xref: /linux/drivers/gpu/drm/i915/i915_debugfs.c (revision 5ba0a3be6ecc3a0b0d52c2a818b05564c6b42510)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28 
29 #include <linux/seq_file.h>
30 #include <linux/debugfs.h>
31 #include <linux/slab.h>
32 #include <linux/export.h>
33 #include <drm/drmP.h>
34 #include "intel_drv.h"
35 #include "intel_ringbuffer.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38 
39 #define DRM_I915_RING_DEBUG 1
40 
41 
42 #if defined(CONFIG_DEBUG_FS)
43 
44 enum {
45 	ACTIVE_LIST,
46 	INACTIVE_LIST,
47 	PINNED_LIST,
48 };
49 
50 static const char *yesno(int v)
51 {
52 	return v ? "yes" : "no";
53 }
54 
55 static int i915_capabilities(struct seq_file *m, void *data)
56 {
57 	struct drm_info_node *node = (struct drm_info_node *) m->private;
58 	struct drm_device *dev = node->minor->dev;
59 	const struct intel_device_info *info = INTEL_INFO(dev);
60 
61 	seq_printf(m, "gen: %d\n", info->gen);
62 	seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
63 #define DEV_INFO_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
64 #define DEV_INFO_SEP ;
65 	DEV_INFO_FLAGS;
66 #undef DEV_INFO_FLAG
67 #undef DEV_INFO_SEP
68 
69 	return 0;
70 }
71 
72 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
73 {
74 	if (obj->user_pin_count > 0)
75 		return "P";
76 	else if (obj->pin_count > 0)
77 		return "p";
78 	else
79 		return " ";
80 }
81 
82 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
83 {
84 	switch (obj->tiling_mode) {
85 	default:
86 	case I915_TILING_NONE: return " ";
87 	case I915_TILING_X: return "X";
88 	case I915_TILING_Y: return "Y";
89 	}
90 }
91 
92 static const char *cache_level_str(int type)
93 {
94 	switch (type) {
95 	case I915_CACHE_NONE: return " uncached";
96 	case I915_CACHE_LLC: return " snooped (LLC)";
97 	case I915_CACHE_LLC_MLC: return " snooped (LLC+MLC)";
98 	default: return "";
99 	}
100 }
101 
102 static void
103 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
104 {
105 	seq_printf(m, "%p: %s%s %8zdKiB %04x %04x %d %d %d%s%s%s",
106 		   &obj->base,
107 		   get_pin_flag(obj),
108 		   get_tiling_flag(obj),
109 		   obj->base.size / 1024,
110 		   obj->base.read_domains,
111 		   obj->base.write_domain,
112 		   obj->last_read_seqno,
113 		   obj->last_write_seqno,
114 		   obj->last_fenced_seqno,
115 		   cache_level_str(obj->cache_level),
116 		   obj->dirty ? " dirty" : "",
117 		   obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
118 	if (obj->base.name)
119 		seq_printf(m, " (name: %d)", obj->base.name);
120 	if (obj->pin_count)
121 		seq_printf(m, " (pinned x %d)", obj->pin_count);
122 	if (obj->fence_reg != I915_FENCE_REG_NONE)
123 		seq_printf(m, " (fence: %d)", obj->fence_reg);
124 	if (obj->gtt_space != NULL)
125 		seq_printf(m, " (gtt offset: %08x, size: %08x)",
126 			   obj->gtt_offset, (unsigned int)obj->gtt_space->size);
127 	if (obj->pin_mappable || obj->fault_mappable) {
128 		char s[3], *t = s;
129 		if (obj->pin_mappable)
130 			*t++ = 'p';
131 		if (obj->fault_mappable)
132 			*t++ = 'f';
133 		*t = '\0';
134 		seq_printf(m, " (%s mappable)", s);
135 	}
136 	if (obj->ring != NULL)
137 		seq_printf(m, " (%s)", obj->ring->name);
138 }
139 
140 static int i915_gem_object_list_info(struct seq_file *m, void *data)
141 {
142 	struct drm_info_node *node = (struct drm_info_node *) m->private;
143 	uintptr_t list = (uintptr_t) node->info_ent->data;
144 	struct list_head *head;
145 	struct drm_device *dev = node->minor->dev;
146 	drm_i915_private_t *dev_priv = dev->dev_private;
147 	struct drm_i915_gem_object *obj;
148 	size_t total_obj_size, total_gtt_size;
149 	int count, ret;
150 
151 	ret = mutex_lock_interruptible(&dev->struct_mutex);
152 	if (ret)
153 		return ret;
154 
155 	switch (list) {
156 	case ACTIVE_LIST:
157 		seq_printf(m, "Active:\n");
158 		head = &dev_priv->mm.active_list;
159 		break;
160 	case INACTIVE_LIST:
161 		seq_printf(m, "Inactive:\n");
162 		head = &dev_priv->mm.inactive_list;
163 		break;
164 	default:
165 		mutex_unlock(&dev->struct_mutex);
166 		return -EINVAL;
167 	}
168 
169 	total_obj_size = total_gtt_size = count = 0;
170 	list_for_each_entry(obj, head, mm_list) {
171 		seq_printf(m, "   ");
172 		describe_obj(m, obj);
173 		seq_printf(m, "\n");
174 		total_obj_size += obj->base.size;
175 		total_gtt_size += obj->gtt_space->size;
176 		count++;
177 	}
178 	mutex_unlock(&dev->struct_mutex);
179 
180 	seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
181 		   count, total_obj_size, total_gtt_size);
182 	return 0;
183 }
184 
185 #define count_objects(list, member) do { \
186 	list_for_each_entry(obj, list, member) { \
187 		size += obj->gtt_space->size; \
188 		++count; \
189 		if (obj->map_and_fenceable) { \
190 			mappable_size += obj->gtt_space->size; \
191 			++mappable_count; \
192 		} \
193 	} \
194 } while (0)
195 
196 static int i915_gem_object_info(struct seq_file *m, void* data)
197 {
198 	struct drm_info_node *node = (struct drm_info_node *) m->private;
199 	struct drm_device *dev = node->minor->dev;
200 	struct drm_i915_private *dev_priv = dev->dev_private;
201 	u32 count, mappable_count, purgeable_count;
202 	size_t size, mappable_size, purgeable_size;
203 	struct drm_i915_gem_object *obj;
204 	int ret;
205 
206 	ret = mutex_lock_interruptible(&dev->struct_mutex);
207 	if (ret)
208 		return ret;
209 
210 	seq_printf(m, "%u objects, %zu bytes\n",
211 		   dev_priv->mm.object_count,
212 		   dev_priv->mm.object_memory);
213 
214 	size = count = mappable_size = mappable_count = 0;
215 	count_objects(&dev_priv->mm.bound_list, gtt_list);
216 	seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
217 		   count, mappable_count, size, mappable_size);
218 
219 	size = count = mappable_size = mappable_count = 0;
220 	count_objects(&dev_priv->mm.active_list, mm_list);
221 	seq_printf(m, "  %u [%u] active objects, %zu [%zu] bytes\n",
222 		   count, mappable_count, size, mappable_size);
223 
224 	size = count = mappable_size = mappable_count = 0;
225 	count_objects(&dev_priv->mm.inactive_list, mm_list);
226 	seq_printf(m, "  %u [%u] inactive objects, %zu [%zu] bytes\n",
227 		   count, mappable_count, size, mappable_size);
228 
229 	size = count = purgeable_size = purgeable_count = 0;
230 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list) {
231 		size += obj->base.size, ++count;
232 		if (obj->madv == I915_MADV_DONTNEED)
233 			purgeable_size += obj->base.size, ++purgeable_count;
234 	}
235 	seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
236 
237 	size = count = mappable_size = mappable_count = 0;
238 	list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list) {
239 		if (obj->fault_mappable) {
240 			size += obj->gtt_space->size;
241 			++count;
242 		}
243 		if (obj->pin_mappable) {
244 			mappable_size += obj->gtt_space->size;
245 			++mappable_count;
246 		}
247 		if (obj->madv == I915_MADV_DONTNEED) {
248 			purgeable_size += obj->base.size;
249 			++purgeable_count;
250 		}
251 	}
252 	seq_printf(m, "%u purgeable objects, %zu bytes\n",
253 		   purgeable_count, purgeable_size);
254 	seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
255 		   mappable_count, mappable_size);
256 	seq_printf(m, "%u fault mappable objects, %zu bytes\n",
257 		   count, size);
258 
259 	seq_printf(m, "%zu [%zu] gtt total\n",
260 		   dev_priv->mm.gtt_total, dev_priv->mm.mappable_gtt_total);
261 
262 	mutex_unlock(&dev->struct_mutex);
263 
264 	return 0;
265 }
266 
267 static int i915_gem_gtt_info(struct seq_file *m, void* data)
268 {
269 	struct drm_info_node *node = (struct drm_info_node *) m->private;
270 	struct drm_device *dev = node->minor->dev;
271 	uintptr_t list = (uintptr_t) node->info_ent->data;
272 	struct drm_i915_private *dev_priv = dev->dev_private;
273 	struct drm_i915_gem_object *obj;
274 	size_t total_obj_size, total_gtt_size;
275 	int count, ret;
276 
277 	ret = mutex_lock_interruptible(&dev->struct_mutex);
278 	if (ret)
279 		return ret;
280 
281 	total_obj_size = total_gtt_size = count = 0;
282 	list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list) {
283 		if (list == PINNED_LIST && obj->pin_count == 0)
284 			continue;
285 
286 		seq_printf(m, "   ");
287 		describe_obj(m, obj);
288 		seq_printf(m, "\n");
289 		total_obj_size += obj->base.size;
290 		total_gtt_size += obj->gtt_space->size;
291 		count++;
292 	}
293 
294 	mutex_unlock(&dev->struct_mutex);
295 
296 	seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
297 		   count, total_obj_size, total_gtt_size);
298 
299 	return 0;
300 }
301 
302 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
303 {
304 	struct drm_info_node *node = (struct drm_info_node *) m->private;
305 	struct drm_device *dev = node->minor->dev;
306 	unsigned long flags;
307 	struct intel_crtc *crtc;
308 
309 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
310 		const char pipe = pipe_name(crtc->pipe);
311 		const char plane = plane_name(crtc->plane);
312 		struct intel_unpin_work *work;
313 
314 		spin_lock_irqsave(&dev->event_lock, flags);
315 		work = crtc->unpin_work;
316 		if (work == NULL) {
317 			seq_printf(m, "No flip due on pipe %c (plane %c)\n",
318 				   pipe, plane);
319 		} else {
320 			if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
321 				seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
322 					   pipe, plane);
323 			} else {
324 				seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
325 					   pipe, plane);
326 			}
327 			if (work->enable_stall_check)
328 				seq_printf(m, "Stall check enabled, ");
329 			else
330 				seq_printf(m, "Stall check waiting for page flip ioctl, ");
331 			seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
332 
333 			if (work->old_fb_obj) {
334 				struct drm_i915_gem_object *obj = work->old_fb_obj;
335 				if (obj)
336 					seq_printf(m, "Old framebuffer gtt_offset 0x%08x\n", obj->gtt_offset);
337 			}
338 			if (work->pending_flip_obj) {
339 				struct drm_i915_gem_object *obj = work->pending_flip_obj;
340 				if (obj)
341 					seq_printf(m, "New framebuffer gtt_offset 0x%08x\n", obj->gtt_offset);
342 			}
343 		}
344 		spin_unlock_irqrestore(&dev->event_lock, flags);
345 	}
346 
347 	return 0;
348 }
349 
350 static int i915_gem_request_info(struct seq_file *m, void *data)
351 {
352 	struct drm_info_node *node = (struct drm_info_node *) m->private;
353 	struct drm_device *dev = node->minor->dev;
354 	drm_i915_private_t *dev_priv = dev->dev_private;
355 	struct intel_ring_buffer *ring;
356 	struct drm_i915_gem_request *gem_request;
357 	int ret, count, i;
358 
359 	ret = mutex_lock_interruptible(&dev->struct_mutex);
360 	if (ret)
361 		return ret;
362 
363 	count = 0;
364 	for_each_ring(ring, dev_priv, i) {
365 		if (list_empty(&ring->request_list))
366 			continue;
367 
368 		seq_printf(m, "%s requests:\n", ring->name);
369 		list_for_each_entry(gem_request,
370 				    &ring->request_list,
371 				    list) {
372 			seq_printf(m, "    %d @ %d\n",
373 				   gem_request->seqno,
374 				   (int) (jiffies - gem_request->emitted_jiffies));
375 		}
376 		count++;
377 	}
378 	mutex_unlock(&dev->struct_mutex);
379 
380 	if (count == 0)
381 		seq_printf(m, "No requests\n");
382 
383 	return 0;
384 }
385 
386 static void i915_ring_seqno_info(struct seq_file *m,
387 				 struct intel_ring_buffer *ring)
388 {
389 	if (ring->get_seqno) {
390 		seq_printf(m, "Current sequence (%s): %d\n",
391 			   ring->name, ring->get_seqno(ring, false));
392 	}
393 }
394 
395 static int i915_gem_seqno_info(struct seq_file *m, void *data)
396 {
397 	struct drm_info_node *node = (struct drm_info_node *) m->private;
398 	struct drm_device *dev = node->minor->dev;
399 	drm_i915_private_t *dev_priv = dev->dev_private;
400 	struct intel_ring_buffer *ring;
401 	int ret, i;
402 
403 	ret = mutex_lock_interruptible(&dev->struct_mutex);
404 	if (ret)
405 		return ret;
406 
407 	for_each_ring(ring, dev_priv, i)
408 		i915_ring_seqno_info(m, ring);
409 
410 	mutex_unlock(&dev->struct_mutex);
411 
412 	return 0;
413 }
414 
415 
416 static int i915_interrupt_info(struct seq_file *m, void *data)
417 {
418 	struct drm_info_node *node = (struct drm_info_node *) m->private;
419 	struct drm_device *dev = node->minor->dev;
420 	drm_i915_private_t *dev_priv = dev->dev_private;
421 	struct intel_ring_buffer *ring;
422 	int ret, i, pipe;
423 
424 	ret = mutex_lock_interruptible(&dev->struct_mutex);
425 	if (ret)
426 		return ret;
427 
428 	if (IS_VALLEYVIEW(dev)) {
429 		seq_printf(m, "Display IER:\t%08x\n",
430 			   I915_READ(VLV_IER));
431 		seq_printf(m, "Display IIR:\t%08x\n",
432 			   I915_READ(VLV_IIR));
433 		seq_printf(m, "Display IIR_RW:\t%08x\n",
434 			   I915_READ(VLV_IIR_RW));
435 		seq_printf(m, "Display IMR:\t%08x\n",
436 			   I915_READ(VLV_IMR));
437 		for_each_pipe(pipe)
438 			seq_printf(m, "Pipe %c stat:\t%08x\n",
439 				   pipe_name(pipe),
440 				   I915_READ(PIPESTAT(pipe)));
441 
442 		seq_printf(m, "Master IER:\t%08x\n",
443 			   I915_READ(VLV_MASTER_IER));
444 
445 		seq_printf(m, "Render IER:\t%08x\n",
446 			   I915_READ(GTIER));
447 		seq_printf(m, "Render IIR:\t%08x\n",
448 			   I915_READ(GTIIR));
449 		seq_printf(m, "Render IMR:\t%08x\n",
450 			   I915_READ(GTIMR));
451 
452 		seq_printf(m, "PM IER:\t\t%08x\n",
453 			   I915_READ(GEN6_PMIER));
454 		seq_printf(m, "PM IIR:\t\t%08x\n",
455 			   I915_READ(GEN6_PMIIR));
456 		seq_printf(m, "PM IMR:\t\t%08x\n",
457 			   I915_READ(GEN6_PMIMR));
458 
459 		seq_printf(m, "Port hotplug:\t%08x\n",
460 			   I915_READ(PORT_HOTPLUG_EN));
461 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
462 			   I915_READ(VLV_DPFLIPSTAT));
463 		seq_printf(m, "DPINVGTT:\t%08x\n",
464 			   I915_READ(DPINVGTT));
465 
466 	} else if (!HAS_PCH_SPLIT(dev)) {
467 		seq_printf(m, "Interrupt enable:    %08x\n",
468 			   I915_READ(IER));
469 		seq_printf(m, "Interrupt identity:  %08x\n",
470 			   I915_READ(IIR));
471 		seq_printf(m, "Interrupt mask:      %08x\n",
472 			   I915_READ(IMR));
473 		for_each_pipe(pipe)
474 			seq_printf(m, "Pipe %c stat:         %08x\n",
475 				   pipe_name(pipe),
476 				   I915_READ(PIPESTAT(pipe)));
477 	} else {
478 		seq_printf(m, "North Display Interrupt enable:		%08x\n",
479 			   I915_READ(DEIER));
480 		seq_printf(m, "North Display Interrupt identity:	%08x\n",
481 			   I915_READ(DEIIR));
482 		seq_printf(m, "North Display Interrupt mask:		%08x\n",
483 			   I915_READ(DEIMR));
484 		seq_printf(m, "South Display Interrupt enable:		%08x\n",
485 			   I915_READ(SDEIER));
486 		seq_printf(m, "South Display Interrupt identity:	%08x\n",
487 			   I915_READ(SDEIIR));
488 		seq_printf(m, "South Display Interrupt mask:		%08x\n",
489 			   I915_READ(SDEIMR));
490 		seq_printf(m, "Graphics Interrupt enable:		%08x\n",
491 			   I915_READ(GTIER));
492 		seq_printf(m, "Graphics Interrupt identity:		%08x\n",
493 			   I915_READ(GTIIR));
494 		seq_printf(m, "Graphics Interrupt mask:		%08x\n",
495 			   I915_READ(GTIMR));
496 	}
497 	seq_printf(m, "Interrupts received: %d\n",
498 		   atomic_read(&dev_priv->irq_received));
499 	for_each_ring(ring, dev_priv, i) {
500 		if (IS_GEN6(dev) || IS_GEN7(dev)) {
501 			seq_printf(m,
502 				   "Graphics Interrupt mask (%s):	%08x\n",
503 				   ring->name, I915_READ_IMR(ring));
504 		}
505 		i915_ring_seqno_info(m, ring);
506 	}
507 	mutex_unlock(&dev->struct_mutex);
508 
509 	return 0;
510 }
511 
512 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
513 {
514 	struct drm_info_node *node = (struct drm_info_node *) m->private;
515 	struct drm_device *dev = node->minor->dev;
516 	drm_i915_private_t *dev_priv = dev->dev_private;
517 	int i, ret;
518 
519 	ret = mutex_lock_interruptible(&dev->struct_mutex);
520 	if (ret)
521 		return ret;
522 
523 	seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
524 	seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
525 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
526 		struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
527 
528 		seq_printf(m, "Fence %d, pin count = %d, object = ",
529 			   i, dev_priv->fence_regs[i].pin_count);
530 		if (obj == NULL)
531 			seq_printf(m, "unused");
532 		else
533 			describe_obj(m, obj);
534 		seq_printf(m, "\n");
535 	}
536 
537 	mutex_unlock(&dev->struct_mutex);
538 	return 0;
539 }
540 
541 static int i915_hws_info(struct seq_file *m, void *data)
542 {
543 	struct drm_info_node *node = (struct drm_info_node *) m->private;
544 	struct drm_device *dev = node->minor->dev;
545 	drm_i915_private_t *dev_priv = dev->dev_private;
546 	struct intel_ring_buffer *ring;
547 	const volatile u32 __iomem *hws;
548 	int i;
549 
550 	ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
551 	hws = (volatile u32 __iomem *)ring->status_page.page_addr;
552 	if (hws == NULL)
553 		return 0;
554 
555 	for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
556 		seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
557 			   i * 4,
558 			   hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
559 	}
560 	return 0;
561 }
562 
563 static const char *ring_str(int ring)
564 {
565 	switch (ring) {
566 	case RCS: return "render";
567 	case VCS: return "bsd";
568 	case BCS: return "blt";
569 	default: return "";
570 	}
571 }
572 
573 static const char *pin_flag(int pinned)
574 {
575 	if (pinned > 0)
576 		return " P";
577 	else if (pinned < 0)
578 		return " p";
579 	else
580 		return "";
581 }
582 
583 static const char *tiling_flag(int tiling)
584 {
585 	switch (tiling) {
586 	default:
587 	case I915_TILING_NONE: return "";
588 	case I915_TILING_X: return " X";
589 	case I915_TILING_Y: return " Y";
590 	}
591 }
592 
593 static const char *dirty_flag(int dirty)
594 {
595 	return dirty ? " dirty" : "";
596 }
597 
598 static const char *purgeable_flag(int purgeable)
599 {
600 	return purgeable ? " purgeable" : "";
601 }
602 
603 static void print_error_buffers(struct seq_file *m,
604 				const char *name,
605 				struct drm_i915_error_buffer *err,
606 				int count)
607 {
608 	seq_printf(m, "%s [%d]:\n", name, count);
609 
610 	while (count--) {
611 		seq_printf(m, "  %08x %8u %04x %04x %x %x%s%s%s%s%s%s%s",
612 			   err->gtt_offset,
613 			   err->size,
614 			   err->read_domains,
615 			   err->write_domain,
616 			   err->rseqno, err->wseqno,
617 			   pin_flag(err->pinned),
618 			   tiling_flag(err->tiling),
619 			   dirty_flag(err->dirty),
620 			   purgeable_flag(err->purgeable),
621 			   err->ring != -1 ? " " : "",
622 			   ring_str(err->ring),
623 			   cache_level_str(err->cache_level));
624 
625 		if (err->name)
626 			seq_printf(m, " (name: %d)", err->name);
627 		if (err->fence_reg != I915_FENCE_REG_NONE)
628 			seq_printf(m, " (fence: %d)", err->fence_reg);
629 
630 		seq_printf(m, "\n");
631 		err++;
632 	}
633 }
634 
635 static void i915_ring_error_state(struct seq_file *m,
636 				  struct drm_device *dev,
637 				  struct drm_i915_error_state *error,
638 				  unsigned ring)
639 {
640 	BUG_ON(ring >= I915_NUM_RINGS); /* shut up confused gcc */
641 	seq_printf(m, "%s command stream:\n", ring_str(ring));
642 	seq_printf(m, "  HEAD: 0x%08x\n", error->head[ring]);
643 	seq_printf(m, "  TAIL: 0x%08x\n", error->tail[ring]);
644 	seq_printf(m, "  ACTHD: 0x%08x\n", error->acthd[ring]);
645 	seq_printf(m, "  IPEIR: 0x%08x\n", error->ipeir[ring]);
646 	seq_printf(m, "  IPEHR: 0x%08x\n", error->ipehr[ring]);
647 	seq_printf(m, "  INSTDONE: 0x%08x\n", error->instdone[ring]);
648 	if (ring == RCS && INTEL_INFO(dev)->gen >= 4)
649 		seq_printf(m, "  BBADDR: 0x%08llx\n", error->bbaddr);
650 
651 	if (INTEL_INFO(dev)->gen >= 4)
652 		seq_printf(m, "  INSTPS: 0x%08x\n", error->instps[ring]);
653 	seq_printf(m, "  INSTPM: 0x%08x\n", error->instpm[ring]);
654 	seq_printf(m, "  FADDR: 0x%08x\n", error->faddr[ring]);
655 	if (INTEL_INFO(dev)->gen >= 6) {
656 		seq_printf(m, "  RC PSMI: 0x%08x\n", error->rc_psmi[ring]);
657 		seq_printf(m, "  FAULT_REG: 0x%08x\n", error->fault_reg[ring]);
658 		seq_printf(m, "  SYNC_0: 0x%08x [last synced 0x%08x]\n",
659 			   error->semaphore_mboxes[ring][0],
660 			   error->semaphore_seqno[ring][0]);
661 		seq_printf(m, "  SYNC_1: 0x%08x [last synced 0x%08x]\n",
662 			   error->semaphore_mboxes[ring][1],
663 			   error->semaphore_seqno[ring][1]);
664 	}
665 	seq_printf(m, "  seqno: 0x%08x\n", error->seqno[ring]);
666 	seq_printf(m, "  waiting: %s\n", yesno(error->waiting[ring]));
667 	seq_printf(m, "  ring->head: 0x%08x\n", error->cpu_ring_head[ring]);
668 	seq_printf(m, "  ring->tail: 0x%08x\n", error->cpu_ring_tail[ring]);
669 }
670 
671 struct i915_error_state_file_priv {
672 	struct drm_device *dev;
673 	struct drm_i915_error_state *error;
674 };
675 
676 static int i915_error_state(struct seq_file *m, void *unused)
677 {
678 	struct i915_error_state_file_priv *error_priv = m->private;
679 	struct drm_device *dev = error_priv->dev;
680 	drm_i915_private_t *dev_priv = dev->dev_private;
681 	struct drm_i915_error_state *error = error_priv->error;
682 	struct intel_ring_buffer *ring;
683 	int i, j, page, offset, elt;
684 
685 	if (!error) {
686 		seq_printf(m, "no error state collected\n");
687 		return 0;
688 	}
689 
690 	seq_printf(m, "Time: %ld s %ld us\n", error->time.tv_sec,
691 		   error->time.tv_usec);
692 	seq_printf(m, "PCI ID: 0x%04x\n", dev->pci_device);
693 	seq_printf(m, "EIR: 0x%08x\n", error->eir);
694 	seq_printf(m, "IER: 0x%08x\n", error->ier);
695 	seq_printf(m, "PGTBL_ER: 0x%08x\n", error->pgtbl_er);
696 	seq_printf(m, "CCID: 0x%08x\n", error->ccid);
697 
698 	for (i = 0; i < dev_priv->num_fence_regs; i++)
699 		seq_printf(m, "  fence[%d] = %08llx\n", i, error->fence[i]);
700 
701 	for (i = 0; i < ARRAY_SIZE(error->extra_instdone); i++)
702 		seq_printf(m, "  INSTDONE_%d: 0x%08x\n", i, error->extra_instdone[i]);
703 
704 	if (INTEL_INFO(dev)->gen >= 6) {
705 		seq_printf(m, "ERROR: 0x%08x\n", error->error);
706 		seq_printf(m, "DONE_REG: 0x%08x\n", error->done_reg);
707 	}
708 
709 	if (INTEL_INFO(dev)->gen == 7)
710 		seq_printf(m, "ERR_INT: 0x%08x\n", error->err_int);
711 
712 	for_each_ring(ring, dev_priv, i)
713 		i915_ring_error_state(m, dev, error, i);
714 
715 	if (error->active_bo)
716 		print_error_buffers(m, "Active",
717 				    error->active_bo,
718 				    error->active_bo_count);
719 
720 	if (error->pinned_bo)
721 		print_error_buffers(m, "Pinned",
722 				    error->pinned_bo,
723 				    error->pinned_bo_count);
724 
725 	for (i = 0; i < ARRAY_SIZE(error->ring); i++) {
726 		struct drm_i915_error_object *obj;
727 
728 		if ((obj = error->ring[i].batchbuffer)) {
729 			seq_printf(m, "%s --- gtt_offset = 0x%08x\n",
730 				   dev_priv->ring[i].name,
731 				   obj->gtt_offset);
732 			offset = 0;
733 			for (page = 0; page < obj->page_count; page++) {
734 				for (elt = 0; elt < PAGE_SIZE/4; elt++) {
735 					seq_printf(m, "%08x :  %08x\n", offset, obj->pages[page][elt]);
736 					offset += 4;
737 				}
738 			}
739 		}
740 
741 		if (error->ring[i].num_requests) {
742 			seq_printf(m, "%s --- %d requests\n",
743 				   dev_priv->ring[i].name,
744 				   error->ring[i].num_requests);
745 			for (j = 0; j < error->ring[i].num_requests; j++) {
746 				seq_printf(m, "  seqno 0x%08x, emitted %ld, tail 0x%08x\n",
747 					   error->ring[i].requests[j].seqno,
748 					   error->ring[i].requests[j].jiffies,
749 					   error->ring[i].requests[j].tail);
750 			}
751 		}
752 
753 		if ((obj = error->ring[i].ringbuffer)) {
754 			seq_printf(m, "%s --- ringbuffer = 0x%08x\n",
755 				   dev_priv->ring[i].name,
756 				   obj->gtt_offset);
757 			offset = 0;
758 			for (page = 0; page < obj->page_count; page++) {
759 				for (elt = 0; elt < PAGE_SIZE/4; elt++) {
760 					seq_printf(m, "%08x :  %08x\n",
761 						   offset,
762 						   obj->pages[page][elt]);
763 					offset += 4;
764 				}
765 			}
766 		}
767 	}
768 
769 	if (error->overlay)
770 		intel_overlay_print_error_state(m, error->overlay);
771 
772 	if (error->display)
773 		intel_display_print_error_state(m, dev, error->display);
774 
775 	return 0;
776 }
777 
778 static ssize_t
779 i915_error_state_write(struct file *filp,
780 		       const char __user *ubuf,
781 		       size_t cnt,
782 		       loff_t *ppos)
783 {
784 	struct seq_file *m = filp->private_data;
785 	struct i915_error_state_file_priv *error_priv = m->private;
786 	struct drm_device *dev = error_priv->dev;
787 	int ret;
788 
789 	DRM_DEBUG_DRIVER("Resetting error state\n");
790 
791 	ret = mutex_lock_interruptible(&dev->struct_mutex);
792 	if (ret)
793 		return ret;
794 
795 	i915_destroy_error_state(dev);
796 	mutex_unlock(&dev->struct_mutex);
797 
798 	return cnt;
799 }
800 
801 static int i915_error_state_open(struct inode *inode, struct file *file)
802 {
803 	struct drm_device *dev = inode->i_private;
804 	drm_i915_private_t *dev_priv = dev->dev_private;
805 	struct i915_error_state_file_priv *error_priv;
806 	unsigned long flags;
807 
808 	error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
809 	if (!error_priv)
810 		return -ENOMEM;
811 
812 	error_priv->dev = dev;
813 
814 	spin_lock_irqsave(&dev_priv->error_lock, flags);
815 	error_priv->error = dev_priv->first_error;
816 	if (error_priv->error)
817 		kref_get(&error_priv->error->ref);
818 	spin_unlock_irqrestore(&dev_priv->error_lock, flags);
819 
820 	return single_open(file, i915_error_state, error_priv);
821 }
822 
823 static int i915_error_state_release(struct inode *inode, struct file *file)
824 {
825 	struct seq_file *m = file->private_data;
826 	struct i915_error_state_file_priv *error_priv = m->private;
827 
828 	if (error_priv->error)
829 		kref_put(&error_priv->error->ref, i915_error_state_free);
830 	kfree(error_priv);
831 
832 	return single_release(inode, file);
833 }
834 
835 static const struct file_operations i915_error_state_fops = {
836 	.owner = THIS_MODULE,
837 	.open = i915_error_state_open,
838 	.read = seq_read,
839 	.write = i915_error_state_write,
840 	.llseek = default_llseek,
841 	.release = i915_error_state_release,
842 };
843 
844 static int i915_rstdby_delays(struct seq_file *m, void *unused)
845 {
846 	struct drm_info_node *node = (struct drm_info_node *) m->private;
847 	struct drm_device *dev = node->minor->dev;
848 	drm_i915_private_t *dev_priv = dev->dev_private;
849 	u16 crstanddelay;
850 	int ret;
851 
852 	ret = mutex_lock_interruptible(&dev->struct_mutex);
853 	if (ret)
854 		return ret;
855 
856 	crstanddelay = I915_READ16(CRSTANDVID);
857 
858 	mutex_unlock(&dev->struct_mutex);
859 
860 	seq_printf(m, "w/ctx: %d, w/o ctx: %d\n", (crstanddelay >> 8) & 0x3f, (crstanddelay & 0x3f));
861 
862 	return 0;
863 }
864 
865 static int i915_cur_delayinfo(struct seq_file *m, void *unused)
866 {
867 	struct drm_info_node *node = (struct drm_info_node *) m->private;
868 	struct drm_device *dev = node->minor->dev;
869 	drm_i915_private_t *dev_priv = dev->dev_private;
870 	int ret;
871 
872 	if (IS_GEN5(dev)) {
873 		u16 rgvswctl = I915_READ16(MEMSWCTL);
874 		u16 rgvstat = I915_READ16(MEMSTAT_ILK);
875 
876 		seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
877 		seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
878 		seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
879 			   MEMSTAT_VID_SHIFT);
880 		seq_printf(m, "Current P-state: %d\n",
881 			   (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
882 	} else if (IS_GEN6(dev) || IS_GEN7(dev)) {
883 		u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
884 		u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
885 		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
886 		u32 rpstat;
887 		u32 rpupei, rpcurup, rpprevup;
888 		u32 rpdownei, rpcurdown, rpprevdown;
889 		int max_freq;
890 
891 		/* RPSTAT1 is in the GT power well */
892 		ret = mutex_lock_interruptible(&dev->struct_mutex);
893 		if (ret)
894 			return ret;
895 
896 		gen6_gt_force_wake_get(dev_priv);
897 
898 		rpstat = I915_READ(GEN6_RPSTAT1);
899 		rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
900 		rpcurup = I915_READ(GEN6_RP_CUR_UP);
901 		rpprevup = I915_READ(GEN6_RP_PREV_UP);
902 		rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
903 		rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
904 		rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
905 
906 		gen6_gt_force_wake_put(dev_priv);
907 		mutex_unlock(&dev->struct_mutex);
908 
909 		seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
910 		seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
911 		seq_printf(m, "Render p-state ratio: %d\n",
912 			   (gt_perf_status & 0xff00) >> 8);
913 		seq_printf(m, "Render p-state VID: %d\n",
914 			   gt_perf_status & 0xff);
915 		seq_printf(m, "Render p-state limit: %d\n",
916 			   rp_state_limits & 0xff);
917 		seq_printf(m, "CAGF: %dMHz\n", ((rpstat & GEN6_CAGF_MASK) >>
918 						GEN6_CAGF_SHIFT) * GT_FREQUENCY_MULTIPLIER);
919 		seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
920 			   GEN6_CURICONT_MASK);
921 		seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
922 			   GEN6_CURBSYTAVG_MASK);
923 		seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
924 			   GEN6_CURBSYTAVG_MASK);
925 		seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
926 			   GEN6_CURIAVG_MASK);
927 		seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
928 			   GEN6_CURBSYTAVG_MASK);
929 		seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
930 			   GEN6_CURBSYTAVG_MASK);
931 
932 		max_freq = (rp_state_cap & 0xff0000) >> 16;
933 		seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
934 			   max_freq * GT_FREQUENCY_MULTIPLIER);
935 
936 		max_freq = (rp_state_cap & 0xff00) >> 8;
937 		seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
938 			   max_freq * GT_FREQUENCY_MULTIPLIER);
939 
940 		max_freq = rp_state_cap & 0xff;
941 		seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
942 			   max_freq * GT_FREQUENCY_MULTIPLIER);
943 	} else {
944 		seq_printf(m, "no P-state info available\n");
945 	}
946 
947 	return 0;
948 }
949 
950 static int i915_delayfreq_table(struct seq_file *m, void *unused)
951 {
952 	struct drm_info_node *node = (struct drm_info_node *) m->private;
953 	struct drm_device *dev = node->minor->dev;
954 	drm_i915_private_t *dev_priv = dev->dev_private;
955 	u32 delayfreq;
956 	int ret, i;
957 
958 	ret = mutex_lock_interruptible(&dev->struct_mutex);
959 	if (ret)
960 		return ret;
961 
962 	for (i = 0; i < 16; i++) {
963 		delayfreq = I915_READ(PXVFREQ_BASE + i * 4);
964 		seq_printf(m, "P%02dVIDFREQ: 0x%08x (VID: %d)\n", i, delayfreq,
965 			   (delayfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT);
966 	}
967 
968 	mutex_unlock(&dev->struct_mutex);
969 
970 	return 0;
971 }
972 
973 static inline int MAP_TO_MV(int map)
974 {
975 	return 1250 - (map * 25);
976 }
977 
978 static int i915_inttoext_table(struct seq_file *m, void *unused)
979 {
980 	struct drm_info_node *node = (struct drm_info_node *) m->private;
981 	struct drm_device *dev = node->minor->dev;
982 	drm_i915_private_t *dev_priv = dev->dev_private;
983 	u32 inttoext;
984 	int ret, i;
985 
986 	ret = mutex_lock_interruptible(&dev->struct_mutex);
987 	if (ret)
988 		return ret;
989 
990 	for (i = 1; i <= 32; i++) {
991 		inttoext = I915_READ(INTTOEXT_BASE_ILK + i * 4);
992 		seq_printf(m, "INTTOEXT%02d: 0x%08x\n", i, inttoext);
993 	}
994 
995 	mutex_unlock(&dev->struct_mutex);
996 
997 	return 0;
998 }
999 
1000 static int ironlake_drpc_info(struct seq_file *m)
1001 {
1002 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1003 	struct drm_device *dev = node->minor->dev;
1004 	drm_i915_private_t *dev_priv = dev->dev_private;
1005 	u32 rgvmodectl, rstdbyctl;
1006 	u16 crstandvid;
1007 	int ret;
1008 
1009 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1010 	if (ret)
1011 		return ret;
1012 
1013 	rgvmodectl = I915_READ(MEMMODECTL);
1014 	rstdbyctl = I915_READ(RSTDBYCTL);
1015 	crstandvid = I915_READ16(CRSTANDVID);
1016 
1017 	mutex_unlock(&dev->struct_mutex);
1018 
1019 	seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
1020 		   "yes" : "no");
1021 	seq_printf(m, "Boost freq: %d\n",
1022 		   (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1023 		   MEMMODE_BOOST_FREQ_SHIFT);
1024 	seq_printf(m, "HW control enabled: %s\n",
1025 		   rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
1026 	seq_printf(m, "SW control enabled: %s\n",
1027 		   rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
1028 	seq_printf(m, "Gated voltage change: %s\n",
1029 		   rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
1030 	seq_printf(m, "Starting frequency: P%d\n",
1031 		   (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1032 	seq_printf(m, "Max P-state: P%d\n",
1033 		   (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1034 	seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1035 	seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1036 	seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1037 	seq_printf(m, "Render standby enabled: %s\n",
1038 		   (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
1039 	seq_printf(m, "Current RS state: ");
1040 	switch (rstdbyctl & RSX_STATUS_MASK) {
1041 	case RSX_STATUS_ON:
1042 		seq_printf(m, "on\n");
1043 		break;
1044 	case RSX_STATUS_RC1:
1045 		seq_printf(m, "RC1\n");
1046 		break;
1047 	case RSX_STATUS_RC1E:
1048 		seq_printf(m, "RC1E\n");
1049 		break;
1050 	case RSX_STATUS_RS1:
1051 		seq_printf(m, "RS1\n");
1052 		break;
1053 	case RSX_STATUS_RS2:
1054 		seq_printf(m, "RS2 (RC6)\n");
1055 		break;
1056 	case RSX_STATUS_RS3:
1057 		seq_printf(m, "RC3 (RC6+)\n");
1058 		break;
1059 	default:
1060 		seq_printf(m, "unknown\n");
1061 		break;
1062 	}
1063 
1064 	return 0;
1065 }
1066 
1067 static int gen6_drpc_info(struct seq_file *m)
1068 {
1069 
1070 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1071 	struct drm_device *dev = node->minor->dev;
1072 	struct drm_i915_private *dev_priv = dev->dev_private;
1073 	u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1074 	unsigned forcewake_count;
1075 	int count=0, ret;
1076 
1077 
1078 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1079 	if (ret)
1080 		return ret;
1081 
1082 	spin_lock_irq(&dev_priv->gt_lock);
1083 	forcewake_count = dev_priv->forcewake_count;
1084 	spin_unlock_irq(&dev_priv->gt_lock);
1085 
1086 	if (forcewake_count) {
1087 		seq_printf(m, "RC information inaccurate because somebody "
1088 			      "holds a forcewake reference \n");
1089 	} else {
1090 		/* NB: we cannot use forcewake, else we read the wrong values */
1091 		while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1092 			udelay(10);
1093 		seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1094 	}
1095 
1096 	gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1097 	trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4);
1098 
1099 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1100 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1101 	mutex_unlock(&dev->struct_mutex);
1102 	mutex_lock(&dev_priv->rps.hw_lock);
1103 	sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1104 	mutex_unlock(&dev_priv->rps.hw_lock);
1105 
1106 	seq_printf(m, "Video Turbo Mode: %s\n",
1107 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1108 	seq_printf(m, "HW control enabled: %s\n",
1109 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1110 	seq_printf(m, "SW control enabled: %s\n",
1111 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1112 			  GEN6_RP_MEDIA_SW_MODE));
1113 	seq_printf(m, "RC1e Enabled: %s\n",
1114 		   yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1115 	seq_printf(m, "RC6 Enabled: %s\n",
1116 		   yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1117 	seq_printf(m, "Deep RC6 Enabled: %s\n",
1118 		   yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1119 	seq_printf(m, "Deepest RC6 Enabled: %s\n",
1120 		   yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1121 	seq_printf(m, "Current RC state: ");
1122 	switch (gt_core_status & GEN6_RCn_MASK) {
1123 	case GEN6_RC0:
1124 		if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1125 			seq_printf(m, "Core Power Down\n");
1126 		else
1127 			seq_printf(m, "on\n");
1128 		break;
1129 	case GEN6_RC3:
1130 		seq_printf(m, "RC3\n");
1131 		break;
1132 	case GEN6_RC6:
1133 		seq_printf(m, "RC6\n");
1134 		break;
1135 	case GEN6_RC7:
1136 		seq_printf(m, "RC7\n");
1137 		break;
1138 	default:
1139 		seq_printf(m, "Unknown\n");
1140 		break;
1141 	}
1142 
1143 	seq_printf(m, "Core Power Down: %s\n",
1144 		   yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1145 
1146 	/* Not exactly sure what this is */
1147 	seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1148 		   I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1149 	seq_printf(m, "RC6 residency since boot: %u\n",
1150 		   I915_READ(GEN6_GT_GFX_RC6));
1151 	seq_printf(m, "RC6+ residency since boot: %u\n",
1152 		   I915_READ(GEN6_GT_GFX_RC6p));
1153 	seq_printf(m, "RC6++ residency since boot: %u\n",
1154 		   I915_READ(GEN6_GT_GFX_RC6pp));
1155 
1156 	seq_printf(m, "RC6   voltage: %dmV\n",
1157 		   GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1158 	seq_printf(m, "RC6+  voltage: %dmV\n",
1159 		   GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1160 	seq_printf(m, "RC6++ voltage: %dmV\n",
1161 		   GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1162 	return 0;
1163 }
1164 
1165 static int i915_drpc_info(struct seq_file *m, void *unused)
1166 {
1167 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1168 	struct drm_device *dev = node->minor->dev;
1169 
1170 	if (IS_GEN6(dev) || IS_GEN7(dev))
1171 		return gen6_drpc_info(m);
1172 	else
1173 		return ironlake_drpc_info(m);
1174 }
1175 
1176 static int i915_fbc_status(struct seq_file *m, void *unused)
1177 {
1178 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1179 	struct drm_device *dev = node->minor->dev;
1180 	drm_i915_private_t *dev_priv = dev->dev_private;
1181 
1182 	if (!I915_HAS_FBC(dev)) {
1183 		seq_printf(m, "FBC unsupported on this chipset\n");
1184 		return 0;
1185 	}
1186 
1187 	if (intel_fbc_enabled(dev)) {
1188 		seq_printf(m, "FBC enabled\n");
1189 	} else {
1190 		seq_printf(m, "FBC disabled: ");
1191 		switch (dev_priv->no_fbc_reason) {
1192 		case FBC_NO_OUTPUT:
1193 			seq_printf(m, "no outputs");
1194 			break;
1195 		case FBC_STOLEN_TOO_SMALL:
1196 			seq_printf(m, "not enough stolen memory");
1197 			break;
1198 		case FBC_UNSUPPORTED_MODE:
1199 			seq_printf(m, "mode not supported");
1200 			break;
1201 		case FBC_MODE_TOO_LARGE:
1202 			seq_printf(m, "mode too large");
1203 			break;
1204 		case FBC_BAD_PLANE:
1205 			seq_printf(m, "FBC unsupported on plane");
1206 			break;
1207 		case FBC_NOT_TILED:
1208 			seq_printf(m, "scanout buffer not tiled");
1209 			break;
1210 		case FBC_MULTIPLE_PIPES:
1211 			seq_printf(m, "multiple pipes are enabled");
1212 			break;
1213 		case FBC_MODULE_PARAM:
1214 			seq_printf(m, "disabled per module param (default off)");
1215 			break;
1216 		default:
1217 			seq_printf(m, "unknown reason");
1218 		}
1219 		seq_printf(m, "\n");
1220 	}
1221 	return 0;
1222 }
1223 
1224 static int i915_sr_status(struct seq_file *m, void *unused)
1225 {
1226 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1227 	struct drm_device *dev = node->minor->dev;
1228 	drm_i915_private_t *dev_priv = dev->dev_private;
1229 	bool sr_enabled = false;
1230 
1231 	if (HAS_PCH_SPLIT(dev))
1232 		sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1233 	else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
1234 		sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1235 	else if (IS_I915GM(dev))
1236 		sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1237 	else if (IS_PINEVIEW(dev))
1238 		sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1239 
1240 	seq_printf(m, "self-refresh: %s\n",
1241 		   sr_enabled ? "enabled" : "disabled");
1242 
1243 	return 0;
1244 }
1245 
1246 static int i915_emon_status(struct seq_file *m, void *unused)
1247 {
1248 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1249 	struct drm_device *dev = node->minor->dev;
1250 	drm_i915_private_t *dev_priv = dev->dev_private;
1251 	unsigned long temp, chipset, gfx;
1252 	int ret;
1253 
1254 	if (!IS_GEN5(dev))
1255 		return -ENODEV;
1256 
1257 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1258 	if (ret)
1259 		return ret;
1260 
1261 	temp = i915_mch_val(dev_priv);
1262 	chipset = i915_chipset_val(dev_priv);
1263 	gfx = i915_gfx_val(dev_priv);
1264 	mutex_unlock(&dev->struct_mutex);
1265 
1266 	seq_printf(m, "GMCH temp: %ld\n", temp);
1267 	seq_printf(m, "Chipset power: %ld\n", chipset);
1268 	seq_printf(m, "GFX power: %ld\n", gfx);
1269 	seq_printf(m, "Total power: %ld\n", chipset + gfx);
1270 
1271 	return 0;
1272 }
1273 
1274 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1275 {
1276 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1277 	struct drm_device *dev = node->minor->dev;
1278 	drm_i915_private_t *dev_priv = dev->dev_private;
1279 	int ret;
1280 	int gpu_freq, ia_freq;
1281 
1282 	if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
1283 		seq_printf(m, "unsupported on this chipset\n");
1284 		return 0;
1285 	}
1286 
1287 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1288 	if (ret)
1289 		return ret;
1290 
1291 	seq_printf(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\n");
1292 
1293 	for (gpu_freq = dev_priv->rps.min_delay;
1294 	     gpu_freq <= dev_priv->rps.max_delay;
1295 	     gpu_freq++) {
1296 		ia_freq = gpu_freq;
1297 		sandybridge_pcode_read(dev_priv,
1298 				       GEN6_PCODE_READ_MIN_FREQ_TABLE,
1299 				       &ia_freq);
1300 		seq_printf(m, "%d\t\t%d\n", gpu_freq * GT_FREQUENCY_MULTIPLIER, ia_freq * 100);
1301 	}
1302 
1303 	mutex_unlock(&dev_priv->rps.hw_lock);
1304 
1305 	return 0;
1306 }
1307 
1308 static int i915_gfxec(struct seq_file *m, void *unused)
1309 {
1310 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1311 	struct drm_device *dev = node->minor->dev;
1312 	drm_i915_private_t *dev_priv = dev->dev_private;
1313 	int ret;
1314 
1315 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1316 	if (ret)
1317 		return ret;
1318 
1319 	seq_printf(m, "GFXEC: %ld\n", (unsigned long)I915_READ(0x112f4));
1320 
1321 	mutex_unlock(&dev->struct_mutex);
1322 
1323 	return 0;
1324 }
1325 
1326 static int i915_opregion(struct seq_file *m, void *unused)
1327 {
1328 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1329 	struct drm_device *dev = node->minor->dev;
1330 	drm_i915_private_t *dev_priv = dev->dev_private;
1331 	struct intel_opregion *opregion = &dev_priv->opregion;
1332 	void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1333 	int ret;
1334 
1335 	if (data == NULL)
1336 		return -ENOMEM;
1337 
1338 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1339 	if (ret)
1340 		goto out;
1341 
1342 	if (opregion->header) {
1343 		memcpy_fromio(data, opregion->header, OPREGION_SIZE);
1344 		seq_write(m, data, OPREGION_SIZE);
1345 	}
1346 
1347 	mutex_unlock(&dev->struct_mutex);
1348 
1349 out:
1350 	kfree(data);
1351 	return 0;
1352 }
1353 
1354 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1355 {
1356 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1357 	struct drm_device *dev = node->minor->dev;
1358 	drm_i915_private_t *dev_priv = dev->dev_private;
1359 	struct intel_fbdev *ifbdev;
1360 	struct intel_framebuffer *fb;
1361 	int ret;
1362 
1363 	ret = mutex_lock_interruptible(&dev->mode_config.mutex);
1364 	if (ret)
1365 		return ret;
1366 
1367 	ifbdev = dev_priv->fbdev;
1368 	fb = to_intel_framebuffer(ifbdev->helper.fb);
1369 
1370 	seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, obj ",
1371 		   fb->base.width,
1372 		   fb->base.height,
1373 		   fb->base.depth,
1374 		   fb->base.bits_per_pixel);
1375 	describe_obj(m, fb->obj);
1376 	seq_printf(m, "\n");
1377 
1378 	list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
1379 		if (&fb->base == ifbdev->helper.fb)
1380 			continue;
1381 
1382 		seq_printf(m, "user size: %d x %d, depth %d, %d bpp, obj ",
1383 			   fb->base.width,
1384 			   fb->base.height,
1385 			   fb->base.depth,
1386 			   fb->base.bits_per_pixel);
1387 		describe_obj(m, fb->obj);
1388 		seq_printf(m, "\n");
1389 	}
1390 
1391 	mutex_unlock(&dev->mode_config.mutex);
1392 
1393 	return 0;
1394 }
1395 
1396 static int i915_context_status(struct seq_file *m, void *unused)
1397 {
1398 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1399 	struct drm_device *dev = node->minor->dev;
1400 	drm_i915_private_t *dev_priv = dev->dev_private;
1401 	int ret;
1402 
1403 	ret = mutex_lock_interruptible(&dev->mode_config.mutex);
1404 	if (ret)
1405 		return ret;
1406 
1407 	if (dev_priv->ips.pwrctx) {
1408 		seq_printf(m, "power context ");
1409 		describe_obj(m, dev_priv->ips.pwrctx);
1410 		seq_printf(m, "\n");
1411 	}
1412 
1413 	if (dev_priv->ips.renderctx) {
1414 		seq_printf(m, "render context ");
1415 		describe_obj(m, dev_priv->ips.renderctx);
1416 		seq_printf(m, "\n");
1417 	}
1418 
1419 	mutex_unlock(&dev->mode_config.mutex);
1420 
1421 	return 0;
1422 }
1423 
1424 static int i915_gen6_forcewake_count_info(struct seq_file *m, void *data)
1425 {
1426 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1427 	struct drm_device *dev = node->minor->dev;
1428 	struct drm_i915_private *dev_priv = dev->dev_private;
1429 	unsigned forcewake_count;
1430 
1431 	spin_lock_irq(&dev_priv->gt_lock);
1432 	forcewake_count = dev_priv->forcewake_count;
1433 	spin_unlock_irq(&dev_priv->gt_lock);
1434 
1435 	seq_printf(m, "forcewake count = %u\n", forcewake_count);
1436 
1437 	return 0;
1438 }
1439 
1440 static const char *swizzle_string(unsigned swizzle)
1441 {
1442 	switch(swizzle) {
1443 	case I915_BIT_6_SWIZZLE_NONE:
1444 		return "none";
1445 	case I915_BIT_6_SWIZZLE_9:
1446 		return "bit9";
1447 	case I915_BIT_6_SWIZZLE_9_10:
1448 		return "bit9/bit10";
1449 	case I915_BIT_6_SWIZZLE_9_11:
1450 		return "bit9/bit11";
1451 	case I915_BIT_6_SWIZZLE_9_10_11:
1452 		return "bit9/bit10/bit11";
1453 	case I915_BIT_6_SWIZZLE_9_17:
1454 		return "bit9/bit17";
1455 	case I915_BIT_6_SWIZZLE_9_10_17:
1456 		return "bit9/bit10/bit17";
1457 	case I915_BIT_6_SWIZZLE_UNKNOWN:
1458 		return "unkown";
1459 	}
1460 
1461 	return "bug";
1462 }
1463 
1464 static int i915_swizzle_info(struct seq_file *m, void *data)
1465 {
1466 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1467 	struct drm_device *dev = node->minor->dev;
1468 	struct drm_i915_private *dev_priv = dev->dev_private;
1469 	int ret;
1470 
1471 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1472 	if (ret)
1473 		return ret;
1474 
1475 	seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
1476 		   swizzle_string(dev_priv->mm.bit_6_swizzle_x));
1477 	seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
1478 		   swizzle_string(dev_priv->mm.bit_6_swizzle_y));
1479 
1480 	if (IS_GEN3(dev) || IS_GEN4(dev)) {
1481 		seq_printf(m, "DDC = 0x%08x\n",
1482 			   I915_READ(DCC));
1483 		seq_printf(m, "C0DRB3 = 0x%04x\n",
1484 			   I915_READ16(C0DRB3));
1485 		seq_printf(m, "C1DRB3 = 0x%04x\n",
1486 			   I915_READ16(C1DRB3));
1487 	} else if (IS_GEN6(dev) || IS_GEN7(dev)) {
1488 		seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
1489 			   I915_READ(MAD_DIMM_C0));
1490 		seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
1491 			   I915_READ(MAD_DIMM_C1));
1492 		seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
1493 			   I915_READ(MAD_DIMM_C2));
1494 		seq_printf(m, "TILECTL = 0x%08x\n",
1495 			   I915_READ(TILECTL));
1496 		seq_printf(m, "ARB_MODE = 0x%08x\n",
1497 			   I915_READ(ARB_MODE));
1498 		seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
1499 			   I915_READ(DISP_ARB_CTL));
1500 	}
1501 	mutex_unlock(&dev->struct_mutex);
1502 
1503 	return 0;
1504 }
1505 
1506 static int i915_ppgtt_info(struct seq_file *m, void *data)
1507 {
1508 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1509 	struct drm_device *dev = node->minor->dev;
1510 	struct drm_i915_private *dev_priv = dev->dev_private;
1511 	struct intel_ring_buffer *ring;
1512 	int i, ret;
1513 
1514 
1515 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1516 	if (ret)
1517 		return ret;
1518 	if (INTEL_INFO(dev)->gen == 6)
1519 		seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
1520 
1521 	for_each_ring(ring, dev_priv, i) {
1522 		seq_printf(m, "%s\n", ring->name);
1523 		if (INTEL_INFO(dev)->gen == 7)
1524 			seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
1525 		seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
1526 		seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
1527 		seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
1528 	}
1529 	if (dev_priv->mm.aliasing_ppgtt) {
1530 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1531 
1532 		seq_printf(m, "aliasing PPGTT:\n");
1533 		seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset);
1534 	}
1535 	seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
1536 	mutex_unlock(&dev->struct_mutex);
1537 
1538 	return 0;
1539 }
1540 
1541 static int i915_dpio_info(struct seq_file *m, void *data)
1542 {
1543 	struct drm_info_node *node = (struct drm_info_node *) m->private;
1544 	struct drm_device *dev = node->minor->dev;
1545 	struct drm_i915_private *dev_priv = dev->dev_private;
1546 	int ret;
1547 
1548 
1549 	if (!IS_VALLEYVIEW(dev)) {
1550 		seq_printf(m, "unsupported\n");
1551 		return 0;
1552 	}
1553 
1554 	ret = mutex_lock_interruptible(&dev->mode_config.mutex);
1555 	if (ret)
1556 		return ret;
1557 
1558 	seq_printf(m, "DPIO_CTL: 0x%08x\n", I915_READ(DPIO_CTL));
1559 
1560 	seq_printf(m, "DPIO_DIV_A: 0x%08x\n",
1561 		   intel_dpio_read(dev_priv, _DPIO_DIV_A));
1562 	seq_printf(m, "DPIO_DIV_B: 0x%08x\n",
1563 		   intel_dpio_read(dev_priv, _DPIO_DIV_B));
1564 
1565 	seq_printf(m, "DPIO_REFSFR_A: 0x%08x\n",
1566 		   intel_dpio_read(dev_priv, _DPIO_REFSFR_A));
1567 	seq_printf(m, "DPIO_REFSFR_B: 0x%08x\n",
1568 		   intel_dpio_read(dev_priv, _DPIO_REFSFR_B));
1569 
1570 	seq_printf(m, "DPIO_CORE_CLK_A: 0x%08x\n",
1571 		   intel_dpio_read(dev_priv, _DPIO_CORE_CLK_A));
1572 	seq_printf(m, "DPIO_CORE_CLK_B: 0x%08x\n",
1573 		   intel_dpio_read(dev_priv, _DPIO_CORE_CLK_B));
1574 
1575 	seq_printf(m, "DPIO_LFP_COEFF_A: 0x%08x\n",
1576 		   intel_dpio_read(dev_priv, _DPIO_LFP_COEFF_A));
1577 	seq_printf(m, "DPIO_LFP_COEFF_B: 0x%08x\n",
1578 		   intel_dpio_read(dev_priv, _DPIO_LFP_COEFF_B));
1579 
1580 	seq_printf(m, "DPIO_FASTCLK_DISABLE: 0x%08x\n",
1581 		   intel_dpio_read(dev_priv, DPIO_FASTCLK_DISABLE));
1582 
1583 	mutex_unlock(&dev->mode_config.mutex);
1584 
1585 	return 0;
1586 }
1587 
1588 static ssize_t
1589 i915_wedged_read(struct file *filp,
1590 		 char __user *ubuf,
1591 		 size_t max,
1592 		 loff_t *ppos)
1593 {
1594 	struct drm_device *dev = filp->private_data;
1595 	drm_i915_private_t *dev_priv = dev->dev_private;
1596 	char buf[80];
1597 	int len;
1598 
1599 	len = snprintf(buf, sizeof(buf),
1600 		       "wedged :  %d\n",
1601 		       atomic_read(&dev_priv->mm.wedged));
1602 
1603 	if (len > sizeof(buf))
1604 		len = sizeof(buf);
1605 
1606 	return simple_read_from_buffer(ubuf, max, ppos, buf, len);
1607 }
1608 
1609 static ssize_t
1610 i915_wedged_write(struct file *filp,
1611 		  const char __user *ubuf,
1612 		  size_t cnt,
1613 		  loff_t *ppos)
1614 {
1615 	struct drm_device *dev = filp->private_data;
1616 	char buf[20];
1617 	int val = 1;
1618 
1619 	if (cnt > 0) {
1620 		if (cnt > sizeof(buf) - 1)
1621 			return -EINVAL;
1622 
1623 		if (copy_from_user(buf, ubuf, cnt))
1624 			return -EFAULT;
1625 		buf[cnt] = 0;
1626 
1627 		val = simple_strtoul(buf, NULL, 0);
1628 	}
1629 
1630 	DRM_INFO("Manually setting wedged to %d\n", val);
1631 	i915_handle_error(dev, val);
1632 
1633 	return cnt;
1634 }
1635 
1636 static const struct file_operations i915_wedged_fops = {
1637 	.owner = THIS_MODULE,
1638 	.open = simple_open,
1639 	.read = i915_wedged_read,
1640 	.write = i915_wedged_write,
1641 	.llseek = default_llseek,
1642 };
1643 
1644 static ssize_t
1645 i915_ring_stop_read(struct file *filp,
1646 		    char __user *ubuf,
1647 		    size_t max,
1648 		    loff_t *ppos)
1649 {
1650 	struct drm_device *dev = filp->private_data;
1651 	drm_i915_private_t *dev_priv = dev->dev_private;
1652 	char buf[20];
1653 	int len;
1654 
1655 	len = snprintf(buf, sizeof(buf),
1656 		       "0x%08x\n", dev_priv->stop_rings);
1657 
1658 	if (len > sizeof(buf))
1659 		len = sizeof(buf);
1660 
1661 	return simple_read_from_buffer(ubuf, max, ppos, buf, len);
1662 }
1663 
1664 static ssize_t
1665 i915_ring_stop_write(struct file *filp,
1666 		     const char __user *ubuf,
1667 		     size_t cnt,
1668 		     loff_t *ppos)
1669 {
1670 	struct drm_device *dev = filp->private_data;
1671 	struct drm_i915_private *dev_priv = dev->dev_private;
1672 	char buf[20];
1673 	int val = 0, ret;
1674 
1675 	if (cnt > 0) {
1676 		if (cnt > sizeof(buf) - 1)
1677 			return -EINVAL;
1678 
1679 		if (copy_from_user(buf, ubuf, cnt))
1680 			return -EFAULT;
1681 		buf[cnt] = 0;
1682 
1683 		val = simple_strtoul(buf, NULL, 0);
1684 	}
1685 
1686 	DRM_DEBUG_DRIVER("Stopping rings 0x%08x\n", val);
1687 
1688 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1689 	if (ret)
1690 		return ret;
1691 
1692 	dev_priv->stop_rings = val;
1693 	mutex_unlock(&dev->struct_mutex);
1694 
1695 	return cnt;
1696 }
1697 
1698 static const struct file_operations i915_ring_stop_fops = {
1699 	.owner = THIS_MODULE,
1700 	.open = simple_open,
1701 	.read = i915_ring_stop_read,
1702 	.write = i915_ring_stop_write,
1703 	.llseek = default_llseek,
1704 };
1705 
1706 static ssize_t
1707 i915_max_freq_read(struct file *filp,
1708 		   char __user *ubuf,
1709 		   size_t max,
1710 		   loff_t *ppos)
1711 {
1712 	struct drm_device *dev = filp->private_data;
1713 	drm_i915_private_t *dev_priv = dev->dev_private;
1714 	char buf[80];
1715 	int len, ret;
1716 
1717 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
1718 		return -ENODEV;
1719 
1720 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1721 	if (ret)
1722 		return ret;
1723 
1724 	len = snprintf(buf, sizeof(buf),
1725 		       "max freq: %d\n", dev_priv->rps.max_delay * GT_FREQUENCY_MULTIPLIER);
1726 	mutex_unlock(&dev_priv->rps.hw_lock);
1727 
1728 	if (len > sizeof(buf))
1729 		len = sizeof(buf);
1730 
1731 	return simple_read_from_buffer(ubuf, max, ppos, buf, len);
1732 }
1733 
1734 static ssize_t
1735 i915_max_freq_write(struct file *filp,
1736 		  const char __user *ubuf,
1737 		  size_t cnt,
1738 		  loff_t *ppos)
1739 {
1740 	struct drm_device *dev = filp->private_data;
1741 	struct drm_i915_private *dev_priv = dev->dev_private;
1742 	char buf[20];
1743 	int val = 1, ret;
1744 
1745 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
1746 		return -ENODEV;
1747 
1748 	if (cnt > 0) {
1749 		if (cnt > sizeof(buf) - 1)
1750 			return -EINVAL;
1751 
1752 		if (copy_from_user(buf, ubuf, cnt))
1753 			return -EFAULT;
1754 		buf[cnt] = 0;
1755 
1756 		val = simple_strtoul(buf, NULL, 0);
1757 	}
1758 
1759 	DRM_DEBUG_DRIVER("Manually setting max freq to %d\n", val);
1760 
1761 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1762 	if (ret)
1763 		return ret;
1764 
1765 	/*
1766 	 * Turbo will still be enabled, but won't go above the set value.
1767 	 */
1768 	dev_priv->rps.max_delay = val / GT_FREQUENCY_MULTIPLIER;
1769 
1770 	gen6_set_rps(dev, val / GT_FREQUENCY_MULTIPLIER);
1771 	mutex_unlock(&dev_priv->rps.hw_lock);
1772 
1773 	return cnt;
1774 }
1775 
1776 static const struct file_operations i915_max_freq_fops = {
1777 	.owner = THIS_MODULE,
1778 	.open = simple_open,
1779 	.read = i915_max_freq_read,
1780 	.write = i915_max_freq_write,
1781 	.llseek = default_llseek,
1782 };
1783 
1784 static ssize_t
1785 i915_min_freq_read(struct file *filp, char __user *ubuf, size_t max,
1786 		   loff_t *ppos)
1787 {
1788 	struct drm_device *dev = filp->private_data;
1789 	drm_i915_private_t *dev_priv = dev->dev_private;
1790 	char buf[80];
1791 	int len, ret;
1792 
1793 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
1794 		return -ENODEV;
1795 
1796 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1797 	if (ret)
1798 		return ret;
1799 
1800 	len = snprintf(buf, sizeof(buf),
1801 		       "min freq: %d\n", dev_priv->rps.min_delay * GT_FREQUENCY_MULTIPLIER);
1802 	mutex_unlock(&dev_priv->rps.hw_lock);
1803 
1804 	if (len > sizeof(buf))
1805 		len = sizeof(buf);
1806 
1807 	return simple_read_from_buffer(ubuf, max, ppos, buf, len);
1808 }
1809 
1810 static ssize_t
1811 i915_min_freq_write(struct file *filp, const char __user *ubuf, size_t cnt,
1812 		    loff_t *ppos)
1813 {
1814 	struct drm_device *dev = filp->private_data;
1815 	struct drm_i915_private *dev_priv = dev->dev_private;
1816 	char buf[20];
1817 	int val = 1, ret;
1818 
1819 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
1820 		return -ENODEV;
1821 
1822 	if (cnt > 0) {
1823 		if (cnt > sizeof(buf) - 1)
1824 			return -EINVAL;
1825 
1826 		if (copy_from_user(buf, ubuf, cnt))
1827 			return -EFAULT;
1828 		buf[cnt] = 0;
1829 
1830 		val = simple_strtoul(buf, NULL, 0);
1831 	}
1832 
1833 	DRM_DEBUG_DRIVER("Manually setting min freq to %d\n", val);
1834 
1835 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1836 	if (ret)
1837 		return ret;
1838 
1839 	/*
1840 	 * Turbo will still be enabled, but won't go below the set value.
1841 	 */
1842 	dev_priv->rps.min_delay = val / GT_FREQUENCY_MULTIPLIER;
1843 
1844 	gen6_set_rps(dev, val / GT_FREQUENCY_MULTIPLIER);
1845 	mutex_unlock(&dev_priv->rps.hw_lock);
1846 
1847 	return cnt;
1848 }
1849 
1850 static const struct file_operations i915_min_freq_fops = {
1851 	.owner = THIS_MODULE,
1852 	.open = simple_open,
1853 	.read = i915_min_freq_read,
1854 	.write = i915_min_freq_write,
1855 	.llseek = default_llseek,
1856 };
1857 
1858 static ssize_t
1859 i915_cache_sharing_read(struct file *filp,
1860 		   char __user *ubuf,
1861 		   size_t max,
1862 		   loff_t *ppos)
1863 {
1864 	struct drm_device *dev = filp->private_data;
1865 	drm_i915_private_t *dev_priv = dev->dev_private;
1866 	char buf[80];
1867 	u32 snpcr;
1868 	int len, ret;
1869 
1870 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
1871 		return -ENODEV;
1872 
1873 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1874 	if (ret)
1875 		return ret;
1876 
1877 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
1878 	mutex_unlock(&dev_priv->dev->struct_mutex);
1879 
1880 	len = snprintf(buf, sizeof(buf),
1881 		       "%d\n", (snpcr & GEN6_MBC_SNPCR_MASK) >>
1882 		       GEN6_MBC_SNPCR_SHIFT);
1883 
1884 	if (len > sizeof(buf))
1885 		len = sizeof(buf);
1886 
1887 	return simple_read_from_buffer(ubuf, max, ppos, buf, len);
1888 }
1889 
1890 static ssize_t
1891 i915_cache_sharing_write(struct file *filp,
1892 		  const char __user *ubuf,
1893 		  size_t cnt,
1894 		  loff_t *ppos)
1895 {
1896 	struct drm_device *dev = filp->private_data;
1897 	struct drm_i915_private *dev_priv = dev->dev_private;
1898 	char buf[20];
1899 	u32 snpcr;
1900 	int val = 1;
1901 
1902 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
1903 		return -ENODEV;
1904 
1905 	if (cnt > 0) {
1906 		if (cnt > sizeof(buf) - 1)
1907 			return -EINVAL;
1908 
1909 		if (copy_from_user(buf, ubuf, cnt))
1910 			return -EFAULT;
1911 		buf[cnt] = 0;
1912 
1913 		val = simple_strtoul(buf, NULL, 0);
1914 	}
1915 
1916 	if (val < 0 || val > 3)
1917 		return -EINVAL;
1918 
1919 	DRM_DEBUG_DRIVER("Manually setting uncore sharing to %d\n", val);
1920 
1921 	/* Update the cache sharing policy here as well */
1922 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
1923 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
1924 	snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
1925 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
1926 
1927 	return cnt;
1928 }
1929 
1930 static const struct file_operations i915_cache_sharing_fops = {
1931 	.owner = THIS_MODULE,
1932 	.open = simple_open,
1933 	.read = i915_cache_sharing_read,
1934 	.write = i915_cache_sharing_write,
1935 	.llseek = default_llseek,
1936 };
1937 
1938 /* As the drm_debugfs_init() routines are called before dev->dev_private is
1939  * allocated we need to hook into the minor for release. */
1940 static int
1941 drm_add_fake_info_node(struct drm_minor *minor,
1942 		       struct dentry *ent,
1943 		       const void *key)
1944 {
1945 	struct drm_info_node *node;
1946 
1947 	node = kmalloc(sizeof(struct drm_info_node), GFP_KERNEL);
1948 	if (node == NULL) {
1949 		debugfs_remove(ent);
1950 		return -ENOMEM;
1951 	}
1952 
1953 	node->minor = minor;
1954 	node->dent = ent;
1955 	node->info_ent = (void *) key;
1956 
1957 	mutex_lock(&minor->debugfs_lock);
1958 	list_add(&node->list, &minor->debugfs_list);
1959 	mutex_unlock(&minor->debugfs_lock);
1960 
1961 	return 0;
1962 }
1963 
1964 static int i915_forcewake_open(struct inode *inode, struct file *file)
1965 {
1966 	struct drm_device *dev = inode->i_private;
1967 	struct drm_i915_private *dev_priv = dev->dev_private;
1968 
1969 	if (INTEL_INFO(dev)->gen < 6)
1970 		return 0;
1971 
1972 	gen6_gt_force_wake_get(dev_priv);
1973 
1974 	return 0;
1975 }
1976 
1977 static int i915_forcewake_release(struct inode *inode, struct file *file)
1978 {
1979 	struct drm_device *dev = inode->i_private;
1980 	struct drm_i915_private *dev_priv = dev->dev_private;
1981 
1982 	if (INTEL_INFO(dev)->gen < 6)
1983 		return 0;
1984 
1985 	gen6_gt_force_wake_put(dev_priv);
1986 
1987 	return 0;
1988 }
1989 
1990 static const struct file_operations i915_forcewake_fops = {
1991 	.owner = THIS_MODULE,
1992 	.open = i915_forcewake_open,
1993 	.release = i915_forcewake_release,
1994 };
1995 
1996 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
1997 {
1998 	struct drm_device *dev = minor->dev;
1999 	struct dentry *ent;
2000 
2001 	ent = debugfs_create_file("i915_forcewake_user",
2002 				  S_IRUSR,
2003 				  root, dev,
2004 				  &i915_forcewake_fops);
2005 	if (IS_ERR(ent))
2006 		return PTR_ERR(ent);
2007 
2008 	return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
2009 }
2010 
2011 static int i915_debugfs_create(struct dentry *root,
2012 			       struct drm_minor *minor,
2013 			       const char *name,
2014 			       const struct file_operations *fops)
2015 {
2016 	struct drm_device *dev = minor->dev;
2017 	struct dentry *ent;
2018 
2019 	ent = debugfs_create_file(name,
2020 				  S_IRUGO | S_IWUSR,
2021 				  root, dev,
2022 				  fops);
2023 	if (IS_ERR(ent))
2024 		return PTR_ERR(ent);
2025 
2026 	return drm_add_fake_info_node(minor, ent, fops);
2027 }
2028 
2029 static struct drm_info_list i915_debugfs_list[] = {
2030 	{"i915_capabilities", i915_capabilities, 0},
2031 	{"i915_gem_objects", i915_gem_object_info, 0},
2032 	{"i915_gem_gtt", i915_gem_gtt_info, 0},
2033 	{"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
2034 	{"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
2035 	{"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
2036 	{"i915_gem_pageflip", i915_gem_pageflip_info, 0},
2037 	{"i915_gem_request", i915_gem_request_info, 0},
2038 	{"i915_gem_seqno", i915_gem_seqno_info, 0},
2039 	{"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
2040 	{"i915_gem_interrupt", i915_interrupt_info, 0},
2041 	{"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
2042 	{"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
2043 	{"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
2044 	{"i915_rstdby_delays", i915_rstdby_delays, 0},
2045 	{"i915_cur_delayinfo", i915_cur_delayinfo, 0},
2046 	{"i915_delayfreq_table", i915_delayfreq_table, 0},
2047 	{"i915_inttoext_table", i915_inttoext_table, 0},
2048 	{"i915_drpc_info", i915_drpc_info, 0},
2049 	{"i915_emon_status", i915_emon_status, 0},
2050 	{"i915_ring_freq_table", i915_ring_freq_table, 0},
2051 	{"i915_gfxec", i915_gfxec, 0},
2052 	{"i915_fbc_status", i915_fbc_status, 0},
2053 	{"i915_sr_status", i915_sr_status, 0},
2054 	{"i915_opregion", i915_opregion, 0},
2055 	{"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
2056 	{"i915_context_status", i915_context_status, 0},
2057 	{"i915_gen6_forcewake_count", i915_gen6_forcewake_count_info, 0},
2058 	{"i915_swizzle_info", i915_swizzle_info, 0},
2059 	{"i915_ppgtt_info", i915_ppgtt_info, 0},
2060 	{"i915_dpio", i915_dpio_info, 0},
2061 };
2062 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
2063 
2064 int i915_debugfs_init(struct drm_minor *minor)
2065 {
2066 	int ret;
2067 
2068 	ret = i915_debugfs_create(minor->debugfs_root, minor,
2069 				  "i915_wedged",
2070 				  &i915_wedged_fops);
2071 	if (ret)
2072 		return ret;
2073 
2074 	ret = i915_forcewake_create(minor->debugfs_root, minor);
2075 	if (ret)
2076 		return ret;
2077 
2078 	ret = i915_debugfs_create(minor->debugfs_root, minor,
2079 				  "i915_max_freq",
2080 				  &i915_max_freq_fops);
2081 	if (ret)
2082 		return ret;
2083 
2084 	ret = i915_debugfs_create(minor->debugfs_root, minor,
2085 				  "i915_min_freq",
2086 				  &i915_min_freq_fops);
2087 	if (ret)
2088 		return ret;
2089 
2090 	ret = i915_debugfs_create(minor->debugfs_root, minor,
2091 				  "i915_cache_sharing",
2092 				  &i915_cache_sharing_fops);
2093 	if (ret)
2094 		return ret;
2095 
2096 	ret = i915_debugfs_create(minor->debugfs_root, minor,
2097 				  "i915_ring_stop",
2098 				  &i915_ring_stop_fops);
2099 	if (ret)
2100 		return ret;
2101 
2102 	ret = i915_debugfs_create(minor->debugfs_root, minor,
2103 				  "i915_error_state",
2104 				  &i915_error_state_fops);
2105 	if (ret)
2106 		return ret;
2107 
2108 	return drm_debugfs_create_files(i915_debugfs_list,
2109 					I915_DEBUGFS_ENTRIES,
2110 					minor->debugfs_root, minor);
2111 }
2112 
2113 void i915_debugfs_cleanup(struct drm_minor *minor)
2114 {
2115 	drm_debugfs_remove_files(i915_debugfs_list,
2116 				 I915_DEBUGFS_ENTRIES, minor);
2117 	drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
2118 				 1, minor);
2119 	drm_debugfs_remove_files((struct drm_info_list *) &i915_wedged_fops,
2120 				 1, minor);
2121 	drm_debugfs_remove_files((struct drm_info_list *) &i915_max_freq_fops,
2122 				 1, minor);
2123 	drm_debugfs_remove_files((struct drm_info_list *) &i915_min_freq_fops,
2124 				 1, minor);
2125 	drm_debugfs_remove_files((struct drm_info_list *) &i915_cache_sharing_fops,
2126 				 1, minor);
2127 	drm_debugfs_remove_files((struct drm_info_list *) &i915_ring_stop_fops,
2128 				 1, minor);
2129 	drm_debugfs_remove_files((struct drm_info_list *) &i915_error_state_fops,
2130 				 1, minor);
2131 }
2132 
2133 #endif /* CONFIG_DEBUG_FS */
2134