutex_unlock(&dev_priv->rps.hw_lock);
5022 		return -EINVAL;
5023 	}
5024 
5025 	dev_priv->rps.min_freq_softlimit = val;
5026 
5027 	intel_set_rps(dev_priv, val);
5028 
5029 	mutex_unlock(&dev_priv->rps.hw_lock);
5030 
5031 	return 0;
5032 }
5033 
5034 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
5035 			i915_min_freq_get, i915_min_freq_set,
5036 			"%llu\n");
5037 
5038 static int
5039 i915_cache_sharing_get(void *data, u64 *val)
5040 {
5041 	struct drm_i915_private *dev_priv = data;
5042 	struct drm_device *dev = &dev_priv->drm;
5043 	u32 snpcr;
5044 	int ret;
5045 
5046 	if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
5047 		return -ENODEV;
5048 
5049 	ret = mutex_lock_interruptible(&dev->struct_mutex);
5050 	if (ret)
5051 		return ret;
5052 	intel_runtime_pm_get(dev_priv);
5053 
5054 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5055 
5056 	intel_runtime_pm_put(dev_priv);
5057 	mutex_unlock(&dev->struct_mutex);
5058 
5059 	*val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
5060 
5061 	return 0;
5062 }
5063 
5064 static int
5065 i915_cache_sharing_set(void *data, u64 val)
5066 {
5067 	struct drm_i915_private *dev_priv = data;
5068 	u32 snpcr;
5069 
5070 	if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
5071 		return -ENODEV;
5072 
5073 	if (val > 3)
5074 		return -EINVAL;
5075 
5076 	intel_runtime_pm_get(dev_priv);
5077 	DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
5078 
5079 	/* Update the cache sharing policy here as well */
5080 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5081 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
5082 	snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
5083 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5084 
5085 	intel_runtime_pm_put(dev_priv);
5086 	return 0;
5087 }
5088 
5089 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
5090 			i915_cache_sharing_get, i915_cache_sharing_set,
5091 			"%llu\n");
5092 
5093 static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
5094 					  struct sseu_dev_info *sseu)
5095 {
5096 	int ss_max = 2;
5097 	int ss;
5098 	u32 sig1[ss_max], sig2[ss_max];
5099 
5100 	sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
5101 	sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
5102 	sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
5103 	sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
5104 
5105 	for (ss = 0; ss < ss_max; ss++) {
5106 		unsigned int eu_cnt;
5107 
5108 		if (sig1[ss] & CHV_SS_PG_ENABLE)
5109 			/* skip disabled subslice */
5110 			continue;
5111 
5112 		sseu->slice_mask = BIT(0);
5113 		sseu->subslice_mask |= BIT(ss);
5114 		eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
5115 			 ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
5116 			 ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
5117 			 ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
5118 		sseu->eu_total += eu_cnt;
5119 		sseu->eu_per_subslice = max_t(unsigned int,
5120 					      sseu->eu_per_subslice, eu_cnt);
5121 	}
5122 }
5123 
5124 static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
5125 				    struct sseu_dev_info *sseu)
5126 {
5127 	int s_max = 3, ss_max = 4;
5128 	int s, ss;
5129 	u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
5130 
5131 	/* BXT has a single slice and at most 3 subslices. */
5132 	if (IS_BROXTON(dev_priv)) {
5133 		s_max = 1;
5134 		ss_max = 3;
5135 	}
5136 
5137 	for (s = 0; s < s_max; s++) {
5138 		s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
5139 		eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
5140 		eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
5141 	}
5142 
5143 	eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
5144 		     GEN9_PGCTL_SSA_EU19_ACK |
5145 		     GEN9_PGCTL_SSA_EU210_ACK |
5146 		     GEN9_PGCTL_SSA_EU311_ACK;
5147 	eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
5148 		     GEN9_PGCTL_SSB_EU19_ACK |
5149 		     GEN9_PGCTL_SSB_EU210_ACK |
5150 		     GEN9_PGCTL_SSB_EU311_ACK;
5151 
5152 	for (s = 0; s < s_max; s++) {
5153 		if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
5154 			/* skip disabled slice */
5155 			continue;
5156 
5157 		sseu->slice_mask |= BIT(s);
5158 
5159 		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
5160 			sseu->subslice_mask =
5161 				INTEL_INFO(dev_priv)->sseu.subslice_mask;
5162 
5163 		for (ss = 0; ss < ss_max; ss++) {
5164 			unsigned int eu_cnt;
5165 
5166 			if (IS_BROXTON(dev_priv)) {
5167 				if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
5168 					/* skip disabled subslice */
5169 					continue;
5170 
5171 				sseu->subslice_mask |= BIT(ss);
5172 			}
5173 
5174 			eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
5175 					       eu_mask[ss%2]);
5176 			sseu->eu_total += eu_cnt;
5177 			sseu->eu_per_subslice = max_t(unsigned int,
5178 						      sseu->eu_per_subslice,
5179 						      eu_cnt);
5180 		}
5181 	}
5182 }
5183 
5184 static void broadwell_sseu_device_status(struct drm_i915_private *dev_priv,
5185 					 struct sseu_dev_info *sseu)
5186 {
5187 	u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
5188 	int s;
5189 
5190 	sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
5191 
5192 	if (sseu->slice_mask) {
5193 		sseu->subslice_mask = INTEL_INFO(dev_priv)->sseu.subslice_mask;
5194 		sseu->eu_per_subslice =
5195 				INTEL_INFO(dev_priv)->sseu.eu_per_subslice;
5196 		sseu->eu_total = sseu->eu_per_subslice *
5197 				 sseu_subslice_total(sseu);
5198 
5199 		/* subtract fused off EU(s) from enabled slice(s) */
5200 		for (s = 0; s < fls(sseu->slice_mask); s++) {
5201 			u8 subslice_7eu =
5202 				INTEL_INFO(dev_priv)->sseu.subslice_7eu[s];
5203 
5204 			sseu->eu_total -= hweight8(subslice_7eu);
5205 		}
5206 	}
5207 }
5208 
5209 static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
5210 				 const struct sseu_dev_info *sseu)
5211 {
5212 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
5213 	const char *type = is_available_info ? "Available" : "Enabled";
5214 
5215 	seq_printf(m, "  %s Slice Mask: %04x\n", type,
5216 		   sseu->slice_mask);
5217 	seq_printf(m, "  %s Slice Total: %u\n", type,
5218 		   hweight8(sseu->slice_mask));
5219 	seq_printf(m, "  %s Subslice Total: %u\n", type,
5220 		   sseu_subslice_total(sseu));
5221 	seq_printf(m, "  %s Subslice Mask: %04x\n", type,
5222 		   sseu->subslice_mask);
5223 	seq_printf(m, "  %s Subslice Per Slice: %u\n", type,
5224 		   hweight8(sseu->subslice_mask));
5225 	seq_printf(m, "  %s EU Total: %u\n", type,
5226 		   sseu->eu_total);
5227 	seq_printf(m, "  %s EU Per Subslice: %u\n", type,
5228 		   sseu->eu_per_subslice);
5229 
5230 	if (!is_available_info)
5231 		return;
5232 
5233 	seq_printf(m, "  Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
5234 	if (HAS_POOLED_EU(dev_priv))
5235 		seq_printf(m, "  Min EU in pool: %u\n", sseu->min_eu_in_pool);
5236 
5237 	seq_printf(m, "  Has Slice Power Gating: %s\n",
5238 		   yesno(sseu->has_slice_pg));
5239 	seq_printf(m, "  Has Subslice Power Gating: %s\n",
5240 		   yesno(sseu->has_subslice_pg));
5241 	seq_printf(m, "  Has EU Power Gating: %s\n",
5242 		   yesno(sseu->has_eu_pg));
5243 }
5244 
5245 static int i915_sseu_status(struct seq_file *m, void *unused)
5246 {
5247 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
5248 	struct sseu_dev_info sseu;
5249 
5250 	if (INTEL_GEN(dev_priv) < 8)
5251 		return -ENODEV;
5252 
5253 	seq_puts(m, "SSEU Device Info\n");
5254 	i915_print_sseu_info(m, true, &INTEL_INFO(dev_priv)->sseu);
5255 
5256 	seq_puts(m, "SSEU Device Status\n");
5257 	memset(&sseu, 0, sizeof(sseu));
5258 
5259 	intel_runtime_pm_get(dev_priv);
5260 
5261 	if (IS_CHERRYVIEW(dev_priv)) {
5262 		cherryview_sseu_device_status(dev_priv, &sseu);
5263 	} else if (IS_BROADWELL(dev_priv)) {
5264 		broadwell_sseu_device_status(dev_priv, &sseu);
5265 	} else if (INTEL_GEN(dev_priv) >= 9) {
5266 		gen9_sseu_device_status(dev_priv, &sseu);
5267 	}
5268 
5269 	intel_runtime_pm_put(dev_priv);
5270 
5271 	i915_print_sseu_info(m, false, &sseu);
5272 
5273 	return 0;
5274 }
5275 
5276 static int i915_forcewake_open(struct inode *inode, struct file *file)
5277 {
5278 	struct drm_i915_private *dev_priv = inode->i_private;
5279 
5280 	if (INTEL_GEN(dev_priv) < 6)
5281 		return 0;
5282 
5283 	intel_runtime_pm_get(dev_priv);
5284 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5285 
5286 	return 0;
5287 }
5288 
5289 static int i915_forcewake_release(struct inode *inode, struct file *file)
5290 {
5291 	struct drm_i915_private *dev_priv = inode->i_private;
5292 
5293 	if (INTEL_GEN(dev_priv) < 6)
5294 		return 0;
5295 
5296 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5297 	intel_runtime_pm_put(dev_priv);
5298 
5299 	return 0;
5300 }
5301 
5302 static const struct file_operations i915_forcewake_fops = {
5303 	.owner = THIS_MODULE,
5304 	.open = i915_forcewake_open,
5305 	.release = i915_forcewake_release,
5306 };
5307 
5308 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5309 {
5310 	struct dentry *ent;
5311 
5312 	ent = debugfs_create_file("i915_forcewake_user",
5313 				  S_IRUSR,
5314 				  root, to_i915(minor->dev),
5315 				  &i915_forcewake_fops);
5316 	if (!ent)
5317 		return -ENOMEM;
5318 
5319 	return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5320 }
5321 
5322 static int i915_debugfs_create(struct dentry *root,
5323 			       struct drm_minor *minor,
5324 			       const char *name,
5325 			       const struct file_operations *fops)
5326 {
5327 	struct dentry *ent;
5328 
5329 	ent = debugfs_create_file(name,
5330 				  S_IRUGO | S_IWUSR,
5331 				  root, to_i915(minor->dev),
5332 				  fops);
5333 	if (!ent)
5334 		return -ENOMEM;
5335 
5336 	return drm_add_fake_info_node(minor, ent, fops);
5337 }
5338 
5339 static const struct drm_info_list i915_debugfs_list[] = {
5340 	{"i915_capabilities", i915_capabilities, 0},
5341 	{"i915_gem_objects", i915_gem_object_info, 0},
5342 	{"i915_gem_gtt", i915_gem_gtt_info, 0},
5343 	{"i915_gem_pin_display", i915_gem_gtt_info, 0, (void *)1},
5344 	{"i915_gem_stolen", i915_gem_stolen_list_info },
5345 	{"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5346 	{"i915_gem_request", i915_gem_request_info, 0},
5347 	{"i915_gem_seqno", i915_gem_seqno_info, 0},
5348 	{"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5349 	{"i915_gem_interrupt", i915_interrupt_info, 0},
5350 	{"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5351 	{"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5352 	{"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5353 	{"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5354 	{"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5355 	{"i915_guc_info", i915_guc_info, 0},
5356 	{"i915_guc_load_status", i915_guc_load_status_info, 0},
5357 	{"i915_guc_log_dump", i915_guc_log_dump, 0},
5358 	{"i915_frequency_info", i915_frequency_info, 0},
5359 	{"i915_hangcheck_info", i915_hangcheck_info, 0},
5360 	{"i915_drpc_info", i915_drpc_info, 0},
5361 	{"i915_emon_status", i915_emon_status, 0},
5362 	{"i915_ring_freq_table", i915_ring_freq_table, 0},
5363 	{"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5364 	{"i915_fbc_status", i915_fbc_status, 0},
5365 	{"i915_ips_status", i915_ips_status, 0},
5366 	{"i915_sr_status", i915_sr_status, 0},
5367 	{"i915_opregion", i915_opregion, 0},
5368 	{"i915_vbt", i915_vbt, 0},
5369 	{"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5370 	{"i915_context_status", i915_context_status, 0},
5371 	{"i915_dump_lrc", i915_dump_lrc, 0},
5372 	{"i915_forcewake_domains", i915_forcewake_domains, 0},
5373 	{"i915_swizzle_info", i915_swizzle_info, 0},
5374 	{"i915_ppgtt_info", i915_ppgtt_info, 0},
5375 	{"i915_llc", i915_llc, 0},
5376 	{"i915_edp_psr_status", i915_edp_psr_status, 0},
5377 	{"i915_sink_crc_eDP1", i915_sink_crc, 0},
5378 	{"i915_energy_uJ", i915_energy_uJ, 0},
5379 	{"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5380 	{"i915_power_domain_info", i915_power_domain_info, 0},
5381 	{"i915_dmc_info", i915_dmc_info, 0},
5382 	{"i915_display_info", i915_display_info, 0},
5383 	{"i915_engine_info", i915_engine_info, 0},
5384 	{"i915_semaphore_status", i915_semaphore_status, 0},
5385 	{"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5386 	{"i915_dp_mst_info", i915_dp_mst_info, 0},
5387 	{"i915_wa_registers", i915_wa_registers, 0},
5388 	{"i915_ddb_info", i915_ddb_info, 0},
5389 	{"i915_sseu_status", i915_sseu_status, 0},
5390 	{"i915_drrs_status", i915_drrs_status, 0},
5391 	{"i915_rps_boost_info", i915_rps_boost_info, 0},
5392 };
5393 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5394 
5395 static const struct i915_debugfs_files {
5396 	const char *name;
5397 	const struct file_operations *fops;
5398 } i915_debugfs_files[] = {
5399 	{"i915_wedged", &i915_wedged_fops},
5400 	{"i915_max_freq", &i915_max_freq_fops},
5401 	{"i915_min_freq", &i915_min_freq_fops},
5402 	{"i915_cache_sharing", &i915_cache_sharing_fops},
5403 	{"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5404 	{"i915_ring_test_irq", &i915_ring_test_irq_fops},
5405 	{"i915_gem_drop_caches", &i915_drop_caches_fops},
5406 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
5407 	{"i915_error_state", &i915_error_state_fops},
5408 #endif
5409 	{"i915_next_seqno", &i915_next_seqno_fops},
5410 	{"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5411 	{"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5412 	{"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5413 	{"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5414 	{"i915_fbc_false_color", &i915_fbc_fc_fops},
5415 	{"i915_dp_test_data", &i915_displayport_test_data_fops},
5416 	{"i915_dp_test_type", &i915_displayport_test_type_fops},
5417 	{"i915_dp_test_active", &i915_displayport_test_active_fops}
5418 };
5419 
5420 void intel_display_crc_init(struct drm_i915_private *dev_priv)
5421 {
5422 	enum pipe pipe;
5423 
5424 	for_each_pipe(dev_priv, pipe) {
5425 		struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5426 
5427 		pipe_crc->opened = false;
5428 		spin_lock_init(&pipe_crc->lock);
5429 		init_waitqueue_head(&pipe_crc->wq);
5430 	}
5431 }
5432 
5433 int i915_debugfs_register(struct drm_i915_private *dev_priv)
5434 {
5435 	struct drm_minor *minor = dev_priv->drm.primary;
5436 	int ret, i;
5437 
5438 	ret = i915_forcewake_create(minor->debugfs_root, minor);
5439 	if (ret)
5440 		return ret;
5441 
5442 	for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5443 		ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5444 		if (ret)
5445 			return ret;
5446 	}
5447 
5448 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5449 		ret = i915_debugfs_create(minor->debugfs_root, minor,
5450 					  i915_debugfs_files[i].name,
5451 					  i915_debugfs_files[i].fops);
5452 		if (ret)
5453 			return ret;
5454 	}
5455 
5456 	return drm_debugfs_create_files(i915_debugfs_list,
5457 					I915_DEBUGFS_ENTRIES,
5458 					minor->debugfs_root, minor);
5459 }
5460 
5461 void i915_debugfs_unregister(struct drm_i915_private *dev_priv)
5462 {
5463 	struct drm_minor *minor = dev_priv->drm.primary;
5464 	int i;
5465 
5466 	drm_debugfs_remove_files(i915_debugfs_list,
5467 				 I915_DEBUGFS_ENTRIES, minor);
5468 
5469 	drm_debugfs_remove_files((struct drm_info_list *)&i915_forcewake_fops,
5470 				 1, minor);
5471 
5472 	for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5473 		struct drm_info_list *info_list =
5474 			(struct drm_info_list *)&i915_pipe_crc_data[i];
5475 
5476 		drm_debugfs_remove_files(info_list, 1, minor);
5477 	}
5478 
5479 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5480 		struct drm_info_list *info_list =
5481 			(struct drm_info_list *)i915_debugfs_files[i].fops;
5482 
5483 		drm_debugfs_remove_files(info_list, 1, minor);
5484 	}
5485 }
5486 
5487 struct dpcd_block {
5488 	/* DPCD dump start address. */
5489 	unsigned int offset;
5490 	/* DPCD dump end address, inclusive. If unset, .size will be used. */
5491 	unsigned int end;
5492 	/* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5493 	size_t size;
5494 	/* Only valid for eDP. */
5495 	bool edp;
5496 };
5497 
5498 static const struct dpcd_block i915_dpcd_debug[] = {
5499 	{ .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5500 	{ .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5501 	{ .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5502 	{ .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5503 	{ .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5504 	{ .offset = DP_SET_POWER },
5505 	{ .offset = DP_EDP_DPCD_REV },
5506 	{ .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5507 	{ .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5508 	{ .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5509 };
5510 
5511 static int i915_dpcd_show(struct seq_file *m, void *data)
5512 {
5513 	struct drm_connector *connector = m->private;
5514 	struct intel_dp *intel_dp =
5515 		enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5516 	uint8_t buf[16];
5517 	ssize_t err;
5518 	int i;
5519 
5520 	if (connector->status != connector_status_connected)
5521 		return -ENODEV;
5522 
5523 	for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5524 		const struct dpcd_block *b = &i915_dpcd_debug[i];
5525 		size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5526 
5527 		if (b->edp &&
5528 		    connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5529 			continue;
5530 
5531 		/* low tech for now */
5532 		if (WARN_ON(size > sizeof(buf)))
5533 			continue;
5534 
5535 		err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5536 		if (err <= 0) {
5537 			DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5538 				  size, b->offset, err);
5539 			continue;
5540 		}
5541 
5542 		seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5543 	}
5544 
5545 	return 0;
5546 }
5547 
5548 static int i915_dpcd_open(struct inode *inode, struct file *file)
5549 {
5550 	return single_open(file, i915_dpcd_show, inode->i_private);
5551 }
5552 
5553 static const struct file_operations i915_dpcd_fops = {
5554 	.owner = THIS_MODULE,
5555 	.open = i915_dpcd_open,
5556 	.read = seq_read,
5557 	.llseek = seq_lseek,
5558 	.release = single_release,
5559 };
5560 
5561 static int i915_panel_show(struct seq_file *m, void *data)
5562 {
5563 	struct drm_connector *connector = m->private;
5564 	struct intel_dp *intel_dp =
5565 		enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5566 
5567 	if (connector->status != connector_status_connected)
5568 		return -ENODEV;
5569 
5570 	seq_printf(m, "Panel power up delay: %d\n",
5571 		   intel_dp->panel_power_up_delay);
5572 	seq_printf(m, "Panel power down delay: %d\n",
5573 		   intel_dp->panel_power_down_delay);
5574 	seq_printf(m, "Backlight on delay: %d\n",
5575 		   intel_dp->backlight_on_delay);
5576 	seq_printf(m, "Backlight off delay: %d\n",
5577 		   intel_dp->backlight_off_delay);
5578 
5579 	return 0;
5580 }
5581 
5582 static int i915_panel_open(struct inode *inode, struct file *file)
5583 {
5584 	return single_open(file, i915_panel_show, inode->i_private);
5585 }
5586 
5587 static const struct file_operations i915_panel_fops = {
5588 	.owner = THIS_MODULE,
5589 	.open = i915_panel_open,
5590 	.read = seq_read,
5591 	.llseek = seq_lseek,
5592 	.release = single_release,
5593 };
5594 
5595 /**
5596  * i915_debugfs_connector_add - add i915 specific connector debugfs files
5597  * @connector: pointer to a registered drm_connector
5598  *
5599  * Cleanup will be done by drm_connector_unregister() through a call to
5600  * drm_debugfs_connector_remove().
5601  *
5602  * Returns 0 on success, negative error codes on error.
5603  */
5604 int i915_debugfs_connector_add(struct drm_connector *connector)
5605 {
5606 	struct dentry *root = connector->debugfs_entry;
5607 
5608 	/* The connector must have been registered beforehands. */
5609 	if (!root)
5610 		return -ENODEV;
5611 
5612 	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5613 	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5614 		debugfs_create_file("i915_dpcd", S_IRUGO, root,
5615 				    connector, &i915_dpcd_fops);
5616 
5617 	if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5618 		debugfs_create_file("i915_panel_timings", S_IRUGO, root,
5619 				    connector, &i915_panel_fops);
5620 
5621 	return 0;
5622 }
5623