xref: /linux/drivers/gpu/drm/i915/i915_debugfs.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28 
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42 
43 enum {
44 	ACTIVE_LIST,
45 	INACTIVE_LIST,
46 	PINNED_LIST,
47 };
48 
49 /* As the drm_debugfs_init() routines are called before dev->dev_private is
50  * allocated we need to hook into the minor for release. */
51 static int
52 drm_add_fake_info_node(struct drm_minor *minor,
53 		       struct dentry *ent,
54 		       const void *key)
55 {
56 	struct drm_info_node *node;
57 
58 	node = kmalloc(sizeof(*node), GFP_KERNEL);
59 	if (node == NULL) {
60 		debugfs_remove(ent);
61 		return -ENOMEM;
62 	}
63 
64 	node->minor = minor;
65 	node->dent = ent;
66 	node->info_ent = (void *) key;
67 
68 	mutex_lock(&minor->debugfs_lock);
69 	list_add(&node->list, &minor->debugfs_list);
70 	mutex_unlock(&minor->debugfs_lock);
71 
72 	return 0;
73 }
74 
75 static int i915_capabilities(struct seq_file *m, void *data)
76 {
77 	struct drm_info_node *node = m->private;
78 	struct drm_device *dev = node->minor->dev;
79 	const struct intel_device_info *info = INTEL_INFO(dev);
80 
81 	seq_printf(m, "gen: %d\n", info->gen);
82 	seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
83 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
84 #define SEP_SEMICOLON ;
85 	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
86 #undef PRINT_FLAG
87 #undef SEP_SEMICOLON
88 
89 	return 0;
90 }
91 
92 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
93 {
94 	if (obj->pin_display)
95 		return "p";
96 	else
97 		return " ";
98 }
99 
100 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
101 {
102 	switch (obj->tiling_mode) {
103 	default:
104 	case I915_TILING_NONE: return " ";
105 	case I915_TILING_X: return "X";
106 	case I915_TILING_Y: return "Y";
107 	}
108 }
109 
110 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
111 {
112 	return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
113 }
114 
115 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
116 {
117 	u64 size = 0;
118 	struct i915_vma *vma;
119 
120 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
121 		if (i915_is_ggtt(vma->vm) &&
122 		    drm_mm_node_allocated(&vma->node))
123 			size += vma->node.size;
124 	}
125 
126 	return size;
127 }
128 
129 static void
130 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
131 {
132 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
133 	struct intel_engine_cs *ring;
134 	struct i915_vma *vma;
135 	int pin_count = 0;
136 	int i;
137 
138 	seq_printf(m, "%pK: %s%s%s%s %8zdKiB %02x %02x [ ",
139 		   &obj->base,
140 		   obj->active ? "*" : " ",
141 		   get_pin_flag(obj),
142 		   get_tiling_flag(obj),
143 		   get_global_flag(obj),
144 		   obj->base.size / 1024,
145 		   obj->base.read_domains,
146 		   obj->base.write_domain);
147 	for_each_ring(ring, dev_priv, i)
148 		seq_printf(m, "%x ",
149 				i915_gem_request_get_seqno(obj->last_read_req[i]));
150 	seq_printf(m, "] %x %x%s%s%s",
151 		   i915_gem_request_get_seqno(obj->last_write_req),
152 		   i915_gem_request_get_seqno(obj->last_fenced_req),
153 		   i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
154 		   obj->dirty ? " dirty" : "",
155 		   obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
156 	if (obj->base.name)
157 		seq_printf(m, " (name: %d)", obj->base.name);
158 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
159 		if (vma->pin_count > 0)
160 			pin_count++;
161 	}
162 	seq_printf(m, " (pinned x %d)", pin_count);
163 	if (obj->pin_display)
164 		seq_printf(m, " (display)");
165 	if (obj->fence_reg != I915_FENCE_REG_NONE)
166 		seq_printf(m, " (fence: %d)", obj->fence_reg);
167 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
168 		seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
169 			   i915_is_ggtt(vma->vm) ? "g" : "pp",
170 			   vma->node.start, vma->node.size);
171 		if (i915_is_ggtt(vma->vm))
172 			seq_printf(m, ", type: %u)", vma->ggtt_view.type);
173 		else
174 			seq_puts(m, ")");
175 	}
176 	if (obj->stolen)
177 		seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
178 	if (obj->pin_display || obj->fault_mappable) {
179 		char s[3], *t = s;
180 		if (obj->pin_display)
181 			*t++ = 'p';
182 		if (obj->fault_mappable)
183 			*t++ = 'f';
184 		*t = '\0';
185 		seq_printf(m, " (%s mappable)", s);
186 	}
187 	if (obj->last_write_req != NULL)
188 		seq_printf(m, " (%s)",
189 			   i915_gem_request_get_ring(obj->last_write_req)->name);
190 	if (obj->frontbuffer_bits)
191 		seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
192 }
193 
194 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
195 {
196 	seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
197 	seq_putc(m, ctx->remap_slice ? 'R' : 'r');
198 	seq_putc(m, ' ');
199 }
200 
201 static int i915_gem_object_list_info(struct seq_file *m, void *data)
202 {
203 	struct drm_info_node *node = m->private;
204 	uintptr_t list = (uintptr_t) node->info_ent->data;
205 	struct list_head *head;
206 	struct drm_device *dev = node->minor->dev;
207 	struct drm_i915_private *dev_priv = dev->dev_private;
208 	struct i915_address_space *vm = &dev_priv->gtt.base;
209 	struct i915_vma *vma;
210 	u64 total_obj_size, total_gtt_size;
211 	int count, ret;
212 
213 	ret = mutex_lock_interruptible(&dev->struct_mutex);
214 	if (ret)
215 		return ret;
216 
217 	/* FIXME: the user of this interface might want more than just GGTT */
218 	switch (list) {
219 	case ACTIVE_LIST:
220 		seq_puts(m, "Active:\n");
221 		head = &vm->active_list;
222 		break;
223 	case INACTIVE_LIST:
224 		seq_puts(m, "Inactive:\n");
225 		head = &vm->inactive_list;
226 		break;
227 	default:
228 		mutex_unlock(&dev->struct_mutex);
229 		return -EINVAL;
230 	}
231 
232 	total_obj_size = total_gtt_size = count = 0;
233 	list_for_each_entry(vma, head, mm_list) {
234 		seq_printf(m, "   ");
235 		describe_obj(m, vma->obj);
236 		seq_printf(m, "\n");
237 		total_obj_size += vma->obj->base.size;
238 		total_gtt_size += vma->node.size;
239 		count++;
240 	}
241 	mutex_unlock(&dev->struct_mutex);
242 
243 	seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
244 		   count, total_obj_size, total_gtt_size);
245 	return 0;
246 }
247 
248 static int obj_rank_by_stolen(void *priv,
249 			      struct list_head *A, struct list_head *B)
250 {
251 	struct drm_i915_gem_object *a =
252 		container_of(A, struct drm_i915_gem_object, obj_exec_link);
253 	struct drm_i915_gem_object *b =
254 		container_of(B, struct drm_i915_gem_object, obj_exec_link);
255 
256 	if (a->stolen->start < b->stolen->start)
257 		return -1;
258 	if (a->stolen->start > b->stolen->start)
259 		return 1;
260 	return 0;
261 }
262 
263 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
264 {
265 	struct drm_info_node *node = m->private;
266 	struct drm_device *dev = node->minor->dev;
267 	struct drm_i915_private *dev_priv = dev->dev_private;
268 	struct drm_i915_gem_object *obj;
269 	u64 total_obj_size, total_gtt_size;
270 	LIST_HEAD(stolen);
271 	int count, ret;
272 
273 	ret = mutex_lock_interruptible(&dev->struct_mutex);
274 	if (ret)
275 		return ret;
276 
277 	total_obj_size = total_gtt_size = count = 0;
278 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
279 		if (obj->stolen == NULL)
280 			continue;
281 
282 		list_add(&obj->obj_exec_link, &stolen);
283 
284 		total_obj_size += obj->base.size;
285 		total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
286 		count++;
287 	}
288 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
289 		if (obj->stolen == NULL)
290 			continue;
291 
292 		list_add(&obj->obj_exec_link, &stolen);
293 
294 		total_obj_size += obj->base.size;
295 		count++;
296 	}
297 	list_sort(NULL, &stolen, obj_rank_by_stolen);
298 	seq_puts(m, "Stolen:\n");
299 	while (!list_empty(&stolen)) {
300 		obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
301 		seq_puts(m, "   ");
302 		describe_obj(m, obj);
303 		seq_putc(m, '\n');
304 		list_del_init(&obj->obj_exec_link);
305 	}
306 	mutex_unlock(&dev->struct_mutex);
307 
308 	seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
309 		   count, total_obj_size, total_gtt_size);
310 	return 0;
311 }
312 
313 #define count_objects(list, member) do { \
314 	list_for_each_entry(obj, list, member) { \
315 		size += i915_gem_obj_total_ggtt_size(obj); \
316 		++count; \
317 		if (obj->map_and_fenceable) { \
318 			mappable_size += i915_gem_obj_ggtt_size(obj); \
319 			++mappable_count; \
320 		} \
321 	} \
322 } while (0)
323 
324 struct file_stats {
325 	struct drm_i915_file_private *file_priv;
326 	unsigned long count;
327 	u64 total, unbound;
328 	u64 global, shared;
329 	u64 active, inactive;
330 };
331 
332 static int per_file_stats(int id, void *ptr, void *data)
333 {
334 	struct drm_i915_gem_object *obj = ptr;
335 	struct file_stats *stats = data;
336 	struct i915_vma *vma;
337 
338 	stats->count++;
339 	stats->total += obj->base.size;
340 
341 	if (obj->base.name || obj->base.dma_buf)
342 		stats->shared += obj->base.size;
343 
344 	if (USES_FULL_PPGTT(obj->base.dev)) {
345 		list_for_each_entry(vma, &obj->vma_list, vma_link) {
346 			struct i915_hw_ppgtt *ppgtt;
347 
348 			if (!drm_mm_node_allocated(&vma->node))
349 				continue;
350 
351 			if (i915_is_ggtt(vma->vm)) {
352 				stats->global += obj->base.size;
353 				continue;
354 			}
355 
356 			ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
357 			if (ppgtt->file_priv != stats->file_priv)
358 				continue;
359 
360 			if (obj->active) /* XXX per-vma statistic */
361 				stats->active += obj->base.size;
362 			else
363 				stats->inactive += obj->base.size;
364 
365 			return 0;
366 		}
367 	} else {
368 		if (i915_gem_obj_ggtt_bound(obj)) {
369 			stats->global += obj->base.size;
370 			if (obj->active)
371 				stats->active += obj->base.size;
372 			else
373 				stats->inactive += obj->base.size;
374 			return 0;
375 		}
376 	}
377 
378 	if (!list_empty(&obj->global_list))
379 		stats->unbound += obj->base.size;
380 
381 	return 0;
382 }
383 
384 #define print_file_stats(m, name, stats) do { \
385 	if (stats.count) \
386 		seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
387 			   name, \
388 			   stats.count, \
389 			   stats.total, \
390 			   stats.active, \
391 			   stats.inactive, \
392 			   stats.global, \
393 			   stats.shared, \
394 			   stats.unbound); \
395 } while (0)
396 
397 static void print_batch_pool_stats(struct seq_file *m,
398 				   struct drm_i915_private *dev_priv)
399 {
400 	struct drm_i915_gem_object *obj;
401 	struct file_stats stats;
402 	struct intel_engine_cs *ring;
403 	int i, j;
404 
405 	memset(&stats, 0, sizeof(stats));
406 
407 	for_each_ring(ring, dev_priv, i) {
408 		for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
409 			list_for_each_entry(obj,
410 					    &ring->batch_pool.cache_list[j],
411 					    batch_pool_link)
412 				per_file_stats(0, obj, &stats);
413 		}
414 	}
415 
416 	print_file_stats(m, "[k]batch pool", stats);
417 }
418 
419 #define count_vmas(list, member) do { \
420 	list_for_each_entry(vma, list, member) { \
421 		size += i915_gem_obj_total_ggtt_size(vma->obj); \
422 		++count; \
423 		if (vma->obj->map_and_fenceable) { \
424 			mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
425 			++mappable_count; \
426 		} \
427 	} \
428 } while (0)
429 
430 static int i915_gem_object_info(struct seq_file *m, void* data)
431 {
432 	struct drm_info_node *node = m->private;
433 	struct drm_device *dev = node->minor->dev;
434 	struct drm_i915_private *dev_priv = dev->dev_private;
435 	u32 count, mappable_count, purgeable_count;
436 	u64 size, mappable_size, purgeable_size;
437 	struct drm_i915_gem_object *obj;
438 	struct i915_address_space *vm = &dev_priv->gtt.base;
439 	struct drm_file *file;
440 	struct i915_vma *vma;
441 	int ret;
442 
443 	ret = mutex_lock_interruptible(&dev->struct_mutex);
444 	if (ret)
445 		return ret;
446 
447 	seq_printf(m, "%u objects, %zu bytes\n",
448 		   dev_priv->mm.object_count,
449 		   dev_priv->mm.object_memory);
450 
451 	size = count = mappable_size = mappable_count = 0;
452 	count_objects(&dev_priv->mm.bound_list, global_list);
453 	seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
454 		   count, mappable_count, size, mappable_size);
455 
456 	size = count = mappable_size = mappable_count = 0;
457 	count_vmas(&vm->active_list, mm_list);
458 	seq_printf(m, "  %u [%u] active objects, %llu [%llu] bytes\n",
459 		   count, mappable_count, size, mappable_size);
460 
461 	size = count = mappable_size = mappable_count = 0;
462 	count_vmas(&vm->inactive_list, mm_list);
463 	seq_printf(m, "  %u [%u] inactive objects, %llu [%llu] bytes\n",
464 		   count, mappable_count, size, mappable_size);
465 
466 	size = count = purgeable_size = purgeable_count = 0;
467 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
468 		size += obj->base.size, ++count;
469 		if (obj->madv == I915_MADV_DONTNEED)
470 			purgeable_size += obj->base.size, ++purgeable_count;
471 	}
472 	seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
473 
474 	size = count = mappable_size = mappable_count = 0;
475 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
476 		if (obj->fault_mappable) {
477 			size += i915_gem_obj_ggtt_size(obj);
478 			++count;
479 		}
480 		if (obj->pin_display) {
481 			mappable_size += i915_gem_obj_ggtt_size(obj);
482 			++mappable_count;
483 		}
484 		if (obj->madv == I915_MADV_DONTNEED) {
485 			purgeable_size += obj->base.size;
486 			++purgeable_count;
487 		}
488 	}
489 	seq_printf(m, "%u purgeable objects, %llu bytes\n",
490 		   purgeable_count, purgeable_size);
491 	seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
492 		   mappable_count, mappable_size);
493 	seq_printf(m, "%u fault mappable objects, %llu bytes\n",
494 		   count, size);
495 
496 	seq_printf(m, "%llu [%llu] gtt total\n",
497 		   dev_priv->gtt.base.total,
498 		   (u64)dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
499 
500 	seq_putc(m, '\n');
501 	print_batch_pool_stats(m, dev_priv);
502 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
503 		struct file_stats stats;
504 		struct task_struct *task;
505 
506 		memset(&stats, 0, sizeof(stats));
507 		stats.file_priv = file->driver_priv;
508 		spin_lock(&file->table_lock);
509 		idr_for_each(&file->object_idr, per_file_stats, &stats);
510 		spin_unlock(&file->table_lock);
511 		/*
512 		 * Although we have a valid reference on file->pid, that does
513 		 * not guarantee that the task_struct who called get_pid() is
514 		 * still alive (e.g. get_pid(current) => fork() => exit()).
515 		 * Therefore, we need to protect this ->comm access using RCU.
516 		 */
517 		rcu_read_lock();
518 		task = pid_task(file->pid, PIDTYPE_PID);
519 		print_file_stats(m, task ? task->comm : "<unknown>", stats);
520 		rcu_read_unlock();
521 	}
522 
523 	mutex_unlock(&dev->struct_mutex);
524 
525 	return 0;
526 }
527 
528 static int i915_gem_gtt_info(struct seq_file *m, void *data)
529 {
530 	struct drm_info_node *node = m->private;
531 	struct drm_device *dev = node->minor->dev;
532 	uintptr_t list = (uintptr_t) node->info_ent->data;
533 	struct drm_i915_private *dev_priv = dev->dev_private;
534 	struct drm_i915_gem_object *obj;
535 	u64 total_obj_size, total_gtt_size;
536 	int count, ret;
537 
538 	ret = mutex_lock_interruptible(&dev->struct_mutex);
539 	if (ret)
540 		return ret;
541 
542 	total_obj_size = total_gtt_size = count = 0;
543 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
544 		if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
545 			continue;
546 
547 		seq_puts(m, "   ");
548 		describe_obj(m, obj);
549 		seq_putc(m, '\n');
550 		total_obj_size += obj->base.size;
551 		total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
552 		count++;
553 	}
554 
555 	mutex_unlock(&dev->struct_mutex);
556 
557 	seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
558 		   count, total_obj_size, total_gtt_size);
559 
560 	return 0;
561 }
562 
563 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
564 {
565 	struct drm_info_node *node = m->private;
566 	struct drm_device *dev = node->minor->dev;
567 	struct drm_i915_private *dev_priv = dev->dev_private;
568 	struct intel_crtc *crtc;
569 	int ret;
570 
571 	ret = mutex_lock_interruptible(&dev->struct_mutex);
572 	if (ret)
573 		return ret;
574 
575 	for_each_intel_crtc(dev, crtc) {
576 		const char pipe = pipe_name(crtc->pipe);
577 		const char plane = plane_name(crtc->plane);
578 		struct intel_unpin_work *work;
579 
580 		spin_lock_irq(&dev->event_lock);
581 		work = crtc->unpin_work;
582 		if (work == NULL) {
583 			seq_printf(m, "No flip due on pipe %c (plane %c)\n",
584 				   pipe, plane);
585 		} else {
586 			u32 addr;
587 
588 			if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
589 				seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
590 					   pipe, plane);
591 			} else {
592 				seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
593 					   pipe, plane);
594 			}
595 			if (work->flip_queued_req) {
596 				struct intel_engine_cs *ring =
597 					i915_gem_request_get_ring(work->flip_queued_req);
598 
599 				seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
600 					   ring->name,
601 					   i915_gem_request_get_seqno(work->flip_queued_req),
602 					   dev_priv->next_seqno,
603 					   ring->get_seqno(ring, true),
604 					   i915_gem_request_completed(work->flip_queued_req, true));
605 			} else
606 				seq_printf(m, "Flip not associated with any ring\n");
607 			seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
608 				   work->flip_queued_vblank,
609 				   work->flip_ready_vblank,
610 				   drm_crtc_vblank_count(&crtc->base));
611 			if (work->enable_stall_check)
612 				seq_puts(m, "Stall check enabled, ");
613 			else
614 				seq_puts(m, "Stall check waiting for page flip ioctl, ");
615 			seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
616 
617 			if (INTEL_INFO(dev)->gen >= 4)
618 				addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
619 			else
620 				addr = I915_READ(DSPADDR(crtc->plane));
621 			seq_printf(m, "Current scanout address 0x%08x\n", addr);
622 
623 			if (work->pending_flip_obj) {
624 				seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
625 				seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
626 			}
627 		}
628 		spin_unlock_irq(&dev->event_lock);
629 	}
630 
631 	mutex_unlock(&dev->struct_mutex);
632 
633 	return 0;
634 }
635 
636 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
637 {
638 	struct drm_info_node *node = m->private;
639 	struct drm_device *dev = node->minor->dev;
640 	struct drm_i915_private *dev_priv = dev->dev_private;
641 	struct drm_i915_gem_object *obj;
642 	struct intel_engine_cs *ring;
643 	int total = 0;
644 	int ret, i, j;
645 
646 	ret = mutex_lock_interruptible(&dev->struct_mutex);
647 	if (ret)
648 		return ret;
649 
650 	for_each_ring(ring, dev_priv, i) {
651 		for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
652 			int count;
653 
654 			count = 0;
655 			list_for_each_entry(obj,
656 					    &ring->batch_pool.cache_list[j],
657 					    batch_pool_link)
658 				count++;
659 			seq_printf(m, "%s cache[%d]: %d objects\n",
660 				   ring->name, j, count);
661 
662 			list_for_each_entry(obj,
663 					    &ring->batch_pool.cache_list[j],
664 					    batch_pool_link) {
665 				seq_puts(m, "   ");
666 				describe_obj(m, obj);
667 				seq_putc(m, '\n');
668 			}
669 
670 			total += count;
671 		}
672 	}
673 
674 	seq_printf(m, "total: %d\n", total);
675 
676 	mutex_unlock(&dev->struct_mutex);
677 
678 	return 0;
679 }
680 
681 static int i915_gem_request_info(struct seq_file *m, void *data)
682 {
683 	struct drm_info_node *node = m->private;
684 	struct drm_device *dev = node->minor->dev;
685 	struct drm_i915_private *dev_priv = dev->dev_private;
686 	struct intel_engine_cs *ring;
687 	struct drm_i915_gem_request *req;
688 	int ret, any, i;
689 
690 	ret = mutex_lock_interruptible(&dev->struct_mutex);
691 	if (ret)
692 		return ret;
693 
694 	any = 0;
695 	for_each_ring(ring, dev_priv, i) {
696 		int count;
697 
698 		count = 0;
699 		list_for_each_entry(req, &ring->request_list, list)
700 			count++;
701 		if (count == 0)
702 			continue;
703 
704 		seq_printf(m, "%s requests: %d\n", ring->name, count);
705 		list_for_each_entry(req, &ring->request_list, list) {
706 			struct task_struct *task;
707 
708 			rcu_read_lock();
709 			task = NULL;
710 			if (req->pid)
711 				task = pid_task(req->pid, PIDTYPE_PID);
712 			seq_printf(m, "    %x @ %d: %s [%d]\n",
713 				   req->seqno,
714 				   (int) (jiffies - req->emitted_jiffies),
715 				   task ? task->comm : "<unknown>",
716 				   task ? task->pid : -1);
717 			rcu_read_unlock();
718 		}
719 
720 		any++;
721 	}
722 	mutex_unlock(&dev->struct_mutex);
723 
724 	if (any == 0)
725 		seq_puts(m, "No requests\n");
726 
727 	return 0;
728 }
729 
730 static void i915_ring_seqno_info(struct seq_file *m,
731 				 struct intel_engine_cs *ring)
732 {
733 	if (ring->get_seqno) {
734 		seq_printf(m, "Current sequence (%s): %x\n",
735 			   ring->name, ring->get_seqno(ring, false));
736 	}
737 }
738 
739 static int i915_gem_seqno_info(struct seq_file *m, void *data)
740 {
741 	struct drm_info_node *node = m->private;
742 	struct drm_device *dev = node->minor->dev;
743 	struct drm_i915_private *dev_priv = dev->dev_private;
744 	struct intel_engine_cs *ring;
745 	int ret, i;
746 
747 	ret = mutex_lock_interruptible(&dev->struct_mutex);
748 	if (ret)
749 		return ret;
750 	intel_runtime_pm_get(dev_priv);
751 
752 	for_each_ring(ring, dev_priv, i)
753 		i915_ring_seqno_info(m, ring);
754 
755 	intel_runtime_pm_put(dev_priv);
756 	mutex_unlock(&dev->struct_mutex);
757 
758 	return 0;
759 }
760 
761 
762 static int i915_interrupt_info(struct seq_file *m, void *data)
763 {
764 	struct drm_info_node *node = m->private;
765 	struct drm_device *dev = node->minor->dev;
766 	struct drm_i915_private *dev_priv = dev->dev_private;
767 	struct intel_engine_cs *ring;
768 	int ret, i, pipe;
769 
770 	ret = mutex_lock_interruptible(&dev->struct_mutex);
771 	if (ret)
772 		return ret;
773 	intel_runtime_pm_get(dev_priv);
774 
775 	if (IS_CHERRYVIEW(dev)) {
776 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
777 			   I915_READ(GEN8_MASTER_IRQ));
778 
779 		seq_printf(m, "Display IER:\t%08x\n",
780 			   I915_READ(VLV_IER));
781 		seq_printf(m, "Display IIR:\t%08x\n",
782 			   I915_READ(VLV_IIR));
783 		seq_printf(m, "Display IIR_RW:\t%08x\n",
784 			   I915_READ(VLV_IIR_RW));
785 		seq_printf(m, "Display IMR:\t%08x\n",
786 			   I915_READ(VLV_IMR));
787 		for_each_pipe(dev_priv, pipe)
788 			seq_printf(m, "Pipe %c stat:\t%08x\n",
789 				   pipe_name(pipe),
790 				   I915_READ(PIPESTAT(pipe)));
791 
792 		seq_printf(m, "Port hotplug:\t%08x\n",
793 			   I915_READ(PORT_HOTPLUG_EN));
794 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
795 			   I915_READ(VLV_DPFLIPSTAT));
796 		seq_printf(m, "DPINVGTT:\t%08x\n",
797 			   I915_READ(DPINVGTT));
798 
799 		for (i = 0; i < 4; i++) {
800 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
801 				   i, I915_READ(GEN8_GT_IMR(i)));
802 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
803 				   i, I915_READ(GEN8_GT_IIR(i)));
804 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
805 				   i, I915_READ(GEN8_GT_IER(i)));
806 		}
807 
808 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
809 			   I915_READ(GEN8_PCU_IMR));
810 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
811 			   I915_READ(GEN8_PCU_IIR));
812 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
813 			   I915_READ(GEN8_PCU_IER));
814 	} else if (INTEL_INFO(dev)->gen >= 8) {
815 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
816 			   I915_READ(GEN8_MASTER_IRQ));
817 
818 		for (i = 0; i < 4; i++) {
819 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
820 				   i, I915_READ(GEN8_GT_IMR(i)));
821 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
822 				   i, I915_READ(GEN8_GT_IIR(i)));
823 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
824 				   i, I915_READ(GEN8_GT_IER(i)));
825 		}
826 
827 		for_each_pipe(dev_priv, pipe) {
828 			if (!intel_display_power_is_enabled(dev_priv,
829 						POWER_DOMAIN_PIPE(pipe))) {
830 				seq_printf(m, "Pipe %c power disabled\n",
831 					   pipe_name(pipe));
832 				continue;
833 			}
834 			seq_printf(m, "Pipe %c IMR:\t%08x\n",
835 				   pipe_name(pipe),
836 				   I915_READ(GEN8_DE_PIPE_IMR(pipe)));
837 			seq_printf(m, "Pipe %c IIR:\t%08x\n",
838 				   pipe_name(pipe),
839 				   I915_READ(GEN8_DE_PIPE_IIR(pipe)));
840 			seq_printf(m, "Pipe %c IER:\t%08x\n",
841 				   pipe_name(pipe),
842 				   I915_READ(GEN8_DE_PIPE_IER(pipe)));
843 		}
844 
845 		seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
846 			   I915_READ(GEN8_DE_PORT_IMR));
847 		seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
848 			   I915_READ(GEN8_DE_PORT_IIR));
849 		seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
850 			   I915_READ(GEN8_DE_PORT_IER));
851 
852 		seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
853 			   I915_READ(GEN8_DE_MISC_IMR));
854 		seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
855 			   I915_READ(GEN8_DE_MISC_IIR));
856 		seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
857 			   I915_READ(GEN8_DE_MISC_IER));
858 
859 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
860 			   I915_READ(GEN8_PCU_IMR));
861 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
862 			   I915_READ(GEN8_PCU_IIR));
863 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
864 			   I915_READ(GEN8_PCU_IER));
865 	} else if (IS_VALLEYVIEW(dev)) {
866 		seq_printf(m, "Display IER:\t%08x\n",
867 			   I915_READ(VLV_IER));
868 		seq_printf(m, "Display IIR:\t%08x\n",
869 			   I915_READ(VLV_IIR));
870 		seq_printf(m, "Display IIR_RW:\t%08x\n",
871 			   I915_READ(VLV_IIR_RW));
872 		seq_printf(m, "Display IMR:\t%08x\n",
873 			   I915_READ(VLV_IMR));
874 		for_each_pipe(dev_priv, pipe)
875 			seq_printf(m, "Pipe %c stat:\t%08x\n",
876 				   pipe_name(pipe),
877 				   I915_READ(PIPESTAT(pipe)));
878 
879 		seq_printf(m, "Master IER:\t%08x\n",
880 			   I915_READ(VLV_MASTER_IER));
881 
882 		seq_printf(m, "Render IER:\t%08x\n",
883 			   I915_READ(GTIER));
884 		seq_printf(m, "Render IIR:\t%08x\n",
885 			   I915_READ(GTIIR));
886 		seq_printf(m, "Render IMR:\t%08x\n",
887 			   I915_READ(GTIMR));
888 
889 		seq_printf(m, "PM IER:\t\t%08x\n",
890 			   I915_READ(GEN6_PMIER));
891 		seq_printf(m, "PM IIR:\t\t%08x\n",
892 			   I915_READ(GEN6_PMIIR));
893 		seq_printf(m, "PM IMR:\t\t%08x\n",
894 			   I915_READ(GEN6_PMIMR));
895 
896 		seq_printf(m, "Port hotplug:\t%08x\n",
897 			   I915_READ(PORT_HOTPLUG_EN));
898 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
899 			   I915_READ(VLV_DPFLIPSTAT));
900 		seq_printf(m, "DPINVGTT:\t%08x\n",
901 			   I915_READ(DPINVGTT));
902 
903 	} else if (!HAS_PCH_SPLIT(dev)) {
904 		seq_printf(m, "Interrupt enable:    %08x\n",
905 			   I915_READ(IER));
906 		seq_printf(m, "Interrupt identity:  %08x\n",
907 			   I915_READ(IIR));
908 		seq_printf(m, "Interrupt mask:      %08x\n",
909 			   I915_READ(IMR));
910 		for_each_pipe(dev_priv, pipe)
911 			seq_printf(m, "Pipe %c stat:         %08x\n",
912 				   pipe_name(pipe),
913 				   I915_READ(PIPESTAT(pipe)));
914 	} else {
915 		seq_printf(m, "North Display Interrupt enable:		%08x\n",
916 			   I915_READ(DEIER));
917 		seq_printf(m, "North Display Interrupt identity:	%08x\n",
918 			   I915_READ(DEIIR));
919 		seq_printf(m, "North Display Interrupt mask:		%08x\n",
920 			   I915_READ(DEIMR));
921 		seq_printf(m, "South Display Interrupt enable:		%08x\n",
922 			   I915_READ(SDEIER));
923 		seq_printf(m, "South Display Interrupt identity:	%08x\n",
924 			   I915_READ(SDEIIR));
925 		seq_printf(m, "South Display Interrupt mask:		%08x\n",
926 			   I915_READ(SDEIMR));
927 		seq_printf(m, "Graphics Interrupt enable:		%08x\n",
928 			   I915_READ(GTIER));
929 		seq_printf(m, "Graphics Interrupt identity:		%08x\n",
930 			   I915_READ(GTIIR));
931 		seq_printf(m, "Graphics Interrupt mask:		%08x\n",
932 			   I915_READ(GTIMR));
933 	}
934 	for_each_ring(ring, dev_priv, i) {
935 		if (INTEL_INFO(dev)->gen >= 6) {
936 			seq_printf(m,
937 				   "Graphics Interrupt mask (%s):	%08x\n",
938 				   ring->name, I915_READ_IMR(ring));
939 		}
940 		i915_ring_seqno_info(m, ring);
941 	}
942 	intel_runtime_pm_put(dev_priv);
943 	mutex_unlock(&dev->struct_mutex);
944 
945 	return 0;
946 }
947 
948 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
949 {
950 	struct drm_info_node *node = m->private;
951 	struct drm_device *dev = node->minor->dev;
952 	struct drm_i915_private *dev_priv = dev->dev_private;
953 	int i, ret;
954 
955 	ret = mutex_lock_interruptible(&dev->struct_mutex);
956 	if (ret)
957 		return ret;
958 
959 	seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
960 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
961 		struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
962 
963 		seq_printf(m, "Fence %d, pin count = %d, object = ",
964 			   i, dev_priv->fence_regs[i].pin_count);
965 		if (obj == NULL)
966 			seq_puts(m, "unused");
967 		else
968 			describe_obj(m, obj);
969 		seq_putc(m, '\n');
970 	}
971 
972 	mutex_unlock(&dev->struct_mutex);
973 	return 0;
974 }
975 
976 static int i915_hws_info(struct seq_file *m, void *data)
977 {
978 	struct drm_info_node *node = m->private;
979 	struct drm_device *dev = node->minor->dev;
980 	struct drm_i915_private *dev_priv = dev->dev_private;
981 	struct intel_engine_cs *ring;
982 	const u32 *hws;
983 	int i;
984 
985 	ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
986 	hws = ring->status_page.page_addr;
987 	if (hws == NULL)
988 		return 0;
989 
990 	for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
991 		seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
992 			   i * 4,
993 			   hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
994 	}
995 	return 0;
996 }
997 
998 static ssize_t
999 i915_error_state_write(struct file *filp,
1000 		       const char __user *ubuf,
1001 		       size_t cnt,
1002 		       loff_t *ppos)
1003 {
1004 	struct i915_error_state_file_priv *error_priv = filp->private_data;
1005 	struct drm_device *dev = error_priv->dev;
1006 	int ret;
1007 
1008 	DRM_DEBUG_DRIVER("Resetting error state\n");
1009 
1010 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1011 	if (ret)
1012 		return ret;
1013 
1014 	i915_destroy_error_state(dev);
1015 	mutex_unlock(&dev->struct_mutex);
1016 
1017 	return cnt;
1018 }
1019 
1020 static int i915_error_state_open(struct inode *inode, struct file *file)
1021 {
1022 	struct drm_device *dev = inode->i_private;
1023 	struct i915_error_state_file_priv *error_priv;
1024 
1025 	error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
1026 	if (!error_priv)
1027 		return -ENOMEM;
1028 
1029 	error_priv->dev = dev;
1030 
1031 	i915_error_state_get(dev, error_priv);
1032 
1033 	file->private_data = error_priv;
1034 
1035 	return 0;
1036 }
1037 
1038 static int i915_error_state_release(struct inode *inode, struct file *file)
1039 {
1040 	struct i915_error_state_file_priv *error_priv = file->private_data;
1041 
1042 	i915_error_state_put(error_priv);
1043 	kfree(error_priv);
1044 
1045 	return 0;
1046 }
1047 
1048 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1049 				     size_t count, loff_t *pos)
1050 {
1051 	struct i915_error_state_file_priv *error_priv = file->private_data;
1052 	struct drm_i915_error_state_buf error_str;
1053 	loff_t tmp_pos = 0;
1054 	ssize_t ret_count = 0;
1055 	int ret;
1056 
1057 	ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1058 	if (ret)
1059 		return ret;
1060 
1061 	ret = i915_error_state_to_str(&error_str, error_priv);
1062 	if (ret)
1063 		goto out;
1064 
1065 	ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1066 					    error_str.buf,
1067 					    error_str.bytes);
1068 
1069 	if (ret_count < 0)
1070 		ret = ret_count;
1071 	else
1072 		*pos = error_str.start + ret_count;
1073 out:
1074 	i915_error_state_buf_release(&error_str);
1075 	return ret ?: ret_count;
1076 }
1077 
1078 static const struct file_operations i915_error_state_fops = {
1079 	.owner = THIS_MODULE,
1080 	.open = i915_error_state_open,
1081 	.read = i915_error_state_read,
1082 	.write = i915_error_state_write,
1083 	.llseek = default_llseek,
1084 	.release = i915_error_state_release,
1085 };
1086 
1087 static int
1088 i915_next_seqno_get(void *data, u64 *val)
1089 {
1090 	struct drm_device *dev = data;
1091 	struct drm_i915_private *dev_priv = dev->dev_private;
1092 	int ret;
1093 
1094 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1095 	if (ret)
1096 		return ret;
1097 
1098 	*val = dev_priv->next_seqno;
1099 	mutex_unlock(&dev->struct_mutex);
1100 
1101 	return 0;
1102 }
1103 
1104 static int
1105 i915_next_seqno_set(void *data, u64 val)
1106 {
1107 	struct drm_device *dev = data;
1108 	int ret;
1109 
1110 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1111 	if (ret)
1112 		return ret;
1113 
1114 	ret = i915_gem_set_seqno(dev, val);
1115 	mutex_unlock(&dev->struct_mutex);
1116 
1117 	return ret;
1118 }
1119 
1120 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1121 			i915_next_seqno_get, i915_next_seqno_set,
1122 			"0x%llx\n");
1123 
1124 static int i915_frequency_info(struct seq_file *m, void *unused)
1125 {
1126 	struct drm_info_node *node = m->private;
1127 	struct drm_device *dev = node->minor->dev;
1128 	struct drm_i915_private *dev_priv = dev->dev_private;
1129 	int ret = 0;
1130 
1131 	intel_runtime_pm_get(dev_priv);
1132 
1133 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1134 
1135 	if (IS_GEN5(dev)) {
1136 		u16 rgvswctl = I915_READ16(MEMSWCTL);
1137 		u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1138 
1139 		seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1140 		seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1141 		seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1142 			   MEMSTAT_VID_SHIFT);
1143 		seq_printf(m, "Current P-state: %d\n",
1144 			   (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1145 	} else if (IS_GEN6(dev) || (IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) ||
1146 		   IS_BROADWELL(dev) || IS_GEN9(dev)) {
1147 		u32 rp_state_limits;
1148 		u32 gt_perf_status;
1149 		u32 rp_state_cap;
1150 		u32 rpmodectl, rpinclimit, rpdeclimit;
1151 		u32 rpstat, cagf, reqf;
1152 		u32 rpupei, rpcurup, rpprevup;
1153 		u32 rpdownei, rpcurdown, rpprevdown;
1154 		u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1155 		int max_freq;
1156 
1157 		rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1158 		if (IS_BROXTON(dev)) {
1159 			rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1160 			gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1161 		} else {
1162 			rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1163 			gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1164 		}
1165 
1166 		/* RPSTAT1 is in the GT power well */
1167 		ret = mutex_lock_interruptible(&dev->struct_mutex);
1168 		if (ret)
1169 			goto out;
1170 
1171 		intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1172 
1173 		reqf = I915_READ(GEN6_RPNSWREQ);
1174 		if (IS_GEN9(dev))
1175 			reqf >>= 23;
1176 		else {
1177 			reqf &= ~GEN6_TURBO_DISABLE;
1178 			if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1179 				reqf >>= 24;
1180 			else
1181 				reqf >>= 25;
1182 		}
1183 		reqf = intel_gpu_freq(dev_priv, reqf);
1184 
1185 		rpmodectl = I915_READ(GEN6_RP_CONTROL);
1186 		rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1187 		rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1188 
1189 		rpstat = I915_READ(GEN6_RPSTAT1);
1190 		rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1191 		rpcurup = I915_READ(GEN6_RP_CUR_UP);
1192 		rpprevup = I915_READ(GEN6_RP_PREV_UP);
1193 		rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1194 		rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1195 		rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1196 		if (IS_GEN9(dev))
1197 			cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1198 		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1199 			cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1200 		else
1201 			cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1202 		cagf = intel_gpu_freq(dev_priv, cagf);
1203 
1204 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1205 		mutex_unlock(&dev->struct_mutex);
1206 
1207 		if (IS_GEN6(dev) || IS_GEN7(dev)) {
1208 			pm_ier = I915_READ(GEN6_PMIER);
1209 			pm_imr = I915_READ(GEN6_PMIMR);
1210 			pm_isr = I915_READ(GEN6_PMISR);
1211 			pm_iir = I915_READ(GEN6_PMIIR);
1212 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1213 		} else {
1214 			pm_ier = I915_READ(GEN8_GT_IER(2));
1215 			pm_imr = I915_READ(GEN8_GT_IMR(2));
1216 			pm_isr = I915_READ(GEN8_GT_ISR(2));
1217 			pm_iir = I915_READ(GEN8_GT_IIR(2));
1218 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1219 		}
1220 		seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1221 			   pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1222 		seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1223 		seq_printf(m, "Render p-state ratio: %d\n",
1224 			   (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1225 		seq_printf(m, "Render p-state VID: %d\n",
1226 			   gt_perf_status & 0xff);
1227 		seq_printf(m, "Render p-state limit: %d\n",
1228 			   rp_state_limits & 0xff);
1229 		seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1230 		seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1231 		seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1232 		seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1233 		seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1234 		seq_printf(m, "CAGF: %dMHz\n", cagf);
1235 		seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1236 			   GEN6_CURICONT_MASK);
1237 		seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1238 			   GEN6_CURBSYTAVG_MASK);
1239 		seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1240 			   GEN6_CURBSYTAVG_MASK);
1241 		seq_printf(m, "Up threshold: %d%%\n",
1242 			   dev_priv->rps.up_threshold);
1243 
1244 		seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1245 			   GEN6_CURIAVG_MASK);
1246 		seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1247 			   GEN6_CURBSYTAVG_MASK);
1248 		seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1249 			   GEN6_CURBSYTAVG_MASK);
1250 		seq_printf(m, "Down threshold: %d%%\n",
1251 			   dev_priv->rps.down_threshold);
1252 
1253 		max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
1254 			    rp_state_cap >> 16) & 0xff;
1255 		max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1256 		seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1257 			   intel_gpu_freq(dev_priv, max_freq));
1258 
1259 		max_freq = (rp_state_cap & 0xff00) >> 8;
1260 		max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1261 		seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1262 			   intel_gpu_freq(dev_priv, max_freq));
1263 
1264 		max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
1265 			    rp_state_cap >> 0) & 0xff;
1266 		max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1267 		seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1268 			   intel_gpu_freq(dev_priv, max_freq));
1269 		seq_printf(m, "Max overclocked frequency: %dMHz\n",
1270 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1271 
1272 		seq_printf(m, "Current freq: %d MHz\n",
1273 			   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1274 		seq_printf(m, "Actual freq: %d MHz\n", cagf);
1275 		seq_printf(m, "Idle freq: %d MHz\n",
1276 			   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1277 		seq_printf(m, "Min freq: %d MHz\n",
1278 			   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1279 		seq_printf(m, "Max freq: %d MHz\n",
1280 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1281 		seq_printf(m,
1282 			   "efficient (RPe) frequency: %d MHz\n",
1283 			   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1284 	} else if (IS_VALLEYVIEW(dev)) {
1285 		u32 freq_sts;
1286 
1287 		mutex_lock(&dev_priv->rps.hw_lock);
1288 		freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1289 		seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1290 		seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1291 
1292 		seq_printf(m, "actual GPU freq: %d MHz\n",
1293 			   intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1294 
1295 		seq_printf(m, "current GPU freq: %d MHz\n",
1296 			   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1297 
1298 		seq_printf(m, "max GPU freq: %d MHz\n",
1299 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1300 
1301 		seq_printf(m, "min GPU freq: %d MHz\n",
1302 			   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1303 
1304 		seq_printf(m, "idle GPU freq: %d MHz\n",
1305 			   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1306 
1307 		seq_printf(m,
1308 			   "efficient (RPe) frequency: %d MHz\n",
1309 			   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1310 		mutex_unlock(&dev_priv->rps.hw_lock);
1311 	} else {
1312 		seq_puts(m, "no P-state info available\n");
1313 	}
1314 
1315 	seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1316 	seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1317 	seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1318 
1319 out:
1320 	intel_runtime_pm_put(dev_priv);
1321 	return ret;
1322 }
1323 
1324 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1325 {
1326 	struct drm_info_node *node = m->private;
1327 	struct drm_device *dev = node->minor->dev;
1328 	struct drm_i915_private *dev_priv = dev->dev_private;
1329 	struct intel_engine_cs *ring;
1330 	u64 acthd[I915_NUM_RINGS];
1331 	u32 seqno[I915_NUM_RINGS];
1332 	int i;
1333 
1334 	if (!i915.enable_hangcheck) {
1335 		seq_printf(m, "Hangcheck disabled\n");
1336 		return 0;
1337 	}
1338 
1339 	intel_runtime_pm_get(dev_priv);
1340 
1341 	for_each_ring(ring, dev_priv, i) {
1342 		seqno[i] = ring->get_seqno(ring, false);
1343 		acthd[i] = intel_ring_get_active_head(ring);
1344 	}
1345 
1346 	intel_runtime_pm_put(dev_priv);
1347 
1348 	if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1349 		seq_printf(m, "Hangcheck active, fires in %dms\n",
1350 			   jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1351 					    jiffies));
1352 	} else
1353 		seq_printf(m, "Hangcheck inactive\n");
1354 
1355 	for_each_ring(ring, dev_priv, i) {
1356 		seq_printf(m, "%s:\n", ring->name);
1357 		seq_printf(m, "\tseqno = %x [current %x]\n",
1358 			   ring->hangcheck.seqno, seqno[i]);
1359 		seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1360 			   (long long)ring->hangcheck.acthd,
1361 			   (long long)acthd[i]);
1362 		seq_printf(m, "\tmax ACTHD = 0x%08llx\n",
1363 			   (long long)ring->hangcheck.max_acthd);
1364 		seq_printf(m, "\tscore = %d\n", ring->hangcheck.score);
1365 		seq_printf(m, "\taction = %d\n", ring->hangcheck.action);
1366 	}
1367 
1368 	return 0;
1369 }
1370 
1371 static int ironlake_drpc_info(struct seq_file *m)
1372 {
1373 	struct drm_info_node *node = m->private;
1374 	struct drm_device *dev = node->minor->dev;
1375 	struct drm_i915_private *dev_priv = dev->dev_private;
1376 	u32 rgvmodectl, rstdbyctl;
1377 	u16 crstandvid;
1378 	int ret;
1379 
1380 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1381 	if (ret)
1382 		return ret;
1383 	intel_runtime_pm_get(dev_priv);
1384 
1385 	rgvmodectl = I915_READ(MEMMODECTL);
1386 	rstdbyctl = I915_READ(RSTDBYCTL);
1387 	crstandvid = I915_READ16(CRSTANDVID);
1388 
1389 	intel_runtime_pm_put(dev_priv);
1390 	mutex_unlock(&dev->struct_mutex);
1391 
1392 	seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1393 	seq_printf(m, "Boost freq: %d\n",
1394 		   (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1395 		   MEMMODE_BOOST_FREQ_SHIFT);
1396 	seq_printf(m, "HW control enabled: %s\n",
1397 		   yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1398 	seq_printf(m, "SW control enabled: %s\n",
1399 		   yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1400 	seq_printf(m, "Gated voltage change: %s\n",
1401 		   yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1402 	seq_printf(m, "Starting frequency: P%d\n",
1403 		   (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1404 	seq_printf(m, "Max P-state: P%d\n",
1405 		   (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1406 	seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1407 	seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1408 	seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1409 	seq_printf(m, "Render standby enabled: %s\n",
1410 		   yesno(!(rstdbyctl & RCX_SW_EXIT)));
1411 	seq_puts(m, "Current RS state: ");
1412 	switch (rstdbyctl & RSX_STATUS_MASK) {
1413 	case RSX_STATUS_ON:
1414 		seq_puts(m, "on\n");
1415 		break;
1416 	case RSX_STATUS_RC1:
1417 		seq_puts(m, "RC1\n");
1418 		break;
1419 	case RSX_STATUS_RC1E:
1420 		seq_puts(m, "RC1E\n");
1421 		break;
1422 	case RSX_STATUS_RS1:
1423 		seq_puts(m, "RS1\n");
1424 		break;
1425 	case RSX_STATUS_RS2:
1426 		seq_puts(m, "RS2 (RC6)\n");
1427 		break;
1428 	case RSX_STATUS_RS3:
1429 		seq_puts(m, "RC3 (RC6+)\n");
1430 		break;
1431 	default:
1432 		seq_puts(m, "unknown\n");
1433 		break;
1434 	}
1435 
1436 	return 0;
1437 }
1438 
1439 static int i915_forcewake_domains(struct seq_file *m, void *data)
1440 {
1441 	struct drm_info_node *node = m->private;
1442 	struct drm_device *dev = node->minor->dev;
1443 	struct drm_i915_private *dev_priv = dev->dev_private;
1444 	struct intel_uncore_forcewake_domain *fw_domain;
1445 	int i;
1446 
1447 	spin_lock_irq(&dev_priv->uncore.lock);
1448 	for_each_fw_domain(fw_domain, dev_priv, i) {
1449 		seq_printf(m, "%s.wake_count = %u\n",
1450 			   intel_uncore_forcewake_domain_to_str(i),
1451 			   fw_domain->wake_count);
1452 	}
1453 	spin_unlock_irq(&dev_priv->uncore.lock);
1454 
1455 	return 0;
1456 }
1457 
1458 static int vlv_drpc_info(struct seq_file *m)
1459 {
1460 	struct drm_info_node *node = m->private;
1461 	struct drm_device *dev = node->minor->dev;
1462 	struct drm_i915_private *dev_priv = dev->dev_private;
1463 	u32 rpmodectl1, rcctl1, pw_status;
1464 
1465 	intel_runtime_pm_get(dev_priv);
1466 
1467 	pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1468 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1469 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1470 
1471 	intel_runtime_pm_put(dev_priv);
1472 
1473 	seq_printf(m, "Video Turbo Mode: %s\n",
1474 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1475 	seq_printf(m, "Turbo enabled: %s\n",
1476 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1477 	seq_printf(m, "HW control enabled: %s\n",
1478 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1479 	seq_printf(m, "SW control enabled: %s\n",
1480 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1481 			  GEN6_RP_MEDIA_SW_MODE));
1482 	seq_printf(m, "RC6 Enabled: %s\n",
1483 		   yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1484 					GEN6_RC_CTL_EI_MODE(1))));
1485 	seq_printf(m, "Render Power Well: %s\n",
1486 		   (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1487 	seq_printf(m, "Media Power Well: %s\n",
1488 		   (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1489 
1490 	seq_printf(m, "Render RC6 residency since boot: %u\n",
1491 		   I915_READ(VLV_GT_RENDER_RC6));
1492 	seq_printf(m, "Media RC6 residency since boot: %u\n",
1493 		   I915_READ(VLV_GT_MEDIA_RC6));
1494 
1495 	return i915_forcewake_domains(m, NULL);
1496 }
1497 
1498 static int gen6_drpc_info(struct seq_file *m)
1499 {
1500 	struct drm_info_node *node = m->private;
1501 	struct drm_device *dev = node->minor->dev;
1502 	struct drm_i915_private *dev_priv = dev->dev_private;
1503 	u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1504 	unsigned forcewake_count;
1505 	int count = 0, ret;
1506 
1507 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1508 	if (ret)
1509 		return ret;
1510 	intel_runtime_pm_get(dev_priv);
1511 
1512 	spin_lock_irq(&dev_priv->uncore.lock);
1513 	forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1514 	spin_unlock_irq(&dev_priv->uncore.lock);
1515 
1516 	if (forcewake_count) {
1517 		seq_puts(m, "RC information inaccurate because somebody "
1518 			    "holds a forcewake reference \n");
1519 	} else {
1520 		/* NB: we cannot use forcewake, else we read the wrong values */
1521 		while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1522 			udelay(10);
1523 		seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1524 	}
1525 
1526 	gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1527 	trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1528 
1529 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1530 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1531 	mutex_unlock(&dev->struct_mutex);
1532 	mutex_lock(&dev_priv->rps.hw_lock);
1533 	sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1534 	mutex_unlock(&dev_priv->rps.hw_lock);
1535 
1536 	intel_runtime_pm_put(dev_priv);
1537 
1538 	seq_printf(m, "Video Turbo Mode: %s\n",
1539 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1540 	seq_printf(m, "HW control enabled: %s\n",
1541 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1542 	seq_printf(m, "SW control enabled: %s\n",
1543 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1544 			  GEN6_RP_MEDIA_SW_MODE));
1545 	seq_printf(m, "RC1e Enabled: %s\n",
1546 		   yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1547 	seq_printf(m, "RC6 Enabled: %s\n",
1548 		   yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1549 	seq_printf(m, "Deep RC6 Enabled: %s\n",
1550 		   yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1551 	seq_printf(m, "Deepest RC6 Enabled: %s\n",
1552 		   yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1553 	seq_puts(m, "Current RC state: ");
1554 	switch (gt_core_status & GEN6_RCn_MASK) {
1555 	case GEN6_RC0:
1556 		if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1557 			seq_puts(m, "Core Power Down\n");
1558 		else
1559 			seq_puts(m, "on\n");
1560 		break;
1561 	case GEN6_RC3:
1562 		seq_puts(m, "RC3\n");
1563 		break;
1564 	case GEN6_RC6:
1565 		seq_puts(m, "RC6\n");
1566 		break;
1567 	case GEN6_RC7:
1568 		seq_puts(m, "RC7\n");
1569 		break;
1570 	default:
1571 		seq_puts(m, "Unknown\n");
1572 		break;
1573 	}
1574 
1575 	seq_printf(m, "Core Power Down: %s\n",
1576 		   yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1577 
1578 	/* Not exactly sure what this is */
1579 	seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1580 		   I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1581 	seq_printf(m, "RC6 residency since boot: %u\n",
1582 		   I915_READ(GEN6_GT_GFX_RC6));
1583 	seq_printf(m, "RC6+ residency since boot: %u\n",
1584 		   I915_READ(GEN6_GT_GFX_RC6p));
1585 	seq_printf(m, "RC6++ residency since boot: %u\n",
1586 		   I915_READ(GEN6_GT_GFX_RC6pp));
1587 
1588 	seq_printf(m, "RC6   voltage: %dmV\n",
1589 		   GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1590 	seq_printf(m, "RC6+  voltage: %dmV\n",
1591 		   GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1592 	seq_printf(m, "RC6++ voltage: %dmV\n",
1593 		   GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1594 	return 0;
1595 }
1596 
1597 static int i915_drpc_info(struct seq_file *m, void *unused)
1598 {
1599 	struct drm_info_node *node = m->private;
1600 	struct drm_device *dev = node->minor->dev;
1601 
1602 	if (IS_VALLEYVIEW(dev))
1603 		return vlv_drpc_info(m);
1604 	else if (INTEL_INFO(dev)->gen >= 6)
1605 		return gen6_drpc_info(m);
1606 	else
1607 		return ironlake_drpc_info(m);
1608 }
1609 
1610 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1611 {
1612 	struct drm_info_node *node = m->private;
1613 	struct drm_device *dev = node->minor->dev;
1614 	struct drm_i915_private *dev_priv = dev->dev_private;
1615 
1616 	seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1617 		   dev_priv->fb_tracking.busy_bits);
1618 
1619 	seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1620 		   dev_priv->fb_tracking.flip_bits);
1621 
1622 	return 0;
1623 }
1624 
1625 static int i915_fbc_status(struct seq_file *m, void *unused)
1626 {
1627 	struct drm_info_node *node = m->private;
1628 	struct drm_device *dev = node->minor->dev;
1629 	struct drm_i915_private *dev_priv = dev->dev_private;
1630 
1631 	if (!HAS_FBC(dev)) {
1632 		seq_puts(m, "FBC unsupported on this chipset\n");
1633 		return 0;
1634 	}
1635 
1636 	intel_runtime_pm_get(dev_priv);
1637 	mutex_lock(&dev_priv->fbc.lock);
1638 
1639 	if (intel_fbc_enabled(dev_priv))
1640 		seq_puts(m, "FBC enabled\n");
1641 	else
1642 		seq_printf(m, "FBC disabled: %s\n",
1643 			  intel_no_fbc_reason_str(dev_priv->fbc.no_fbc_reason));
1644 
1645 	if (INTEL_INFO(dev_priv)->gen >= 7)
1646 		seq_printf(m, "Compressing: %s\n",
1647 			   yesno(I915_READ(FBC_STATUS2) &
1648 				 FBC_COMPRESSION_MASK));
1649 
1650 	mutex_unlock(&dev_priv->fbc.lock);
1651 	intel_runtime_pm_put(dev_priv);
1652 
1653 	return 0;
1654 }
1655 
1656 static int i915_fbc_fc_get(void *data, u64 *val)
1657 {
1658 	struct drm_device *dev = data;
1659 	struct drm_i915_private *dev_priv = dev->dev_private;
1660 
1661 	if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1662 		return -ENODEV;
1663 
1664 	*val = dev_priv->fbc.false_color;
1665 
1666 	return 0;
1667 }
1668 
1669 static int i915_fbc_fc_set(void *data, u64 val)
1670 {
1671 	struct drm_device *dev = data;
1672 	struct drm_i915_private *dev_priv = dev->dev_private;
1673 	u32 reg;
1674 
1675 	if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1676 		return -ENODEV;
1677 
1678 	mutex_lock(&dev_priv->fbc.lock);
1679 
1680 	reg = I915_READ(ILK_DPFC_CONTROL);
1681 	dev_priv->fbc.false_color = val;
1682 
1683 	I915_WRITE(ILK_DPFC_CONTROL, val ?
1684 		   (reg | FBC_CTL_FALSE_COLOR) :
1685 		   (reg & ~FBC_CTL_FALSE_COLOR));
1686 
1687 	mutex_unlock(&dev_priv->fbc.lock);
1688 	return 0;
1689 }
1690 
1691 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1692 			i915_fbc_fc_get, i915_fbc_fc_set,
1693 			"%llu\n");
1694 
1695 static int i915_ips_status(struct seq_file *m, void *unused)
1696 {
1697 	struct drm_info_node *node = m->private;
1698 	struct drm_device *dev = node->minor->dev;
1699 	struct drm_i915_private *dev_priv = dev->dev_private;
1700 
1701 	if (!HAS_IPS(dev)) {
1702 		seq_puts(m, "not supported\n");
1703 		return 0;
1704 	}
1705 
1706 	intel_runtime_pm_get(dev_priv);
1707 
1708 	seq_printf(m, "Enabled by kernel parameter: %s\n",
1709 		   yesno(i915.enable_ips));
1710 
1711 	if (INTEL_INFO(dev)->gen >= 8) {
1712 		seq_puts(m, "Currently: unknown\n");
1713 	} else {
1714 		if (I915_READ(IPS_CTL) & IPS_ENABLE)
1715 			seq_puts(m, "Currently: enabled\n");
1716 		else
1717 			seq_puts(m, "Currently: disabled\n");
1718 	}
1719 
1720 	intel_runtime_pm_put(dev_priv);
1721 
1722 	return 0;
1723 }
1724 
1725 static int i915_sr_status(struct seq_file *m, void *unused)
1726 {
1727 	struct drm_info_node *node = m->private;
1728 	struct drm_device *dev = node->minor->dev;
1729 	struct drm_i915_private *dev_priv = dev->dev_private;
1730 	bool sr_enabled = false;
1731 
1732 	intel_runtime_pm_get(dev_priv);
1733 
1734 	if (HAS_PCH_SPLIT(dev))
1735 		sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1736 	else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
1737 		 IS_I945G(dev) || IS_I945GM(dev))
1738 		sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1739 	else if (IS_I915GM(dev))
1740 		sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1741 	else if (IS_PINEVIEW(dev))
1742 		sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1743 	else if (IS_VALLEYVIEW(dev))
1744 		sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1745 
1746 	intel_runtime_pm_put(dev_priv);
1747 
1748 	seq_printf(m, "self-refresh: %s\n",
1749 		   sr_enabled ? "enabled" : "disabled");
1750 
1751 	return 0;
1752 }
1753 
1754 static int i915_emon_status(struct seq_file *m, void *unused)
1755 {
1756 	struct drm_info_node *node = m->private;
1757 	struct drm_device *dev = node->minor->dev;
1758 	struct drm_i915_private *dev_priv = dev->dev_private;
1759 	unsigned long temp, chipset, gfx;
1760 	int ret;
1761 
1762 	if (!IS_GEN5(dev))
1763 		return -ENODEV;
1764 
1765 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1766 	if (ret)
1767 		return ret;
1768 
1769 	temp = i915_mch_val(dev_priv);
1770 	chipset = i915_chipset_val(dev_priv);
1771 	gfx = i915_gfx_val(dev_priv);
1772 	mutex_unlock(&dev->struct_mutex);
1773 
1774 	seq_printf(m, "GMCH temp: %ld\n", temp);
1775 	seq_printf(m, "Chipset power: %ld\n", chipset);
1776 	seq_printf(m, "GFX power: %ld\n", gfx);
1777 	seq_printf(m, "Total power: %ld\n", chipset + gfx);
1778 
1779 	return 0;
1780 }
1781 
1782 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1783 {
1784 	struct drm_info_node *node = m->private;
1785 	struct drm_device *dev = node->minor->dev;
1786 	struct drm_i915_private *dev_priv = dev->dev_private;
1787 	int ret = 0;
1788 	int gpu_freq, ia_freq;
1789 	unsigned int max_gpu_freq, min_gpu_freq;
1790 
1791 	if (!HAS_CORE_RING_FREQ(dev)) {
1792 		seq_puts(m, "unsupported on this chipset\n");
1793 		return 0;
1794 	}
1795 
1796 	intel_runtime_pm_get(dev_priv);
1797 
1798 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1799 
1800 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1801 	if (ret)
1802 		goto out;
1803 
1804 	if (IS_SKYLAKE(dev)) {
1805 		/* Convert GT frequency to 50 HZ units */
1806 		min_gpu_freq =
1807 			dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1808 		max_gpu_freq =
1809 			dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1810 	} else {
1811 		min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1812 		max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1813 	}
1814 
1815 	seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1816 
1817 	for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1818 		ia_freq = gpu_freq;
1819 		sandybridge_pcode_read(dev_priv,
1820 				       GEN6_PCODE_READ_MIN_FREQ_TABLE,
1821 				       &ia_freq);
1822 		seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1823 			   intel_gpu_freq(dev_priv, (gpu_freq *
1824 				(IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1))),
1825 			   ((ia_freq >> 0) & 0xff) * 100,
1826 			   ((ia_freq >> 8) & 0xff) * 100);
1827 	}
1828 
1829 	mutex_unlock(&dev_priv->rps.hw_lock);
1830 
1831 out:
1832 	intel_runtime_pm_put(dev_priv);
1833 	return ret;
1834 }
1835 
1836 static int i915_opregion(struct seq_file *m, void *unused)
1837 {
1838 	struct drm_info_node *node = m->private;
1839 	struct drm_device *dev = node->minor->dev;
1840 	struct drm_i915_private *dev_priv = dev->dev_private;
1841 	struct intel_opregion *opregion = &dev_priv->opregion;
1842 	void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1843 	int ret;
1844 
1845 	if (data == NULL)
1846 		return -ENOMEM;
1847 
1848 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1849 	if (ret)
1850 		goto out;
1851 
1852 	if (opregion->header) {
1853 		memcpy(data, opregion->header, OPREGION_SIZE);
1854 		seq_write(m, data, OPREGION_SIZE);
1855 	}
1856 
1857 	mutex_unlock(&dev->struct_mutex);
1858 
1859 out:
1860 	kfree(data);
1861 	return 0;
1862 }
1863 
1864 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1865 {
1866 	struct drm_info_node *node = m->private;
1867 	struct drm_device *dev = node->minor->dev;
1868 	struct intel_fbdev *ifbdev = NULL;
1869 	struct intel_framebuffer *fb;
1870 	struct drm_framebuffer *drm_fb;
1871 
1872 #ifdef CONFIG_DRM_FBDEV_EMULATION
1873 	struct drm_i915_private *dev_priv = dev->dev_private;
1874 
1875 	ifbdev = dev_priv->fbdev;
1876 	fb = to_intel_framebuffer(ifbdev->helper.fb);
1877 
1878 	seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1879 		   fb->base.width,
1880 		   fb->base.height,
1881 		   fb->base.depth,
1882 		   fb->base.bits_per_pixel,
1883 		   fb->base.modifier[0],
1884 		   atomic_read(&fb->base.refcount.refcount));
1885 	describe_obj(m, fb->obj);
1886 	seq_putc(m, '\n');
1887 #endif
1888 
1889 	mutex_lock(&dev->mode_config.fb_lock);
1890 	drm_for_each_fb(drm_fb, dev) {
1891 		fb = to_intel_framebuffer(drm_fb);
1892 		if (ifbdev && &fb->base == ifbdev->helper.fb)
1893 			continue;
1894 
1895 		seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1896 			   fb->base.width,
1897 			   fb->base.height,
1898 			   fb->base.depth,
1899 			   fb->base.bits_per_pixel,
1900 			   fb->base.modifier[0],
1901 			   atomic_read(&fb->base.refcount.refcount));
1902 		describe_obj(m, fb->obj);
1903 		seq_putc(m, '\n');
1904 	}
1905 	mutex_unlock(&dev->mode_config.fb_lock);
1906 
1907 	return 0;
1908 }
1909 
1910 static void describe_ctx_ringbuf(struct seq_file *m,
1911 				 struct intel_ringbuffer *ringbuf)
1912 {
1913 	seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1914 		   ringbuf->space, ringbuf->head, ringbuf->tail,
1915 		   ringbuf->last_retired_head);
1916 }
1917 
1918 static int i915_context_status(struct seq_file *m, void *unused)
1919 {
1920 	struct drm_info_node *node = m->private;
1921 	struct drm_device *dev = node->minor->dev;
1922 	struct drm_i915_private *dev_priv = dev->dev_private;
1923 	struct intel_engine_cs *ring;
1924 	struct intel_context *ctx;
1925 	int ret, i;
1926 
1927 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1928 	if (ret)
1929 		return ret;
1930 
1931 	list_for_each_entry(ctx, &dev_priv->context_list, link) {
1932 		if (!i915.enable_execlists &&
1933 		    ctx->legacy_hw_ctx.rcs_state == NULL)
1934 			continue;
1935 
1936 		seq_puts(m, "HW context ");
1937 		describe_ctx(m, ctx);
1938 		for_each_ring(ring, dev_priv, i) {
1939 			if (ring->default_context == ctx)
1940 				seq_printf(m, "(default context %s) ",
1941 					   ring->name);
1942 		}
1943 
1944 		if (i915.enable_execlists) {
1945 			seq_putc(m, '\n');
1946 			for_each_ring(ring, dev_priv, i) {
1947 				struct drm_i915_gem_object *ctx_obj =
1948 					ctx->engine[i].state;
1949 				struct intel_ringbuffer *ringbuf =
1950 					ctx->engine[i].ringbuf;
1951 
1952 				seq_printf(m, "%s: ", ring->name);
1953 				if (ctx_obj)
1954 					describe_obj(m, ctx_obj);
1955 				if (ringbuf)
1956 					describe_ctx_ringbuf(m, ringbuf);
1957 				seq_putc(m, '\n');
1958 			}
1959 		} else {
1960 			describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1961 		}
1962 
1963 		seq_putc(m, '\n');
1964 	}
1965 
1966 	mutex_unlock(&dev->struct_mutex);
1967 
1968 	return 0;
1969 }
1970 
1971 static void i915_dump_lrc_obj(struct seq_file *m,
1972 			      struct intel_engine_cs *ring,
1973 			      struct drm_i915_gem_object *ctx_obj)
1974 {
1975 	struct page *page;
1976 	uint32_t *reg_state;
1977 	int j;
1978 	unsigned long ggtt_offset = 0;
1979 
1980 	if (ctx_obj == NULL) {
1981 		seq_printf(m, "Context on %s with no gem object\n",
1982 			   ring->name);
1983 		return;
1984 	}
1985 
1986 	seq_printf(m, "CONTEXT: %s %u\n", ring->name,
1987 		   intel_execlists_ctx_id(ctx_obj));
1988 
1989 	if (!i915_gem_obj_ggtt_bound(ctx_obj))
1990 		seq_puts(m, "\tNot bound in GGTT\n");
1991 	else
1992 		ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
1993 
1994 	if (i915_gem_object_get_pages(ctx_obj)) {
1995 		seq_puts(m, "\tFailed to get pages for context object\n");
1996 		return;
1997 	}
1998 
1999 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2000 	if (!WARN_ON(page == NULL)) {
2001 		reg_state = kmap_atomic(page);
2002 
2003 		for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2004 			seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2005 				   ggtt_offset + 4096 + (j * 4),
2006 				   reg_state[j], reg_state[j + 1],
2007 				   reg_state[j + 2], reg_state[j + 3]);
2008 		}
2009 		kunmap_atomic(reg_state);
2010 	}
2011 
2012 	seq_putc(m, '\n');
2013 }
2014 
2015 static int i915_dump_lrc(struct seq_file *m, void *unused)
2016 {
2017 	struct drm_info_node *node = (struct drm_info_node *) m->private;
2018 	struct drm_device *dev = node->minor->dev;
2019 	struct drm_i915_private *dev_priv = dev->dev_private;
2020 	struct intel_engine_cs *ring;
2021 	struct intel_context *ctx;
2022 	int ret, i;
2023 
2024 	if (!i915.enable_execlists) {
2025 		seq_printf(m, "Logical Ring Contexts are disabled\n");
2026 		return 0;
2027 	}
2028 
2029 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2030 	if (ret)
2031 		return ret;
2032 
2033 	list_for_each_entry(ctx, &dev_priv->context_list, link) {
2034 		for_each_ring(ring, dev_priv, i) {
2035 			if (ring->default_context != ctx)
2036 				i915_dump_lrc_obj(m, ring,
2037 						  ctx->engine[i].state);
2038 		}
2039 	}
2040 
2041 	mutex_unlock(&dev->struct_mutex);
2042 
2043 	return 0;
2044 }
2045 
2046 static int i915_execlists(struct seq_file *m, void *data)
2047 {
2048 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2049 	struct drm_device *dev = node->minor->dev;
2050 	struct drm_i915_private *dev_priv = dev->dev_private;
2051 	struct intel_engine_cs *ring;
2052 	u32 status_pointer;
2053 	u8 read_pointer;
2054 	u8 write_pointer;
2055 	u32 status;
2056 	u32 ctx_id;
2057 	struct list_head *cursor;
2058 	int ring_id, i;
2059 	int ret;
2060 
2061 	if (!i915.enable_execlists) {
2062 		seq_puts(m, "Logical Ring Contexts are disabled\n");
2063 		return 0;
2064 	}
2065 
2066 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2067 	if (ret)
2068 		return ret;
2069 
2070 	intel_runtime_pm_get(dev_priv);
2071 
2072 	for_each_ring(ring, dev_priv, ring_id) {
2073 		struct drm_i915_gem_request *head_req = NULL;
2074 		int count = 0;
2075 		unsigned long flags;
2076 
2077 		seq_printf(m, "%s\n", ring->name);
2078 
2079 		status = I915_READ(RING_EXECLIST_STATUS_LO(ring));
2080 		ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(ring));
2081 		seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2082 			   status, ctx_id);
2083 
2084 		status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
2085 		seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2086 
2087 		read_pointer = ring->next_context_status_buffer;
2088 		write_pointer = status_pointer & 0x07;
2089 		if (read_pointer > write_pointer)
2090 			write_pointer += 6;
2091 		seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2092 			   read_pointer, write_pointer);
2093 
2094 		for (i = 0; i < 6; i++) {
2095 			status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, i));
2096 			ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, i));
2097 
2098 			seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2099 				   i, status, ctx_id);
2100 		}
2101 
2102 		spin_lock_irqsave(&ring->execlist_lock, flags);
2103 		list_for_each(cursor, &ring->execlist_queue)
2104 			count++;
2105 		head_req = list_first_entry_or_null(&ring->execlist_queue,
2106 				struct drm_i915_gem_request, execlist_link);
2107 		spin_unlock_irqrestore(&ring->execlist_lock, flags);
2108 
2109 		seq_printf(m, "\t%d requests in queue\n", count);
2110 		if (head_req) {
2111 			struct drm_i915_gem_object *ctx_obj;
2112 
2113 			ctx_obj = head_req->ctx->engine[ring_id].state;
2114 			seq_printf(m, "\tHead request id: %u\n",
2115 				   intel_execlists_ctx_id(ctx_obj));
2116 			seq_printf(m, "\tHead request tail: %u\n",
2117 				   head_req->tail);
2118 		}
2119 
2120 		seq_putc(m, '\n');
2121 	}
2122 
2123 	intel_runtime_pm_put(dev_priv);
2124 	mutex_unlock(&dev->struct_mutex);
2125 
2126 	return 0;
2127 }
2128 
2129 static const char *swizzle_string(unsigned swizzle)
2130 {
2131 	switch (swizzle) {
2132 	case I915_BIT_6_SWIZZLE_NONE:
2133 		return "none";
2134 	case I915_BIT_6_SWIZZLE_9:
2135 		return "bit9";
2136 	case I915_BIT_6_SWIZZLE_9_10:
2137 		return "bit9/bit10";
2138 	case I915_BIT_6_SWIZZLE_9_11:
2139 		return "bit9/bit11";
2140 	case I915_BIT_6_SWIZZLE_9_10_11:
2141 		return "bit9/bit10/bit11";
2142 	case I915_BIT_6_SWIZZLE_9_17:
2143 		return "bit9/bit17";
2144 	case I915_BIT_6_SWIZZLE_9_10_17:
2145 		return "bit9/bit10/bit17";
2146 	case I915_BIT_6_SWIZZLE_UNKNOWN:
2147 		return "unknown";
2148 	}
2149 
2150 	return "bug";
2151 }
2152 
2153 static int i915_swizzle_info(struct seq_file *m, void *data)
2154 {
2155 	struct drm_info_node *node = m->private;
2156 	struct drm_device *dev = node->minor->dev;
2157 	struct drm_i915_private *dev_priv = dev->dev_private;
2158 	int ret;
2159 
2160 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2161 	if (ret)
2162 		return ret;
2163 	intel_runtime_pm_get(dev_priv);
2164 
2165 	seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2166 		   swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2167 	seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2168 		   swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2169 
2170 	if (IS_GEN3(dev) || IS_GEN4(dev)) {
2171 		seq_printf(m, "DDC = 0x%08x\n",
2172 			   I915_READ(DCC));
2173 		seq_printf(m, "DDC2 = 0x%08x\n",
2174 			   I915_READ(DCC2));
2175 		seq_printf(m, "C0DRB3 = 0x%04x\n",
2176 			   I915_READ16(C0DRB3));
2177 		seq_printf(m, "C1DRB3 = 0x%04x\n",
2178 			   I915_READ16(C1DRB3));
2179 	} else if (INTEL_INFO(dev)->gen >= 6) {
2180 		seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2181 			   I915_READ(MAD_DIMM_C0));
2182 		seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2183 			   I915_READ(MAD_DIMM_C1));
2184 		seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2185 			   I915_READ(MAD_DIMM_C2));
2186 		seq_printf(m, "TILECTL = 0x%08x\n",
2187 			   I915_READ(TILECTL));
2188 		if (INTEL_INFO(dev)->gen >= 8)
2189 			seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2190 				   I915_READ(GAMTARBMODE));
2191 		else
2192 			seq_printf(m, "ARB_MODE = 0x%08x\n",
2193 				   I915_READ(ARB_MODE));
2194 		seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2195 			   I915_READ(DISP_ARB_CTL));
2196 	}
2197 
2198 	if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2199 		seq_puts(m, "L-shaped memory detected\n");
2200 
2201 	intel_runtime_pm_put(dev_priv);
2202 	mutex_unlock(&dev->struct_mutex);
2203 
2204 	return 0;
2205 }
2206 
2207 static int per_file_ctx(int id, void *ptr, void *data)
2208 {
2209 	struct intel_context *ctx = ptr;
2210 	struct seq_file *m = data;
2211 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2212 
2213 	if (!ppgtt) {
2214 		seq_printf(m, "  no ppgtt for context %d\n",
2215 			   ctx->user_handle);
2216 		return 0;
2217 	}
2218 
2219 	if (i915_gem_context_is_default(ctx))
2220 		seq_puts(m, "  default context:\n");
2221 	else
2222 		seq_printf(m, "  context %d:\n", ctx->user_handle);
2223 	ppgtt->debug_dump(ppgtt, m);
2224 
2225 	return 0;
2226 }
2227 
2228 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2229 {
2230 	struct drm_i915_private *dev_priv = dev->dev_private;
2231 	struct intel_engine_cs *ring;
2232 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2233 	int unused, i;
2234 
2235 	if (!ppgtt)
2236 		return;
2237 
2238 	for_each_ring(ring, dev_priv, unused) {
2239 		seq_printf(m, "%s\n", ring->name);
2240 		for (i = 0; i < 4; i++) {
2241 			u64 pdp = I915_READ(GEN8_RING_PDP_UDW(ring, i));
2242 			pdp <<= 32;
2243 			pdp |= I915_READ(GEN8_RING_PDP_LDW(ring, i));
2244 			seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2245 		}
2246 	}
2247 }
2248 
2249 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2250 {
2251 	struct drm_i915_private *dev_priv = dev->dev_private;
2252 	struct intel_engine_cs *ring;
2253 	int i;
2254 
2255 	if (INTEL_INFO(dev)->gen == 6)
2256 		seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2257 
2258 	for_each_ring(ring, dev_priv, i) {
2259 		seq_printf(m, "%s\n", ring->name);
2260 		if (INTEL_INFO(dev)->gen == 7)
2261 			seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
2262 		seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
2263 		seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
2264 		seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
2265 	}
2266 	if (dev_priv->mm.aliasing_ppgtt) {
2267 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2268 
2269 		seq_puts(m, "aliasing PPGTT:\n");
2270 		seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2271 
2272 		ppgtt->debug_dump(ppgtt, m);
2273 	}
2274 
2275 	seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2276 }
2277 
2278 static int i915_ppgtt_info(struct seq_file *m, void *data)
2279 {
2280 	struct drm_info_node *node = m->private;
2281 	struct drm_device *dev = node->minor->dev;
2282 	struct drm_i915_private *dev_priv = dev->dev_private;
2283 	struct drm_file *file;
2284 
2285 	int ret = mutex_lock_interruptible(&dev->struct_mutex);
2286 	if (ret)
2287 		return ret;
2288 	intel_runtime_pm_get(dev_priv);
2289 
2290 	if (INTEL_INFO(dev)->gen >= 8)
2291 		gen8_ppgtt_info(m, dev);
2292 	else if (INTEL_INFO(dev)->gen >= 6)
2293 		gen6_ppgtt_info(m, dev);
2294 
2295 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2296 		struct drm_i915_file_private *file_priv = file->driver_priv;
2297 		struct task_struct *task;
2298 
2299 		task = get_pid_task(file->pid, PIDTYPE_PID);
2300 		if (!task) {
2301 			ret = -ESRCH;
2302 			goto out_put;
2303 		}
2304 		seq_printf(m, "\nproc: %s\n", task->comm);
2305 		put_task_struct(task);
2306 		idr_for_each(&file_priv->context_idr, per_file_ctx,
2307 			     (void *)(unsigned long)m);
2308 	}
2309 
2310 out_put:
2311 	intel_runtime_pm_put(dev_priv);
2312 	mutex_unlock(&dev->struct_mutex);
2313 
2314 	return ret;
2315 }
2316 
2317 static int count_irq_waiters(struct drm_i915_private *i915)
2318 {
2319 	struct intel_engine_cs *ring;
2320 	int count = 0;
2321 	int i;
2322 
2323 	for_each_ring(ring, i915, i)
2324 		count += ring->irq_refcount;
2325 
2326 	return count;
2327 }
2328 
2329 static int i915_rps_boost_info(struct seq_file *m, void *data)
2330 {
2331 	struct drm_info_node *node = m->private;
2332 	struct drm_device *dev = node->minor->dev;
2333 	struct drm_i915_private *dev_priv = dev->dev_private;
2334 	struct drm_file *file;
2335 
2336 	seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2337 	seq_printf(m, "GPU busy? %d\n", dev_priv->mm.busy);
2338 	seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2339 	seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2340 		   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
2341 		   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2342 		   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2343 		   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2344 		   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2345 	spin_lock(&dev_priv->rps.client_lock);
2346 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2347 		struct drm_i915_file_private *file_priv = file->driver_priv;
2348 		struct task_struct *task;
2349 
2350 		rcu_read_lock();
2351 		task = pid_task(file->pid, PIDTYPE_PID);
2352 		seq_printf(m, "%s [%d]: %d boosts%s\n",
2353 			   task ? task->comm : "<unknown>",
2354 			   task ? task->pid : -1,
2355 			   file_priv->rps.boosts,
2356 			   list_empty(&file_priv->rps.link) ? "" : ", active");
2357 		rcu_read_unlock();
2358 	}
2359 	seq_printf(m, "Semaphore boosts: %d%s\n",
2360 		   dev_priv->rps.semaphores.boosts,
2361 		   list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active");
2362 	seq_printf(m, "MMIO flip boosts: %d%s\n",
2363 		   dev_priv->rps.mmioflips.boosts,
2364 		   list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active");
2365 	seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts);
2366 	spin_unlock(&dev_priv->rps.client_lock);
2367 
2368 	return 0;
2369 }
2370 
2371 static int i915_llc(struct seq_file *m, void *data)
2372 {
2373 	struct drm_info_node *node = m->private;
2374 	struct drm_device *dev = node->minor->dev;
2375 	struct drm_i915_private *dev_priv = dev->dev_private;
2376 
2377 	/* Size calculation for LLC is a bit of a pain. Ignore for now. */
2378 	seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2379 	seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2380 
2381 	return 0;
2382 }
2383 
2384 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2385 {
2386 	struct drm_info_node *node = m->private;
2387 	struct drm_i915_private *dev_priv = node->minor->dev->dev_private;
2388 	struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
2389 	u32 tmp, i;
2390 
2391 	if (!HAS_GUC_UCODE(dev_priv->dev))
2392 		return 0;
2393 
2394 	seq_printf(m, "GuC firmware status:\n");
2395 	seq_printf(m, "\tpath: %s\n",
2396 		guc_fw->guc_fw_path);
2397 	seq_printf(m, "\tfetch: %s\n",
2398 		intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
2399 	seq_printf(m, "\tload: %s\n",
2400 		intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
2401 	seq_printf(m, "\tversion wanted: %d.%d\n",
2402 		guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
2403 	seq_printf(m, "\tversion found: %d.%d\n",
2404 		guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
2405 
2406 	tmp = I915_READ(GUC_STATUS);
2407 
2408 	seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2409 	seq_printf(m, "\tBootrom status = 0x%x\n",
2410 		(tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2411 	seq_printf(m, "\tuKernel status = 0x%x\n",
2412 		(tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2413 	seq_printf(m, "\tMIA Core status = 0x%x\n",
2414 		(tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2415 	seq_puts(m, "\nScratch registers:\n");
2416 	for (i = 0; i < 16; i++)
2417 		seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2418 
2419 	return 0;
2420 }
2421 
2422 static void i915_guc_client_info(struct seq_file *m,
2423 				 struct drm_i915_private *dev_priv,
2424 				 struct i915_guc_client *client)
2425 {
2426 	struct intel_engine_cs *ring;
2427 	uint64_t tot = 0;
2428 	uint32_t i;
2429 
2430 	seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2431 		client->priority, client->ctx_index, client->proc_desc_offset);
2432 	seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2433 		client->doorbell_id, client->doorbell_offset, client->cookie);
2434 	seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2435 		client->wq_size, client->wq_offset, client->wq_tail);
2436 
2437 	seq_printf(m, "\tFailed to queue: %u\n", client->q_fail);
2438 	seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2439 	seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2440 
2441 	for_each_ring(ring, dev_priv, i) {
2442 		seq_printf(m, "\tSubmissions: %llu %s\n",
2443 				client->submissions[i],
2444 				ring->name);
2445 		tot += client->submissions[i];
2446 	}
2447 	seq_printf(m, "\tTotal: %llu\n", tot);
2448 }
2449 
2450 static int i915_guc_info(struct seq_file *m, void *data)
2451 {
2452 	struct drm_info_node *node = m->private;
2453 	struct drm_device *dev = node->minor->dev;
2454 	struct drm_i915_private *dev_priv = dev->dev_private;
2455 	struct intel_guc guc;
2456 	struct i915_guc_client client = {};
2457 	struct intel_engine_cs *ring;
2458 	enum intel_ring_id i;
2459 	u64 total = 0;
2460 
2461 	if (!HAS_GUC_SCHED(dev_priv->dev))
2462 		return 0;
2463 
2464 	/* Take a local copy of the GuC data, so we can dump it at leisure */
2465 	spin_lock(&dev_priv->guc.host2guc_lock);
2466 	guc = dev_priv->guc;
2467 	if (guc.execbuf_client) {
2468 		spin_lock(&guc.execbuf_client->wq_lock);
2469 		client = *guc.execbuf_client;
2470 		spin_unlock(&guc.execbuf_client->wq_lock);
2471 	}
2472 	spin_unlock(&dev_priv->guc.host2guc_lock);
2473 
2474 	seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
2475 	seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
2476 	seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
2477 	seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
2478 	seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
2479 
2480 	seq_printf(m, "\nGuC submissions:\n");
2481 	for_each_ring(ring, dev_priv, i) {
2482 		seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x %9d\n",
2483 			ring->name, guc.submissions[i],
2484 			guc.last_seqno[i], guc.last_seqno[i]);
2485 		total += guc.submissions[i];
2486 	}
2487 	seq_printf(m, "\t%s: %llu\n", "Total", total);
2488 
2489 	seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
2490 	i915_guc_client_info(m, dev_priv, &client);
2491 
2492 	/* Add more as required ... */
2493 
2494 	return 0;
2495 }
2496 
2497 static int i915_guc_log_dump(struct seq_file *m, void *data)
2498 {
2499 	struct drm_info_node *node = m->private;
2500 	struct drm_device *dev = node->minor->dev;
2501 	struct drm_i915_private *dev_priv = dev->dev_private;
2502 	struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj;
2503 	u32 *log;
2504 	int i = 0, pg;
2505 
2506 	if (!log_obj)
2507 		return 0;
2508 
2509 	for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) {
2510 		log = kmap_atomic(i915_gem_object_get_page(log_obj, pg));
2511 
2512 		for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2513 			seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2514 				   *(log + i), *(log + i + 1),
2515 				   *(log + i + 2), *(log + i + 3));
2516 
2517 		kunmap_atomic(log);
2518 	}
2519 
2520 	seq_putc(m, '\n');
2521 
2522 	return 0;
2523 }
2524 
2525 static int i915_edp_psr_status(struct seq_file *m, void *data)
2526 {
2527 	struct drm_info_node *node = m->private;
2528 	struct drm_device *dev = node->minor->dev;
2529 	struct drm_i915_private *dev_priv = dev->dev_private;
2530 	u32 psrperf = 0;
2531 	u32 stat[3];
2532 	enum pipe pipe;
2533 	bool enabled = false;
2534 
2535 	if (!HAS_PSR(dev)) {
2536 		seq_puts(m, "PSR not supported\n");
2537 		return 0;
2538 	}
2539 
2540 	intel_runtime_pm_get(dev_priv);
2541 
2542 	mutex_lock(&dev_priv->psr.lock);
2543 	seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2544 	seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2545 	seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2546 	seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2547 	seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2548 		   dev_priv->psr.busy_frontbuffer_bits);
2549 	seq_printf(m, "Re-enable work scheduled: %s\n",
2550 		   yesno(work_busy(&dev_priv->psr.work.work)));
2551 
2552 	if (HAS_DDI(dev))
2553 		enabled = I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
2554 	else {
2555 		for_each_pipe(dev_priv, pipe) {
2556 			stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2557 				VLV_EDP_PSR_CURR_STATE_MASK;
2558 			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2559 			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2560 				enabled = true;
2561 		}
2562 	}
2563 	seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2564 
2565 	if (!HAS_DDI(dev))
2566 		for_each_pipe(dev_priv, pipe) {
2567 			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2568 			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2569 				seq_printf(m, " pipe %c", pipe_name(pipe));
2570 		}
2571 	seq_puts(m, "\n");
2572 
2573 	/* CHV PSR has no kind of performance counter */
2574 	if (HAS_DDI(dev)) {
2575 		psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
2576 			EDP_PSR_PERF_CNT_MASK;
2577 
2578 		seq_printf(m, "Performance_Counter: %u\n", psrperf);
2579 	}
2580 	mutex_unlock(&dev_priv->psr.lock);
2581 
2582 	intel_runtime_pm_put(dev_priv);
2583 	return 0;
2584 }
2585 
2586 static int i915_sink_crc(struct seq_file *m, void *data)
2587 {
2588 	struct drm_info_node *node = m->private;
2589 	struct drm_device *dev = node->minor->dev;
2590 	struct intel_encoder *encoder;
2591 	struct intel_connector *connector;
2592 	struct intel_dp *intel_dp = NULL;
2593 	int ret;
2594 	u8 crc[6];
2595 
2596 	drm_modeset_lock_all(dev);
2597 	for_each_intel_connector(dev, connector) {
2598 
2599 		if (connector->base.dpms != DRM_MODE_DPMS_ON)
2600 			continue;
2601 
2602 		if (!connector->base.encoder)
2603 			continue;
2604 
2605 		encoder = to_intel_encoder(connector->base.encoder);
2606 		if (encoder->type != INTEL_OUTPUT_EDP)
2607 			continue;
2608 
2609 		intel_dp = enc_to_intel_dp(&encoder->base);
2610 
2611 		ret = intel_dp_sink_crc(intel_dp, crc);
2612 		if (ret)
2613 			goto out;
2614 
2615 		seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2616 			   crc[0], crc[1], crc[2],
2617 			   crc[3], crc[4], crc[5]);
2618 		goto out;
2619 	}
2620 	ret = -ENODEV;
2621 out:
2622 	drm_modeset_unlock_all(dev);
2623 	return ret;
2624 }
2625 
2626 static int i915_energy_uJ(struct seq_file *m, void *data)
2627 {
2628 	struct drm_info_node *node = m->private;
2629 	struct drm_device *dev = node->minor->dev;
2630 	struct drm_i915_private *dev_priv = dev->dev_private;
2631 	u64 power;
2632 	u32 units;
2633 
2634 	if (INTEL_INFO(dev)->gen < 6)
2635 		return -ENODEV;
2636 
2637 	intel_runtime_pm_get(dev_priv);
2638 
2639 	rdmsrl(MSR_RAPL_POWER_UNIT, power);
2640 	power = (power & 0x1f00) >> 8;
2641 	units = 1000000 / (1 << power); /* convert to uJ */
2642 	power = I915_READ(MCH_SECP_NRG_STTS);
2643 	power *= units;
2644 
2645 	intel_runtime_pm_put(dev_priv);
2646 
2647 	seq_printf(m, "%llu", (long long unsigned)power);
2648 
2649 	return 0;
2650 }
2651 
2652 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2653 {
2654 	struct drm_info_node *node = m->private;
2655 	struct drm_device *dev = node->minor->dev;
2656 	struct drm_i915_private *dev_priv = dev->dev_private;
2657 
2658 	if (!HAS_RUNTIME_PM(dev)) {
2659 		seq_puts(m, "not supported\n");
2660 		return 0;
2661 	}
2662 
2663 	seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2664 	seq_printf(m, "IRQs disabled: %s\n",
2665 		   yesno(!intel_irqs_enabled(dev_priv)));
2666 #ifdef CONFIG_PM
2667 	seq_printf(m, "Usage count: %d\n",
2668 		   atomic_read(&dev->dev->power.usage_count));
2669 #else
2670 	seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2671 #endif
2672 
2673 	return 0;
2674 }
2675 
2676 static const char *power_domain_str(enum intel_display_power_domain domain)
2677 {
2678 	switch (domain) {
2679 	case POWER_DOMAIN_PIPE_A:
2680 		return "PIPE_A";
2681 	case POWER_DOMAIN_PIPE_B:
2682 		return "PIPE_B";
2683 	case POWER_DOMAIN_PIPE_C:
2684 		return "PIPE_C";
2685 	case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
2686 		return "PIPE_A_PANEL_FITTER";
2687 	case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
2688 		return "PIPE_B_PANEL_FITTER";
2689 	case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
2690 		return "PIPE_C_PANEL_FITTER";
2691 	case POWER_DOMAIN_TRANSCODER_A:
2692 		return "TRANSCODER_A";
2693 	case POWER_DOMAIN_TRANSCODER_B:
2694 		return "TRANSCODER_B";
2695 	case POWER_DOMAIN_TRANSCODER_C:
2696 		return "TRANSCODER_C";
2697 	case POWER_DOMAIN_TRANSCODER_EDP:
2698 		return "TRANSCODER_EDP";
2699 	case POWER_DOMAIN_PORT_DDI_A_2_LANES:
2700 		return "PORT_DDI_A_2_LANES";
2701 	case POWER_DOMAIN_PORT_DDI_A_4_LANES:
2702 		return "PORT_DDI_A_4_LANES";
2703 	case POWER_DOMAIN_PORT_DDI_B_2_LANES:
2704 		return "PORT_DDI_B_2_LANES";
2705 	case POWER_DOMAIN_PORT_DDI_B_4_LANES:
2706 		return "PORT_DDI_B_4_LANES";
2707 	case POWER_DOMAIN_PORT_DDI_C_2_LANES:
2708 		return "PORT_DDI_C_2_LANES";
2709 	case POWER_DOMAIN_PORT_DDI_C_4_LANES:
2710 		return "PORT_DDI_C_4_LANES";
2711 	case POWER_DOMAIN_PORT_DDI_D_2_LANES:
2712 		return "PORT_DDI_D_2_LANES";
2713 	case POWER_DOMAIN_PORT_DDI_D_4_LANES:
2714 		return "PORT_DDI_D_4_LANES";
2715 	case POWER_DOMAIN_PORT_DDI_E_2_LANES:
2716 		return "PORT_DDI_E_2_LANES";
2717 	case POWER_DOMAIN_PORT_DSI:
2718 		return "PORT_DSI";
2719 	case POWER_DOMAIN_PORT_CRT:
2720 		return "PORT_CRT";
2721 	case POWER_DOMAIN_PORT_OTHER:
2722 		return "PORT_OTHER";
2723 	case POWER_DOMAIN_VGA:
2724 		return "VGA";
2725 	case POWER_DOMAIN_AUDIO:
2726 		return "AUDIO";
2727 	case POWER_DOMAIN_PLLS:
2728 		return "PLLS";
2729 	case POWER_DOMAIN_AUX_A:
2730 		return "AUX_A";
2731 	case POWER_DOMAIN_AUX_B:
2732 		return "AUX_B";
2733 	case POWER_DOMAIN_AUX_C:
2734 		return "AUX_C";
2735 	case POWER_DOMAIN_AUX_D:
2736 		return "AUX_D";
2737 	case POWER_DOMAIN_INIT:
2738 		return "INIT";
2739 	default:
2740 		MISSING_CASE(domain);
2741 		return "?";
2742 	}
2743 }
2744 
2745 static int i915_power_domain_info(struct seq_file *m, void *unused)
2746 {
2747 	struct drm_info_node *node = m->private;
2748 	struct drm_device *dev = node->minor->dev;
2749 	struct drm_i915_private *dev_priv = dev->dev_private;
2750 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2751 	int i;
2752 
2753 	mutex_lock(&power_domains->lock);
2754 
2755 	seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2756 	for (i = 0; i < power_domains->power_well_count; i++) {
2757 		struct i915_power_well *power_well;
2758 		enum intel_display_power_domain power_domain;
2759 
2760 		power_well = &power_domains->power_wells[i];
2761 		seq_printf(m, "%-25s %d\n", power_well->name,
2762 			   power_well->count);
2763 
2764 		for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2765 		     power_domain++) {
2766 			if (!(BIT(power_domain) & power_well->domains))
2767 				continue;
2768 
2769 			seq_printf(m, "  %-23s %d\n",
2770 				 power_domain_str(power_domain),
2771 				 power_domains->domain_use_count[power_domain]);
2772 		}
2773 	}
2774 
2775 	mutex_unlock(&power_domains->lock);
2776 
2777 	return 0;
2778 }
2779 
2780 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2781 				 struct drm_display_mode *mode)
2782 {
2783 	int i;
2784 
2785 	for (i = 0; i < tabs; i++)
2786 		seq_putc(m, '\t');
2787 
2788 	seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2789 		   mode->base.id, mode->name,
2790 		   mode->vrefresh, mode->clock,
2791 		   mode->hdisplay, mode->hsync_start,
2792 		   mode->hsync_end, mode->htotal,
2793 		   mode->vdisplay, mode->vsync_start,
2794 		   mode->vsync_end, mode->vtotal,
2795 		   mode->type, mode->flags);
2796 }
2797 
2798 static void intel_encoder_info(struct seq_file *m,
2799 			       struct intel_crtc *intel_crtc,
2800 			       struct intel_encoder *intel_encoder)
2801 {
2802 	struct drm_info_node *node = m->private;
2803 	struct drm_device *dev = node->minor->dev;
2804 	struct drm_crtc *crtc = &intel_crtc->base;
2805 	struct intel_connector *intel_connector;
2806 	struct drm_encoder *encoder;
2807 
2808 	encoder = &intel_encoder->base;
2809 	seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2810 		   encoder->base.id, encoder->name);
2811 	for_each_connector_on_encoder(dev, encoder, intel_connector) {
2812 		struct drm_connector *connector = &intel_connector->base;
2813 		seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2814 			   connector->base.id,
2815 			   connector->name,
2816 			   drm_get_connector_status_name(connector->status));
2817 		if (connector->status == connector_status_connected) {
2818 			struct drm_display_mode *mode = &crtc->mode;
2819 			seq_printf(m, ", mode:\n");
2820 			intel_seq_print_mode(m, 2, mode);
2821 		} else {
2822 			seq_putc(m, '\n');
2823 		}
2824 	}
2825 }
2826 
2827 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2828 {
2829 	struct drm_info_node *node = m->private;
2830 	struct drm_device *dev = node->minor->dev;
2831 	struct drm_crtc *crtc = &intel_crtc->base;
2832 	struct intel_encoder *intel_encoder;
2833 	struct drm_plane_state *plane_state = crtc->primary->state;
2834 	struct drm_framebuffer *fb = plane_state->fb;
2835 
2836 	if (fb)
2837 		seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2838 			   fb->base.id, plane_state->src_x >> 16,
2839 			   plane_state->src_y >> 16, fb->width, fb->height);
2840 	else
2841 		seq_puts(m, "\tprimary plane disabled\n");
2842 	for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2843 		intel_encoder_info(m, intel_crtc, intel_encoder);
2844 }
2845 
2846 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2847 {
2848 	struct drm_display_mode *mode = panel->fixed_mode;
2849 
2850 	seq_printf(m, "\tfixed mode:\n");
2851 	intel_seq_print_mode(m, 2, mode);
2852 }
2853 
2854 static void intel_dp_info(struct seq_file *m,
2855 			  struct intel_connector *intel_connector)
2856 {
2857 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2858 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2859 
2860 	seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2861 	seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2862 	if (intel_encoder->type == INTEL_OUTPUT_EDP)
2863 		intel_panel_info(m, &intel_connector->panel);
2864 }
2865 
2866 static void intel_hdmi_info(struct seq_file *m,
2867 			    struct intel_connector *intel_connector)
2868 {
2869 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2870 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2871 
2872 	seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2873 }
2874 
2875 static void intel_lvds_info(struct seq_file *m,
2876 			    struct intel_connector *intel_connector)
2877 {
2878 	intel_panel_info(m, &intel_connector->panel);
2879 }
2880 
2881 static void intel_connector_info(struct seq_file *m,
2882 				 struct drm_connector *connector)
2883 {
2884 	struct intel_connector *intel_connector = to_intel_connector(connector);
2885 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2886 	struct drm_display_mode *mode;
2887 
2888 	seq_printf(m, "connector %d: type %s, status: %s\n",
2889 		   connector->base.id, connector->name,
2890 		   drm_get_connector_status_name(connector->status));
2891 	if (connector->status == connector_status_connected) {
2892 		seq_printf(m, "\tname: %s\n", connector->display_info.name);
2893 		seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2894 			   connector->display_info.width_mm,
2895 			   connector->display_info.height_mm);
2896 		seq_printf(m, "\tsubpixel order: %s\n",
2897 			   drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2898 		seq_printf(m, "\tCEA rev: %d\n",
2899 			   connector->display_info.cea_rev);
2900 	}
2901 	if (intel_encoder) {
2902 		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2903 		    intel_encoder->type == INTEL_OUTPUT_EDP)
2904 			intel_dp_info(m, intel_connector);
2905 		else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2906 			intel_hdmi_info(m, intel_connector);
2907 		else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2908 			intel_lvds_info(m, intel_connector);
2909 	}
2910 
2911 	seq_printf(m, "\tmodes:\n");
2912 	list_for_each_entry(mode, &connector->modes, head)
2913 		intel_seq_print_mode(m, 2, mode);
2914 }
2915 
2916 static bool cursor_active(struct drm_device *dev, int pipe)
2917 {
2918 	struct drm_i915_private *dev_priv = dev->dev_private;
2919 	u32 state;
2920 
2921 	if (IS_845G(dev) || IS_I865G(dev))
2922 		state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
2923 	else
2924 		state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2925 
2926 	return state;
2927 }
2928 
2929 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2930 {
2931 	struct drm_i915_private *dev_priv = dev->dev_private;
2932 	u32 pos;
2933 
2934 	pos = I915_READ(CURPOS(pipe));
2935 
2936 	*x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2937 	if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2938 		*x = -*x;
2939 
2940 	*y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2941 	if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2942 		*y = -*y;
2943 
2944 	return cursor_active(dev, pipe);
2945 }
2946 
2947 static int i915_display_info(struct seq_file *m, void *unused)
2948 {
2949 	struct drm_info_node *node = m->private;
2950 	struct drm_device *dev = node->minor->dev;
2951 	struct drm_i915_private *dev_priv = dev->dev_private;
2952 	struct intel_crtc *crtc;
2953 	struct drm_connector *connector;
2954 
2955 	intel_runtime_pm_get(dev_priv);
2956 	drm_modeset_lock_all(dev);
2957 	seq_printf(m, "CRTC info\n");
2958 	seq_printf(m, "---------\n");
2959 	for_each_intel_crtc(dev, crtc) {
2960 		bool active;
2961 		struct intel_crtc_state *pipe_config;
2962 		int x, y;
2963 
2964 		pipe_config = to_intel_crtc_state(crtc->base.state);
2965 
2966 		seq_printf(m, "CRTC %d: pipe: %c, active=%s (size=%dx%d)\n",
2967 			   crtc->base.base.id, pipe_name(crtc->pipe),
2968 			   yesno(pipe_config->base.active),
2969 			   pipe_config->pipe_src_w, pipe_config->pipe_src_h);
2970 		if (pipe_config->base.active) {
2971 			intel_crtc_info(m, crtc);
2972 
2973 			active = cursor_position(dev, crtc->pipe, &x, &y);
2974 			seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
2975 				   yesno(crtc->cursor_base),
2976 				   x, y, crtc->base.cursor->state->crtc_w,
2977 				   crtc->base.cursor->state->crtc_h,
2978 				   crtc->cursor_addr, yesno(active));
2979 		}
2980 
2981 		seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
2982 			   yesno(!crtc->cpu_fifo_underrun_disabled),
2983 			   yesno(!crtc->pch_fifo_underrun_disabled));
2984 	}
2985 
2986 	seq_printf(m, "\n");
2987 	seq_printf(m, "Connector info\n");
2988 	seq_printf(m, "--------------\n");
2989 	list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2990 		intel_connector_info(m, connector);
2991 	}
2992 	drm_modeset_unlock_all(dev);
2993 	intel_runtime_pm_put(dev_priv);
2994 
2995 	return 0;
2996 }
2997 
2998 static int i915_semaphore_status(struct seq_file *m, void *unused)
2999 {
3000 	struct drm_info_node *node = (struct drm_info_node *) m->private;
3001 	struct drm_device *dev = node->minor->dev;
3002 	struct drm_i915_private *dev_priv = dev->dev_private;
3003 	struct intel_engine_cs *ring;
3004 	int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
3005 	int i, j, ret;
3006 
3007 	if (!i915_semaphore_is_enabled(dev)) {
3008 		seq_puts(m, "Semaphores are disabled\n");
3009 		return 0;
3010 	}
3011 
3012 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3013 	if (ret)
3014 		return ret;
3015 	intel_runtime_pm_get(dev_priv);
3016 
3017 	if (IS_BROADWELL(dev)) {
3018 		struct page *page;
3019 		uint64_t *seqno;
3020 
3021 		page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
3022 
3023 		seqno = (uint64_t *)kmap_atomic(page);
3024 		for_each_ring(ring, dev_priv, i) {
3025 			uint64_t offset;
3026 
3027 			seq_printf(m, "%s\n", ring->name);
3028 
3029 			seq_puts(m, "  Last signal:");
3030 			for (j = 0; j < num_rings; j++) {
3031 				offset = i * I915_NUM_RINGS + j;
3032 				seq_printf(m, "0x%08llx (0x%02llx) ",
3033 					   seqno[offset], offset * 8);
3034 			}
3035 			seq_putc(m, '\n');
3036 
3037 			seq_puts(m, "  Last wait:  ");
3038 			for (j = 0; j < num_rings; j++) {
3039 				offset = i + (j * I915_NUM_RINGS);
3040 				seq_printf(m, "0x%08llx (0x%02llx) ",
3041 					   seqno[offset], offset * 8);
3042 			}
3043 			seq_putc(m, '\n');
3044 
3045 		}
3046 		kunmap_atomic(seqno);
3047 	} else {
3048 		seq_puts(m, "  Last signal:");
3049 		for_each_ring(ring, dev_priv, i)
3050 			for (j = 0; j < num_rings; j++)
3051 				seq_printf(m, "0x%08x\n",
3052 					   I915_READ(ring->semaphore.mbox.signal[j]));
3053 		seq_putc(m, '\n');
3054 	}
3055 
3056 	seq_puts(m, "\nSync seqno:\n");
3057 	for_each_ring(ring, dev_priv, i) {
3058 		for (j = 0; j < num_rings; j++) {
3059 			seq_printf(m, "  0x%08x ", ring->semaphore.sync_seqno[j]);
3060 		}
3061 		seq_putc(m, '\n');
3062 	}
3063 	seq_putc(m, '\n');
3064 
3065 	intel_runtime_pm_put(dev_priv);
3066 	mutex_unlock(&dev->struct_mutex);
3067 	return 0;
3068 }
3069 
3070 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3071 {
3072 	struct drm_info_node *node = (struct drm_info_node *) m->private;
3073 	struct drm_device *dev = node->minor->dev;
3074 	struct drm_i915_private *dev_priv = dev->dev_private;
3075 	int i;
3076 
3077 	drm_modeset_lock_all(dev);
3078 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3079 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3080 
3081 		seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3082 		seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
3083 			   pll->config.crtc_mask, pll->active, yesno(pll->on));
3084 		seq_printf(m, " tracked hardware state:\n");
3085 		seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
3086 		seq_printf(m, " dpll_md: 0x%08x\n",
3087 			   pll->config.hw_state.dpll_md);
3088 		seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
3089 		seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
3090 		seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
3091 	}
3092 	drm_modeset_unlock_all(dev);
3093 
3094 	return 0;
3095 }
3096 
3097 static int i915_wa_registers(struct seq_file *m, void *unused)
3098 {
3099 	int i;
3100 	int ret;
3101 	struct drm_info_node *node = (struct drm_info_node *) m->private;
3102 	struct drm_device *dev = node->minor->dev;
3103 	struct drm_i915_private *dev_priv = dev->dev_private;
3104 
3105 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3106 	if (ret)
3107 		return ret;
3108 
3109 	intel_runtime_pm_get(dev_priv);
3110 
3111 	seq_printf(m, "Workarounds applied: %d\n", dev_priv->workarounds.count);
3112 	for (i = 0; i < dev_priv->workarounds.count; ++i) {
3113 		u32 addr, mask, value, read;
3114 		bool ok;
3115 
3116 		addr = dev_priv->workarounds.reg[i].addr;
3117 		mask = dev_priv->workarounds.reg[i].mask;
3118 		value = dev_priv->workarounds.reg[i].value;
3119 		read = I915_READ(addr);
3120 		ok = (value & mask) == (read & mask);
3121 		seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3122 			   addr, value, mask, read, ok ? "OK" : "FAIL");
3123 	}
3124 
3125 	intel_runtime_pm_put(dev_priv);
3126 	mutex_unlock(&dev->struct_mutex);
3127 
3128 	return 0;
3129 }
3130 
3131 static int i915_ddb_info(struct seq_file *m, void *unused)
3132 {
3133 	struct drm_info_node *node = m->private;
3134 	struct drm_device *dev = node->minor->dev;
3135 	struct drm_i915_private *dev_priv = dev->dev_private;
3136 	struct skl_ddb_allocation *ddb;
3137 	struct skl_ddb_entry *entry;
3138 	enum pipe pipe;
3139 	int plane;
3140 
3141 	if (INTEL_INFO(dev)->gen < 9)
3142 		return 0;
3143 
3144 	drm_modeset_lock_all(dev);
3145 
3146 	ddb = &dev_priv->wm.skl_hw.ddb;
3147 
3148 	seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3149 
3150 	for_each_pipe(dev_priv, pipe) {
3151 		seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3152 
3153 		for_each_plane(dev_priv, pipe, plane) {
3154 			entry = &ddb->plane[pipe][plane];
3155 			seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3156 				   entry->start, entry->end,
3157 				   skl_ddb_entry_size(entry));
3158 		}
3159 
3160 		entry = &ddb->plane[pipe][PLANE_CURSOR];
3161 		seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3162 			   entry->end, skl_ddb_entry_size(entry));
3163 	}
3164 
3165 	drm_modeset_unlock_all(dev);
3166 
3167 	return 0;
3168 }
3169 
3170 static void drrs_status_per_crtc(struct seq_file *m,
3171 		struct drm_device *dev, struct intel_crtc *intel_crtc)
3172 {
3173 	struct intel_encoder *intel_encoder;
3174 	struct drm_i915_private *dev_priv = dev->dev_private;
3175 	struct i915_drrs *drrs = &dev_priv->drrs;
3176 	int vrefresh = 0;
3177 
3178 	for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
3179 		/* Encoder connected on this CRTC */
3180 		switch (intel_encoder->type) {
3181 		case INTEL_OUTPUT_EDP:
3182 			seq_puts(m, "eDP:\n");
3183 			break;
3184 		case INTEL_OUTPUT_DSI:
3185 			seq_puts(m, "DSI:\n");
3186 			break;
3187 		case INTEL_OUTPUT_HDMI:
3188 			seq_puts(m, "HDMI:\n");
3189 			break;
3190 		case INTEL_OUTPUT_DISPLAYPORT:
3191 			seq_puts(m, "DP:\n");
3192 			break;
3193 		default:
3194 			seq_printf(m, "Other encoder (id=%d).\n",
3195 						intel_encoder->type);
3196 			return;
3197 		}
3198 	}
3199 
3200 	if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3201 		seq_puts(m, "\tVBT: DRRS_type: Static");
3202 	else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3203 		seq_puts(m, "\tVBT: DRRS_type: Seamless");
3204 	else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3205 		seq_puts(m, "\tVBT: DRRS_type: None");
3206 	else
3207 		seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3208 
3209 	seq_puts(m, "\n\n");
3210 
3211 	if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3212 		struct intel_panel *panel;
3213 
3214 		mutex_lock(&drrs->mutex);
3215 		/* DRRS Supported */
3216 		seq_puts(m, "\tDRRS Supported: Yes\n");
3217 
3218 		/* disable_drrs() will make drrs->dp NULL */
3219 		if (!drrs->dp) {
3220 			seq_puts(m, "Idleness DRRS: Disabled");
3221 			mutex_unlock(&drrs->mutex);
3222 			return;
3223 		}
3224 
3225 		panel = &drrs->dp->attached_connector->panel;
3226 		seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3227 					drrs->busy_frontbuffer_bits);
3228 
3229 		seq_puts(m, "\n\t\t");
3230 		if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3231 			seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3232 			vrefresh = panel->fixed_mode->vrefresh;
3233 		} else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3234 			seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3235 			vrefresh = panel->downclock_mode->vrefresh;
3236 		} else {
3237 			seq_printf(m, "DRRS_State: Unknown(%d)\n",
3238 						drrs->refresh_rate_type);
3239 			mutex_unlock(&drrs->mutex);
3240 			return;
3241 		}
3242 		seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3243 
3244 		seq_puts(m, "\n\t\t");
3245 		mutex_unlock(&drrs->mutex);
3246 	} else {
3247 		/* DRRS not supported. Print the VBT parameter*/
3248 		seq_puts(m, "\tDRRS Supported : No");
3249 	}
3250 	seq_puts(m, "\n");
3251 }
3252 
3253 static int i915_drrs_status(struct seq_file *m, void *unused)
3254 {
3255 	struct drm_info_node *node = m->private;
3256 	struct drm_device *dev = node->minor->dev;
3257 	struct intel_crtc *intel_crtc;
3258 	int active_crtc_cnt = 0;
3259 
3260 	for_each_intel_crtc(dev, intel_crtc) {
3261 		drm_modeset_lock(&intel_crtc->base.mutex, NULL);
3262 
3263 		if (intel_crtc->base.state->active) {
3264 			active_crtc_cnt++;
3265 			seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3266 
3267 			drrs_status_per_crtc(m, dev, intel_crtc);
3268 		}
3269 
3270 		drm_modeset_unlock(&intel_crtc->base.mutex);
3271 	}
3272 
3273 	if (!active_crtc_cnt)
3274 		seq_puts(m, "No active crtc found\n");
3275 
3276 	return 0;
3277 }
3278 
3279 struct pipe_crc_info {
3280 	const char *name;
3281 	struct drm_device *dev;
3282 	enum pipe pipe;
3283 };
3284 
3285 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3286 {
3287 	struct drm_info_node *node = (struct drm_info_node *) m->private;
3288 	struct drm_device *dev = node->minor->dev;
3289 	struct drm_encoder *encoder;
3290 	struct intel_encoder *intel_encoder;
3291 	struct intel_digital_port *intel_dig_port;
3292 	drm_modeset_lock_all(dev);
3293 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3294 		intel_encoder = to_intel_encoder(encoder);
3295 		if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
3296 			continue;
3297 		intel_dig_port = enc_to_dig_port(encoder);
3298 		if (!intel_dig_port->dp.can_mst)
3299 			continue;
3300 
3301 		drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3302 	}
3303 	drm_modeset_unlock_all(dev);
3304 	return 0;
3305 }
3306 
3307 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3308 {
3309 	struct pipe_crc_info *info = inode->i_private;
3310 	struct drm_i915_private *dev_priv = info->dev->dev_private;
3311 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3312 
3313 	if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3314 		return -ENODEV;
3315 
3316 	spin_lock_irq(&pipe_crc->lock);
3317 
3318 	if (pipe_crc->opened) {
3319 		spin_unlock_irq(&pipe_crc->lock);
3320 		return -EBUSY; /* already open */
3321 	}
3322 
3323 	pipe_crc->opened = true;
3324 	filep->private_data = inode->i_private;
3325 
3326 	spin_unlock_irq(&pipe_crc->lock);
3327 
3328 	return 0;
3329 }
3330 
3331 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3332 {
3333 	struct pipe_crc_info *info = inode->i_private;
3334 	struct drm_i915_private *dev_priv = info->dev->dev_private;
3335 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3336 
3337 	spin_lock_irq(&pipe_crc->lock);
3338 	pipe_crc->opened = false;
3339 	spin_unlock_irq(&pipe_crc->lock);
3340 
3341 	return 0;
3342 }
3343 
3344 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3345 #define PIPE_CRC_LINE_LEN	(6 * 8 + 5 + 1)
3346 /* account for \'0' */
3347 #define PIPE_CRC_BUFFER_LEN	(PIPE_CRC_LINE_LEN + 1)
3348 
3349 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3350 {
3351 	assert_spin_locked(&pipe_crc->lock);
3352 	return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3353 			INTEL_PIPE_CRC_ENTRIES_NR);
3354 }
3355 
3356 static ssize_t
3357 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3358 		   loff_t *pos)
3359 {
3360 	struct pipe_crc_info *info = filep->private_data;
3361 	struct drm_device *dev = info->dev;
3362 	struct drm_i915_private *dev_priv = dev->dev_private;
3363 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3364 	char buf[PIPE_CRC_BUFFER_LEN];
3365 	int n_entries;
3366 	ssize_t bytes_read;
3367 
3368 	/*
3369 	 * Don't allow user space to provide buffers not big enough to hold
3370 	 * a line of data.
3371 	 */
3372 	if (count < PIPE_CRC_LINE_LEN)
3373 		return -EINVAL;
3374 
3375 	if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3376 		return 0;
3377 
3378 	/* nothing to read */
3379 	spin_lock_irq(&pipe_crc->lock);
3380 	while (pipe_crc_data_count(pipe_crc) == 0) {
3381 		int ret;
3382 
3383 		if (filep->f_flags & O_NONBLOCK) {
3384 			spin_unlock_irq(&pipe_crc->lock);
3385 			return -EAGAIN;
3386 		}
3387 
3388 		ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3389 				pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3390 		if (ret) {
3391 			spin_unlock_irq(&pipe_crc->lock);
3392 			return ret;
3393 		}
3394 	}
3395 
3396 	/* We now have one or more entries to read */
3397 	n_entries = count / PIPE_CRC_LINE_LEN;
3398 
3399 	bytes_read = 0;
3400 	while (n_entries > 0) {
3401 		struct intel_pipe_crc_entry *entry =
3402 			&pipe_crc->entries[pipe_crc->tail];
3403 		int ret;
3404 
3405 		if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3406 			     INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3407 			break;
3408 
3409 		BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3410 		pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3411 
3412 		bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3413 				       "%8u %8x %8x %8x %8x %8x\n",
3414 				       entry->frame, entry->crc[0],
3415 				       entry->crc[1], entry->crc[2],
3416 				       entry->crc[3], entry->crc[4]);
3417 
3418 		spin_unlock_irq(&pipe_crc->lock);
3419 
3420 		ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3421 		if (ret == PIPE_CRC_LINE_LEN)
3422 			return -EFAULT;
3423 
3424 		user_buf += PIPE_CRC_LINE_LEN;
3425 		n_entries--;
3426 
3427 		spin_lock_irq(&pipe_crc->lock);
3428 	}
3429 
3430 	spin_unlock_irq(&pipe_crc->lock);
3431 
3432 	return bytes_read;
3433 }
3434 
3435 static const struct file_operations i915_pipe_crc_fops = {
3436 	.owner = THIS_MODULE,
3437 	.open = i915_pipe_crc_open,
3438 	.read = i915_pipe_crc_read,
3439 	.release = i915_pipe_crc_release,
3440 };
3441 
3442 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3443 	{
3444 		.name = "i915_pipe_A_crc",
3445 		.pipe = PIPE_A,
3446 	},
3447 	{
3448 		.name = "i915_pipe_B_crc",
3449 		.pipe = PIPE_B,
3450 	},
3451 	{
3452 		.name = "i915_pipe_C_crc",
3453 		.pipe = PIPE_C,
3454 	},
3455 };
3456 
3457 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3458 				enum pipe pipe)
3459 {
3460 	struct drm_device *dev = minor->dev;
3461 	struct dentry *ent;
3462 	struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3463 
3464 	info->dev = dev;
3465 	ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3466 				  &i915_pipe_crc_fops);
3467 	if (!ent)
3468 		return -ENOMEM;
3469 
3470 	return drm_add_fake_info_node(minor, ent, info);
3471 }
3472 
3473 static const char * const pipe_crc_sources[] = {
3474 	"none",
3475 	"plane1",
3476 	"plane2",
3477 	"pf",
3478 	"pipe",
3479 	"TV",
3480 	"DP-B",
3481 	"DP-C",
3482 	"DP-D",
3483 	"auto",
3484 };
3485 
3486 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3487 {
3488 	BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3489 	return pipe_crc_sources[source];
3490 }
3491 
3492 static int display_crc_ctl_show(struct seq_file *m, void *data)
3493 {
3494 	struct drm_device *dev = m->private;
3495 	struct drm_i915_private *dev_priv = dev->dev_private;
3496 	int i;
3497 
3498 	for (i = 0; i < I915_MAX_PIPES; i++)
3499 		seq_printf(m, "%c %s\n", pipe_name(i),
3500 			   pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3501 
3502 	return 0;
3503 }
3504 
3505 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3506 {
3507 	struct drm_device *dev = inode->i_private;
3508 
3509 	return single_open(file, display_crc_ctl_show, dev);
3510 }
3511 
3512 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3513 				 uint32_t *val)
3514 {
3515 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3516 		*source = INTEL_PIPE_CRC_SOURCE_PIPE;
3517 
3518 	switch (*source) {
3519 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3520 		*val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3521 		break;
3522 	case INTEL_PIPE_CRC_SOURCE_NONE:
3523 		*val = 0;
3524 		break;
3525 	default:
3526 		return -EINVAL;
3527 	}
3528 
3529 	return 0;
3530 }
3531 
3532 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3533 				     enum intel_pipe_crc_source *source)
3534 {
3535 	struct intel_encoder *encoder;
3536 	struct intel_crtc *crtc;
3537 	struct intel_digital_port *dig_port;
3538 	int ret = 0;
3539 
3540 	*source = INTEL_PIPE_CRC_SOURCE_PIPE;
3541 
3542 	drm_modeset_lock_all(dev);
3543 	for_each_intel_encoder(dev, encoder) {
3544 		if (!encoder->base.crtc)
3545 			continue;
3546 
3547 		crtc = to_intel_crtc(encoder->base.crtc);
3548 
3549 		if (crtc->pipe != pipe)
3550 			continue;
3551 
3552 		switch (encoder->type) {
3553 		case INTEL_OUTPUT_TVOUT:
3554 			*source = INTEL_PIPE_CRC_SOURCE_TV;
3555 			break;
3556 		case INTEL_OUTPUT_DISPLAYPORT:
3557 		case INTEL_OUTPUT_EDP:
3558 			dig_port = enc_to_dig_port(&encoder->base);
3559 			switch (dig_port->port) {
3560 			case PORT_B:
3561 				*source = INTEL_PIPE_CRC_SOURCE_DP_B;
3562 				break;
3563 			case PORT_C:
3564 				*source = INTEL_PIPE_CRC_SOURCE_DP_C;
3565 				break;
3566 			case PORT_D:
3567 				*source = INTEL_PIPE_CRC_SOURCE_DP_D;
3568 				break;
3569 			default:
3570 				WARN(1, "nonexisting DP port %c\n",
3571 				     port_name(dig_port->port));
3572 				break;
3573 			}
3574 			break;
3575 		default:
3576 			break;
3577 		}
3578 	}
3579 	drm_modeset_unlock_all(dev);
3580 
3581 	return ret;
3582 }
3583 
3584 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3585 				enum pipe pipe,
3586 				enum intel_pipe_crc_source *source,
3587 				uint32_t *val)
3588 {
3589 	struct drm_i915_private *dev_priv = dev->dev_private;
3590 	bool need_stable_symbols = false;
3591 
3592 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3593 		int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3594 		if (ret)
3595 			return ret;
3596 	}
3597 
3598 	switch (*source) {
3599 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3600 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3601 		break;
3602 	case INTEL_PIPE_CRC_SOURCE_DP_B:
3603 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3604 		need_stable_symbols = true;
3605 		break;
3606 	case INTEL_PIPE_CRC_SOURCE_DP_C:
3607 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3608 		need_stable_symbols = true;
3609 		break;
3610 	case INTEL_PIPE_CRC_SOURCE_DP_D:
3611 		if (!IS_CHERRYVIEW(dev))
3612 			return -EINVAL;
3613 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3614 		need_stable_symbols = true;
3615 		break;
3616 	case INTEL_PIPE_CRC_SOURCE_NONE:
3617 		*val = 0;
3618 		break;
3619 	default:
3620 		return -EINVAL;
3621 	}
3622 
3623 	/*
3624 	 * When the pipe CRC tap point is after the transcoders we need
3625 	 * to tweak symbol-level features to produce a deterministic series of
3626 	 * symbols for a given frame. We need to reset those features only once
3627 	 * a frame (instead of every nth symbol):
3628 	 *   - DC-balance: used to ensure a better clock recovery from the data
3629 	 *     link (SDVO)
3630 	 *   - DisplayPort scrambling: used for EMI reduction
3631 	 */
3632 	if (need_stable_symbols) {
3633 		uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3634 
3635 		tmp |= DC_BALANCE_RESET_VLV;
3636 		switch (pipe) {
3637 		case PIPE_A:
3638 			tmp |= PIPE_A_SCRAMBLE_RESET;
3639 			break;
3640 		case PIPE_B:
3641 			tmp |= PIPE_B_SCRAMBLE_RESET;
3642 			break;
3643 		case PIPE_C:
3644 			tmp |= PIPE_C_SCRAMBLE_RESET;
3645 			break;
3646 		default:
3647 			return -EINVAL;
3648 		}
3649 		I915_WRITE(PORT_DFT2_G4X, tmp);
3650 	}
3651 
3652 	return 0;
3653 }
3654 
3655 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3656 				 enum pipe pipe,
3657 				 enum intel_pipe_crc_source *source,
3658 				 uint32_t *val)
3659 {
3660 	struct drm_i915_private *dev_priv = dev->dev_private;
3661 	bool need_stable_symbols = false;
3662 
3663 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3664 		int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3665 		if (ret)
3666 			return ret;
3667 	}
3668 
3669 	switch (*source) {
3670 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3671 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3672 		break;
3673 	case INTEL_PIPE_CRC_SOURCE_TV:
3674 		if (!SUPPORTS_TV(dev))
3675 			return -EINVAL;
3676 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3677 		break;
3678 	case INTEL_PIPE_CRC_SOURCE_DP_B:
3679 		if (!IS_G4X(dev))
3680 			return -EINVAL;
3681 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3682 		need_stable_symbols = true;
3683 		break;
3684 	case INTEL_PIPE_CRC_SOURCE_DP_C:
3685 		if (!IS_G4X(dev))
3686 			return -EINVAL;
3687 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3688 		need_stable_symbols = true;
3689 		break;
3690 	case INTEL_PIPE_CRC_SOURCE_DP_D:
3691 		if (!IS_G4X(dev))
3692 			return -EINVAL;
3693 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3694 		need_stable_symbols = true;
3695 		break;
3696 	case INTEL_PIPE_CRC_SOURCE_NONE:
3697 		*val = 0;
3698 		break;
3699 	default:
3700 		return -EINVAL;
3701 	}
3702 
3703 	/*
3704 	 * When the pipe CRC tap point is after the transcoders we need
3705 	 * to tweak symbol-level features to produce a deterministic series of
3706 	 * symbols for a given frame. We need to reset those features only once
3707 	 * a frame (instead of every nth symbol):
3708 	 *   - DC-balance: used to ensure a better clock recovery from the data
3709 	 *     link (SDVO)
3710 	 *   - DisplayPort scrambling: used for EMI reduction
3711 	 */
3712 	if (need_stable_symbols) {
3713 		uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3714 
3715 		WARN_ON(!IS_G4X(dev));
3716 
3717 		I915_WRITE(PORT_DFT_I9XX,
3718 			   I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3719 
3720 		if (pipe == PIPE_A)
3721 			tmp |= PIPE_A_SCRAMBLE_RESET;
3722 		else
3723 			tmp |= PIPE_B_SCRAMBLE_RESET;
3724 
3725 		I915_WRITE(PORT_DFT2_G4X, tmp);
3726 	}
3727 
3728 	return 0;
3729 }
3730 
3731 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3732 					 enum pipe pipe)
3733 {
3734 	struct drm_i915_private *dev_priv = dev->dev_private;
3735 	uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3736 
3737 	switch (pipe) {
3738 	case PIPE_A:
3739 		tmp &= ~PIPE_A_SCRAMBLE_RESET;
3740 		break;
3741 	case PIPE_B:
3742 		tmp &= ~PIPE_B_SCRAMBLE_RESET;
3743 		break;
3744 	case PIPE_C:
3745 		tmp &= ~PIPE_C_SCRAMBLE_RESET;
3746 		break;
3747 	default:
3748 		return;
3749 	}
3750 	if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3751 		tmp &= ~DC_BALANCE_RESET_VLV;
3752 	I915_WRITE(PORT_DFT2_G4X, tmp);
3753 
3754 }
3755 
3756 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3757 					 enum pipe pipe)
3758 {
3759 	struct drm_i915_private *dev_priv = dev->dev_private;
3760 	uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3761 
3762 	if (pipe == PIPE_A)
3763 		tmp &= ~PIPE_A_SCRAMBLE_RESET;
3764 	else
3765 		tmp &= ~PIPE_B_SCRAMBLE_RESET;
3766 	I915_WRITE(PORT_DFT2_G4X, tmp);
3767 
3768 	if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3769 		I915_WRITE(PORT_DFT_I9XX,
3770 			   I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3771 	}
3772 }
3773 
3774 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3775 				uint32_t *val)
3776 {
3777 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3778 		*source = INTEL_PIPE_CRC_SOURCE_PIPE;
3779 
3780 	switch (*source) {
3781 	case INTEL_PIPE_CRC_SOURCE_PLANE1:
3782 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3783 		break;
3784 	case INTEL_PIPE_CRC_SOURCE_PLANE2:
3785 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3786 		break;
3787 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3788 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3789 		break;
3790 	case INTEL_PIPE_CRC_SOURCE_NONE:
3791 		*val = 0;
3792 		break;
3793 	default:
3794 		return -EINVAL;
3795 	}
3796 
3797 	return 0;
3798 }
3799 
3800 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
3801 {
3802 	struct drm_i915_private *dev_priv = dev->dev_private;
3803 	struct intel_crtc *crtc =
3804 		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3805 	struct intel_crtc_state *pipe_config;
3806 	struct drm_atomic_state *state;
3807 	int ret = 0;
3808 
3809 	drm_modeset_lock_all(dev);
3810 	state = drm_atomic_state_alloc(dev);
3811 	if (!state) {
3812 		ret = -ENOMEM;
3813 		goto out;
3814 	}
3815 
3816 	state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
3817 	pipe_config = intel_atomic_get_crtc_state(state, crtc);
3818 	if (IS_ERR(pipe_config)) {
3819 		ret = PTR_ERR(pipe_config);
3820 		goto out;
3821 	}
3822 
3823 	pipe_config->pch_pfit.force_thru = enable;
3824 	if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
3825 	    pipe_config->pch_pfit.enabled != enable)
3826 		pipe_config->base.connectors_changed = true;
3827 
3828 	ret = drm_atomic_commit(state);
3829 out:
3830 	drm_modeset_unlock_all(dev);
3831 	WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
3832 	if (ret)
3833 		drm_atomic_state_free(state);
3834 }
3835 
3836 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3837 				enum pipe pipe,
3838 				enum intel_pipe_crc_source *source,
3839 				uint32_t *val)
3840 {
3841 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3842 		*source = INTEL_PIPE_CRC_SOURCE_PF;
3843 
3844 	switch (*source) {
3845 	case INTEL_PIPE_CRC_SOURCE_PLANE1:
3846 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3847 		break;
3848 	case INTEL_PIPE_CRC_SOURCE_PLANE2:
3849 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3850 		break;
3851 	case INTEL_PIPE_CRC_SOURCE_PF:
3852 		if (IS_HASWELL(dev) && pipe == PIPE_A)
3853 			hsw_trans_edp_pipe_A_crc_wa(dev, true);
3854 
3855 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3856 		break;
3857 	case INTEL_PIPE_CRC_SOURCE_NONE:
3858 		*val = 0;
3859 		break;
3860 	default:
3861 		return -EINVAL;
3862 	}
3863 
3864 	return 0;
3865 }
3866 
3867 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
3868 			       enum intel_pipe_crc_source source)
3869 {
3870 	struct drm_i915_private *dev_priv = dev->dev_private;
3871 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3872 	struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
3873 									pipe));
3874 	u32 val = 0; /* shut up gcc */
3875 	int ret;
3876 
3877 	if (pipe_crc->source == source)
3878 		return 0;
3879 
3880 	/* forbid changing the source without going back to 'none' */
3881 	if (pipe_crc->source && source)
3882 		return -EINVAL;
3883 
3884 	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) {
3885 		DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
3886 		return -EIO;
3887 	}
3888 
3889 	if (IS_GEN2(dev))
3890 		ret = i8xx_pipe_crc_ctl_reg(&source, &val);
3891 	else if (INTEL_INFO(dev)->gen < 5)
3892 		ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3893 	else if (IS_VALLEYVIEW(dev))
3894 		ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3895 	else if (IS_GEN5(dev) || IS_GEN6(dev))
3896 		ret = ilk_pipe_crc_ctl_reg(&source, &val);
3897 	else
3898 		ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3899 
3900 	if (ret != 0)
3901 		return ret;
3902 
3903 	/* none -> real source transition */
3904 	if (source) {
3905 		struct intel_pipe_crc_entry *entries;
3906 
3907 		DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
3908 				 pipe_name(pipe), pipe_crc_source_name(source));
3909 
3910 		entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
3911 				  sizeof(pipe_crc->entries[0]),
3912 				  GFP_KERNEL);
3913 		if (!entries)
3914 			return -ENOMEM;
3915 
3916 		/*
3917 		 * When IPS gets enabled, the pipe CRC changes. Since IPS gets
3918 		 * enabled and disabled dynamically based on package C states,
3919 		 * user space can't make reliable use of the CRCs, so let's just
3920 		 * completely disable it.
3921 		 */
3922 		hsw_disable_ips(crtc);
3923 
3924 		spin_lock_irq(&pipe_crc->lock);
3925 		kfree(pipe_crc->entries);
3926 		pipe_crc->entries = entries;
3927 		pipe_crc->head = 0;
3928 		pipe_crc->tail = 0;
3929 		spin_unlock_irq(&pipe_crc->lock);
3930 	}
3931 
3932 	pipe_crc->source = source;
3933 
3934 	I915_WRITE(PIPE_CRC_CTL(pipe), val);
3935 	POSTING_READ(PIPE_CRC_CTL(pipe));
3936 
3937 	/* real source -> none transition */
3938 	if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
3939 		struct intel_pipe_crc_entry *entries;
3940 		struct intel_crtc *crtc =
3941 			to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
3942 
3943 		DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
3944 				 pipe_name(pipe));
3945 
3946 		drm_modeset_lock(&crtc->base.mutex, NULL);
3947 		if (crtc->base.state->active)
3948 			intel_wait_for_vblank(dev, pipe);
3949 		drm_modeset_unlock(&crtc->base.mutex);
3950 
3951 		spin_lock_irq(&pipe_crc->lock);
3952 		entries = pipe_crc->entries;
3953 		pipe_crc->entries = NULL;
3954 		pipe_crc->head = 0;
3955 		pipe_crc->tail = 0;
3956 		spin_unlock_irq(&pipe_crc->lock);
3957 
3958 		kfree(entries);
3959 
3960 		if (IS_G4X(dev))
3961 			g4x_undo_pipe_scramble_reset(dev, pipe);
3962 		else if (IS_VALLEYVIEW(dev))
3963 			vlv_undo_pipe_scramble_reset(dev, pipe);
3964 		else if (IS_HASWELL(dev) && pipe == PIPE_A)
3965 			hsw_trans_edp_pipe_A_crc_wa(dev, false);
3966 
3967 		hsw_enable_ips(crtc);
3968 	}
3969 
3970 	return 0;
3971 }
3972 
3973 /*
3974  * Parse pipe CRC command strings:
3975  *   command: wsp* object wsp+ name wsp+ source wsp*
3976  *   object: 'pipe'
3977  *   name: (A | B | C)
3978  *   source: (none | plane1 | plane2 | pf)
3979  *   wsp: (#0x20 | #0x9 | #0xA)+
3980  *
3981  * eg.:
3982  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
3983  *  "pipe A none"    ->  Stop CRC
3984  */
3985 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
3986 {
3987 	int n_words = 0;
3988 
3989 	while (*buf) {
3990 		char *end;
3991 
3992 		/* skip leading white space */
3993 		buf = skip_spaces(buf);
3994 		if (!*buf)
3995 			break;	/* end of buffer */
3996 
3997 		/* find end of word */
3998 		for (end = buf; *end && !isspace(*end); end++)
3999 			;
4000 
4001 		if (n_words == max_words) {
4002 			DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
4003 					 max_words);
4004 			return -EINVAL;	/* ran out of words[] before bytes */
4005 		}
4006 
4007 		if (*end)
4008 			*end++ = '\0';
4009 		words[n_words++] = buf;
4010 		buf = end;
4011 	}
4012 
4013 	return n_words;
4014 }
4015 
4016 enum intel_pipe_crc_object {
4017 	PIPE_CRC_OBJECT_PIPE,
4018 };
4019 
4020 static const char * const pipe_crc_objects[] = {
4021 	"pipe",
4022 };
4023 
4024 static int
4025 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
4026 {
4027 	int i;
4028 
4029 	for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
4030 		if (!strcmp(buf, pipe_crc_objects[i])) {
4031 			*o = i;
4032 			return 0;
4033 		    }
4034 
4035 	return -EINVAL;
4036 }
4037 
4038 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
4039 {
4040 	const char name = buf[0];
4041 
4042 	if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
4043 		return -EINVAL;
4044 
4045 	*pipe = name - 'A';
4046 
4047 	return 0;
4048 }
4049 
4050 static int
4051 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
4052 {
4053 	int i;
4054 
4055 	for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
4056 		if (!strcmp(buf, pipe_crc_sources[i])) {
4057 			*s = i;
4058 			return 0;
4059 		    }
4060 
4061 	return -EINVAL;
4062 }
4063 
4064 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
4065 {
4066 #define N_WORDS 3
4067 	int n_words;
4068 	char *words[N_WORDS];
4069 	enum pipe pipe;
4070 	enum intel_pipe_crc_object object;
4071 	enum intel_pipe_crc_source source;
4072 
4073 	n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
4074 	if (n_words != N_WORDS) {
4075 		DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
4076 				 N_WORDS);
4077 		return -EINVAL;
4078 	}
4079 
4080 	if (display_crc_ctl_parse_object(words[0], &object) < 0) {
4081 		DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
4082 		return -EINVAL;
4083 	}
4084 
4085 	if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
4086 		DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
4087 		return -EINVAL;
4088 	}
4089 
4090 	if (display_crc_ctl_parse_source(words[2], &source) < 0) {
4091 		DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
4092 		return -EINVAL;
4093 	}
4094 
4095 	return pipe_crc_set_source(dev, pipe, source);
4096 }
4097 
4098 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
4099 				     size_t len, loff_t *offp)
4100 {
4101 	struct seq_file *m = file->private_data;
4102 	struct drm_device *dev = m->private;
4103 	char *tmpbuf;
4104 	int ret;
4105 
4106 	if (len == 0)
4107 		return 0;
4108 
4109 	if (len > PAGE_SIZE - 1) {
4110 		DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
4111 				 PAGE_SIZE);
4112 		return -E2BIG;
4113 	}
4114 
4115 	tmpbuf = kmalloc(len + 1, GFP_KERNEL);
4116 	if (!tmpbuf)
4117 		return -ENOMEM;
4118 
4119 	if (copy_from_user(tmpbuf, ubuf, len)) {
4120 		ret = -EFAULT;
4121 		goto out;
4122 	}
4123 	tmpbuf[len] = '\0';
4124 
4125 	ret = display_crc_ctl_parse(dev, tmpbuf, len);
4126 
4127 out:
4128 	kfree(tmpbuf);
4129 	if (ret < 0)
4130 		return ret;
4131 
4132 	*offp += len;
4133 	return len;
4134 }
4135 
4136 static const struct file_operations i915_display_crc_ctl_fops = {
4137 	.owner = THIS_MODULE,
4138 	.open = display_crc_ctl_open,
4139 	.read = seq_read,
4140 	.llseek = seq_lseek,
4141 	.release = single_release,
4142 	.write = display_crc_ctl_write
4143 };
4144 
4145 static ssize_t i915_displayport_test_active_write(struct file *file,
4146 					    const char __user *ubuf,
4147 					    size_t len, loff_t *offp)
4148 {
4149 	char *input_buffer;
4150 	int status = 0;
4151 	struct drm_device *dev;
4152 	struct drm_connector *connector;
4153 	struct list_head *connector_list;
4154 	struct intel_dp *intel_dp;
4155 	int val = 0;
4156 
4157 	dev = ((struct seq_file *)file->private_data)->private;
4158 
4159 	connector_list = &dev->mode_config.connector_list;
4160 
4161 	if (len == 0)
4162 		return 0;
4163 
4164 	input_buffer = kmalloc(len + 1, GFP_KERNEL);
4165 	if (!input_buffer)
4166 		return -ENOMEM;
4167 
4168 	if (copy_from_user(input_buffer, ubuf, len)) {
4169 		status = -EFAULT;
4170 		goto out;
4171 	}
4172 
4173 	input_buffer[len] = '\0';
4174 	DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4175 
4176 	list_for_each_entry(connector, connector_list, head) {
4177 
4178 		if (connector->connector_type !=
4179 		    DRM_MODE_CONNECTOR_DisplayPort)
4180 			continue;
4181 
4182 		if (connector->status == connector_status_connected &&
4183 		    connector->encoder != NULL) {
4184 			intel_dp = enc_to_intel_dp(connector->encoder);
4185 			status = kstrtoint(input_buffer, 10, &val);
4186 			if (status < 0)
4187 				goto out;
4188 			DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4189 			/* To prevent erroneous activation of the compliance
4190 			 * testing code, only accept an actual value of 1 here
4191 			 */
4192 			if (val == 1)
4193 				intel_dp->compliance_test_active = 1;
4194 			else
4195 				intel_dp->compliance_test_active = 0;
4196 		}
4197 	}
4198 out:
4199 	kfree(input_buffer);
4200 	if (status < 0)
4201 		return status;
4202 
4203 	*offp += len;
4204 	return len;
4205 }
4206 
4207 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4208 {
4209 	struct drm_device *dev = m->private;
4210 	struct drm_connector *connector;
4211 	struct list_head *connector_list = &dev->mode_config.connector_list;
4212 	struct intel_dp *intel_dp;
4213 
4214 	list_for_each_entry(connector, connector_list, head) {
4215 
4216 		if (connector->connector_type !=
4217 		    DRM_MODE_CONNECTOR_DisplayPort)
4218 			continue;
4219 
4220 		if (connector->status == connector_status_connected &&
4221 		    connector->encoder != NULL) {
4222 			intel_dp = enc_to_intel_dp(connector->encoder);
4223 			if (intel_dp->compliance_test_active)
4224 				seq_puts(m, "1");
4225 			else
4226 				seq_puts(m, "0");
4227 		} else
4228 			seq_puts(m, "0");
4229 	}
4230 
4231 	return 0;
4232 }
4233 
4234 static int i915_displayport_test_active_open(struct inode *inode,
4235 				       struct file *file)
4236 {
4237 	struct drm_device *dev = inode->i_private;
4238 
4239 	return single_open(file, i915_displayport_test_active_show, dev);
4240 }
4241 
4242 static const struct file_operations i915_displayport_test_active_fops = {
4243 	.owner = THIS_MODULE,
4244 	.open = i915_displayport_test_active_open,
4245 	.read = seq_read,
4246 	.llseek = seq_lseek,
4247 	.release = single_release,
4248 	.write = i915_displayport_test_active_write
4249 };
4250 
4251 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4252 {
4253 	struct drm_device *dev = m->private;
4254 	struct drm_connector *connector;
4255 	struct list_head *connector_list = &dev->mode_config.connector_list;
4256 	struct intel_dp *intel_dp;
4257 
4258 	list_for_each_entry(connector, connector_list, head) {
4259 
4260 		if (connector->connector_type !=
4261 		    DRM_MODE_CONNECTOR_DisplayPort)
4262 			continue;
4263 
4264 		if (connector->status == connector_status_connected &&
4265 		    connector->encoder != NULL) {
4266 			intel_dp = enc_to_intel_dp(connector->encoder);
4267 			seq_printf(m, "%lx", intel_dp->compliance_test_data);
4268 		} else
4269 			seq_puts(m, "0");
4270 	}
4271 
4272 	return 0;
4273 }
4274 static int i915_displayport_test_data_open(struct inode *inode,
4275 				       struct file *file)
4276 {
4277 	struct drm_device *dev = inode->i_private;
4278 
4279 	return single_open(file, i915_displayport_test_data_show, dev);
4280 }
4281 
4282 static const struct file_operations i915_displayport_test_data_fops = {
4283 	.owner = THIS_MODULE,
4284 	.open = i915_displayport_test_data_open,
4285 	.read = seq_read,
4286 	.llseek = seq_lseek,
4287 	.release = single_release
4288 };
4289 
4290 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4291 {
4292 	struct drm_device *dev = m->private;
4293 	struct drm_connector *connector;
4294 	struct list_head *connector_list = &dev->mode_config.connector_list;
4295 	struct intel_dp *intel_dp;
4296 
4297 	list_for_each_entry(connector, connector_list, head) {
4298 
4299 		if (connector->connector_type !=
4300 		    DRM_MODE_CONNECTOR_DisplayPort)
4301 			continue;
4302 
4303 		if (connector->status == connector_status_connected &&
4304 		    connector->encoder != NULL) {
4305 			intel_dp = enc_to_intel_dp(connector->encoder);
4306 			seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4307 		} else
4308 			seq_puts(m, "0");
4309 	}
4310 
4311 	return 0;
4312 }
4313 
4314 static int i915_displayport_test_type_open(struct inode *inode,
4315 				       struct file *file)
4316 {
4317 	struct drm_device *dev = inode->i_private;
4318 
4319 	return single_open(file, i915_displayport_test_type_show, dev);
4320 }
4321 
4322 static const struct file_operations i915_displayport_test_type_fops = {
4323 	.owner = THIS_MODULE,
4324 	.open = i915_displayport_test_type_open,
4325 	.read = seq_read,
4326 	.llseek = seq_lseek,
4327 	.release = single_release
4328 };
4329 
4330 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4331 {
4332 	struct drm_device *dev = m->private;
4333 	int level;
4334 	int num_levels;
4335 
4336 	if (IS_CHERRYVIEW(dev))
4337 		num_levels = 3;
4338 	else if (IS_VALLEYVIEW(dev))
4339 		num_levels = 1;
4340 	else
4341 		num_levels = ilk_wm_max_level(dev) + 1;
4342 
4343 	drm_modeset_lock_all(dev);
4344 
4345 	for (level = 0; level < num_levels; level++) {
4346 		unsigned int latency = wm[level];
4347 
4348 		/*
4349 		 * - WM1+ latency values in 0.5us units
4350 		 * - latencies are in us on gen9/vlv/chv
4351 		 */
4352 		if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev))
4353 			latency *= 10;
4354 		else if (level > 0)
4355 			latency *= 5;
4356 
4357 		seq_printf(m, "WM%d %u (%u.%u usec)\n",
4358 			   level, wm[level], latency / 10, latency % 10);
4359 	}
4360 
4361 	drm_modeset_unlock_all(dev);
4362 }
4363 
4364 static int pri_wm_latency_show(struct seq_file *m, void *data)
4365 {
4366 	struct drm_device *dev = m->private;
4367 	struct drm_i915_private *dev_priv = dev->dev_private;
4368 	const uint16_t *latencies;
4369 
4370 	if (INTEL_INFO(dev)->gen >= 9)
4371 		latencies = dev_priv->wm.skl_latency;
4372 	else
4373 		latencies = to_i915(dev)->wm.pri_latency;
4374 
4375 	wm_latency_show(m, latencies);
4376 
4377 	return 0;
4378 }
4379 
4380 static int spr_wm_latency_show(struct seq_file *m, void *data)
4381 {
4382 	struct drm_device *dev = m->private;
4383 	struct drm_i915_private *dev_priv = dev->dev_private;
4384 	const uint16_t *latencies;
4385 
4386 	if (INTEL_INFO(dev)->gen >= 9)
4387 		latencies = dev_priv->wm.skl_latency;
4388 	else
4389 		latencies = to_i915(dev)->wm.spr_latency;
4390 
4391 	wm_latency_show(m, latencies);
4392 
4393 	return 0;
4394 }
4395 
4396 static int cur_wm_latency_show(struct seq_file *m, void *data)
4397 {
4398 	struct drm_device *dev = m->private;
4399 	struct drm_i915_private *dev_priv = dev->dev_private;
4400 	const uint16_t *latencies;
4401 
4402 	if (INTEL_INFO(dev)->gen >= 9)
4403 		latencies = dev_priv->wm.skl_latency;
4404 	else
4405 		latencies = to_i915(dev)->wm.cur_latency;
4406 
4407 	wm_latency_show(m, latencies);
4408 
4409 	return 0;
4410 }
4411 
4412 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4413 {
4414 	struct drm_device *dev = inode->i_private;
4415 
4416 	if (INTEL_INFO(dev)->gen < 5)
4417 		return -ENODEV;
4418 
4419 	return single_open(file, pri_wm_latency_show, dev);
4420 }
4421 
4422 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4423 {
4424 	struct drm_device *dev = inode->i_private;
4425 
4426 	if (HAS_GMCH_DISPLAY(dev))
4427 		return -ENODEV;
4428 
4429 	return single_open(file, spr_wm_latency_show, dev);
4430 }
4431 
4432 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4433 {
4434 	struct drm_device *dev = inode->i_private;
4435 
4436 	if (HAS_GMCH_DISPLAY(dev))
4437 		return -ENODEV;
4438 
4439 	return single_open(file, cur_wm_latency_show, dev);
4440 }
4441 
4442 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4443 				size_t len, loff_t *offp, uint16_t wm[8])
4444 {
4445 	struct seq_file *m = file->private_data;
4446 	struct drm_device *dev = m->private;
4447 	uint16_t new[8] = { 0 };
4448 	int num_levels;
4449 	int level;
4450 	int ret;
4451 	char tmp[32];
4452 
4453 	if (IS_CHERRYVIEW(dev))
4454 		num_levels = 3;
4455 	else if (IS_VALLEYVIEW(dev))
4456 		num_levels = 1;
4457 	else
4458 		num_levels = ilk_wm_max_level(dev) + 1;
4459 
4460 	if (len >= sizeof(tmp))
4461 		return -EINVAL;
4462 
4463 	if (copy_from_user(tmp, ubuf, len))
4464 		return -EFAULT;
4465 
4466 	tmp[len] = '\0';
4467 
4468 	ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4469 		     &new[0], &new[1], &new[2], &new[3],
4470 		     &new[4], &new[5], &new[6], &new[7]);
4471 	if (ret != num_levels)
4472 		return -EINVAL;
4473 
4474 	drm_modeset_lock_all(dev);
4475 
4476 	for (level = 0; level < num_levels; level++)
4477 		wm[level] = new[level];
4478 
4479 	drm_modeset_unlock_all(dev);
4480 
4481 	return len;
4482 }
4483 
4484 
4485 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4486 				    size_t len, loff_t *offp)
4487 {
4488 	struct seq_file *m = file->private_data;
4489 	struct drm_device *dev = m->private;
4490 	struct drm_i915_private *dev_priv = dev->dev_private;
4491 	uint16_t *latencies;
4492 
4493 	if (INTEL_INFO(dev)->gen >= 9)
4494 		latencies = dev_priv->wm.skl_latency;
4495 	else
4496 		latencies = to_i915(dev)->wm.pri_latency;
4497 
4498 	return wm_latency_write(file, ubuf, len, offp, latencies);
4499 }
4500 
4501 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4502 				    size_t len, loff_t *offp)
4503 {
4504 	struct seq_file *m = file->private_data;
4505 	struct drm_device *dev = m->private;
4506 	struct drm_i915_private *dev_priv = dev->dev_private;
4507 	uint16_t *latencies;
4508 
4509 	if (INTEL_INFO(dev)->gen >= 9)
4510 		latencies = dev_priv->wm.skl_latency;
4511 	else
4512 		latencies = to_i915(dev)->wm.spr_latency;
4513 
4514 	return wm_latency_write(file, ubuf, len, offp, latencies);
4515 }
4516 
4517 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4518 				    size_t len, loff_t *offp)
4519 {
4520 	struct seq_file *m = file->private_data;
4521 	struct drm_device *dev = m->private;
4522 	struct drm_i915_private *dev_priv = dev->dev_private;
4523 	uint16_t *latencies;
4524 
4525 	if (INTEL_INFO(dev)->gen >= 9)
4526 		latencies = dev_priv->wm.skl_latency;
4527 	else
4528 		latencies = to_i915(dev)->wm.cur_latency;
4529 
4530 	return wm_latency_write(file, ubuf, len, offp, latencies);
4531 }
4532 
4533 static const struct file_operations i915_pri_wm_latency_fops = {
4534 	.owner = THIS_MODULE,
4535 	.open = pri_wm_latency_open,
4536 	.read = seq_read,
4537 	.llseek = seq_lseek,
4538 	.release = single_release,
4539 	.write = pri_wm_latency_write
4540 };
4541 
4542 static const struct file_operations i915_spr_wm_latency_fops = {
4543 	.owner = THIS_MODULE,
4544 	.open = spr_wm_latency_open,
4545 	.read = seq_read,
4546 	.llseek = seq_lseek,
4547 	.release = single_release,
4548 	.write = spr_wm_latency_write
4549 };
4550 
4551 static const struct file_operations i915_cur_wm_latency_fops = {
4552 	.owner = THIS_MODULE,
4553 	.open = cur_wm_latency_open,
4554 	.read = seq_read,
4555 	.llseek = seq_lseek,
4556 	.release = single_release,
4557 	.write = cur_wm_latency_write
4558 };
4559 
4560 static int
4561 i915_wedged_get(void *data, u64 *val)
4562 {
4563 	struct drm_device *dev = data;
4564 	struct drm_i915_private *dev_priv = dev->dev_private;
4565 
4566 	*val = atomic_read(&dev_priv->gpu_error.reset_counter);
4567 
4568 	return 0;
4569 }
4570 
4571 static int
4572 i915_wedged_set(void *data, u64 val)
4573 {
4574 	struct drm_device *dev = data;
4575 	struct drm_i915_private *dev_priv = dev->dev_private;
4576 
4577 	/*
4578 	 * There is no safeguard against this debugfs entry colliding
4579 	 * with the hangcheck calling same i915_handle_error() in
4580 	 * parallel, causing an explosion. For now we assume that the
4581 	 * test harness is responsible enough not to inject gpu hangs
4582 	 * while it is writing to 'i915_wedged'
4583 	 */
4584 
4585 	if (i915_reset_in_progress(&dev_priv->gpu_error))
4586 		return -EAGAIN;
4587 
4588 	intel_runtime_pm_get(dev_priv);
4589 
4590 	i915_handle_error(dev, val,
4591 			  "Manually setting wedged to %llu", val);
4592 
4593 	intel_runtime_pm_put(dev_priv);
4594 
4595 	return 0;
4596 }
4597 
4598 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4599 			i915_wedged_get, i915_wedged_set,
4600 			"%llu\n");
4601 
4602 static int
4603 i915_ring_stop_get(void *data, u64 *val)
4604 {
4605 	struct drm_device *dev = data;
4606 	struct drm_i915_private *dev_priv = dev->dev_private;
4607 
4608 	*val = dev_priv->gpu_error.stop_rings;
4609 
4610 	return 0;
4611 }
4612 
4613 static int
4614 i915_ring_stop_set(void *data, u64 val)
4615 {
4616 	struct drm_device *dev = data;
4617 	struct drm_i915_private *dev_priv = dev->dev_private;
4618 	int ret;
4619 
4620 	DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
4621 
4622 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4623 	if (ret)
4624 		return ret;
4625 
4626 	dev_priv->gpu_error.stop_rings = val;
4627 	mutex_unlock(&dev->struct_mutex);
4628 
4629 	return 0;
4630 }
4631 
4632 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
4633 			i915_ring_stop_get, i915_ring_stop_set,
4634 			"0x%08llx\n");
4635 
4636 static int
4637 i915_ring_missed_irq_get(void *data, u64 *val)
4638 {
4639 	struct drm_device *dev = data;
4640 	struct drm_i915_private *dev_priv = dev->dev_private;
4641 
4642 	*val = dev_priv->gpu_error.missed_irq_rings;
4643 	return 0;
4644 }
4645 
4646 static int
4647 i915_ring_missed_irq_set(void *data, u64 val)
4648 {
4649 	struct drm_device *dev = data;
4650 	struct drm_i915_private *dev_priv = dev->dev_private;
4651 	int ret;
4652 
4653 	/* Lock against concurrent debugfs callers */
4654 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4655 	if (ret)
4656 		return ret;
4657 	dev_priv->gpu_error.missed_irq_rings = val;
4658 	mutex_unlock(&dev->struct_mutex);
4659 
4660 	return 0;
4661 }
4662 
4663 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4664 			i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4665 			"0x%08llx\n");
4666 
4667 static int
4668 i915_ring_test_irq_get(void *data, u64 *val)
4669 {
4670 	struct drm_device *dev = data;
4671 	struct drm_i915_private *dev_priv = dev->dev_private;
4672 
4673 	*val = dev_priv->gpu_error.test_irq_rings;
4674 
4675 	return 0;
4676 }
4677 
4678 static int
4679 i915_ring_test_irq_set(void *data, u64 val)
4680 {
4681 	struct drm_device *dev = data;
4682 	struct drm_i915_private *dev_priv = dev->dev_private;
4683 	int ret;
4684 
4685 	DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4686 
4687 	/* Lock against concurrent debugfs callers */
4688 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4689 	if (ret)
4690 		return ret;
4691 
4692 	dev_priv->gpu_error.test_irq_rings = val;
4693 	mutex_unlock(&dev->struct_mutex);
4694 
4695 	return 0;
4696 }
4697 
4698 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4699 			i915_ring_test_irq_get, i915_ring_test_irq_set,
4700 			"0x%08llx\n");
4701 
4702 #define DROP_UNBOUND 0x1
4703 #define DROP_BOUND 0x2
4704 #define DROP_RETIRE 0x4
4705 #define DROP_ACTIVE 0x8
4706 #define DROP_ALL (DROP_UNBOUND | \
4707 		  DROP_BOUND | \
4708 		  DROP_RETIRE | \
4709 		  DROP_ACTIVE)
4710 static int
4711 i915_drop_caches_get(void *data, u64 *val)
4712 {
4713 	*val = DROP_ALL;
4714 
4715 	return 0;
4716 }
4717 
4718 static int
4719 i915_drop_caches_set(void *data, u64 val)
4720 {
4721 	struct drm_device *dev = data;
4722 	struct drm_i915_private *dev_priv = dev->dev_private;
4723 	int ret;
4724 
4725 	DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4726 
4727 	/* No need to check and wait for gpu resets, only libdrm auto-restarts
4728 	 * on ioctls on -EAGAIN. */
4729 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4730 	if (ret)
4731 		return ret;
4732 
4733 	if (val & DROP_ACTIVE) {
4734 		ret = i915_gpu_idle(dev);
4735 		if (ret)
4736 			goto unlock;
4737 	}
4738 
4739 	if (val & (DROP_RETIRE | DROP_ACTIVE))
4740 		i915_gem_retire_requests(dev);
4741 
4742 	if (val & DROP_BOUND)
4743 		i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4744 
4745 	if (val & DROP_UNBOUND)
4746 		i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4747 
4748 unlock:
4749 	mutex_unlock(&dev->struct_mutex);
4750 
4751 	return ret;
4752 }
4753 
4754 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4755 			i915_drop_caches_get, i915_drop_caches_set,
4756 			"0x%08llx\n");
4757 
4758 static int
4759 i915_max_freq_get(void *data, u64 *val)
4760 {
4761 	struct drm_device *dev = data;
4762 	struct drm_i915_private *dev_priv = dev->dev_private;
4763 	int ret;
4764 
4765 	if (INTEL_INFO(dev)->gen < 6)
4766 		return -ENODEV;
4767 
4768 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4769 
4770 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4771 	if (ret)
4772 		return ret;
4773 
4774 	*val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4775 	mutex_unlock(&dev_priv->rps.hw_lock);
4776 
4777 	return 0;
4778 }
4779 
4780 static int
4781 i915_max_freq_set(void *data, u64 val)
4782 {
4783 	struct drm_device *dev = data;
4784 	struct drm_i915_private *dev_priv = dev->dev_private;
4785 	u32 hw_max, hw_min;
4786 	int ret;
4787 
4788 	if (INTEL_INFO(dev)->gen < 6)
4789 		return -ENODEV;
4790 
4791 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4792 
4793 	DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4794 
4795 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4796 	if (ret)
4797 		return ret;
4798 
4799 	/*
4800 	 * Turbo will still be enabled, but won't go above the set value.
4801 	 */
4802 	val = intel_freq_opcode(dev_priv, val);
4803 
4804 	hw_max = dev_priv->rps.max_freq;
4805 	hw_min = dev_priv->rps.min_freq;
4806 
4807 	if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4808 		mutex_unlock(&dev_priv->rps.hw_lock);
4809 		return -EINVAL;
4810 	}
4811 
4812 	dev_priv->rps.max_freq_softlimit = val;
4813 
4814 	intel_set_rps(dev, val);
4815 
4816 	mutex_unlock(&dev_priv->rps.hw_lock);
4817 
4818 	return 0;
4819 }
4820 
4821 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4822 			i915_max_freq_get, i915_max_freq_set,
4823 			"%llu\n");
4824 
4825 static int
4826 i915_min_freq_get(void *data, u64 *val)
4827 {
4828 	struct drm_device *dev = data;
4829 	struct drm_i915_private *dev_priv = dev->dev_private;
4830 	int ret;
4831 
4832 	if (INTEL_INFO(dev)->gen < 6)
4833 		return -ENODEV;
4834 
4835 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4836 
4837 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4838 	if (ret)
4839 		return ret;
4840 
4841 	*val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4842 	mutex_unlock(&dev_priv->rps.hw_lock);
4843 
4844 	return 0;
4845 }
4846 
4847 static int
4848 i915_min_freq_set(void *data, u64 val)
4849 {
4850 	struct drm_device *dev = data;
4851 	struct drm_i915_private *dev_priv = dev->dev_private;
4852 	u32 hw_max, hw_min;
4853 	int ret;
4854 
4855 	if (INTEL_INFO(dev)->gen < 6)
4856 		return -ENODEV;
4857 
4858 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4859 
4860 	DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4861 
4862 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4863 	if (ret)
4864 		return ret;
4865 
4866 	/*
4867 	 * Turbo will still be enabled, but won't go below the set value.
4868 	 */
4869 	val = intel_freq_opcode(dev_priv, val);
4870 
4871 	hw_max = dev_priv->rps.max_freq;
4872 	hw_min = dev_priv->rps.min_freq;
4873 
4874 	if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
4875 		mutex_unlock(&dev_priv->rps.hw_lock);
4876 		return -EINVAL;
4877 	}
4878 
4879 	dev_priv->rps.min_freq_softlimit = val;
4880 
4881 	intel_set_rps(dev, val);
4882 
4883 	mutex_unlock(&dev_priv->rps.hw_lock);
4884 
4885 	return 0;
4886 }
4887 
4888 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4889 			i915_min_freq_get, i915_min_freq_set,
4890 			"%llu\n");
4891 
4892 static int
4893 i915_cache_sharing_get(void *data, u64 *val)
4894 {
4895 	struct drm_device *dev = data;
4896 	struct drm_i915_private *dev_priv = dev->dev_private;
4897 	u32 snpcr;
4898 	int ret;
4899 
4900 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4901 		return -ENODEV;
4902 
4903 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4904 	if (ret)
4905 		return ret;
4906 	intel_runtime_pm_get(dev_priv);
4907 
4908 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4909 
4910 	intel_runtime_pm_put(dev_priv);
4911 	mutex_unlock(&dev_priv->dev->struct_mutex);
4912 
4913 	*val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4914 
4915 	return 0;
4916 }
4917 
4918 static int
4919 i915_cache_sharing_set(void *data, u64 val)
4920 {
4921 	struct drm_device *dev = data;
4922 	struct drm_i915_private *dev_priv = dev->dev_private;
4923 	u32 snpcr;
4924 
4925 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4926 		return -ENODEV;
4927 
4928 	if (val > 3)
4929 		return -EINVAL;
4930 
4931 	intel_runtime_pm_get(dev_priv);
4932 	DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4933 
4934 	/* Update the cache sharing policy here as well */
4935 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4936 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
4937 	snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4938 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4939 
4940 	intel_runtime_pm_put(dev_priv);
4941 	return 0;
4942 }
4943 
4944 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4945 			i915_cache_sharing_get, i915_cache_sharing_set,
4946 			"%llu\n");
4947 
4948 struct sseu_dev_status {
4949 	unsigned int slice_total;
4950 	unsigned int subslice_total;
4951 	unsigned int subslice_per_slice;
4952 	unsigned int eu_total;
4953 	unsigned int eu_per_subslice;
4954 };
4955 
4956 static void cherryview_sseu_device_status(struct drm_device *dev,
4957 					  struct sseu_dev_status *stat)
4958 {
4959 	struct drm_i915_private *dev_priv = dev->dev_private;
4960 	int ss_max = 2;
4961 	int ss;
4962 	u32 sig1[ss_max], sig2[ss_max];
4963 
4964 	sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
4965 	sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
4966 	sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
4967 	sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
4968 
4969 	for (ss = 0; ss < ss_max; ss++) {
4970 		unsigned int eu_cnt;
4971 
4972 		if (sig1[ss] & CHV_SS_PG_ENABLE)
4973 			/* skip disabled subslice */
4974 			continue;
4975 
4976 		stat->slice_total = 1;
4977 		stat->subslice_per_slice++;
4978 		eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
4979 			 ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
4980 			 ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
4981 			 ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
4982 		stat->eu_total += eu_cnt;
4983 		stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
4984 	}
4985 	stat->subslice_total = stat->subslice_per_slice;
4986 }
4987 
4988 static void gen9_sseu_device_status(struct drm_device *dev,
4989 				    struct sseu_dev_status *stat)
4990 {
4991 	struct drm_i915_private *dev_priv = dev->dev_private;
4992 	int s_max = 3, ss_max = 4;
4993 	int s, ss;
4994 	u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
4995 
4996 	/* BXT has a single slice and at most 3 subslices. */
4997 	if (IS_BROXTON(dev)) {
4998 		s_max = 1;
4999 		ss_max = 3;
5000 	}
5001 
5002 	for (s = 0; s < s_max; s++) {
5003 		s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
5004 		eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
5005 		eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
5006 	}
5007 
5008 	eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
5009 		     GEN9_PGCTL_SSA_EU19_ACK |
5010 		     GEN9_PGCTL_SSA_EU210_ACK |
5011 		     GEN9_PGCTL_SSA_EU311_ACK;
5012 	eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
5013 		     GEN9_PGCTL_SSB_EU19_ACK |
5014 		     GEN9_PGCTL_SSB_EU210_ACK |
5015 		     GEN9_PGCTL_SSB_EU311_ACK;
5016 
5017 	for (s = 0; s < s_max; s++) {
5018 		unsigned int ss_cnt = 0;
5019 
5020 		if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
5021 			/* skip disabled slice */
5022 			continue;
5023 
5024 		stat->slice_total++;
5025 
5026 		if (IS_SKYLAKE(dev))
5027 			ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
5028 
5029 		for (ss = 0; ss < ss_max; ss++) {
5030 			unsigned int eu_cnt;
5031 
5032 			if (IS_BROXTON(dev) &&
5033 			    !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
5034 				/* skip disabled subslice */
5035 				continue;
5036 
5037 			if (IS_BROXTON(dev))
5038 				ss_cnt++;
5039 
5040 			eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
5041 					       eu_mask[ss%2]);
5042 			stat->eu_total += eu_cnt;
5043 			stat->eu_per_subslice = max(stat->eu_per_subslice,
5044 						    eu_cnt);
5045 		}
5046 
5047 		stat->subslice_total += ss_cnt;
5048 		stat->subslice_per_slice = max(stat->subslice_per_slice,
5049 					       ss_cnt);
5050 	}
5051 }
5052 
5053 static void broadwell_sseu_device_status(struct drm_device *dev,
5054 					 struct sseu_dev_status *stat)
5055 {
5056 	struct drm_i915_private *dev_priv = dev->dev_private;
5057 	int s;
5058 	u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
5059 
5060 	stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK);
5061 
5062 	if (stat->slice_total) {
5063 		stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice;
5064 		stat->subslice_total = stat->slice_total *
5065 				       stat->subslice_per_slice;
5066 		stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice;
5067 		stat->eu_total = stat->eu_per_subslice * stat->subslice_total;
5068 
5069 		/* subtract fused off EU(s) from enabled slice(s) */
5070 		for (s = 0; s < stat->slice_total; s++) {
5071 			u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s];
5072 
5073 			stat->eu_total -= hweight8(subslice_7eu);
5074 		}
5075 	}
5076 }
5077 
5078 static int i915_sseu_status(struct seq_file *m, void *unused)
5079 {
5080 	struct drm_info_node *node = (struct drm_info_node *) m->private;
5081 	struct drm_device *dev = node->minor->dev;
5082 	struct sseu_dev_status stat;
5083 
5084 	if (INTEL_INFO(dev)->gen < 8)
5085 		return -ENODEV;
5086 
5087 	seq_puts(m, "SSEU Device Info\n");
5088 	seq_printf(m, "  Available Slice Total: %u\n",
5089 		   INTEL_INFO(dev)->slice_total);
5090 	seq_printf(m, "  Available Subslice Total: %u\n",
5091 		   INTEL_INFO(dev)->subslice_total);
5092 	seq_printf(m, "  Available Subslice Per Slice: %u\n",
5093 		   INTEL_INFO(dev)->subslice_per_slice);
5094 	seq_printf(m, "  Available EU Total: %u\n",
5095 		   INTEL_INFO(dev)->eu_total);
5096 	seq_printf(m, "  Available EU Per Subslice: %u\n",
5097 		   INTEL_INFO(dev)->eu_per_subslice);
5098 	seq_printf(m, "  Has Slice Power Gating: %s\n",
5099 		   yesno(INTEL_INFO(dev)->has_slice_pg));
5100 	seq_printf(m, "  Has Subslice Power Gating: %s\n",
5101 		   yesno(INTEL_INFO(dev)->has_subslice_pg));
5102 	seq_printf(m, "  Has EU Power Gating: %s\n",
5103 		   yesno(INTEL_INFO(dev)->has_eu_pg));
5104 
5105 	seq_puts(m, "SSEU Device Status\n");
5106 	memset(&stat, 0, sizeof(stat));
5107 	if (IS_CHERRYVIEW(dev)) {
5108 		cherryview_sseu_device_status(dev, &stat);
5109 	} else if (IS_BROADWELL(dev)) {
5110 		broadwell_sseu_device_status(dev, &stat);
5111 	} else if (INTEL_INFO(dev)->gen >= 9) {
5112 		gen9_sseu_device_status(dev, &stat);
5113 	}
5114 	seq_printf(m, "  Enabled Slice Total: %u\n",
5115 		   stat.slice_total);
5116 	seq_printf(m, "  Enabled Subslice Total: %u\n",
5117 		   stat.subslice_total);
5118 	seq_printf(m, "  Enabled Subslice Per Slice: %u\n",
5119 		   stat.subslice_per_slice);
5120 	seq_printf(m, "  Enabled EU Total: %u\n",
5121 		   stat.eu_total);
5122 	seq_printf(m, "  Enabled EU Per Subslice: %u\n",
5123 		   stat.eu_per_subslice);
5124 
5125 	return 0;
5126 }
5127 
5128 static int i915_forcewake_open(struct inode *inode, struct file *file)
5129 {
5130 	struct drm_device *dev = inode->i_private;
5131 	struct drm_i915_private *dev_priv = dev->dev_private;
5132 
5133 	if (INTEL_INFO(dev)->gen < 6)
5134 		return 0;
5135 
5136 	intel_runtime_pm_get(dev_priv);
5137 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5138 
5139 	return 0;
5140 }
5141 
5142 static int i915_forcewake_release(struct inode *inode, struct file *file)
5143 {
5144 	struct drm_device *dev = inode->i_private;
5145 	struct drm_i915_private *dev_priv = dev->dev_private;
5146 
5147 	if (INTEL_INFO(dev)->gen < 6)
5148 		return 0;
5149 
5150 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5151 	intel_runtime_pm_put(dev_priv);
5152 
5153 	return 0;
5154 }
5155 
5156 static const struct file_operations i915_forcewake_fops = {
5157 	.owner = THIS_MODULE,
5158 	.open = i915_forcewake_open,
5159 	.release = i915_forcewake_release,
5160 };
5161 
5162 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5163 {
5164 	struct drm_device *dev = minor->dev;
5165 	struct dentry *ent;
5166 
5167 	ent = debugfs_create_file("i915_forcewake_user",
5168 				  S_IRUSR,
5169 				  root, dev,
5170 				  &i915_forcewake_fops);
5171 	if (!ent)
5172 		return -ENOMEM;
5173 
5174 	return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5175 }
5176 
5177 static int i915_debugfs_create(struct dentry *root,
5178 			       struct drm_minor *minor,
5179 			       const char *name,
5180 			       const struct file_operations *fops)
5181 {
5182 	struct drm_device *dev = minor->dev;
5183 	struct dentry *ent;
5184 
5185 	ent = debugfs_create_file(name,
5186 				  S_IRUGO | S_IWUSR,
5187 				  root, dev,
5188 				  fops);
5189 	if (!ent)
5190 		return -ENOMEM;
5191 
5192 	return drm_add_fake_info_node(minor, ent, fops);
5193 }
5194 
5195 static const struct drm_info_list i915_debugfs_list[] = {
5196 	{"i915_capabilities", i915_capabilities, 0},
5197 	{"i915_gem_objects", i915_gem_object_info, 0},
5198 	{"i915_gem_gtt", i915_gem_gtt_info, 0},
5199 	{"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
5200 	{"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
5201 	{"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
5202 	{"i915_gem_stolen", i915_gem_stolen_list_info },
5203 	{"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5204 	{"i915_gem_request", i915_gem_request_info, 0},
5205 	{"i915_gem_seqno", i915_gem_seqno_info, 0},
5206 	{"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5207 	{"i915_gem_interrupt", i915_interrupt_info, 0},
5208 	{"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5209 	{"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5210 	{"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5211 	{"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5212 	{"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5213 	{"i915_guc_info", i915_guc_info, 0},
5214 	{"i915_guc_load_status", i915_guc_load_status_info, 0},
5215 	{"i915_guc_log_dump", i915_guc_log_dump, 0},
5216 	{"i915_frequency_info", i915_frequency_info, 0},
5217 	{"i915_hangcheck_info", i915_hangcheck_info, 0},
5218 	{"i915_drpc_info", i915_drpc_info, 0},
5219 	{"i915_emon_status", i915_emon_status, 0},
5220 	{"i915_ring_freq_table", i915_ring_freq_table, 0},
5221 	{"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5222 	{"i915_fbc_status", i915_fbc_status, 0},
5223 	{"i915_ips_status", i915_ips_status, 0},
5224 	{"i915_sr_status", i915_sr_status, 0},
5225 	{"i915_opregion", i915_opregion, 0},
5226 	{"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5227 	{"i915_context_status", i915_context_status, 0},
5228 	{"i915_dump_lrc", i915_dump_lrc, 0},
5229 	{"i915_execlists", i915_execlists, 0},
5230 	{"i915_forcewake_domains", i915_forcewake_domains, 0},
5231 	{"i915_swizzle_info", i915_swizzle_info, 0},
5232 	{"i915_ppgtt_info", i915_ppgtt_info, 0},
5233 	{"i915_llc", i915_llc, 0},
5234 	{"i915_edp_psr_status", i915_edp_psr_status, 0},
5235 	{"i915_sink_crc_eDP1", i915_sink_crc, 0},
5236 	{"i915_energy_uJ", i915_energy_uJ, 0},
5237 	{"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5238 	{"i915_power_domain_info", i915_power_domain_info, 0},
5239 	{"i915_display_info", i915_display_info, 0},
5240 	{"i915_semaphore_status", i915_semaphore_status, 0},
5241 	{"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5242 	{"i915_dp_mst_info", i915_dp_mst_info, 0},
5243 	{"i915_wa_registers", i915_wa_registers, 0},
5244 	{"i915_ddb_info", i915_ddb_info, 0},
5245 	{"i915_sseu_status", i915_sseu_status, 0},
5246 	{"i915_drrs_status", i915_drrs_status, 0},
5247 	{"i915_rps_boost_info", i915_rps_boost_info, 0},
5248 };
5249 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5250 
5251 static const struct i915_debugfs_files {
5252 	const char *name;
5253 	const struct file_operations *fops;
5254 } i915_debugfs_files[] = {
5255 	{"i915_wedged", &i915_wedged_fops},
5256 	{"i915_max_freq", &i915_max_freq_fops},
5257 	{"i915_min_freq", &i915_min_freq_fops},
5258 	{"i915_cache_sharing", &i915_cache_sharing_fops},
5259 	{"i915_ring_stop", &i915_ring_stop_fops},
5260 	{"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5261 	{"i915_ring_test_irq", &i915_ring_test_irq_fops},
5262 	{"i915_gem_drop_caches", &i915_drop_caches_fops},
5263 	{"i915_error_state", &i915_error_state_fops},
5264 	{"i915_next_seqno", &i915_next_seqno_fops},
5265 	{"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5266 	{"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5267 	{"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5268 	{"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5269 	{"i915_fbc_false_color", &i915_fbc_fc_fops},
5270 	{"i915_dp_test_data", &i915_displayport_test_data_fops},
5271 	{"i915_dp_test_type", &i915_displayport_test_type_fops},
5272 	{"i915_dp_test_active", &i915_displayport_test_active_fops}
5273 };
5274 
5275 void intel_display_crc_init(struct drm_device *dev)
5276 {
5277 	struct drm_i915_private *dev_priv = dev->dev_private;
5278 	enum pipe pipe;
5279 
5280 	for_each_pipe(dev_priv, pipe) {
5281 		struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5282 
5283 		pipe_crc->opened = false;
5284 		spin_lock_init(&pipe_crc->lock);
5285 		init_waitqueue_head(&pipe_crc->wq);
5286 	}
5287 }
5288 
5289 int i915_debugfs_init(struct drm_minor *minor)
5290 {
5291 	int ret, i;
5292 
5293 	ret = i915_forcewake_create(minor->debugfs_root, minor);
5294 	if (ret)
5295 		return ret;
5296 
5297 	for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5298 		ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5299 		if (ret)
5300 			return ret;
5301 	}
5302 
5303 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5304 		ret = i915_debugfs_create(minor->debugfs_root, minor,
5305 					  i915_debugfs_files[i].name,
5306 					  i915_debugfs_files[i].fops);
5307 		if (ret)
5308 			return ret;
5309 	}
5310 
5311 	return drm_debugfs_create_files(i915_debugfs_list,
5312 					I915_DEBUGFS_ENTRIES,
5313 					minor->debugfs_root, minor);
5314 }
5315 
5316 void i915_debugfs_cleanup(struct drm_minor *minor)
5317 {
5318 	int i;
5319 
5320 	drm_debugfs_remove_files(i915_debugfs_list,
5321 				 I915_DEBUGFS_ENTRIES, minor);
5322 
5323 	drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
5324 				 1, minor);
5325 
5326 	for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5327 		struct drm_info_list *info_list =
5328 			(struct drm_info_list *)&i915_pipe_crc_data[i];
5329 
5330 		drm_debugfs_remove_files(info_list, 1, minor);
5331 	}
5332 
5333 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5334 		struct drm_info_list *info_list =
5335 			(struct drm_info_list *) i915_debugfs_files[i].fops;
5336 
5337 		drm_debugfs_remove_files(info_list, 1, minor);
5338 	}
5339 }
5340 
5341 struct dpcd_block {
5342 	/* DPCD dump start address. */
5343 	unsigned int offset;
5344 	/* DPCD dump end address, inclusive. If unset, .size will be used. */
5345 	unsigned int end;
5346 	/* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5347 	size_t size;
5348 	/* Only valid for eDP. */
5349 	bool edp;
5350 };
5351 
5352 static const struct dpcd_block i915_dpcd_debug[] = {
5353 	{ .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5354 	{ .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5355 	{ .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5356 	{ .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5357 	{ .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5358 	{ .offset = DP_SET_POWER },
5359 	{ .offset = DP_EDP_DPCD_REV },
5360 	{ .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5361 	{ .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5362 	{ .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5363 };
5364 
5365 static int i915_dpcd_show(struct seq_file *m, void *data)
5366 {
5367 	struct drm_connector *connector = m->private;
5368 	struct intel_dp *intel_dp =
5369 		enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5370 	uint8_t buf[16];
5371 	ssize_t err;
5372 	int i;
5373 
5374 	if (connector->status != connector_status_connected)
5375 		return -ENODEV;
5376 
5377 	for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5378 		const struct dpcd_block *b = &i915_dpcd_debug[i];
5379 		size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5380 
5381 		if (b->edp &&
5382 		    connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5383 			continue;
5384 
5385 		/* low tech for now */
5386 		if (WARN_ON(size > sizeof(buf)))
5387 			continue;
5388 
5389 		err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5390 		if (err <= 0) {
5391 			DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5392 				  size, b->offset, err);
5393 			continue;
5394 		}
5395 
5396 		seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5397 	}
5398 
5399 	return 0;
5400 }
5401 
5402 static int i915_dpcd_open(struct inode *inode, struct file *file)
5403 {
5404 	return single_open(file, i915_dpcd_show, inode->i_private);
5405 }
5406 
5407 static const struct file_operations i915_dpcd_fops = {
5408 	.owner = THIS_MODULE,
5409 	.open = i915_dpcd_open,
5410 	.read = seq_read,
5411 	.llseek = seq_lseek,
5412 	.release = single_release,
5413 };
5414 
5415 /**
5416  * i915_debugfs_connector_add - add i915 specific connector debugfs files
5417  * @connector: pointer to a registered drm_connector
5418  *
5419  * Cleanup will be done by drm_connector_unregister() through a call to
5420  * drm_debugfs_connector_remove().
5421  *
5422  * Returns 0 on success, negative error codes on error.
5423  */
5424 int i915_debugfs_connector_add(struct drm_connector *connector)
5425 {
5426 	struct dentry *root = connector->debugfs_entry;
5427 
5428 	/* The connector must have been registered beforehands. */
5429 	if (!root)
5430 		return -ENODEV;
5431 
5432 	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5433 	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5434 		debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
5435 				    &i915_dpcd_fops);
5436 
5437 	return 0;
5438 }
5439