xref: /linux/drivers/gpu/drm/i915/i915_debugfs.c (revision 69fb09f6ccdb2f070557fd1f4c56c4d646694c8e)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28 
29 #include <linux/debugfs.h>
30 #include <linux/sort.h>
31 #include "intel_drv.h"
32 
33 static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
34 {
35 	return to_i915(node->minor->dev);
36 }
37 
38 static __always_inline void seq_print_param(struct seq_file *m,
39 					    const char *name,
40 					    const char *type,
41 					    const void *x)
42 {
43 	if (!__builtin_strcmp(type, "bool"))
44 		seq_printf(m, "i915.%s=%s\n", name, yesno(*(const bool *)x));
45 	else if (!__builtin_strcmp(type, "int"))
46 		seq_printf(m, "i915.%s=%d\n", name, *(const int *)x);
47 	else if (!__builtin_strcmp(type, "unsigned int"))
48 		seq_printf(m, "i915.%s=%u\n", name, *(const unsigned int *)x);
49 	else if (!__builtin_strcmp(type, "char *"))
50 		seq_printf(m, "i915.%s=%s\n", name, *(const char **)x);
51 	else
52 		BUILD_BUG();
53 }
54 
55 static int i915_capabilities(struct seq_file *m, void *data)
56 {
57 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
58 	const struct intel_device_info *info = INTEL_INFO(dev_priv);
59 
60 	seq_printf(m, "gen: %d\n", INTEL_GEN(dev_priv));
61 	seq_printf(m, "platform: %s\n", intel_platform_name(info->platform));
62 	seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev_priv));
63 
64 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
65 	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
66 #undef PRINT_FLAG
67 
68 	kernel_param_lock(THIS_MODULE);
69 #define PRINT_PARAM(T, x) seq_print_param(m, #x, #T, &i915.x);
70 	I915_PARAMS_FOR_EACH(PRINT_PARAM);
71 #undef PRINT_PARAM
72 	kernel_param_unlock(THIS_MODULE);
73 
74 	return 0;
75 }
76 
77 static char get_active_flag(struct drm_i915_gem_object *obj)
78 {
79 	return i915_gem_object_is_active(obj) ? '*' : ' ';
80 }
81 
82 static char get_pin_flag(struct drm_i915_gem_object *obj)
83 {
84 	return obj->pin_display ? 'p' : ' ';
85 }
86 
87 static char get_tiling_flag(struct drm_i915_gem_object *obj)
88 {
89 	switch (i915_gem_object_get_tiling(obj)) {
90 	default:
91 	case I915_TILING_NONE: return ' ';
92 	case I915_TILING_X: return 'X';
93 	case I915_TILING_Y: return 'Y';
94 	}
95 }
96 
97 static char get_global_flag(struct drm_i915_gem_object *obj)
98 {
99 	return !list_empty(&obj->userfault_link) ? 'g' : ' ';
100 }
101 
102 static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
103 {
104 	return obj->mm.mapping ? 'M' : ' ';
105 }
106 
107 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
108 {
109 	u64 size = 0;
110 	struct i915_vma *vma;
111 
112 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
113 		if (i915_vma_is_ggtt(vma) && drm_mm_node_allocated(&vma->node))
114 			size += vma->node.size;
115 	}
116 
117 	return size;
118 }
119 
120 static void
121 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
122 {
123 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
124 	struct intel_engine_cs *engine;
125 	struct i915_vma *vma;
126 	unsigned int frontbuffer_bits;
127 	int pin_count = 0;
128 
129 	lockdep_assert_held(&obj->base.dev->struct_mutex);
130 
131 	seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x %s%s%s",
132 		   &obj->base,
133 		   get_active_flag(obj),
134 		   get_pin_flag(obj),
135 		   get_tiling_flag(obj),
136 		   get_global_flag(obj),
137 		   get_pin_mapped_flag(obj),
138 		   obj->base.size / 1024,
139 		   obj->base.read_domains,
140 		   obj->base.write_domain,
141 		   i915_cache_level_str(dev_priv, obj->cache_level),
142 		   obj->mm.dirty ? " dirty" : "",
143 		   obj->mm.madv == I915_MADV_DONTNEED ? " purgeable" : "");
144 	if (obj->base.name)
145 		seq_printf(m, " (name: %d)", obj->base.name);
146 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
147 		if (i915_vma_is_pinned(vma))
148 			pin_count++;
149 	}
150 	seq_printf(m, " (pinned x %d)", pin_count);
151 	if (obj->pin_display)
152 		seq_printf(m, " (display)");
153 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
154 		if (!drm_mm_node_allocated(&vma->node))
155 			continue;
156 
157 		seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
158 			   i915_vma_is_ggtt(vma) ? "g" : "pp",
159 			   vma->node.start, vma->node.size);
160 		if (i915_vma_is_ggtt(vma)) {
161 			switch (vma->ggtt_view.type) {
162 			case I915_GGTT_VIEW_NORMAL:
163 				seq_puts(m, ", normal");
164 				break;
165 
166 			case I915_GGTT_VIEW_PARTIAL:
167 				seq_printf(m, ", partial [%08llx+%x]",
168 					   vma->ggtt_view.partial.offset << PAGE_SHIFT,
169 					   vma->ggtt_view.partial.size << PAGE_SHIFT);
170 				break;
171 
172 			case I915_GGTT_VIEW_ROTATED:
173 				seq_printf(m, ", rotated [(%ux%u, stride=%u, offset=%u), (%ux%u, stride=%u, offset=%u)]",
174 					   vma->ggtt_view.rotated.plane[0].width,
175 					   vma->ggtt_view.rotated.plane[0].height,
176 					   vma->ggtt_view.rotated.plane[0].stride,
177 					   vma->ggtt_view.rotated.plane[0].offset,
178 					   vma->ggtt_view.rotated.plane[1].width,
179 					   vma->ggtt_view.rotated.plane[1].height,
180 					   vma->ggtt_view.rotated.plane[1].stride,
181 					   vma->ggtt_view.rotated.plane[1].offset);
182 				break;
183 
184 			default:
185 				MISSING_CASE(vma->ggtt_view.type);
186 				break;
187 			}
188 		}
189 		if (vma->fence)
190 			seq_printf(m, " , fence: %d%s",
191 				   vma->fence->id,
192 				   i915_gem_active_isset(&vma->last_fence) ? "*" : "");
193 		seq_puts(m, ")");
194 	}
195 	if (obj->stolen)
196 		seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
197 
198 	engine = i915_gem_object_last_write_engine(obj);
199 	if (engine)
200 		seq_printf(m, " (%s)", engine->name);
201 
202 	frontbuffer_bits = atomic_read(&obj->frontbuffer_bits);
203 	if (frontbuffer_bits)
204 		seq_printf(m, " (frontbuffer: 0x%03x)", frontbuffer_bits);
205 }
206 
207 static int obj_rank_by_stolen(const void *A, const void *B)
208 {
209 	const struct drm_i915_gem_object *a =
210 		*(const struct drm_i915_gem_object **)A;
211 	const struct drm_i915_gem_object *b =
212 		*(const struct drm_i915_gem_object **)B;
213 
214 	if (a->stolen->start < b->stolen->start)
215 		return -1;
216 	if (a->stolen->start > b->stolen->start)
217 		return 1;
218 	return 0;
219 }
220 
221 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
222 {
223 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
224 	struct drm_device *dev = &dev_priv->drm;
225 	struct drm_i915_gem_object **objects;
226 	struct drm_i915_gem_object *obj;
227 	u64 total_obj_size, total_gtt_size;
228 	unsigned long total, count, n;
229 	int ret;
230 
231 	total = READ_ONCE(dev_priv->mm.object_count);
232 	objects = drm_malloc_ab(total, sizeof(*objects));
233 	if (!objects)
234 		return -ENOMEM;
235 
236 	ret = mutex_lock_interruptible(&dev->struct_mutex);
237 	if (ret)
238 		goto out;
239 
240 	total_obj_size = total_gtt_size = count = 0;
241 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
242 		if (count == total)
243 			break;
244 
245 		if (obj->stolen == NULL)
246 			continue;
247 
248 		objects[count++] = obj;
249 		total_obj_size += obj->base.size;
250 		total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
251 
252 	}
253 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_link) {
254 		if (count == total)
255 			break;
256 
257 		if (obj->stolen == NULL)
258 			continue;
259 
260 		objects[count++] = obj;
261 		total_obj_size += obj->base.size;
262 	}
263 
264 	sort(objects, count, sizeof(*objects), obj_rank_by_stolen, NULL);
265 
266 	seq_puts(m, "Stolen:\n");
267 	for (n = 0; n < count; n++) {
268 		seq_puts(m, "   ");
269 		describe_obj(m, objects[n]);
270 		seq_putc(m, '\n');
271 	}
272 	seq_printf(m, "Total %lu objects, %llu bytes, %llu GTT size\n",
273 		   count, total_obj_size, total_gtt_size);
274 
275 	mutex_unlock(&dev->struct_mutex);
276 out:
277 	drm_free_large(objects);
278 	return ret;
279 }
280 
281 struct file_stats {
282 	struct drm_i915_file_private *file_priv;
283 	unsigned long count;
284 	u64 total, unbound;
285 	u64 global, shared;
286 	u64 active, inactive;
287 };
288 
289 static int per_file_stats(int id, void *ptr, void *data)
290 {
291 	struct drm_i915_gem_object *obj = ptr;
292 	struct file_stats *stats = data;
293 	struct i915_vma *vma;
294 
295 	lockdep_assert_held(&obj->base.dev->struct_mutex);
296 
297 	stats->count++;
298 	stats->total += obj->base.size;
299 	if (!obj->bind_count)
300 		stats->unbound += obj->base.size;
301 	if (obj->base.name || obj->base.dma_buf)
302 		stats->shared += obj->base.size;
303 
304 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
305 		if (!drm_mm_node_allocated(&vma->node))
306 			continue;
307 
308 		if (i915_vma_is_ggtt(vma)) {
309 			stats->global += vma->node.size;
310 		} else {
311 			struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
312 
313 			if (ppgtt->base.file != stats->file_priv)
314 				continue;
315 		}
316 
317 		if (i915_vma_is_active(vma))
318 			stats->active += vma->node.size;
319 		else
320 			stats->inactive += vma->node.size;
321 	}
322 
323 	return 0;
324 }
325 
326 #define print_file_stats(m, name, stats) do { \
327 	if (stats.count) \
328 		seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
329 			   name, \
330 			   stats.count, \
331 			   stats.total, \
332 			   stats.active, \
333 			   stats.inactive, \
334 			   stats.global, \
335 			   stats.shared, \
336 			   stats.unbound); \
337 } while (0)
338 
339 static void print_batch_pool_stats(struct seq_file *m,
340 				   struct drm_i915_private *dev_priv)
341 {
342 	struct drm_i915_gem_object *obj;
343 	struct file_stats stats;
344 	struct intel_engine_cs *engine;
345 	enum intel_engine_id id;
346 	int j;
347 
348 	memset(&stats, 0, sizeof(stats));
349 
350 	for_each_engine(engine, dev_priv, id) {
351 		for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
352 			list_for_each_entry(obj,
353 					    &engine->batch_pool.cache_list[j],
354 					    batch_pool_link)
355 				per_file_stats(0, obj, &stats);
356 		}
357 	}
358 
359 	print_file_stats(m, "[k]batch pool", stats);
360 }
361 
362 static int per_file_ctx_stats(int id, void *ptr, void *data)
363 {
364 	struct i915_gem_context *ctx = ptr;
365 	int n;
366 
367 	for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
368 		if (ctx->engine[n].state)
369 			per_file_stats(0, ctx->engine[n].state->obj, data);
370 		if (ctx->engine[n].ring)
371 			per_file_stats(0, ctx->engine[n].ring->vma->obj, data);
372 	}
373 
374 	return 0;
375 }
376 
377 static void print_context_stats(struct seq_file *m,
378 				struct drm_i915_private *dev_priv)
379 {
380 	struct drm_device *dev = &dev_priv->drm;
381 	struct file_stats stats;
382 	struct drm_file *file;
383 
384 	memset(&stats, 0, sizeof(stats));
385 
386 	mutex_lock(&dev->struct_mutex);
387 	if (dev_priv->kernel_context)
388 		per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
389 
390 	list_for_each_entry(file, &dev->filelist, lhead) {
391 		struct drm_i915_file_private *fpriv = file->driver_priv;
392 		idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
393 	}
394 	mutex_unlock(&dev->struct_mutex);
395 
396 	print_file_stats(m, "[k]contexts", stats);
397 }
398 
399 static int i915_gem_object_info(struct seq_file *m, void *data)
400 {
401 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
402 	struct drm_device *dev = &dev_priv->drm;
403 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
404 	u32 count, mapped_count, purgeable_count, dpy_count;
405 	u64 size, mapped_size, purgeable_size, dpy_size;
406 	struct drm_i915_gem_object *obj;
407 	struct drm_file *file;
408 	int ret;
409 
410 	ret = mutex_lock_interruptible(&dev->struct_mutex);
411 	if (ret)
412 		return ret;
413 
414 	seq_printf(m, "%u objects, %llu bytes\n",
415 		   dev_priv->mm.object_count,
416 		   dev_priv->mm.object_memory);
417 
418 	size = count = 0;
419 	mapped_size = mapped_count = 0;
420 	purgeable_size = purgeable_count = 0;
421 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_link) {
422 		size += obj->base.size;
423 		++count;
424 
425 		if (obj->mm.madv == I915_MADV_DONTNEED) {
426 			purgeable_size += obj->base.size;
427 			++purgeable_count;
428 		}
429 
430 		if (obj->mm.mapping) {
431 			mapped_count++;
432 			mapped_size += obj->base.size;
433 		}
434 	}
435 	seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
436 
437 	size = count = dpy_size = dpy_count = 0;
438 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
439 		size += obj->base.size;
440 		++count;
441 
442 		if (obj->pin_display) {
443 			dpy_size += obj->base.size;
444 			++dpy_count;
445 		}
446 
447 		if (obj->mm.madv == I915_MADV_DONTNEED) {
448 			purgeable_size += obj->base.size;
449 			++purgeable_count;
450 		}
451 
452 		if (obj->mm.mapping) {
453 			mapped_count++;
454 			mapped_size += obj->base.size;
455 		}
456 	}
457 	seq_printf(m, "%u bound objects, %llu bytes\n",
458 		   count, size);
459 	seq_printf(m, "%u purgeable objects, %llu bytes\n",
460 		   purgeable_count, purgeable_size);
461 	seq_printf(m, "%u mapped objects, %llu bytes\n",
462 		   mapped_count, mapped_size);
463 	seq_printf(m, "%u display objects (pinned), %llu bytes\n",
464 		   dpy_count, dpy_size);
465 
466 	seq_printf(m, "%llu [%llu] gtt total\n",
467 		   ggtt->base.total, ggtt->mappable_end);
468 
469 	seq_putc(m, '\n');
470 	print_batch_pool_stats(m, dev_priv);
471 	mutex_unlock(&dev->struct_mutex);
472 
473 	mutex_lock(&dev->filelist_mutex);
474 	print_context_stats(m, dev_priv);
475 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
476 		struct file_stats stats;
477 		struct drm_i915_file_private *file_priv = file->driver_priv;
478 		struct drm_i915_gem_request *request;
479 		struct task_struct *task;
480 
481 		mutex_lock(&dev->struct_mutex);
482 
483 		memset(&stats, 0, sizeof(stats));
484 		stats.file_priv = file->driver_priv;
485 		spin_lock(&file->table_lock);
486 		idr_for_each(&file->object_idr, per_file_stats, &stats);
487 		spin_unlock(&file->table_lock);
488 		/*
489 		 * Although we have a valid reference on file->pid, that does
490 		 * not guarantee that the task_struct who called get_pid() is
491 		 * still alive (e.g. get_pid(current) => fork() => exit()).
492 		 * Therefore, we need to protect this ->comm access using RCU.
493 		 */
494 		request = list_first_entry_or_null(&file_priv->mm.request_list,
495 						   struct drm_i915_gem_request,
496 						   client_link);
497 		rcu_read_lock();
498 		task = pid_task(request && request->ctx->pid ?
499 				request->ctx->pid : file->pid,
500 				PIDTYPE_PID);
501 		print_file_stats(m, task ? task->comm : "<unknown>", stats);
502 		rcu_read_unlock();
503 
504 		mutex_unlock(&dev->struct_mutex);
505 	}
506 	mutex_unlock(&dev->filelist_mutex);
507 
508 	return 0;
509 }
510 
511 static int i915_gem_gtt_info(struct seq_file *m, void *data)
512 {
513 	struct drm_info_node *node = m->private;
514 	struct drm_i915_private *dev_priv = node_to_i915(node);
515 	struct drm_device *dev = &dev_priv->drm;
516 	bool show_pin_display_only = !!node->info_ent->data;
517 	struct drm_i915_gem_object *obj;
518 	u64 total_obj_size, total_gtt_size;
519 	int count, ret;
520 
521 	ret = mutex_lock_interruptible(&dev->struct_mutex);
522 	if (ret)
523 		return ret;
524 
525 	total_obj_size = total_gtt_size = count = 0;
526 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
527 		if (show_pin_display_only && !obj->pin_display)
528 			continue;
529 
530 		seq_puts(m, "   ");
531 		describe_obj(m, obj);
532 		seq_putc(m, '\n');
533 		total_obj_size += obj->base.size;
534 		total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
535 		count++;
536 	}
537 
538 	mutex_unlock(&dev->struct_mutex);
539 
540 	seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
541 		   count, total_obj_size, total_gtt_size);
542 
543 	return 0;
544 }
545 
546 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
547 {
548 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
549 	struct drm_device *dev = &dev_priv->drm;
550 	struct intel_crtc *crtc;
551 	int ret;
552 
553 	ret = mutex_lock_interruptible(&dev->struct_mutex);
554 	if (ret)
555 		return ret;
556 
557 	for_each_intel_crtc(dev, crtc) {
558 		const char pipe = pipe_name(crtc->pipe);
559 		const char plane = plane_name(crtc->plane);
560 		struct intel_flip_work *work;
561 
562 		spin_lock_irq(&dev->event_lock);
563 		work = crtc->flip_work;
564 		if (work == NULL) {
565 			seq_printf(m, "No flip due on pipe %c (plane %c)\n",
566 				   pipe, plane);
567 		} else {
568 			u32 pending;
569 			u32 addr;
570 
571 			pending = atomic_read(&work->pending);
572 			if (pending) {
573 				seq_printf(m, "Flip ioctl preparing on pipe %c (plane %c)\n",
574 					   pipe, plane);
575 			} else {
576 				seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
577 					   pipe, plane);
578 			}
579 			if (work->flip_queued_req) {
580 				struct intel_engine_cs *engine = work->flip_queued_req->engine;
581 
582 				seq_printf(m, "Flip queued on %s at seqno %x, last submitted seqno %x [current breadcrumb %x], completed? %d\n",
583 					   engine->name,
584 					   work->flip_queued_req->global_seqno,
585 					   intel_engine_last_submit(engine),
586 					   intel_engine_get_seqno(engine),
587 					   i915_gem_request_completed(work->flip_queued_req));
588 			} else
589 				seq_printf(m, "Flip not associated with any ring\n");
590 			seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
591 				   work->flip_queued_vblank,
592 				   work->flip_ready_vblank,
593 				   intel_crtc_get_vblank_counter(crtc));
594 			seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
595 
596 			if (INTEL_GEN(dev_priv) >= 4)
597 				addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
598 			else
599 				addr = I915_READ(DSPADDR(crtc->plane));
600 			seq_printf(m, "Current scanout address 0x%08x\n", addr);
601 
602 			if (work->pending_flip_obj) {
603 				seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
604 				seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
605 			}
606 		}
607 		spin_unlock_irq(&dev->event_lock);
608 	}
609 
610 	mutex_unlock(&dev->struct_mutex);
611 
612 	return 0;
613 }
614 
615 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
616 {
617 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
618 	struct drm_device *dev = &dev_priv->drm;
619 	struct drm_i915_gem_object *obj;
620 	struct intel_engine_cs *engine;
621 	enum intel_engine_id id;
622 	int total = 0;
623 	int ret, j;
624 
625 	ret = mutex_lock_interruptible(&dev->struct_mutex);
626 	if (ret)
627 		return ret;
628 
629 	for_each_engine(engine, dev_priv, id) {
630 		for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
631 			int count;
632 
633 			count = 0;
634 			list_for_each_entry(obj,
635 					    &engine->batch_pool.cache_list[j],
636 					    batch_pool_link)
637 				count++;
638 			seq_printf(m, "%s cache[%d]: %d objects\n",
639 				   engine->name, j, count);
640 
641 			list_for_each_entry(obj,
642 					    &engine->batch_pool.cache_list[j],
643 					    batch_pool_link) {
644 				seq_puts(m, "   ");
645 				describe_obj(m, obj);
646 				seq_putc(m, '\n');
647 			}
648 
649 			total += count;
650 		}
651 	}
652 
653 	seq_printf(m, "total: %d\n", total);
654 
655 	mutex_unlock(&dev->struct_mutex);
656 
657 	return 0;
658 }
659 
660 static void print_request(struct seq_file *m,
661 			  struct drm_i915_gem_request *rq,
662 			  const char *prefix)
663 {
664 	seq_printf(m, "%s%x [%x:%x] prio=%d @ %dms: %s\n", prefix,
665 		   rq->global_seqno, rq->ctx->hw_id, rq->fence.seqno,
666 		   rq->priotree.priority,
667 		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
668 		   rq->timeline->common->name);
669 }
670 
671 static int i915_gem_request_info(struct seq_file *m, void *data)
672 {
673 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
674 	struct drm_device *dev = &dev_priv->drm;
675 	struct drm_i915_gem_request *req;
676 	struct intel_engine_cs *engine;
677 	enum intel_engine_id id;
678 	int ret, any;
679 
680 	ret = mutex_lock_interruptible(&dev->struct_mutex);
681 	if (ret)
682 		return ret;
683 
684 	any = 0;
685 	for_each_engine(engine, dev_priv, id) {
686 		int count;
687 
688 		count = 0;
689 		list_for_each_entry(req, &engine->timeline->requests, link)
690 			count++;
691 		if (count == 0)
692 			continue;
693 
694 		seq_printf(m, "%s requests: %d\n", engine->name, count);
695 		list_for_each_entry(req, &engine->timeline->requests, link)
696 			print_request(m, req, "    ");
697 
698 		any++;
699 	}
700 	mutex_unlock(&dev->struct_mutex);
701 
702 	if (any == 0)
703 		seq_puts(m, "No requests\n");
704 
705 	return 0;
706 }
707 
708 static void i915_ring_seqno_info(struct seq_file *m,
709 				 struct intel_engine_cs *engine)
710 {
711 	struct intel_breadcrumbs *b = &engine->breadcrumbs;
712 	struct rb_node *rb;
713 
714 	seq_printf(m, "Current sequence (%s): %x\n",
715 		   engine->name, intel_engine_get_seqno(engine));
716 
717 	spin_lock_irq(&b->rb_lock);
718 	for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
719 		struct intel_wait *w = rb_entry(rb, typeof(*w), node);
720 
721 		seq_printf(m, "Waiting (%s): %s [%d] on %x\n",
722 			   engine->name, w->tsk->comm, w->tsk->pid, w->seqno);
723 	}
724 	spin_unlock_irq(&b->rb_lock);
725 }
726 
727 static int i915_gem_seqno_info(struct seq_file *m, void *data)
728 {
729 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
730 	struct intel_engine_cs *engine;
731 	enum intel_engine_id id;
732 
733 	for_each_engine(engine, dev_priv, id)
734 		i915_ring_seqno_info(m, engine);
735 
736 	return 0;
737 }
738 
739 
740 static int i915_interrupt_info(struct seq_file *m, void *data)
741 {
742 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
743 	struct intel_engine_cs *engine;
744 	enum intel_engine_id id;
745 	int i, pipe;
746 
747 	intel_runtime_pm_get(dev_priv);
748 
749 	if (IS_CHERRYVIEW(dev_priv)) {
750 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
751 			   I915_READ(GEN8_MASTER_IRQ));
752 
753 		seq_printf(m, "Display IER:\t%08x\n",
754 			   I915_READ(VLV_IER));
755 		seq_printf(m, "Display IIR:\t%08x\n",
756 			   I915_READ(VLV_IIR));
757 		seq_printf(m, "Display IIR_RW:\t%08x\n",
758 			   I915_READ(VLV_IIR_RW));
759 		seq_printf(m, "Display IMR:\t%08x\n",
760 			   I915_READ(VLV_IMR));
761 		for_each_pipe(dev_priv, pipe) {
762 			enum intel_display_power_domain power_domain;
763 
764 			power_domain = POWER_DOMAIN_PIPE(pipe);
765 			if (!intel_display_power_get_if_enabled(dev_priv,
766 								power_domain)) {
767 				seq_printf(m, "Pipe %c power disabled\n",
768 					   pipe_name(pipe));
769 				continue;
770 			}
771 
772 			seq_printf(m, "Pipe %c stat:\t%08x\n",
773 				   pipe_name(pipe),
774 				   I915_READ(PIPESTAT(pipe)));
775 
776 			intel_display_power_put(dev_priv, power_domain);
777 		}
778 
779 		intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
780 		seq_printf(m, "Port hotplug:\t%08x\n",
781 			   I915_READ(PORT_HOTPLUG_EN));
782 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
783 			   I915_READ(VLV_DPFLIPSTAT));
784 		seq_printf(m, "DPINVGTT:\t%08x\n",
785 			   I915_READ(DPINVGTT));
786 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
787 
788 		for (i = 0; i < 4; i++) {
789 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
790 				   i, I915_READ(GEN8_GT_IMR(i)));
791 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
792 				   i, I915_READ(GEN8_GT_IIR(i)));
793 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
794 				   i, I915_READ(GEN8_GT_IER(i)));
795 		}
796 
797 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
798 			   I915_READ(GEN8_PCU_IMR));
799 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
800 			   I915_READ(GEN8_PCU_IIR));
801 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
802 			   I915_READ(GEN8_PCU_IER));
803 	} else if (INTEL_GEN(dev_priv) >= 8) {
804 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
805 			   I915_READ(GEN8_MASTER_IRQ));
806 
807 		for (i = 0; i < 4; i++) {
808 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
809 				   i, I915_READ(GEN8_GT_IMR(i)));
810 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
811 				   i, I915_READ(GEN8_GT_IIR(i)));
812 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
813 				   i, I915_READ(GEN8_GT_IER(i)));
814 		}
815 
816 		for_each_pipe(dev_priv, pipe) {
817 			enum intel_display_power_domain power_domain;
818 
819 			power_domain = POWER_DOMAIN_PIPE(pipe);
820 			if (!intel_display_power_get_if_enabled(dev_priv,
821 								power_domain)) {
822 				seq_printf(m, "Pipe %c power disabled\n",
823 					   pipe_name(pipe));
824 				continue;
825 			}
826 			seq_printf(m, "Pipe %c IMR:\t%08x\n",
827 				   pipe_name(pipe),
828 				   I915_READ(GEN8_DE_PIPE_IMR(pipe)));
829 			seq_printf(m, "Pipe %c IIR:\t%08x\n",
830 				   pipe_name(pipe),
831 				   I915_READ(GEN8_DE_PIPE_IIR(pipe)));
832 			seq_printf(m, "Pipe %c IER:\t%08x\n",
833 				   pipe_name(pipe),
834 				   I915_READ(GEN8_DE_PIPE_IER(pipe)));
835 
836 			intel_display_power_put(dev_priv, power_domain);
837 		}
838 
839 		seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
840 			   I915_READ(GEN8_DE_PORT_IMR));
841 		seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
842 			   I915_READ(GEN8_DE_PORT_IIR));
843 		seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
844 			   I915_READ(GEN8_DE_PORT_IER));
845 
846 		seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
847 			   I915_READ(GEN8_DE_MISC_IMR));
848 		seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
849 			   I915_READ(GEN8_DE_MISC_IIR));
850 		seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
851 			   I915_READ(GEN8_DE_MISC_IER));
852 
853 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
854 			   I915_READ(GEN8_PCU_IMR));
855 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
856 			   I915_READ(GEN8_PCU_IIR));
857 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
858 			   I915_READ(GEN8_PCU_IER));
859 	} else if (IS_VALLEYVIEW(dev_priv)) {
860 		seq_printf(m, "Display IER:\t%08x\n",
861 			   I915_READ(VLV_IER));
862 		seq_printf(m, "Display IIR:\t%08x\n",
863 			   I915_READ(VLV_IIR));
864 		seq_printf(m, "Display IIR_RW:\t%08x\n",
865 			   I915_READ(VLV_IIR_RW));
866 		seq_printf(m, "Display IMR:\t%08x\n",
867 			   I915_READ(VLV_IMR));
868 		for_each_pipe(dev_priv, pipe) {
869 			enum intel_display_power_domain power_domain;
870 
871 			power_domain = POWER_DOMAIN_PIPE(pipe);
872 			if (!intel_display_power_get_if_enabled(dev_priv,
873 								power_domain)) {
874 				seq_printf(m, "Pipe %c power disabled\n",
875 					   pipe_name(pipe));
876 				continue;
877 			}
878 
879 			seq_printf(m, "Pipe %c stat:\t%08x\n",
880 				   pipe_name(pipe),
881 				   I915_READ(PIPESTAT(pipe)));
882 			intel_display_power_put(dev_priv, power_domain);
883 		}
884 
885 		seq_printf(m, "Master IER:\t%08x\n",
886 			   I915_READ(VLV_MASTER_IER));
887 
888 		seq_printf(m, "Render IER:\t%08x\n",
889 			   I915_READ(GTIER));
890 		seq_printf(m, "Render IIR:\t%08x\n",
891 			   I915_READ(GTIIR));
892 		seq_printf(m, "Render IMR:\t%08x\n",
893 			   I915_READ(GTIMR));
894 
895 		seq_printf(m, "PM IER:\t\t%08x\n",
896 			   I915_READ(GEN6_PMIER));
897 		seq_printf(m, "PM IIR:\t\t%08x\n",
898 			   I915_READ(GEN6_PMIIR));
899 		seq_printf(m, "PM IMR:\t\t%08x\n",
900 			   I915_READ(GEN6_PMIMR));
901 
902 		seq_printf(m, "Port hotplug:\t%08x\n",
903 			   I915_READ(PORT_HOTPLUG_EN));
904 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
905 			   I915_READ(VLV_DPFLIPSTAT));
906 		seq_printf(m, "DPINVGTT:\t%08x\n",
907 			   I915_READ(DPINVGTT));
908 
909 	} else if (!HAS_PCH_SPLIT(dev_priv)) {
910 		seq_printf(m, "Interrupt enable:    %08x\n",
911 			   I915_READ(IER));
912 		seq_printf(m, "Interrupt identity:  %08x\n",
913 			   I915_READ(IIR));
914 		seq_printf(m, "Interrupt mask:      %08x\n",
915 			   I915_READ(IMR));
916 		for_each_pipe(dev_priv, pipe)
917 			seq_printf(m, "Pipe %c stat:         %08x\n",
918 				   pipe_name(pipe),
919 				   I915_READ(PIPESTAT(pipe)));
920 	} else {
921 		seq_printf(m, "North Display Interrupt enable:		%08x\n",
922 			   I915_READ(DEIER));
923 		seq_printf(m, "North Display Interrupt identity:	%08x\n",
924 			   I915_READ(DEIIR));
925 		seq_printf(m, "North Display Interrupt mask:		%08x\n",
926 			   I915_READ(DEIMR));
927 		seq_printf(m, "South Display Interrupt enable:		%08x\n",
928 			   I915_READ(SDEIER));
929 		seq_printf(m, "South Display Interrupt identity:	%08x\n",
930 			   I915_READ(SDEIIR));
931 		seq_printf(m, "South Display Interrupt mask:		%08x\n",
932 			   I915_READ(SDEIMR));
933 		seq_printf(m, "Graphics Interrupt enable:		%08x\n",
934 			   I915_READ(GTIER));
935 		seq_printf(m, "Graphics Interrupt identity:		%08x\n",
936 			   I915_READ(GTIIR));
937 		seq_printf(m, "Graphics Interrupt mask:		%08x\n",
938 			   I915_READ(GTIMR));
939 	}
940 	for_each_engine(engine, dev_priv, id) {
941 		if (INTEL_GEN(dev_priv) >= 6) {
942 			seq_printf(m,
943 				   "Graphics Interrupt mask (%s):	%08x\n",
944 				   engine->name, I915_READ_IMR(engine));
945 		}
946 		i915_ring_seqno_info(m, engine);
947 	}
948 	intel_runtime_pm_put(dev_priv);
949 
950 	return 0;
951 }
952 
953 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
954 {
955 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
956 	struct drm_device *dev = &dev_priv->drm;
957 	int i, ret;
958 
959 	ret = mutex_lock_interruptible(&dev->struct_mutex);
960 	if (ret)
961 		return ret;
962 
963 	seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
964 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
965 		struct i915_vma *vma = dev_priv->fence_regs[i].vma;
966 
967 		seq_printf(m, "Fence %d, pin count = %d, object = ",
968 			   i, dev_priv->fence_regs[i].pin_count);
969 		if (!vma)
970 			seq_puts(m, "unused");
971 		else
972 			describe_obj(m, vma->obj);
973 		seq_putc(m, '\n');
974 	}
975 
976 	mutex_unlock(&dev->struct_mutex);
977 	return 0;
978 }
979 
980 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
981 static ssize_t gpu_state_read(struct file *file, char __user *ubuf,
982 			      size_t count, loff_t *pos)
983 {
984 	struct i915_gpu_state *error = file->private_data;
985 	struct drm_i915_error_state_buf str;
986 	ssize_t ret;
987 	loff_t tmp;
988 
989 	if (!error)
990 		return 0;
991 
992 	ret = i915_error_state_buf_init(&str, error->i915, count, *pos);
993 	if (ret)
994 		return ret;
995 
996 	ret = i915_error_state_to_str(&str, error);
997 	if (ret)
998 		goto out;
999 
1000 	tmp = 0;
1001 	ret = simple_read_from_buffer(ubuf, count, &tmp, str.buf, str.bytes);
1002 	if (ret < 0)
1003 		goto out;
1004 
1005 	*pos = str.start + ret;
1006 out:
1007 	i915_error_state_buf_release(&str);
1008 	return ret;
1009 }
1010 
1011 static int gpu_state_release(struct inode *inode, struct file *file)
1012 {
1013 	i915_gpu_state_put(file->private_data);
1014 	return 0;
1015 }
1016 
1017 static int i915_gpu_info_open(struct inode *inode, struct file *file)
1018 {
1019 	struct drm_i915_private *i915 = inode->i_private;
1020 	struct i915_gpu_state *gpu;
1021 
1022 	intel_runtime_pm_get(i915);
1023 	gpu = i915_capture_gpu_state(i915);
1024 	intel_runtime_pm_put(i915);
1025 	if (!gpu)
1026 		return -ENOMEM;
1027 
1028 	file->private_data = gpu;
1029 	return 0;
1030 }
1031 
1032 static const struct file_operations i915_gpu_info_fops = {
1033 	.owner = THIS_MODULE,
1034 	.open = i915_gpu_info_open,
1035 	.read = gpu_state_read,
1036 	.llseek = default_llseek,
1037 	.release = gpu_state_release,
1038 };
1039 
1040 static ssize_t
1041 i915_error_state_write(struct file *filp,
1042 		       const char __user *ubuf,
1043 		       size_t cnt,
1044 		       loff_t *ppos)
1045 {
1046 	struct i915_gpu_state *error = filp->private_data;
1047 
1048 	if (!error)
1049 		return 0;
1050 
1051 	DRM_DEBUG_DRIVER("Resetting error state\n");
1052 	i915_reset_error_state(error->i915);
1053 
1054 	return cnt;
1055 }
1056 
1057 static int i915_error_state_open(struct inode *inode, struct file *file)
1058 {
1059 	file->private_data = i915_first_error_state(inode->i_private);
1060 	return 0;
1061 }
1062 
1063 static const struct file_operations i915_error_state_fops = {
1064 	.owner = THIS_MODULE,
1065 	.open = i915_error_state_open,
1066 	.read = gpu_state_read,
1067 	.write = i915_error_state_write,
1068 	.llseek = default_llseek,
1069 	.release = gpu_state_release,
1070 };
1071 #endif
1072 
1073 static int
1074 i915_next_seqno_set(void *data, u64 val)
1075 {
1076 	struct drm_i915_private *dev_priv = data;
1077 	struct drm_device *dev = &dev_priv->drm;
1078 	int ret;
1079 
1080 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1081 	if (ret)
1082 		return ret;
1083 
1084 	ret = i915_gem_set_global_seqno(dev, val);
1085 	mutex_unlock(&dev->struct_mutex);
1086 
1087 	return ret;
1088 }
1089 
1090 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1091 			NULL, i915_next_seqno_set,
1092 			"0x%llx\n");
1093 
1094 static int i915_frequency_info(struct seq_file *m, void *unused)
1095 {
1096 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1097 	int ret = 0;
1098 
1099 	intel_runtime_pm_get(dev_priv);
1100 
1101 	if (IS_GEN5(dev_priv)) {
1102 		u16 rgvswctl = I915_READ16(MEMSWCTL);
1103 		u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1104 
1105 		seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1106 		seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1107 		seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1108 			   MEMSTAT_VID_SHIFT);
1109 		seq_printf(m, "Current P-state: %d\n",
1110 			   (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1111 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1112 		u32 freq_sts;
1113 
1114 		mutex_lock(&dev_priv->rps.hw_lock);
1115 		freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1116 		seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1117 		seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1118 
1119 		seq_printf(m, "actual GPU freq: %d MHz\n",
1120 			   intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1121 
1122 		seq_printf(m, "current GPU freq: %d MHz\n",
1123 			   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1124 
1125 		seq_printf(m, "max GPU freq: %d MHz\n",
1126 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1127 
1128 		seq_printf(m, "min GPU freq: %d MHz\n",
1129 			   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1130 
1131 		seq_printf(m, "idle GPU freq: %d MHz\n",
1132 			   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1133 
1134 		seq_printf(m,
1135 			   "efficient (RPe) frequency: %d MHz\n",
1136 			   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1137 		mutex_unlock(&dev_priv->rps.hw_lock);
1138 	} else if (INTEL_GEN(dev_priv) >= 6) {
1139 		u32 rp_state_limits;
1140 		u32 gt_perf_status;
1141 		u32 rp_state_cap;
1142 		u32 rpmodectl, rpinclimit, rpdeclimit;
1143 		u32 rpstat, cagf, reqf;
1144 		u32 rpupei, rpcurup, rpprevup;
1145 		u32 rpdownei, rpcurdown, rpprevdown;
1146 		u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1147 		int max_freq;
1148 
1149 		rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1150 		if (IS_GEN9_LP(dev_priv)) {
1151 			rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1152 			gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1153 		} else {
1154 			rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1155 			gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1156 		}
1157 
1158 		/* RPSTAT1 is in the GT power well */
1159 		intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1160 
1161 		reqf = I915_READ(GEN6_RPNSWREQ);
1162 		if (IS_GEN9(dev_priv))
1163 			reqf >>= 23;
1164 		else {
1165 			reqf &= ~GEN6_TURBO_DISABLE;
1166 			if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1167 				reqf >>= 24;
1168 			else
1169 				reqf >>= 25;
1170 		}
1171 		reqf = intel_gpu_freq(dev_priv, reqf);
1172 
1173 		rpmodectl = I915_READ(GEN6_RP_CONTROL);
1174 		rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1175 		rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1176 
1177 		rpstat = I915_READ(GEN6_RPSTAT1);
1178 		rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
1179 		rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
1180 		rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
1181 		rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
1182 		rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
1183 		rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
1184 		if (IS_GEN9(dev_priv))
1185 			cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1186 		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1187 			cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1188 		else
1189 			cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1190 		cagf = intel_gpu_freq(dev_priv, cagf);
1191 
1192 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1193 
1194 		if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
1195 			pm_ier = I915_READ(GEN6_PMIER);
1196 			pm_imr = I915_READ(GEN6_PMIMR);
1197 			pm_isr = I915_READ(GEN6_PMISR);
1198 			pm_iir = I915_READ(GEN6_PMIIR);
1199 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1200 		} else {
1201 			pm_ier = I915_READ(GEN8_GT_IER(2));
1202 			pm_imr = I915_READ(GEN8_GT_IMR(2));
1203 			pm_isr = I915_READ(GEN8_GT_ISR(2));
1204 			pm_iir = I915_READ(GEN8_GT_IIR(2));
1205 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1206 		}
1207 		seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1208 			   pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1209 		seq_printf(m, "pm_intrmsk_mbz: 0x%08x\n",
1210 			   dev_priv->rps.pm_intrmsk_mbz);
1211 		seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1212 		seq_printf(m, "Render p-state ratio: %d\n",
1213 			   (gt_perf_status & (IS_GEN9(dev_priv) ? 0x1ff00 : 0xff00)) >> 8);
1214 		seq_printf(m, "Render p-state VID: %d\n",
1215 			   gt_perf_status & 0xff);
1216 		seq_printf(m, "Render p-state limit: %d\n",
1217 			   rp_state_limits & 0xff);
1218 		seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1219 		seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1220 		seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1221 		seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1222 		seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1223 		seq_printf(m, "CAGF: %dMHz\n", cagf);
1224 		seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
1225 			   rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
1226 		seq_printf(m, "RP CUR UP: %d (%dus)\n",
1227 			   rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
1228 		seq_printf(m, "RP PREV UP: %d (%dus)\n",
1229 			   rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
1230 		seq_printf(m, "Up threshold: %d%%\n",
1231 			   dev_priv->rps.up_threshold);
1232 
1233 		seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
1234 			   rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
1235 		seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
1236 			   rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
1237 		seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
1238 			   rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
1239 		seq_printf(m, "Down threshold: %d%%\n",
1240 			   dev_priv->rps.down_threshold);
1241 
1242 		max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 0 :
1243 			    rp_state_cap >> 16) & 0xff;
1244 		max_freq *= (IS_GEN9_BC(dev_priv) ? GEN9_FREQ_SCALER : 1);
1245 		seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1246 			   intel_gpu_freq(dev_priv, max_freq));
1247 
1248 		max_freq = (rp_state_cap & 0xff00) >> 8;
1249 		max_freq *= (IS_GEN9_BC(dev_priv) ? GEN9_FREQ_SCALER : 1);
1250 		seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1251 			   intel_gpu_freq(dev_priv, max_freq));
1252 
1253 		max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 16 :
1254 			    rp_state_cap >> 0) & 0xff;
1255 		max_freq *= (IS_GEN9_BC(dev_priv) ? GEN9_FREQ_SCALER : 1);
1256 		seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1257 			   intel_gpu_freq(dev_priv, max_freq));
1258 		seq_printf(m, "Max overclocked frequency: %dMHz\n",
1259 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1260 
1261 		seq_printf(m, "Current freq: %d MHz\n",
1262 			   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1263 		seq_printf(m, "Actual freq: %d MHz\n", cagf);
1264 		seq_printf(m, "Idle freq: %d MHz\n",
1265 			   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1266 		seq_printf(m, "Min freq: %d MHz\n",
1267 			   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1268 		seq_printf(m, "Boost freq: %d MHz\n",
1269 			   intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
1270 		seq_printf(m, "Max freq: %d MHz\n",
1271 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1272 		seq_printf(m,
1273 			   "efficient (RPe) frequency: %d MHz\n",
1274 			   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1275 	} else {
1276 		seq_puts(m, "no P-state info available\n");
1277 	}
1278 
1279 	seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk.hw.cdclk);
1280 	seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1281 	seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1282 
1283 	intel_runtime_pm_put(dev_priv);
1284 	return ret;
1285 }
1286 
1287 static void i915_instdone_info(struct drm_i915_private *dev_priv,
1288 			       struct seq_file *m,
1289 			       struct intel_instdone *instdone)
1290 {
1291 	int slice;
1292 	int subslice;
1293 
1294 	seq_printf(m, "\t\tINSTDONE: 0x%08x\n",
1295 		   instdone->instdone);
1296 
1297 	if (INTEL_GEN(dev_priv) <= 3)
1298 		return;
1299 
1300 	seq_printf(m, "\t\tSC_INSTDONE: 0x%08x\n",
1301 		   instdone->slice_common);
1302 
1303 	if (INTEL_GEN(dev_priv) <= 6)
1304 		return;
1305 
1306 	for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1307 		seq_printf(m, "\t\tSAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
1308 			   slice, subslice, instdone->sampler[slice][subslice]);
1309 
1310 	for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1311 		seq_printf(m, "\t\tROW_INSTDONE[%d][%d]: 0x%08x\n",
1312 			   slice, subslice, instdone->row[slice][subslice]);
1313 }
1314 
1315 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1316 {
1317 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1318 	struct intel_engine_cs *engine;
1319 	u64 acthd[I915_NUM_ENGINES];
1320 	u32 seqno[I915_NUM_ENGINES];
1321 	struct intel_instdone instdone;
1322 	enum intel_engine_id id;
1323 
1324 	if (test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
1325 		seq_puts(m, "Wedged\n");
1326 	if (test_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags))
1327 		seq_puts(m, "Reset in progress: struct_mutex backoff\n");
1328 	if (test_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags))
1329 		seq_puts(m, "Reset in progress: reset handoff to waiter\n");
1330 	if (waitqueue_active(&dev_priv->gpu_error.wait_queue))
1331 		seq_puts(m, "Waiter holding struct mutex\n");
1332 	if (waitqueue_active(&dev_priv->gpu_error.reset_queue))
1333 		seq_puts(m, "struct_mutex blocked for reset\n");
1334 
1335 	if (!i915.enable_hangcheck) {
1336 		seq_puts(m, "Hangcheck disabled\n");
1337 		return 0;
1338 	}
1339 
1340 	intel_runtime_pm_get(dev_priv);
1341 
1342 	for_each_engine(engine, dev_priv, id) {
1343 		acthd[id] = intel_engine_get_active_head(engine);
1344 		seqno[id] = intel_engine_get_seqno(engine);
1345 	}
1346 
1347 	intel_engine_get_instdone(dev_priv->engine[RCS], &instdone);
1348 
1349 	intel_runtime_pm_put(dev_priv);
1350 
1351 	if (timer_pending(&dev_priv->gpu_error.hangcheck_work.timer))
1352 		seq_printf(m, "Hangcheck active, timer fires in %dms\n",
1353 			   jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1354 					    jiffies));
1355 	else if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work))
1356 		seq_puts(m, "Hangcheck active, work pending\n");
1357 	else
1358 		seq_puts(m, "Hangcheck inactive\n");
1359 
1360 	seq_printf(m, "GT active? %s\n", yesno(dev_priv->gt.awake));
1361 
1362 	for_each_engine(engine, dev_priv, id) {
1363 		struct intel_breadcrumbs *b = &engine->breadcrumbs;
1364 		struct rb_node *rb;
1365 
1366 		seq_printf(m, "%s:\n", engine->name);
1367 		seq_printf(m, "\tseqno = %x [current %x, last %x], inflight %d\n",
1368 			   engine->hangcheck.seqno, seqno[id],
1369 			   intel_engine_last_submit(engine),
1370 			   engine->timeline->inflight_seqnos);
1371 		seq_printf(m, "\twaiters? %s, fake irq active? %s, stalled? %s\n",
1372 			   yesno(intel_engine_has_waiter(engine)),
1373 			   yesno(test_bit(engine->id,
1374 					  &dev_priv->gpu_error.missed_irq_rings)),
1375 			   yesno(engine->hangcheck.stalled));
1376 
1377 		spin_lock_irq(&b->rb_lock);
1378 		for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
1379 			struct intel_wait *w = rb_entry(rb, typeof(*w), node);
1380 
1381 			seq_printf(m, "\t%s [%d] waiting for %x\n",
1382 				   w->tsk->comm, w->tsk->pid, w->seqno);
1383 		}
1384 		spin_unlock_irq(&b->rb_lock);
1385 
1386 		seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1387 			   (long long)engine->hangcheck.acthd,
1388 			   (long long)acthd[id]);
1389 		seq_printf(m, "\taction = %s(%d) %d ms ago\n",
1390 			   hangcheck_action_to_str(engine->hangcheck.action),
1391 			   engine->hangcheck.action,
1392 			   jiffies_to_msecs(jiffies -
1393 					    engine->hangcheck.action_timestamp));
1394 
1395 		if (engine->id == RCS) {
1396 			seq_puts(m, "\tinstdone read =\n");
1397 
1398 			i915_instdone_info(dev_priv, m, &instdone);
1399 
1400 			seq_puts(m, "\tinstdone accu =\n");
1401 
1402 			i915_instdone_info(dev_priv, m,
1403 					   &engine->hangcheck.instdone);
1404 		}
1405 	}
1406 
1407 	return 0;
1408 }
1409 
1410 static int ironlake_drpc_info(struct seq_file *m)
1411 {
1412 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1413 	u32 rgvmodectl, rstdbyctl;
1414 	u16 crstandvid;
1415 
1416 	rgvmodectl = I915_READ(MEMMODECTL);
1417 	rstdbyctl = I915_READ(RSTDBYCTL);
1418 	crstandvid = I915_READ16(CRSTANDVID);
1419 
1420 	seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1421 	seq_printf(m, "Boost freq: %d\n",
1422 		   (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1423 		   MEMMODE_BOOST_FREQ_SHIFT);
1424 	seq_printf(m, "HW control enabled: %s\n",
1425 		   yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1426 	seq_printf(m, "SW control enabled: %s\n",
1427 		   yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1428 	seq_printf(m, "Gated voltage change: %s\n",
1429 		   yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1430 	seq_printf(m, "Starting frequency: P%d\n",
1431 		   (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1432 	seq_printf(m, "Max P-state: P%d\n",
1433 		   (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1434 	seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1435 	seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1436 	seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1437 	seq_printf(m, "Render standby enabled: %s\n",
1438 		   yesno(!(rstdbyctl & RCX_SW_EXIT)));
1439 	seq_puts(m, "Current RS state: ");
1440 	switch (rstdbyctl & RSX_STATUS_MASK) {
1441 	case RSX_STATUS_ON:
1442 		seq_puts(m, "on\n");
1443 		break;
1444 	case RSX_STATUS_RC1:
1445 		seq_puts(m, "RC1\n");
1446 		break;
1447 	case RSX_STATUS_RC1E:
1448 		seq_puts(m, "RC1E\n");
1449 		break;
1450 	case RSX_STATUS_RS1:
1451 		seq_puts(m, "RS1\n");
1452 		break;
1453 	case RSX_STATUS_RS2:
1454 		seq_puts(m, "RS2 (RC6)\n");
1455 		break;
1456 	case RSX_STATUS_RS3:
1457 		seq_puts(m, "RC3 (RC6+)\n");
1458 		break;
1459 	default:
1460 		seq_puts(m, "unknown\n");
1461 		break;
1462 	}
1463 
1464 	return 0;
1465 }
1466 
1467 static int i915_forcewake_domains(struct seq_file *m, void *data)
1468 {
1469 	struct drm_i915_private *i915 = node_to_i915(m->private);
1470 	struct intel_uncore_forcewake_domain *fw_domain;
1471 	unsigned int tmp;
1472 
1473 	for_each_fw_domain(fw_domain, i915, tmp)
1474 		seq_printf(m, "%s.wake_count = %u\n",
1475 			   intel_uncore_forcewake_domain_to_str(fw_domain->id),
1476 			   READ_ONCE(fw_domain->wake_count));
1477 
1478 	return 0;
1479 }
1480 
1481 static void print_rc6_res(struct seq_file *m,
1482 			  const char *title,
1483 			  const i915_reg_t reg)
1484 {
1485 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1486 
1487 	seq_printf(m, "%s %u (%llu us)\n",
1488 		   title, I915_READ(reg),
1489 		   intel_rc6_residency_us(dev_priv, reg));
1490 }
1491 
1492 static int vlv_drpc_info(struct seq_file *m)
1493 {
1494 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1495 	u32 rpmodectl1, rcctl1, pw_status;
1496 
1497 	pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1498 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1499 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1500 
1501 	seq_printf(m, "Video Turbo Mode: %s\n",
1502 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1503 	seq_printf(m, "Turbo enabled: %s\n",
1504 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1505 	seq_printf(m, "HW control enabled: %s\n",
1506 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1507 	seq_printf(m, "SW control enabled: %s\n",
1508 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1509 			  GEN6_RP_MEDIA_SW_MODE));
1510 	seq_printf(m, "RC6 Enabled: %s\n",
1511 		   yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1512 					GEN6_RC_CTL_EI_MODE(1))));
1513 	seq_printf(m, "Render Power Well: %s\n",
1514 		   (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1515 	seq_printf(m, "Media Power Well: %s\n",
1516 		   (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1517 
1518 	print_rc6_res(m, "Render RC6 residency since boot:", VLV_GT_RENDER_RC6);
1519 	print_rc6_res(m, "Media RC6 residency since boot:", VLV_GT_MEDIA_RC6);
1520 
1521 	return i915_forcewake_domains(m, NULL);
1522 }
1523 
1524 static int gen6_drpc_info(struct seq_file *m)
1525 {
1526 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1527 	u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1528 	u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
1529 	unsigned forcewake_count;
1530 	int count = 0;
1531 
1532 	forcewake_count = READ_ONCE(dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count);
1533 	if (forcewake_count) {
1534 		seq_puts(m, "RC information inaccurate because somebody "
1535 			    "holds a forcewake reference \n");
1536 	} else {
1537 		/* NB: we cannot use forcewake, else we read the wrong values */
1538 		while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1539 			udelay(10);
1540 		seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1541 	}
1542 
1543 	gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1544 	trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1545 
1546 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1547 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1548 	if (INTEL_GEN(dev_priv) >= 9) {
1549 		gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
1550 		gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
1551 	}
1552 
1553 	mutex_lock(&dev_priv->rps.hw_lock);
1554 	sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1555 	mutex_unlock(&dev_priv->rps.hw_lock);
1556 
1557 	seq_printf(m, "Video Turbo Mode: %s\n",
1558 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1559 	seq_printf(m, "HW control enabled: %s\n",
1560 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1561 	seq_printf(m, "SW control enabled: %s\n",
1562 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1563 			  GEN6_RP_MEDIA_SW_MODE));
1564 	seq_printf(m, "RC1e Enabled: %s\n",
1565 		   yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1566 	seq_printf(m, "RC6 Enabled: %s\n",
1567 		   yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1568 	if (INTEL_GEN(dev_priv) >= 9) {
1569 		seq_printf(m, "Render Well Gating Enabled: %s\n",
1570 			yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
1571 		seq_printf(m, "Media Well Gating Enabled: %s\n",
1572 			yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
1573 	}
1574 	seq_printf(m, "Deep RC6 Enabled: %s\n",
1575 		   yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1576 	seq_printf(m, "Deepest RC6 Enabled: %s\n",
1577 		   yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1578 	seq_puts(m, "Current RC state: ");
1579 	switch (gt_core_status & GEN6_RCn_MASK) {
1580 	case GEN6_RC0:
1581 		if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1582 			seq_puts(m, "Core Power Down\n");
1583 		else
1584 			seq_puts(m, "on\n");
1585 		break;
1586 	case GEN6_RC3:
1587 		seq_puts(m, "RC3\n");
1588 		break;
1589 	case GEN6_RC6:
1590 		seq_puts(m, "RC6\n");
1591 		break;
1592 	case GEN6_RC7:
1593 		seq_puts(m, "RC7\n");
1594 		break;
1595 	default:
1596 		seq_puts(m, "Unknown\n");
1597 		break;
1598 	}
1599 
1600 	seq_printf(m, "Core Power Down: %s\n",
1601 		   yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1602 	if (INTEL_GEN(dev_priv) >= 9) {
1603 		seq_printf(m, "Render Power Well: %s\n",
1604 			(gen9_powergate_status &
1605 			 GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
1606 		seq_printf(m, "Media Power Well: %s\n",
1607 			(gen9_powergate_status &
1608 			 GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
1609 	}
1610 
1611 	/* Not exactly sure what this is */
1612 	print_rc6_res(m, "RC6 \"Locked to RPn\" residency since boot:",
1613 		      GEN6_GT_GFX_RC6_LOCKED);
1614 	print_rc6_res(m, "RC6 residency since boot:", GEN6_GT_GFX_RC6);
1615 	print_rc6_res(m, "RC6+ residency since boot:", GEN6_GT_GFX_RC6p);
1616 	print_rc6_res(m, "RC6++ residency since boot:", GEN6_GT_GFX_RC6pp);
1617 
1618 	seq_printf(m, "RC6   voltage: %dmV\n",
1619 		   GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1620 	seq_printf(m, "RC6+  voltage: %dmV\n",
1621 		   GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1622 	seq_printf(m, "RC6++ voltage: %dmV\n",
1623 		   GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1624 	return i915_forcewake_domains(m, NULL);
1625 }
1626 
1627 static int i915_drpc_info(struct seq_file *m, void *unused)
1628 {
1629 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1630 	int err;
1631 
1632 	intel_runtime_pm_get(dev_priv);
1633 
1634 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1635 		err = vlv_drpc_info(m);
1636 	else if (INTEL_GEN(dev_priv) >= 6)
1637 		err = gen6_drpc_info(m);
1638 	else
1639 		err = ironlake_drpc_info(m);
1640 
1641 	intel_runtime_pm_put(dev_priv);
1642 
1643 	return err;
1644 }
1645 
1646 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1647 {
1648 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1649 
1650 	seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1651 		   dev_priv->fb_tracking.busy_bits);
1652 
1653 	seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1654 		   dev_priv->fb_tracking.flip_bits);
1655 
1656 	return 0;
1657 }
1658 
1659 static int i915_fbc_status(struct seq_file *m, void *unused)
1660 {
1661 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1662 
1663 	if (!HAS_FBC(dev_priv)) {
1664 		seq_puts(m, "FBC unsupported on this chipset\n");
1665 		return 0;
1666 	}
1667 
1668 	intel_runtime_pm_get(dev_priv);
1669 	mutex_lock(&dev_priv->fbc.lock);
1670 
1671 	if (intel_fbc_is_active(dev_priv))
1672 		seq_puts(m, "FBC enabled\n");
1673 	else
1674 		seq_printf(m, "FBC disabled: %s\n",
1675 			   dev_priv->fbc.no_fbc_reason);
1676 
1677 	if (intel_fbc_is_active(dev_priv) && INTEL_GEN(dev_priv) >= 7) {
1678 		uint32_t mask = INTEL_GEN(dev_priv) >= 8 ?
1679 				BDW_FBC_COMPRESSION_MASK :
1680 				IVB_FBC_COMPRESSION_MASK;
1681 		seq_printf(m, "Compressing: %s\n",
1682 			   yesno(I915_READ(FBC_STATUS2) & mask));
1683 	}
1684 
1685 	mutex_unlock(&dev_priv->fbc.lock);
1686 	intel_runtime_pm_put(dev_priv);
1687 
1688 	return 0;
1689 }
1690 
1691 static int i915_fbc_fc_get(void *data, u64 *val)
1692 {
1693 	struct drm_i915_private *dev_priv = data;
1694 
1695 	if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1696 		return -ENODEV;
1697 
1698 	*val = dev_priv->fbc.false_color;
1699 
1700 	return 0;
1701 }
1702 
1703 static int i915_fbc_fc_set(void *data, u64 val)
1704 {
1705 	struct drm_i915_private *dev_priv = data;
1706 	u32 reg;
1707 
1708 	if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1709 		return -ENODEV;
1710 
1711 	mutex_lock(&dev_priv->fbc.lock);
1712 
1713 	reg = I915_READ(ILK_DPFC_CONTROL);
1714 	dev_priv->fbc.false_color = val;
1715 
1716 	I915_WRITE(ILK_DPFC_CONTROL, val ?
1717 		   (reg | FBC_CTL_FALSE_COLOR) :
1718 		   (reg & ~FBC_CTL_FALSE_COLOR));
1719 
1720 	mutex_unlock(&dev_priv->fbc.lock);
1721 	return 0;
1722 }
1723 
1724 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1725 			i915_fbc_fc_get, i915_fbc_fc_set,
1726 			"%llu\n");
1727 
1728 static int i915_ips_status(struct seq_file *m, void *unused)
1729 {
1730 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1731 
1732 	if (!HAS_IPS(dev_priv)) {
1733 		seq_puts(m, "not supported\n");
1734 		return 0;
1735 	}
1736 
1737 	intel_runtime_pm_get(dev_priv);
1738 
1739 	seq_printf(m, "Enabled by kernel parameter: %s\n",
1740 		   yesno(i915.enable_ips));
1741 
1742 	if (INTEL_GEN(dev_priv) >= 8) {
1743 		seq_puts(m, "Currently: unknown\n");
1744 	} else {
1745 		if (I915_READ(IPS_CTL) & IPS_ENABLE)
1746 			seq_puts(m, "Currently: enabled\n");
1747 		else
1748 			seq_puts(m, "Currently: disabled\n");
1749 	}
1750 
1751 	intel_runtime_pm_put(dev_priv);
1752 
1753 	return 0;
1754 }
1755 
1756 static int i915_sr_status(struct seq_file *m, void *unused)
1757 {
1758 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1759 	bool sr_enabled = false;
1760 
1761 	intel_runtime_pm_get(dev_priv);
1762 	intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1763 
1764 	if (INTEL_GEN(dev_priv) >= 9)
1765 		/* no global SR status; inspect per-plane WM */;
1766 	else if (HAS_PCH_SPLIT(dev_priv))
1767 		sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1768 	else if (IS_I965GM(dev_priv) || IS_G4X(dev_priv) ||
1769 		 IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1770 		sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1771 	else if (IS_I915GM(dev_priv))
1772 		sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1773 	else if (IS_PINEVIEW(dev_priv))
1774 		sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1775 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1776 		sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1777 
1778 	intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1779 	intel_runtime_pm_put(dev_priv);
1780 
1781 	seq_printf(m, "self-refresh: %s\n", enableddisabled(sr_enabled));
1782 
1783 	return 0;
1784 }
1785 
1786 static int i915_emon_status(struct seq_file *m, void *unused)
1787 {
1788 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1789 	struct drm_device *dev = &dev_priv->drm;
1790 	unsigned long temp, chipset, gfx;
1791 	int ret;
1792 
1793 	if (!IS_GEN5(dev_priv))
1794 		return -ENODEV;
1795 
1796 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1797 	if (ret)
1798 		return ret;
1799 
1800 	temp = i915_mch_val(dev_priv);
1801 	chipset = i915_chipset_val(dev_priv);
1802 	gfx = i915_gfx_val(dev_priv);
1803 	mutex_unlock(&dev->struct_mutex);
1804 
1805 	seq_printf(m, "GMCH temp: %ld\n", temp);
1806 	seq_printf(m, "Chipset power: %ld\n", chipset);
1807 	seq_printf(m, "GFX power: %ld\n", gfx);
1808 	seq_printf(m, "Total power: %ld\n", chipset + gfx);
1809 
1810 	return 0;
1811 }
1812 
1813 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1814 {
1815 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1816 	int ret = 0;
1817 	int gpu_freq, ia_freq;
1818 	unsigned int max_gpu_freq, min_gpu_freq;
1819 
1820 	if (!HAS_LLC(dev_priv)) {
1821 		seq_puts(m, "unsupported on this chipset\n");
1822 		return 0;
1823 	}
1824 
1825 	intel_runtime_pm_get(dev_priv);
1826 
1827 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1828 	if (ret)
1829 		goto out;
1830 
1831 	if (IS_GEN9_BC(dev_priv)) {
1832 		/* Convert GT frequency to 50 HZ units */
1833 		min_gpu_freq =
1834 			dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1835 		max_gpu_freq =
1836 			dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1837 	} else {
1838 		min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1839 		max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1840 	}
1841 
1842 	seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1843 
1844 	for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1845 		ia_freq = gpu_freq;
1846 		sandybridge_pcode_read(dev_priv,
1847 				       GEN6_PCODE_READ_MIN_FREQ_TABLE,
1848 				       &ia_freq);
1849 		seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1850 			   intel_gpu_freq(dev_priv, (gpu_freq *
1851 						     (IS_GEN9_BC(dev_priv) ?
1852 						      GEN9_FREQ_SCALER : 1))),
1853 			   ((ia_freq >> 0) & 0xff) * 100,
1854 			   ((ia_freq >> 8) & 0xff) * 100);
1855 	}
1856 
1857 	mutex_unlock(&dev_priv->rps.hw_lock);
1858 
1859 out:
1860 	intel_runtime_pm_put(dev_priv);
1861 	return ret;
1862 }
1863 
1864 static int i915_opregion(struct seq_file *m, void *unused)
1865 {
1866 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1867 	struct drm_device *dev = &dev_priv->drm;
1868 	struct intel_opregion *opregion = &dev_priv->opregion;
1869 	int ret;
1870 
1871 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1872 	if (ret)
1873 		goto out;
1874 
1875 	if (opregion->header)
1876 		seq_write(m, opregion->header, OPREGION_SIZE);
1877 
1878 	mutex_unlock(&dev->struct_mutex);
1879 
1880 out:
1881 	return 0;
1882 }
1883 
1884 static int i915_vbt(struct seq_file *m, void *unused)
1885 {
1886 	struct intel_opregion *opregion = &node_to_i915(m->private)->opregion;
1887 
1888 	if (opregion->vbt)
1889 		seq_write(m, opregion->vbt, opregion->vbt_size);
1890 
1891 	return 0;
1892 }
1893 
1894 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1895 {
1896 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1897 	struct drm_device *dev = &dev_priv->drm;
1898 	struct intel_framebuffer *fbdev_fb = NULL;
1899 	struct drm_framebuffer *drm_fb;
1900 	int ret;
1901 
1902 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1903 	if (ret)
1904 		return ret;
1905 
1906 #ifdef CONFIG_DRM_FBDEV_EMULATION
1907 	if (dev_priv->fbdev) {
1908 		fbdev_fb = to_intel_framebuffer(dev_priv->fbdev->helper.fb);
1909 
1910 		seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1911 			   fbdev_fb->base.width,
1912 			   fbdev_fb->base.height,
1913 			   fbdev_fb->base.format->depth,
1914 			   fbdev_fb->base.format->cpp[0] * 8,
1915 			   fbdev_fb->base.modifier,
1916 			   drm_framebuffer_read_refcount(&fbdev_fb->base));
1917 		describe_obj(m, fbdev_fb->obj);
1918 		seq_putc(m, '\n');
1919 	}
1920 #endif
1921 
1922 	mutex_lock(&dev->mode_config.fb_lock);
1923 	drm_for_each_fb(drm_fb, dev) {
1924 		struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1925 		if (fb == fbdev_fb)
1926 			continue;
1927 
1928 		seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1929 			   fb->base.width,
1930 			   fb->base.height,
1931 			   fb->base.format->depth,
1932 			   fb->base.format->cpp[0] * 8,
1933 			   fb->base.modifier,
1934 			   drm_framebuffer_read_refcount(&fb->base));
1935 		describe_obj(m, fb->obj);
1936 		seq_putc(m, '\n');
1937 	}
1938 	mutex_unlock(&dev->mode_config.fb_lock);
1939 	mutex_unlock(&dev->struct_mutex);
1940 
1941 	return 0;
1942 }
1943 
1944 static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
1945 {
1946 	seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u)",
1947 		   ring->space, ring->head, ring->tail);
1948 }
1949 
1950 static int i915_context_status(struct seq_file *m, void *unused)
1951 {
1952 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
1953 	struct drm_device *dev = &dev_priv->drm;
1954 	struct intel_engine_cs *engine;
1955 	struct i915_gem_context *ctx;
1956 	enum intel_engine_id id;
1957 	int ret;
1958 
1959 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1960 	if (ret)
1961 		return ret;
1962 
1963 	list_for_each_entry(ctx, &dev_priv->context_list, link) {
1964 		seq_printf(m, "HW context %u ", ctx->hw_id);
1965 		if (ctx->pid) {
1966 			struct task_struct *task;
1967 
1968 			task = get_pid_task(ctx->pid, PIDTYPE_PID);
1969 			if (task) {
1970 				seq_printf(m, "(%s [%d]) ",
1971 					   task->comm, task->pid);
1972 				put_task_struct(task);
1973 			}
1974 		} else if (IS_ERR(ctx->file_priv)) {
1975 			seq_puts(m, "(deleted) ");
1976 		} else {
1977 			seq_puts(m, "(kernel) ");
1978 		}
1979 
1980 		seq_putc(m, ctx->remap_slice ? 'R' : 'r');
1981 		seq_putc(m, '\n');
1982 
1983 		for_each_engine(engine, dev_priv, id) {
1984 			struct intel_context *ce = &ctx->engine[engine->id];
1985 
1986 			seq_printf(m, "%s: ", engine->name);
1987 			seq_putc(m, ce->initialised ? 'I' : 'i');
1988 			if (ce->state)
1989 				describe_obj(m, ce->state->obj);
1990 			if (ce->ring)
1991 				describe_ctx_ring(m, ce->ring);
1992 			seq_putc(m, '\n');
1993 		}
1994 
1995 		seq_putc(m, '\n');
1996 	}
1997 
1998 	mutex_unlock(&dev->struct_mutex);
1999 
2000 	return 0;
2001 }
2002 
2003 static void i915_dump_lrc_obj(struct seq_file *m,
2004 			      struct i915_gem_context *ctx,
2005 			      struct intel_engine_cs *engine)
2006 {
2007 	struct i915_vma *vma = ctx->engine[engine->id].state;
2008 	struct page *page;
2009 	int j;
2010 
2011 	seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
2012 
2013 	if (!vma) {
2014 		seq_puts(m, "\tFake context\n");
2015 		return;
2016 	}
2017 
2018 	if (vma->flags & I915_VMA_GLOBAL_BIND)
2019 		seq_printf(m, "\tBound in GGTT at 0x%08x\n",
2020 			   i915_ggtt_offset(vma));
2021 
2022 	if (i915_gem_object_pin_pages(vma->obj)) {
2023 		seq_puts(m, "\tFailed to get pages for context object\n\n");
2024 		return;
2025 	}
2026 
2027 	page = i915_gem_object_get_page(vma->obj, LRC_STATE_PN);
2028 	if (page) {
2029 		u32 *reg_state = kmap_atomic(page);
2030 
2031 		for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2032 			seq_printf(m,
2033 				   "\t[0x%04x] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2034 				   j * 4,
2035 				   reg_state[j], reg_state[j + 1],
2036 				   reg_state[j + 2], reg_state[j + 3]);
2037 		}
2038 		kunmap_atomic(reg_state);
2039 	}
2040 
2041 	i915_gem_object_unpin_pages(vma->obj);
2042 	seq_putc(m, '\n');
2043 }
2044 
2045 static int i915_dump_lrc(struct seq_file *m, void *unused)
2046 {
2047 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2048 	struct drm_device *dev = &dev_priv->drm;
2049 	struct intel_engine_cs *engine;
2050 	struct i915_gem_context *ctx;
2051 	enum intel_engine_id id;
2052 	int ret;
2053 
2054 	if (!i915.enable_execlists) {
2055 		seq_printf(m, "Logical Ring Contexts are disabled\n");
2056 		return 0;
2057 	}
2058 
2059 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2060 	if (ret)
2061 		return ret;
2062 
2063 	list_for_each_entry(ctx, &dev_priv->context_list, link)
2064 		for_each_engine(engine, dev_priv, id)
2065 			i915_dump_lrc_obj(m, ctx, engine);
2066 
2067 	mutex_unlock(&dev->struct_mutex);
2068 
2069 	return 0;
2070 }
2071 
2072 static const char *swizzle_string(unsigned swizzle)
2073 {
2074 	switch (swizzle) {
2075 	case I915_BIT_6_SWIZZLE_NONE:
2076 		return "none";
2077 	case I915_BIT_6_SWIZZLE_9:
2078 		return "bit9";
2079 	case I915_BIT_6_SWIZZLE_9_10:
2080 		return "bit9/bit10";
2081 	case I915_BIT_6_SWIZZLE_9_11:
2082 		return "bit9/bit11";
2083 	case I915_BIT_6_SWIZZLE_9_10_11:
2084 		return "bit9/bit10/bit11";
2085 	case I915_BIT_6_SWIZZLE_9_17:
2086 		return "bit9/bit17";
2087 	case I915_BIT_6_SWIZZLE_9_10_17:
2088 		return "bit9/bit10/bit17";
2089 	case I915_BIT_6_SWIZZLE_UNKNOWN:
2090 		return "unknown";
2091 	}
2092 
2093 	return "bug";
2094 }
2095 
2096 static int i915_swizzle_info(struct seq_file *m, void *data)
2097 {
2098 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2099 
2100 	intel_runtime_pm_get(dev_priv);
2101 
2102 	seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2103 		   swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2104 	seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2105 		   swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2106 
2107 	if (IS_GEN3(dev_priv) || IS_GEN4(dev_priv)) {
2108 		seq_printf(m, "DDC = 0x%08x\n",
2109 			   I915_READ(DCC));
2110 		seq_printf(m, "DDC2 = 0x%08x\n",
2111 			   I915_READ(DCC2));
2112 		seq_printf(m, "C0DRB3 = 0x%04x\n",
2113 			   I915_READ16(C0DRB3));
2114 		seq_printf(m, "C1DRB3 = 0x%04x\n",
2115 			   I915_READ16(C1DRB3));
2116 	} else if (INTEL_GEN(dev_priv) >= 6) {
2117 		seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2118 			   I915_READ(MAD_DIMM_C0));
2119 		seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2120 			   I915_READ(MAD_DIMM_C1));
2121 		seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2122 			   I915_READ(MAD_DIMM_C2));
2123 		seq_printf(m, "TILECTL = 0x%08x\n",
2124 			   I915_READ(TILECTL));
2125 		if (INTEL_GEN(dev_priv) >= 8)
2126 			seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2127 				   I915_READ(GAMTARBMODE));
2128 		else
2129 			seq_printf(m, "ARB_MODE = 0x%08x\n",
2130 				   I915_READ(ARB_MODE));
2131 		seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2132 			   I915_READ(DISP_ARB_CTL));
2133 	}
2134 
2135 	if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2136 		seq_puts(m, "L-shaped memory detected\n");
2137 
2138 	intel_runtime_pm_put(dev_priv);
2139 
2140 	return 0;
2141 }
2142 
2143 static int per_file_ctx(int id, void *ptr, void *data)
2144 {
2145 	struct i915_gem_context *ctx = ptr;
2146 	struct seq_file *m = data;
2147 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2148 
2149 	if (!ppgtt) {
2150 		seq_printf(m, "  no ppgtt for context %d\n",
2151 			   ctx->user_handle);
2152 		return 0;
2153 	}
2154 
2155 	if (i915_gem_context_is_default(ctx))
2156 		seq_puts(m, "  default context:\n");
2157 	else
2158 		seq_printf(m, "  context %d:\n", ctx->user_handle);
2159 	ppgtt->debug_dump(ppgtt, m);
2160 
2161 	return 0;
2162 }
2163 
2164 static void gen8_ppgtt_info(struct seq_file *m,
2165 			    struct drm_i915_private *dev_priv)
2166 {
2167 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2168 	struct intel_engine_cs *engine;
2169 	enum intel_engine_id id;
2170 	int i;
2171 
2172 	if (!ppgtt)
2173 		return;
2174 
2175 	for_each_engine(engine, dev_priv, id) {
2176 		seq_printf(m, "%s\n", engine->name);
2177 		for (i = 0; i < 4; i++) {
2178 			u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
2179 			pdp <<= 32;
2180 			pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
2181 			seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2182 		}
2183 	}
2184 }
2185 
2186 static void gen6_ppgtt_info(struct seq_file *m,
2187 			    struct drm_i915_private *dev_priv)
2188 {
2189 	struct intel_engine_cs *engine;
2190 	enum intel_engine_id id;
2191 
2192 	if (IS_GEN6(dev_priv))
2193 		seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2194 
2195 	for_each_engine(engine, dev_priv, id) {
2196 		seq_printf(m, "%s\n", engine->name);
2197 		if (IS_GEN7(dev_priv))
2198 			seq_printf(m, "GFX_MODE: 0x%08x\n",
2199 				   I915_READ(RING_MODE_GEN7(engine)));
2200 		seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
2201 			   I915_READ(RING_PP_DIR_BASE(engine)));
2202 		seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
2203 			   I915_READ(RING_PP_DIR_BASE_READ(engine)));
2204 		seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
2205 			   I915_READ(RING_PP_DIR_DCLV(engine)));
2206 	}
2207 	if (dev_priv->mm.aliasing_ppgtt) {
2208 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2209 
2210 		seq_puts(m, "aliasing PPGTT:\n");
2211 		seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2212 
2213 		ppgtt->debug_dump(ppgtt, m);
2214 	}
2215 
2216 	seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2217 }
2218 
2219 static int i915_ppgtt_info(struct seq_file *m, void *data)
2220 {
2221 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2222 	struct drm_device *dev = &dev_priv->drm;
2223 	struct drm_file *file;
2224 	int ret;
2225 
2226 	mutex_lock(&dev->filelist_mutex);
2227 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2228 	if (ret)
2229 		goto out_unlock;
2230 
2231 	intel_runtime_pm_get(dev_priv);
2232 
2233 	if (INTEL_GEN(dev_priv) >= 8)
2234 		gen8_ppgtt_info(m, dev_priv);
2235 	else if (INTEL_GEN(dev_priv) >= 6)
2236 		gen6_ppgtt_info(m, dev_priv);
2237 
2238 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2239 		struct drm_i915_file_private *file_priv = file->driver_priv;
2240 		struct task_struct *task;
2241 
2242 		task = get_pid_task(file->pid, PIDTYPE_PID);
2243 		if (!task) {
2244 			ret = -ESRCH;
2245 			goto out_rpm;
2246 		}
2247 		seq_printf(m, "\nproc: %s\n", task->comm);
2248 		put_task_struct(task);
2249 		idr_for_each(&file_priv->context_idr, per_file_ctx,
2250 			     (void *)(unsigned long)m);
2251 	}
2252 
2253 out_rpm:
2254 	intel_runtime_pm_put(dev_priv);
2255 	mutex_unlock(&dev->struct_mutex);
2256 out_unlock:
2257 	mutex_unlock(&dev->filelist_mutex);
2258 	return ret;
2259 }
2260 
2261 static int count_irq_waiters(struct drm_i915_private *i915)
2262 {
2263 	struct intel_engine_cs *engine;
2264 	enum intel_engine_id id;
2265 	int count = 0;
2266 
2267 	for_each_engine(engine, i915, id)
2268 		count += intel_engine_has_waiter(engine);
2269 
2270 	return count;
2271 }
2272 
2273 static const char *rps_power_to_str(unsigned int power)
2274 {
2275 	static const char * const strings[] = {
2276 		[LOW_POWER] = "low power",
2277 		[BETWEEN] = "mixed",
2278 		[HIGH_POWER] = "high power",
2279 	};
2280 
2281 	if (power >= ARRAY_SIZE(strings) || !strings[power])
2282 		return "unknown";
2283 
2284 	return strings[power];
2285 }
2286 
2287 static int i915_rps_boost_info(struct seq_file *m, void *data)
2288 {
2289 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2290 	struct drm_device *dev = &dev_priv->drm;
2291 	struct drm_file *file;
2292 
2293 	seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2294 	seq_printf(m, "GPU busy? %s [%d requests]\n",
2295 		   yesno(dev_priv->gt.awake), dev_priv->gt.active_requests);
2296 	seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2297 	seq_printf(m, "Frequency requested %d\n",
2298 		   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
2299 	seq_printf(m, "  min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2300 		   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2301 		   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2302 		   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2303 		   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2304 	seq_printf(m, "  idle:%d, efficient:%d, boost:%d\n",
2305 		   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
2306 		   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
2307 		   intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
2308 
2309 	mutex_lock(&dev->filelist_mutex);
2310 	spin_lock(&dev_priv->rps.client_lock);
2311 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2312 		struct drm_i915_file_private *file_priv = file->driver_priv;
2313 		struct task_struct *task;
2314 
2315 		rcu_read_lock();
2316 		task = pid_task(file->pid, PIDTYPE_PID);
2317 		seq_printf(m, "%s [%d]: %d boosts%s\n",
2318 			   task ? task->comm : "<unknown>",
2319 			   task ? task->pid : -1,
2320 			   file_priv->rps.boosts,
2321 			   list_empty(&file_priv->rps.link) ? "" : ", active");
2322 		rcu_read_unlock();
2323 	}
2324 	seq_printf(m, "Kernel (anonymous) boosts: %d\n", dev_priv->rps.boosts);
2325 	spin_unlock(&dev_priv->rps.client_lock);
2326 	mutex_unlock(&dev->filelist_mutex);
2327 
2328 	if (INTEL_GEN(dev_priv) >= 6 &&
2329 	    dev_priv->rps.enabled &&
2330 	    dev_priv->gt.active_requests) {
2331 		u32 rpup, rpupei;
2332 		u32 rpdown, rpdownei;
2333 
2334 		intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2335 		rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
2336 		rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
2337 		rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
2338 		rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
2339 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2340 
2341 		seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
2342 			   rps_power_to_str(dev_priv->rps.power));
2343 		seq_printf(m, "  Avg. up: %d%% [above threshold? %d%%]\n",
2344 			   rpup && rpupei ? 100 * rpup / rpupei : 0,
2345 			   dev_priv->rps.up_threshold);
2346 		seq_printf(m, "  Avg. down: %d%% [below threshold? %d%%]\n",
2347 			   rpdown && rpdownei ? 100 * rpdown / rpdownei : 0,
2348 			   dev_priv->rps.down_threshold);
2349 	} else {
2350 		seq_puts(m, "\nRPS Autotuning inactive\n");
2351 	}
2352 
2353 	return 0;
2354 }
2355 
2356 static int i915_llc(struct seq_file *m, void *data)
2357 {
2358 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2359 	const bool edram = INTEL_GEN(dev_priv) > 8;
2360 
2361 	seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
2362 	seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
2363 		   intel_uncore_edram_size(dev_priv)/1024/1024);
2364 
2365 	return 0;
2366 }
2367 
2368 static int i915_huc_load_status_info(struct seq_file *m, void *data)
2369 {
2370 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2371 	struct intel_uc_fw *huc_fw = &dev_priv->huc.fw;
2372 
2373 	if (!HAS_HUC_UCODE(dev_priv))
2374 		return 0;
2375 
2376 	seq_puts(m, "HuC firmware status:\n");
2377 	seq_printf(m, "\tpath: %s\n", huc_fw->path);
2378 	seq_printf(m, "\tfetch: %s\n",
2379 		intel_uc_fw_status_repr(huc_fw->fetch_status));
2380 	seq_printf(m, "\tload: %s\n",
2381 		intel_uc_fw_status_repr(huc_fw->load_status));
2382 	seq_printf(m, "\tversion wanted: %d.%d\n",
2383 		huc_fw->major_ver_wanted, huc_fw->minor_ver_wanted);
2384 	seq_printf(m, "\tversion found: %d.%d\n",
2385 		huc_fw->major_ver_found, huc_fw->minor_ver_found);
2386 	seq_printf(m, "\theader: offset is %d; size = %d\n",
2387 		huc_fw->header_offset, huc_fw->header_size);
2388 	seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2389 		huc_fw->ucode_offset, huc_fw->ucode_size);
2390 	seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2391 		huc_fw->rsa_offset, huc_fw->rsa_size);
2392 
2393 	intel_runtime_pm_get(dev_priv);
2394 	seq_printf(m, "\nHuC status 0x%08x:\n", I915_READ(HUC_STATUS2));
2395 	intel_runtime_pm_put(dev_priv);
2396 
2397 	return 0;
2398 }
2399 
2400 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2401 {
2402 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2403 	struct intel_uc_fw *guc_fw = &dev_priv->guc.fw;
2404 	u32 tmp, i;
2405 
2406 	if (!HAS_GUC_UCODE(dev_priv))
2407 		return 0;
2408 
2409 	seq_printf(m, "GuC firmware status:\n");
2410 	seq_printf(m, "\tpath: %s\n",
2411 		guc_fw->path);
2412 	seq_printf(m, "\tfetch: %s\n",
2413 		intel_uc_fw_status_repr(guc_fw->fetch_status));
2414 	seq_printf(m, "\tload: %s\n",
2415 		intel_uc_fw_status_repr(guc_fw->load_status));
2416 	seq_printf(m, "\tversion wanted: %d.%d\n",
2417 		guc_fw->major_ver_wanted, guc_fw->minor_ver_wanted);
2418 	seq_printf(m, "\tversion found: %d.%d\n",
2419 		guc_fw->major_ver_found, guc_fw->minor_ver_found);
2420 	seq_printf(m, "\theader: offset is %d; size = %d\n",
2421 		guc_fw->header_offset, guc_fw->header_size);
2422 	seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2423 		guc_fw->ucode_offset, guc_fw->ucode_size);
2424 	seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2425 		guc_fw->rsa_offset, guc_fw->rsa_size);
2426 
2427 	intel_runtime_pm_get(dev_priv);
2428 
2429 	tmp = I915_READ(GUC_STATUS);
2430 
2431 	seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2432 	seq_printf(m, "\tBootrom status = 0x%x\n",
2433 		(tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2434 	seq_printf(m, "\tuKernel status = 0x%x\n",
2435 		(tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2436 	seq_printf(m, "\tMIA Core status = 0x%x\n",
2437 		(tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2438 	seq_puts(m, "\nScratch registers:\n");
2439 	for (i = 0; i < 16; i++)
2440 		seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2441 
2442 	intel_runtime_pm_put(dev_priv);
2443 
2444 	return 0;
2445 }
2446 
2447 static void i915_guc_log_info(struct seq_file *m,
2448 			      struct drm_i915_private *dev_priv)
2449 {
2450 	struct intel_guc *guc = &dev_priv->guc;
2451 
2452 	seq_puts(m, "\nGuC logging stats:\n");
2453 
2454 	seq_printf(m, "\tISR:   flush count %10u, overflow count %10u\n",
2455 		   guc->log.flush_count[GUC_ISR_LOG_BUFFER],
2456 		   guc->log.total_overflow_count[GUC_ISR_LOG_BUFFER]);
2457 
2458 	seq_printf(m, "\tDPC:   flush count %10u, overflow count %10u\n",
2459 		   guc->log.flush_count[GUC_DPC_LOG_BUFFER],
2460 		   guc->log.total_overflow_count[GUC_DPC_LOG_BUFFER]);
2461 
2462 	seq_printf(m, "\tCRASH: flush count %10u, overflow count %10u\n",
2463 		   guc->log.flush_count[GUC_CRASH_DUMP_LOG_BUFFER],
2464 		   guc->log.total_overflow_count[GUC_CRASH_DUMP_LOG_BUFFER]);
2465 
2466 	seq_printf(m, "\tTotal flush interrupt count: %u\n",
2467 		   guc->log.flush_interrupt_count);
2468 
2469 	seq_printf(m, "\tCapture miss count: %u\n",
2470 		   guc->log.capture_miss_count);
2471 }
2472 
2473 static void i915_guc_client_info(struct seq_file *m,
2474 				 struct drm_i915_private *dev_priv,
2475 				 struct i915_guc_client *client)
2476 {
2477 	struct intel_engine_cs *engine;
2478 	enum intel_engine_id id;
2479 	uint64_t tot = 0;
2480 
2481 	seq_printf(m, "\tPriority %d, GuC stage index: %u, PD offset 0x%x\n",
2482 		client->priority, client->stage_id, client->proc_desc_offset);
2483 	seq_printf(m, "\tDoorbell id %d, offset: 0x%lx, cookie 0x%x\n",
2484 		client->doorbell_id, client->doorbell_offset, client->doorbell_cookie);
2485 	seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2486 		client->wq_size, client->wq_offset, client->wq_tail);
2487 
2488 	seq_printf(m, "\tWork queue full: %u\n", client->no_wq_space);
2489 	seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2490 	seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2491 
2492 	for_each_engine(engine, dev_priv, id) {
2493 		u64 submissions = client->submissions[id];
2494 		tot += submissions;
2495 		seq_printf(m, "\tSubmissions: %llu %s\n",
2496 				submissions, engine->name);
2497 	}
2498 	seq_printf(m, "\tTotal: %llu\n", tot);
2499 }
2500 
2501 static int i915_guc_info(struct seq_file *m, void *data)
2502 {
2503 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2504 	const struct intel_guc *guc = &dev_priv->guc;
2505 	struct intel_engine_cs *engine;
2506 	enum intel_engine_id id;
2507 	u64 total;
2508 
2509 	if (!guc->execbuf_client) {
2510 		seq_printf(m, "GuC submission %s\n",
2511 			   HAS_GUC_SCHED(dev_priv) ?
2512 			   "disabled" :
2513 			   "not supported");
2514 		return 0;
2515 	}
2516 
2517 	seq_printf(m, "Doorbell map:\n");
2518 	seq_printf(m, "\t%*pb\n", GUC_NUM_DOORBELLS, guc->doorbell_bitmap);
2519 	seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc->db_cacheline);
2520 
2521 	seq_printf(m, "GuC total action count: %llu\n", guc->action_count);
2522 	seq_printf(m, "GuC action failure count: %u\n", guc->action_fail);
2523 	seq_printf(m, "GuC last action command: 0x%x\n", guc->action_cmd);
2524 	seq_printf(m, "GuC last action status: 0x%x\n", guc->action_status);
2525 	seq_printf(m, "GuC last action error code: %d\n", guc->action_err);
2526 
2527 	total = 0;
2528 	seq_printf(m, "\nGuC submissions:\n");
2529 	for_each_engine(engine, dev_priv, id) {
2530 		u64 submissions = guc->submissions[id];
2531 		total += submissions;
2532 		seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
2533 			engine->name, submissions, guc->last_seqno[id]);
2534 	}
2535 	seq_printf(m, "\t%s: %llu\n", "Total", total);
2536 
2537 	seq_printf(m, "\nGuC execbuf client @ %p:\n", guc->execbuf_client);
2538 	i915_guc_client_info(m, dev_priv, guc->execbuf_client);
2539 
2540 	i915_guc_log_info(m, dev_priv);
2541 
2542 	/* Add more as required ... */
2543 
2544 	return 0;
2545 }
2546 
2547 static int i915_guc_log_dump(struct seq_file *m, void *data)
2548 {
2549 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2550 	struct drm_i915_gem_object *obj;
2551 	int i = 0, pg;
2552 
2553 	if (!dev_priv->guc.log.vma)
2554 		return 0;
2555 
2556 	obj = dev_priv->guc.log.vma->obj;
2557 	for (pg = 0; pg < obj->base.size / PAGE_SIZE; pg++) {
2558 		u32 *log = kmap_atomic(i915_gem_object_get_page(obj, pg));
2559 
2560 		for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2561 			seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2562 				   *(log + i), *(log + i + 1),
2563 				   *(log + i + 2), *(log + i + 3));
2564 
2565 		kunmap_atomic(log);
2566 	}
2567 
2568 	seq_putc(m, '\n');
2569 
2570 	return 0;
2571 }
2572 
2573 static int i915_guc_log_control_get(void *data, u64 *val)
2574 {
2575 	struct drm_device *dev = data;
2576 	struct drm_i915_private *dev_priv = to_i915(dev);
2577 
2578 	if (!dev_priv->guc.log.vma)
2579 		return -EINVAL;
2580 
2581 	*val = i915.guc_log_level;
2582 
2583 	return 0;
2584 }
2585 
2586 static int i915_guc_log_control_set(void *data, u64 val)
2587 {
2588 	struct drm_device *dev = data;
2589 	struct drm_i915_private *dev_priv = to_i915(dev);
2590 	int ret;
2591 
2592 	if (!dev_priv->guc.log.vma)
2593 		return -EINVAL;
2594 
2595 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2596 	if (ret)
2597 		return ret;
2598 
2599 	intel_runtime_pm_get(dev_priv);
2600 	ret = i915_guc_log_control(dev_priv, val);
2601 	intel_runtime_pm_put(dev_priv);
2602 
2603 	mutex_unlock(&dev->struct_mutex);
2604 	return ret;
2605 }
2606 
2607 DEFINE_SIMPLE_ATTRIBUTE(i915_guc_log_control_fops,
2608 			i915_guc_log_control_get, i915_guc_log_control_set,
2609 			"%lld\n");
2610 
2611 static const char *psr2_live_status(u32 val)
2612 {
2613 	static const char * const live_status[] = {
2614 		"IDLE",
2615 		"CAPTURE",
2616 		"CAPTURE_FS",
2617 		"SLEEP",
2618 		"BUFON_FW",
2619 		"ML_UP",
2620 		"SU_STANDBY",
2621 		"FAST_SLEEP",
2622 		"DEEP_SLEEP",
2623 		"BUF_ON",
2624 		"TG_ON"
2625 	};
2626 
2627 	val = (val & EDP_PSR2_STATUS_STATE_MASK) >> EDP_PSR2_STATUS_STATE_SHIFT;
2628 	if (val < ARRAY_SIZE(live_status))
2629 		return live_status[val];
2630 
2631 	return "unknown";
2632 }
2633 
2634 static int i915_edp_psr_status(struct seq_file *m, void *data)
2635 {
2636 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2637 	u32 psrperf = 0;
2638 	u32 stat[3];
2639 	enum pipe pipe;
2640 	bool enabled = false;
2641 
2642 	if (!HAS_PSR(dev_priv)) {
2643 		seq_puts(m, "PSR not supported\n");
2644 		return 0;
2645 	}
2646 
2647 	intel_runtime_pm_get(dev_priv);
2648 
2649 	mutex_lock(&dev_priv->psr.lock);
2650 	seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2651 	seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2652 	seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2653 	seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2654 	seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2655 		   dev_priv->psr.busy_frontbuffer_bits);
2656 	seq_printf(m, "Re-enable work scheduled: %s\n",
2657 		   yesno(work_busy(&dev_priv->psr.work.work)));
2658 
2659 	if (HAS_DDI(dev_priv)) {
2660 		if (dev_priv->psr.psr2_support)
2661 			enabled = I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE;
2662 		else
2663 			enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2664 	} else {
2665 		for_each_pipe(dev_priv, pipe) {
2666 			enum transcoder cpu_transcoder =
2667 				intel_pipe_to_cpu_transcoder(dev_priv, pipe);
2668 			enum intel_display_power_domain power_domain;
2669 
2670 			power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
2671 			if (!intel_display_power_get_if_enabled(dev_priv,
2672 								power_domain))
2673 				continue;
2674 
2675 			stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2676 				VLV_EDP_PSR_CURR_STATE_MASK;
2677 			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2678 			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2679 				enabled = true;
2680 
2681 			intel_display_power_put(dev_priv, power_domain);
2682 		}
2683 	}
2684 
2685 	seq_printf(m, "Main link in standby mode: %s\n",
2686 		   yesno(dev_priv->psr.link_standby));
2687 
2688 	seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2689 
2690 	if (!HAS_DDI(dev_priv))
2691 		for_each_pipe(dev_priv, pipe) {
2692 			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2693 			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2694 				seq_printf(m, " pipe %c", pipe_name(pipe));
2695 		}
2696 	seq_puts(m, "\n");
2697 
2698 	/*
2699 	 * VLV/CHV PSR has no kind of performance counter
2700 	 * SKL+ Perf counter is reset to 0 everytime DC state is entered
2701 	 */
2702 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2703 		psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2704 			EDP_PSR_PERF_CNT_MASK;
2705 
2706 		seq_printf(m, "Performance_Counter: %u\n", psrperf);
2707 	}
2708 	if (dev_priv->psr.psr2_support) {
2709 		u32 psr2 = I915_READ(EDP_PSR2_STATUS_CTL);
2710 
2711 		seq_printf(m, "EDP_PSR2_STATUS_CTL: %x [%s]\n",
2712 			   psr2, psr2_live_status(psr2));
2713 	}
2714 	mutex_unlock(&dev_priv->psr.lock);
2715 
2716 	intel_runtime_pm_put(dev_priv);
2717 	return 0;
2718 }
2719 
2720 static int i915_sink_crc(struct seq_file *m, void *data)
2721 {
2722 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2723 	struct drm_device *dev = &dev_priv->drm;
2724 	struct intel_connector *connector;
2725 	struct drm_connector_list_iter conn_iter;
2726 	struct intel_dp *intel_dp = NULL;
2727 	int ret;
2728 	u8 crc[6];
2729 
2730 	drm_modeset_lock_all(dev);
2731 	drm_connector_list_iter_begin(dev, &conn_iter);
2732 	for_each_intel_connector_iter(connector, &conn_iter) {
2733 		struct drm_crtc *crtc;
2734 
2735 		if (!connector->base.state->best_encoder)
2736 			continue;
2737 
2738 		crtc = connector->base.state->crtc;
2739 		if (!crtc->state->active)
2740 			continue;
2741 
2742 		if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
2743 			continue;
2744 
2745 		intel_dp = enc_to_intel_dp(connector->base.state->best_encoder);
2746 
2747 		ret = intel_dp_sink_crc(intel_dp, crc);
2748 		if (ret)
2749 			goto out;
2750 
2751 		seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2752 			   crc[0], crc[1], crc[2],
2753 			   crc[3], crc[4], crc[5]);
2754 		goto out;
2755 	}
2756 	ret = -ENODEV;
2757 out:
2758 	drm_connector_list_iter_end(&conn_iter);
2759 	drm_modeset_unlock_all(dev);
2760 	return ret;
2761 }
2762 
2763 static int i915_energy_uJ(struct seq_file *m, void *data)
2764 {
2765 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2766 	u64 power;
2767 	u32 units;
2768 
2769 	if (INTEL_GEN(dev_priv) < 6)
2770 		return -ENODEV;
2771 
2772 	intel_runtime_pm_get(dev_priv);
2773 
2774 	rdmsrl(MSR_RAPL_POWER_UNIT, power);
2775 	power = (power & 0x1f00) >> 8;
2776 	units = 1000000 / (1 << power); /* convert to uJ */
2777 	power = I915_READ(MCH_SECP_NRG_STTS);
2778 	power *= units;
2779 
2780 	intel_runtime_pm_put(dev_priv);
2781 
2782 	seq_printf(m, "%llu", (long long unsigned)power);
2783 
2784 	return 0;
2785 }
2786 
2787 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2788 {
2789 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2790 	struct pci_dev *pdev = dev_priv->drm.pdev;
2791 
2792 	if (!HAS_RUNTIME_PM(dev_priv))
2793 		seq_puts(m, "Runtime power management not supported\n");
2794 
2795 	seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
2796 	seq_printf(m, "IRQs disabled: %s\n",
2797 		   yesno(!intel_irqs_enabled(dev_priv)));
2798 #ifdef CONFIG_PM
2799 	seq_printf(m, "Usage count: %d\n",
2800 		   atomic_read(&dev_priv->drm.dev->power.usage_count));
2801 #else
2802 	seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2803 #endif
2804 	seq_printf(m, "PCI device power state: %s [%d]\n",
2805 		   pci_power_name(pdev->current_state),
2806 		   pdev->current_state);
2807 
2808 	return 0;
2809 }
2810 
2811 static int i915_power_domain_info(struct seq_file *m, void *unused)
2812 {
2813 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2814 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2815 	int i;
2816 
2817 	mutex_lock(&power_domains->lock);
2818 
2819 	seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2820 	for (i = 0; i < power_domains->power_well_count; i++) {
2821 		struct i915_power_well *power_well;
2822 		enum intel_display_power_domain power_domain;
2823 
2824 		power_well = &power_domains->power_wells[i];
2825 		seq_printf(m, "%-25s %d\n", power_well->name,
2826 			   power_well->count);
2827 
2828 		for_each_power_domain(power_domain, power_well->domains)
2829 			seq_printf(m, "  %-23s %d\n",
2830 				 intel_display_power_domain_str(power_domain),
2831 				 power_domains->domain_use_count[power_domain]);
2832 	}
2833 
2834 	mutex_unlock(&power_domains->lock);
2835 
2836 	return 0;
2837 }
2838 
2839 static int i915_dmc_info(struct seq_file *m, void *unused)
2840 {
2841 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2842 	struct intel_csr *csr;
2843 
2844 	if (!HAS_CSR(dev_priv)) {
2845 		seq_puts(m, "not supported\n");
2846 		return 0;
2847 	}
2848 
2849 	csr = &dev_priv->csr;
2850 
2851 	intel_runtime_pm_get(dev_priv);
2852 
2853 	seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2854 	seq_printf(m, "path: %s\n", csr->fw_path);
2855 
2856 	if (!csr->dmc_payload)
2857 		goto out;
2858 
2859 	seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2860 		   CSR_VERSION_MINOR(csr->version));
2861 
2862 	if (IS_SKYLAKE(dev_priv) && csr->version >= CSR_VERSION(1, 6)) {
2863 		seq_printf(m, "DC3 -> DC5 count: %d\n",
2864 			   I915_READ(SKL_CSR_DC3_DC5_COUNT));
2865 		seq_printf(m, "DC5 -> DC6 count: %d\n",
2866 			   I915_READ(SKL_CSR_DC5_DC6_COUNT));
2867 	} else if (IS_BROXTON(dev_priv) && csr->version >= CSR_VERSION(1, 4)) {
2868 		seq_printf(m, "DC3 -> DC5 count: %d\n",
2869 			   I915_READ(BXT_CSR_DC3_DC5_COUNT));
2870 	}
2871 
2872 out:
2873 	seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2874 	seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2875 	seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2876 
2877 	intel_runtime_pm_put(dev_priv);
2878 
2879 	return 0;
2880 }
2881 
2882 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2883 				 struct drm_display_mode *mode)
2884 {
2885 	int i;
2886 
2887 	for (i = 0; i < tabs; i++)
2888 		seq_putc(m, '\t');
2889 
2890 	seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2891 		   mode->base.id, mode->name,
2892 		   mode->vrefresh, mode->clock,
2893 		   mode->hdisplay, mode->hsync_start,
2894 		   mode->hsync_end, mode->htotal,
2895 		   mode->vdisplay, mode->vsync_start,
2896 		   mode->vsync_end, mode->vtotal,
2897 		   mode->type, mode->flags);
2898 }
2899 
2900 static void intel_encoder_info(struct seq_file *m,
2901 			       struct intel_crtc *intel_crtc,
2902 			       struct intel_encoder *intel_encoder)
2903 {
2904 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2905 	struct drm_device *dev = &dev_priv->drm;
2906 	struct drm_crtc *crtc = &intel_crtc->base;
2907 	struct intel_connector *intel_connector;
2908 	struct drm_encoder *encoder;
2909 
2910 	encoder = &intel_encoder->base;
2911 	seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2912 		   encoder->base.id, encoder->name);
2913 	for_each_connector_on_encoder(dev, encoder, intel_connector) {
2914 		struct drm_connector *connector = &intel_connector->base;
2915 		seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2916 			   connector->base.id,
2917 			   connector->name,
2918 			   drm_get_connector_status_name(connector->status));
2919 		if (connector->status == connector_status_connected) {
2920 			struct drm_display_mode *mode = &crtc->mode;
2921 			seq_printf(m, ", mode:\n");
2922 			intel_seq_print_mode(m, 2, mode);
2923 		} else {
2924 			seq_putc(m, '\n');
2925 		}
2926 	}
2927 }
2928 
2929 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2930 {
2931 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
2932 	struct drm_device *dev = &dev_priv->drm;
2933 	struct drm_crtc *crtc = &intel_crtc->base;
2934 	struct intel_encoder *intel_encoder;
2935 	struct drm_plane_state *plane_state = crtc->primary->state;
2936 	struct drm_framebuffer *fb = plane_state->fb;
2937 
2938 	if (fb)
2939 		seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2940 			   fb->base.id, plane_state->src_x >> 16,
2941 			   plane_state->src_y >> 16, fb->width, fb->height);
2942 	else
2943 		seq_puts(m, "\tprimary plane disabled\n");
2944 	for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2945 		intel_encoder_info(m, intel_crtc, intel_encoder);
2946 }
2947 
2948 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2949 {
2950 	struct drm_display_mode *mode = panel->fixed_mode;
2951 
2952 	seq_printf(m, "\tfixed mode:\n");
2953 	intel_seq_print_mode(m, 2, mode);
2954 }
2955 
2956 static void intel_dp_info(struct seq_file *m,
2957 			  struct intel_connector *intel_connector)
2958 {
2959 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2960 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2961 
2962 	seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2963 	seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2964 	if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
2965 		intel_panel_info(m, &intel_connector->panel);
2966 
2967 	drm_dp_downstream_debug(m, intel_dp->dpcd, intel_dp->downstream_ports,
2968 				&intel_dp->aux);
2969 }
2970 
2971 static void intel_dp_mst_info(struct seq_file *m,
2972 			  struct intel_connector *intel_connector)
2973 {
2974 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2975 	struct intel_dp_mst_encoder *intel_mst =
2976 		enc_to_mst(&intel_encoder->base);
2977 	struct intel_digital_port *intel_dig_port = intel_mst->primary;
2978 	struct intel_dp *intel_dp = &intel_dig_port->dp;
2979 	bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
2980 					intel_connector->port);
2981 
2982 	seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
2983 }
2984 
2985 static void intel_hdmi_info(struct seq_file *m,
2986 			    struct intel_connector *intel_connector)
2987 {
2988 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2989 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2990 
2991 	seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2992 }
2993 
2994 static void intel_lvds_info(struct seq_file *m,
2995 			    struct intel_connector *intel_connector)
2996 {
2997 	intel_panel_info(m, &intel_connector->panel);
2998 }
2999 
3000 static void intel_connector_info(struct seq_file *m,
3001 				 struct drm_connector *connector)
3002 {
3003 	struct intel_connector *intel_connector = to_intel_connector(connector);
3004 	struct intel_encoder *intel_encoder = intel_connector->encoder;
3005 	struct drm_display_mode *mode;
3006 
3007 	seq_printf(m, "connector %d: type %s, status: %s\n",
3008 		   connector->base.id, connector->name,
3009 		   drm_get_connector_status_name(connector->status));
3010 	if (connector->status == connector_status_connected) {
3011 		seq_printf(m, "\tname: %s\n", connector->display_info.name);
3012 		seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
3013 			   connector->display_info.width_mm,
3014 			   connector->display_info.height_mm);
3015 		seq_printf(m, "\tsubpixel order: %s\n",
3016 			   drm_get_subpixel_order_name(connector->display_info.subpixel_order));
3017 		seq_printf(m, "\tCEA rev: %d\n",
3018 			   connector->display_info.cea_rev);
3019 	}
3020 
3021 	if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
3022 		return;
3023 
3024 	switch (connector->connector_type) {
3025 	case DRM_MODE_CONNECTOR_DisplayPort:
3026 	case DRM_MODE_CONNECTOR_eDP:
3027 		if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
3028 			intel_dp_mst_info(m, intel_connector);
3029 		else
3030 			intel_dp_info(m, intel_connector);
3031 		break;
3032 	case DRM_MODE_CONNECTOR_LVDS:
3033 		if (intel_encoder->type == INTEL_OUTPUT_LVDS)
3034 			intel_lvds_info(m, intel_connector);
3035 		break;
3036 	case DRM_MODE_CONNECTOR_HDMIA:
3037 		if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
3038 		    intel_encoder->type == INTEL_OUTPUT_UNKNOWN)
3039 			intel_hdmi_info(m, intel_connector);
3040 		break;
3041 	default:
3042 		break;
3043 	}
3044 
3045 	seq_printf(m, "\tmodes:\n");
3046 	list_for_each_entry(mode, &connector->modes, head)
3047 		intel_seq_print_mode(m, 2, mode);
3048 }
3049 
3050 static bool cursor_active(struct drm_i915_private *dev_priv, int pipe)
3051 {
3052 	u32 state;
3053 
3054 	if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
3055 		state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
3056 	else
3057 		state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
3058 
3059 	return state;
3060 }
3061 
3062 static bool cursor_position(struct drm_i915_private *dev_priv,
3063 			    int pipe, int *x, int *y)
3064 {
3065 	u32 pos;
3066 
3067 	pos = I915_READ(CURPOS(pipe));
3068 
3069 	*x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
3070 	if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
3071 		*x = -*x;
3072 
3073 	*y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
3074 	if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
3075 		*y = -*y;
3076 
3077 	return cursor_active(dev_priv, pipe);
3078 }
3079 
3080 static const char *plane_type(enum drm_plane_type type)
3081 {
3082 	switch (type) {
3083 	case DRM_PLANE_TYPE_OVERLAY:
3084 		return "OVL";
3085 	case DRM_PLANE_TYPE_PRIMARY:
3086 		return "PRI";
3087 	case DRM_PLANE_TYPE_CURSOR:
3088 		return "CUR";
3089 	/*
3090 	 * Deliberately omitting default: to generate compiler warnings
3091 	 * when a new drm_plane_type gets added.
3092 	 */
3093 	}
3094 
3095 	return "unknown";
3096 }
3097 
3098 static const char *plane_rotation(unsigned int rotation)
3099 {
3100 	static char buf[48];
3101 	/*
3102 	 * According to doc only one DRM_ROTATE_ is allowed but this
3103 	 * will print them all to visualize if the values are misused
3104 	 */
3105 	snprintf(buf, sizeof(buf),
3106 		 "%s%s%s%s%s%s(0x%08x)",
3107 		 (rotation & DRM_ROTATE_0) ? "0 " : "",
3108 		 (rotation & DRM_ROTATE_90) ? "90 " : "",
3109 		 (rotation & DRM_ROTATE_180) ? "180 " : "",
3110 		 (rotation & DRM_ROTATE_270) ? "270 " : "",
3111 		 (rotation & DRM_REFLECT_X) ? "FLIPX " : "",
3112 		 (rotation & DRM_REFLECT_Y) ? "FLIPY " : "",
3113 		 rotation);
3114 
3115 	return buf;
3116 }
3117 
3118 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3119 {
3120 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3121 	struct drm_device *dev = &dev_priv->drm;
3122 	struct intel_plane *intel_plane;
3123 
3124 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3125 		struct drm_plane_state *state;
3126 		struct drm_plane *plane = &intel_plane->base;
3127 		struct drm_format_name_buf format_name;
3128 
3129 		if (!plane->state) {
3130 			seq_puts(m, "plane->state is NULL!\n");
3131 			continue;
3132 		}
3133 
3134 		state = plane->state;
3135 
3136 		if (state->fb) {
3137 			drm_get_format_name(state->fb->format->format,
3138 					    &format_name);
3139 		} else {
3140 			sprintf(format_name.str, "N/A");
3141 		}
3142 
3143 		seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3144 			   plane->base.id,
3145 			   plane_type(intel_plane->base.type),
3146 			   state->crtc_x, state->crtc_y,
3147 			   state->crtc_w, state->crtc_h,
3148 			   (state->src_x >> 16),
3149 			   ((state->src_x & 0xffff) * 15625) >> 10,
3150 			   (state->src_y >> 16),
3151 			   ((state->src_y & 0xffff) * 15625) >> 10,
3152 			   (state->src_w >> 16),
3153 			   ((state->src_w & 0xffff) * 15625) >> 10,
3154 			   (state->src_h >> 16),
3155 			   ((state->src_h & 0xffff) * 15625) >> 10,
3156 			   format_name.str,
3157 			   plane_rotation(state->rotation));
3158 	}
3159 }
3160 
3161 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3162 {
3163 	struct intel_crtc_state *pipe_config;
3164 	int num_scalers = intel_crtc->num_scalers;
3165 	int i;
3166 
3167 	pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3168 
3169 	/* Not all platformas have a scaler */
3170 	if (num_scalers) {
3171 		seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3172 			   num_scalers,
3173 			   pipe_config->scaler_state.scaler_users,
3174 			   pipe_config->scaler_state.scaler_id);
3175 
3176 		for (i = 0; i < num_scalers; i++) {
3177 			struct intel_scaler *sc =
3178 					&pipe_config->scaler_state.scalers[i];
3179 
3180 			seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3181 				   i, yesno(sc->in_use), sc->mode);
3182 		}
3183 		seq_puts(m, "\n");
3184 	} else {
3185 		seq_puts(m, "\tNo scalers available on this platform\n");
3186 	}
3187 }
3188 
3189 static int i915_display_info(struct seq_file *m, void *unused)
3190 {
3191 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3192 	struct drm_device *dev = &dev_priv->drm;
3193 	struct intel_crtc *crtc;
3194 	struct drm_connector *connector;
3195 	struct drm_connector_list_iter conn_iter;
3196 
3197 	intel_runtime_pm_get(dev_priv);
3198 	seq_printf(m, "CRTC info\n");
3199 	seq_printf(m, "---------\n");
3200 	for_each_intel_crtc(dev, crtc) {
3201 		bool active;
3202 		struct intel_crtc_state *pipe_config;
3203 		int x, y;
3204 
3205 		drm_modeset_lock(&crtc->base.mutex, NULL);
3206 		pipe_config = to_intel_crtc_state(crtc->base.state);
3207 
3208 		seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3209 			   crtc->base.base.id, pipe_name(crtc->pipe),
3210 			   yesno(pipe_config->base.active),
3211 			   pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3212 			   yesno(pipe_config->dither), pipe_config->pipe_bpp);
3213 
3214 		if (pipe_config->base.active) {
3215 			intel_crtc_info(m, crtc);
3216 
3217 			active = cursor_position(dev_priv, crtc->pipe, &x, &y);
3218 			seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
3219 				   yesno(crtc->cursor_base),
3220 				   x, y, crtc->base.cursor->state->crtc_w,
3221 				   crtc->base.cursor->state->crtc_h,
3222 				   crtc->cursor_addr, yesno(active));
3223 			intel_scaler_info(m, crtc);
3224 			intel_plane_info(m, crtc);
3225 		}
3226 
3227 		seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3228 			   yesno(!crtc->cpu_fifo_underrun_disabled),
3229 			   yesno(!crtc->pch_fifo_underrun_disabled));
3230 		drm_modeset_unlock(&crtc->base.mutex);
3231 	}
3232 
3233 	seq_printf(m, "\n");
3234 	seq_printf(m, "Connector info\n");
3235 	seq_printf(m, "--------------\n");
3236 	mutex_lock(&dev->mode_config.mutex);
3237 	drm_connector_list_iter_begin(dev, &conn_iter);
3238 	drm_for_each_connector_iter(connector, &conn_iter)
3239 		intel_connector_info(m, connector);
3240 	drm_connector_list_iter_end(&conn_iter);
3241 	mutex_unlock(&dev->mode_config.mutex);
3242 
3243 	intel_runtime_pm_put(dev_priv);
3244 
3245 	return 0;
3246 }
3247 
3248 static int i915_engine_info(struct seq_file *m, void *unused)
3249 {
3250 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3251 	struct intel_engine_cs *engine;
3252 	enum intel_engine_id id;
3253 
3254 	intel_runtime_pm_get(dev_priv);
3255 
3256 	seq_printf(m, "GT awake? %s\n",
3257 		   yesno(dev_priv->gt.awake));
3258 	seq_printf(m, "Global active requests: %d\n",
3259 		   dev_priv->gt.active_requests);
3260 
3261 	for_each_engine(engine, dev_priv, id) {
3262 		struct intel_breadcrumbs *b = &engine->breadcrumbs;
3263 		struct drm_i915_gem_request *rq;
3264 		struct rb_node *rb;
3265 		u64 addr;
3266 
3267 		seq_printf(m, "%s\n", engine->name);
3268 		seq_printf(m, "\tcurrent seqno %x, last %x, hangcheck %x [%d ms], inflight %d\n",
3269 			   intel_engine_get_seqno(engine),
3270 			   intel_engine_last_submit(engine),
3271 			   engine->hangcheck.seqno,
3272 			   jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp),
3273 			   engine->timeline->inflight_seqnos);
3274 
3275 		rcu_read_lock();
3276 
3277 		seq_printf(m, "\tRequests:\n");
3278 
3279 		rq = list_first_entry(&engine->timeline->requests,
3280 				      struct drm_i915_gem_request, link);
3281 		if (&rq->link != &engine->timeline->requests)
3282 			print_request(m, rq, "\t\tfirst  ");
3283 
3284 		rq = list_last_entry(&engine->timeline->requests,
3285 				     struct drm_i915_gem_request, link);
3286 		if (&rq->link != &engine->timeline->requests)
3287 			print_request(m, rq, "\t\tlast   ");
3288 
3289 		rq = i915_gem_find_active_request(engine);
3290 		if (rq) {
3291 			print_request(m, rq, "\t\tactive ");
3292 			seq_printf(m,
3293 				   "\t\t[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]\n",
3294 				   rq->head, rq->postfix, rq->tail,
3295 				   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
3296 				   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
3297 		}
3298 
3299 		seq_printf(m, "\tRING_START: 0x%08x [0x%08x]\n",
3300 			   I915_READ(RING_START(engine->mmio_base)),
3301 			   rq ? i915_ggtt_offset(rq->ring->vma) : 0);
3302 		seq_printf(m, "\tRING_HEAD:  0x%08x [0x%08x]\n",
3303 			   I915_READ(RING_HEAD(engine->mmio_base)) & HEAD_ADDR,
3304 			   rq ? rq->ring->head : 0);
3305 		seq_printf(m, "\tRING_TAIL:  0x%08x [0x%08x]\n",
3306 			   I915_READ(RING_TAIL(engine->mmio_base)) & TAIL_ADDR,
3307 			   rq ? rq->ring->tail : 0);
3308 		seq_printf(m, "\tRING_CTL:   0x%08x [%s]\n",
3309 			   I915_READ(RING_CTL(engine->mmio_base)),
3310 			   I915_READ(RING_CTL(engine->mmio_base)) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? "waiting" : "");
3311 
3312 		rcu_read_unlock();
3313 
3314 		addr = intel_engine_get_active_head(engine);
3315 		seq_printf(m, "\tACTHD:  0x%08x_%08x\n",
3316 			   upper_32_bits(addr), lower_32_bits(addr));
3317 		addr = intel_engine_get_last_batch_head(engine);
3318 		seq_printf(m, "\tBBADDR: 0x%08x_%08x\n",
3319 			   upper_32_bits(addr), lower_32_bits(addr));
3320 
3321 		if (i915.enable_execlists) {
3322 			u32 ptr, read, write;
3323 			struct rb_node *rb;
3324 
3325 			seq_printf(m, "\tExeclist status: 0x%08x %08x\n",
3326 				   I915_READ(RING_EXECLIST_STATUS_LO(engine)),
3327 				   I915_READ(RING_EXECLIST_STATUS_HI(engine)));
3328 
3329 			ptr = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
3330 			read = GEN8_CSB_READ_PTR(ptr);
3331 			write = GEN8_CSB_WRITE_PTR(ptr);
3332 			seq_printf(m, "\tExeclist CSB read %d, write %d\n",
3333 				   read, write);
3334 			if (read >= GEN8_CSB_ENTRIES)
3335 				read = 0;
3336 			if (write >= GEN8_CSB_ENTRIES)
3337 				write = 0;
3338 			if (read > write)
3339 				write += GEN8_CSB_ENTRIES;
3340 			while (read < write) {
3341 				unsigned int idx = ++read % GEN8_CSB_ENTRIES;
3342 
3343 				seq_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
3344 					   idx,
3345 					   I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, idx)),
3346 					   I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, idx)));
3347 			}
3348 
3349 			rcu_read_lock();
3350 			rq = READ_ONCE(engine->execlist_port[0].request);
3351 			if (rq) {
3352 				seq_printf(m, "\t\tELSP[0] count=%d, ",
3353 					   engine->execlist_port[0].count);
3354 				print_request(m, rq, "rq: ");
3355 			} else {
3356 				seq_printf(m, "\t\tELSP[0] idle\n");
3357 			}
3358 			rq = READ_ONCE(engine->execlist_port[1].request);
3359 			if (rq) {
3360 				seq_printf(m, "\t\tELSP[1] count=%d, ",
3361 					   engine->execlist_port[1].count);
3362 				print_request(m, rq, "rq: ");
3363 			} else {
3364 				seq_printf(m, "\t\tELSP[1] idle\n");
3365 			}
3366 			rcu_read_unlock();
3367 
3368 			spin_lock_irq(&engine->timeline->lock);
3369 			for (rb = engine->execlist_first; rb; rb = rb_next(rb)) {
3370 				rq = rb_entry(rb, typeof(*rq), priotree.node);
3371 				print_request(m, rq, "\t\tQ ");
3372 			}
3373 			spin_unlock_irq(&engine->timeline->lock);
3374 		} else if (INTEL_GEN(dev_priv) > 6) {
3375 			seq_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
3376 				   I915_READ(RING_PP_DIR_BASE(engine)));
3377 			seq_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
3378 				   I915_READ(RING_PP_DIR_BASE_READ(engine)));
3379 			seq_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
3380 				   I915_READ(RING_PP_DIR_DCLV(engine)));
3381 		}
3382 
3383 		spin_lock_irq(&b->rb_lock);
3384 		for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
3385 			struct intel_wait *w = rb_entry(rb, typeof(*w), node);
3386 
3387 			seq_printf(m, "\t%s [%d] waiting for %x\n",
3388 				   w->tsk->comm, w->tsk->pid, w->seqno);
3389 		}
3390 		spin_unlock_irq(&b->rb_lock);
3391 
3392 		seq_puts(m, "\n");
3393 	}
3394 
3395 	intel_runtime_pm_put(dev_priv);
3396 
3397 	return 0;
3398 }
3399 
3400 static int i915_semaphore_status(struct seq_file *m, void *unused)
3401 {
3402 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3403 	struct drm_device *dev = &dev_priv->drm;
3404 	struct intel_engine_cs *engine;
3405 	int num_rings = INTEL_INFO(dev_priv)->num_rings;
3406 	enum intel_engine_id id;
3407 	int j, ret;
3408 
3409 	if (!i915.semaphores) {
3410 		seq_puts(m, "Semaphores are disabled\n");
3411 		return 0;
3412 	}
3413 
3414 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3415 	if (ret)
3416 		return ret;
3417 	intel_runtime_pm_get(dev_priv);
3418 
3419 	if (IS_BROADWELL(dev_priv)) {
3420 		struct page *page;
3421 		uint64_t *seqno;
3422 
3423 		page = i915_gem_object_get_page(dev_priv->semaphore->obj, 0);
3424 
3425 		seqno = (uint64_t *)kmap_atomic(page);
3426 		for_each_engine(engine, dev_priv, id) {
3427 			uint64_t offset;
3428 
3429 			seq_printf(m, "%s\n", engine->name);
3430 
3431 			seq_puts(m, "  Last signal:");
3432 			for (j = 0; j < num_rings; j++) {
3433 				offset = id * I915_NUM_ENGINES + j;
3434 				seq_printf(m, "0x%08llx (0x%02llx) ",
3435 					   seqno[offset], offset * 8);
3436 			}
3437 			seq_putc(m, '\n');
3438 
3439 			seq_puts(m, "  Last wait:  ");
3440 			for (j = 0; j < num_rings; j++) {
3441 				offset = id + (j * I915_NUM_ENGINES);
3442 				seq_printf(m, "0x%08llx (0x%02llx) ",
3443 					   seqno[offset], offset * 8);
3444 			}
3445 			seq_putc(m, '\n');
3446 
3447 		}
3448 		kunmap_atomic(seqno);
3449 	} else {
3450 		seq_puts(m, "  Last signal:");
3451 		for_each_engine(engine, dev_priv, id)
3452 			for (j = 0; j < num_rings; j++)
3453 				seq_printf(m, "0x%08x\n",
3454 					   I915_READ(engine->semaphore.mbox.signal[j]));
3455 		seq_putc(m, '\n');
3456 	}
3457 
3458 	intel_runtime_pm_put(dev_priv);
3459 	mutex_unlock(&dev->struct_mutex);
3460 	return 0;
3461 }
3462 
3463 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3464 {
3465 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3466 	struct drm_device *dev = &dev_priv->drm;
3467 	int i;
3468 
3469 	drm_modeset_lock_all(dev);
3470 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3471 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3472 
3473 		seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3474 		seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
3475 			   pll->state.crtc_mask, pll->active_mask, yesno(pll->on));
3476 		seq_printf(m, " tracked hardware state:\n");
3477 		seq_printf(m, " dpll:    0x%08x\n", pll->state.hw_state.dpll);
3478 		seq_printf(m, " dpll_md: 0x%08x\n",
3479 			   pll->state.hw_state.dpll_md);
3480 		seq_printf(m, " fp0:     0x%08x\n", pll->state.hw_state.fp0);
3481 		seq_printf(m, " fp1:     0x%08x\n", pll->state.hw_state.fp1);
3482 		seq_printf(m, " wrpll:   0x%08x\n", pll->state.hw_state.wrpll);
3483 	}
3484 	drm_modeset_unlock_all(dev);
3485 
3486 	return 0;
3487 }
3488 
3489 static int i915_wa_registers(struct seq_file *m, void *unused)
3490 {
3491 	int i;
3492 	int ret;
3493 	struct intel_engine_cs *engine;
3494 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3495 	struct drm_device *dev = &dev_priv->drm;
3496 	struct i915_workarounds *workarounds = &dev_priv->workarounds;
3497 	enum intel_engine_id id;
3498 
3499 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3500 	if (ret)
3501 		return ret;
3502 
3503 	intel_runtime_pm_get(dev_priv);
3504 
3505 	seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3506 	for_each_engine(engine, dev_priv, id)
3507 		seq_printf(m, "HW whitelist count for %s: %d\n",
3508 			   engine->name, workarounds->hw_whitelist_count[id]);
3509 	for (i = 0; i < workarounds->count; ++i) {
3510 		i915_reg_t addr;
3511 		u32 mask, value, read;
3512 		bool ok;
3513 
3514 		addr = workarounds->reg[i].addr;
3515 		mask = workarounds->reg[i].mask;
3516 		value = workarounds->reg[i].value;
3517 		read = I915_READ(addr);
3518 		ok = (value & mask) == (read & mask);
3519 		seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3520 			   i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3521 	}
3522 
3523 	intel_runtime_pm_put(dev_priv);
3524 	mutex_unlock(&dev->struct_mutex);
3525 
3526 	return 0;
3527 }
3528 
3529 static int i915_ddb_info(struct seq_file *m, void *unused)
3530 {
3531 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3532 	struct drm_device *dev = &dev_priv->drm;
3533 	struct skl_ddb_allocation *ddb;
3534 	struct skl_ddb_entry *entry;
3535 	enum pipe pipe;
3536 	int plane;
3537 
3538 	if (INTEL_GEN(dev_priv) < 9)
3539 		return 0;
3540 
3541 	drm_modeset_lock_all(dev);
3542 
3543 	ddb = &dev_priv->wm.skl_hw.ddb;
3544 
3545 	seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3546 
3547 	for_each_pipe(dev_priv, pipe) {
3548 		seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3549 
3550 		for_each_universal_plane(dev_priv, pipe, plane) {
3551 			entry = &ddb->plane[pipe][plane];
3552 			seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3553 				   entry->start, entry->end,
3554 				   skl_ddb_entry_size(entry));
3555 		}
3556 
3557 		entry = &ddb->plane[pipe][PLANE_CURSOR];
3558 		seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3559 			   entry->end, skl_ddb_entry_size(entry));
3560 	}
3561 
3562 	drm_modeset_unlock_all(dev);
3563 
3564 	return 0;
3565 }
3566 
3567 static void drrs_status_per_crtc(struct seq_file *m,
3568 				 struct drm_device *dev,
3569 				 struct intel_crtc *intel_crtc)
3570 {
3571 	struct drm_i915_private *dev_priv = to_i915(dev);
3572 	struct i915_drrs *drrs = &dev_priv->drrs;
3573 	int vrefresh = 0;
3574 	struct drm_connector *connector;
3575 	struct drm_connector_list_iter conn_iter;
3576 
3577 	drm_connector_list_iter_begin(dev, &conn_iter);
3578 	drm_for_each_connector_iter(connector, &conn_iter) {
3579 		if (connector->state->crtc != &intel_crtc->base)
3580 			continue;
3581 
3582 		seq_printf(m, "%s:\n", connector->name);
3583 	}
3584 	drm_connector_list_iter_end(&conn_iter);
3585 
3586 	if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3587 		seq_puts(m, "\tVBT: DRRS_type: Static");
3588 	else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3589 		seq_puts(m, "\tVBT: DRRS_type: Seamless");
3590 	else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3591 		seq_puts(m, "\tVBT: DRRS_type: None");
3592 	else
3593 		seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3594 
3595 	seq_puts(m, "\n\n");
3596 
3597 	if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3598 		struct intel_panel *panel;
3599 
3600 		mutex_lock(&drrs->mutex);
3601 		/* DRRS Supported */
3602 		seq_puts(m, "\tDRRS Supported: Yes\n");
3603 
3604 		/* disable_drrs() will make drrs->dp NULL */
3605 		if (!drrs->dp) {
3606 			seq_puts(m, "Idleness DRRS: Disabled");
3607 			mutex_unlock(&drrs->mutex);
3608 			return;
3609 		}
3610 
3611 		panel = &drrs->dp->attached_connector->panel;
3612 		seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3613 					drrs->busy_frontbuffer_bits);
3614 
3615 		seq_puts(m, "\n\t\t");
3616 		if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3617 			seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3618 			vrefresh = panel->fixed_mode->vrefresh;
3619 		} else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3620 			seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3621 			vrefresh = panel->downclock_mode->vrefresh;
3622 		} else {
3623 			seq_printf(m, "DRRS_State: Unknown(%d)\n",
3624 						drrs->refresh_rate_type);
3625 			mutex_unlock(&drrs->mutex);
3626 			return;
3627 		}
3628 		seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3629 
3630 		seq_puts(m, "\n\t\t");
3631 		mutex_unlock(&drrs->mutex);
3632 	} else {
3633 		/* DRRS not supported. Print the VBT parameter*/
3634 		seq_puts(m, "\tDRRS Supported : No");
3635 	}
3636 	seq_puts(m, "\n");
3637 }
3638 
3639 static int i915_drrs_status(struct seq_file *m, void *unused)
3640 {
3641 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3642 	struct drm_device *dev = &dev_priv->drm;
3643 	struct intel_crtc *intel_crtc;
3644 	int active_crtc_cnt = 0;
3645 
3646 	drm_modeset_lock_all(dev);
3647 	for_each_intel_crtc(dev, intel_crtc) {
3648 		if (intel_crtc->base.state->active) {
3649 			active_crtc_cnt++;
3650 			seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3651 
3652 			drrs_status_per_crtc(m, dev, intel_crtc);
3653 		}
3654 	}
3655 	drm_modeset_unlock_all(dev);
3656 
3657 	if (!active_crtc_cnt)
3658 		seq_puts(m, "No active crtc found\n");
3659 
3660 	return 0;
3661 }
3662 
3663 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3664 {
3665 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
3666 	struct drm_device *dev = &dev_priv->drm;
3667 	struct intel_encoder *intel_encoder;
3668 	struct intel_digital_port *intel_dig_port;
3669 	struct drm_connector *connector;
3670 	struct drm_connector_list_iter conn_iter;
3671 
3672 	drm_connector_list_iter_begin(dev, &conn_iter);
3673 	drm_for_each_connector_iter(connector, &conn_iter) {
3674 		if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
3675 			continue;
3676 
3677 		intel_encoder = intel_attached_encoder(connector);
3678 		if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
3679 			continue;
3680 
3681 		intel_dig_port = enc_to_dig_port(&intel_encoder->base);
3682 		if (!intel_dig_port->dp.can_mst)
3683 			continue;
3684 
3685 		seq_printf(m, "MST Source Port %c\n",
3686 			   port_name(intel_dig_port->port));
3687 		drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3688 	}
3689 	drm_connector_list_iter_end(&conn_iter);
3690 
3691 	return 0;
3692 }
3693 
3694 static ssize_t i915_displayport_test_active_write(struct file *file,
3695 						  const char __user *ubuf,
3696 						  size_t len, loff_t *offp)
3697 {
3698 	char *input_buffer;
3699 	int status = 0;
3700 	struct drm_device *dev;
3701 	struct drm_connector *connector;
3702 	struct drm_connector_list_iter conn_iter;
3703 	struct intel_dp *intel_dp;
3704 	int val = 0;
3705 
3706 	dev = ((struct seq_file *)file->private_data)->private;
3707 
3708 	if (len == 0)
3709 		return 0;
3710 
3711 	input_buffer = kmalloc(len + 1, GFP_KERNEL);
3712 	if (!input_buffer)
3713 		return -ENOMEM;
3714 
3715 	if (copy_from_user(input_buffer, ubuf, len)) {
3716 		status = -EFAULT;
3717 		goto out;
3718 	}
3719 
3720 	input_buffer[len] = '\0';
3721 	DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
3722 
3723 	drm_connector_list_iter_begin(dev, &conn_iter);
3724 	drm_for_each_connector_iter(connector, &conn_iter) {
3725 		if (connector->connector_type !=
3726 		    DRM_MODE_CONNECTOR_DisplayPort)
3727 			continue;
3728 
3729 		if (connector->status == connector_status_connected &&
3730 		    connector->encoder != NULL) {
3731 			intel_dp = enc_to_intel_dp(connector->encoder);
3732 			status = kstrtoint(input_buffer, 10, &val);
3733 			if (status < 0)
3734 				break;
3735 			DRM_DEBUG_DRIVER("Got %d for test active\n", val);
3736 			/* To prevent erroneous activation of the compliance
3737 			 * testing code, only accept an actual value of 1 here
3738 			 */
3739 			if (val == 1)
3740 				intel_dp->compliance.test_active = 1;
3741 			else
3742 				intel_dp->compliance.test_active = 0;
3743 		}
3744 	}
3745 	drm_connector_list_iter_end(&conn_iter);
3746 out:
3747 	kfree(input_buffer);
3748 	if (status < 0)
3749 		return status;
3750 
3751 	*offp += len;
3752 	return len;
3753 }
3754 
3755 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
3756 {
3757 	struct drm_device *dev = m->private;
3758 	struct drm_connector *connector;
3759 	struct drm_connector_list_iter conn_iter;
3760 	struct intel_dp *intel_dp;
3761 
3762 	drm_connector_list_iter_begin(dev, &conn_iter);
3763 	drm_for_each_connector_iter(connector, &conn_iter) {
3764 		if (connector->connector_type !=
3765 		    DRM_MODE_CONNECTOR_DisplayPort)
3766 			continue;
3767 
3768 		if (connector->status == connector_status_connected &&
3769 		    connector->encoder != NULL) {
3770 			intel_dp = enc_to_intel_dp(connector->encoder);
3771 			if (intel_dp->compliance.test_active)
3772 				seq_puts(m, "1");
3773 			else
3774 				seq_puts(m, "0");
3775 		} else
3776 			seq_puts(m, "0");
3777 	}
3778 	drm_connector_list_iter_end(&conn_iter);
3779 
3780 	return 0;
3781 }
3782 
3783 static int i915_displayport_test_active_open(struct inode *inode,
3784 					     struct file *file)
3785 {
3786 	struct drm_i915_private *dev_priv = inode->i_private;
3787 
3788 	return single_open(file, i915_displayport_test_active_show,
3789 			   &dev_priv->drm);
3790 }
3791 
3792 static const struct file_operations i915_displayport_test_active_fops = {
3793 	.owner = THIS_MODULE,
3794 	.open = i915_displayport_test_active_open,
3795 	.read = seq_read,
3796 	.llseek = seq_lseek,
3797 	.release = single_release,
3798 	.write = i915_displayport_test_active_write
3799 };
3800 
3801 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
3802 {
3803 	struct drm_device *dev = m->private;
3804 	struct drm_connector *connector;
3805 	struct drm_connector_list_iter conn_iter;
3806 	struct intel_dp *intel_dp;
3807 
3808 	drm_connector_list_iter_begin(dev, &conn_iter);
3809 	drm_for_each_connector_iter(connector, &conn_iter) {
3810 		if (connector->connector_type !=
3811 		    DRM_MODE_CONNECTOR_DisplayPort)
3812 			continue;
3813 
3814 		if (connector->status == connector_status_connected &&
3815 		    connector->encoder != NULL) {
3816 			intel_dp = enc_to_intel_dp(connector->encoder);
3817 			if (intel_dp->compliance.test_type ==
3818 			    DP_TEST_LINK_EDID_READ)
3819 				seq_printf(m, "%lx",
3820 					   intel_dp->compliance.test_data.edid);
3821 			else if (intel_dp->compliance.test_type ==
3822 				 DP_TEST_LINK_VIDEO_PATTERN) {
3823 				seq_printf(m, "hdisplay: %d\n",
3824 					   intel_dp->compliance.test_data.hdisplay);
3825 				seq_printf(m, "vdisplay: %d\n",
3826 					   intel_dp->compliance.test_data.vdisplay);
3827 				seq_printf(m, "bpc: %u\n",
3828 					   intel_dp->compliance.test_data.bpc);
3829 			}
3830 		} else
3831 			seq_puts(m, "0");
3832 	}
3833 	drm_connector_list_iter_end(&conn_iter);
3834 
3835 	return 0;
3836 }
3837 static int i915_displayport_test_data_open(struct inode *inode,
3838 					   struct file *file)
3839 {
3840 	struct drm_i915_private *dev_priv = inode->i_private;
3841 
3842 	return single_open(file, i915_displayport_test_data_show,
3843 			   &dev_priv->drm);
3844 }
3845 
3846 static const struct file_operations i915_displayport_test_data_fops = {
3847 	.owner = THIS_MODULE,
3848 	.open = i915_displayport_test_data_open,
3849 	.read = seq_read,
3850 	.llseek = seq_lseek,
3851 	.release = single_release
3852 };
3853 
3854 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
3855 {
3856 	struct drm_device *dev = m->private;
3857 	struct drm_connector *connector;
3858 	struct drm_connector_list_iter conn_iter;
3859 	struct intel_dp *intel_dp;
3860 
3861 	drm_connector_list_iter_begin(dev, &conn_iter);
3862 	drm_for_each_connector_iter(connector, &conn_iter) {
3863 		if (connector->connector_type !=
3864 		    DRM_MODE_CONNECTOR_DisplayPort)
3865 			continue;
3866 
3867 		if (connector->status == connector_status_connected &&
3868 		    connector->encoder != NULL) {
3869 			intel_dp = enc_to_intel_dp(connector->encoder);
3870 			seq_printf(m, "%02lx", intel_dp->compliance.test_type);
3871 		} else
3872 			seq_puts(m, "0");
3873 	}
3874 	drm_connector_list_iter_end(&conn_iter);
3875 
3876 	return 0;
3877 }
3878 
3879 static int i915_displayport_test_type_open(struct inode *inode,
3880 				       struct file *file)
3881 {
3882 	struct drm_i915_private *dev_priv = inode->i_private;
3883 
3884 	return single_open(file, i915_displayport_test_type_show,
3885 			   &dev_priv->drm);
3886 }
3887 
3888 static const struct file_operations i915_displayport_test_type_fops = {
3889 	.owner = THIS_MODULE,
3890 	.open = i915_displayport_test_type_open,
3891 	.read = seq_read,
3892 	.llseek = seq_lseek,
3893 	.release = single_release
3894 };
3895 
3896 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
3897 {
3898 	struct drm_i915_private *dev_priv = m->private;
3899 	struct drm_device *dev = &dev_priv->drm;
3900 	int level;
3901 	int num_levels;
3902 
3903 	if (IS_CHERRYVIEW(dev_priv))
3904 		num_levels = 3;
3905 	else if (IS_VALLEYVIEW(dev_priv))
3906 		num_levels = 1;
3907 	else
3908 		num_levels = ilk_wm_max_level(dev_priv) + 1;
3909 
3910 	drm_modeset_lock_all(dev);
3911 
3912 	for (level = 0; level < num_levels; level++) {
3913 		unsigned int latency = wm[level];
3914 
3915 		/*
3916 		 * - WM1+ latency values in 0.5us units
3917 		 * - latencies are in us on gen9/vlv/chv
3918 		 */
3919 		if (INTEL_GEN(dev_priv) >= 9 || IS_VALLEYVIEW(dev_priv) ||
3920 		    IS_CHERRYVIEW(dev_priv))
3921 			latency *= 10;
3922 		else if (level > 0)
3923 			latency *= 5;
3924 
3925 		seq_printf(m, "WM%d %u (%u.%u usec)\n",
3926 			   level, wm[level], latency / 10, latency % 10);
3927 	}
3928 
3929 	drm_modeset_unlock_all(dev);
3930 }
3931 
3932 static int pri_wm_latency_show(struct seq_file *m, void *data)
3933 {
3934 	struct drm_i915_private *dev_priv = m->private;
3935 	const uint16_t *latencies;
3936 
3937 	if (INTEL_GEN(dev_priv) >= 9)
3938 		latencies = dev_priv->wm.skl_latency;
3939 	else
3940 		latencies = dev_priv->wm.pri_latency;
3941 
3942 	wm_latency_show(m, latencies);
3943 
3944 	return 0;
3945 }
3946 
3947 static int spr_wm_latency_show(struct seq_file *m, void *data)
3948 {
3949 	struct drm_i915_private *dev_priv = m->private;
3950 	const uint16_t *latencies;
3951 
3952 	if (INTEL_GEN(dev_priv) >= 9)
3953 		latencies = dev_priv->wm.skl_latency;
3954 	else
3955 		latencies = dev_priv->wm.spr_latency;
3956 
3957 	wm_latency_show(m, latencies);
3958 
3959 	return 0;
3960 }
3961 
3962 static int cur_wm_latency_show(struct seq_file *m, void *data)
3963 {
3964 	struct drm_i915_private *dev_priv = m->private;
3965 	const uint16_t *latencies;
3966 
3967 	if (INTEL_GEN(dev_priv) >= 9)
3968 		latencies = dev_priv->wm.skl_latency;
3969 	else
3970 		latencies = dev_priv->wm.cur_latency;
3971 
3972 	wm_latency_show(m, latencies);
3973 
3974 	return 0;
3975 }
3976 
3977 static int pri_wm_latency_open(struct inode *inode, struct file *file)
3978 {
3979 	struct drm_i915_private *dev_priv = inode->i_private;
3980 
3981 	if (INTEL_GEN(dev_priv) < 5)
3982 		return -ENODEV;
3983 
3984 	return single_open(file, pri_wm_latency_show, dev_priv);
3985 }
3986 
3987 static int spr_wm_latency_open(struct inode *inode, struct file *file)
3988 {
3989 	struct drm_i915_private *dev_priv = inode->i_private;
3990 
3991 	if (HAS_GMCH_DISPLAY(dev_priv))
3992 		return -ENODEV;
3993 
3994 	return single_open(file, spr_wm_latency_show, dev_priv);
3995 }
3996 
3997 static int cur_wm_latency_open(struct inode *inode, struct file *file)
3998 {
3999 	struct drm_i915_private *dev_priv = inode->i_private;
4000 
4001 	if (HAS_GMCH_DISPLAY(dev_priv))
4002 		return -ENODEV;
4003 
4004 	return single_open(file, cur_wm_latency_show, dev_priv);
4005 }
4006 
4007 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4008 				size_t len, loff_t *offp, uint16_t wm[8])
4009 {
4010 	struct seq_file *m = file->private_data;
4011 	struct drm_i915_private *dev_priv = m->private;
4012 	struct drm_device *dev = &dev_priv->drm;
4013 	uint16_t new[8] = { 0 };
4014 	int num_levels;
4015 	int level;
4016 	int ret;
4017 	char tmp[32];
4018 
4019 	if (IS_CHERRYVIEW(dev_priv))
4020 		num_levels = 3;
4021 	else if (IS_VALLEYVIEW(dev_priv))
4022 		num_levels = 1;
4023 	else
4024 		num_levels = ilk_wm_max_level(dev_priv) + 1;
4025 
4026 	if (len >= sizeof(tmp))
4027 		return -EINVAL;
4028 
4029 	if (copy_from_user(tmp, ubuf, len))
4030 		return -EFAULT;
4031 
4032 	tmp[len] = '\0';
4033 
4034 	ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4035 		     &new[0], &new[1], &new[2], &new[3],
4036 		     &new[4], &new[5], &new[6], &new[7]);
4037 	if (ret != num_levels)
4038 		return -EINVAL;
4039 
4040 	drm_modeset_lock_all(dev);
4041 
4042 	for (level = 0; level < num_levels; level++)
4043 		wm[level] = new[level];
4044 
4045 	drm_modeset_unlock_all(dev);
4046 
4047 	return len;
4048 }
4049 
4050 
4051 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4052 				    size_t len, loff_t *offp)
4053 {
4054 	struct seq_file *m = file->private_data;
4055 	struct drm_i915_private *dev_priv = m->private;
4056 	uint16_t *latencies;
4057 
4058 	if (INTEL_GEN(dev_priv) >= 9)
4059 		latencies = dev_priv->wm.skl_latency;
4060 	else
4061 		latencies = dev_priv->wm.pri_latency;
4062 
4063 	return wm_latency_write(file, ubuf, len, offp, latencies);
4064 }
4065 
4066 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4067 				    size_t len, loff_t *offp)
4068 {
4069 	struct seq_file *m = file->private_data;
4070 	struct drm_i915_private *dev_priv = m->private;
4071 	uint16_t *latencies;
4072 
4073 	if (INTEL_GEN(dev_priv) >= 9)
4074 		latencies = dev_priv->wm.skl_latency;
4075 	else
4076 		latencies = dev_priv->wm.spr_latency;
4077 
4078 	return wm_latency_write(file, ubuf, len, offp, latencies);
4079 }
4080 
4081 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4082 				    size_t len, loff_t *offp)
4083 {
4084 	struct seq_file *m = file->private_data;
4085 	struct drm_i915_private *dev_priv = m->private;
4086 	uint16_t *latencies;
4087 
4088 	if (INTEL_GEN(dev_priv) >= 9)
4089 		latencies = dev_priv->wm.skl_latency;
4090 	else
4091 		latencies = dev_priv->wm.cur_latency;
4092 
4093 	return wm_latency_write(file, ubuf, len, offp, latencies);
4094 }
4095 
4096 static const struct file_operations i915_pri_wm_latency_fops = {
4097 	.owner = THIS_MODULE,
4098 	.open = pri_wm_latency_open,
4099 	.read = seq_read,
4100 	.llseek = seq_lseek,
4101 	.release = single_release,
4102 	.write = pri_wm_latency_write
4103 };
4104 
4105 static const struct file_operations i915_spr_wm_latency_fops = {
4106 	.owner = THIS_MODULE,
4107 	.open = spr_wm_latency_open,
4108 	.read = seq_read,
4109 	.llseek = seq_lseek,
4110 	.release = single_release,
4111 	.write = spr_wm_latency_write
4112 };
4113 
4114 static const struct file_operations i915_cur_wm_latency_fops = {
4115 	.owner = THIS_MODULE,
4116 	.open = cur_wm_latency_open,
4117 	.read = seq_read,
4118 	.llseek = seq_lseek,
4119 	.release = single_release,
4120 	.write = cur_wm_latency_write
4121 };
4122 
4123 static int
4124 i915_wedged_get(void *data, u64 *val)
4125 {
4126 	struct drm_i915_private *dev_priv = data;
4127 
4128 	*val = i915_terminally_wedged(&dev_priv->gpu_error);
4129 
4130 	return 0;
4131 }
4132 
4133 static int
4134 i915_wedged_set(void *data, u64 val)
4135 {
4136 	struct drm_i915_private *i915 = data;
4137 	struct intel_engine_cs *engine;
4138 	unsigned int tmp;
4139 
4140 	/*
4141 	 * There is no safeguard against this debugfs entry colliding
4142 	 * with the hangcheck calling same i915_handle_error() in
4143 	 * parallel, causing an explosion. For now we assume that the
4144 	 * test harness is responsible enough not to inject gpu hangs
4145 	 * while it is writing to 'i915_wedged'
4146 	 */
4147 
4148 	if (i915_reset_backoff(&i915->gpu_error))
4149 		return -EAGAIN;
4150 
4151 	for_each_engine_masked(engine, i915, val, tmp) {
4152 		engine->hangcheck.seqno = intel_engine_get_seqno(engine);
4153 		engine->hangcheck.stalled = true;
4154 	}
4155 
4156 	i915_handle_error(i915, val, "Manually setting wedged to %llu", val);
4157 
4158 	wait_on_bit(&i915->gpu_error.flags,
4159 		    I915_RESET_HANDOFF,
4160 		    TASK_UNINTERRUPTIBLE);
4161 
4162 	return 0;
4163 }
4164 
4165 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4166 			i915_wedged_get, i915_wedged_set,
4167 			"%llu\n");
4168 
4169 static int
4170 fault_irq_set(struct drm_i915_private *i915,
4171 	      unsigned long *irq,
4172 	      unsigned long val)
4173 {
4174 	int err;
4175 
4176 	err = mutex_lock_interruptible(&i915->drm.struct_mutex);
4177 	if (err)
4178 		return err;
4179 
4180 	err = i915_gem_wait_for_idle(i915,
4181 				     I915_WAIT_LOCKED |
4182 				     I915_WAIT_INTERRUPTIBLE);
4183 	if (err)
4184 		goto err_unlock;
4185 
4186 	*irq = val;
4187 	mutex_unlock(&i915->drm.struct_mutex);
4188 
4189 	/* Flush idle worker to disarm irq */
4190 	while (flush_delayed_work(&i915->gt.idle_work))
4191 		;
4192 
4193 	return 0;
4194 
4195 err_unlock:
4196 	mutex_unlock(&i915->drm.struct_mutex);
4197 	return err;
4198 }
4199 
4200 static int
4201 i915_ring_missed_irq_get(void *data, u64 *val)
4202 {
4203 	struct drm_i915_private *dev_priv = data;
4204 
4205 	*val = dev_priv->gpu_error.missed_irq_rings;
4206 	return 0;
4207 }
4208 
4209 static int
4210 i915_ring_missed_irq_set(void *data, u64 val)
4211 {
4212 	struct drm_i915_private *i915 = data;
4213 
4214 	return fault_irq_set(i915, &i915->gpu_error.missed_irq_rings, val);
4215 }
4216 
4217 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4218 			i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4219 			"0x%08llx\n");
4220 
4221 static int
4222 i915_ring_test_irq_get(void *data, u64 *val)
4223 {
4224 	struct drm_i915_private *dev_priv = data;
4225 
4226 	*val = dev_priv->gpu_error.test_irq_rings;
4227 
4228 	return 0;
4229 }
4230 
4231 static int
4232 i915_ring_test_irq_set(void *data, u64 val)
4233 {
4234 	struct drm_i915_private *i915 = data;
4235 
4236 	val &= INTEL_INFO(i915)->ring_mask;
4237 	DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4238 
4239 	return fault_irq_set(i915, &i915->gpu_error.test_irq_rings, val);
4240 }
4241 
4242 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4243 			i915_ring_test_irq_get, i915_ring_test_irq_set,
4244 			"0x%08llx\n");
4245 
4246 #define DROP_UNBOUND 0x1
4247 #define DROP_BOUND 0x2
4248 #define DROP_RETIRE 0x4
4249 #define DROP_ACTIVE 0x8
4250 #define DROP_FREED 0x10
4251 #define DROP_SHRINK_ALL 0x20
4252 #define DROP_ALL (DROP_UNBOUND	| \
4253 		  DROP_BOUND	| \
4254 		  DROP_RETIRE	| \
4255 		  DROP_ACTIVE	| \
4256 		  DROP_FREED	| \
4257 		  DROP_SHRINK_ALL)
4258 static int
4259 i915_drop_caches_get(void *data, u64 *val)
4260 {
4261 	*val = DROP_ALL;
4262 
4263 	return 0;
4264 }
4265 
4266 static int
4267 i915_drop_caches_set(void *data, u64 val)
4268 {
4269 	struct drm_i915_private *dev_priv = data;
4270 	struct drm_device *dev = &dev_priv->drm;
4271 	int ret;
4272 
4273 	DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4274 
4275 	/* No need to check and wait for gpu resets, only libdrm auto-restarts
4276 	 * on ioctls on -EAGAIN. */
4277 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4278 	if (ret)
4279 		return ret;
4280 
4281 	if (val & DROP_ACTIVE) {
4282 		ret = i915_gem_wait_for_idle(dev_priv,
4283 					     I915_WAIT_INTERRUPTIBLE |
4284 					     I915_WAIT_LOCKED);
4285 		if (ret)
4286 			goto unlock;
4287 	}
4288 
4289 	if (val & DROP_RETIRE)
4290 		i915_gem_retire_requests(dev_priv);
4291 
4292 	lockdep_set_current_reclaim_state(GFP_KERNEL);
4293 	if (val & DROP_BOUND)
4294 		i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4295 
4296 	if (val & DROP_UNBOUND)
4297 		i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4298 
4299 	if (val & DROP_SHRINK_ALL)
4300 		i915_gem_shrink_all(dev_priv);
4301 	lockdep_clear_current_reclaim_state();
4302 
4303 unlock:
4304 	mutex_unlock(&dev->struct_mutex);
4305 
4306 	if (val & DROP_FREED) {
4307 		synchronize_rcu();
4308 		i915_gem_drain_freed_objects(dev_priv);
4309 	}
4310 
4311 	return ret;
4312 }
4313 
4314 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4315 			i915_drop_caches_get, i915_drop_caches_set,
4316 			"0x%08llx\n");
4317 
4318 static int
4319 i915_max_freq_get(void *data, u64 *val)
4320 {
4321 	struct drm_i915_private *dev_priv = data;
4322 
4323 	if (INTEL_GEN(dev_priv) < 6)
4324 		return -ENODEV;
4325 
4326 	*val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4327 	return 0;
4328 }
4329 
4330 static int
4331 i915_max_freq_set(void *data, u64 val)
4332 {
4333 	struct drm_i915_private *dev_priv = data;
4334 	u32 hw_max, hw_min;
4335 	int ret;
4336 
4337 	if (INTEL_GEN(dev_priv) < 6)
4338 		return -ENODEV;
4339 
4340 	DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4341 
4342 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4343 	if (ret)
4344 		return ret;
4345 
4346 	/*
4347 	 * Turbo will still be enabled, but won't go above the set value.
4348 	 */
4349 	val = intel_freq_opcode(dev_priv, val);
4350 
4351 	hw_max = dev_priv->rps.max_freq;
4352 	hw_min = dev_priv->rps.min_freq;
4353 
4354 	if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4355 		mutex_unlock(&dev_priv->rps.hw_lock);
4356 		return -EINVAL;
4357 	}
4358 
4359 	dev_priv->rps.max_freq_softlimit = val;
4360 
4361 	if (intel_set_rps(dev_priv, val))
4362 		DRM_DEBUG_DRIVER("failed to update RPS to new softlimit\n");
4363 
4364 	mutex_unlock(&dev_priv->rps.hw_lock);
4365 
4366 	return 0;
4367 }
4368 
4369 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4370 			i915_max_freq_get, i915_max_freq_set,
4371 			"%llu\n");
4372 
4373 static int
4374 i915_min_freq_get(void *data, u64 *val)
4375 {
4376 	struct drm_i915_private *dev_priv = data;
4377 
4378 	if (INTEL_GEN(dev_priv) < 6)
4379 		return -ENODEV;
4380 
4381 	*val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4382 	return 0;
4383 }
4384 
4385 static int
4386 i915_min_freq_set(void *data, u64 val)
4387 {
4388 	struct drm_i915_private *dev_priv = data;
4389 	u32 hw_max, hw_min;
4390 	int ret;
4391 
4392 	if (INTEL_GEN(dev_priv) < 6)
4393 		return -ENODEV;
4394 
4395 	DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4396 
4397 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4398 	if (ret)
4399 		return ret;
4400 
4401 	/*
4402 	 * Turbo will still be enabled, but won't go below the set value.
4403 	 */
4404 	val = intel_freq_opcode(dev_priv, val);
4405 
4406 	hw_max = dev_priv->rps.max_freq;
4407 	hw_min = dev_priv->rps.min_freq;
4408 
4409 	if (val < hw_min ||
4410 	    val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
4411 		mutex_unlock(&dev_priv->rps.hw_lock);
4412 		return -EINVAL;
4413 	}
4414 
4415 	dev_priv->rps.min_freq_softlimit = val;
4416 
4417 	if (intel_set_rps(dev_priv, val))
4418 		DRM_DEBUG_DRIVER("failed to update RPS to new softlimit\n");
4419 
4420 	mutex_unlock(&dev_priv->rps.hw_lock);
4421 
4422 	return 0;
4423 }
4424 
4425 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4426 			i915_min_freq_get, i915_min_freq_set,
4427 			"%llu\n");
4428 
4429 static int
4430 i915_cache_sharing_get(void *data, u64 *val)
4431 {
4432 	struct drm_i915_private *dev_priv = data;
4433 	u32 snpcr;
4434 
4435 	if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
4436 		return -ENODEV;
4437 
4438 	intel_runtime_pm_get(dev_priv);
4439 
4440 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4441 
4442 	intel_runtime_pm_put(dev_priv);
4443 
4444 	*val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4445 
4446 	return 0;
4447 }
4448 
4449 static int
4450 i915_cache_sharing_set(void *data, u64 val)
4451 {
4452 	struct drm_i915_private *dev_priv = data;
4453 	u32 snpcr;
4454 
4455 	if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
4456 		return -ENODEV;
4457 
4458 	if (val > 3)
4459 		return -EINVAL;
4460 
4461 	intel_runtime_pm_get(dev_priv);
4462 	DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4463 
4464 	/* Update the cache sharing policy here as well */
4465 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4466 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
4467 	snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4468 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4469 
4470 	intel_runtime_pm_put(dev_priv);
4471 	return 0;
4472 }
4473 
4474 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4475 			i915_cache_sharing_get, i915_cache_sharing_set,
4476 			"%llu\n");
4477 
4478 static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
4479 					  struct sseu_dev_info *sseu)
4480 {
4481 	int ss_max = 2;
4482 	int ss;
4483 	u32 sig1[ss_max], sig2[ss_max];
4484 
4485 	sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
4486 	sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
4487 	sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
4488 	sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
4489 
4490 	for (ss = 0; ss < ss_max; ss++) {
4491 		unsigned int eu_cnt;
4492 
4493 		if (sig1[ss] & CHV_SS_PG_ENABLE)
4494 			/* skip disabled subslice */
4495 			continue;
4496 
4497 		sseu->slice_mask = BIT(0);
4498 		sseu->subslice_mask |= BIT(ss);
4499 		eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
4500 			 ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
4501 			 ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
4502 			 ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
4503 		sseu->eu_total += eu_cnt;
4504 		sseu->eu_per_subslice = max_t(unsigned int,
4505 					      sseu->eu_per_subslice, eu_cnt);
4506 	}
4507 }
4508 
4509 static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
4510 				    struct sseu_dev_info *sseu)
4511 {
4512 	int s_max = 3, ss_max = 4;
4513 	int s, ss;
4514 	u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
4515 
4516 	/* BXT has a single slice and at most 3 subslices. */
4517 	if (IS_GEN9_LP(dev_priv)) {
4518 		s_max = 1;
4519 		ss_max = 3;
4520 	}
4521 
4522 	for (s = 0; s < s_max; s++) {
4523 		s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
4524 		eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
4525 		eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
4526 	}
4527 
4528 	eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
4529 		     GEN9_PGCTL_SSA_EU19_ACK |
4530 		     GEN9_PGCTL_SSA_EU210_ACK |
4531 		     GEN9_PGCTL_SSA_EU311_ACK;
4532 	eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
4533 		     GEN9_PGCTL_SSB_EU19_ACK |
4534 		     GEN9_PGCTL_SSB_EU210_ACK |
4535 		     GEN9_PGCTL_SSB_EU311_ACK;
4536 
4537 	for (s = 0; s < s_max; s++) {
4538 		if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
4539 			/* skip disabled slice */
4540 			continue;
4541 
4542 		sseu->slice_mask |= BIT(s);
4543 
4544 		if (IS_GEN9_BC(dev_priv))
4545 			sseu->subslice_mask =
4546 				INTEL_INFO(dev_priv)->sseu.subslice_mask;
4547 
4548 		for (ss = 0; ss < ss_max; ss++) {
4549 			unsigned int eu_cnt;
4550 
4551 			if (IS_GEN9_LP(dev_priv)) {
4552 				if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
4553 					/* skip disabled subslice */
4554 					continue;
4555 
4556 				sseu->subslice_mask |= BIT(ss);
4557 			}
4558 
4559 			eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
4560 					       eu_mask[ss%2]);
4561 			sseu->eu_total += eu_cnt;
4562 			sseu->eu_per_subslice = max_t(unsigned int,
4563 						      sseu->eu_per_subslice,
4564 						      eu_cnt);
4565 		}
4566 	}
4567 }
4568 
4569 static void broadwell_sseu_device_status(struct drm_i915_private *dev_priv,
4570 					 struct sseu_dev_info *sseu)
4571 {
4572 	u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
4573 	int s;
4574 
4575 	sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
4576 
4577 	if (sseu->slice_mask) {
4578 		sseu->subslice_mask = INTEL_INFO(dev_priv)->sseu.subslice_mask;
4579 		sseu->eu_per_subslice =
4580 				INTEL_INFO(dev_priv)->sseu.eu_per_subslice;
4581 		sseu->eu_total = sseu->eu_per_subslice *
4582 				 sseu_subslice_total(sseu);
4583 
4584 		/* subtract fused off EU(s) from enabled slice(s) */
4585 		for (s = 0; s < fls(sseu->slice_mask); s++) {
4586 			u8 subslice_7eu =
4587 				INTEL_INFO(dev_priv)->sseu.subslice_7eu[s];
4588 
4589 			sseu->eu_total -= hweight8(subslice_7eu);
4590 		}
4591 	}
4592 }
4593 
4594 static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
4595 				 const struct sseu_dev_info *sseu)
4596 {
4597 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
4598 	const char *type = is_available_info ? "Available" : "Enabled";
4599 
4600 	seq_printf(m, "  %s Slice Mask: %04x\n", type,
4601 		   sseu->slice_mask);
4602 	seq_printf(m, "  %s Slice Total: %u\n", type,
4603 		   hweight8(sseu->slice_mask));
4604 	seq_printf(m, "  %s Subslice Total: %u\n", type,
4605 		   sseu_subslice_total(sseu));
4606 	seq_printf(m, "  %s Subslice Mask: %04x\n", type,
4607 		   sseu->subslice_mask);
4608 	seq_printf(m, "  %s Subslice Per Slice: %u\n", type,
4609 		   hweight8(sseu->subslice_mask));
4610 	seq_printf(m, "  %s EU Total: %u\n", type,
4611 		   sseu->eu_total);
4612 	seq_printf(m, "  %s EU Per Subslice: %u\n", type,
4613 		   sseu->eu_per_subslice);
4614 
4615 	if (!is_available_info)
4616 		return;
4617 
4618 	seq_printf(m, "  Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
4619 	if (HAS_POOLED_EU(dev_priv))
4620 		seq_printf(m, "  Min EU in pool: %u\n", sseu->min_eu_in_pool);
4621 
4622 	seq_printf(m, "  Has Slice Power Gating: %s\n",
4623 		   yesno(sseu->has_slice_pg));
4624 	seq_printf(m, "  Has Subslice Power Gating: %s\n",
4625 		   yesno(sseu->has_subslice_pg));
4626 	seq_printf(m, "  Has EU Power Gating: %s\n",
4627 		   yesno(sseu->has_eu_pg));
4628 }
4629 
4630 static int i915_sseu_status(struct seq_file *m, void *unused)
4631 {
4632 	struct drm_i915_private *dev_priv = node_to_i915(m->private);
4633 	struct sseu_dev_info sseu;
4634 
4635 	if (INTEL_GEN(dev_priv) < 8)
4636 		return -ENODEV;
4637 
4638 	seq_puts(m, "SSEU Device Info\n");
4639 	i915_print_sseu_info(m, true, &INTEL_INFO(dev_priv)->sseu);
4640 
4641 	seq_puts(m, "SSEU Device Status\n");
4642 	memset(&sseu, 0, sizeof(sseu));
4643 
4644 	intel_runtime_pm_get(dev_priv);
4645 
4646 	if (IS_CHERRYVIEW(dev_priv)) {
4647 		cherryview_sseu_device_status(dev_priv, &sseu);
4648 	} else if (IS_BROADWELL(dev_priv)) {
4649 		broadwell_sseu_device_status(dev_priv, &sseu);
4650 	} else if (INTEL_GEN(dev_priv) >= 9) {
4651 		gen9_sseu_device_status(dev_priv, &sseu);
4652 	}
4653 
4654 	intel_runtime_pm_put(dev_priv);
4655 
4656 	i915_print_sseu_info(m, false, &sseu);
4657 
4658 	return 0;
4659 }
4660 
4661 static int i915_forcewake_open(struct inode *inode, struct file *file)
4662 {
4663 	struct drm_i915_private *dev_priv = inode->i_private;
4664 
4665 	if (INTEL_GEN(dev_priv) < 6)
4666 		return 0;
4667 
4668 	intel_runtime_pm_get(dev_priv);
4669 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4670 
4671 	return 0;
4672 }
4673 
4674 static int i915_forcewake_release(struct inode *inode, struct file *file)
4675 {
4676 	struct drm_i915_private *dev_priv = inode->i_private;
4677 
4678 	if (INTEL_GEN(dev_priv) < 6)
4679 		return 0;
4680 
4681 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4682 	intel_runtime_pm_put(dev_priv);
4683 
4684 	return 0;
4685 }
4686 
4687 static const struct file_operations i915_forcewake_fops = {
4688 	.owner = THIS_MODULE,
4689 	.open = i915_forcewake_open,
4690 	.release = i915_forcewake_release,
4691 };
4692 
4693 static int i915_hpd_storm_ctl_show(struct seq_file *m, void *data)
4694 {
4695 	struct drm_i915_private *dev_priv = m->private;
4696 	struct i915_hotplug *hotplug = &dev_priv->hotplug;
4697 
4698 	seq_printf(m, "Threshold: %d\n", hotplug->hpd_storm_threshold);
4699 	seq_printf(m, "Detected: %s\n",
4700 		   yesno(delayed_work_pending(&hotplug->reenable_work)));
4701 
4702 	return 0;
4703 }
4704 
4705 static ssize_t i915_hpd_storm_ctl_write(struct file *file,
4706 					const char __user *ubuf, size_t len,
4707 					loff_t *offp)
4708 {
4709 	struct seq_file *m = file->private_data;
4710 	struct drm_i915_private *dev_priv = m->private;
4711 	struct i915_hotplug *hotplug = &dev_priv->hotplug;
4712 	unsigned int new_threshold;
4713 	int i;
4714 	char *newline;
4715 	char tmp[16];
4716 
4717 	if (len >= sizeof(tmp))
4718 		return -EINVAL;
4719 
4720 	if (copy_from_user(tmp, ubuf, len))
4721 		return -EFAULT;
4722 
4723 	tmp[len] = '\0';
4724 
4725 	/* Strip newline, if any */
4726 	newline = strchr(tmp, '\n');
4727 	if (newline)
4728 		*newline = '\0';
4729 
4730 	if (strcmp(tmp, "reset") == 0)
4731 		new_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4732 	else if (kstrtouint(tmp, 10, &new_threshold) != 0)
4733 		return -EINVAL;
4734 
4735 	if (new_threshold > 0)
4736 		DRM_DEBUG_KMS("Setting HPD storm detection threshold to %d\n",
4737 			      new_threshold);
4738 	else
4739 		DRM_DEBUG_KMS("Disabling HPD storm detection\n");
4740 
4741 	spin_lock_irq(&dev_priv->irq_lock);
4742 	hotplug->hpd_storm_threshold = new_threshold;
4743 	/* Reset the HPD storm stats so we don't accidentally trigger a storm */
4744 	for_each_hpd_pin(i)
4745 		hotplug->stats[i].count = 0;
4746 	spin_unlock_irq(&dev_priv->irq_lock);
4747 
4748 	/* Re-enable hpd immediately if we were in an irq storm */
4749 	flush_delayed_work(&dev_priv->hotplug.reenable_work);
4750 
4751 	return len;
4752 }
4753 
4754 static int i915_hpd_storm_ctl_open(struct inode *inode, struct file *file)
4755 {
4756 	return single_open(file, i915_hpd_storm_ctl_show, inode->i_private);
4757 }
4758 
4759 static const struct file_operations i915_hpd_storm_ctl_fops = {
4760 	.owner = THIS_MODULE,
4761 	.open = i915_hpd_storm_ctl_open,
4762 	.read = seq_read,
4763 	.llseek = seq_lseek,
4764 	.release = single_release,
4765 	.write = i915_hpd_storm_ctl_write
4766 };
4767 
4768 static const struct drm_info_list i915_debugfs_list[] = {
4769 	{"i915_capabilities", i915_capabilities, 0},
4770 	{"i915_gem_objects", i915_gem_object_info, 0},
4771 	{"i915_gem_gtt", i915_gem_gtt_info, 0},
4772 	{"i915_gem_pin_display", i915_gem_gtt_info, 0, (void *)1},
4773 	{"i915_gem_stolen", i915_gem_stolen_list_info },
4774 	{"i915_gem_pageflip", i915_gem_pageflip_info, 0},
4775 	{"i915_gem_request", i915_gem_request_info, 0},
4776 	{"i915_gem_seqno", i915_gem_seqno_info, 0},
4777 	{"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
4778 	{"i915_gem_interrupt", i915_interrupt_info, 0},
4779 	{"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
4780 	{"i915_guc_info", i915_guc_info, 0},
4781 	{"i915_guc_load_status", i915_guc_load_status_info, 0},
4782 	{"i915_guc_log_dump", i915_guc_log_dump, 0},
4783 	{"i915_huc_load_status", i915_huc_load_status_info, 0},
4784 	{"i915_frequency_info", i915_frequency_info, 0},
4785 	{"i915_hangcheck_info", i915_hangcheck_info, 0},
4786 	{"i915_drpc_info", i915_drpc_info, 0},
4787 	{"i915_emon_status", i915_emon_status, 0},
4788 	{"i915_ring_freq_table", i915_ring_freq_table, 0},
4789 	{"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
4790 	{"i915_fbc_status", i915_fbc_status, 0},
4791 	{"i915_ips_status", i915_ips_status, 0},
4792 	{"i915_sr_status", i915_sr_status, 0},
4793 	{"i915_opregion", i915_opregion, 0},
4794 	{"i915_vbt", i915_vbt, 0},
4795 	{"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
4796 	{"i915_context_status", i915_context_status, 0},
4797 	{"i915_dump_lrc", i915_dump_lrc, 0},
4798 	{"i915_forcewake_domains", i915_forcewake_domains, 0},
4799 	{"i915_swizzle_info", i915_swizzle_info, 0},
4800 	{"i915_ppgtt_info", i915_ppgtt_info, 0},
4801 	{"i915_llc", i915_llc, 0},
4802 	{"i915_edp_psr_status", i915_edp_psr_status, 0},
4803 	{"i915_sink_crc_eDP1", i915_sink_crc, 0},
4804 	{"i915_energy_uJ", i915_energy_uJ, 0},
4805 	{"i915_runtime_pm_status", i915_runtime_pm_status, 0},
4806 	{"i915_power_domain_info", i915_power_domain_info, 0},
4807 	{"i915_dmc_info", i915_dmc_info, 0},
4808 	{"i915_display_info", i915_display_info, 0},
4809 	{"i915_engine_info", i915_engine_info, 0},
4810 	{"i915_semaphore_status", i915_semaphore_status, 0},
4811 	{"i915_shared_dplls_info", i915_shared_dplls_info, 0},
4812 	{"i915_dp_mst_info", i915_dp_mst_info, 0},
4813 	{"i915_wa_registers", i915_wa_registers, 0},
4814 	{"i915_ddb_info", i915_ddb_info, 0},
4815 	{"i915_sseu_status", i915_sseu_status, 0},
4816 	{"i915_drrs_status", i915_drrs_status, 0},
4817 	{"i915_rps_boost_info", i915_rps_boost_info, 0},
4818 };
4819 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
4820 
4821 static const struct i915_debugfs_files {
4822 	const char *name;
4823 	const struct file_operations *fops;
4824 } i915_debugfs_files[] = {
4825 	{"i915_wedged", &i915_wedged_fops},
4826 	{"i915_max_freq", &i915_max_freq_fops},
4827 	{"i915_min_freq", &i915_min_freq_fops},
4828 	{"i915_cache_sharing", &i915_cache_sharing_fops},
4829 	{"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
4830 	{"i915_ring_test_irq", &i915_ring_test_irq_fops},
4831 	{"i915_gem_drop_caches", &i915_drop_caches_fops},
4832 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
4833 	{"i915_error_state", &i915_error_state_fops},
4834 	{"i915_gpu_info", &i915_gpu_info_fops},
4835 #endif
4836 	{"i915_next_seqno", &i915_next_seqno_fops},
4837 	{"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
4838 	{"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
4839 	{"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
4840 	{"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
4841 	{"i915_fbc_false_color", &i915_fbc_fc_fops},
4842 	{"i915_dp_test_data", &i915_displayport_test_data_fops},
4843 	{"i915_dp_test_type", &i915_displayport_test_type_fops},
4844 	{"i915_dp_test_active", &i915_displayport_test_active_fops},
4845 	{"i915_guc_log_control", &i915_guc_log_control_fops},
4846 	{"i915_hpd_storm_ctl", &i915_hpd_storm_ctl_fops}
4847 };
4848 
4849 int i915_debugfs_register(struct drm_i915_private *dev_priv)
4850 {
4851 	struct drm_minor *minor = dev_priv->drm.primary;
4852 	struct dentry *ent;
4853 	int ret, i;
4854 
4855 	ent = debugfs_create_file("i915_forcewake_user", S_IRUSR,
4856 				  minor->debugfs_root, to_i915(minor->dev),
4857 				  &i915_forcewake_fops);
4858 	if (!ent)
4859 		return -ENOMEM;
4860 
4861 	ret = intel_pipe_crc_create(minor);
4862 	if (ret)
4863 		return ret;
4864 
4865 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4866 		ent = debugfs_create_file(i915_debugfs_files[i].name,
4867 					  S_IRUGO | S_IWUSR,
4868 					  minor->debugfs_root,
4869 					  to_i915(minor->dev),
4870 					  i915_debugfs_files[i].fops);
4871 		if (!ent)
4872 			return -ENOMEM;
4873 	}
4874 
4875 	return drm_debugfs_create_files(i915_debugfs_list,
4876 					I915_DEBUGFS_ENTRIES,
4877 					minor->debugfs_root, minor);
4878 }
4879 
4880 struct dpcd_block {
4881 	/* DPCD dump start address. */
4882 	unsigned int offset;
4883 	/* DPCD dump end address, inclusive. If unset, .size will be used. */
4884 	unsigned int end;
4885 	/* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
4886 	size_t size;
4887 	/* Only valid for eDP. */
4888 	bool edp;
4889 };
4890 
4891 static const struct dpcd_block i915_dpcd_debug[] = {
4892 	{ .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
4893 	{ .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
4894 	{ .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
4895 	{ .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
4896 	{ .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
4897 	{ .offset = DP_SET_POWER },
4898 	{ .offset = DP_EDP_DPCD_REV },
4899 	{ .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
4900 	{ .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
4901 	{ .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
4902 };
4903 
4904 static int i915_dpcd_show(struct seq_file *m, void *data)
4905 {
4906 	struct drm_connector *connector = m->private;
4907 	struct intel_dp *intel_dp =
4908 		enc_to_intel_dp(&intel_attached_encoder(connector)->base);
4909 	uint8_t buf[16];
4910 	ssize_t err;
4911 	int i;
4912 
4913 	if (connector->status != connector_status_connected)
4914 		return -ENODEV;
4915 
4916 	for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
4917 		const struct dpcd_block *b = &i915_dpcd_debug[i];
4918 		size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
4919 
4920 		if (b->edp &&
4921 		    connector->connector_type != DRM_MODE_CONNECTOR_eDP)
4922 			continue;
4923 
4924 		/* low tech for now */
4925 		if (WARN_ON(size > sizeof(buf)))
4926 			continue;
4927 
4928 		err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
4929 		if (err <= 0) {
4930 			DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
4931 				  size, b->offset, err);
4932 			continue;
4933 		}
4934 
4935 		seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
4936 	}
4937 
4938 	return 0;
4939 }
4940 
4941 static int i915_dpcd_open(struct inode *inode, struct file *file)
4942 {
4943 	return single_open(file, i915_dpcd_show, inode->i_private);
4944 }
4945 
4946 static const struct file_operations i915_dpcd_fops = {
4947 	.owner = THIS_MODULE,
4948 	.open = i915_dpcd_open,
4949 	.read = seq_read,
4950 	.llseek = seq_lseek,
4951 	.release = single_release,
4952 };
4953 
4954 static int i915_panel_show(struct seq_file *m, void *data)
4955 {
4956 	struct drm_connector *connector = m->private;
4957 	struct intel_dp *intel_dp =
4958 		enc_to_intel_dp(&intel_attached_encoder(connector)->base);
4959 
4960 	if (connector->status != connector_status_connected)
4961 		return -ENODEV;
4962 
4963 	seq_printf(m, "Panel power up delay: %d\n",
4964 		   intel_dp->panel_power_up_delay);
4965 	seq_printf(m, "Panel power down delay: %d\n",
4966 		   intel_dp->panel_power_down_delay);
4967 	seq_printf(m, "Backlight on delay: %d\n",
4968 		   intel_dp->backlight_on_delay);
4969 	seq_printf(m, "Backlight off delay: %d\n",
4970 		   intel_dp->backlight_off_delay);
4971 
4972 	return 0;
4973 }
4974 
4975 static int i915_panel_open(struct inode *inode, struct file *file)
4976 {
4977 	return single_open(file, i915_panel_show, inode->i_private);
4978 }
4979 
4980 static const struct file_operations i915_panel_fops = {
4981 	.owner = THIS_MODULE,
4982 	.open = i915_panel_open,
4983 	.read = seq_read,
4984 	.llseek = seq_lseek,
4985 	.release = single_release,
4986 };
4987 
4988 /**
4989  * i915_debugfs_connector_add - add i915 specific connector debugfs files
4990  * @connector: pointer to a registered drm_connector
4991  *
4992  * Cleanup will be done by drm_connector_unregister() through a call to
4993  * drm_debugfs_connector_remove().
4994  *
4995  * Returns 0 on success, negative error codes on error.
4996  */
4997 int i915_debugfs_connector_add(struct drm_connector *connector)
4998 {
4999 	struct dentry *root = connector->debugfs_entry;
5000 
5001 	/* The connector must have been registered beforehands. */
5002 	if (!root)
5003 		return -ENODEV;
5004 
5005 	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5006 	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5007 		debugfs_create_file("i915_dpcd", S_IRUGO, root,
5008 				    connector, &i915_dpcd_fops);
5009 
5010 	if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5011 		debugfs_create_file("i915_panel_timings", S_IRUGO, root,
5012 				    connector, &i915_panel_fops);
5013 
5014 	return 0;
5015 }
5016