1 /* 2 * Copyright © 2008 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * Keith Packard <keithp@keithp.com> 26 * 27 */ 28 29 #include <linux/seq_file.h> 30 #include <linux/circ_buf.h> 31 #include <linux/ctype.h> 32 #include <linux/debugfs.h> 33 #include <linux/slab.h> 34 #include <linux/export.h> 35 #include <linux/list_sort.h> 36 #include <asm/msr-index.h> 37 #include <drm/drmP.h> 38 #include "intel_drv.h" 39 #include "intel_ringbuffer.h" 40 #include <drm/i915_drm.h> 41 #include "i915_drv.h" 42 43 enum { 44 ACTIVE_LIST, 45 INACTIVE_LIST, 46 PINNED_LIST, 47 }; 48 49 /* As the drm_debugfs_init() routines are called before dev->dev_private is 50 * allocated we need to hook into the minor for release. */ 51 static int 52 drm_add_fake_info_node(struct drm_minor *minor, 53 struct dentry *ent, 54 const void *key) 55 { 56 struct drm_info_node *node; 57 58 node = kmalloc(sizeof(*node), GFP_KERNEL); 59 if (node == NULL) { 60 debugfs_remove(ent); 61 return -ENOMEM; 62 } 63 64 node->minor = minor; 65 node->dent = ent; 66 node->info_ent = (void *) key; 67 68 mutex_lock(&minor->debugfs_lock); 69 list_add(&node->list, &minor->debugfs_list); 70 mutex_unlock(&minor->debugfs_lock); 71 72 return 0; 73 } 74 75 static int i915_capabilities(struct seq_file *m, void *data) 76 { 77 struct drm_info_node *node = m->private; 78 struct drm_device *dev = node->minor->dev; 79 const struct intel_device_info *info = INTEL_INFO(dev); 80 81 seq_printf(m, "gen: %d\n", info->gen); 82 seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev)); 83 #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x)) 84 #define SEP_SEMICOLON ; 85 DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON); 86 #undef PRINT_FLAG 87 #undef SEP_SEMICOLON 88 89 return 0; 90 } 91 92 static const char *get_pin_flag(struct drm_i915_gem_object *obj) 93 { 94 if (obj->pin_display) 95 return "p"; 96 else 97 return " "; 98 } 99 100 static const char *get_tiling_flag(struct drm_i915_gem_object *obj) 101 { 102 switch (obj->tiling_mode) { 103 default: 104 case I915_TILING_NONE: return " "; 105 case I915_TILING_X: return "X"; 106 case I915_TILING_Y: return "Y"; 107 } 108 } 109 110 static inline const char *get_global_flag(struct drm_i915_gem_object *obj) 111 { 112 return i915_gem_obj_to_ggtt(obj) ? "g" : " "; 113 } 114 115 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj) 116 { 117 u64 size = 0; 118 struct i915_vma *vma; 119 120 list_for_each_entry(vma, &obj->vma_list, vma_link) { 121 if (i915_is_ggtt(vma->vm) && 122 drm_mm_node_allocated(&vma->node)) 123 size += vma->node.size; 124 } 125 126 return size; 127 } 128 129 static void 130 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj) 131 { 132 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 133 struct intel_engine_cs *ring; 134 struct i915_vma *vma; 135 int pin_count = 0; 136 int i; 137 138 seq_printf(m, "%pK: %s%s%s%s %8zdKiB %02x %02x [ ", 139 &obj->base, 140 obj->active ? "*" : " ", 141 get_pin_flag(obj), 142 get_tiling_flag(obj), 143 get_global_flag(obj), 144 obj->base.size / 1024, 145 obj->base.read_domains, 146 obj->base.write_domain); 147 for_each_ring(ring, dev_priv, i) 148 seq_printf(m, "%x ", 149 i915_gem_request_get_seqno(obj->last_read_req[i])); 150 seq_printf(m, "] %x %x%s%s%s", 151 i915_gem_request_get_seqno(obj->last_write_req), 152 i915_gem_request_get_seqno(obj->last_fenced_req), 153 i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level), 154 obj->dirty ? " dirty" : "", 155 obj->madv == I915_MADV_DONTNEED ? " purgeable" : ""); 156 if (obj->base.name) 157 seq_printf(m, " (name: %d)", obj->base.name); 158 list_for_each_entry(vma, &obj->vma_list, vma_link) { 159 if (vma->pin_count > 0) 160 pin_count++; 161 } 162 seq_printf(m, " (pinned x %d)", pin_count); 163 if (obj->pin_display) 164 seq_printf(m, " (display)"); 165 if (obj->fence_reg != I915_FENCE_REG_NONE) 166 seq_printf(m, " (fence: %d)", obj->fence_reg); 167 list_for_each_entry(vma, &obj->vma_list, vma_link) { 168 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx", 169 i915_is_ggtt(vma->vm) ? "g" : "pp", 170 vma->node.start, vma->node.size); 171 if (i915_is_ggtt(vma->vm)) 172 seq_printf(m, ", type: %u)", vma->ggtt_view.type); 173 else 174 seq_puts(m, ")"); 175 } 176 if (obj->stolen) 177 seq_printf(m, " (stolen: %08llx)", obj->stolen->start); 178 if (obj->pin_display || obj->fault_mappable) { 179 char s[3], *t = s; 180 if (obj->pin_display) 181 *t++ = 'p'; 182 if (obj->fault_mappable) 183 *t++ = 'f'; 184 *t = '\0'; 185 seq_printf(m, " (%s mappable)", s); 186 } 187 if (obj->last_write_req != NULL) 188 seq_printf(m, " (%s)", 189 i915_gem_request_get_ring(obj->last_write_req)->name); 190 if (obj->frontbuffer_bits) 191 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits); 192 } 193 194 static void describe_ctx(struct seq_file *m, struct intel_context *ctx) 195 { 196 seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i'); 197 seq_putc(m, ctx->remap_slice ? 'R' : 'r'); 198 seq_putc(m, ' '); 199 } 200 201 static int i915_gem_object_list_info(struct seq_file *m, void *data) 202 { 203 struct drm_info_node *node = m->private; 204 uintptr_t list = (uintptr_t) node->info_ent->data; 205 struct list_head *head; 206 struct drm_device *dev = node->minor->dev; 207 struct drm_i915_private *dev_priv = dev->dev_private; 208 struct i915_address_space *vm = &dev_priv->gtt.base; 209 struct i915_vma *vma; 210 u64 total_obj_size, total_gtt_size; 211 int count, ret; 212 213 ret = mutex_lock_interruptible(&dev->struct_mutex); 214 if (ret) 215 return ret; 216 217 /* FIXME: the user of this interface might want more than just GGTT */ 218 switch (list) { 219 case ACTIVE_LIST: 220 seq_puts(m, "Active:\n"); 221 head = &vm->active_list; 222 break; 223 case INACTIVE_LIST: 224 seq_puts(m, "Inactive:\n"); 225 head = &vm->inactive_list; 226 break; 227 default: 228 mutex_unlock(&dev->struct_mutex); 229 return -EINVAL; 230 } 231 232 total_obj_size = total_gtt_size = count = 0; 233 list_for_each_entry(vma, head, mm_list) { 234 seq_printf(m, " "); 235 describe_obj(m, vma->obj); 236 seq_printf(m, "\n"); 237 total_obj_size += vma->obj->base.size; 238 total_gtt_size += vma->node.size; 239 count++; 240 } 241 mutex_unlock(&dev->struct_mutex); 242 243 seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n", 244 count, total_obj_size, total_gtt_size); 245 return 0; 246 } 247 248 static int obj_rank_by_stolen(void *priv, 249 struct list_head *A, struct list_head *B) 250 { 251 struct drm_i915_gem_object *a = 252 container_of(A, struct drm_i915_gem_object, obj_exec_link); 253 struct drm_i915_gem_object *b = 254 container_of(B, struct drm_i915_gem_object, obj_exec_link); 255 256 if (a->stolen->start < b->stolen->start) 257 return -1; 258 if (a->stolen->start > b->stolen->start) 259 return 1; 260 return 0; 261 } 262 263 static int i915_gem_stolen_list_info(struct seq_file *m, void *data) 264 { 265 struct drm_info_node *node = m->private; 266 struct drm_device *dev = node->minor->dev; 267 struct drm_i915_private *dev_priv = dev->dev_private; 268 struct drm_i915_gem_object *obj; 269 u64 total_obj_size, total_gtt_size; 270 LIST_HEAD(stolen); 271 int count, ret; 272 273 ret = mutex_lock_interruptible(&dev->struct_mutex); 274 if (ret) 275 return ret; 276 277 total_obj_size = total_gtt_size = count = 0; 278 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { 279 if (obj->stolen == NULL) 280 continue; 281 282 list_add(&obj->obj_exec_link, &stolen); 283 284 total_obj_size += obj->base.size; 285 total_gtt_size += i915_gem_obj_total_ggtt_size(obj); 286 count++; 287 } 288 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) { 289 if (obj->stolen == NULL) 290 continue; 291 292 list_add(&obj->obj_exec_link, &stolen); 293 294 total_obj_size += obj->base.size; 295 count++; 296 } 297 list_sort(NULL, &stolen, obj_rank_by_stolen); 298 seq_puts(m, "Stolen:\n"); 299 while (!list_empty(&stolen)) { 300 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link); 301 seq_puts(m, " "); 302 describe_obj(m, obj); 303 seq_putc(m, '\n'); 304 list_del_init(&obj->obj_exec_link); 305 } 306 mutex_unlock(&dev->struct_mutex); 307 308 seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n", 309 count, total_obj_size, total_gtt_size); 310 return 0; 311 } 312 313 #define count_objects(list, member) do { \ 314 list_for_each_entry(obj, list, member) { \ 315 size += i915_gem_obj_total_ggtt_size(obj); \ 316 ++count; \ 317 if (obj->map_and_fenceable) { \ 318 mappable_size += i915_gem_obj_ggtt_size(obj); \ 319 ++mappable_count; \ 320 } \ 321 } \ 322 } while (0) 323 324 struct file_stats { 325 struct drm_i915_file_private *file_priv; 326 unsigned long count; 327 u64 total, unbound; 328 u64 global, shared; 329 u64 active, inactive; 330 }; 331 332 static int per_file_stats(int id, void *ptr, void *data) 333 { 334 struct drm_i915_gem_object *obj = ptr; 335 struct file_stats *stats = data; 336 struct i915_vma *vma; 337 338 stats->count++; 339 stats->total += obj->base.size; 340 341 if (obj->base.name || obj->base.dma_buf) 342 stats->shared += obj->base.size; 343 344 if (USES_FULL_PPGTT(obj->base.dev)) { 345 list_for_each_entry(vma, &obj->vma_list, vma_link) { 346 struct i915_hw_ppgtt *ppgtt; 347 348 if (!drm_mm_node_allocated(&vma->node)) 349 continue; 350 351 if (i915_is_ggtt(vma->vm)) { 352 stats->global += obj->base.size; 353 continue; 354 } 355 356 ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base); 357 if (ppgtt->file_priv != stats->file_priv) 358 continue; 359 360 if (obj->active) /* XXX per-vma statistic */ 361 stats->active += obj->base.size; 362 else 363 stats->inactive += obj->base.size; 364 365 return 0; 366 } 367 } else { 368 if (i915_gem_obj_ggtt_bound(obj)) { 369 stats->global += obj->base.size; 370 if (obj->active) 371 stats->active += obj->base.size; 372 else 373 stats->inactive += obj->base.size; 374 return 0; 375 } 376 } 377 378 if (!list_empty(&obj->global_list)) 379 stats->unbound += obj->base.size; 380 381 return 0; 382 } 383 384 #define print_file_stats(m, name, stats) do { \ 385 if (stats.count) \ 386 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \ 387 name, \ 388 stats.count, \ 389 stats.total, \ 390 stats.active, \ 391 stats.inactive, \ 392 stats.global, \ 393 stats.shared, \ 394 stats.unbound); \ 395 } while (0) 396 397 static void print_batch_pool_stats(struct seq_file *m, 398 struct drm_i915_private *dev_priv) 399 { 400 struct drm_i915_gem_object *obj; 401 struct file_stats stats; 402 struct intel_engine_cs *ring; 403 int i, j; 404 405 memset(&stats, 0, sizeof(stats)); 406 407 for_each_ring(ring, dev_priv, i) { 408 for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) { 409 list_for_each_entry(obj, 410 &ring->batch_pool.cache_list[j], 411 batch_pool_link) 412 per_file_stats(0, obj, &stats); 413 } 414 } 415 416 print_file_stats(m, "[k]batch pool", stats); 417 } 418 419 #define count_vmas(list, member) do { \ 420 list_for_each_entry(vma, list, member) { \ 421 size += i915_gem_obj_total_ggtt_size(vma->obj); \ 422 ++count; \ 423 if (vma->obj->map_and_fenceable) { \ 424 mappable_size += i915_gem_obj_ggtt_size(vma->obj); \ 425 ++mappable_count; \ 426 } \ 427 } \ 428 } while (0) 429 430 static int i915_gem_object_info(struct seq_file *m, void* data) 431 { 432 struct drm_info_node *node = m->private; 433 struct drm_device *dev = node->minor->dev; 434 struct drm_i915_private *dev_priv = dev->dev_private; 435 u32 count, mappable_count, purgeable_count; 436 u64 size, mappable_size, purgeable_size; 437 struct drm_i915_gem_object *obj; 438 struct i915_address_space *vm = &dev_priv->gtt.base; 439 struct drm_file *file; 440 struct i915_vma *vma; 441 int ret; 442 443 ret = mutex_lock_interruptible(&dev->struct_mutex); 444 if (ret) 445 return ret; 446 447 seq_printf(m, "%u objects, %zu bytes\n", 448 dev_priv->mm.object_count, 449 dev_priv->mm.object_memory); 450 451 size = count = mappable_size = mappable_count = 0; 452 count_objects(&dev_priv->mm.bound_list, global_list); 453 seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n", 454 count, mappable_count, size, mappable_size); 455 456 size = count = mappable_size = mappable_count = 0; 457 count_vmas(&vm->active_list, mm_list); 458 seq_printf(m, " %u [%u] active objects, %llu [%llu] bytes\n", 459 count, mappable_count, size, mappable_size); 460 461 size = count = mappable_size = mappable_count = 0; 462 count_vmas(&vm->inactive_list, mm_list); 463 seq_printf(m, " %u [%u] inactive objects, %llu [%llu] bytes\n", 464 count, mappable_count, size, mappable_size); 465 466 size = count = purgeable_size = purgeable_count = 0; 467 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) { 468 size += obj->base.size, ++count; 469 if (obj->madv == I915_MADV_DONTNEED) 470 purgeable_size += obj->base.size, ++purgeable_count; 471 } 472 seq_printf(m, "%u unbound objects, %llu bytes\n", count, size); 473 474 size = count = mappable_size = mappable_count = 0; 475 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { 476 if (obj->fault_mappable) { 477 size += i915_gem_obj_ggtt_size(obj); 478 ++count; 479 } 480 if (obj->pin_display) { 481 mappable_size += i915_gem_obj_ggtt_size(obj); 482 ++mappable_count; 483 } 484 if (obj->madv == I915_MADV_DONTNEED) { 485 purgeable_size += obj->base.size; 486 ++purgeable_count; 487 } 488 } 489 seq_printf(m, "%u purgeable objects, %llu bytes\n", 490 purgeable_count, purgeable_size); 491 seq_printf(m, "%u pinned mappable objects, %llu bytes\n", 492 mappable_count, mappable_size); 493 seq_printf(m, "%u fault mappable objects, %llu bytes\n", 494 count, size); 495 496 seq_printf(m, "%llu [%llu] gtt total\n", 497 dev_priv->gtt.base.total, 498 (u64)dev_priv->gtt.mappable_end - dev_priv->gtt.base.start); 499 500 seq_putc(m, '\n'); 501 print_batch_pool_stats(m, dev_priv); 502 list_for_each_entry_reverse(file, &dev->filelist, lhead) { 503 struct file_stats stats; 504 struct task_struct *task; 505 506 memset(&stats, 0, sizeof(stats)); 507 stats.file_priv = file->driver_priv; 508 spin_lock(&file->table_lock); 509 idr_for_each(&file->object_idr, per_file_stats, &stats); 510 spin_unlock(&file->table_lock); 511 /* 512 * Although we have a valid reference on file->pid, that does 513 * not guarantee that the task_struct who called get_pid() is 514 * still alive (e.g. get_pid(current) => fork() => exit()). 515 * Therefore, we need to protect this ->comm access using RCU. 516 */ 517 rcu_read_lock(); 518 task = pid_task(file->pid, PIDTYPE_PID); 519 print_file_stats(m, task ? task->comm : "<unknown>", stats); 520 rcu_read_unlock(); 521 } 522 523 mutex_unlock(&dev->struct_mutex); 524 525 return 0; 526 } 527 528 static int i915_gem_gtt_info(struct seq_file *m, void *data) 529 { 530 struct drm_info_node *node = m->private; 531 struct drm_device *dev = node->minor->dev; 532 uintptr_t list = (uintptr_t) node->info_ent->data; 533 struct drm_i915_private *dev_priv = dev->dev_private; 534 struct drm_i915_gem_object *obj; 535 u64 total_obj_size, total_gtt_size; 536 int count, ret; 537 538 ret = mutex_lock_interruptible(&dev->struct_mutex); 539 if (ret) 540 return ret; 541 542 total_obj_size = total_gtt_size = count = 0; 543 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { 544 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj)) 545 continue; 546 547 seq_puts(m, " "); 548 describe_obj(m, obj); 549 seq_putc(m, '\n'); 550 total_obj_size += obj->base.size; 551 total_gtt_size += i915_gem_obj_total_ggtt_size(obj); 552 count++; 553 } 554 555 mutex_unlock(&dev->struct_mutex); 556 557 seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n", 558 count, total_obj_size, total_gtt_size); 559 560 return 0; 561 } 562 563 static int i915_gem_pageflip_info(struct seq_file *m, void *data) 564 { 565 struct drm_info_node *node = m->private; 566 struct drm_device *dev = node->minor->dev; 567 struct drm_i915_private *dev_priv = dev->dev_private; 568 struct intel_crtc *crtc; 569 int ret; 570 571 ret = mutex_lock_interruptible(&dev->struct_mutex); 572 if (ret) 573 return ret; 574 575 for_each_intel_crtc(dev, crtc) { 576 const char pipe = pipe_name(crtc->pipe); 577 const char plane = plane_name(crtc->plane); 578 struct intel_unpin_work *work; 579 580 spin_lock_irq(&dev->event_lock); 581 work = crtc->unpin_work; 582 if (work == NULL) { 583 seq_printf(m, "No flip due on pipe %c (plane %c)\n", 584 pipe, plane); 585 } else { 586 u32 addr; 587 588 if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) { 589 seq_printf(m, "Flip queued on pipe %c (plane %c)\n", 590 pipe, plane); 591 } else { 592 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n", 593 pipe, plane); 594 } 595 if (work->flip_queued_req) { 596 struct intel_engine_cs *ring = 597 i915_gem_request_get_ring(work->flip_queued_req); 598 599 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n", 600 ring->name, 601 i915_gem_request_get_seqno(work->flip_queued_req), 602 dev_priv->next_seqno, 603 ring->get_seqno(ring, true), 604 i915_gem_request_completed(work->flip_queued_req, true)); 605 } else 606 seq_printf(m, "Flip not associated with any ring\n"); 607 seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n", 608 work->flip_queued_vblank, 609 work->flip_ready_vblank, 610 drm_crtc_vblank_count(&crtc->base)); 611 if (work->enable_stall_check) 612 seq_puts(m, "Stall check enabled, "); 613 else 614 seq_puts(m, "Stall check waiting for page flip ioctl, "); 615 seq_printf(m, "%d prepares\n", atomic_read(&work->pending)); 616 617 if (INTEL_INFO(dev)->gen >= 4) 618 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane))); 619 else 620 addr = I915_READ(DSPADDR(crtc->plane)); 621 seq_printf(m, "Current scanout address 0x%08x\n", addr); 622 623 if (work->pending_flip_obj) { 624 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset); 625 seq_printf(m, "MMIO update completed? %d\n", addr == work->gtt_offset); 626 } 627 } 628 spin_unlock_irq(&dev->event_lock); 629 } 630 631 mutex_unlock(&dev->struct_mutex); 632 633 return 0; 634 } 635 636 static int i915_gem_batch_pool_info(struct seq_file *m, void *data) 637 { 638 struct drm_info_node *node = m->private; 639 struct drm_device *dev = node->minor->dev; 640 struct drm_i915_private *dev_priv = dev->dev_private; 641 struct drm_i915_gem_object *obj; 642 struct intel_engine_cs *ring; 643 int total = 0; 644 int ret, i, j; 645 646 ret = mutex_lock_interruptible(&dev->struct_mutex); 647 if (ret) 648 return ret; 649 650 for_each_ring(ring, dev_priv, i) { 651 for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) { 652 int count; 653 654 count = 0; 655 list_for_each_entry(obj, 656 &ring->batch_pool.cache_list[j], 657 batch_pool_link) 658 count++; 659 seq_printf(m, "%s cache[%d]: %d objects\n", 660 ring->name, j, count); 661 662 list_for_each_entry(obj, 663 &ring->batch_pool.cache_list[j], 664 batch_pool_link) { 665 seq_puts(m, " "); 666 describe_obj(m, obj); 667 seq_putc(m, '\n'); 668 } 669 670 total += count; 671 } 672 } 673 674 seq_printf(m, "total: %d\n", total); 675 676 mutex_unlock(&dev->struct_mutex); 677 678 return 0; 679 } 680 681 static int i915_gem_request_info(struct seq_file *m, void *data) 682 { 683 struct drm_info_node *node = m->private; 684 struct drm_device *dev = node->minor->dev; 685 struct drm_i915_private *dev_priv = dev->dev_private; 686 struct intel_engine_cs *ring; 687 struct drm_i915_gem_request *req; 688 int ret, any, i; 689 690 ret = mutex_lock_interruptible(&dev->struct_mutex); 691 if (ret) 692 return ret; 693 694 any = 0; 695 for_each_ring(ring, dev_priv, i) { 696 int count; 697 698 count = 0; 699 list_for_each_entry(req, &ring->request_list, list) 700 count++; 701 if (count == 0) 702 continue; 703 704 seq_printf(m, "%s requests: %d\n", ring->name, count); 705 list_for_each_entry(req, &ring->request_list, list) { 706 struct task_struct *task; 707 708 rcu_read_lock(); 709 task = NULL; 710 if (req->pid) 711 task = pid_task(req->pid, PIDTYPE_PID); 712 seq_printf(m, " %x @ %d: %s [%d]\n", 713 req->seqno, 714 (int) (jiffies - req->emitted_jiffies), 715 task ? task->comm : "<unknown>", 716 task ? task->pid : -1); 717 rcu_read_unlock(); 718 } 719 720 any++; 721 } 722 mutex_unlock(&dev->struct_mutex); 723 724 if (any == 0) 725 seq_puts(m, "No requests\n"); 726 727 return 0; 728 } 729 730 static void i915_ring_seqno_info(struct seq_file *m, 731 struct intel_engine_cs *ring) 732 { 733 if (ring->get_seqno) { 734 seq_printf(m, "Current sequence (%s): %x\n", 735 ring->name, ring->get_seqno(ring, false)); 736 } 737 } 738 739 static int i915_gem_seqno_info(struct seq_file *m, void *data) 740 { 741 struct drm_info_node *node = m->private; 742 struct drm_device *dev = node->minor->dev; 743 struct drm_i915_private *dev_priv = dev->dev_private; 744 struct intel_engine_cs *ring; 745 int ret, i; 746 747 ret = mutex_lock_interruptible(&dev->struct_mutex); 748 if (ret) 749 return ret; 750 intel_runtime_pm_get(dev_priv); 751 752 for_each_ring(ring, dev_priv, i) 753 i915_ring_seqno_info(m, ring); 754 755 intel_runtime_pm_put(dev_priv); 756 mutex_unlock(&dev->struct_mutex); 757 758 return 0; 759 } 760 761 762 static int i915_interrupt_info(struct seq_file *m, void *data) 763 { 764 struct drm_info_node *node = m->private; 765 struct drm_device *dev = node->minor->dev; 766 struct drm_i915_private *dev_priv = dev->dev_private; 767 struct intel_engine_cs *ring; 768 int ret, i, pipe; 769 770 ret = mutex_lock_interruptible(&dev->struct_mutex); 771 if (ret) 772 return ret; 773 intel_runtime_pm_get(dev_priv); 774 775 if (IS_CHERRYVIEW(dev)) { 776 seq_printf(m, "Master Interrupt Control:\t%08x\n", 777 I915_READ(GEN8_MASTER_IRQ)); 778 779 seq_printf(m, "Display IER:\t%08x\n", 780 I915_READ(VLV_IER)); 781 seq_printf(m, "Display IIR:\t%08x\n", 782 I915_READ(VLV_IIR)); 783 seq_printf(m, "Display IIR_RW:\t%08x\n", 784 I915_READ(VLV_IIR_RW)); 785 seq_printf(m, "Display IMR:\t%08x\n", 786 I915_READ(VLV_IMR)); 787 for_each_pipe(dev_priv, pipe) 788 seq_printf(m, "Pipe %c stat:\t%08x\n", 789 pipe_name(pipe), 790 I915_READ(PIPESTAT(pipe))); 791 792 seq_printf(m, "Port hotplug:\t%08x\n", 793 I915_READ(PORT_HOTPLUG_EN)); 794 seq_printf(m, "DPFLIPSTAT:\t%08x\n", 795 I915_READ(VLV_DPFLIPSTAT)); 796 seq_printf(m, "DPINVGTT:\t%08x\n", 797 I915_READ(DPINVGTT)); 798 799 for (i = 0; i < 4; i++) { 800 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n", 801 i, I915_READ(GEN8_GT_IMR(i))); 802 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n", 803 i, I915_READ(GEN8_GT_IIR(i))); 804 seq_printf(m, "GT Interrupt IER %d:\t%08x\n", 805 i, I915_READ(GEN8_GT_IER(i))); 806 } 807 808 seq_printf(m, "PCU interrupt mask:\t%08x\n", 809 I915_READ(GEN8_PCU_IMR)); 810 seq_printf(m, "PCU interrupt identity:\t%08x\n", 811 I915_READ(GEN8_PCU_IIR)); 812 seq_printf(m, "PCU interrupt enable:\t%08x\n", 813 I915_READ(GEN8_PCU_IER)); 814 } else if (INTEL_INFO(dev)->gen >= 8) { 815 seq_printf(m, "Master Interrupt Control:\t%08x\n", 816 I915_READ(GEN8_MASTER_IRQ)); 817 818 for (i = 0; i < 4; i++) { 819 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n", 820 i, I915_READ(GEN8_GT_IMR(i))); 821 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n", 822 i, I915_READ(GEN8_GT_IIR(i))); 823 seq_printf(m, "GT Interrupt IER %d:\t%08x\n", 824 i, I915_READ(GEN8_GT_IER(i))); 825 } 826 827 for_each_pipe(dev_priv, pipe) { 828 if (!intel_display_power_is_enabled(dev_priv, 829 POWER_DOMAIN_PIPE(pipe))) { 830 seq_printf(m, "Pipe %c power disabled\n", 831 pipe_name(pipe)); 832 continue; 833 } 834 seq_printf(m, "Pipe %c IMR:\t%08x\n", 835 pipe_name(pipe), 836 I915_READ(GEN8_DE_PIPE_IMR(pipe))); 837 seq_printf(m, "Pipe %c IIR:\t%08x\n", 838 pipe_name(pipe), 839 I915_READ(GEN8_DE_PIPE_IIR(pipe))); 840 seq_printf(m, "Pipe %c IER:\t%08x\n", 841 pipe_name(pipe), 842 I915_READ(GEN8_DE_PIPE_IER(pipe))); 843 } 844 845 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n", 846 I915_READ(GEN8_DE_PORT_IMR)); 847 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n", 848 I915_READ(GEN8_DE_PORT_IIR)); 849 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n", 850 I915_READ(GEN8_DE_PORT_IER)); 851 852 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n", 853 I915_READ(GEN8_DE_MISC_IMR)); 854 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n", 855 I915_READ(GEN8_DE_MISC_IIR)); 856 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n", 857 I915_READ(GEN8_DE_MISC_IER)); 858 859 seq_printf(m, "PCU interrupt mask:\t%08x\n", 860 I915_READ(GEN8_PCU_IMR)); 861 seq_printf(m, "PCU interrupt identity:\t%08x\n", 862 I915_READ(GEN8_PCU_IIR)); 863 seq_printf(m, "PCU interrupt enable:\t%08x\n", 864 I915_READ(GEN8_PCU_IER)); 865 } else if (IS_VALLEYVIEW(dev)) { 866 seq_printf(m, "Display IER:\t%08x\n", 867 I915_READ(VLV_IER)); 868 seq_printf(m, "Display IIR:\t%08x\n", 869 I915_READ(VLV_IIR)); 870 seq_printf(m, "Display IIR_RW:\t%08x\n", 871 I915_READ(VLV_IIR_RW)); 872 seq_printf(m, "Display IMR:\t%08x\n", 873 I915_READ(VLV_IMR)); 874 for_each_pipe(dev_priv, pipe) 875 seq_printf(m, "Pipe %c stat:\t%08x\n", 876 pipe_name(pipe), 877 I915_READ(PIPESTAT(pipe))); 878 879 seq_printf(m, "Master IER:\t%08x\n", 880 I915_READ(VLV_MASTER_IER)); 881 882 seq_printf(m, "Render IER:\t%08x\n", 883 I915_READ(GTIER)); 884 seq_printf(m, "Render IIR:\t%08x\n", 885 I915_READ(GTIIR)); 886 seq_printf(m, "Render IMR:\t%08x\n", 887 I915_READ(GTIMR)); 888 889 seq_printf(m, "PM IER:\t\t%08x\n", 890 I915_READ(GEN6_PMIER)); 891 seq_printf(m, "PM IIR:\t\t%08x\n", 892 I915_READ(GEN6_PMIIR)); 893 seq_printf(m, "PM IMR:\t\t%08x\n", 894 I915_READ(GEN6_PMIMR)); 895 896 seq_printf(m, "Port hotplug:\t%08x\n", 897 I915_READ(PORT_HOTPLUG_EN)); 898 seq_printf(m, "DPFLIPSTAT:\t%08x\n", 899 I915_READ(VLV_DPFLIPSTAT)); 900 seq_printf(m, "DPINVGTT:\t%08x\n", 901 I915_READ(DPINVGTT)); 902 903 } else if (!HAS_PCH_SPLIT(dev)) { 904 seq_printf(m, "Interrupt enable: %08x\n", 905 I915_READ(IER)); 906 seq_printf(m, "Interrupt identity: %08x\n", 907 I915_READ(IIR)); 908 seq_printf(m, "Interrupt mask: %08x\n", 909 I915_READ(IMR)); 910 for_each_pipe(dev_priv, pipe) 911 seq_printf(m, "Pipe %c stat: %08x\n", 912 pipe_name(pipe), 913 I915_READ(PIPESTAT(pipe))); 914 } else { 915 seq_printf(m, "North Display Interrupt enable: %08x\n", 916 I915_READ(DEIER)); 917 seq_printf(m, "North Display Interrupt identity: %08x\n", 918 I915_READ(DEIIR)); 919 seq_printf(m, "North Display Interrupt mask: %08x\n", 920 I915_READ(DEIMR)); 921 seq_printf(m, "South Display Interrupt enable: %08x\n", 922 I915_READ(SDEIER)); 923 seq_printf(m, "South Display Interrupt identity: %08x\n", 924 I915_READ(SDEIIR)); 925 seq_printf(m, "South Display Interrupt mask: %08x\n", 926 I915_READ(SDEIMR)); 927 seq_printf(m, "Graphics Interrupt enable: %08x\n", 928 I915_READ(GTIER)); 929 seq_printf(m, "Graphics Interrupt identity: %08x\n", 930 I915_READ(GTIIR)); 931 seq_printf(m, "Graphics Interrupt mask: %08x\n", 932 I915_READ(GTIMR)); 933 } 934 for_each_ring(ring, dev_priv, i) { 935 if (INTEL_INFO(dev)->gen >= 6) { 936 seq_printf(m, 937 "Graphics Interrupt mask (%s): %08x\n", 938 ring->name, I915_READ_IMR(ring)); 939 } 940 i915_ring_seqno_info(m, ring); 941 } 942 intel_runtime_pm_put(dev_priv); 943 mutex_unlock(&dev->struct_mutex); 944 945 return 0; 946 } 947 948 static int i915_gem_fence_regs_info(struct seq_file *m, void *data) 949 { 950 struct drm_info_node *node = m->private; 951 struct drm_device *dev = node->minor->dev; 952 struct drm_i915_private *dev_priv = dev->dev_private; 953 int i, ret; 954 955 ret = mutex_lock_interruptible(&dev->struct_mutex); 956 if (ret) 957 return ret; 958 959 seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs); 960 for (i = 0; i < dev_priv->num_fence_regs; i++) { 961 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj; 962 963 seq_printf(m, "Fence %d, pin count = %d, object = ", 964 i, dev_priv->fence_regs[i].pin_count); 965 if (obj == NULL) 966 seq_puts(m, "unused"); 967 else 968 describe_obj(m, obj); 969 seq_putc(m, '\n'); 970 } 971 972 mutex_unlock(&dev->struct_mutex); 973 return 0; 974 } 975 976 static int i915_hws_info(struct seq_file *m, void *data) 977 { 978 struct drm_info_node *node = m->private; 979 struct drm_device *dev = node->minor->dev; 980 struct drm_i915_private *dev_priv = dev->dev_private; 981 struct intel_engine_cs *ring; 982 const u32 *hws; 983 int i; 984 985 ring = &dev_priv->ring[(uintptr_t)node->info_ent->data]; 986 hws = ring->status_page.page_addr; 987 if (hws == NULL) 988 return 0; 989 990 for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) { 991 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n", 992 i * 4, 993 hws[i], hws[i + 1], hws[i + 2], hws[i + 3]); 994 } 995 return 0; 996 } 997 998 static ssize_t 999 i915_error_state_write(struct file *filp, 1000 const char __user *ubuf, 1001 size_t cnt, 1002 loff_t *ppos) 1003 { 1004 struct i915_error_state_file_priv *error_priv = filp->private_data; 1005 struct drm_device *dev = error_priv->dev; 1006 int ret; 1007 1008 DRM_DEBUG_DRIVER("Resetting error state\n"); 1009 1010 ret = mutex_lock_interruptible(&dev->struct_mutex); 1011 if (ret) 1012 return ret; 1013 1014 i915_destroy_error_state(dev); 1015 mutex_unlock(&dev->struct_mutex); 1016 1017 return cnt; 1018 } 1019 1020 static int i915_error_state_open(struct inode *inode, struct file *file) 1021 { 1022 struct drm_device *dev = inode->i_private; 1023 struct i915_error_state_file_priv *error_priv; 1024 1025 error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL); 1026 if (!error_priv) 1027 return -ENOMEM; 1028 1029 error_priv->dev = dev; 1030 1031 i915_error_state_get(dev, error_priv); 1032 1033 file->private_data = error_priv; 1034 1035 return 0; 1036 } 1037 1038 static int i915_error_state_release(struct inode *inode, struct file *file) 1039 { 1040 struct i915_error_state_file_priv *error_priv = file->private_data; 1041 1042 i915_error_state_put(error_priv); 1043 kfree(error_priv); 1044 1045 return 0; 1046 } 1047 1048 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf, 1049 size_t count, loff_t *pos) 1050 { 1051 struct i915_error_state_file_priv *error_priv = file->private_data; 1052 struct drm_i915_error_state_buf error_str; 1053 loff_t tmp_pos = 0; 1054 ssize_t ret_count = 0; 1055 int ret; 1056 1057 ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos); 1058 if (ret) 1059 return ret; 1060 1061 ret = i915_error_state_to_str(&error_str, error_priv); 1062 if (ret) 1063 goto out; 1064 1065 ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos, 1066 error_str.buf, 1067 error_str.bytes); 1068 1069 if (ret_count < 0) 1070 ret = ret_count; 1071 else 1072 *pos = error_str.start + ret_count; 1073 out: 1074 i915_error_state_buf_release(&error_str); 1075 return ret ?: ret_count; 1076 } 1077 1078 static const struct file_operations i915_error_state_fops = { 1079 .owner = THIS_MODULE, 1080 .open = i915_error_state_open, 1081 .read = i915_error_state_read, 1082 .write = i915_error_state_write, 1083 .llseek = default_llseek, 1084 .release = i915_error_state_release, 1085 }; 1086 1087 static int 1088 i915_next_seqno_get(void *data, u64 *val) 1089 { 1090 struct drm_device *dev = data; 1091 struct drm_i915_private *dev_priv = dev->dev_private; 1092 int ret; 1093 1094 ret = mutex_lock_interruptible(&dev->struct_mutex); 1095 if (ret) 1096 return ret; 1097 1098 *val = dev_priv->next_seqno; 1099 mutex_unlock(&dev->struct_mutex); 1100 1101 return 0; 1102 } 1103 1104 static int 1105 i915_next_seqno_set(void *data, u64 val) 1106 { 1107 struct drm_device *dev = data; 1108 int ret; 1109 1110 ret = mutex_lock_interruptible(&dev->struct_mutex); 1111 if (ret) 1112 return ret; 1113 1114 ret = i915_gem_set_seqno(dev, val); 1115 mutex_unlock(&dev->struct_mutex); 1116 1117 return ret; 1118 } 1119 1120 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops, 1121 i915_next_seqno_get, i915_next_seqno_set, 1122 "0x%llx\n"); 1123 1124 static int i915_frequency_info(struct seq_file *m, void *unused) 1125 { 1126 struct drm_info_node *node = m->private; 1127 struct drm_device *dev = node->minor->dev; 1128 struct drm_i915_private *dev_priv = dev->dev_private; 1129 int ret = 0; 1130 1131 intel_runtime_pm_get(dev_priv); 1132 1133 flush_delayed_work(&dev_priv->rps.delayed_resume_work); 1134 1135 if (IS_GEN5(dev)) { 1136 u16 rgvswctl = I915_READ16(MEMSWCTL); 1137 u16 rgvstat = I915_READ16(MEMSTAT_ILK); 1138 1139 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf); 1140 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f); 1141 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >> 1142 MEMSTAT_VID_SHIFT); 1143 seq_printf(m, "Current P-state: %d\n", 1144 (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT); 1145 } else if (IS_GEN6(dev) || (IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) || 1146 IS_BROADWELL(dev) || IS_GEN9(dev)) { 1147 u32 rp_state_limits; 1148 u32 gt_perf_status; 1149 u32 rp_state_cap; 1150 u32 rpmodectl, rpinclimit, rpdeclimit; 1151 u32 rpstat, cagf, reqf; 1152 u32 rpupei, rpcurup, rpprevup; 1153 u32 rpdownei, rpcurdown, rpprevdown; 1154 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask; 1155 int max_freq; 1156 1157 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS); 1158 if (IS_BROXTON(dev)) { 1159 rp_state_cap = I915_READ(BXT_RP_STATE_CAP); 1160 gt_perf_status = I915_READ(BXT_GT_PERF_STATUS); 1161 } else { 1162 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP); 1163 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS); 1164 } 1165 1166 /* RPSTAT1 is in the GT power well */ 1167 ret = mutex_lock_interruptible(&dev->struct_mutex); 1168 if (ret) 1169 goto out; 1170 1171 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); 1172 1173 reqf = I915_READ(GEN6_RPNSWREQ); 1174 if (IS_GEN9(dev)) 1175 reqf >>= 23; 1176 else { 1177 reqf &= ~GEN6_TURBO_DISABLE; 1178 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) 1179 reqf >>= 24; 1180 else 1181 reqf >>= 25; 1182 } 1183 reqf = intel_gpu_freq(dev_priv, reqf); 1184 1185 rpmodectl = I915_READ(GEN6_RP_CONTROL); 1186 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD); 1187 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD); 1188 1189 rpstat = I915_READ(GEN6_RPSTAT1); 1190 rpupei = I915_READ(GEN6_RP_CUR_UP_EI); 1191 rpcurup = I915_READ(GEN6_RP_CUR_UP); 1192 rpprevup = I915_READ(GEN6_RP_PREV_UP); 1193 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI); 1194 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN); 1195 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN); 1196 if (IS_GEN9(dev)) 1197 cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT; 1198 else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) 1199 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT; 1200 else 1201 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT; 1202 cagf = intel_gpu_freq(dev_priv, cagf); 1203 1204 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 1205 mutex_unlock(&dev->struct_mutex); 1206 1207 if (IS_GEN6(dev) || IS_GEN7(dev)) { 1208 pm_ier = I915_READ(GEN6_PMIER); 1209 pm_imr = I915_READ(GEN6_PMIMR); 1210 pm_isr = I915_READ(GEN6_PMISR); 1211 pm_iir = I915_READ(GEN6_PMIIR); 1212 pm_mask = I915_READ(GEN6_PMINTRMSK); 1213 } else { 1214 pm_ier = I915_READ(GEN8_GT_IER(2)); 1215 pm_imr = I915_READ(GEN8_GT_IMR(2)); 1216 pm_isr = I915_READ(GEN8_GT_ISR(2)); 1217 pm_iir = I915_READ(GEN8_GT_IIR(2)); 1218 pm_mask = I915_READ(GEN6_PMINTRMSK); 1219 } 1220 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n", 1221 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask); 1222 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status); 1223 seq_printf(m, "Render p-state ratio: %d\n", 1224 (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8); 1225 seq_printf(m, "Render p-state VID: %d\n", 1226 gt_perf_status & 0xff); 1227 seq_printf(m, "Render p-state limit: %d\n", 1228 rp_state_limits & 0xff); 1229 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat); 1230 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl); 1231 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit); 1232 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit); 1233 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf); 1234 seq_printf(m, "CAGF: %dMHz\n", cagf); 1235 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei & 1236 GEN6_CURICONT_MASK); 1237 seq_printf(m, "RP CUR UP: %dus\n", rpcurup & 1238 GEN6_CURBSYTAVG_MASK); 1239 seq_printf(m, "RP PREV UP: %dus\n", rpprevup & 1240 GEN6_CURBSYTAVG_MASK); 1241 seq_printf(m, "Up threshold: %d%%\n", 1242 dev_priv->rps.up_threshold); 1243 1244 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei & 1245 GEN6_CURIAVG_MASK); 1246 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown & 1247 GEN6_CURBSYTAVG_MASK); 1248 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown & 1249 GEN6_CURBSYTAVG_MASK); 1250 seq_printf(m, "Down threshold: %d%%\n", 1251 dev_priv->rps.down_threshold); 1252 1253 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 : 1254 rp_state_cap >> 16) & 0xff; 1255 max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1); 1256 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n", 1257 intel_gpu_freq(dev_priv, max_freq)); 1258 1259 max_freq = (rp_state_cap & 0xff00) >> 8; 1260 max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1); 1261 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n", 1262 intel_gpu_freq(dev_priv, max_freq)); 1263 1264 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 : 1265 rp_state_cap >> 0) & 0xff; 1266 max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1); 1267 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n", 1268 intel_gpu_freq(dev_priv, max_freq)); 1269 seq_printf(m, "Max overclocked frequency: %dMHz\n", 1270 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq)); 1271 1272 seq_printf(m, "Current freq: %d MHz\n", 1273 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq)); 1274 seq_printf(m, "Actual freq: %d MHz\n", cagf); 1275 seq_printf(m, "Idle freq: %d MHz\n", 1276 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq)); 1277 seq_printf(m, "Min freq: %d MHz\n", 1278 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq)); 1279 seq_printf(m, "Max freq: %d MHz\n", 1280 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq)); 1281 seq_printf(m, 1282 "efficient (RPe) frequency: %d MHz\n", 1283 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq)); 1284 } else if (IS_VALLEYVIEW(dev)) { 1285 u32 freq_sts; 1286 1287 mutex_lock(&dev_priv->rps.hw_lock); 1288 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS); 1289 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts); 1290 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq); 1291 1292 seq_printf(m, "actual GPU freq: %d MHz\n", 1293 intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff)); 1294 1295 seq_printf(m, "current GPU freq: %d MHz\n", 1296 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq)); 1297 1298 seq_printf(m, "max GPU freq: %d MHz\n", 1299 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq)); 1300 1301 seq_printf(m, "min GPU freq: %d MHz\n", 1302 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq)); 1303 1304 seq_printf(m, "idle GPU freq: %d MHz\n", 1305 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq)); 1306 1307 seq_printf(m, 1308 "efficient (RPe) frequency: %d MHz\n", 1309 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq)); 1310 mutex_unlock(&dev_priv->rps.hw_lock); 1311 } else { 1312 seq_puts(m, "no P-state info available\n"); 1313 } 1314 1315 seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq); 1316 seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq); 1317 seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq); 1318 1319 out: 1320 intel_runtime_pm_put(dev_priv); 1321 return ret; 1322 } 1323 1324 static int i915_hangcheck_info(struct seq_file *m, void *unused) 1325 { 1326 struct drm_info_node *node = m->private; 1327 struct drm_device *dev = node->minor->dev; 1328 struct drm_i915_private *dev_priv = dev->dev_private; 1329 struct intel_engine_cs *ring; 1330 u64 acthd[I915_NUM_RINGS]; 1331 u32 seqno[I915_NUM_RINGS]; 1332 int i; 1333 1334 if (!i915.enable_hangcheck) { 1335 seq_printf(m, "Hangcheck disabled\n"); 1336 return 0; 1337 } 1338 1339 intel_runtime_pm_get(dev_priv); 1340 1341 for_each_ring(ring, dev_priv, i) { 1342 seqno[i] = ring->get_seqno(ring, false); 1343 acthd[i] = intel_ring_get_active_head(ring); 1344 } 1345 1346 intel_runtime_pm_put(dev_priv); 1347 1348 if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) { 1349 seq_printf(m, "Hangcheck active, fires in %dms\n", 1350 jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires - 1351 jiffies)); 1352 } else 1353 seq_printf(m, "Hangcheck inactive\n"); 1354 1355 for_each_ring(ring, dev_priv, i) { 1356 seq_printf(m, "%s:\n", ring->name); 1357 seq_printf(m, "\tseqno = %x [current %x]\n", 1358 ring->hangcheck.seqno, seqno[i]); 1359 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n", 1360 (long long)ring->hangcheck.acthd, 1361 (long long)acthd[i]); 1362 seq_printf(m, "\tmax ACTHD = 0x%08llx\n", 1363 (long long)ring->hangcheck.max_acthd); 1364 seq_printf(m, "\tscore = %d\n", ring->hangcheck.score); 1365 seq_printf(m, "\taction = %d\n", ring->hangcheck.action); 1366 } 1367 1368 return 0; 1369 } 1370 1371 static int ironlake_drpc_info(struct seq_file *m) 1372 { 1373 struct drm_info_node *node = m->private; 1374 struct drm_device *dev = node->minor->dev; 1375 struct drm_i915_private *dev_priv = dev->dev_private; 1376 u32 rgvmodectl, rstdbyctl; 1377 u16 crstandvid; 1378 int ret; 1379 1380 ret = mutex_lock_interruptible(&dev->struct_mutex); 1381 if (ret) 1382 return ret; 1383 intel_runtime_pm_get(dev_priv); 1384 1385 rgvmodectl = I915_READ(MEMMODECTL); 1386 rstdbyctl = I915_READ(RSTDBYCTL); 1387 crstandvid = I915_READ16(CRSTANDVID); 1388 1389 intel_runtime_pm_put(dev_priv); 1390 mutex_unlock(&dev->struct_mutex); 1391 1392 seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN)); 1393 seq_printf(m, "Boost freq: %d\n", 1394 (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >> 1395 MEMMODE_BOOST_FREQ_SHIFT); 1396 seq_printf(m, "HW control enabled: %s\n", 1397 yesno(rgvmodectl & MEMMODE_HWIDLE_EN)); 1398 seq_printf(m, "SW control enabled: %s\n", 1399 yesno(rgvmodectl & MEMMODE_SWMODE_EN)); 1400 seq_printf(m, "Gated voltage change: %s\n", 1401 yesno(rgvmodectl & MEMMODE_RCLK_GATE)); 1402 seq_printf(m, "Starting frequency: P%d\n", 1403 (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT); 1404 seq_printf(m, "Max P-state: P%d\n", 1405 (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT); 1406 seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK)); 1407 seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f)); 1408 seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f)); 1409 seq_printf(m, "Render standby enabled: %s\n", 1410 yesno(!(rstdbyctl & RCX_SW_EXIT))); 1411 seq_puts(m, "Current RS state: "); 1412 switch (rstdbyctl & RSX_STATUS_MASK) { 1413 case RSX_STATUS_ON: 1414 seq_puts(m, "on\n"); 1415 break; 1416 case RSX_STATUS_RC1: 1417 seq_puts(m, "RC1\n"); 1418 break; 1419 case RSX_STATUS_RC1E: 1420 seq_puts(m, "RC1E\n"); 1421 break; 1422 case RSX_STATUS_RS1: 1423 seq_puts(m, "RS1\n"); 1424 break; 1425 case RSX_STATUS_RS2: 1426 seq_puts(m, "RS2 (RC6)\n"); 1427 break; 1428 case RSX_STATUS_RS3: 1429 seq_puts(m, "RC3 (RC6+)\n"); 1430 break; 1431 default: 1432 seq_puts(m, "unknown\n"); 1433 break; 1434 } 1435 1436 return 0; 1437 } 1438 1439 static int i915_forcewake_domains(struct seq_file *m, void *data) 1440 { 1441 struct drm_info_node *node = m->private; 1442 struct drm_device *dev = node->minor->dev; 1443 struct drm_i915_private *dev_priv = dev->dev_private; 1444 struct intel_uncore_forcewake_domain *fw_domain; 1445 int i; 1446 1447 spin_lock_irq(&dev_priv->uncore.lock); 1448 for_each_fw_domain(fw_domain, dev_priv, i) { 1449 seq_printf(m, "%s.wake_count = %u\n", 1450 intel_uncore_forcewake_domain_to_str(i), 1451 fw_domain->wake_count); 1452 } 1453 spin_unlock_irq(&dev_priv->uncore.lock); 1454 1455 return 0; 1456 } 1457 1458 static int vlv_drpc_info(struct seq_file *m) 1459 { 1460 struct drm_info_node *node = m->private; 1461 struct drm_device *dev = node->minor->dev; 1462 struct drm_i915_private *dev_priv = dev->dev_private; 1463 u32 rpmodectl1, rcctl1, pw_status; 1464 1465 intel_runtime_pm_get(dev_priv); 1466 1467 pw_status = I915_READ(VLV_GTLC_PW_STATUS); 1468 rpmodectl1 = I915_READ(GEN6_RP_CONTROL); 1469 rcctl1 = I915_READ(GEN6_RC_CONTROL); 1470 1471 intel_runtime_pm_put(dev_priv); 1472 1473 seq_printf(m, "Video Turbo Mode: %s\n", 1474 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO)); 1475 seq_printf(m, "Turbo enabled: %s\n", 1476 yesno(rpmodectl1 & GEN6_RP_ENABLE)); 1477 seq_printf(m, "HW control enabled: %s\n", 1478 yesno(rpmodectl1 & GEN6_RP_ENABLE)); 1479 seq_printf(m, "SW control enabled: %s\n", 1480 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) == 1481 GEN6_RP_MEDIA_SW_MODE)); 1482 seq_printf(m, "RC6 Enabled: %s\n", 1483 yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE | 1484 GEN6_RC_CTL_EI_MODE(1)))); 1485 seq_printf(m, "Render Power Well: %s\n", 1486 (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down"); 1487 seq_printf(m, "Media Power Well: %s\n", 1488 (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down"); 1489 1490 seq_printf(m, "Render RC6 residency since boot: %u\n", 1491 I915_READ(VLV_GT_RENDER_RC6)); 1492 seq_printf(m, "Media RC6 residency since boot: %u\n", 1493 I915_READ(VLV_GT_MEDIA_RC6)); 1494 1495 return i915_forcewake_domains(m, NULL); 1496 } 1497 1498 static int gen6_drpc_info(struct seq_file *m) 1499 { 1500 struct drm_info_node *node = m->private; 1501 struct drm_device *dev = node->minor->dev; 1502 struct drm_i915_private *dev_priv = dev->dev_private; 1503 u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0; 1504 unsigned forcewake_count; 1505 int count = 0, ret; 1506 1507 ret = mutex_lock_interruptible(&dev->struct_mutex); 1508 if (ret) 1509 return ret; 1510 intel_runtime_pm_get(dev_priv); 1511 1512 spin_lock_irq(&dev_priv->uncore.lock); 1513 forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count; 1514 spin_unlock_irq(&dev_priv->uncore.lock); 1515 1516 if (forcewake_count) { 1517 seq_puts(m, "RC information inaccurate because somebody " 1518 "holds a forcewake reference \n"); 1519 } else { 1520 /* NB: we cannot use forcewake, else we read the wrong values */ 1521 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1)) 1522 udelay(10); 1523 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51)); 1524 } 1525 1526 gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS); 1527 trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true); 1528 1529 rpmodectl1 = I915_READ(GEN6_RP_CONTROL); 1530 rcctl1 = I915_READ(GEN6_RC_CONTROL); 1531 mutex_unlock(&dev->struct_mutex); 1532 mutex_lock(&dev_priv->rps.hw_lock); 1533 sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids); 1534 mutex_unlock(&dev_priv->rps.hw_lock); 1535 1536 intel_runtime_pm_put(dev_priv); 1537 1538 seq_printf(m, "Video Turbo Mode: %s\n", 1539 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO)); 1540 seq_printf(m, "HW control enabled: %s\n", 1541 yesno(rpmodectl1 & GEN6_RP_ENABLE)); 1542 seq_printf(m, "SW control enabled: %s\n", 1543 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) == 1544 GEN6_RP_MEDIA_SW_MODE)); 1545 seq_printf(m, "RC1e Enabled: %s\n", 1546 yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE)); 1547 seq_printf(m, "RC6 Enabled: %s\n", 1548 yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE)); 1549 seq_printf(m, "Deep RC6 Enabled: %s\n", 1550 yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE)); 1551 seq_printf(m, "Deepest RC6 Enabled: %s\n", 1552 yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE)); 1553 seq_puts(m, "Current RC state: "); 1554 switch (gt_core_status & GEN6_RCn_MASK) { 1555 case GEN6_RC0: 1556 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK) 1557 seq_puts(m, "Core Power Down\n"); 1558 else 1559 seq_puts(m, "on\n"); 1560 break; 1561 case GEN6_RC3: 1562 seq_puts(m, "RC3\n"); 1563 break; 1564 case GEN6_RC6: 1565 seq_puts(m, "RC6\n"); 1566 break; 1567 case GEN6_RC7: 1568 seq_puts(m, "RC7\n"); 1569 break; 1570 default: 1571 seq_puts(m, "Unknown\n"); 1572 break; 1573 } 1574 1575 seq_printf(m, "Core Power Down: %s\n", 1576 yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK)); 1577 1578 /* Not exactly sure what this is */ 1579 seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n", 1580 I915_READ(GEN6_GT_GFX_RC6_LOCKED)); 1581 seq_printf(m, "RC6 residency since boot: %u\n", 1582 I915_READ(GEN6_GT_GFX_RC6)); 1583 seq_printf(m, "RC6+ residency since boot: %u\n", 1584 I915_READ(GEN6_GT_GFX_RC6p)); 1585 seq_printf(m, "RC6++ residency since boot: %u\n", 1586 I915_READ(GEN6_GT_GFX_RC6pp)); 1587 1588 seq_printf(m, "RC6 voltage: %dmV\n", 1589 GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff))); 1590 seq_printf(m, "RC6+ voltage: %dmV\n", 1591 GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff))); 1592 seq_printf(m, "RC6++ voltage: %dmV\n", 1593 GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff))); 1594 return 0; 1595 } 1596 1597 static int i915_drpc_info(struct seq_file *m, void *unused) 1598 { 1599 struct drm_info_node *node = m->private; 1600 struct drm_device *dev = node->minor->dev; 1601 1602 if (IS_VALLEYVIEW(dev)) 1603 return vlv_drpc_info(m); 1604 else if (INTEL_INFO(dev)->gen >= 6) 1605 return gen6_drpc_info(m); 1606 else 1607 return ironlake_drpc_info(m); 1608 } 1609 1610 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused) 1611 { 1612 struct drm_info_node *node = m->private; 1613 struct drm_device *dev = node->minor->dev; 1614 struct drm_i915_private *dev_priv = dev->dev_private; 1615 1616 seq_printf(m, "FB tracking busy bits: 0x%08x\n", 1617 dev_priv->fb_tracking.busy_bits); 1618 1619 seq_printf(m, "FB tracking flip bits: 0x%08x\n", 1620 dev_priv->fb_tracking.flip_bits); 1621 1622 return 0; 1623 } 1624 1625 static int i915_fbc_status(struct seq_file *m, void *unused) 1626 { 1627 struct drm_info_node *node = m->private; 1628 struct drm_device *dev = node->minor->dev; 1629 struct drm_i915_private *dev_priv = dev->dev_private; 1630 1631 if (!HAS_FBC(dev)) { 1632 seq_puts(m, "FBC unsupported on this chipset\n"); 1633 return 0; 1634 } 1635 1636 intel_runtime_pm_get(dev_priv); 1637 mutex_lock(&dev_priv->fbc.lock); 1638 1639 if (intel_fbc_enabled(dev_priv)) 1640 seq_puts(m, "FBC enabled\n"); 1641 else 1642 seq_printf(m, "FBC disabled: %s\n", 1643 intel_no_fbc_reason_str(dev_priv->fbc.no_fbc_reason)); 1644 1645 if (INTEL_INFO(dev_priv)->gen >= 7) 1646 seq_printf(m, "Compressing: %s\n", 1647 yesno(I915_READ(FBC_STATUS2) & 1648 FBC_COMPRESSION_MASK)); 1649 1650 mutex_unlock(&dev_priv->fbc.lock); 1651 intel_runtime_pm_put(dev_priv); 1652 1653 return 0; 1654 } 1655 1656 static int i915_fbc_fc_get(void *data, u64 *val) 1657 { 1658 struct drm_device *dev = data; 1659 struct drm_i915_private *dev_priv = dev->dev_private; 1660 1661 if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev)) 1662 return -ENODEV; 1663 1664 *val = dev_priv->fbc.false_color; 1665 1666 return 0; 1667 } 1668 1669 static int i915_fbc_fc_set(void *data, u64 val) 1670 { 1671 struct drm_device *dev = data; 1672 struct drm_i915_private *dev_priv = dev->dev_private; 1673 u32 reg; 1674 1675 if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev)) 1676 return -ENODEV; 1677 1678 mutex_lock(&dev_priv->fbc.lock); 1679 1680 reg = I915_READ(ILK_DPFC_CONTROL); 1681 dev_priv->fbc.false_color = val; 1682 1683 I915_WRITE(ILK_DPFC_CONTROL, val ? 1684 (reg | FBC_CTL_FALSE_COLOR) : 1685 (reg & ~FBC_CTL_FALSE_COLOR)); 1686 1687 mutex_unlock(&dev_priv->fbc.lock); 1688 return 0; 1689 } 1690 1691 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops, 1692 i915_fbc_fc_get, i915_fbc_fc_set, 1693 "%llu\n"); 1694 1695 static int i915_ips_status(struct seq_file *m, void *unused) 1696 { 1697 struct drm_info_node *node = m->private; 1698 struct drm_device *dev = node->minor->dev; 1699 struct drm_i915_private *dev_priv = dev->dev_private; 1700 1701 if (!HAS_IPS(dev)) { 1702 seq_puts(m, "not supported\n"); 1703 return 0; 1704 } 1705 1706 intel_runtime_pm_get(dev_priv); 1707 1708 seq_printf(m, "Enabled by kernel parameter: %s\n", 1709 yesno(i915.enable_ips)); 1710 1711 if (INTEL_INFO(dev)->gen >= 8) { 1712 seq_puts(m, "Currently: unknown\n"); 1713 } else { 1714 if (I915_READ(IPS_CTL) & IPS_ENABLE) 1715 seq_puts(m, "Currently: enabled\n"); 1716 else 1717 seq_puts(m, "Currently: disabled\n"); 1718 } 1719 1720 intel_runtime_pm_put(dev_priv); 1721 1722 return 0; 1723 } 1724 1725 static int i915_sr_status(struct seq_file *m, void *unused) 1726 { 1727 struct drm_info_node *node = m->private; 1728 struct drm_device *dev = node->minor->dev; 1729 struct drm_i915_private *dev_priv = dev->dev_private; 1730 bool sr_enabled = false; 1731 1732 intel_runtime_pm_get(dev_priv); 1733 1734 if (HAS_PCH_SPLIT(dev)) 1735 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN; 1736 else if (IS_CRESTLINE(dev) || IS_G4X(dev) || 1737 IS_I945G(dev) || IS_I945GM(dev)) 1738 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN; 1739 else if (IS_I915GM(dev)) 1740 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN; 1741 else if (IS_PINEVIEW(dev)) 1742 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN; 1743 else if (IS_VALLEYVIEW(dev)) 1744 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN; 1745 1746 intel_runtime_pm_put(dev_priv); 1747 1748 seq_printf(m, "self-refresh: %s\n", 1749 sr_enabled ? "enabled" : "disabled"); 1750 1751 return 0; 1752 } 1753 1754 static int i915_emon_status(struct seq_file *m, void *unused) 1755 { 1756 struct drm_info_node *node = m->private; 1757 struct drm_device *dev = node->minor->dev; 1758 struct drm_i915_private *dev_priv = dev->dev_private; 1759 unsigned long temp, chipset, gfx; 1760 int ret; 1761 1762 if (!IS_GEN5(dev)) 1763 return -ENODEV; 1764 1765 ret = mutex_lock_interruptible(&dev->struct_mutex); 1766 if (ret) 1767 return ret; 1768 1769 temp = i915_mch_val(dev_priv); 1770 chipset = i915_chipset_val(dev_priv); 1771 gfx = i915_gfx_val(dev_priv); 1772 mutex_unlock(&dev->struct_mutex); 1773 1774 seq_printf(m, "GMCH temp: %ld\n", temp); 1775 seq_printf(m, "Chipset power: %ld\n", chipset); 1776 seq_printf(m, "GFX power: %ld\n", gfx); 1777 seq_printf(m, "Total power: %ld\n", chipset + gfx); 1778 1779 return 0; 1780 } 1781 1782 static int i915_ring_freq_table(struct seq_file *m, void *unused) 1783 { 1784 struct drm_info_node *node = m->private; 1785 struct drm_device *dev = node->minor->dev; 1786 struct drm_i915_private *dev_priv = dev->dev_private; 1787 int ret = 0; 1788 int gpu_freq, ia_freq; 1789 unsigned int max_gpu_freq, min_gpu_freq; 1790 1791 if (!HAS_CORE_RING_FREQ(dev)) { 1792 seq_puts(m, "unsupported on this chipset\n"); 1793 return 0; 1794 } 1795 1796 intel_runtime_pm_get(dev_priv); 1797 1798 flush_delayed_work(&dev_priv->rps.delayed_resume_work); 1799 1800 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock); 1801 if (ret) 1802 goto out; 1803 1804 if (IS_SKYLAKE(dev)) { 1805 /* Convert GT frequency to 50 HZ units */ 1806 min_gpu_freq = 1807 dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER; 1808 max_gpu_freq = 1809 dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER; 1810 } else { 1811 min_gpu_freq = dev_priv->rps.min_freq_softlimit; 1812 max_gpu_freq = dev_priv->rps.max_freq_softlimit; 1813 } 1814 1815 seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n"); 1816 1817 for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) { 1818 ia_freq = gpu_freq; 1819 sandybridge_pcode_read(dev_priv, 1820 GEN6_PCODE_READ_MIN_FREQ_TABLE, 1821 &ia_freq); 1822 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n", 1823 intel_gpu_freq(dev_priv, (gpu_freq * 1824 (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1))), 1825 ((ia_freq >> 0) & 0xff) * 100, 1826 ((ia_freq >> 8) & 0xff) * 100); 1827 } 1828 1829 mutex_unlock(&dev_priv->rps.hw_lock); 1830 1831 out: 1832 intel_runtime_pm_put(dev_priv); 1833 return ret; 1834 } 1835 1836 static int i915_opregion(struct seq_file *m, void *unused) 1837 { 1838 struct drm_info_node *node = m->private; 1839 struct drm_device *dev = node->minor->dev; 1840 struct drm_i915_private *dev_priv = dev->dev_private; 1841 struct intel_opregion *opregion = &dev_priv->opregion; 1842 void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL); 1843 int ret; 1844 1845 if (data == NULL) 1846 return -ENOMEM; 1847 1848 ret = mutex_lock_interruptible(&dev->struct_mutex); 1849 if (ret) 1850 goto out; 1851 1852 if (opregion->header) { 1853 memcpy(data, opregion->header, OPREGION_SIZE); 1854 seq_write(m, data, OPREGION_SIZE); 1855 } 1856 1857 mutex_unlock(&dev->struct_mutex); 1858 1859 out: 1860 kfree(data); 1861 return 0; 1862 } 1863 1864 static int i915_gem_framebuffer_info(struct seq_file *m, void *data) 1865 { 1866 struct drm_info_node *node = m->private; 1867 struct drm_device *dev = node->minor->dev; 1868 struct intel_fbdev *ifbdev = NULL; 1869 struct intel_framebuffer *fb; 1870 struct drm_framebuffer *drm_fb; 1871 1872 #ifdef CONFIG_DRM_FBDEV_EMULATION 1873 struct drm_i915_private *dev_priv = dev->dev_private; 1874 1875 ifbdev = dev_priv->fbdev; 1876 fb = to_intel_framebuffer(ifbdev->helper.fb); 1877 1878 seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ", 1879 fb->base.width, 1880 fb->base.height, 1881 fb->base.depth, 1882 fb->base.bits_per_pixel, 1883 fb->base.modifier[0], 1884 atomic_read(&fb->base.refcount.refcount)); 1885 describe_obj(m, fb->obj); 1886 seq_putc(m, '\n'); 1887 #endif 1888 1889 mutex_lock(&dev->mode_config.fb_lock); 1890 drm_for_each_fb(drm_fb, dev) { 1891 fb = to_intel_framebuffer(drm_fb); 1892 if (ifbdev && &fb->base == ifbdev->helper.fb) 1893 continue; 1894 1895 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ", 1896 fb->base.width, 1897 fb->base.height, 1898 fb->base.depth, 1899 fb->base.bits_per_pixel, 1900 fb->base.modifier[0], 1901 atomic_read(&fb->base.refcount.refcount)); 1902 describe_obj(m, fb->obj); 1903 seq_putc(m, '\n'); 1904 } 1905 mutex_unlock(&dev->mode_config.fb_lock); 1906 1907 return 0; 1908 } 1909 1910 static void describe_ctx_ringbuf(struct seq_file *m, 1911 struct intel_ringbuffer *ringbuf) 1912 { 1913 seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)", 1914 ringbuf->space, ringbuf->head, ringbuf->tail, 1915 ringbuf->last_retired_head); 1916 } 1917 1918 static int i915_context_status(struct seq_file *m, void *unused) 1919 { 1920 struct drm_info_node *node = m->private; 1921 struct drm_device *dev = node->minor->dev; 1922 struct drm_i915_private *dev_priv = dev->dev_private; 1923 struct intel_engine_cs *ring; 1924 struct intel_context *ctx; 1925 int ret, i; 1926 1927 ret = mutex_lock_interruptible(&dev->struct_mutex); 1928 if (ret) 1929 return ret; 1930 1931 list_for_each_entry(ctx, &dev_priv->context_list, link) { 1932 if (!i915.enable_execlists && 1933 ctx->legacy_hw_ctx.rcs_state == NULL) 1934 continue; 1935 1936 seq_puts(m, "HW context "); 1937 describe_ctx(m, ctx); 1938 for_each_ring(ring, dev_priv, i) { 1939 if (ring->default_context == ctx) 1940 seq_printf(m, "(default context %s) ", 1941 ring->name); 1942 } 1943 1944 if (i915.enable_execlists) { 1945 seq_putc(m, '\n'); 1946 for_each_ring(ring, dev_priv, i) { 1947 struct drm_i915_gem_object *ctx_obj = 1948 ctx->engine[i].state; 1949 struct intel_ringbuffer *ringbuf = 1950 ctx->engine[i].ringbuf; 1951 1952 seq_printf(m, "%s: ", ring->name); 1953 if (ctx_obj) 1954 describe_obj(m, ctx_obj); 1955 if (ringbuf) 1956 describe_ctx_ringbuf(m, ringbuf); 1957 seq_putc(m, '\n'); 1958 } 1959 } else { 1960 describe_obj(m, ctx->legacy_hw_ctx.rcs_state); 1961 } 1962 1963 seq_putc(m, '\n'); 1964 } 1965 1966 mutex_unlock(&dev->struct_mutex); 1967 1968 return 0; 1969 } 1970 1971 static void i915_dump_lrc_obj(struct seq_file *m, 1972 struct intel_engine_cs *ring, 1973 struct drm_i915_gem_object *ctx_obj) 1974 { 1975 struct page *page; 1976 uint32_t *reg_state; 1977 int j; 1978 unsigned long ggtt_offset = 0; 1979 1980 if (ctx_obj == NULL) { 1981 seq_printf(m, "Context on %s with no gem object\n", 1982 ring->name); 1983 return; 1984 } 1985 1986 seq_printf(m, "CONTEXT: %s %u\n", ring->name, 1987 intel_execlists_ctx_id(ctx_obj)); 1988 1989 if (!i915_gem_obj_ggtt_bound(ctx_obj)) 1990 seq_puts(m, "\tNot bound in GGTT\n"); 1991 else 1992 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj); 1993 1994 if (i915_gem_object_get_pages(ctx_obj)) { 1995 seq_puts(m, "\tFailed to get pages for context object\n"); 1996 return; 1997 } 1998 1999 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); 2000 if (!WARN_ON(page == NULL)) { 2001 reg_state = kmap_atomic(page); 2002 2003 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) { 2004 seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n", 2005 ggtt_offset + 4096 + (j * 4), 2006 reg_state[j], reg_state[j + 1], 2007 reg_state[j + 2], reg_state[j + 3]); 2008 } 2009 kunmap_atomic(reg_state); 2010 } 2011 2012 seq_putc(m, '\n'); 2013 } 2014 2015 static int i915_dump_lrc(struct seq_file *m, void *unused) 2016 { 2017 struct drm_info_node *node = (struct drm_info_node *) m->private; 2018 struct drm_device *dev = node->minor->dev; 2019 struct drm_i915_private *dev_priv = dev->dev_private; 2020 struct intel_engine_cs *ring; 2021 struct intel_context *ctx; 2022 int ret, i; 2023 2024 if (!i915.enable_execlists) { 2025 seq_printf(m, "Logical Ring Contexts are disabled\n"); 2026 return 0; 2027 } 2028 2029 ret = mutex_lock_interruptible(&dev->struct_mutex); 2030 if (ret) 2031 return ret; 2032 2033 list_for_each_entry(ctx, &dev_priv->context_list, link) { 2034 for_each_ring(ring, dev_priv, i) { 2035 if (ring->default_context != ctx) 2036 i915_dump_lrc_obj(m, ring, 2037 ctx->engine[i].state); 2038 } 2039 } 2040 2041 mutex_unlock(&dev->struct_mutex); 2042 2043 return 0; 2044 } 2045 2046 static int i915_execlists(struct seq_file *m, void *data) 2047 { 2048 struct drm_info_node *node = (struct drm_info_node *)m->private; 2049 struct drm_device *dev = node->minor->dev; 2050 struct drm_i915_private *dev_priv = dev->dev_private; 2051 struct intel_engine_cs *ring; 2052 u32 status_pointer; 2053 u8 read_pointer; 2054 u8 write_pointer; 2055 u32 status; 2056 u32 ctx_id; 2057 struct list_head *cursor; 2058 int ring_id, i; 2059 int ret; 2060 2061 if (!i915.enable_execlists) { 2062 seq_puts(m, "Logical Ring Contexts are disabled\n"); 2063 return 0; 2064 } 2065 2066 ret = mutex_lock_interruptible(&dev->struct_mutex); 2067 if (ret) 2068 return ret; 2069 2070 intel_runtime_pm_get(dev_priv); 2071 2072 for_each_ring(ring, dev_priv, ring_id) { 2073 struct drm_i915_gem_request *head_req = NULL; 2074 int count = 0; 2075 unsigned long flags; 2076 2077 seq_printf(m, "%s\n", ring->name); 2078 2079 status = I915_READ(RING_EXECLIST_STATUS_LO(ring)); 2080 ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(ring)); 2081 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n", 2082 status, ctx_id); 2083 2084 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring)); 2085 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer); 2086 2087 read_pointer = ring->next_context_status_buffer; 2088 write_pointer = status_pointer & 0x07; 2089 if (read_pointer > write_pointer) 2090 write_pointer += 6; 2091 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n", 2092 read_pointer, write_pointer); 2093 2094 for (i = 0; i < 6; i++) { 2095 status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, i)); 2096 ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, i)); 2097 2098 seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n", 2099 i, status, ctx_id); 2100 } 2101 2102 spin_lock_irqsave(&ring->execlist_lock, flags); 2103 list_for_each(cursor, &ring->execlist_queue) 2104 count++; 2105 head_req = list_first_entry_or_null(&ring->execlist_queue, 2106 struct drm_i915_gem_request, execlist_link); 2107 spin_unlock_irqrestore(&ring->execlist_lock, flags); 2108 2109 seq_printf(m, "\t%d requests in queue\n", count); 2110 if (head_req) { 2111 struct drm_i915_gem_object *ctx_obj; 2112 2113 ctx_obj = head_req->ctx->engine[ring_id].state; 2114 seq_printf(m, "\tHead request id: %u\n", 2115 intel_execlists_ctx_id(ctx_obj)); 2116 seq_printf(m, "\tHead request tail: %u\n", 2117 head_req->tail); 2118 } 2119 2120 seq_putc(m, '\n'); 2121 } 2122 2123 intel_runtime_pm_put(dev_priv); 2124 mutex_unlock(&dev->struct_mutex); 2125 2126 return 0; 2127 } 2128 2129 static const char *swizzle_string(unsigned swizzle) 2130 { 2131 switch (swizzle) { 2132 case I915_BIT_6_SWIZZLE_NONE: 2133 return "none"; 2134 case I915_BIT_6_SWIZZLE_9: 2135 return "bit9"; 2136 case I915_BIT_6_SWIZZLE_9_10: 2137 return "bit9/bit10"; 2138 case I915_BIT_6_SWIZZLE_9_11: 2139 return "bit9/bit11"; 2140 case I915_BIT_6_SWIZZLE_9_10_11: 2141 return "bit9/bit10/bit11"; 2142 case I915_BIT_6_SWIZZLE_9_17: 2143 return "bit9/bit17"; 2144 case I915_BIT_6_SWIZZLE_9_10_17: 2145 return "bit9/bit10/bit17"; 2146 case I915_BIT_6_SWIZZLE_UNKNOWN: 2147 return "unknown"; 2148 } 2149 2150 return "bug"; 2151 } 2152 2153 static int i915_swizzle_info(struct seq_file *m, void *data) 2154 { 2155 struct drm_info_node *node = m->private; 2156 struct drm_device *dev = node->minor->dev; 2157 struct drm_i915_private *dev_priv = dev->dev_private; 2158 int ret; 2159 2160 ret = mutex_lock_interruptible(&dev->struct_mutex); 2161 if (ret) 2162 return ret; 2163 intel_runtime_pm_get(dev_priv); 2164 2165 seq_printf(m, "bit6 swizzle for X-tiling = %s\n", 2166 swizzle_string(dev_priv->mm.bit_6_swizzle_x)); 2167 seq_printf(m, "bit6 swizzle for Y-tiling = %s\n", 2168 swizzle_string(dev_priv->mm.bit_6_swizzle_y)); 2169 2170 if (IS_GEN3(dev) || IS_GEN4(dev)) { 2171 seq_printf(m, "DDC = 0x%08x\n", 2172 I915_READ(DCC)); 2173 seq_printf(m, "DDC2 = 0x%08x\n", 2174 I915_READ(DCC2)); 2175 seq_printf(m, "C0DRB3 = 0x%04x\n", 2176 I915_READ16(C0DRB3)); 2177 seq_printf(m, "C1DRB3 = 0x%04x\n", 2178 I915_READ16(C1DRB3)); 2179 } else if (INTEL_INFO(dev)->gen >= 6) { 2180 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n", 2181 I915_READ(MAD_DIMM_C0)); 2182 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n", 2183 I915_READ(MAD_DIMM_C1)); 2184 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n", 2185 I915_READ(MAD_DIMM_C2)); 2186 seq_printf(m, "TILECTL = 0x%08x\n", 2187 I915_READ(TILECTL)); 2188 if (INTEL_INFO(dev)->gen >= 8) 2189 seq_printf(m, "GAMTARBMODE = 0x%08x\n", 2190 I915_READ(GAMTARBMODE)); 2191 else 2192 seq_printf(m, "ARB_MODE = 0x%08x\n", 2193 I915_READ(ARB_MODE)); 2194 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n", 2195 I915_READ(DISP_ARB_CTL)); 2196 } 2197 2198 if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) 2199 seq_puts(m, "L-shaped memory detected\n"); 2200 2201 intel_runtime_pm_put(dev_priv); 2202 mutex_unlock(&dev->struct_mutex); 2203 2204 return 0; 2205 } 2206 2207 static int per_file_ctx(int id, void *ptr, void *data) 2208 { 2209 struct intel_context *ctx = ptr; 2210 struct seq_file *m = data; 2211 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt; 2212 2213 if (!ppgtt) { 2214 seq_printf(m, " no ppgtt for context %d\n", 2215 ctx->user_handle); 2216 return 0; 2217 } 2218 2219 if (i915_gem_context_is_default(ctx)) 2220 seq_puts(m, " default context:\n"); 2221 else 2222 seq_printf(m, " context %d:\n", ctx->user_handle); 2223 ppgtt->debug_dump(ppgtt, m); 2224 2225 return 0; 2226 } 2227 2228 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev) 2229 { 2230 struct drm_i915_private *dev_priv = dev->dev_private; 2231 struct intel_engine_cs *ring; 2232 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt; 2233 int unused, i; 2234 2235 if (!ppgtt) 2236 return; 2237 2238 for_each_ring(ring, dev_priv, unused) { 2239 seq_printf(m, "%s\n", ring->name); 2240 for (i = 0; i < 4; i++) { 2241 u64 pdp = I915_READ(GEN8_RING_PDP_UDW(ring, i)); 2242 pdp <<= 32; 2243 pdp |= I915_READ(GEN8_RING_PDP_LDW(ring, i)); 2244 seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp); 2245 } 2246 } 2247 } 2248 2249 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev) 2250 { 2251 struct drm_i915_private *dev_priv = dev->dev_private; 2252 struct intel_engine_cs *ring; 2253 int i; 2254 2255 if (INTEL_INFO(dev)->gen == 6) 2256 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE)); 2257 2258 for_each_ring(ring, dev_priv, i) { 2259 seq_printf(m, "%s\n", ring->name); 2260 if (INTEL_INFO(dev)->gen == 7) 2261 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring))); 2262 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring))); 2263 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring))); 2264 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring))); 2265 } 2266 if (dev_priv->mm.aliasing_ppgtt) { 2267 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt; 2268 2269 seq_puts(m, "aliasing PPGTT:\n"); 2270 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset); 2271 2272 ppgtt->debug_dump(ppgtt, m); 2273 } 2274 2275 seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK)); 2276 } 2277 2278 static int i915_ppgtt_info(struct seq_file *m, void *data) 2279 { 2280 struct drm_info_node *node = m->private; 2281 struct drm_device *dev = node->minor->dev; 2282 struct drm_i915_private *dev_priv = dev->dev_private; 2283 struct drm_file *file; 2284 2285 int ret = mutex_lock_interruptible(&dev->struct_mutex); 2286 if (ret) 2287 return ret; 2288 intel_runtime_pm_get(dev_priv); 2289 2290 if (INTEL_INFO(dev)->gen >= 8) 2291 gen8_ppgtt_info(m, dev); 2292 else if (INTEL_INFO(dev)->gen >= 6) 2293 gen6_ppgtt_info(m, dev); 2294 2295 list_for_each_entry_reverse(file, &dev->filelist, lhead) { 2296 struct drm_i915_file_private *file_priv = file->driver_priv; 2297 struct task_struct *task; 2298 2299 task = get_pid_task(file->pid, PIDTYPE_PID); 2300 if (!task) { 2301 ret = -ESRCH; 2302 goto out_put; 2303 } 2304 seq_printf(m, "\nproc: %s\n", task->comm); 2305 put_task_struct(task); 2306 idr_for_each(&file_priv->context_idr, per_file_ctx, 2307 (void *)(unsigned long)m); 2308 } 2309 2310 out_put: 2311 intel_runtime_pm_put(dev_priv); 2312 mutex_unlock(&dev->struct_mutex); 2313 2314 return ret; 2315 } 2316 2317 static int count_irq_waiters(struct drm_i915_private *i915) 2318 { 2319 struct intel_engine_cs *ring; 2320 int count = 0; 2321 int i; 2322 2323 for_each_ring(ring, i915, i) 2324 count += ring->irq_refcount; 2325 2326 return count; 2327 } 2328 2329 static int i915_rps_boost_info(struct seq_file *m, void *data) 2330 { 2331 struct drm_info_node *node = m->private; 2332 struct drm_device *dev = node->minor->dev; 2333 struct drm_i915_private *dev_priv = dev->dev_private; 2334 struct drm_file *file; 2335 2336 seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled); 2337 seq_printf(m, "GPU busy? %d\n", dev_priv->mm.busy); 2338 seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv)); 2339 seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n", 2340 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq), 2341 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq), 2342 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit), 2343 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit), 2344 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq)); 2345 spin_lock(&dev_priv->rps.client_lock); 2346 list_for_each_entry_reverse(file, &dev->filelist, lhead) { 2347 struct drm_i915_file_private *file_priv = file->driver_priv; 2348 struct task_struct *task; 2349 2350 rcu_read_lock(); 2351 task = pid_task(file->pid, PIDTYPE_PID); 2352 seq_printf(m, "%s [%d]: %d boosts%s\n", 2353 task ? task->comm : "<unknown>", 2354 task ? task->pid : -1, 2355 file_priv->rps.boosts, 2356 list_empty(&file_priv->rps.link) ? "" : ", active"); 2357 rcu_read_unlock(); 2358 } 2359 seq_printf(m, "Semaphore boosts: %d%s\n", 2360 dev_priv->rps.semaphores.boosts, 2361 list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active"); 2362 seq_printf(m, "MMIO flip boosts: %d%s\n", 2363 dev_priv->rps.mmioflips.boosts, 2364 list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active"); 2365 seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts); 2366 spin_unlock(&dev_priv->rps.client_lock); 2367 2368 return 0; 2369 } 2370 2371 static int i915_llc(struct seq_file *m, void *data) 2372 { 2373 struct drm_info_node *node = m->private; 2374 struct drm_device *dev = node->minor->dev; 2375 struct drm_i915_private *dev_priv = dev->dev_private; 2376 2377 /* Size calculation for LLC is a bit of a pain. Ignore for now. */ 2378 seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev))); 2379 seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size); 2380 2381 return 0; 2382 } 2383 2384 static int i915_guc_load_status_info(struct seq_file *m, void *data) 2385 { 2386 struct drm_info_node *node = m->private; 2387 struct drm_i915_private *dev_priv = node->minor->dev->dev_private; 2388 struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw; 2389 u32 tmp, i; 2390 2391 if (!HAS_GUC_UCODE(dev_priv->dev)) 2392 return 0; 2393 2394 seq_printf(m, "GuC firmware status:\n"); 2395 seq_printf(m, "\tpath: %s\n", 2396 guc_fw->guc_fw_path); 2397 seq_printf(m, "\tfetch: %s\n", 2398 intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status)); 2399 seq_printf(m, "\tload: %s\n", 2400 intel_guc_fw_status_repr(guc_fw->guc_fw_load_status)); 2401 seq_printf(m, "\tversion wanted: %d.%d\n", 2402 guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted); 2403 seq_printf(m, "\tversion found: %d.%d\n", 2404 guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found); 2405 2406 tmp = I915_READ(GUC_STATUS); 2407 2408 seq_printf(m, "\nGuC status 0x%08x:\n", tmp); 2409 seq_printf(m, "\tBootrom status = 0x%x\n", 2410 (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT); 2411 seq_printf(m, "\tuKernel status = 0x%x\n", 2412 (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT); 2413 seq_printf(m, "\tMIA Core status = 0x%x\n", 2414 (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT); 2415 seq_puts(m, "\nScratch registers:\n"); 2416 for (i = 0; i < 16; i++) 2417 seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i))); 2418 2419 return 0; 2420 } 2421 2422 static void i915_guc_client_info(struct seq_file *m, 2423 struct drm_i915_private *dev_priv, 2424 struct i915_guc_client *client) 2425 { 2426 struct intel_engine_cs *ring; 2427 uint64_t tot = 0; 2428 uint32_t i; 2429 2430 seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n", 2431 client->priority, client->ctx_index, client->proc_desc_offset); 2432 seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n", 2433 client->doorbell_id, client->doorbell_offset, client->cookie); 2434 seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n", 2435 client->wq_size, client->wq_offset, client->wq_tail); 2436 2437 seq_printf(m, "\tFailed to queue: %u\n", client->q_fail); 2438 seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail); 2439 seq_printf(m, "\tLast submission result: %d\n", client->retcode); 2440 2441 for_each_ring(ring, dev_priv, i) { 2442 seq_printf(m, "\tSubmissions: %llu %s\n", 2443 client->submissions[i], 2444 ring->name); 2445 tot += client->submissions[i]; 2446 } 2447 seq_printf(m, "\tTotal: %llu\n", tot); 2448 } 2449 2450 static int i915_guc_info(struct seq_file *m, void *data) 2451 { 2452 struct drm_info_node *node = m->private; 2453 struct drm_device *dev = node->minor->dev; 2454 struct drm_i915_private *dev_priv = dev->dev_private; 2455 struct intel_guc guc; 2456 struct i915_guc_client client = {}; 2457 struct intel_engine_cs *ring; 2458 enum intel_ring_id i; 2459 u64 total = 0; 2460 2461 if (!HAS_GUC_SCHED(dev_priv->dev)) 2462 return 0; 2463 2464 /* Take a local copy of the GuC data, so we can dump it at leisure */ 2465 spin_lock(&dev_priv->guc.host2guc_lock); 2466 guc = dev_priv->guc; 2467 if (guc.execbuf_client) { 2468 spin_lock(&guc.execbuf_client->wq_lock); 2469 client = *guc.execbuf_client; 2470 spin_unlock(&guc.execbuf_client->wq_lock); 2471 } 2472 spin_unlock(&dev_priv->guc.host2guc_lock); 2473 2474 seq_printf(m, "GuC total action count: %llu\n", guc.action_count); 2475 seq_printf(m, "GuC action failure count: %u\n", guc.action_fail); 2476 seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd); 2477 seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status); 2478 seq_printf(m, "GuC last action error code: %d\n", guc.action_err); 2479 2480 seq_printf(m, "\nGuC submissions:\n"); 2481 for_each_ring(ring, dev_priv, i) { 2482 seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x %9d\n", 2483 ring->name, guc.submissions[i], 2484 guc.last_seqno[i], guc.last_seqno[i]); 2485 total += guc.submissions[i]; 2486 } 2487 seq_printf(m, "\t%s: %llu\n", "Total", total); 2488 2489 seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client); 2490 i915_guc_client_info(m, dev_priv, &client); 2491 2492 /* Add more as required ... */ 2493 2494 return 0; 2495 } 2496 2497 static int i915_guc_log_dump(struct seq_file *m, void *data) 2498 { 2499 struct drm_info_node *node = m->private; 2500 struct drm_device *dev = node->minor->dev; 2501 struct drm_i915_private *dev_priv = dev->dev_private; 2502 struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj; 2503 u32 *log; 2504 int i = 0, pg; 2505 2506 if (!log_obj) 2507 return 0; 2508 2509 for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) { 2510 log = kmap_atomic(i915_gem_object_get_page(log_obj, pg)); 2511 2512 for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4) 2513 seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n", 2514 *(log + i), *(log + i + 1), 2515 *(log + i + 2), *(log + i + 3)); 2516 2517 kunmap_atomic(log); 2518 } 2519 2520 seq_putc(m, '\n'); 2521 2522 return 0; 2523 } 2524 2525 static int i915_edp_psr_status(struct seq_file *m, void *data) 2526 { 2527 struct drm_info_node *node = m->private; 2528 struct drm_device *dev = node->minor->dev; 2529 struct drm_i915_private *dev_priv = dev->dev_private; 2530 u32 psrperf = 0; 2531 u32 stat[3]; 2532 enum pipe pipe; 2533 bool enabled = false; 2534 2535 if (!HAS_PSR(dev)) { 2536 seq_puts(m, "PSR not supported\n"); 2537 return 0; 2538 } 2539 2540 intel_runtime_pm_get(dev_priv); 2541 2542 mutex_lock(&dev_priv->psr.lock); 2543 seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support)); 2544 seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok)); 2545 seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled)); 2546 seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active)); 2547 seq_printf(m, "Busy frontbuffer bits: 0x%03x\n", 2548 dev_priv->psr.busy_frontbuffer_bits); 2549 seq_printf(m, "Re-enable work scheduled: %s\n", 2550 yesno(work_busy(&dev_priv->psr.work.work))); 2551 2552 if (HAS_DDI(dev)) 2553 enabled = I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE; 2554 else { 2555 for_each_pipe(dev_priv, pipe) { 2556 stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) & 2557 VLV_EDP_PSR_CURR_STATE_MASK; 2558 if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) || 2559 (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE)) 2560 enabled = true; 2561 } 2562 } 2563 seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled)); 2564 2565 if (!HAS_DDI(dev)) 2566 for_each_pipe(dev_priv, pipe) { 2567 if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) || 2568 (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE)) 2569 seq_printf(m, " pipe %c", pipe_name(pipe)); 2570 } 2571 seq_puts(m, "\n"); 2572 2573 /* CHV PSR has no kind of performance counter */ 2574 if (HAS_DDI(dev)) { 2575 psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) & 2576 EDP_PSR_PERF_CNT_MASK; 2577 2578 seq_printf(m, "Performance_Counter: %u\n", psrperf); 2579 } 2580 mutex_unlock(&dev_priv->psr.lock); 2581 2582 intel_runtime_pm_put(dev_priv); 2583 return 0; 2584 } 2585 2586 static int i915_sink_crc(struct seq_file *m, void *data) 2587 { 2588 struct drm_info_node *node = m->private; 2589 struct drm_device *dev = node->minor->dev; 2590 struct intel_encoder *encoder; 2591 struct intel_connector *connector; 2592 struct intel_dp *intel_dp = NULL; 2593 int ret; 2594 u8 crc[6]; 2595 2596 drm_modeset_lock_all(dev); 2597 for_each_intel_connector(dev, connector) { 2598 2599 if (connector->base.dpms != DRM_MODE_DPMS_ON) 2600 continue; 2601 2602 if (!connector->base.encoder) 2603 continue; 2604 2605 encoder = to_intel_encoder(connector->base.encoder); 2606 if (encoder->type != INTEL_OUTPUT_EDP) 2607 continue; 2608 2609 intel_dp = enc_to_intel_dp(&encoder->base); 2610 2611 ret = intel_dp_sink_crc(intel_dp, crc); 2612 if (ret) 2613 goto out; 2614 2615 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n", 2616 crc[0], crc[1], crc[2], 2617 crc[3], crc[4], crc[5]); 2618 goto out; 2619 } 2620 ret = -ENODEV; 2621 out: 2622 drm_modeset_unlock_all(dev); 2623 return ret; 2624 } 2625 2626 static int i915_energy_uJ(struct seq_file *m, void *data) 2627 { 2628 struct drm_info_node *node = m->private; 2629 struct drm_device *dev = node->minor->dev; 2630 struct drm_i915_private *dev_priv = dev->dev_private; 2631 u64 power; 2632 u32 units; 2633 2634 if (INTEL_INFO(dev)->gen < 6) 2635 return -ENODEV; 2636 2637 intel_runtime_pm_get(dev_priv); 2638 2639 rdmsrl(MSR_RAPL_POWER_UNIT, power); 2640 power = (power & 0x1f00) >> 8; 2641 units = 1000000 / (1 << power); /* convert to uJ */ 2642 power = I915_READ(MCH_SECP_NRG_STTS); 2643 power *= units; 2644 2645 intel_runtime_pm_put(dev_priv); 2646 2647 seq_printf(m, "%llu", (long long unsigned)power); 2648 2649 return 0; 2650 } 2651 2652 static int i915_runtime_pm_status(struct seq_file *m, void *unused) 2653 { 2654 struct drm_info_node *node = m->private; 2655 struct drm_device *dev = node->minor->dev; 2656 struct drm_i915_private *dev_priv = dev->dev_private; 2657 2658 if (!HAS_RUNTIME_PM(dev)) { 2659 seq_puts(m, "not supported\n"); 2660 return 0; 2661 } 2662 2663 seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy)); 2664 seq_printf(m, "IRQs disabled: %s\n", 2665 yesno(!intel_irqs_enabled(dev_priv))); 2666 #ifdef CONFIG_PM 2667 seq_printf(m, "Usage count: %d\n", 2668 atomic_read(&dev->dev->power.usage_count)); 2669 #else 2670 seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n"); 2671 #endif 2672 2673 return 0; 2674 } 2675 2676 static const char *power_domain_str(enum intel_display_power_domain domain) 2677 { 2678 switch (domain) { 2679 case POWER_DOMAIN_PIPE_A: 2680 return "PIPE_A"; 2681 case POWER_DOMAIN_PIPE_B: 2682 return "PIPE_B"; 2683 case POWER_DOMAIN_PIPE_C: 2684 return "PIPE_C"; 2685 case POWER_DOMAIN_PIPE_A_PANEL_FITTER: 2686 return "PIPE_A_PANEL_FITTER"; 2687 case POWER_DOMAIN_PIPE_B_PANEL_FITTER: 2688 return "PIPE_B_PANEL_FITTER"; 2689 case POWER_DOMAIN_PIPE_C_PANEL_FITTER: 2690 return "PIPE_C_PANEL_FITTER"; 2691 case POWER_DOMAIN_TRANSCODER_A: 2692 return "TRANSCODER_A"; 2693 case POWER_DOMAIN_TRANSCODER_B: 2694 return "TRANSCODER_B"; 2695 case POWER_DOMAIN_TRANSCODER_C: 2696 return "TRANSCODER_C"; 2697 case POWER_DOMAIN_TRANSCODER_EDP: 2698 return "TRANSCODER_EDP"; 2699 case POWER_DOMAIN_PORT_DDI_A_2_LANES: 2700 return "PORT_DDI_A_2_LANES"; 2701 case POWER_DOMAIN_PORT_DDI_A_4_LANES: 2702 return "PORT_DDI_A_4_LANES"; 2703 case POWER_DOMAIN_PORT_DDI_B_2_LANES: 2704 return "PORT_DDI_B_2_LANES"; 2705 case POWER_DOMAIN_PORT_DDI_B_4_LANES: 2706 return "PORT_DDI_B_4_LANES"; 2707 case POWER_DOMAIN_PORT_DDI_C_2_LANES: 2708 return "PORT_DDI_C_2_LANES"; 2709 case POWER_DOMAIN_PORT_DDI_C_4_LANES: 2710 return "PORT_DDI_C_4_LANES"; 2711 case POWER_DOMAIN_PORT_DDI_D_2_LANES: 2712 return "PORT_DDI_D_2_LANES"; 2713 case POWER_DOMAIN_PORT_DDI_D_4_LANES: 2714 return "PORT_DDI_D_4_LANES"; 2715 case POWER_DOMAIN_PORT_DDI_E_2_LANES: 2716 return "PORT_DDI_E_2_LANES"; 2717 case POWER_DOMAIN_PORT_DSI: 2718 return "PORT_DSI"; 2719 case POWER_DOMAIN_PORT_CRT: 2720 return "PORT_CRT"; 2721 case POWER_DOMAIN_PORT_OTHER: 2722 return "PORT_OTHER"; 2723 case POWER_DOMAIN_VGA: 2724 return "VGA"; 2725 case POWER_DOMAIN_AUDIO: 2726 return "AUDIO"; 2727 case POWER_DOMAIN_PLLS: 2728 return "PLLS"; 2729 case POWER_DOMAIN_AUX_A: 2730 return "AUX_A"; 2731 case POWER_DOMAIN_AUX_B: 2732 return "AUX_B"; 2733 case POWER_DOMAIN_AUX_C: 2734 return "AUX_C"; 2735 case POWER_DOMAIN_AUX_D: 2736 return "AUX_D"; 2737 case POWER_DOMAIN_INIT: 2738 return "INIT"; 2739 default: 2740 MISSING_CASE(domain); 2741 return "?"; 2742 } 2743 } 2744 2745 static int i915_power_domain_info(struct seq_file *m, void *unused) 2746 { 2747 struct drm_info_node *node = m->private; 2748 struct drm_device *dev = node->minor->dev; 2749 struct drm_i915_private *dev_priv = dev->dev_private; 2750 struct i915_power_domains *power_domains = &dev_priv->power_domains; 2751 int i; 2752 2753 mutex_lock(&power_domains->lock); 2754 2755 seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count"); 2756 for (i = 0; i < power_domains->power_well_count; i++) { 2757 struct i915_power_well *power_well; 2758 enum intel_display_power_domain power_domain; 2759 2760 power_well = &power_domains->power_wells[i]; 2761 seq_printf(m, "%-25s %d\n", power_well->name, 2762 power_well->count); 2763 2764 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM; 2765 power_domain++) { 2766 if (!(BIT(power_domain) & power_well->domains)) 2767 continue; 2768 2769 seq_printf(m, " %-23s %d\n", 2770 power_domain_str(power_domain), 2771 power_domains->domain_use_count[power_domain]); 2772 } 2773 } 2774 2775 mutex_unlock(&power_domains->lock); 2776 2777 return 0; 2778 } 2779 2780 static void intel_seq_print_mode(struct seq_file *m, int tabs, 2781 struct drm_display_mode *mode) 2782 { 2783 int i; 2784 2785 for (i = 0; i < tabs; i++) 2786 seq_putc(m, '\t'); 2787 2788 seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n", 2789 mode->base.id, mode->name, 2790 mode->vrefresh, mode->clock, 2791 mode->hdisplay, mode->hsync_start, 2792 mode->hsync_end, mode->htotal, 2793 mode->vdisplay, mode->vsync_start, 2794 mode->vsync_end, mode->vtotal, 2795 mode->type, mode->flags); 2796 } 2797 2798 static void intel_encoder_info(struct seq_file *m, 2799 struct intel_crtc *intel_crtc, 2800 struct intel_encoder *intel_encoder) 2801 { 2802 struct drm_info_node *node = m->private; 2803 struct drm_device *dev = node->minor->dev; 2804 struct drm_crtc *crtc = &intel_crtc->base; 2805 struct intel_connector *intel_connector; 2806 struct drm_encoder *encoder; 2807 2808 encoder = &intel_encoder->base; 2809 seq_printf(m, "\tencoder %d: type: %s, connectors:\n", 2810 encoder->base.id, encoder->name); 2811 for_each_connector_on_encoder(dev, encoder, intel_connector) { 2812 struct drm_connector *connector = &intel_connector->base; 2813 seq_printf(m, "\t\tconnector %d: type: %s, status: %s", 2814 connector->base.id, 2815 connector->name, 2816 drm_get_connector_status_name(connector->status)); 2817 if (connector->status == connector_status_connected) { 2818 struct drm_display_mode *mode = &crtc->mode; 2819 seq_printf(m, ", mode:\n"); 2820 intel_seq_print_mode(m, 2, mode); 2821 } else { 2822 seq_putc(m, '\n'); 2823 } 2824 } 2825 } 2826 2827 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc) 2828 { 2829 struct drm_info_node *node = m->private; 2830 struct drm_device *dev = node->minor->dev; 2831 struct drm_crtc *crtc = &intel_crtc->base; 2832 struct intel_encoder *intel_encoder; 2833 struct drm_plane_state *plane_state = crtc->primary->state; 2834 struct drm_framebuffer *fb = plane_state->fb; 2835 2836 if (fb) 2837 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n", 2838 fb->base.id, plane_state->src_x >> 16, 2839 plane_state->src_y >> 16, fb->width, fb->height); 2840 else 2841 seq_puts(m, "\tprimary plane disabled\n"); 2842 for_each_encoder_on_crtc(dev, crtc, intel_encoder) 2843 intel_encoder_info(m, intel_crtc, intel_encoder); 2844 } 2845 2846 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel) 2847 { 2848 struct drm_display_mode *mode = panel->fixed_mode; 2849 2850 seq_printf(m, "\tfixed mode:\n"); 2851 intel_seq_print_mode(m, 2, mode); 2852 } 2853 2854 static void intel_dp_info(struct seq_file *m, 2855 struct intel_connector *intel_connector) 2856 { 2857 struct intel_encoder *intel_encoder = intel_connector->encoder; 2858 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base); 2859 2860 seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]); 2861 seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio)); 2862 if (intel_encoder->type == INTEL_OUTPUT_EDP) 2863 intel_panel_info(m, &intel_connector->panel); 2864 } 2865 2866 static void intel_hdmi_info(struct seq_file *m, 2867 struct intel_connector *intel_connector) 2868 { 2869 struct intel_encoder *intel_encoder = intel_connector->encoder; 2870 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base); 2871 2872 seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio)); 2873 } 2874 2875 static void intel_lvds_info(struct seq_file *m, 2876 struct intel_connector *intel_connector) 2877 { 2878 intel_panel_info(m, &intel_connector->panel); 2879 } 2880 2881 static void intel_connector_info(struct seq_file *m, 2882 struct drm_connector *connector) 2883 { 2884 struct intel_connector *intel_connector = to_intel_connector(connector); 2885 struct intel_encoder *intel_encoder = intel_connector->encoder; 2886 struct drm_display_mode *mode; 2887 2888 seq_printf(m, "connector %d: type %s, status: %s\n", 2889 connector->base.id, connector->name, 2890 drm_get_connector_status_name(connector->status)); 2891 if (connector->status == connector_status_connected) { 2892 seq_printf(m, "\tname: %s\n", connector->display_info.name); 2893 seq_printf(m, "\tphysical dimensions: %dx%dmm\n", 2894 connector->display_info.width_mm, 2895 connector->display_info.height_mm); 2896 seq_printf(m, "\tsubpixel order: %s\n", 2897 drm_get_subpixel_order_name(connector->display_info.subpixel_order)); 2898 seq_printf(m, "\tCEA rev: %d\n", 2899 connector->display_info.cea_rev); 2900 } 2901 if (intel_encoder) { 2902 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT || 2903 intel_encoder->type == INTEL_OUTPUT_EDP) 2904 intel_dp_info(m, intel_connector); 2905 else if (intel_encoder->type == INTEL_OUTPUT_HDMI) 2906 intel_hdmi_info(m, intel_connector); 2907 else if (intel_encoder->type == INTEL_OUTPUT_LVDS) 2908 intel_lvds_info(m, intel_connector); 2909 } 2910 2911 seq_printf(m, "\tmodes:\n"); 2912 list_for_each_entry(mode, &connector->modes, head) 2913 intel_seq_print_mode(m, 2, mode); 2914 } 2915 2916 static bool cursor_active(struct drm_device *dev, int pipe) 2917 { 2918 struct drm_i915_private *dev_priv = dev->dev_private; 2919 u32 state; 2920 2921 if (IS_845G(dev) || IS_I865G(dev)) 2922 state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE; 2923 else 2924 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE; 2925 2926 return state; 2927 } 2928 2929 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y) 2930 { 2931 struct drm_i915_private *dev_priv = dev->dev_private; 2932 u32 pos; 2933 2934 pos = I915_READ(CURPOS(pipe)); 2935 2936 *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK; 2937 if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT)) 2938 *x = -*x; 2939 2940 *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK; 2941 if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT)) 2942 *y = -*y; 2943 2944 return cursor_active(dev, pipe); 2945 } 2946 2947 static int i915_display_info(struct seq_file *m, void *unused) 2948 { 2949 struct drm_info_node *node = m->private; 2950 struct drm_device *dev = node->minor->dev; 2951 struct drm_i915_private *dev_priv = dev->dev_private; 2952 struct intel_crtc *crtc; 2953 struct drm_connector *connector; 2954 2955 intel_runtime_pm_get(dev_priv); 2956 drm_modeset_lock_all(dev); 2957 seq_printf(m, "CRTC info\n"); 2958 seq_printf(m, "---------\n"); 2959 for_each_intel_crtc(dev, crtc) { 2960 bool active; 2961 struct intel_crtc_state *pipe_config; 2962 int x, y; 2963 2964 pipe_config = to_intel_crtc_state(crtc->base.state); 2965 2966 seq_printf(m, "CRTC %d: pipe: %c, active=%s (size=%dx%d)\n", 2967 crtc->base.base.id, pipe_name(crtc->pipe), 2968 yesno(pipe_config->base.active), 2969 pipe_config->pipe_src_w, pipe_config->pipe_src_h); 2970 if (pipe_config->base.active) { 2971 intel_crtc_info(m, crtc); 2972 2973 active = cursor_position(dev, crtc->pipe, &x, &y); 2974 seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n", 2975 yesno(crtc->cursor_base), 2976 x, y, crtc->base.cursor->state->crtc_w, 2977 crtc->base.cursor->state->crtc_h, 2978 crtc->cursor_addr, yesno(active)); 2979 } 2980 2981 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n", 2982 yesno(!crtc->cpu_fifo_underrun_disabled), 2983 yesno(!crtc->pch_fifo_underrun_disabled)); 2984 } 2985 2986 seq_printf(m, "\n"); 2987 seq_printf(m, "Connector info\n"); 2988 seq_printf(m, "--------------\n"); 2989 list_for_each_entry(connector, &dev->mode_config.connector_list, head) { 2990 intel_connector_info(m, connector); 2991 } 2992 drm_modeset_unlock_all(dev); 2993 intel_runtime_pm_put(dev_priv); 2994 2995 return 0; 2996 } 2997 2998 static int i915_semaphore_status(struct seq_file *m, void *unused) 2999 { 3000 struct drm_info_node *node = (struct drm_info_node *) m->private; 3001 struct drm_device *dev = node->minor->dev; 3002 struct drm_i915_private *dev_priv = dev->dev_private; 3003 struct intel_engine_cs *ring; 3004 int num_rings = hweight32(INTEL_INFO(dev)->ring_mask); 3005 int i, j, ret; 3006 3007 if (!i915_semaphore_is_enabled(dev)) { 3008 seq_puts(m, "Semaphores are disabled\n"); 3009 return 0; 3010 } 3011 3012 ret = mutex_lock_interruptible(&dev->struct_mutex); 3013 if (ret) 3014 return ret; 3015 intel_runtime_pm_get(dev_priv); 3016 3017 if (IS_BROADWELL(dev)) { 3018 struct page *page; 3019 uint64_t *seqno; 3020 3021 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0); 3022 3023 seqno = (uint64_t *)kmap_atomic(page); 3024 for_each_ring(ring, dev_priv, i) { 3025 uint64_t offset; 3026 3027 seq_printf(m, "%s\n", ring->name); 3028 3029 seq_puts(m, " Last signal:"); 3030 for (j = 0; j < num_rings; j++) { 3031 offset = i * I915_NUM_RINGS + j; 3032 seq_printf(m, "0x%08llx (0x%02llx) ", 3033 seqno[offset], offset * 8); 3034 } 3035 seq_putc(m, '\n'); 3036 3037 seq_puts(m, " Last wait: "); 3038 for (j = 0; j < num_rings; j++) { 3039 offset = i + (j * I915_NUM_RINGS); 3040 seq_printf(m, "0x%08llx (0x%02llx) ", 3041 seqno[offset], offset * 8); 3042 } 3043 seq_putc(m, '\n'); 3044 3045 } 3046 kunmap_atomic(seqno); 3047 } else { 3048 seq_puts(m, " Last signal:"); 3049 for_each_ring(ring, dev_priv, i) 3050 for (j = 0; j < num_rings; j++) 3051 seq_printf(m, "0x%08x\n", 3052 I915_READ(ring->semaphore.mbox.signal[j])); 3053 seq_putc(m, '\n'); 3054 } 3055 3056 seq_puts(m, "\nSync seqno:\n"); 3057 for_each_ring(ring, dev_priv, i) { 3058 for (j = 0; j < num_rings; j++) { 3059 seq_printf(m, " 0x%08x ", ring->semaphore.sync_seqno[j]); 3060 } 3061 seq_putc(m, '\n'); 3062 } 3063 seq_putc(m, '\n'); 3064 3065 intel_runtime_pm_put(dev_priv); 3066 mutex_unlock(&dev->struct_mutex); 3067 return 0; 3068 } 3069 3070 static int i915_shared_dplls_info(struct seq_file *m, void *unused) 3071 { 3072 struct drm_info_node *node = (struct drm_info_node *) m->private; 3073 struct drm_device *dev = node->minor->dev; 3074 struct drm_i915_private *dev_priv = dev->dev_private; 3075 int i; 3076 3077 drm_modeset_lock_all(dev); 3078 for (i = 0; i < dev_priv->num_shared_dpll; i++) { 3079 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i]; 3080 3081 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id); 3082 seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n", 3083 pll->config.crtc_mask, pll->active, yesno(pll->on)); 3084 seq_printf(m, " tracked hardware state:\n"); 3085 seq_printf(m, " dpll: 0x%08x\n", pll->config.hw_state.dpll); 3086 seq_printf(m, " dpll_md: 0x%08x\n", 3087 pll->config.hw_state.dpll_md); 3088 seq_printf(m, " fp0: 0x%08x\n", pll->config.hw_state.fp0); 3089 seq_printf(m, " fp1: 0x%08x\n", pll->config.hw_state.fp1); 3090 seq_printf(m, " wrpll: 0x%08x\n", pll->config.hw_state.wrpll); 3091 } 3092 drm_modeset_unlock_all(dev); 3093 3094 return 0; 3095 } 3096 3097 static int i915_wa_registers(struct seq_file *m, void *unused) 3098 { 3099 int i; 3100 int ret; 3101 struct drm_info_node *node = (struct drm_info_node *) m->private; 3102 struct drm_device *dev = node->minor->dev; 3103 struct drm_i915_private *dev_priv = dev->dev_private; 3104 3105 ret = mutex_lock_interruptible(&dev->struct_mutex); 3106 if (ret) 3107 return ret; 3108 3109 intel_runtime_pm_get(dev_priv); 3110 3111 seq_printf(m, "Workarounds applied: %d\n", dev_priv->workarounds.count); 3112 for (i = 0; i < dev_priv->workarounds.count; ++i) { 3113 u32 addr, mask, value, read; 3114 bool ok; 3115 3116 addr = dev_priv->workarounds.reg[i].addr; 3117 mask = dev_priv->workarounds.reg[i].mask; 3118 value = dev_priv->workarounds.reg[i].value; 3119 read = I915_READ(addr); 3120 ok = (value & mask) == (read & mask); 3121 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n", 3122 addr, value, mask, read, ok ? "OK" : "FAIL"); 3123 } 3124 3125 intel_runtime_pm_put(dev_priv); 3126 mutex_unlock(&dev->struct_mutex); 3127 3128 return 0; 3129 } 3130 3131 static int i915_ddb_info(struct seq_file *m, void *unused) 3132 { 3133 struct drm_info_node *node = m->private; 3134 struct drm_device *dev = node->minor->dev; 3135 struct drm_i915_private *dev_priv = dev->dev_private; 3136 struct skl_ddb_allocation *ddb; 3137 struct skl_ddb_entry *entry; 3138 enum pipe pipe; 3139 int plane; 3140 3141 if (INTEL_INFO(dev)->gen < 9) 3142 return 0; 3143 3144 drm_modeset_lock_all(dev); 3145 3146 ddb = &dev_priv->wm.skl_hw.ddb; 3147 3148 seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size"); 3149 3150 for_each_pipe(dev_priv, pipe) { 3151 seq_printf(m, "Pipe %c\n", pipe_name(pipe)); 3152 3153 for_each_plane(dev_priv, pipe, plane) { 3154 entry = &ddb->plane[pipe][plane]; 3155 seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1, 3156 entry->start, entry->end, 3157 skl_ddb_entry_size(entry)); 3158 } 3159 3160 entry = &ddb->plane[pipe][PLANE_CURSOR]; 3161 seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start, 3162 entry->end, skl_ddb_entry_size(entry)); 3163 } 3164 3165 drm_modeset_unlock_all(dev); 3166 3167 return 0; 3168 } 3169 3170 static void drrs_status_per_crtc(struct seq_file *m, 3171 struct drm_device *dev, struct intel_crtc *intel_crtc) 3172 { 3173 struct intel_encoder *intel_encoder; 3174 struct drm_i915_private *dev_priv = dev->dev_private; 3175 struct i915_drrs *drrs = &dev_priv->drrs; 3176 int vrefresh = 0; 3177 3178 for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) { 3179 /* Encoder connected on this CRTC */ 3180 switch (intel_encoder->type) { 3181 case INTEL_OUTPUT_EDP: 3182 seq_puts(m, "eDP:\n"); 3183 break; 3184 case INTEL_OUTPUT_DSI: 3185 seq_puts(m, "DSI:\n"); 3186 break; 3187 case INTEL_OUTPUT_HDMI: 3188 seq_puts(m, "HDMI:\n"); 3189 break; 3190 case INTEL_OUTPUT_DISPLAYPORT: 3191 seq_puts(m, "DP:\n"); 3192 break; 3193 default: 3194 seq_printf(m, "Other encoder (id=%d).\n", 3195 intel_encoder->type); 3196 return; 3197 } 3198 } 3199 3200 if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT) 3201 seq_puts(m, "\tVBT: DRRS_type: Static"); 3202 else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT) 3203 seq_puts(m, "\tVBT: DRRS_type: Seamless"); 3204 else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED) 3205 seq_puts(m, "\tVBT: DRRS_type: None"); 3206 else 3207 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value"); 3208 3209 seq_puts(m, "\n\n"); 3210 3211 if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) { 3212 struct intel_panel *panel; 3213 3214 mutex_lock(&drrs->mutex); 3215 /* DRRS Supported */ 3216 seq_puts(m, "\tDRRS Supported: Yes\n"); 3217 3218 /* disable_drrs() will make drrs->dp NULL */ 3219 if (!drrs->dp) { 3220 seq_puts(m, "Idleness DRRS: Disabled"); 3221 mutex_unlock(&drrs->mutex); 3222 return; 3223 } 3224 3225 panel = &drrs->dp->attached_connector->panel; 3226 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X", 3227 drrs->busy_frontbuffer_bits); 3228 3229 seq_puts(m, "\n\t\t"); 3230 if (drrs->refresh_rate_type == DRRS_HIGH_RR) { 3231 seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n"); 3232 vrefresh = panel->fixed_mode->vrefresh; 3233 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) { 3234 seq_puts(m, "DRRS_State: DRRS_LOW_RR\n"); 3235 vrefresh = panel->downclock_mode->vrefresh; 3236 } else { 3237 seq_printf(m, "DRRS_State: Unknown(%d)\n", 3238 drrs->refresh_rate_type); 3239 mutex_unlock(&drrs->mutex); 3240 return; 3241 } 3242 seq_printf(m, "\t\tVrefresh: %d", vrefresh); 3243 3244 seq_puts(m, "\n\t\t"); 3245 mutex_unlock(&drrs->mutex); 3246 } else { 3247 /* DRRS not supported. Print the VBT parameter*/ 3248 seq_puts(m, "\tDRRS Supported : No"); 3249 } 3250 seq_puts(m, "\n"); 3251 } 3252 3253 static int i915_drrs_status(struct seq_file *m, void *unused) 3254 { 3255 struct drm_info_node *node = m->private; 3256 struct drm_device *dev = node->minor->dev; 3257 struct intel_crtc *intel_crtc; 3258 int active_crtc_cnt = 0; 3259 3260 for_each_intel_crtc(dev, intel_crtc) { 3261 drm_modeset_lock(&intel_crtc->base.mutex, NULL); 3262 3263 if (intel_crtc->base.state->active) { 3264 active_crtc_cnt++; 3265 seq_printf(m, "\nCRTC %d: ", active_crtc_cnt); 3266 3267 drrs_status_per_crtc(m, dev, intel_crtc); 3268 } 3269 3270 drm_modeset_unlock(&intel_crtc->base.mutex); 3271 } 3272 3273 if (!active_crtc_cnt) 3274 seq_puts(m, "No active crtc found\n"); 3275 3276 return 0; 3277 } 3278 3279 struct pipe_crc_info { 3280 const char *name; 3281 struct drm_device *dev; 3282 enum pipe pipe; 3283 }; 3284 3285 static int i915_dp_mst_info(struct seq_file *m, void *unused) 3286 { 3287 struct drm_info_node *node = (struct drm_info_node *) m->private; 3288 struct drm_device *dev = node->minor->dev; 3289 struct drm_encoder *encoder; 3290 struct intel_encoder *intel_encoder; 3291 struct intel_digital_port *intel_dig_port; 3292 drm_modeset_lock_all(dev); 3293 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { 3294 intel_encoder = to_intel_encoder(encoder); 3295 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT) 3296 continue; 3297 intel_dig_port = enc_to_dig_port(encoder); 3298 if (!intel_dig_port->dp.can_mst) 3299 continue; 3300 3301 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr); 3302 } 3303 drm_modeset_unlock_all(dev); 3304 return 0; 3305 } 3306 3307 static int i915_pipe_crc_open(struct inode *inode, struct file *filep) 3308 { 3309 struct pipe_crc_info *info = inode->i_private; 3310 struct drm_i915_private *dev_priv = info->dev->dev_private; 3311 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe]; 3312 3313 if (info->pipe >= INTEL_INFO(info->dev)->num_pipes) 3314 return -ENODEV; 3315 3316 spin_lock_irq(&pipe_crc->lock); 3317 3318 if (pipe_crc->opened) { 3319 spin_unlock_irq(&pipe_crc->lock); 3320 return -EBUSY; /* already open */ 3321 } 3322 3323 pipe_crc->opened = true; 3324 filep->private_data = inode->i_private; 3325 3326 spin_unlock_irq(&pipe_crc->lock); 3327 3328 return 0; 3329 } 3330 3331 static int i915_pipe_crc_release(struct inode *inode, struct file *filep) 3332 { 3333 struct pipe_crc_info *info = inode->i_private; 3334 struct drm_i915_private *dev_priv = info->dev->dev_private; 3335 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe]; 3336 3337 spin_lock_irq(&pipe_crc->lock); 3338 pipe_crc->opened = false; 3339 spin_unlock_irq(&pipe_crc->lock); 3340 3341 return 0; 3342 } 3343 3344 /* (6 fields, 8 chars each, space separated (5) + '\n') */ 3345 #define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1) 3346 /* account for \'0' */ 3347 #define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1) 3348 3349 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc) 3350 { 3351 assert_spin_locked(&pipe_crc->lock); 3352 return CIRC_CNT(pipe_crc->head, pipe_crc->tail, 3353 INTEL_PIPE_CRC_ENTRIES_NR); 3354 } 3355 3356 static ssize_t 3357 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count, 3358 loff_t *pos) 3359 { 3360 struct pipe_crc_info *info = filep->private_data; 3361 struct drm_device *dev = info->dev; 3362 struct drm_i915_private *dev_priv = dev->dev_private; 3363 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe]; 3364 char buf[PIPE_CRC_BUFFER_LEN]; 3365 int n_entries; 3366 ssize_t bytes_read; 3367 3368 /* 3369 * Don't allow user space to provide buffers not big enough to hold 3370 * a line of data. 3371 */ 3372 if (count < PIPE_CRC_LINE_LEN) 3373 return -EINVAL; 3374 3375 if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE) 3376 return 0; 3377 3378 /* nothing to read */ 3379 spin_lock_irq(&pipe_crc->lock); 3380 while (pipe_crc_data_count(pipe_crc) == 0) { 3381 int ret; 3382 3383 if (filep->f_flags & O_NONBLOCK) { 3384 spin_unlock_irq(&pipe_crc->lock); 3385 return -EAGAIN; 3386 } 3387 3388 ret = wait_event_interruptible_lock_irq(pipe_crc->wq, 3389 pipe_crc_data_count(pipe_crc), pipe_crc->lock); 3390 if (ret) { 3391 spin_unlock_irq(&pipe_crc->lock); 3392 return ret; 3393 } 3394 } 3395 3396 /* We now have one or more entries to read */ 3397 n_entries = count / PIPE_CRC_LINE_LEN; 3398 3399 bytes_read = 0; 3400 while (n_entries > 0) { 3401 struct intel_pipe_crc_entry *entry = 3402 &pipe_crc->entries[pipe_crc->tail]; 3403 int ret; 3404 3405 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail, 3406 INTEL_PIPE_CRC_ENTRIES_NR) < 1) 3407 break; 3408 3409 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR); 3410 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1); 3411 3412 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN, 3413 "%8u %8x %8x %8x %8x %8x\n", 3414 entry->frame, entry->crc[0], 3415 entry->crc[1], entry->crc[2], 3416 entry->crc[3], entry->crc[4]); 3417 3418 spin_unlock_irq(&pipe_crc->lock); 3419 3420 ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN); 3421 if (ret == PIPE_CRC_LINE_LEN) 3422 return -EFAULT; 3423 3424 user_buf += PIPE_CRC_LINE_LEN; 3425 n_entries--; 3426 3427 spin_lock_irq(&pipe_crc->lock); 3428 } 3429 3430 spin_unlock_irq(&pipe_crc->lock); 3431 3432 return bytes_read; 3433 } 3434 3435 static const struct file_operations i915_pipe_crc_fops = { 3436 .owner = THIS_MODULE, 3437 .open = i915_pipe_crc_open, 3438 .read = i915_pipe_crc_read, 3439 .release = i915_pipe_crc_release, 3440 }; 3441 3442 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = { 3443 { 3444 .name = "i915_pipe_A_crc", 3445 .pipe = PIPE_A, 3446 }, 3447 { 3448 .name = "i915_pipe_B_crc", 3449 .pipe = PIPE_B, 3450 }, 3451 { 3452 .name = "i915_pipe_C_crc", 3453 .pipe = PIPE_C, 3454 }, 3455 }; 3456 3457 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor, 3458 enum pipe pipe) 3459 { 3460 struct drm_device *dev = minor->dev; 3461 struct dentry *ent; 3462 struct pipe_crc_info *info = &i915_pipe_crc_data[pipe]; 3463 3464 info->dev = dev; 3465 ent = debugfs_create_file(info->name, S_IRUGO, root, info, 3466 &i915_pipe_crc_fops); 3467 if (!ent) 3468 return -ENOMEM; 3469 3470 return drm_add_fake_info_node(minor, ent, info); 3471 } 3472 3473 static const char * const pipe_crc_sources[] = { 3474 "none", 3475 "plane1", 3476 "plane2", 3477 "pf", 3478 "pipe", 3479 "TV", 3480 "DP-B", 3481 "DP-C", 3482 "DP-D", 3483 "auto", 3484 }; 3485 3486 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source) 3487 { 3488 BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX); 3489 return pipe_crc_sources[source]; 3490 } 3491 3492 static int display_crc_ctl_show(struct seq_file *m, void *data) 3493 { 3494 struct drm_device *dev = m->private; 3495 struct drm_i915_private *dev_priv = dev->dev_private; 3496 int i; 3497 3498 for (i = 0; i < I915_MAX_PIPES; i++) 3499 seq_printf(m, "%c %s\n", pipe_name(i), 3500 pipe_crc_source_name(dev_priv->pipe_crc[i].source)); 3501 3502 return 0; 3503 } 3504 3505 static int display_crc_ctl_open(struct inode *inode, struct file *file) 3506 { 3507 struct drm_device *dev = inode->i_private; 3508 3509 return single_open(file, display_crc_ctl_show, dev); 3510 } 3511 3512 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source, 3513 uint32_t *val) 3514 { 3515 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) 3516 *source = INTEL_PIPE_CRC_SOURCE_PIPE; 3517 3518 switch (*source) { 3519 case INTEL_PIPE_CRC_SOURCE_PIPE: 3520 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX; 3521 break; 3522 case INTEL_PIPE_CRC_SOURCE_NONE: 3523 *val = 0; 3524 break; 3525 default: 3526 return -EINVAL; 3527 } 3528 3529 return 0; 3530 } 3531 3532 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe, 3533 enum intel_pipe_crc_source *source) 3534 { 3535 struct intel_encoder *encoder; 3536 struct intel_crtc *crtc; 3537 struct intel_digital_port *dig_port; 3538 int ret = 0; 3539 3540 *source = INTEL_PIPE_CRC_SOURCE_PIPE; 3541 3542 drm_modeset_lock_all(dev); 3543 for_each_intel_encoder(dev, encoder) { 3544 if (!encoder->base.crtc) 3545 continue; 3546 3547 crtc = to_intel_crtc(encoder->base.crtc); 3548 3549 if (crtc->pipe != pipe) 3550 continue; 3551 3552 switch (encoder->type) { 3553 case INTEL_OUTPUT_TVOUT: 3554 *source = INTEL_PIPE_CRC_SOURCE_TV; 3555 break; 3556 case INTEL_OUTPUT_DISPLAYPORT: 3557 case INTEL_OUTPUT_EDP: 3558 dig_port = enc_to_dig_port(&encoder->base); 3559 switch (dig_port->port) { 3560 case PORT_B: 3561 *source = INTEL_PIPE_CRC_SOURCE_DP_B; 3562 break; 3563 case PORT_C: 3564 *source = INTEL_PIPE_CRC_SOURCE_DP_C; 3565 break; 3566 case PORT_D: 3567 *source = INTEL_PIPE_CRC_SOURCE_DP_D; 3568 break; 3569 default: 3570 WARN(1, "nonexisting DP port %c\n", 3571 port_name(dig_port->port)); 3572 break; 3573 } 3574 break; 3575 default: 3576 break; 3577 } 3578 } 3579 drm_modeset_unlock_all(dev); 3580 3581 return ret; 3582 } 3583 3584 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev, 3585 enum pipe pipe, 3586 enum intel_pipe_crc_source *source, 3587 uint32_t *val) 3588 { 3589 struct drm_i915_private *dev_priv = dev->dev_private; 3590 bool need_stable_symbols = false; 3591 3592 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) { 3593 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source); 3594 if (ret) 3595 return ret; 3596 } 3597 3598 switch (*source) { 3599 case INTEL_PIPE_CRC_SOURCE_PIPE: 3600 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV; 3601 break; 3602 case INTEL_PIPE_CRC_SOURCE_DP_B: 3603 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV; 3604 need_stable_symbols = true; 3605 break; 3606 case INTEL_PIPE_CRC_SOURCE_DP_C: 3607 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV; 3608 need_stable_symbols = true; 3609 break; 3610 case INTEL_PIPE_CRC_SOURCE_DP_D: 3611 if (!IS_CHERRYVIEW(dev)) 3612 return -EINVAL; 3613 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV; 3614 need_stable_symbols = true; 3615 break; 3616 case INTEL_PIPE_CRC_SOURCE_NONE: 3617 *val = 0; 3618 break; 3619 default: 3620 return -EINVAL; 3621 } 3622 3623 /* 3624 * When the pipe CRC tap point is after the transcoders we need 3625 * to tweak symbol-level features to produce a deterministic series of 3626 * symbols for a given frame. We need to reset those features only once 3627 * a frame (instead of every nth symbol): 3628 * - DC-balance: used to ensure a better clock recovery from the data 3629 * link (SDVO) 3630 * - DisplayPort scrambling: used for EMI reduction 3631 */ 3632 if (need_stable_symbols) { 3633 uint32_t tmp = I915_READ(PORT_DFT2_G4X); 3634 3635 tmp |= DC_BALANCE_RESET_VLV; 3636 switch (pipe) { 3637 case PIPE_A: 3638 tmp |= PIPE_A_SCRAMBLE_RESET; 3639 break; 3640 case PIPE_B: 3641 tmp |= PIPE_B_SCRAMBLE_RESET; 3642 break; 3643 case PIPE_C: 3644 tmp |= PIPE_C_SCRAMBLE_RESET; 3645 break; 3646 default: 3647 return -EINVAL; 3648 } 3649 I915_WRITE(PORT_DFT2_G4X, tmp); 3650 } 3651 3652 return 0; 3653 } 3654 3655 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev, 3656 enum pipe pipe, 3657 enum intel_pipe_crc_source *source, 3658 uint32_t *val) 3659 { 3660 struct drm_i915_private *dev_priv = dev->dev_private; 3661 bool need_stable_symbols = false; 3662 3663 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) { 3664 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source); 3665 if (ret) 3666 return ret; 3667 } 3668 3669 switch (*source) { 3670 case INTEL_PIPE_CRC_SOURCE_PIPE: 3671 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX; 3672 break; 3673 case INTEL_PIPE_CRC_SOURCE_TV: 3674 if (!SUPPORTS_TV(dev)) 3675 return -EINVAL; 3676 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE; 3677 break; 3678 case INTEL_PIPE_CRC_SOURCE_DP_B: 3679 if (!IS_G4X(dev)) 3680 return -EINVAL; 3681 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X; 3682 need_stable_symbols = true; 3683 break; 3684 case INTEL_PIPE_CRC_SOURCE_DP_C: 3685 if (!IS_G4X(dev)) 3686 return -EINVAL; 3687 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X; 3688 need_stable_symbols = true; 3689 break; 3690 case INTEL_PIPE_CRC_SOURCE_DP_D: 3691 if (!IS_G4X(dev)) 3692 return -EINVAL; 3693 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X; 3694 need_stable_symbols = true; 3695 break; 3696 case INTEL_PIPE_CRC_SOURCE_NONE: 3697 *val = 0; 3698 break; 3699 default: 3700 return -EINVAL; 3701 } 3702 3703 /* 3704 * When the pipe CRC tap point is after the transcoders we need 3705 * to tweak symbol-level features to produce a deterministic series of 3706 * symbols for a given frame. We need to reset those features only once 3707 * a frame (instead of every nth symbol): 3708 * - DC-balance: used to ensure a better clock recovery from the data 3709 * link (SDVO) 3710 * - DisplayPort scrambling: used for EMI reduction 3711 */ 3712 if (need_stable_symbols) { 3713 uint32_t tmp = I915_READ(PORT_DFT2_G4X); 3714 3715 WARN_ON(!IS_G4X(dev)); 3716 3717 I915_WRITE(PORT_DFT_I9XX, 3718 I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET); 3719 3720 if (pipe == PIPE_A) 3721 tmp |= PIPE_A_SCRAMBLE_RESET; 3722 else 3723 tmp |= PIPE_B_SCRAMBLE_RESET; 3724 3725 I915_WRITE(PORT_DFT2_G4X, tmp); 3726 } 3727 3728 return 0; 3729 } 3730 3731 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev, 3732 enum pipe pipe) 3733 { 3734 struct drm_i915_private *dev_priv = dev->dev_private; 3735 uint32_t tmp = I915_READ(PORT_DFT2_G4X); 3736 3737 switch (pipe) { 3738 case PIPE_A: 3739 tmp &= ~PIPE_A_SCRAMBLE_RESET; 3740 break; 3741 case PIPE_B: 3742 tmp &= ~PIPE_B_SCRAMBLE_RESET; 3743 break; 3744 case PIPE_C: 3745 tmp &= ~PIPE_C_SCRAMBLE_RESET; 3746 break; 3747 default: 3748 return; 3749 } 3750 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) 3751 tmp &= ~DC_BALANCE_RESET_VLV; 3752 I915_WRITE(PORT_DFT2_G4X, tmp); 3753 3754 } 3755 3756 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev, 3757 enum pipe pipe) 3758 { 3759 struct drm_i915_private *dev_priv = dev->dev_private; 3760 uint32_t tmp = I915_READ(PORT_DFT2_G4X); 3761 3762 if (pipe == PIPE_A) 3763 tmp &= ~PIPE_A_SCRAMBLE_RESET; 3764 else 3765 tmp &= ~PIPE_B_SCRAMBLE_RESET; 3766 I915_WRITE(PORT_DFT2_G4X, tmp); 3767 3768 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) { 3769 I915_WRITE(PORT_DFT_I9XX, 3770 I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET); 3771 } 3772 } 3773 3774 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source, 3775 uint32_t *val) 3776 { 3777 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) 3778 *source = INTEL_PIPE_CRC_SOURCE_PIPE; 3779 3780 switch (*source) { 3781 case INTEL_PIPE_CRC_SOURCE_PLANE1: 3782 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK; 3783 break; 3784 case INTEL_PIPE_CRC_SOURCE_PLANE2: 3785 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK; 3786 break; 3787 case INTEL_PIPE_CRC_SOURCE_PIPE: 3788 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK; 3789 break; 3790 case INTEL_PIPE_CRC_SOURCE_NONE: 3791 *val = 0; 3792 break; 3793 default: 3794 return -EINVAL; 3795 } 3796 3797 return 0; 3798 } 3799 3800 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable) 3801 { 3802 struct drm_i915_private *dev_priv = dev->dev_private; 3803 struct intel_crtc *crtc = 3804 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]); 3805 struct intel_crtc_state *pipe_config; 3806 struct drm_atomic_state *state; 3807 int ret = 0; 3808 3809 drm_modeset_lock_all(dev); 3810 state = drm_atomic_state_alloc(dev); 3811 if (!state) { 3812 ret = -ENOMEM; 3813 goto out; 3814 } 3815 3816 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base); 3817 pipe_config = intel_atomic_get_crtc_state(state, crtc); 3818 if (IS_ERR(pipe_config)) { 3819 ret = PTR_ERR(pipe_config); 3820 goto out; 3821 } 3822 3823 pipe_config->pch_pfit.force_thru = enable; 3824 if (pipe_config->cpu_transcoder == TRANSCODER_EDP && 3825 pipe_config->pch_pfit.enabled != enable) 3826 pipe_config->base.connectors_changed = true; 3827 3828 ret = drm_atomic_commit(state); 3829 out: 3830 drm_modeset_unlock_all(dev); 3831 WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret); 3832 if (ret) 3833 drm_atomic_state_free(state); 3834 } 3835 3836 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev, 3837 enum pipe pipe, 3838 enum intel_pipe_crc_source *source, 3839 uint32_t *val) 3840 { 3841 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) 3842 *source = INTEL_PIPE_CRC_SOURCE_PF; 3843 3844 switch (*source) { 3845 case INTEL_PIPE_CRC_SOURCE_PLANE1: 3846 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB; 3847 break; 3848 case INTEL_PIPE_CRC_SOURCE_PLANE2: 3849 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB; 3850 break; 3851 case INTEL_PIPE_CRC_SOURCE_PF: 3852 if (IS_HASWELL(dev) && pipe == PIPE_A) 3853 hsw_trans_edp_pipe_A_crc_wa(dev, true); 3854 3855 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB; 3856 break; 3857 case INTEL_PIPE_CRC_SOURCE_NONE: 3858 *val = 0; 3859 break; 3860 default: 3861 return -EINVAL; 3862 } 3863 3864 return 0; 3865 } 3866 3867 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe, 3868 enum intel_pipe_crc_source source) 3869 { 3870 struct drm_i915_private *dev_priv = dev->dev_private; 3871 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe]; 3872 struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, 3873 pipe)); 3874 u32 val = 0; /* shut up gcc */ 3875 int ret; 3876 3877 if (pipe_crc->source == source) 3878 return 0; 3879 3880 /* forbid changing the source without going back to 'none' */ 3881 if (pipe_crc->source && source) 3882 return -EINVAL; 3883 3884 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) { 3885 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n"); 3886 return -EIO; 3887 } 3888 3889 if (IS_GEN2(dev)) 3890 ret = i8xx_pipe_crc_ctl_reg(&source, &val); 3891 else if (INTEL_INFO(dev)->gen < 5) 3892 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val); 3893 else if (IS_VALLEYVIEW(dev)) 3894 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val); 3895 else if (IS_GEN5(dev) || IS_GEN6(dev)) 3896 ret = ilk_pipe_crc_ctl_reg(&source, &val); 3897 else 3898 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val); 3899 3900 if (ret != 0) 3901 return ret; 3902 3903 /* none -> real source transition */ 3904 if (source) { 3905 struct intel_pipe_crc_entry *entries; 3906 3907 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n", 3908 pipe_name(pipe), pipe_crc_source_name(source)); 3909 3910 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR, 3911 sizeof(pipe_crc->entries[0]), 3912 GFP_KERNEL); 3913 if (!entries) 3914 return -ENOMEM; 3915 3916 /* 3917 * When IPS gets enabled, the pipe CRC changes. Since IPS gets 3918 * enabled and disabled dynamically based on package C states, 3919 * user space can't make reliable use of the CRCs, so let's just 3920 * completely disable it. 3921 */ 3922 hsw_disable_ips(crtc); 3923 3924 spin_lock_irq(&pipe_crc->lock); 3925 kfree(pipe_crc->entries); 3926 pipe_crc->entries = entries; 3927 pipe_crc->head = 0; 3928 pipe_crc->tail = 0; 3929 spin_unlock_irq(&pipe_crc->lock); 3930 } 3931 3932 pipe_crc->source = source; 3933 3934 I915_WRITE(PIPE_CRC_CTL(pipe), val); 3935 POSTING_READ(PIPE_CRC_CTL(pipe)); 3936 3937 /* real source -> none transition */ 3938 if (source == INTEL_PIPE_CRC_SOURCE_NONE) { 3939 struct intel_pipe_crc_entry *entries; 3940 struct intel_crtc *crtc = 3941 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]); 3942 3943 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n", 3944 pipe_name(pipe)); 3945 3946 drm_modeset_lock(&crtc->base.mutex, NULL); 3947 if (crtc->base.state->active) 3948 intel_wait_for_vblank(dev, pipe); 3949 drm_modeset_unlock(&crtc->base.mutex); 3950 3951 spin_lock_irq(&pipe_crc->lock); 3952 entries = pipe_crc->entries; 3953 pipe_crc->entries = NULL; 3954 pipe_crc->head = 0; 3955 pipe_crc->tail = 0; 3956 spin_unlock_irq(&pipe_crc->lock); 3957 3958 kfree(entries); 3959 3960 if (IS_G4X(dev)) 3961 g4x_undo_pipe_scramble_reset(dev, pipe); 3962 else if (IS_VALLEYVIEW(dev)) 3963 vlv_undo_pipe_scramble_reset(dev, pipe); 3964 else if (IS_HASWELL(dev) && pipe == PIPE_A) 3965 hsw_trans_edp_pipe_A_crc_wa(dev, false); 3966 3967 hsw_enable_ips(crtc); 3968 } 3969 3970 return 0; 3971 } 3972 3973 /* 3974 * Parse pipe CRC command strings: 3975 * command: wsp* object wsp+ name wsp+ source wsp* 3976 * object: 'pipe' 3977 * name: (A | B | C) 3978 * source: (none | plane1 | plane2 | pf) 3979 * wsp: (#0x20 | #0x9 | #0xA)+ 3980 * 3981 * eg.: 3982 * "pipe A plane1" -> Start CRC computations on plane1 of pipe A 3983 * "pipe A none" -> Stop CRC 3984 */ 3985 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words) 3986 { 3987 int n_words = 0; 3988 3989 while (*buf) { 3990 char *end; 3991 3992 /* skip leading white space */ 3993 buf = skip_spaces(buf); 3994 if (!*buf) 3995 break; /* end of buffer */ 3996 3997 /* find end of word */ 3998 for (end = buf; *end && !isspace(*end); end++) 3999 ; 4000 4001 if (n_words == max_words) { 4002 DRM_DEBUG_DRIVER("too many words, allowed <= %d\n", 4003 max_words); 4004 return -EINVAL; /* ran out of words[] before bytes */ 4005 } 4006 4007 if (*end) 4008 *end++ = '\0'; 4009 words[n_words++] = buf; 4010 buf = end; 4011 } 4012 4013 return n_words; 4014 } 4015 4016 enum intel_pipe_crc_object { 4017 PIPE_CRC_OBJECT_PIPE, 4018 }; 4019 4020 static const char * const pipe_crc_objects[] = { 4021 "pipe", 4022 }; 4023 4024 static int 4025 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o) 4026 { 4027 int i; 4028 4029 for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++) 4030 if (!strcmp(buf, pipe_crc_objects[i])) { 4031 *o = i; 4032 return 0; 4033 } 4034 4035 return -EINVAL; 4036 } 4037 4038 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe) 4039 { 4040 const char name = buf[0]; 4041 4042 if (name < 'A' || name >= pipe_name(I915_MAX_PIPES)) 4043 return -EINVAL; 4044 4045 *pipe = name - 'A'; 4046 4047 return 0; 4048 } 4049 4050 static int 4051 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s) 4052 { 4053 int i; 4054 4055 for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++) 4056 if (!strcmp(buf, pipe_crc_sources[i])) { 4057 *s = i; 4058 return 0; 4059 } 4060 4061 return -EINVAL; 4062 } 4063 4064 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len) 4065 { 4066 #define N_WORDS 3 4067 int n_words; 4068 char *words[N_WORDS]; 4069 enum pipe pipe; 4070 enum intel_pipe_crc_object object; 4071 enum intel_pipe_crc_source source; 4072 4073 n_words = display_crc_ctl_tokenize(buf, words, N_WORDS); 4074 if (n_words != N_WORDS) { 4075 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n", 4076 N_WORDS); 4077 return -EINVAL; 4078 } 4079 4080 if (display_crc_ctl_parse_object(words[0], &object) < 0) { 4081 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]); 4082 return -EINVAL; 4083 } 4084 4085 if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) { 4086 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]); 4087 return -EINVAL; 4088 } 4089 4090 if (display_crc_ctl_parse_source(words[2], &source) < 0) { 4091 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]); 4092 return -EINVAL; 4093 } 4094 4095 return pipe_crc_set_source(dev, pipe, source); 4096 } 4097 4098 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf, 4099 size_t len, loff_t *offp) 4100 { 4101 struct seq_file *m = file->private_data; 4102 struct drm_device *dev = m->private; 4103 char *tmpbuf; 4104 int ret; 4105 4106 if (len == 0) 4107 return 0; 4108 4109 if (len > PAGE_SIZE - 1) { 4110 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n", 4111 PAGE_SIZE); 4112 return -E2BIG; 4113 } 4114 4115 tmpbuf = kmalloc(len + 1, GFP_KERNEL); 4116 if (!tmpbuf) 4117 return -ENOMEM; 4118 4119 if (copy_from_user(tmpbuf, ubuf, len)) { 4120 ret = -EFAULT; 4121 goto out; 4122 } 4123 tmpbuf[len] = '\0'; 4124 4125 ret = display_crc_ctl_parse(dev, tmpbuf, len); 4126 4127 out: 4128 kfree(tmpbuf); 4129 if (ret < 0) 4130 return ret; 4131 4132 *offp += len; 4133 return len; 4134 } 4135 4136 static const struct file_operations i915_display_crc_ctl_fops = { 4137 .owner = THIS_MODULE, 4138 .open = display_crc_ctl_open, 4139 .read = seq_read, 4140 .llseek = seq_lseek, 4141 .release = single_release, 4142 .write = display_crc_ctl_write 4143 }; 4144 4145 static ssize_t i915_displayport_test_active_write(struct file *file, 4146 const char __user *ubuf, 4147 size_t len, loff_t *offp) 4148 { 4149 char *input_buffer; 4150 int status = 0; 4151 struct drm_device *dev; 4152 struct drm_connector *connector; 4153 struct list_head *connector_list; 4154 struct intel_dp *intel_dp; 4155 int val = 0; 4156 4157 dev = ((struct seq_file *)file->private_data)->private; 4158 4159 connector_list = &dev->mode_config.connector_list; 4160 4161 if (len == 0) 4162 return 0; 4163 4164 input_buffer = kmalloc(len + 1, GFP_KERNEL); 4165 if (!input_buffer) 4166 return -ENOMEM; 4167 4168 if (copy_from_user(input_buffer, ubuf, len)) { 4169 status = -EFAULT; 4170 goto out; 4171 } 4172 4173 input_buffer[len] = '\0'; 4174 DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len); 4175 4176 list_for_each_entry(connector, connector_list, head) { 4177 4178 if (connector->connector_type != 4179 DRM_MODE_CONNECTOR_DisplayPort) 4180 continue; 4181 4182 if (connector->status == connector_status_connected && 4183 connector->encoder != NULL) { 4184 intel_dp = enc_to_intel_dp(connector->encoder); 4185 status = kstrtoint(input_buffer, 10, &val); 4186 if (status < 0) 4187 goto out; 4188 DRM_DEBUG_DRIVER("Got %d for test active\n", val); 4189 /* To prevent erroneous activation of the compliance 4190 * testing code, only accept an actual value of 1 here 4191 */ 4192 if (val == 1) 4193 intel_dp->compliance_test_active = 1; 4194 else 4195 intel_dp->compliance_test_active = 0; 4196 } 4197 } 4198 out: 4199 kfree(input_buffer); 4200 if (status < 0) 4201 return status; 4202 4203 *offp += len; 4204 return len; 4205 } 4206 4207 static int i915_displayport_test_active_show(struct seq_file *m, void *data) 4208 { 4209 struct drm_device *dev = m->private; 4210 struct drm_connector *connector; 4211 struct list_head *connector_list = &dev->mode_config.connector_list; 4212 struct intel_dp *intel_dp; 4213 4214 list_for_each_entry(connector, connector_list, head) { 4215 4216 if (connector->connector_type != 4217 DRM_MODE_CONNECTOR_DisplayPort) 4218 continue; 4219 4220 if (connector->status == connector_status_connected && 4221 connector->encoder != NULL) { 4222 intel_dp = enc_to_intel_dp(connector->encoder); 4223 if (intel_dp->compliance_test_active) 4224 seq_puts(m, "1"); 4225 else 4226 seq_puts(m, "0"); 4227 } else 4228 seq_puts(m, "0"); 4229 } 4230 4231 return 0; 4232 } 4233 4234 static int i915_displayport_test_active_open(struct inode *inode, 4235 struct file *file) 4236 { 4237 struct drm_device *dev = inode->i_private; 4238 4239 return single_open(file, i915_displayport_test_active_show, dev); 4240 } 4241 4242 static const struct file_operations i915_displayport_test_active_fops = { 4243 .owner = THIS_MODULE, 4244 .open = i915_displayport_test_active_open, 4245 .read = seq_read, 4246 .llseek = seq_lseek, 4247 .release = single_release, 4248 .write = i915_displayport_test_active_write 4249 }; 4250 4251 static int i915_displayport_test_data_show(struct seq_file *m, void *data) 4252 { 4253 struct drm_device *dev = m->private; 4254 struct drm_connector *connector; 4255 struct list_head *connector_list = &dev->mode_config.connector_list; 4256 struct intel_dp *intel_dp; 4257 4258 list_for_each_entry(connector, connector_list, head) { 4259 4260 if (connector->connector_type != 4261 DRM_MODE_CONNECTOR_DisplayPort) 4262 continue; 4263 4264 if (connector->status == connector_status_connected && 4265 connector->encoder != NULL) { 4266 intel_dp = enc_to_intel_dp(connector->encoder); 4267 seq_printf(m, "%lx", intel_dp->compliance_test_data); 4268 } else 4269 seq_puts(m, "0"); 4270 } 4271 4272 return 0; 4273 } 4274 static int i915_displayport_test_data_open(struct inode *inode, 4275 struct file *file) 4276 { 4277 struct drm_device *dev = inode->i_private; 4278 4279 return single_open(file, i915_displayport_test_data_show, dev); 4280 } 4281 4282 static const struct file_operations i915_displayport_test_data_fops = { 4283 .owner = THIS_MODULE, 4284 .open = i915_displayport_test_data_open, 4285 .read = seq_read, 4286 .llseek = seq_lseek, 4287 .release = single_release 4288 }; 4289 4290 static int i915_displayport_test_type_show(struct seq_file *m, void *data) 4291 { 4292 struct drm_device *dev = m->private; 4293 struct drm_connector *connector; 4294 struct list_head *connector_list = &dev->mode_config.connector_list; 4295 struct intel_dp *intel_dp; 4296 4297 list_for_each_entry(connector, connector_list, head) { 4298 4299 if (connector->connector_type != 4300 DRM_MODE_CONNECTOR_DisplayPort) 4301 continue; 4302 4303 if (connector->status == connector_status_connected && 4304 connector->encoder != NULL) { 4305 intel_dp = enc_to_intel_dp(connector->encoder); 4306 seq_printf(m, "%02lx", intel_dp->compliance_test_type); 4307 } else 4308 seq_puts(m, "0"); 4309 } 4310 4311 return 0; 4312 } 4313 4314 static int i915_displayport_test_type_open(struct inode *inode, 4315 struct file *file) 4316 { 4317 struct drm_device *dev = inode->i_private; 4318 4319 return single_open(file, i915_displayport_test_type_show, dev); 4320 } 4321 4322 static const struct file_operations i915_displayport_test_type_fops = { 4323 .owner = THIS_MODULE, 4324 .open = i915_displayport_test_type_open, 4325 .read = seq_read, 4326 .llseek = seq_lseek, 4327 .release = single_release 4328 }; 4329 4330 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8]) 4331 { 4332 struct drm_device *dev = m->private; 4333 int level; 4334 int num_levels; 4335 4336 if (IS_CHERRYVIEW(dev)) 4337 num_levels = 3; 4338 else if (IS_VALLEYVIEW(dev)) 4339 num_levels = 1; 4340 else 4341 num_levels = ilk_wm_max_level(dev) + 1; 4342 4343 drm_modeset_lock_all(dev); 4344 4345 for (level = 0; level < num_levels; level++) { 4346 unsigned int latency = wm[level]; 4347 4348 /* 4349 * - WM1+ latency values in 0.5us units 4350 * - latencies are in us on gen9/vlv/chv 4351 */ 4352 if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev)) 4353 latency *= 10; 4354 else if (level > 0) 4355 latency *= 5; 4356 4357 seq_printf(m, "WM%d %u (%u.%u usec)\n", 4358 level, wm[level], latency / 10, latency % 10); 4359 } 4360 4361 drm_modeset_unlock_all(dev); 4362 } 4363 4364 static int pri_wm_latency_show(struct seq_file *m, void *data) 4365 { 4366 struct drm_device *dev = m->private; 4367 struct drm_i915_private *dev_priv = dev->dev_private; 4368 const uint16_t *latencies; 4369 4370 if (INTEL_INFO(dev)->gen >= 9) 4371 latencies = dev_priv->wm.skl_latency; 4372 else 4373 latencies = to_i915(dev)->wm.pri_latency; 4374 4375 wm_latency_show(m, latencies); 4376 4377 return 0; 4378 } 4379 4380 static int spr_wm_latency_show(struct seq_file *m, void *data) 4381 { 4382 struct drm_device *dev = m->private; 4383 struct drm_i915_private *dev_priv = dev->dev_private; 4384 const uint16_t *latencies; 4385 4386 if (INTEL_INFO(dev)->gen >= 9) 4387 latencies = dev_priv->wm.skl_latency; 4388 else 4389 latencies = to_i915(dev)->wm.spr_latency; 4390 4391 wm_latency_show(m, latencies); 4392 4393 return 0; 4394 } 4395 4396 static int cur_wm_latency_show(struct seq_file *m, void *data) 4397 { 4398 struct drm_device *dev = m->private; 4399 struct drm_i915_private *dev_priv = dev->dev_private; 4400 const uint16_t *latencies; 4401 4402 if (INTEL_INFO(dev)->gen >= 9) 4403 latencies = dev_priv->wm.skl_latency; 4404 else 4405 latencies = to_i915(dev)->wm.cur_latency; 4406 4407 wm_latency_show(m, latencies); 4408 4409 return 0; 4410 } 4411 4412 static int pri_wm_latency_open(struct inode *inode, struct file *file) 4413 { 4414 struct drm_device *dev = inode->i_private; 4415 4416 if (INTEL_INFO(dev)->gen < 5) 4417 return -ENODEV; 4418 4419 return single_open(file, pri_wm_latency_show, dev); 4420 } 4421 4422 static int spr_wm_latency_open(struct inode *inode, struct file *file) 4423 { 4424 struct drm_device *dev = inode->i_private; 4425 4426 if (HAS_GMCH_DISPLAY(dev)) 4427 return -ENODEV; 4428 4429 return single_open(file, spr_wm_latency_show, dev); 4430 } 4431 4432 static int cur_wm_latency_open(struct inode *inode, struct file *file) 4433 { 4434 struct drm_device *dev = inode->i_private; 4435 4436 if (HAS_GMCH_DISPLAY(dev)) 4437 return -ENODEV; 4438 4439 return single_open(file, cur_wm_latency_show, dev); 4440 } 4441 4442 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf, 4443 size_t len, loff_t *offp, uint16_t wm[8]) 4444 { 4445 struct seq_file *m = file->private_data; 4446 struct drm_device *dev = m->private; 4447 uint16_t new[8] = { 0 }; 4448 int num_levels; 4449 int level; 4450 int ret; 4451 char tmp[32]; 4452 4453 if (IS_CHERRYVIEW(dev)) 4454 num_levels = 3; 4455 else if (IS_VALLEYVIEW(dev)) 4456 num_levels = 1; 4457 else 4458 num_levels = ilk_wm_max_level(dev) + 1; 4459 4460 if (len >= sizeof(tmp)) 4461 return -EINVAL; 4462 4463 if (copy_from_user(tmp, ubuf, len)) 4464 return -EFAULT; 4465 4466 tmp[len] = '\0'; 4467 4468 ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu", 4469 &new[0], &new[1], &new[2], &new[3], 4470 &new[4], &new[5], &new[6], &new[7]); 4471 if (ret != num_levels) 4472 return -EINVAL; 4473 4474 drm_modeset_lock_all(dev); 4475 4476 for (level = 0; level < num_levels; level++) 4477 wm[level] = new[level]; 4478 4479 drm_modeset_unlock_all(dev); 4480 4481 return len; 4482 } 4483 4484 4485 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf, 4486 size_t len, loff_t *offp) 4487 { 4488 struct seq_file *m = file->private_data; 4489 struct drm_device *dev = m->private; 4490 struct drm_i915_private *dev_priv = dev->dev_private; 4491 uint16_t *latencies; 4492 4493 if (INTEL_INFO(dev)->gen >= 9) 4494 latencies = dev_priv->wm.skl_latency; 4495 else 4496 latencies = to_i915(dev)->wm.pri_latency; 4497 4498 return wm_latency_write(file, ubuf, len, offp, latencies); 4499 } 4500 4501 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf, 4502 size_t len, loff_t *offp) 4503 { 4504 struct seq_file *m = file->private_data; 4505 struct drm_device *dev = m->private; 4506 struct drm_i915_private *dev_priv = dev->dev_private; 4507 uint16_t *latencies; 4508 4509 if (INTEL_INFO(dev)->gen >= 9) 4510 latencies = dev_priv->wm.skl_latency; 4511 else 4512 latencies = to_i915(dev)->wm.spr_latency; 4513 4514 return wm_latency_write(file, ubuf, len, offp, latencies); 4515 } 4516 4517 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf, 4518 size_t len, loff_t *offp) 4519 { 4520 struct seq_file *m = file->private_data; 4521 struct drm_device *dev = m->private; 4522 struct drm_i915_private *dev_priv = dev->dev_private; 4523 uint16_t *latencies; 4524 4525 if (INTEL_INFO(dev)->gen >= 9) 4526 latencies = dev_priv->wm.skl_latency; 4527 else 4528 latencies = to_i915(dev)->wm.cur_latency; 4529 4530 return wm_latency_write(file, ubuf, len, offp, latencies); 4531 } 4532 4533 static const struct file_operations i915_pri_wm_latency_fops = { 4534 .owner = THIS_MODULE, 4535 .open = pri_wm_latency_open, 4536 .read = seq_read, 4537 .llseek = seq_lseek, 4538 .release = single_release, 4539 .write = pri_wm_latency_write 4540 }; 4541 4542 static const struct file_operations i915_spr_wm_latency_fops = { 4543 .owner = THIS_MODULE, 4544 .open = spr_wm_latency_open, 4545 .read = seq_read, 4546 .llseek = seq_lseek, 4547 .release = single_release, 4548 .write = spr_wm_latency_write 4549 }; 4550 4551 static const struct file_operations i915_cur_wm_latency_fops = { 4552 .owner = THIS_MODULE, 4553 .open = cur_wm_latency_open, 4554 .read = seq_read, 4555 .llseek = seq_lseek, 4556 .release = single_release, 4557 .write = cur_wm_latency_write 4558 }; 4559 4560 static int 4561 i915_wedged_get(void *data, u64 *val) 4562 { 4563 struct drm_device *dev = data; 4564 struct drm_i915_private *dev_priv = dev->dev_private; 4565 4566 *val = atomic_read(&dev_priv->gpu_error.reset_counter); 4567 4568 return 0; 4569 } 4570 4571 static int 4572 i915_wedged_set(void *data, u64 val) 4573 { 4574 struct drm_device *dev = data; 4575 struct drm_i915_private *dev_priv = dev->dev_private; 4576 4577 /* 4578 * There is no safeguard against this debugfs entry colliding 4579 * with the hangcheck calling same i915_handle_error() in 4580 * parallel, causing an explosion. For now we assume that the 4581 * test harness is responsible enough not to inject gpu hangs 4582 * while it is writing to 'i915_wedged' 4583 */ 4584 4585 if (i915_reset_in_progress(&dev_priv->gpu_error)) 4586 return -EAGAIN; 4587 4588 intel_runtime_pm_get(dev_priv); 4589 4590 i915_handle_error(dev, val, 4591 "Manually setting wedged to %llu", val); 4592 4593 intel_runtime_pm_put(dev_priv); 4594 4595 return 0; 4596 } 4597 4598 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops, 4599 i915_wedged_get, i915_wedged_set, 4600 "%llu\n"); 4601 4602 static int 4603 i915_ring_stop_get(void *data, u64 *val) 4604 { 4605 struct drm_device *dev = data; 4606 struct drm_i915_private *dev_priv = dev->dev_private; 4607 4608 *val = dev_priv->gpu_error.stop_rings; 4609 4610 return 0; 4611 } 4612 4613 static int 4614 i915_ring_stop_set(void *data, u64 val) 4615 { 4616 struct drm_device *dev = data; 4617 struct drm_i915_private *dev_priv = dev->dev_private; 4618 int ret; 4619 4620 DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val); 4621 4622 ret = mutex_lock_interruptible(&dev->struct_mutex); 4623 if (ret) 4624 return ret; 4625 4626 dev_priv->gpu_error.stop_rings = val; 4627 mutex_unlock(&dev->struct_mutex); 4628 4629 return 0; 4630 } 4631 4632 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops, 4633 i915_ring_stop_get, i915_ring_stop_set, 4634 "0x%08llx\n"); 4635 4636 static int 4637 i915_ring_missed_irq_get(void *data, u64 *val) 4638 { 4639 struct drm_device *dev = data; 4640 struct drm_i915_private *dev_priv = dev->dev_private; 4641 4642 *val = dev_priv->gpu_error.missed_irq_rings; 4643 return 0; 4644 } 4645 4646 static int 4647 i915_ring_missed_irq_set(void *data, u64 val) 4648 { 4649 struct drm_device *dev = data; 4650 struct drm_i915_private *dev_priv = dev->dev_private; 4651 int ret; 4652 4653 /* Lock against concurrent debugfs callers */ 4654 ret = mutex_lock_interruptible(&dev->struct_mutex); 4655 if (ret) 4656 return ret; 4657 dev_priv->gpu_error.missed_irq_rings = val; 4658 mutex_unlock(&dev->struct_mutex); 4659 4660 return 0; 4661 } 4662 4663 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops, 4664 i915_ring_missed_irq_get, i915_ring_missed_irq_set, 4665 "0x%08llx\n"); 4666 4667 static int 4668 i915_ring_test_irq_get(void *data, u64 *val) 4669 { 4670 struct drm_device *dev = data; 4671 struct drm_i915_private *dev_priv = dev->dev_private; 4672 4673 *val = dev_priv->gpu_error.test_irq_rings; 4674 4675 return 0; 4676 } 4677 4678 static int 4679 i915_ring_test_irq_set(void *data, u64 val) 4680 { 4681 struct drm_device *dev = data; 4682 struct drm_i915_private *dev_priv = dev->dev_private; 4683 int ret; 4684 4685 DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val); 4686 4687 /* Lock against concurrent debugfs callers */ 4688 ret = mutex_lock_interruptible(&dev->struct_mutex); 4689 if (ret) 4690 return ret; 4691 4692 dev_priv->gpu_error.test_irq_rings = val; 4693 mutex_unlock(&dev->struct_mutex); 4694 4695 return 0; 4696 } 4697 4698 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops, 4699 i915_ring_test_irq_get, i915_ring_test_irq_set, 4700 "0x%08llx\n"); 4701 4702 #define DROP_UNBOUND 0x1 4703 #define DROP_BOUND 0x2 4704 #define DROP_RETIRE 0x4 4705 #define DROP_ACTIVE 0x8 4706 #define DROP_ALL (DROP_UNBOUND | \ 4707 DROP_BOUND | \ 4708 DROP_RETIRE | \ 4709 DROP_ACTIVE) 4710 static int 4711 i915_drop_caches_get(void *data, u64 *val) 4712 { 4713 *val = DROP_ALL; 4714 4715 return 0; 4716 } 4717 4718 static int 4719 i915_drop_caches_set(void *data, u64 val) 4720 { 4721 struct drm_device *dev = data; 4722 struct drm_i915_private *dev_priv = dev->dev_private; 4723 int ret; 4724 4725 DRM_DEBUG("Dropping caches: 0x%08llx\n", val); 4726 4727 /* No need to check and wait for gpu resets, only libdrm auto-restarts 4728 * on ioctls on -EAGAIN. */ 4729 ret = mutex_lock_interruptible(&dev->struct_mutex); 4730 if (ret) 4731 return ret; 4732 4733 if (val & DROP_ACTIVE) { 4734 ret = i915_gpu_idle(dev); 4735 if (ret) 4736 goto unlock; 4737 } 4738 4739 if (val & (DROP_RETIRE | DROP_ACTIVE)) 4740 i915_gem_retire_requests(dev); 4741 4742 if (val & DROP_BOUND) 4743 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND); 4744 4745 if (val & DROP_UNBOUND) 4746 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND); 4747 4748 unlock: 4749 mutex_unlock(&dev->struct_mutex); 4750 4751 return ret; 4752 } 4753 4754 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops, 4755 i915_drop_caches_get, i915_drop_caches_set, 4756 "0x%08llx\n"); 4757 4758 static int 4759 i915_max_freq_get(void *data, u64 *val) 4760 { 4761 struct drm_device *dev = data; 4762 struct drm_i915_private *dev_priv = dev->dev_private; 4763 int ret; 4764 4765 if (INTEL_INFO(dev)->gen < 6) 4766 return -ENODEV; 4767 4768 flush_delayed_work(&dev_priv->rps.delayed_resume_work); 4769 4770 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock); 4771 if (ret) 4772 return ret; 4773 4774 *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit); 4775 mutex_unlock(&dev_priv->rps.hw_lock); 4776 4777 return 0; 4778 } 4779 4780 static int 4781 i915_max_freq_set(void *data, u64 val) 4782 { 4783 struct drm_device *dev = data; 4784 struct drm_i915_private *dev_priv = dev->dev_private; 4785 u32 hw_max, hw_min; 4786 int ret; 4787 4788 if (INTEL_INFO(dev)->gen < 6) 4789 return -ENODEV; 4790 4791 flush_delayed_work(&dev_priv->rps.delayed_resume_work); 4792 4793 DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val); 4794 4795 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock); 4796 if (ret) 4797 return ret; 4798 4799 /* 4800 * Turbo will still be enabled, but won't go above the set value. 4801 */ 4802 val = intel_freq_opcode(dev_priv, val); 4803 4804 hw_max = dev_priv->rps.max_freq; 4805 hw_min = dev_priv->rps.min_freq; 4806 4807 if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) { 4808 mutex_unlock(&dev_priv->rps.hw_lock); 4809 return -EINVAL; 4810 } 4811 4812 dev_priv->rps.max_freq_softlimit = val; 4813 4814 intel_set_rps(dev, val); 4815 4816 mutex_unlock(&dev_priv->rps.hw_lock); 4817 4818 return 0; 4819 } 4820 4821 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops, 4822 i915_max_freq_get, i915_max_freq_set, 4823 "%llu\n"); 4824 4825 static int 4826 i915_min_freq_get(void *data, u64 *val) 4827 { 4828 struct drm_device *dev = data; 4829 struct drm_i915_private *dev_priv = dev->dev_private; 4830 int ret; 4831 4832 if (INTEL_INFO(dev)->gen < 6) 4833 return -ENODEV; 4834 4835 flush_delayed_work(&dev_priv->rps.delayed_resume_work); 4836 4837 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock); 4838 if (ret) 4839 return ret; 4840 4841 *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit); 4842 mutex_unlock(&dev_priv->rps.hw_lock); 4843 4844 return 0; 4845 } 4846 4847 static int 4848 i915_min_freq_set(void *data, u64 val) 4849 { 4850 struct drm_device *dev = data; 4851 struct drm_i915_private *dev_priv = dev->dev_private; 4852 u32 hw_max, hw_min; 4853 int ret; 4854 4855 if (INTEL_INFO(dev)->gen < 6) 4856 return -ENODEV; 4857 4858 flush_delayed_work(&dev_priv->rps.delayed_resume_work); 4859 4860 DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val); 4861 4862 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock); 4863 if (ret) 4864 return ret; 4865 4866 /* 4867 * Turbo will still be enabled, but won't go below the set value. 4868 */ 4869 val = intel_freq_opcode(dev_priv, val); 4870 4871 hw_max = dev_priv->rps.max_freq; 4872 hw_min = dev_priv->rps.min_freq; 4873 4874 if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) { 4875 mutex_unlock(&dev_priv->rps.hw_lock); 4876 return -EINVAL; 4877 } 4878 4879 dev_priv->rps.min_freq_softlimit = val; 4880 4881 intel_set_rps(dev, val); 4882 4883 mutex_unlock(&dev_priv->rps.hw_lock); 4884 4885 return 0; 4886 } 4887 4888 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops, 4889 i915_min_freq_get, i915_min_freq_set, 4890 "%llu\n"); 4891 4892 static int 4893 i915_cache_sharing_get(void *data, u64 *val) 4894 { 4895 struct drm_device *dev = data; 4896 struct drm_i915_private *dev_priv = dev->dev_private; 4897 u32 snpcr; 4898 int ret; 4899 4900 if (!(IS_GEN6(dev) || IS_GEN7(dev))) 4901 return -ENODEV; 4902 4903 ret = mutex_lock_interruptible(&dev->struct_mutex); 4904 if (ret) 4905 return ret; 4906 intel_runtime_pm_get(dev_priv); 4907 4908 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR); 4909 4910 intel_runtime_pm_put(dev_priv); 4911 mutex_unlock(&dev_priv->dev->struct_mutex); 4912 4913 *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT; 4914 4915 return 0; 4916 } 4917 4918 static int 4919 i915_cache_sharing_set(void *data, u64 val) 4920 { 4921 struct drm_device *dev = data; 4922 struct drm_i915_private *dev_priv = dev->dev_private; 4923 u32 snpcr; 4924 4925 if (!(IS_GEN6(dev) || IS_GEN7(dev))) 4926 return -ENODEV; 4927 4928 if (val > 3) 4929 return -EINVAL; 4930 4931 intel_runtime_pm_get(dev_priv); 4932 DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val); 4933 4934 /* Update the cache sharing policy here as well */ 4935 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR); 4936 snpcr &= ~GEN6_MBC_SNPCR_MASK; 4937 snpcr |= (val << GEN6_MBC_SNPCR_SHIFT); 4938 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr); 4939 4940 intel_runtime_pm_put(dev_priv); 4941 return 0; 4942 } 4943 4944 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops, 4945 i915_cache_sharing_get, i915_cache_sharing_set, 4946 "%llu\n"); 4947 4948 struct sseu_dev_status { 4949 unsigned int slice_total; 4950 unsigned int subslice_total; 4951 unsigned int subslice_per_slice; 4952 unsigned int eu_total; 4953 unsigned int eu_per_subslice; 4954 }; 4955 4956 static void cherryview_sseu_device_status(struct drm_device *dev, 4957 struct sseu_dev_status *stat) 4958 { 4959 struct drm_i915_private *dev_priv = dev->dev_private; 4960 int ss_max = 2; 4961 int ss; 4962 u32 sig1[ss_max], sig2[ss_max]; 4963 4964 sig1[0] = I915_READ(CHV_POWER_SS0_SIG1); 4965 sig1[1] = I915_READ(CHV_POWER_SS1_SIG1); 4966 sig2[0] = I915_READ(CHV_POWER_SS0_SIG2); 4967 sig2[1] = I915_READ(CHV_POWER_SS1_SIG2); 4968 4969 for (ss = 0; ss < ss_max; ss++) { 4970 unsigned int eu_cnt; 4971 4972 if (sig1[ss] & CHV_SS_PG_ENABLE) 4973 /* skip disabled subslice */ 4974 continue; 4975 4976 stat->slice_total = 1; 4977 stat->subslice_per_slice++; 4978 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) + 4979 ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) + 4980 ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) + 4981 ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2); 4982 stat->eu_total += eu_cnt; 4983 stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt); 4984 } 4985 stat->subslice_total = stat->subslice_per_slice; 4986 } 4987 4988 static void gen9_sseu_device_status(struct drm_device *dev, 4989 struct sseu_dev_status *stat) 4990 { 4991 struct drm_i915_private *dev_priv = dev->dev_private; 4992 int s_max = 3, ss_max = 4; 4993 int s, ss; 4994 u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2]; 4995 4996 /* BXT has a single slice and at most 3 subslices. */ 4997 if (IS_BROXTON(dev)) { 4998 s_max = 1; 4999 ss_max = 3; 5000 } 5001 5002 for (s = 0; s < s_max; s++) { 5003 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s)); 5004 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s)); 5005 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s)); 5006 } 5007 5008 eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK | 5009 GEN9_PGCTL_SSA_EU19_ACK | 5010 GEN9_PGCTL_SSA_EU210_ACK | 5011 GEN9_PGCTL_SSA_EU311_ACK; 5012 eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK | 5013 GEN9_PGCTL_SSB_EU19_ACK | 5014 GEN9_PGCTL_SSB_EU210_ACK | 5015 GEN9_PGCTL_SSB_EU311_ACK; 5016 5017 for (s = 0; s < s_max; s++) { 5018 unsigned int ss_cnt = 0; 5019 5020 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0) 5021 /* skip disabled slice */ 5022 continue; 5023 5024 stat->slice_total++; 5025 5026 if (IS_SKYLAKE(dev)) 5027 ss_cnt = INTEL_INFO(dev)->subslice_per_slice; 5028 5029 for (ss = 0; ss < ss_max; ss++) { 5030 unsigned int eu_cnt; 5031 5032 if (IS_BROXTON(dev) && 5033 !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss)))) 5034 /* skip disabled subslice */ 5035 continue; 5036 5037 if (IS_BROXTON(dev)) 5038 ss_cnt++; 5039 5040 eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] & 5041 eu_mask[ss%2]); 5042 stat->eu_total += eu_cnt; 5043 stat->eu_per_subslice = max(stat->eu_per_subslice, 5044 eu_cnt); 5045 } 5046 5047 stat->subslice_total += ss_cnt; 5048 stat->subslice_per_slice = max(stat->subslice_per_slice, 5049 ss_cnt); 5050 } 5051 } 5052 5053 static void broadwell_sseu_device_status(struct drm_device *dev, 5054 struct sseu_dev_status *stat) 5055 { 5056 struct drm_i915_private *dev_priv = dev->dev_private; 5057 int s; 5058 u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO); 5059 5060 stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK); 5061 5062 if (stat->slice_total) { 5063 stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice; 5064 stat->subslice_total = stat->slice_total * 5065 stat->subslice_per_slice; 5066 stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice; 5067 stat->eu_total = stat->eu_per_subslice * stat->subslice_total; 5068 5069 /* subtract fused off EU(s) from enabled slice(s) */ 5070 for (s = 0; s < stat->slice_total; s++) { 5071 u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s]; 5072 5073 stat->eu_total -= hweight8(subslice_7eu); 5074 } 5075 } 5076 } 5077 5078 static int i915_sseu_status(struct seq_file *m, void *unused) 5079 { 5080 struct drm_info_node *node = (struct drm_info_node *) m->private; 5081 struct drm_device *dev = node->minor->dev; 5082 struct sseu_dev_status stat; 5083 5084 if (INTEL_INFO(dev)->gen < 8) 5085 return -ENODEV; 5086 5087 seq_puts(m, "SSEU Device Info\n"); 5088 seq_printf(m, " Available Slice Total: %u\n", 5089 INTEL_INFO(dev)->slice_total); 5090 seq_printf(m, " Available Subslice Total: %u\n", 5091 INTEL_INFO(dev)->subslice_total); 5092 seq_printf(m, " Available Subslice Per Slice: %u\n", 5093 INTEL_INFO(dev)->subslice_per_slice); 5094 seq_printf(m, " Available EU Total: %u\n", 5095 INTEL_INFO(dev)->eu_total); 5096 seq_printf(m, " Available EU Per Subslice: %u\n", 5097 INTEL_INFO(dev)->eu_per_subslice); 5098 seq_printf(m, " Has Slice Power Gating: %s\n", 5099 yesno(INTEL_INFO(dev)->has_slice_pg)); 5100 seq_printf(m, " Has Subslice Power Gating: %s\n", 5101 yesno(INTEL_INFO(dev)->has_subslice_pg)); 5102 seq_printf(m, " Has EU Power Gating: %s\n", 5103 yesno(INTEL_INFO(dev)->has_eu_pg)); 5104 5105 seq_puts(m, "SSEU Device Status\n"); 5106 memset(&stat, 0, sizeof(stat)); 5107 if (IS_CHERRYVIEW(dev)) { 5108 cherryview_sseu_device_status(dev, &stat); 5109 } else if (IS_BROADWELL(dev)) { 5110 broadwell_sseu_device_status(dev, &stat); 5111 } else if (INTEL_INFO(dev)->gen >= 9) { 5112 gen9_sseu_device_status(dev, &stat); 5113 } 5114 seq_printf(m, " Enabled Slice Total: %u\n", 5115 stat.slice_total); 5116 seq_printf(m, " Enabled Subslice Total: %u\n", 5117 stat.subslice_total); 5118 seq_printf(m, " Enabled Subslice Per Slice: %u\n", 5119 stat.subslice_per_slice); 5120 seq_printf(m, " Enabled EU Total: %u\n", 5121 stat.eu_total); 5122 seq_printf(m, " Enabled EU Per Subslice: %u\n", 5123 stat.eu_per_subslice); 5124 5125 return 0; 5126 } 5127 5128 static int i915_forcewake_open(struct inode *inode, struct file *file) 5129 { 5130 struct drm_device *dev = inode->i_private; 5131 struct drm_i915_private *dev_priv = dev->dev_private; 5132 5133 if (INTEL_INFO(dev)->gen < 6) 5134 return 0; 5135 5136 intel_runtime_pm_get(dev_priv); 5137 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); 5138 5139 return 0; 5140 } 5141 5142 static int i915_forcewake_release(struct inode *inode, struct file *file) 5143 { 5144 struct drm_device *dev = inode->i_private; 5145 struct drm_i915_private *dev_priv = dev->dev_private; 5146 5147 if (INTEL_INFO(dev)->gen < 6) 5148 return 0; 5149 5150 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 5151 intel_runtime_pm_put(dev_priv); 5152 5153 return 0; 5154 } 5155 5156 static const struct file_operations i915_forcewake_fops = { 5157 .owner = THIS_MODULE, 5158 .open = i915_forcewake_open, 5159 .release = i915_forcewake_release, 5160 }; 5161 5162 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor) 5163 { 5164 struct drm_device *dev = minor->dev; 5165 struct dentry *ent; 5166 5167 ent = debugfs_create_file("i915_forcewake_user", 5168 S_IRUSR, 5169 root, dev, 5170 &i915_forcewake_fops); 5171 if (!ent) 5172 return -ENOMEM; 5173 5174 return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops); 5175 } 5176 5177 static int i915_debugfs_create(struct dentry *root, 5178 struct drm_minor *minor, 5179 const char *name, 5180 const struct file_operations *fops) 5181 { 5182 struct drm_device *dev = minor->dev; 5183 struct dentry *ent; 5184 5185 ent = debugfs_create_file(name, 5186 S_IRUGO | S_IWUSR, 5187 root, dev, 5188 fops); 5189 if (!ent) 5190 return -ENOMEM; 5191 5192 return drm_add_fake_info_node(minor, ent, fops); 5193 } 5194 5195 static const struct drm_info_list i915_debugfs_list[] = { 5196 {"i915_capabilities", i915_capabilities, 0}, 5197 {"i915_gem_objects", i915_gem_object_info, 0}, 5198 {"i915_gem_gtt", i915_gem_gtt_info, 0}, 5199 {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST}, 5200 {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST}, 5201 {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST}, 5202 {"i915_gem_stolen", i915_gem_stolen_list_info }, 5203 {"i915_gem_pageflip", i915_gem_pageflip_info, 0}, 5204 {"i915_gem_request", i915_gem_request_info, 0}, 5205 {"i915_gem_seqno", i915_gem_seqno_info, 0}, 5206 {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0}, 5207 {"i915_gem_interrupt", i915_interrupt_info, 0}, 5208 {"i915_gem_hws", i915_hws_info, 0, (void *)RCS}, 5209 {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS}, 5210 {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS}, 5211 {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS}, 5212 {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0}, 5213 {"i915_guc_info", i915_guc_info, 0}, 5214 {"i915_guc_load_status", i915_guc_load_status_info, 0}, 5215 {"i915_guc_log_dump", i915_guc_log_dump, 0}, 5216 {"i915_frequency_info", i915_frequency_info, 0}, 5217 {"i915_hangcheck_info", i915_hangcheck_info, 0}, 5218 {"i915_drpc_info", i915_drpc_info, 0}, 5219 {"i915_emon_status", i915_emon_status, 0}, 5220 {"i915_ring_freq_table", i915_ring_freq_table, 0}, 5221 {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0}, 5222 {"i915_fbc_status", i915_fbc_status, 0}, 5223 {"i915_ips_status", i915_ips_status, 0}, 5224 {"i915_sr_status", i915_sr_status, 0}, 5225 {"i915_opregion", i915_opregion, 0}, 5226 {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0}, 5227 {"i915_context_status", i915_context_status, 0}, 5228 {"i915_dump_lrc", i915_dump_lrc, 0}, 5229 {"i915_execlists", i915_execlists, 0}, 5230 {"i915_forcewake_domains", i915_forcewake_domains, 0}, 5231 {"i915_swizzle_info", i915_swizzle_info, 0}, 5232 {"i915_ppgtt_info", i915_ppgtt_info, 0}, 5233 {"i915_llc", i915_llc, 0}, 5234 {"i915_edp_psr_status", i915_edp_psr_status, 0}, 5235 {"i915_sink_crc_eDP1", i915_sink_crc, 0}, 5236 {"i915_energy_uJ", i915_energy_uJ, 0}, 5237 {"i915_runtime_pm_status", i915_runtime_pm_status, 0}, 5238 {"i915_power_domain_info", i915_power_domain_info, 0}, 5239 {"i915_display_info", i915_display_info, 0}, 5240 {"i915_semaphore_status", i915_semaphore_status, 0}, 5241 {"i915_shared_dplls_info", i915_shared_dplls_info, 0}, 5242 {"i915_dp_mst_info", i915_dp_mst_info, 0}, 5243 {"i915_wa_registers", i915_wa_registers, 0}, 5244 {"i915_ddb_info", i915_ddb_info, 0}, 5245 {"i915_sseu_status", i915_sseu_status, 0}, 5246 {"i915_drrs_status", i915_drrs_status, 0}, 5247 {"i915_rps_boost_info", i915_rps_boost_info, 0}, 5248 }; 5249 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list) 5250 5251 static const struct i915_debugfs_files { 5252 const char *name; 5253 const struct file_operations *fops; 5254 } i915_debugfs_files[] = { 5255 {"i915_wedged", &i915_wedged_fops}, 5256 {"i915_max_freq", &i915_max_freq_fops}, 5257 {"i915_min_freq", &i915_min_freq_fops}, 5258 {"i915_cache_sharing", &i915_cache_sharing_fops}, 5259 {"i915_ring_stop", &i915_ring_stop_fops}, 5260 {"i915_ring_missed_irq", &i915_ring_missed_irq_fops}, 5261 {"i915_ring_test_irq", &i915_ring_test_irq_fops}, 5262 {"i915_gem_drop_caches", &i915_drop_caches_fops}, 5263 {"i915_error_state", &i915_error_state_fops}, 5264 {"i915_next_seqno", &i915_next_seqno_fops}, 5265 {"i915_display_crc_ctl", &i915_display_crc_ctl_fops}, 5266 {"i915_pri_wm_latency", &i915_pri_wm_latency_fops}, 5267 {"i915_spr_wm_latency", &i915_spr_wm_latency_fops}, 5268 {"i915_cur_wm_latency", &i915_cur_wm_latency_fops}, 5269 {"i915_fbc_false_color", &i915_fbc_fc_fops}, 5270 {"i915_dp_test_data", &i915_displayport_test_data_fops}, 5271 {"i915_dp_test_type", &i915_displayport_test_type_fops}, 5272 {"i915_dp_test_active", &i915_displayport_test_active_fops} 5273 }; 5274 5275 void intel_display_crc_init(struct drm_device *dev) 5276 { 5277 struct drm_i915_private *dev_priv = dev->dev_private; 5278 enum pipe pipe; 5279 5280 for_each_pipe(dev_priv, pipe) { 5281 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe]; 5282 5283 pipe_crc->opened = false; 5284 spin_lock_init(&pipe_crc->lock); 5285 init_waitqueue_head(&pipe_crc->wq); 5286 } 5287 } 5288 5289 int i915_debugfs_init(struct drm_minor *minor) 5290 { 5291 int ret, i; 5292 5293 ret = i915_forcewake_create(minor->debugfs_root, minor); 5294 if (ret) 5295 return ret; 5296 5297 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) { 5298 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i); 5299 if (ret) 5300 return ret; 5301 } 5302 5303 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) { 5304 ret = i915_debugfs_create(minor->debugfs_root, minor, 5305 i915_debugfs_files[i].name, 5306 i915_debugfs_files[i].fops); 5307 if (ret) 5308 return ret; 5309 } 5310 5311 return drm_debugfs_create_files(i915_debugfs_list, 5312 I915_DEBUGFS_ENTRIES, 5313 minor->debugfs_root, minor); 5314 } 5315 5316 void i915_debugfs_cleanup(struct drm_minor *minor) 5317 { 5318 int i; 5319 5320 drm_debugfs_remove_files(i915_debugfs_list, 5321 I915_DEBUGFS_ENTRIES, minor); 5322 5323 drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops, 5324 1, minor); 5325 5326 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) { 5327 struct drm_info_list *info_list = 5328 (struct drm_info_list *)&i915_pipe_crc_data[i]; 5329 5330 drm_debugfs_remove_files(info_list, 1, minor); 5331 } 5332 5333 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) { 5334 struct drm_info_list *info_list = 5335 (struct drm_info_list *) i915_debugfs_files[i].fops; 5336 5337 drm_debugfs_remove_files(info_list, 1, minor); 5338 } 5339 } 5340 5341 struct dpcd_block { 5342 /* DPCD dump start address. */ 5343 unsigned int offset; 5344 /* DPCD dump end address, inclusive. If unset, .size will be used. */ 5345 unsigned int end; 5346 /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */ 5347 size_t size; 5348 /* Only valid for eDP. */ 5349 bool edp; 5350 }; 5351 5352 static const struct dpcd_block i915_dpcd_debug[] = { 5353 { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE }, 5354 { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS }, 5355 { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 }, 5356 { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET }, 5357 { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 }, 5358 { .offset = DP_SET_POWER }, 5359 { .offset = DP_EDP_DPCD_REV }, 5360 { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 }, 5361 { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB }, 5362 { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET }, 5363 }; 5364 5365 static int i915_dpcd_show(struct seq_file *m, void *data) 5366 { 5367 struct drm_connector *connector = m->private; 5368 struct intel_dp *intel_dp = 5369 enc_to_intel_dp(&intel_attached_encoder(connector)->base); 5370 uint8_t buf[16]; 5371 ssize_t err; 5372 int i; 5373 5374 if (connector->status != connector_status_connected) 5375 return -ENODEV; 5376 5377 for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) { 5378 const struct dpcd_block *b = &i915_dpcd_debug[i]; 5379 size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1); 5380 5381 if (b->edp && 5382 connector->connector_type != DRM_MODE_CONNECTOR_eDP) 5383 continue; 5384 5385 /* low tech for now */ 5386 if (WARN_ON(size > sizeof(buf))) 5387 continue; 5388 5389 err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size); 5390 if (err <= 0) { 5391 DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n", 5392 size, b->offset, err); 5393 continue; 5394 } 5395 5396 seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf); 5397 } 5398 5399 return 0; 5400 } 5401 5402 static int i915_dpcd_open(struct inode *inode, struct file *file) 5403 { 5404 return single_open(file, i915_dpcd_show, inode->i_private); 5405 } 5406 5407 static const struct file_operations i915_dpcd_fops = { 5408 .owner = THIS_MODULE, 5409 .open = i915_dpcd_open, 5410 .read = seq_read, 5411 .llseek = seq_lseek, 5412 .release = single_release, 5413 }; 5414 5415 /** 5416 * i915_debugfs_connector_add - add i915 specific connector debugfs files 5417 * @connector: pointer to a registered drm_connector 5418 * 5419 * Cleanup will be done by drm_connector_unregister() through a call to 5420 * drm_debugfs_connector_remove(). 5421 * 5422 * Returns 0 on success, negative error codes on error. 5423 */ 5424 int i915_debugfs_connector_add(struct drm_connector *connector) 5425 { 5426 struct dentry *root = connector->debugfs_entry; 5427 5428 /* The connector must have been registered beforehands. */ 5429 if (!root) 5430 return -ENODEV; 5431 5432 if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort || 5433 connector->connector_type == DRM_MODE_CONNECTOR_eDP) 5434 debugfs_create_file("i915_dpcd", S_IRUGO, root, connector, 5435 &i915_dpcd_fops); 5436 5437 return 0; 5438 } 5439