xref: /linux/drivers/gpu/drm/i915/i915_debugfs.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28 
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42 
43 enum {
44 	ACTIVE_LIST,
45 	INACTIVE_LIST,
46 	PINNED_LIST,
47 };
48 
49 /* As the drm_debugfs_init() routines are called before dev->dev_private is
50  * allocated we need to hook into the minor for release. */
51 static int
52 drm_add_fake_info_node(struct drm_minor *minor,
53 		       struct dentry *ent,
54 		       const void *key)
55 {
56 	struct drm_info_node *node;
57 
58 	node = kmalloc(sizeof(*node), GFP_KERNEL);
59 	if (node == NULL) {
60 		debugfs_remove(ent);
61 		return -ENOMEM;
62 	}
63 
64 	node->minor = minor;
65 	node->dent = ent;
66 	node->info_ent = (void *) key;
67 
68 	mutex_lock(&minor->debugfs_lock);
69 	list_add(&node->list, &minor->debugfs_list);
70 	mutex_unlock(&minor->debugfs_lock);
71 
72 	return 0;
73 }
74 
75 static int i915_capabilities(struct seq_file *m, void *data)
76 {
77 	struct drm_info_node *node = m->private;
78 	struct drm_device *dev = node->minor->dev;
79 	const struct intel_device_info *info = INTEL_INFO(dev);
80 
81 	seq_printf(m, "gen: %d\n", info->gen);
82 	seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
83 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
84 #define SEP_SEMICOLON ;
85 	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
86 #undef PRINT_FLAG
87 #undef SEP_SEMICOLON
88 
89 	return 0;
90 }
91 
92 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
93 {
94 	if (obj->pin_display)
95 		return "p";
96 	else
97 		return " ";
98 }
99 
100 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
101 {
102 	switch (obj->tiling_mode) {
103 	default:
104 	case I915_TILING_NONE: return " ";
105 	case I915_TILING_X: return "X";
106 	case I915_TILING_Y: return "Y";
107 	}
108 }
109 
110 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
111 {
112 	return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
113 }
114 
115 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
116 {
117 	u64 size = 0;
118 	struct i915_vma *vma;
119 
120 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
121 		if (vma->is_ggtt && drm_mm_node_allocated(&vma->node))
122 			size += vma->node.size;
123 	}
124 
125 	return size;
126 }
127 
128 static void
129 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
130 {
131 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
132 	struct intel_engine_cs *engine;
133 	struct i915_vma *vma;
134 	int pin_count = 0;
135 	enum intel_engine_id id;
136 
137 	lockdep_assert_held(&obj->base.dev->struct_mutex);
138 
139 	seq_printf(m, "%pK: %s%s%s%s %8zdKiB %02x %02x [ ",
140 		   &obj->base,
141 		   obj->active ? "*" : " ",
142 		   get_pin_flag(obj),
143 		   get_tiling_flag(obj),
144 		   get_global_flag(obj),
145 		   obj->base.size / 1024,
146 		   obj->base.read_domains,
147 		   obj->base.write_domain);
148 	for_each_engine_id(engine, dev_priv, id)
149 		seq_printf(m, "%x ",
150 				i915_gem_request_get_seqno(obj->last_read_req[id]));
151 	seq_printf(m, "] %x %x%s%s%s",
152 		   i915_gem_request_get_seqno(obj->last_write_req),
153 		   i915_gem_request_get_seqno(obj->last_fenced_req),
154 		   i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
155 		   obj->dirty ? " dirty" : "",
156 		   obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
157 	if (obj->base.name)
158 		seq_printf(m, " (name: %d)", obj->base.name);
159 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
160 		if (vma->pin_count > 0)
161 			pin_count++;
162 	}
163 	seq_printf(m, " (pinned x %d)", pin_count);
164 	if (obj->pin_display)
165 		seq_printf(m, " (display)");
166 	if (obj->fence_reg != I915_FENCE_REG_NONE)
167 		seq_printf(m, " (fence: %d)", obj->fence_reg);
168 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
169 		seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
170 			   vma->is_ggtt ? "g" : "pp",
171 			   vma->node.start, vma->node.size);
172 		if (vma->is_ggtt)
173 			seq_printf(m, ", type: %u", vma->ggtt_view.type);
174 		seq_puts(m, ")");
175 	}
176 	if (obj->stolen)
177 		seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
178 	if (obj->pin_display || obj->fault_mappable) {
179 		char s[3], *t = s;
180 		if (obj->pin_display)
181 			*t++ = 'p';
182 		if (obj->fault_mappable)
183 			*t++ = 'f';
184 		*t = '\0';
185 		seq_printf(m, " (%s mappable)", s);
186 	}
187 	if (obj->last_write_req != NULL)
188 		seq_printf(m, " (%s)",
189 			   i915_gem_request_get_engine(obj->last_write_req)->name);
190 	if (obj->frontbuffer_bits)
191 		seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
192 }
193 
194 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
195 {
196 	seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
197 	seq_putc(m, ctx->remap_slice ? 'R' : 'r');
198 	seq_putc(m, ' ');
199 }
200 
201 static int i915_gem_object_list_info(struct seq_file *m, void *data)
202 {
203 	struct drm_info_node *node = m->private;
204 	uintptr_t list = (uintptr_t) node->info_ent->data;
205 	struct list_head *head;
206 	struct drm_device *dev = node->minor->dev;
207 	struct drm_i915_private *dev_priv = to_i915(dev);
208 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
209 	struct i915_vma *vma;
210 	u64 total_obj_size, total_gtt_size;
211 	int count, ret;
212 
213 	ret = mutex_lock_interruptible(&dev->struct_mutex);
214 	if (ret)
215 		return ret;
216 
217 	/* FIXME: the user of this interface might want more than just GGTT */
218 	switch (list) {
219 	case ACTIVE_LIST:
220 		seq_puts(m, "Active:\n");
221 		head = &ggtt->base.active_list;
222 		break;
223 	case INACTIVE_LIST:
224 		seq_puts(m, "Inactive:\n");
225 		head = &ggtt->base.inactive_list;
226 		break;
227 	default:
228 		mutex_unlock(&dev->struct_mutex);
229 		return -EINVAL;
230 	}
231 
232 	total_obj_size = total_gtt_size = count = 0;
233 	list_for_each_entry(vma, head, vm_link) {
234 		seq_printf(m, "   ");
235 		describe_obj(m, vma->obj);
236 		seq_printf(m, "\n");
237 		total_obj_size += vma->obj->base.size;
238 		total_gtt_size += vma->node.size;
239 		count++;
240 	}
241 	mutex_unlock(&dev->struct_mutex);
242 
243 	seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
244 		   count, total_obj_size, total_gtt_size);
245 	return 0;
246 }
247 
248 static int obj_rank_by_stolen(void *priv,
249 			      struct list_head *A, struct list_head *B)
250 {
251 	struct drm_i915_gem_object *a =
252 		container_of(A, struct drm_i915_gem_object, obj_exec_link);
253 	struct drm_i915_gem_object *b =
254 		container_of(B, struct drm_i915_gem_object, obj_exec_link);
255 
256 	if (a->stolen->start < b->stolen->start)
257 		return -1;
258 	if (a->stolen->start > b->stolen->start)
259 		return 1;
260 	return 0;
261 }
262 
263 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
264 {
265 	struct drm_info_node *node = m->private;
266 	struct drm_device *dev = node->minor->dev;
267 	struct drm_i915_private *dev_priv = dev->dev_private;
268 	struct drm_i915_gem_object *obj;
269 	u64 total_obj_size, total_gtt_size;
270 	LIST_HEAD(stolen);
271 	int count, ret;
272 
273 	ret = mutex_lock_interruptible(&dev->struct_mutex);
274 	if (ret)
275 		return ret;
276 
277 	total_obj_size = total_gtt_size = count = 0;
278 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
279 		if (obj->stolen == NULL)
280 			continue;
281 
282 		list_add(&obj->obj_exec_link, &stolen);
283 
284 		total_obj_size += obj->base.size;
285 		total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
286 		count++;
287 	}
288 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
289 		if (obj->stolen == NULL)
290 			continue;
291 
292 		list_add(&obj->obj_exec_link, &stolen);
293 
294 		total_obj_size += obj->base.size;
295 		count++;
296 	}
297 	list_sort(NULL, &stolen, obj_rank_by_stolen);
298 	seq_puts(m, "Stolen:\n");
299 	while (!list_empty(&stolen)) {
300 		obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
301 		seq_puts(m, "   ");
302 		describe_obj(m, obj);
303 		seq_putc(m, '\n');
304 		list_del_init(&obj->obj_exec_link);
305 	}
306 	mutex_unlock(&dev->struct_mutex);
307 
308 	seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
309 		   count, total_obj_size, total_gtt_size);
310 	return 0;
311 }
312 
313 #define count_objects(list, member) do { \
314 	list_for_each_entry(obj, list, member) { \
315 		size += i915_gem_obj_total_ggtt_size(obj); \
316 		++count; \
317 		if (obj->map_and_fenceable) { \
318 			mappable_size += i915_gem_obj_ggtt_size(obj); \
319 			++mappable_count; \
320 		} \
321 	} \
322 } while (0)
323 
324 struct file_stats {
325 	struct drm_i915_file_private *file_priv;
326 	unsigned long count;
327 	u64 total, unbound;
328 	u64 global, shared;
329 	u64 active, inactive;
330 };
331 
332 static int per_file_stats(int id, void *ptr, void *data)
333 {
334 	struct drm_i915_gem_object *obj = ptr;
335 	struct file_stats *stats = data;
336 	struct i915_vma *vma;
337 
338 	stats->count++;
339 	stats->total += obj->base.size;
340 
341 	if (obj->base.name || obj->base.dma_buf)
342 		stats->shared += obj->base.size;
343 
344 	if (USES_FULL_PPGTT(obj->base.dev)) {
345 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
346 			struct i915_hw_ppgtt *ppgtt;
347 
348 			if (!drm_mm_node_allocated(&vma->node))
349 				continue;
350 
351 			if (vma->is_ggtt) {
352 				stats->global += obj->base.size;
353 				continue;
354 			}
355 
356 			ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
357 			if (ppgtt->file_priv != stats->file_priv)
358 				continue;
359 
360 			if (obj->active) /* XXX per-vma statistic */
361 				stats->active += obj->base.size;
362 			else
363 				stats->inactive += obj->base.size;
364 
365 			return 0;
366 		}
367 	} else {
368 		if (i915_gem_obj_ggtt_bound(obj)) {
369 			stats->global += obj->base.size;
370 			if (obj->active)
371 				stats->active += obj->base.size;
372 			else
373 				stats->inactive += obj->base.size;
374 			return 0;
375 		}
376 	}
377 
378 	if (!list_empty(&obj->global_list))
379 		stats->unbound += obj->base.size;
380 
381 	return 0;
382 }
383 
384 #define print_file_stats(m, name, stats) do { \
385 	if (stats.count) \
386 		seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
387 			   name, \
388 			   stats.count, \
389 			   stats.total, \
390 			   stats.active, \
391 			   stats.inactive, \
392 			   stats.global, \
393 			   stats.shared, \
394 			   stats.unbound); \
395 } while (0)
396 
397 static void print_batch_pool_stats(struct seq_file *m,
398 				   struct drm_i915_private *dev_priv)
399 {
400 	struct drm_i915_gem_object *obj;
401 	struct file_stats stats;
402 	struct intel_engine_cs *engine;
403 	int j;
404 
405 	memset(&stats, 0, sizeof(stats));
406 
407 	for_each_engine(engine, dev_priv) {
408 		for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
409 			list_for_each_entry(obj,
410 					    &engine->batch_pool.cache_list[j],
411 					    batch_pool_link)
412 				per_file_stats(0, obj, &stats);
413 		}
414 	}
415 
416 	print_file_stats(m, "[k]batch pool", stats);
417 }
418 
419 #define count_vmas(list, member) do { \
420 	list_for_each_entry(vma, list, member) { \
421 		size += i915_gem_obj_total_ggtt_size(vma->obj); \
422 		++count; \
423 		if (vma->obj->map_and_fenceable) { \
424 			mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
425 			++mappable_count; \
426 		} \
427 	} \
428 } while (0)
429 
430 static int i915_gem_object_info(struct seq_file *m, void* data)
431 {
432 	struct drm_info_node *node = m->private;
433 	struct drm_device *dev = node->minor->dev;
434 	struct drm_i915_private *dev_priv = to_i915(dev);
435 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
436 	u32 count, mappable_count, purgeable_count;
437 	u64 size, mappable_size, purgeable_size;
438 	struct drm_i915_gem_object *obj;
439 	struct drm_file *file;
440 	struct i915_vma *vma;
441 	int ret;
442 
443 	ret = mutex_lock_interruptible(&dev->struct_mutex);
444 	if (ret)
445 		return ret;
446 
447 	seq_printf(m, "%u objects, %zu bytes\n",
448 		   dev_priv->mm.object_count,
449 		   dev_priv->mm.object_memory);
450 
451 	size = count = mappable_size = mappable_count = 0;
452 	count_objects(&dev_priv->mm.bound_list, global_list);
453 	seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
454 		   count, mappable_count, size, mappable_size);
455 
456 	size = count = mappable_size = mappable_count = 0;
457 	count_vmas(&ggtt->base.active_list, vm_link);
458 	seq_printf(m, "  %u [%u] active objects, %llu [%llu] bytes\n",
459 		   count, mappable_count, size, mappable_size);
460 
461 	size = count = mappable_size = mappable_count = 0;
462 	count_vmas(&ggtt->base.inactive_list, vm_link);
463 	seq_printf(m, "  %u [%u] inactive objects, %llu [%llu] bytes\n",
464 		   count, mappable_count, size, mappable_size);
465 
466 	size = count = purgeable_size = purgeable_count = 0;
467 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
468 		size += obj->base.size, ++count;
469 		if (obj->madv == I915_MADV_DONTNEED)
470 			purgeable_size += obj->base.size, ++purgeable_count;
471 	}
472 	seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
473 
474 	size = count = mappable_size = mappable_count = 0;
475 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
476 		if (obj->fault_mappable) {
477 			size += i915_gem_obj_ggtt_size(obj);
478 			++count;
479 		}
480 		if (obj->pin_display) {
481 			mappable_size += i915_gem_obj_ggtt_size(obj);
482 			++mappable_count;
483 		}
484 		if (obj->madv == I915_MADV_DONTNEED) {
485 			purgeable_size += obj->base.size;
486 			++purgeable_count;
487 		}
488 	}
489 	seq_printf(m, "%u purgeable objects, %llu bytes\n",
490 		   purgeable_count, purgeable_size);
491 	seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
492 		   mappable_count, mappable_size);
493 	seq_printf(m, "%u fault mappable objects, %llu bytes\n",
494 		   count, size);
495 
496 	seq_printf(m, "%llu [%llu] gtt total\n",
497 		   ggtt->base.total, ggtt->mappable_end - ggtt->base.start);
498 
499 	seq_putc(m, '\n');
500 	print_batch_pool_stats(m, dev_priv);
501 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
502 		struct file_stats stats;
503 		struct task_struct *task;
504 
505 		memset(&stats, 0, sizeof(stats));
506 		stats.file_priv = file->driver_priv;
507 		spin_lock(&file->table_lock);
508 		idr_for_each(&file->object_idr, per_file_stats, &stats);
509 		spin_unlock(&file->table_lock);
510 		/*
511 		 * Although we have a valid reference on file->pid, that does
512 		 * not guarantee that the task_struct who called get_pid() is
513 		 * still alive (e.g. get_pid(current) => fork() => exit()).
514 		 * Therefore, we need to protect this ->comm access using RCU.
515 		 */
516 		rcu_read_lock();
517 		task = pid_task(file->pid, PIDTYPE_PID);
518 		print_file_stats(m, task ? task->comm : "<unknown>", stats);
519 		rcu_read_unlock();
520 	}
521 
522 	mutex_unlock(&dev->struct_mutex);
523 
524 	return 0;
525 }
526 
527 static int i915_gem_gtt_info(struct seq_file *m, void *data)
528 {
529 	struct drm_info_node *node = m->private;
530 	struct drm_device *dev = node->minor->dev;
531 	uintptr_t list = (uintptr_t) node->info_ent->data;
532 	struct drm_i915_private *dev_priv = dev->dev_private;
533 	struct drm_i915_gem_object *obj;
534 	u64 total_obj_size, total_gtt_size;
535 	int count, ret;
536 
537 	ret = mutex_lock_interruptible(&dev->struct_mutex);
538 	if (ret)
539 		return ret;
540 
541 	total_obj_size = total_gtt_size = count = 0;
542 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
543 		if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
544 			continue;
545 
546 		seq_puts(m, "   ");
547 		describe_obj(m, obj);
548 		seq_putc(m, '\n');
549 		total_obj_size += obj->base.size;
550 		total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
551 		count++;
552 	}
553 
554 	mutex_unlock(&dev->struct_mutex);
555 
556 	seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
557 		   count, total_obj_size, total_gtt_size);
558 
559 	return 0;
560 }
561 
562 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
563 {
564 	struct drm_info_node *node = m->private;
565 	struct drm_device *dev = node->minor->dev;
566 	struct drm_i915_private *dev_priv = dev->dev_private;
567 	struct intel_crtc *crtc;
568 	int ret;
569 
570 	ret = mutex_lock_interruptible(&dev->struct_mutex);
571 	if (ret)
572 		return ret;
573 
574 	for_each_intel_crtc(dev, crtc) {
575 		const char pipe = pipe_name(crtc->pipe);
576 		const char plane = plane_name(crtc->plane);
577 		struct intel_unpin_work *work;
578 
579 		spin_lock_irq(&dev->event_lock);
580 		work = crtc->unpin_work;
581 		if (work == NULL) {
582 			seq_printf(m, "No flip due on pipe %c (plane %c)\n",
583 				   pipe, plane);
584 		} else {
585 			u32 addr;
586 
587 			if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
588 				seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
589 					   pipe, plane);
590 			} else {
591 				seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
592 					   pipe, plane);
593 			}
594 			if (work->flip_queued_req) {
595 				struct intel_engine_cs *engine = i915_gem_request_get_engine(work->flip_queued_req);
596 
597 				seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
598 					   engine->name,
599 					   i915_gem_request_get_seqno(work->flip_queued_req),
600 					   dev_priv->next_seqno,
601 					   engine->get_seqno(engine),
602 					   i915_gem_request_completed(work->flip_queued_req, true));
603 			} else
604 				seq_printf(m, "Flip not associated with any ring\n");
605 			seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
606 				   work->flip_queued_vblank,
607 				   work->flip_ready_vblank,
608 				   drm_crtc_vblank_count(&crtc->base));
609 			if (work->enable_stall_check)
610 				seq_puts(m, "Stall check enabled, ");
611 			else
612 				seq_puts(m, "Stall check waiting for page flip ioctl, ");
613 			seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
614 
615 			if (INTEL_INFO(dev)->gen >= 4)
616 				addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
617 			else
618 				addr = I915_READ(DSPADDR(crtc->plane));
619 			seq_printf(m, "Current scanout address 0x%08x\n", addr);
620 
621 			if (work->pending_flip_obj) {
622 				seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
623 				seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
624 			}
625 		}
626 		spin_unlock_irq(&dev->event_lock);
627 	}
628 
629 	mutex_unlock(&dev->struct_mutex);
630 
631 	return 0;
632 }
633 
634 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
635 {
636 	struct drm_info_node *node = m->private;
637 	struct drm_device *dev = node->minor->dev;
638 	struct drm_i915_private *dev_priv = dev->dev_private;
639 	struct drm_i915_gem_object *obj;
640 	struct intel_engine_cs *engine;
641 	int total = 0;
642 	int ret, j;
643 
644 	ret = mutex_lock_interruptible(&dev->struct_mutex);
645 	if (ret)
646 		return ret;
647 
648 	for_each_engine(engine, dev_priv) {
649 		for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
650 			int count;
651 
652 			count = 0;
653 			list_for_each_entry(obj,
654 					    &engine->batch_pool.cache_list[j],
655 					    batch_pool_link)
656 				count++;
657 			seq_printf(m, "%s cache[%d]: %d objects\n",
658 				   engine->name, j, count);
659 
660 			list_for_each_entry(obj,
661 					    &engine->batch_pool.cache_list[j],
662 					    batch_pool_link) {
663 				seq_puts(m, "   ");
664 				describe_obj(m, obj);
665 				seq_putc(m, '\n');
666 			}
667 
668 			total += count;
669 		}
670 	}
671 
672 	seq_printf(m, "total: %d\n", total);
673 
674 	mutex_unlock(&dev->struct_mutex);
675 
676 	return 0;
677 }
678 
679 static int i915_gem_request_info(struct seq_file *m, void *data)
680 {
681 	struct drm_info_node *node = m->private;
682 	struct drm_device *dev = node->minor->dev;
683 	struct drm_i915_private *dev_priv = dev->dev_private;
684 	struct intel_engine_cs *engine;
685 	struct drm_i915_gem_request *req;
686 	int ret, any;
687 
688 	ret = mutex_lock_interruptible(&dev->struct_mutex);
689 	if (ret)
690 		return ret;
691 
692 	any = 0;
693 	for_each_engine(engine, dev_priv) {
694 		int count;
695 
696 		count = 0;
697 		list_for_each_entry(req, &engine->request_list, list)
698 			count++;
699 		if (count == 0)
700 			continue;
701 
702 		seq_printf(m, "%s requests: %d\n", engine->name, count);
703 		list_for_each_entry(req, &engine->request_list, list) {
704 			struct task_struct *task;
705 
706 			rcu_read_lock();
707 			task = NULL;
708 			if (req->pid)
709 				task = pid_task(req->pid, PIDTYPE_PID);
710 			seq_printf(m, "    %x @ %d: %s [%d]\n",
711 				   req->seqno,
712 				   (int) (jiffies - req->emitted_jiffies),
713 				   task ? task->comm : "<unknown>",
714 				   task ? task->pid : -1);
715 			rcu_read_unlock();
716 		}
717 
718 		any++;
719 	}
720 	mutex_unlock(&dev->struct_mutex);
721 
722 	if (any == 0)
723 		seq_puts(m, "No requests\n");
724 
725 	return 0;
726 }
727 
728 static void i915_ring_seqno_info(struct seq_file *m,
729 				 struct intel_engine_cs *engine)
730 {
731 	seq_printf(m, "Current sequence (%s): %x\n",
732 		   engine->name, engine->get_seqno(engine));
733 	seq_printf(m, "Current user interrupts (%s): %x\n",
734 		   engine->name, READ_ONCE(engine->user_interrupts));
735 }
736 
737 static int i915_gem_seqno_info(struct seq_file *m, void *data)
738 {
739 	struct drm_info_node *node = m->private;
740 	struct drm_device *dev = node->minor->dev;
741 	struct drm_i915_private *dev_priv = dev->dev_private;
742 	struct intel_engine_cs *engine;
743 	int ret;
744 
745 	ret = mutex_lock_interruptible(&dev->struct_mutex);
746 	if (ret)
747 		return ret;
748 	intel_runtime_pm_get(dev_priv);
749 
750 	for_each_engine(engine, dev_priv)
751 		i915_ring_seqno_info(m, engine);
752 
753 	intel_runtime_pm_put(dev_priv);
754 	mutex_unlock(&dev->struct_mutex);
755 
756 	return 0;
757 }
758 
759 
760 static int i915_interrupt_info(struct seq_file *m, void *data)
761 {
762 	struct drm_info_node *node = m->private;
763 	struct drm_device *dev = node->minor->dev;
764 	struct drm_i915_private *dev_priv = dev->dev_private;
765 	struct intel_engine_cs *engine;
766 	int ret, i, pipe;
767 
768 	ret = mutex_lock_interruptible(&dev->struct_mutex);
769 	if (ret)
770 		return ret;
771 	intel_runtime_pm_get(dev_priv);
772 
773 	if (IS_CHERRYVIEW(dev)) {
774 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
775 			   I915_READ(GEN8_MASTER_IRQ));
776 
777 		seq_printf(m, "Display IER:\t%08x\n",
778 			   I915_READ(VLV_IER));
779 		seq_printf(m, "Display IIR:\t%08x\n",
780 			   I915_READ(VLV_IIR));
781 		seq_printf(m, "Display IIR_RW:\t%08x\n",
782 			   I915_READ(VLV_IIR_RW));
783 		seq_printf(m, "Display IMR:\t%08x\n",
784 			   I915_READ(VLV_IMR));
785 		for_each_pipe(dev_priv, pipe)
786 			seq_printf(m, "Pipe %c stat:\t%08x\n",
787 				   pipe_name(pipe),
788 				   I915_READ(PIPESTAT(pipe)));
789 
790 		seq_printf(m, "Port hotplug:\t%08x\n",
791 			   I915_READ(PORT_HOTPLUG_EN));
792 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
793 			   I915_READ(VLV_DPFLIPSTAT));
794 		seq_printf(m, "DPINVGTT:\t%08x\n",
795 			   I915_READ(DPINVGTT));
796 
797 		for (i = 0; i < 4; i++) {
798 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
799 				   i, I915_READ(GEN8_GT_IMR(i)));
800 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
801 				   i, I915_READ(GEN8_GT_IIR(i)));
802 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
803 				   i, I915_READ(GEN8_GT_IER(i)));
804 		}
805 
806 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
807 			   I915_READ(GEN8_PCU_IMR));
808 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
809 			   I915_READ(GEN8_PCU_IIR));
810 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
811 			   I915_READ(GEN8_PCU_IER));
812 	} else if (INTEL_INFO(dev)->gen >= 8) {
813 		seq_printf(m, "Master Interrupt Control:\t%08x\n",
814 			   I915_READ(GEN8_MASTER_IRQ));
815 
816 		for (i = 0; i < 4; i++) {
817 			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
818 				   i, I915_READ(GEN8_GT_IMR(i)));
819 			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
820 				   i, I915_READ(GEN8_GT_IIR(i)));
821 			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
822 				   i, I915_READ(GEN8_GT_IER(i)));
823 		}
824 
825 		for_each_pipe(dev_priv, pipe) {
826 			enum intel_display_power_domain power_domain;
827 
828 			power_domain = POWER_DOMAIN_PIPE(pipe);
829 			if (!intel_display_power_get_if_enabled(dev_priv,
830 								power_domain)) {
831 				seq_printf(m, "Pipe %c power disabled\n",
832 					   pipe_name(pipe));
833 				continue;
834 			}
835 			seq_printf(m, "Pipe %c IMR:\t%08x\n",
836 				   pipe_name(pipe),
837 				   I915_READ(GEN8_DE_PIPE_IMR(pipe)));
838 			seq_printf(m, "Pipe %c IIR:\t%08x\n",
839 				   pipe_name(pipe),
840 				   I915_READ(GEN8_DE_PIPE_IIR(pipe)));
841 			seq_printf(m, "Pipe %c IER:\t%08x\n",
842 				   pipe_name(pipe),
843 				   I915_READ(GEN8_DE_PIPE_IER(pipe)));
844 
845 			intel_display_power_put(dev_priv, power_domain);
846 		}
847 
848 		seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
849 			   I915_READ(GEN8_DE_PORT_IMR));
850 		seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
851 			   I915_READ(GEN8_DE_PORT_IIR));
852 		seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
853 			   I915_READ(GEN8_DE_PORT_IER));
854 
855 		seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
856 			   I915_READ(GEN8_DE_MISC_IMR));
857 		seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
858 			   I915_READ(GEN8_DE_MISC_IIR));
859 		seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
860 			   I915_READ(GEN8_DE_MISC_IER));
861 
862 		seq_printf(m, "PCU interrupt mask:\t%08x\n",
863 			   I915_READ(GEN8_PCU_IMR));
864 		seq_printf(m, "PCU interrupt identity:\t%08x\n",
865 			   I915_READ(GEN8_PCU_IIR));
866 		seq_printf(m, "PCU interrupt enable:\t%08x\n",
867 			   I915_READ(GEN8_PCU_IER));
868 	} else if (IS_VALLEYVIEW(dev)) {
869 		seq_printf(m, "Display IER:\t%08x\n",
870 			   I915_READ(VLV_IER));
871 		seq_printf(m, "Display IIR:\t%08x\n",
872 			   I915_READ(VLV_IIR));
873 		seq_printf(m, "Display IIR_RW:\t%08x\n",
874 			   I915_READ(VLV_IIR_RW));
875 		seq_printf(m, "Display IMR:\t%08x\n",
876 			   I915_READ(VLV_IMR));
877 		for_each_pipe(dev_priv, pipe)
878 			seq_printf(m, "Pipe %c stat:\t%08x\n",
879 				   pipe_name(pipe),
880 				   I915_READ(PIPESTAT(pipe)));
881 
882 		seq_printf(m, "Master IER:\t%08x\n",
883 			   I915_READ(VLV_MASTER_IER));
884 
885 		seq_printf(m, "Render IER:\t%08x\n",
886 			   I915_READ(GTIER));
887 		seq_printf(m, "Render IIR:\t%08x\n",
888 			   I915_READ(GTIIR));
889 		seq_printf(m, "Render IMR:\t%08x\n",
890 			   I915_READ(GTIMR));
891 
892 		seq_printf(m, "PM IER:\t\t%08x\n",
893 			   I915_READ(GEN6_PMIER));
894 		seq_printf(m, "PM IIR:\t\t%08x\n",
895 			   I915_READ(GEN6_PMIIR));
896 		seq_printf(m, "PM IMR:\t\t%08x\n",
897 			   I915_READ(GEN6_PMIMR));
898 
899 		seq_printf(m, "Port hotplug:\t%08x\n",
900 			   I915_READ(PORT_HOTPLUG_EN));
901 		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
902 			   I915_READ(VLV_DPFLIPSTAT));
903 		seq_printf(m, "DPINVGTT:\t%08x\n",
904 			   I915_READ(DPINVGTT));
905 
906 	} else if (!HAS_PCH_SPLIT(dev)) {
907 		seq_printf(m, "Interrupt enable:    %08x\n",
908 			   I915_READ(IER));
909 		seq_printf(m, "Interrupt identity:  %08x\n",
910 			   I915_READ(IIR));
911 		seq_printf(m, "Interrupt mask:      %08x\n",
912 			   I915_READ(IMR));
913 		for_each_pipe(dev_priv, pipe)
914 			seq_printf(m, "Pipe %c stat:         %08x\n",
915 				   pipe_name(pipe),
916 				   I915_READ(PIPESTAT(pipe)));
917 	} else {
918 		seq_printf(m, "North Display Interrupt enable:		%08x\n",
919 			   I915_READ(DEIER));
920 		seq_printf(m, "North Display Interrupt identity:	%08x\n",
921 			   I915_READ(DEIIR));
922 		seq_printf(m, "North Display Interrupt mask:		%08x\n",
923 			   I915_READ(DEIMR));
924 		seq_printf(m, "South Display Interrupt enable:		%08x\n",
925 			   I915_READ(SDEIER));
926 		seq_printf(m, "South Display Interrupt identity:	%08x\n",
927 			   I915_READ(SDEIIR));
928 		seq_printf(m, "South Display Interrupt mask:		%08x\n",
929 			   I915_READ(SDEIMR));
930 		seq_printf(m, "Graphics Interrupt enable:		%08x\n",
931 			   I915_READ(GTIER));
932 		seq_printf(m, "Graphics Interrupt identity:		%08x\n",
933 			   I915_READ(GTIIR));
934 		seq_printf(m, "Graphics Interrupt mask:		%08x\n",
935 			   I915_READ(GTIMR));
936 	}
937 	for_each_engine(engine, dev_priv) {
938 		if (INTEL_INFO(dev)->gen >= 6) {
939 			seq_printf(m,
940 				   "Graphics Interrupt mask (%s):	%08x\n",
941 				   engine->name, I915_READ_IMR(engine));
942 		}
943 		i915_ring_seqno_info(m, engine);
944 	}
945 	intel_runtime_pm_put(dev_priv);
946 	mutex_unlock(&dev->struct_mutex);
947 
948 	return 0;
949 }
950 
951 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
952 {
953 	struct drm_info_node *node = m->private;
954 	struct drm_device *dev = node->minor->dev;
955 	struct drm_i915_private *dev_priv = dev->dev_private;
956 	int i, ret;
957 
958 	ret = mutex_lock_interruptible(&dev->struct_mutex);
959 	if (ret)
960 		return ret;
961 
962 	seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
963 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
964 		struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
965 
966 		seq_printf(m, "Fence %d, pin count = %d, object = ",
967 			   i, dev_priv->fence_regs[i].pin_count);
968 		if (obj == NULL)
969 			seq_puts(m, "unused");
970 		else
971 			describe_obj(m, obj);
972 		seq_putc(m, '\n');
973 	}
974 
975 	mutex_unlock(&dev->struct_mutex);
976 	return 0;
977 }
978 
979 static int i915_hws_info(struct seq_file *m, void *data)
980 {
981 	struct drm_info_node *node = m->private;
982 	struct drm_device *dev = node->minor->dev;
983 	struct drm_i915_private *dev_priv = dev->dev_private;
984 	struct intel_engine_cs *engine;
985 	const u32 *hws;
986 	int i;
987 
988 	engine = &dev_priv->engine[(uintptr_t)node->info_ent->data];
989 	hws = engine->status_page.page_addr;
990 	if (hws == NULL)
991 		return 0;
992 
993 	for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
994 		seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
995 			   i * 4,
996 			   hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
997 	}
998 	return 0;
999 }
1000 
1001 static ssize_t
1002 i915_error_state_write(struct file *filp,
1003 		       const char __user *ubuf,
1004 		       size_t cnt,
1005 		       loff_t *ppos)
1006 {
1007 	struct i915_error_state_file_priv *error_priv = filp->private_data;
1008 	struct drm_device *dev = error_priv->dev;
1009 	int ret;
1010 
1011 	DRM_DEBUG_DRIVER("Resetting error state\n");
1012 
1013 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1014 	if (ret)
1015 		return ret;
1016 
1017 	i915_destroy_error_state(dev);
1018 	mutex_unlock(&dev->struct_mutex);
1019 
1020 	return cnt;
1021 }
1022 
1023 static int i915_error_state_open(struct inode *inode, struct file *file)
1024 {
1025 	struct drm_device *dev = inode->i_private;
1026 	struct i915_error_state_file_priv *error_priv;
1027 
1028 	error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
1029 	if (!error_priv)
1030 		return -ENOMEM;
1031 
1032 	error_priv->dev = dev;
1033 
1034 	i915_error_state_get(dev, error_priv);
1035 
1036 	file->private_data = error_priv;
1037 
1038 	return 0;
1039 }
1040 
1041 static int i915_error_state_release(struct inode *inode, struct file *file)
1042 {
1043 	struct i915_error_state_file_priv *error_priv = file->private_data;
1044 
1045 	i915_error_state_put(error_priv);
1046 	kfree(error_priv);
1047 
1048 	return 0;
1049 }
1050 
1051 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1052 				     size_t count, loff_t *pos)
1053 {
1054 	struct i915_error_state_file_priv *error_priv = file->private_data;
1055 	struct drm_i915_error_state_buf error_str;
1056 	loff_t tmp_pos = 0;
1057 	ssize_t ret_count = 0;
1058 	int ret;
1059 
1060 	ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1061 	if (ret)
1062 		return ret;
1063 
1064 	ret = i915_error_state_to_str(&error_str, error_priv);
1065 	if (ret)
1066 		goto out;
1067 
1068 	ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1069 					    error_str.buf,
1070 					    error_str.bytes);
1071 
1072 	if (ret_count < 0)
1073 		ret = ret_count;
1074 	else
1075 		*pos = error_str.start + ret_count;
1076 out:
1077 	i915_error_state_buf_release(&error_str);
1078 	return ret ?: ret_count;
1079 }
1080 
1081 static const struct file_operations i915_error_state_fops = {
1082 	.owner = THIS_MODULE,
1083 	.open = i915_error_state_open,
1084 	.read = i915_error_state_read,
1085 	.write = i915_error_state_write,
1086 	.llseek = default_llseek,
1087 	.release = i915_error_state_release,
1088 };
1089 
1090 static int
1091 i915_next_seqno_get(void *data, u64 *val)
1092 {
1093 	struct drm_device *dev = data;
1094 	struct drm_i915_private *dev_priv = dev->dev_private;
1095 	int ret;
1096 
1097 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1098 	if (ret)
1099 		return ret;
1100 
1101 	*val = dev_priv->next_seqno;
1102 	mutex_unlock(&dev->struct_mutex);
1103 
1104 	return 0;
1105 }
1106 
1107 static int
1108 i915_next_seqno_set(void *data, u64 val)
1109 {
1110 	struct drm_device *dev = data;
1111 	int ret;
1112 
1113 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1114 	if (ret)
1115 		return ret;
1116 
1117 	ret = i915_gem_set_seqno(dev, val);
1118 	mutex_unlock(&dev->struct_mutex);
1119 
1120 	return ret;
1121 }
1122 
1123 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1124 			i915_next_seqno_get, i915_next_seqno_set,
1125 			"0x%llx\n");
1126 
1127 static int i915_frequency_info(struct seq_file *m, void *unused)
1128 {
1129 	struct drm_info_node *node = m->private;
1130 	struct drm_device *dev = node->minor->dev;
1131 	struct drm_i915_private *dev_priv = dev->dev_private;
1132 	int ret = 0;
1133 
1134 	intel_runtime_pm_get(dev_priv);
1135 
1136 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1137 
1138 	if (IS_GEN5(dev)) {
1139 		u16 rgvswctl = I915_READ16(MEMSWCTL);
1140 		u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1141 
1142 		seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1143 		seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1144 		seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1145 			   MEMSTAT_VID_SHIFT);
1146 		seq_printf(m, "Current P-state: %d\n",
1147 			   (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1148 	} else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1149 		u32 freq_sts;
1150 
1151 		mutex_lock(&dev_priv->rps.hw_lock);
1152 		freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1153 		seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1154 		seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1155 
1156 		seq_printf(m, "actual GPU freq: %d MHz\n",
1157 			   intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1158 
1159 		seq_printf(m, "current GPU freq: %d MHz\n",
1160 			   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1161 
1162 		seq_printf(m, "max GPU freq: %d MHz\n",
1163 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1164 
1165 		seq_printf(m, "min GPU freq: %d MHz\n",
1166 			   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1167 
1168 		seq_printf(m, "idle GPU freq: %d MHz\n",
1169 			   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1170 
1171 		seq_printf(m,
1172 			   "efficient (RPe) frequency: %d MHz\n",
1173 			   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1174 		mutex_unlock(&dev_priv->rps.hw_lock);
1175 	} else if (INTEL_INFO(dev)->gen >= 6) {
1176 		u32 rp_state_limits;
1177 		u32 gt_perf_status;
1178 		u32 rp_state_cap;
1179 		u32 rpmodectl, rpinclimit, rpdeclimit;
1180 		u32 rpstat, cagf, reqf;
1181 		u32 rpupei, rpcurup, rpprevup;
1182 		u32 rpdownei, rpcurdown, rpprevdown;
1183 		u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1184 		int max_freq;
1185 
1186 		rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1187 		if (IS_BROXTON(dev)) {
1188 			rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1189 			gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1190 		} else {
1191 			rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1192 			gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1193 		}
1194 
1195 		/* RPSTAT1 is in the GT power well */
1196 		ret = mutex_lock_interruptible(&dev->struct_mutex);
1197 		if (ret)
1198 			goto out;
1199 
1200 		intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1201 
1202 		reqf = I915_READ(GEN6_RPNSWREQ);
1203 		if (IS_GEN9(dev))
1204 			reqf >>= 23;
1205 		else {
1206 			reqf &= ~GEN6_TURBO_DISABLE;
1207 			if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1208 				reqf >>= 24;
1209 			else
1210 				reqf >>= 25;
1211 		}
1212 		reqf = intel_gpu_freq(dev_priv, reqf);
1213 
1214 		rpmodectl = I915_READ(GEN6_RP_CONTROL);
1215 		rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1216 		rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1217 
1218 		rpstat = I915_READ(GEN6_RPSTAT1);
1219 		rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1220 		rpcurup = I915_READ(GEN6_RP_CUR_UP);
1221 		rpprevup = I915_READ(GEN6_RP_PREV_UP);
1222 		rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1223 		rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1224 		rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1225 		if (IS_GEN9(dev))
1226 			cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1227 		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1228 			cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1229 		else
1230 			cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1231 		cagf = intel_gpu_freq(dev_priv, cagf);
1232 
1233 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1234 		mutex_unlock(&dev->struct_mutex);
1235 
1236 		if (IS_GEN6(dev) || IS_GEN7(dev)) {
1237 			pm_ier = I915_READ(GEN6_PMIER);
1238 			pm_imr = I915_READ(GEN6_PMIMR);
1239 			pm_isr = I915_READ(GEN6_PMISR);
1240 			pm_iir = I915_READ(GEN6_PMIIR);
1241 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1242 		} else {
1243 			pm_ier = I915_READ(GEN8_GT_IER(2));
1244 			pm_imr = I915_READ(GEN8_GT_IMR(2));
1245 			pm_isr = I915_READ(GEN8_GT_ISR(2));
1246 			pm_iir = I915_READ(GEN8_GT_IIR(2));
1247 			pm_mask = I915_READ(GEN6_PMINTRMSK);
1248 		}
1249 		seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1250 			   pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1251 		seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1252 		seq_printf(m, "Render p-state ratio: %d\n",
1253 			   (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1254 		seq_printf(m, "Render p-state VID: %d\n",
1255 			   gt_perf_status & 0xff);
1256 		seq_printf(m, "Render p-state limit: %d\n",
1257 			   rp_state_limits & 0xff);
1258 		seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1259 		seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1260 		seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1261 		seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1262 		seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1263 		seq_printf(m, "CAGF: %dMHz\n", cagf);
1264 		seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1265 			   GEN6_CURICONT_MASK);
1266 		seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1267 			   GEN6_CURBSYTAVG_MASK);
1268 		seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1269 			   GEN6_CURBSYTAVG_MASK);
1270 		seq_printf(m, "Up threshold: %d%%\n",
1271 			   dev_priv->rps.up_threshold);
1272 
1273 		seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1274 			   GEN6_CURIAVG_MASK);
1275 		seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1276 			   GEN6_CURBSYTAVG_MASK);
1277 		seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1278 			   GEN6_CURBSYTAVG_MASK);
1279 		seq_printf(m, "Down threshold: %d%%\n",
1280 			   dev_priv->rps.down_threshold);
1281 
1282 		max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
1283 			    rp_state_cap >> 16) & 0xff;
1284 		max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1285 			     GEN9_FREQ_SCALER : 1);
1286 		seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1287 			   intel_gpu_freq(dev_priv, max_freq));
1288 
1289 		max_freq = (rp_state_cap & 0xff00) >> 8;
1290 		max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1291 			     GEN9_FREQ_SCALER : 1);
1292 		seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1293 			   intel_gpu_freq(dev_priv, max_freq));
1294 
1295 		max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
1296 			    rp_state_cap >> 0) & 0xff;
1297 		max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1298 			     GEN9_FREQ_SCALER : 1);
1299 		seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1300 			   intel_gpu_freq(dev_priv, max_freq));
1301 		seq_printf(m, "Max overclocked frequency: %dMHz\n",
1302 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1303 
1304 		seq_printf(m, "Current freq: %d MHz\n",
1305 			   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1306 		seq_printf(m, "Actual freq: %d MHz\n", cagf);
1307 		seq_printf(m, "Idle freq: %d MHz\n",
1308 			   intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1309 		seq_printf(m, "Min freq: %d MHz\n",
1310 			   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1311 		seq_printf(m, "Max freq: %d MHz\n",
1312 			   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1313 		seq_printf(m,
1314 			   "efficient (RPe) frequency: %d MHz\n",
1315 			   intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1316 	} else {
1317 		seq_puts(m, "no P-state info available\n");
1318 	}
1319 
1320 	seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1321 	seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1322 	seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1323 
1324 out:
1325 	intel_runtime_pm_put(dev_priv);
1326 	return ret;
1327 }
1328 
1329 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1330 {
1331 	struct drm_info_node *node = m->private;
1332 	struct drm_device *dev = node->minor->dev;
1333 	struct drm_i915_private *dev_priv = dev->dev_private;
1334 	struct intel_engine_cs *engine;
1335 	u64 acthd[I915_NUM_ENGINES];
1336 	u32 seqno[I915_NUM_ENGINES];
1337 	u32 instdone[I915_NUM_INSTDONE_REG];
1338 	enum intel_engine_id id;
1339 	int j;
1340 
1341 	if (!i915.enable_hangcheck) {
1342 		seq_printf(m, "Hangcheck disabled\n");
1343 		return 0;
1344 	}
1345 
1346 	intel_runtime_pm_get(dev_priv);
1347 
1348 	for_each_engine_id(engine, dev_priv, id) {
1349 		acthd[id] = intel_ring_get_active_head(engine);
1350 		seqno[id] = engine->get_seqno(engine);
1351 	}
1352 
1353 	i915_get_extra_instdone(dev, instdone);
1354 
1355 	intel_runtime_pm_put(dev_priv);
1356 
1357 	if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1358 		seq_printf(m, "Hangcheck active, fires in %dms\n",
1359 			   jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1360 					    jiffies));
1361 	} else
1362 		seq_printf(m, "Hangcheck inactive\n");
1363 
1364 	for_each_engine_id(engine, dev_priv, id) {
1365 		seq_printf(m, "%s:\n", engine->name);
1366 		seq_printf(m, "\tseqno = %x [current %x, last %x]\n",
1367 			   engine->hangcheck.seqno,
1368 			   seqno[id],
1369 			   engine->last_submitted_seqno);
1370 		seq_printf(m, "\tuser interrupts = %x [current %x]\n",
1371 			   engine->hangcheck.user_interrupts,
1372 			   READ_ONCE(engine->user_interrupts));
1373 		seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1374 			   (long long)engine->hangcheck.acthd,
1375 			   (long long)acthd[id]);
1376 		seq_printf(m, "\tscore = %d\n", engine->hangcheck.score);
1377 		seq_printf(m, "\taction = %d\n", engine->hangcheck.action);
1378 
1379 		if (engine->id == RCS) {
1380 			seq_puts(m, "\tinstdone read =");
1381 
1382 			for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1383 				seq_printf(m, " 0x%08x", instdone[j]);
1384 
1385 			seq_puts(m, "\n\tinstdone accu =");
1386 
1387 			for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1388 				seq_printf(m, " 0x%08x",
1389 					   engine->hangcheck.instdone[j]);
1390 
1391 			seq_puts(m, "\n");
1392 		}
1393 	}
1394 
1395 	return 0;
1396 }
1397 
1398 static int ironlake_drpc_info(struct seq_file *m)
1399 {
1400 	struct drm_info_node *node = m->private;
1401 	struct drm_device *dev = node->minor->dev;
1402 	struct drm_i915_private *dev_priv = dev->dev_private;
1403 	u32 rgvmodectl, rstdbyctl;
1404 	u16 crstandvid;
1405 	int ret;
1406 
1407 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1408 	if (ret)
1409 		return ret;
1410 	intel_runtime_pm_get(dev_priv);
1411 
1412 	rgvmodectl = I915_READ(MEMMODECTL);
1413 	rstdbyctl = I915_READ(RSTDBYCTL);
1414 	crstandvid = I915_READ16(CRSTANDVID);
1415 
1416 	intel_runtime_pm_put(dev_priv);
1417 	mutex_unlock(&dev->struct_mutex);
1418 
1419 	seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1420 	seq_printf(m, "Boost freq: %d\n",
1421 		   (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1422 		   MEMMODE_BOOST_FREQ_SHIFT);
1423 	seq_printf(m, "HW control enabled: %s\n",
1424 		   yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1425 	seq_printf(m, "SW control enabled: %s\n",
1426 		   yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1427 	seq_printf(m, "Gated voltage change: %s\n",
1428 		   yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1429 	seq_printf(m, "Starting frequency: P%d\n",
1430 		   (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1431 	seq_printf(m, "Max P-state: P%d\n",
1432 		   (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1433 	seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1434 	seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1435 	seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1436 	seq_printf(m, "Render standby enabled: %s\n",
1437 		   yesno(!(rstdbyctl & RCX_SW_EXIT)));
1438 	seq_puts(m, "Current RS state: ");
1439 	switch (rstdbyctl & RSX_STATUS_MASK) {
1440 	case RSX_STATUS_ON:
1441 		seq_puts(m, "on\n");
1442 		break;
1443 	case RSX_STATUS_RC1:
1444 		seq_puts(m, "RC1\n");
1445 		break;
1446 	case RSX_STATUS_RC1E:
1447 		seq_puts(m, "RC1E\n");
1448 		break;
1449 	case RSX_STATUS_RS1:
1450 		seq_puts(m, "RS1\n");
1451 		break;
1452 	case RSX_STATUS_RS2:
1453 		seq_puts(m, "RS2 (RC6)\n");
1454 		break;
1455 	case RSX_STATUS_RS3:
1456 		seq_puts(m, "RC3 (RC6+)\n");
1457 		break;
1458 	default:
1459 		seq_puts(m, "unknown\n");
1460 		break;
1461 	}
1462 
1463 	return 0;
1464 }
1465 
1466 static int i915_forcewake_domains(struct seq_file *m, void *data)
1467 {
1468 	struct drm_info_node *node = m->private;
1469 	struct drm_device *dev = node->minor->dev;
1470 	struct drm_i915_private *dev_priv = dev->dev_private;
1471 	struct intel_uncore_forcewake_domain *fw_domain;
1472 	int i;
1473 
1474 	spin_lock_irq(&dev_priv->uncore.lock);
1475 	for_each_fw_domain(fw_domain, dev_priv, i) {
1476 		seq_printf(m, "%s.wake_count = %u\n",
1477 			   intel_uncore_forcewake_domain_to_str(i),
1478 			   fw_domain->wake_count);
1479 	}
1480 	spin_unlock_irq(&dev_priv->uncore.lock);
1481 
1482 	return 0;
1483 }
1484 
1485 static int vlv_drpc_info(struct seq_file *m)
1486 {
1487 	struct drm_info_node *node = m->private;
1488 	struct drm_device *dev = node->minor->dev;
1489 	struct drm_i915_private *dev_priv = dev->dev_private;
1490 	u32 rpmodectl1, rcctl1, pw_status;
1491 
1492 	intel_runtime_pm_get(dev_priv);
1493 
1494 	pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1495 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1496 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1497 
1498 	intel_runtime_pm_put(dev_priv);
1499 
1500 	seq_printf(m, "Video Turbo Mode: %s\n",
1501 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1502 	seq_printf(m, "Turbo enabled: %s\n",
1503 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1504 	seq_printf(m, "HW control enabled: %s\n",
1505 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1506 	seq_printf(m, "SW control enabled: %s\n",
1507 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1508 			  GEN6_RP_MEDIA_SW_MODE));
1509 	seq_printf(m, "RC6 Enabled: %s\n",
1510 		   yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1511 					GEN6_RC_CTL_EI_MODE(1))));
1512 	seq_printf(m, "Render Power Well: %s\n",
1513 		   (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1514 	seq_printf(m, "Media Power Well: %s\n",
1515 		   (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1516 
1517 	seq_printf(m, "Render RC6 residency since boot: %u\n",
1518 		   I915_READ(VLV_GT_RENDER_RC6));
1519 	seq_printf(m, "Media RC6 residency since boot: %u\n",
1520 		   I915_READ(VLV_GT_MEDIA_RC6));
1521 
1522 	return i915_forcewake_domains(m, NULL);
1523 }
1524 
1525 static int gen6_drpc_info(struct seq_file *m)
1526 {
1527 	struct drm_info_node *node = m->private;
1528 	struct drm_device *dev = node->minor->dev;
1529 	struct drm_i915_private *dev_priv = dev->dev_private;
1530 	u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1531 	unsigned forcewake_count;
1532 	int count = 0, ret;
1533 
1534 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1535 	if (ret)
1536 		return ret;
1537 	intel_runtime_pm_get(dev_priv);
1538 
1539 	spin_lock_irq(&dev_priv->uncore.lock);
1540 	forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1541 	spin_unlock_irq(&dev_priv->uncore.lock);
1542 
1543 	if (forcewake_count) {
1544 		seq_puts(m, "RC information inaccurate because somebody "
1545 			    "holds a forcewake reference \n");
1546 	} else {
1547 		/* NB: we cannot use forcewake, else we read the wrong values */
1548 		while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1549 			udelay(10);
1550 		seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1551 	}
1552 
1553 	gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1554 	trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1555 
1556 	rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1557 	rcctl1 = I915_READ(GEN6_RC_CONTROL);
1558 	mutex_unlock(&dev->struct_mutex);
1559 	mutex_lock(&dev_priv->rps.hw_lock);
1560 	sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1561 	mutex_unlock(&dev_priv->rps.hw_lock);
1562 
1563 	intel_runtime_pm_put(dev_priv);
1564 
1565 	seq_printf(m, "Video Turbo Mode: %s\n",
1566 		   yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1567 	seq_printf(m, "HW control enabled: %s\n",
1568 		   yesno(rpmodectl1 & GEN6_RP_ENABLE));
1569 	seq_printf(m, "SW control enabled: %s\n",
1570 		   yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1571 			  GEN6_RP_MEDIA_SW_MODE));
1572 	seq_printf(m, "RC1e Enabled: %s\n",
1573 		   yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1574 	seq_printf(m, "RC6 Enabled: %s\n",
1575 		   yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1576 	seq_printf(m, "Deep RC6 Enabled: %s\n",
1577 		   yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1578 	seq_printf(m, "Deepest RC6 Enabled: %s\n",
1579 		   yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1580 	seq_puts(m, "Current RC state: ");
1581 	switch (gt_core_status & GEN6_RCn_MASK) {
1582 	case GEN6_RC0:
1583 		if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1584 			seq_puts(m, "Core Power Down\n");
1585 		else
1586 			seq_puts(m, "on\n");
1587 		break;
1588 	case GEN6_RC3:
1589 		seq_puts(m, "RC3\n");
1590 		break;
1591 	case GEN6_RC6:
1592 		seq_puts(m, "RC6\n");
1593 		break;
1594 	case GEN6_RC7:
1595 		seq_puts(m, "RC7\n");
1596 		break;
1597 	default:
1598 		seq_puts(m, "Unknown\n");
1599 		break;
1600 	}
1601 
1602 	seq_printf(m, "Core Power Down: %s\n",
1603 		   yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1604 
1605 	/* Not exactly sure what this is */
1606 	seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1607 		   I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1608 	seq_printf(m, "RC6 residency since boot: %u\n",
1609 		   I915_READ(GEN6_GT_GFX_RC6));
1610 	seq_printf(m, "RC6+ residency since boot: %u\n",
1611 		   I915_READ(GEN6_GT_GFX_RC6p));
1612 	seq_printf(m, "RC6++ residency since boot: %u\n",
1613 		   I915_READ(GEN6_GT_GFX_RC6pp));
1614 
1615 	seq_printf(m, "RC6   voltage: %dmV\n",
1616 		   GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1617 	seq_printf(m, "RC6+  voltage: %dmV\n",
1618 		   GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1619 	seq_printf(m, "RC6++ voltage: %dmV\n",
1620 		   GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1621 	return 0;
1622 }
1623 
1624 static int i915_drpc_info(struct seq_file *m, void *unused)
1625 {
1626 	struct drm_info_node *node = m->private;
1627 	struct drm_device *dev = node->minor->dev;
1628 
1629 	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1630 		return vlv_drpc_info(m);
1631 	else if (INTEL_INFO(dev)->gen >= 6)
1632 		return gen6_drpc_info(m);
1633 	else
1634 		return ironlake_drpc_info(m);
1635 }
1636 
1637 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1638 {
1639 	struct drm_info_node *node = m->private;
1640 	struct drm_device *dev = node->minor->dev;
1641 	struct drm_i915_private *dev_priv = dev->dev_private;
1642 
1643 	seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1644 		   dev_priv->fb_tracking.busy_bits);
1645 
1646 	seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1647 		   dev_priv->fb_tracking.flip_bits);
1648 
1649 	return 0;
1650 }
1651 
1652 static int i915_fbc_status(struct seq_file *m, void *unused)
1653 {
1654 	struct drm_info_node *node = m->private;
1655 	struct drm_device *dev = node->minor->dev;
1656 	struct drm_i915_private *dev_priv = dev->dev_private;
1657 
1658 	if (!HAS_FBC(dev)) {
1659 		seq_puts(m, "FBC unsupported on this chipset\n");
1660 		return 0;
1661 	}
1662 
1663 	intel_runtime_pm_get(dev_priv);
1664 	mutex_lock(&dev_priv->fbc.lock);
1665 
1666 	if (intel_fbc_is_active(dev_priv))
1667 		seq_puts(m, "FBC enabled\n");
1668 	else
1669 		seq_printf(m, "FBC disabled: %s\n",
1670 			   dev_priv->fbc.no_fbc_reason);
1671 
1672 	if (INTEL_INFO(dev_priv)->gen >= 7)
1673 		seq_printf(m, "Compressing: %s\n",
1674 			   yesno(I915_READ(FBC_STATUS2) &
1675 				 FBC_COMPRESSION_MASK));
1676 
1677 	mutex_unlock(&dev_priv->fbc.lock);
1678 	intel_runtime_pm_put(dev_priv);
1679 
1680 	return 0;
1681 }
1682 
1683 static int i915_fbc_fc_get(void *data, u64 *val)
1684 {
1685 	struct drm_device *dev = data;
1686 	struct drm_i915_private *dev_priv = dev->dev_private;
1687 
1688 	if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1689 		return -ENODEV;
1690 
1691 	*val = dev_priv->fbc.false_color;
1692 
1693 	return 0;
1694 }
1695 
1696 static int i915_fbc_fc_set(void *data, u64 val)
1697 {
1698 	struct drm_device *dev = data;
1699 	struct drm_i915_private *dev_priv = dev->dev_private;
1700 	u32 reg;
1701 
1702 	if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1703 		return -ENODEV;
1704 
1705 	mutex_lock(&dev_priv->fbc.lock);
1706 
1707 	reg = I915_READ(ILK_DPFC_CONTROL);
1708 	dev_priv->fbc.false_color = val;
1709 
1710 	I915_WRITE(ILK_DPFC_CONTROL, val ?
1711 		   (reg | FBC_CTL_FALSE_COLOR) :
1712 		   (reg & ~FBC_CTL_FALSE_COLOR));
1713 
1714 	mutex_unlock(&dev_priv->fbc.lock);
1715 	return 0;
1716 }
1717 
1718 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1719 			i915_fbc_fc_get, i915_fbc_fc_set,
1720 			"%llu\n");
1721 
1722 static int i915_ips_status(struct seq_file *m, void *unused)
1723 {
1724 	struct drm_info_node *node = m->private;
1725 	struct drm_device *dev = node->minor->dev;
1726 	struct drm_i915_private *dev_priv = dev->dev_private;
1727 
1728 	if (!HAS_IPS(dev)) {
1729 		seq_puts(m, "not supported\n");
1730 		return 0;
1731 	}
1732 
1733 	intel_runtime_pm_get(dev_priv);
1734 
1735 	seq_printf(m, "Enabled by kernel parameter: %s\n",
1736 		   yesno(i915.enable_ips));
1737 
1738 	if (INTEL_INFO(dev)->gen >= 8) {
1739 		seq_puts(m, "Currently: unknown\n");
1740 	} else {
1741 		if (I915_READ(IPS_CTL) & IPS_ENABLE)
1742 			seq_puts(m, "Currently: enabled\n");
1743 		else
1744 			seq_puts(m, "Currently: disabled\n");
1745 	}
1746 
1747 	intel_runtime_pm_put(dev_priv);
1748 
1749 	return 0;
1750 }
1751 
1752 static int i915_sr_status(struct seq_file *m, void *unused)
1753 {
1754 	struct drm_info_node *node = m->private;
1755 	struct drm_device *dev = node->minor->dev;
1756 	struct drm_i915_private *dev_priv = dev->dev_private;
1757 	bool sr_enabled = false;
1758 
1759 	intel_runtime_pm_get(dev_priv);
1760 
1761 	if (HAS_PCH_SPLIT(dev))
1762 		sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1763 	else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
1764 		 IS_I945G(dev) || IS_I945GM(dev))
1765 		sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1766 	else if (IS_I915GM(dev))
1767 		sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1768 	else if (IS_PINEVIEW(dev))
1769 		sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1770 	else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1771 		sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1772 
1773 	intel_runtime_pm_put(dev_priv);
1774 
1775 	seq_printf(m, "self-refresh: %s\n",
1776 		   sr_enabled ? "enabled" : "disabled");
1777 
1778 	return 0;
1779 }
1780 
1781 static int i915_emon_status(struct seq_file *m, void *unused)
1782 {
1783 	struct drm_info_node *node = m->private;
1784 	struct drm_device *dev = node->minor->dev;
1785 	struct drm_i915_private *dev_priv = dev->dev_private;
1786 	unsigned long temp, chipset, gfx;
1787 	int ret;
1788 
1789 	if (!IS_GEN5(dev))
1790 		return -ENODEV;
1791 
1792 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1793 	if (ret)
1794 		return ret;
1795 
1796 	temp = i915_mch_val(dev_priv);
1797 	chipset = i915_chipset_val(dev_priv);
1798 	gfx = i915_gfx_val(dev_priv);
1799 	mutex_unlock(&dev->struct_mutex);
1800 
1801 	seq_printf(m, "GMCH temp: %ld\n", temp);
1802 	seq_printf(m, "Chipset power: %ld\n", chipset);
1803 	seq_printf(m, "GFX power: %ld\n", gfx);
1804 	seq_printf(m, "Total power: %ld\n", chipset + gfx);
1805 
1806 	return 0;
1807 }
1808 
1809 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1810 {
1811 	struct drm_info_node *node = m->private;
1812 	struct drm_device *dev = node->minor->dev;
1813 	struct drm_i915_private *dev_priv = dev->dev_private;
1814 	int ret = 0;
1815 	int gpu_freq, ia_freq;
1816 	unsigned int max_gpu_freq, min_gpu_freq;
1817 
1818 	if (!HAS_CORE_RING_FREQ(dev)) {
1819 		seq_puts(m, "unsupported on this chipset\n");
1820 		return 0;
1821 	}
1822 
1823 	intel_runtime_pm_get(dev_priv);
1824 
1825 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1826 
1827 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1828 	if (ret)
1829 		goto out;
1830 
1831 	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1832 		/* Convert GT frequency to 50 HZ units */
1833 		min_gpu_freq =
1834 			dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1835 		max_gpu_freq =
1836 			dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1837 	} else {
1838 		min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1839 		max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1840 	}
1841 
1842 	seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1843 
1844 	for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1845 		ia_freq = gpu_freq;
1846 		sandybridge_pcode_read(dev_priv,
1847 				       GEN6_PCODE_READ_MIN_FREQ_TABLE,
1848 				       &ia_freq);
1849 		seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1850 			   intel_gpu_freq(dev_priv, (gpu_freq *
1851 				(IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1852 				 GEN9_FREQ_SCALER : 1))),
1853 			   ((ia_freq >> 0) & 0xff) * 100,
1854 			   ((ia_freq >> 8) & 0xff) * 100);
1855 	}
1856 
1857 	mutex_unlock(&dev_priv->rps.hw_lock);
1858 
1859 out:
1860 	intel_runtime_pm_put(dev_priv);
1861 	return ret;
1862 }
1863 
1864 static int i915_opregion(struct seq_file *m, void *unused)
1865 {
1866 	struct drm_info_node *node = m->private;
1867 	struct drm_device *dev = node->minor->dev;
1868 	struct drm_i915_private *dev_priv = dev->dev_private;
1869 	struct intel_opregion *opregion = &dev_priv->opregion;
1870 	int ret;
1871 
1872 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1873 	if (ret)
1874 		goto out;
1875 
1876 	if (opregion->header)
1877 		seq_write(m, opregion->header, OPREGION_SIZE);
1878 
1879 	mutex_unlock(&dev->struct_mutex);
1880 
1881 out:
1882 	return 0;
1883 }
1884 
1885 static int i915_vbt(struct seq_file *m, void *unused)
1886 {
1887 	struct drm_info_node *node = m->private;
1888 	struct drm_device *dev = node->minor->dev;
1889 	struct drm_i915_private *dev_priv = dev->dev_private;
1890 	struct intel_opregion *opregion = &dev_priv->opregion;
1891 
1892 	if (opregion->vbt)
1893 		seq_write(m, opregion->vbt, opregion->vbt_size);
1894 
1895 	return 0;
1896 }
1897 
1898 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1899 {
1900 	struct drm_info_node *node = m->private;
1901 	struct drm_device *dev = node->minor->dev;
1902 	struct intel_framebuffer *fbdev_fb = NULL;
1903 	struct drm_framebuffer *drm_fb;
1904 	int ret;
1905 
1906 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1907 	if (ret)
1908 		return ret;
1909 
1910 #ifdef CONFIG_DRM_FBDEV_EMULATION
1911        if (to_i915(dev)->fbdev) {
1912                fbdev_fb = to_intel_framebuffer(to_i915(dev)->fbdev->helper.fb);
1913 
1914                seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1915                          fbdev_fb->base.width,
1916                          fbdev_fb->base.height,
1917                          fbdev_fb->base.depth,
1918                          fbdev_fb->base.bits_per_pixel,
1919                          fbdev_fb->base.modifier[0],
1920                          drm_framebuffer_read_refcount(&fbdev_fb->base));
1921                describe_obj(m, fbdev_fb->obj);
1922                seq_putc(m, '\n');
1923        }
1924 #endif
1925 
1926 	mutex_lock(&dev->mode_config.fb_lock);
1927 	drm_for_each_fb(drm_fb, dev) {
1928 		struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1929 		if (fb == fbdev_fb)
1930 			continue;
1931 
1932 		seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1933 			   fb->base.width,
1934 			   fb->base.height,
1935 			   fb->base.depth,
1936 			   fb->base.bits_per_pixel,
1937 			   fb->base.modifier[0],
1938 			   drm_framebuffer_read_refcount(&fb->base));
1939 		describe_obj(m, fb->obj);
1940 		seq_putc(m, '\n');
1941 	}
1942 	mutex_unlock(&dev->mode_config.fb_lock);
1943 	mutex_unlock(&dev->struct_mutex);
1944 
1945 	return 0;
1946 }
1947 
1948 static void describe_ctx_ringbuf(struct seq_file *m,
1949 				 struct intel_ringbuffer *ringbuf)
1950 {
1951 	seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1952 		   ringbuf->space, ringbuf->head, ringbuf->tail,
1953 		   ringbuf->last_retired_head);
1954 }
1955 
1956 static int i915_context_status(struct seq_file *m, void *unused)
1957 {
1958 	struct drm_info_node *node = m->private;
1959 	struct drm_device *dev = node->minor->dev;
1960 	struct drm_i915_private *dev_priv = dev->dev_private;
1961 	struct intel_engine_cs *engine;
1962 	struct intel_context *ctx;
1963 	enum intel_engine_id id;
1964 	int ret;
1965 
1966 	ret = mutex_lock_interruptible(&dev->struct_mutex);
1967 	if (ret)
1968 		return ret;
1969 
1970 	list_for_each_entry(ctx, &dev_priv->context_list, link) {
1971 		if (!i915.enable_execlists &&
1972 		    ctx->legacy_hw_ctx.rcs_state == NULL)
1973 			continue;
1974 
1975 		seq_puts(m, "HW context ");
1976 		describe_ctx(m, ctx);
1977 		if (ctx == dev_priv->kernel_context)
1978 			seq_printf(m, "(kernel context) ");
1979 
1980 		if (i915.enable_execlists) {
1981 			seq_putc(m, '\n');
1982 			for_each_engine_id(engine, dev_priv, id) {
1983 				struct drm_i915_gem_object *ctx_obj =
1984 					ctx->engine[id].state;
1985 				struct intel_ringbuffer *ringbuf =
1986 					ctx->engine[id].ringbuf;
1987 
1988 				seq_printf(m, "%s: ", engine->name);
1989 				if (ctx_obj)
1990 					describe_obj(m, ctx_obj);
1991 				if (ringbuf)
1992 					describe_ctx_ringbuf(m, ringbuf);
1993 				seq_putc(m, '\n');
1994 			}
1995 		} else {
1996 			describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1997 		}
1998 
1999 		seq_putc(m, '\n');
2000 	}
2001 
2002 	mutex_unlock(&dev->struct_mutex);
2003 
2004 	return 0;
2005 }
2006 
2007 static void i915_dump_lrc_obj(struct seq_file *m,
2008 			      struct intel_context *ctx,
2009 			      struct intel_engine_cs *engine)
2010 {
2011 	struct page *page;
2012 	uint32_t *reg_state;
2013 	int j;
2014 	struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
2015 	unsigned long ggtt_offset = 0;
2016 
2017 	if (ctx_obj == NULL) {
2018 		seq_printf(m, "Context on %s with no gem object\n",
2019 			   engine->name);
2020 		return;
2021 	}
2022 
2023 	seq_printf(m, "CONTEXT: %s %u\n", engine->name,
2024 		   intel_execlists_ctx_id(ctx, engine));
2025 
2026 	if (!i915_gem_obj_ggtt_bound(ctx_obj))
2027 		seq_puts(m, "\tNot bound in GGTT\n");
2028 	else
2029 		ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
2030 
2031 	if (i915_gem_object_get_pages(ctx_obj)) {
2032 		seq_puts(m, "\tFailed to get pages for context object\n");
2033 		return;
2034 	}
2035 
2036 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2037 	if (!WARN_ON(page == NULL)) {
2038 		reg_state = kmap_atomic(page);
2039 
2040 		for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2041 			seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2042 				   ggtt_offset + 4096 + (j * 4),
2043 				   reg_state[j], reg_state[j + 1],
2044 				   reg_state[j + 2], reg_state[j + 3]);
2045 		}
2046 		kunmap_atomic(reg_state);
2047 	}
2048 
2049 	seq_putc(m, '\n');
2050 }
2051 
2052 static int i915_dump_lrc(struct seq_file *m, void *unused)
2053 {
2054 	struct drm_info_node *node = (struct drm_info_node *) m->private;
2055 	struct drm_device *dev = node->minor->dev;
2056 	struct drm_i915_private *dev_priv = dev->dev_private;
2057 	struct intel_engine_cs *engine;
2058 	struct intel_context *ctx;
2059 	int ret;
2060 
2061 	if (!i915.enable_execlists) {
2062 		seq_printf(m, "Logical Ring Contexts are disabled\n");
2063 		return 0;
2064 	}
2065 
2066 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2067 	if (ret)
2068 		return ret;
2069 
2070 	list_for_each_entry(ctx, &dev_priv->context_list, link)
2071 		if (ctx != dev_priv->kernel_context)
2072 			for_each_engine(engine, dev_priv)
2073 				i915_dump_lrc_obj(m, ctx, engine);
2074 
2075 	mutex_unlock(&dev->struct_mutex);
2076 
2077 	return 0;
2078 }
2079 
2080 static int i915_execlists(struct seq_file *m, void *data)
2081 {
2082 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2083 	struct drm_device *dev = node->minor->dev;
2084 	struct drm_i915_private *dev_priv = dev->dev_private;
2085 	struct intel_engine_cs *engine;
2086 	u32 status_pointer;
2087 	u8 read_pointer;
2088 	u8 write_pointer;
2089 	u32 status;
2090 	u32 ctx_id;
2091 	struct list_head *cursor;
2092 	int i, ret;
2093 
2094 	if (!i915.enable_execlists) {
2095 		seq_puts(m, "Logical Ring Contexts are disabled\n");
2096 		return 0;
2097 	}
2098 
2099 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2100 	if (ret)
2101 		return ret;
2102 
2103 	intel_runtime_pm_get(dev_priv);
2104 
2105 	for_each_engine(engine, dev_priv) {
2106 		struct drm_i915_gem_request *head_req = NULL;
2107 		int count = 0;
2108 
2109 		seq_printf(m, "%s\n", engine->name);
2110 
2111 		status = I915_READ(RING_EXECLIST_STATUS_LO(engine));
2112 		ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(engine));
2113 		seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2114 			   status, ctx_id);
2115 
2116 		status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
2117 		seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2118 
2119 		read_pointer = engine->next_context_status_buffer;
2120 		write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
2121 		if (read_pointer > write_pointer)
2122 			write_pointer += GEN8_CSB_ENTRIES;
2123 		seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2124 			   read_pointer, write_pointer);
2125 
2126 		for (i = 0; i < GEN8_CSB_ENTRIES; i++) {
2127 			status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, i));
2128 			ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, i));
2129 
2130 			seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2131 				   i, status, ctx_id);
2132 		}
2133 
2134 		spin_lock_bh(&engine->execlist_lock);
2135 		list_for_each(cursor, &engine->execlist_queue)
2136 			count++;
2137 		head_req = list_first_entry_or_null(&engine->execlist_queue,
2138 						    struct drm_i915_gem_request,
2139 						    execlist_link);
2140 		spin_unlock_bh(&engine->execlist_lock);
2141 
2142 		seq_printf(m, "\t%d requests in queue\n", count);
2143 		if (head_req) {
2144 			seq_printf(m, "\tHead request id: %u\n",
2145 				   intel_execlists_ctx_id(head_req->ctx, engine));
2146 			seq_printf(m, "\tHead request tail: %u\n",
2147 				   head_req->tail);
2148 		}
2149 
2150 		seq_putc(m, '\n');
2151 	}
2152 
2153 	intel_runtime_pm_put(dev_priv);
2154 	mutex_unlock(&dev->struct_mutex);
2155 
2156 	return 0;
2157 }
2158 
2159 static const char *swizzle_string(unsigned swizzle)
2160 {
2161 	switch (swizzle) {
2162 	case I915_BIT_6_SWIZZLE_NONE:
2163 		return "none";
2164 	case I915_BIT_6_SWIZZLE_9:
2165 		return "bit9";
2166 	case I915_BIT_6_SWIZZLE_9_10:
2167 		return "bit9/bit10";
2168 	case I915_BIT_6_SWIZZLE_9_11:
2169 		return "bit9/bit11";
2170 	case I915_BIT_6_SWIZZLE_9_10_11:
2171 		return "bit9/bit10/bit11";
2172 	case I915_BIT_6_SWIZZLE_9_17:
2173 		return "bit9/bit17";
2174 	case I915_BIT_6_SWIZZLE_9_10_17:
2175 		return "bit9/bit10/bit17";
2176 	case I915_BIT_6_SWIZZLE_UNKNOWN:
2177 		return "unknown";
2178 	}
2179 
2180 	return "bug";
2181 }
2182 
2183 static int i915_swizzle_info(struct seq_file *m, void *data)
2184 {
2185 	struct drm_info_node *node = m->private;
2186 	struct drm_device *dev = node->minor->dev;
2187 	struct drm_i915_private *dev_priv = dev->dev_private;
2188 	int ret;
2189 
2190 	ret = mutex_lock_interruptible(&dev->struct_mutex);
2191 	if (ret)
2192 		return ret;
2193 	intel_runtime_pm_get(dev_priv);
2194 
2195 	seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2196 		   swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2197 	seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2198 		   swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2199 
2200 	if (IS_GEN3(dev) || IS_GEN4(dev)) {
2201 		seq_printf(m, "DDC = 0x%08x\n",
2202 			   I915_READ(DCC));
2203 		seq_printf(m, "DDC2 = 0x%08x\n",
2204 			   I915_READ(DCC2));
2205 		seq_printf(m, "C0DRB3 = 0x%04x\n",
2206 			   I915_READ16(C0DRB3));
2207 		seq_printf(m, "C1DRB3 = 0x%04x\n",
2208 			   I915_READ16(C1DRB3));
2209 	} else if (INTEL_INFO(dev)->gen >= 6) {
2210 		seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2211 			   I915_READ(MAD_DIMM_C0));
2212 		seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2213 			   I915_READ(MAD_DIMM_C1));
2214 		seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2215 			   I915_READ(MAD_DIMM_C2));
2216 		seq_printf(m, "TILECTL = 0x%08x\n",
2217 			   I915_READ(TILECTL));
2218 		if (INTEL_INFO(dev)->gen >= 8)
2219 			seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2220 				   I915_READ(GAMTARBMODE));
2221 		else
2222 			seq_printf(m, "ARB_MODE = 0x%08x\n",
2223 				   I915_READ(ARB_MODE));
2224 		seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2225 			   I915_READ(DISP_ARB_CTL));
2226 	}
2227 
2228 	if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2229 		seq_puts(m, "L-shaped memory detected\n");
2230 
2231 	intel_runtime_pm_put(dev_priv);
2232 	mutex_unlock(&dev->struct_mutex);
2233 
2234 	return 0;
2235 }
2236 
2237 static int per_file_ctx(int id, void *ptr, void *data)
2238 {
2239 	struct intel_context *ctx = ptr;
2240 	struct seq_file *m = data;
2241 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2242 
2243 	if (!ppgtt) {
2244 		seq_printf(m, "  no ppgtt for context %d\n",
2245 			   ctx->user_handle);
2246 		return 0;
2247 	}
2248 
2249 	if (i915_gem_context_is_default(ctx))
2250 		seq_puts(m, "  default context:\n");
2251 	else
2252 		seq_printf(m, "  context %d:\n", ctx->user_handle);
2253 	ppgtt->debug_dump(ppgtt, m);
2254 
2255 	return 0;
2256 }
2257 
2258 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2259 {
2260 	struct drm_i915_private *dev_priv = dev->dev_private;
2261 	struct intel_engine_cs *engine;
2262 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2263 	int i;
2264 
2265 	if (!ppgtt)
2266 		return;
2267 
2268 	for_each_engine(engine, dev_priv) {
2269 		seq_printf(m, "%s\n", engine->name);
2270 		for (i = 0; i < 4; i++) {
2271 			u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
2272 			pdp <<= 32;
2273 			pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
2274 			seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2275 		}
2276 	}
2277 }
2278 
2279 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2280 {
2281 	struct drm_i915_private *dev_priv = dev->dev_private;
2282 	struct intel_engine_cs *engine;
2283 
2284 	if (INTEL_INFO(dev)->gen == 6)
2285 		seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2286 
2287 	for_each_engine(engine, dev_priv) {
2288 		seq_printf(m, "%s\n", engine->name);
2289 		if (INTEL_INFO(dev)->gen == 7)
2290 			seq_printf(m, "GFX_MODE: 0x%08x\n",
2291 				   I915_READ(RING_MODE_GEN7(engine)));
2292 		seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
2293 			   I915_READ(RING_PP_DIR_BASE(engine)));
2294 		seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
2295 			   I915_READ(RING_PP_DIR_BASE_READ(engine)));
2296 		seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
2297 			   I915_READ(RING_PP_DIR_DCLV(engine)));
2298 	}
2299 	if (dev_priv->mm.aliasing_ppgtt) {
2300 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2301 
2302 		seq_puts(m, "aliasing PPGTT:\n");
2303 		seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2304 
2305 		ppgtt->debug_dump(ppgtt, m);
2306 	}
2307 
2308 	seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2309 }
2310 
2311 static int i915_ppgtt_info(struct seq_file *m, void *data)
2312 {
2313 	struct drm_info_node *node = m->private;
2314 	struct drm_device *dev = node->minor->dev;
2315 	struct drm_i915_private *dev_priv = dev->dev_private;
2316 	struct drm_file *file;
2317 
2318 	int ret = mutex_lock_interruptible(&dev->struct_mutex);
2319 	if (ret)
2320 		return ret;
2321 	intel_runtime_pm_get(dev_priv);
2322 
2323 	if (INTEL_INFO(dev)->gen >= 8)
2324 		gen8_ppgtt_info(m, dev);
2325 	else if (INTEL_INFO(dev)->gen >= 6)
2326 		gen6_ppgtt_info(m, dev);
2327 
2328 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2329 		struct drm_i915_file_private *file_priv = file->driver_priv;
2330 		struct task_struct *task;
2331 
2332 		task = get_pid_task(file->pid, PIDTYPE_PID);
2333 		if (!task) {
2334 			ret = -ESRCH;
2335 			goto out_put;
2336 		}
2337 		seq_printf(m, "\nproc: %s\n", task->comm);
2338 		put_task_struct(task);
2339 		idr_for_each(&file_priv->context_idr, per_file_ctx,
2340 			     (void *)(unsigned long)m);
2341 	}
2342 
2343 out_put:
2344 	intel_runtime_pm_put(dev_priv);
2345 	mutex_unlock(&dev->struct_mutex);
2346 
2347 	return ret;
2348 }
2349 
2350 static int count_irq_waiters(struct drm_i915_private *i915)
2351 {
2352 	struct intel_engine_cs *engine;
2353 	int count = 0;
2354 
2355 	for_each_engine(engine, i915)
2356 		count += engine->irq_refcount;
2357 
2358 	return count;
2359 }
2360 
2361 static int i915_rps_boost_info(struct seq_file *m, void *data)
2362 {
2363 	struct drm_info_node *node = m->private;
2364 	struct drm_device *dev = node->minor->dev;
2365 	struct drm_i915_private *dev_priv = dev->dev_private;
2366 	struct drm_file *file;
2367 
2368 	seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2369 	seq_printf(m, "GPU busy? %d\n", dev_priv->mm.busy);
2370 	seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2371 	seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2372 		   intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
2373 		   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2374 		   intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2375 		   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2376 		   intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2377 	spin_lock(&dev_priv->rps.client_lock);
2378 	list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2379 		struct drm_i915_file_private *file_priv = file->driver_priv;
2380 		struct task_struct *task;
2381 
2382 		rcu_read_lock();
2383 		task = pid_task(file->pid, PIDTYPE_PID);
2384 		seq_printf(m, "%s [%d]: %d boosts%s\n",
2385 			   task ? task->comm : "<unknown>",
2386 			   task ? task->pid : -1,
2387 			   file_priv->rps.boosts,
2388 			   list_empty(&file_priv->rps.link) ? "" : ", active");
2389 		rcu_read_unlock();
2390 	}
2391 	seq_printf(m, "Semaphore boosts: %d%s\n",
2392 		   dev_priv->rps.semaphores.boosts,
2393 		   list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active");
2394 	seq_printf(m, "MMIO flip boosts: %d%s\n",
2395 		   dev_priv->rps.mmioflips.boosts,
2396 		   list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active");
2397 	seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts);
2398 	spin_unlock(&dev_priv->rps.client_lock);
2399 
2400 	return 0;
2401 }
2402 
2403 static int i915_llc(struct seq_file *m, void *data)
2404 {
2405 	struct drm_info_node *node = m->private;
2406 	struct drm_device *dev = node->minor->dev;
2407 	struct drm_i915_private *dev_priv = dev->dev_private;
2408 
2409 	/* Size calculation for LLC is a bit of a pain. Ignore for now. */
2410 	seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2411 	seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2412 
2413 	return 0;
2414 }
2415 
2416 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2417 {
2418 	struct drm_info_node *node = m->private;
2419 	struct drm_i915_private *dev_priv = node->minor->dev->dev_private;
2420 	struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
2421 	u32 tmp, i;
2422 
2423 	if (!HAS_GUC_UCODE(dev_priv))
2424 		return 0;
2425 
2426 	seq_printf(m, "GuC firmware status:\n");
2427 	seq_printf(m, "\tpath: %s\n",
2428 		guc_fw->guc_fw_path);
2429 	seq_printf(m, "\tfetch: %s\n",
2430 		intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
2431 	seq_printf(m, "\tload: %s\n",
2432 		intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
2433 	seq_printf(m, "\tversion wanted: %d.%d\n",
2434 		guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
2435 	seq_printf(m, "\tversion found: %d.%d\n",
2436 		guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
2437 	seq_printf(m, "\theader: offset is %d; size = %d\n",
2438 		guc_fw->header_offset, guc_fw->header_size);
2439 	seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2440 		guc_fw->ucode_offset, guc_fw->ucode_size);
2441 	seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2442 		guc_fw->rsa_offset, guc_fw->rsa_size);
2443 
2444 	tmp = I915_READ(GUC_STATUS);
2445 
2446 	seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2447 	seq_printf(m, "\tBootrom status = 0x%x\n",
2448 		(tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2449 	seq_printf(m, "\tuKernel status = 0x%x\n",
2450 		(tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2451 	seq_printf(m, "\tMIA Core status = 0x%x\n",
2452 		(tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2453 	seq_puts(m, "\nScratch registers:\n");
2454 	for (i = 0; i < 16; i++)
2455 		seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2456 
2457 	return 0;
2458 }
2459 
2460 static void i915_guc_client_info(struct seq_file *m,
2461 				 struct drm_i915_private *dev_priv,
2462 				 struct i915_guc_client *client)
2463 {
2464 	struct intel_engine_cs *engine;
2465 	uint64_t tot = 0;
2466 
2467 	seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2468 		client->priority, client->ctx_index, client->proc_desc_offset);
2469 	seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2470 		client->doorbell_id, client->doorbell_offset, client->cookie);
2471 	seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2472 		client->wq_size, client->wq_offset, client->wq_tail);
2473 
2474 	seq_printf(m, "\tFailed to queue: %u\n", client->q_fail);
2475 	seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2476 	seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2477 
2478 	for_each_engine(engine, dev_priv) {
2479 		seq_printf(m, "\tSubmissions: %llu %s\n",
2480 				client->submissions[engine->guc_id],
2481 				engine->name);
2482 		tot += client->submissions[engine->guc_id];
2483 	}
2484 	seq_printf(m, "\tTotal: %llu\n", tot);
2485 }
2486 
2487 static int i915_guc_info(struct seq_file *m, void *data)
2488 {
2489 	struct drm_info_node *node = m->private;
2490 	struct drm_device *dev = node->minor->dev;
2491 	struct drm_i915_private *dev_priv = dev->dev_private;
2492 	struct intel_guc guc;
2493 	struct i915_guc_client client = {};
2494 	struct intel_engine_cs *engine;
2495 	u64 total = 0;
2496 
2497 	if (!HAS_GUC_SCHED(dev_priv))
2498 		return 0;
2499 
2500 	if (mutex_lock_interruptible(&dev->struct_mutex))
2501 		return 0;
2502 
2503 	/* Take a local copy of the GuC data, so we can dump it at leisure */
2504 	guc = dev_priv->guc;
2505 	if (guc.execbuf_client)
2506 		client = *guc.execbuf_client;
2507 
2508 	mutex_unlock(&dev->struct_mutex);
2509 
2510 	seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
2511 	seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
2512 	seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
2513 	seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
2514 	seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
2515 
2516 	seq_printf(m, "\nGuC submissions:\n");
2517 	for_each_engine(engine, dev_priv) {
2518 		seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
2519 			engine->name, guc.submissions[engine->guc_id],
2520 			guc.last_seqno[engine->guc_id]);
2521 		total += guc.submissions[engine->guc_id];
2522 	}
2523 	seq_printf(m, "\t%s: %llu\n", "Total", total);
2524 
2525 	seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
2526 	i915_guc_client_info(m, dev_priv, &client);
2527 
2528 	/* Add more as required ... */
2529 
2530 	return 0;
2531 }
2532 
2533 static int i915_guc_log_dump(struct seq_file *m, void *data)
2534 {
2535 	struct drm_info_node *node = m->private;
2536 	struct drm_device *dev = node->minor->dev;
2537 	struct drm_i915_private *dev_priv = dev->dev_private;
2538 	struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj;
2539 	u32 *log;
2540 	int i = 0, pg;
2541 
2542 	if (!log_obj)
2543 		return 0;
2544 
2545 	for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) {
2546 		log = kmap_atomic(i915_gem_object_get_page(log_obj, pg));
2547 
2548 		for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2549 			seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2550 				   *(log + i), *(log + i + 1),
2551 				   *(log + i + 2), *(log + i + 3));
2552 
2553 		kunmap_atomic(log);
2554 	}
2555 
2556 	seq_putc(m, '\n');
2557 
2558 	return 0;
2559 }
2560 
2561 static int i915_edp_psr_status(struct seq_file *m, void *data)
2562 {
2563 	struct drm_info_node *node = m->private;
2564 	struct drm_device *dev = node->minor->dev;
2565 	struct drm_i915_private *dev_priv = dev->dev_private;
2566 	u32 psrperf = 0;
2567 	u32 stat[3];
2568 	enum pipe pipe;
2569 	bool enabled = false;
2570 
2571 	if (!HAS_PSR(dev)) {
2572 		seq_puts(m, "PSR not supported\n");
2573 		return 0;
2574 	}
2575 
2576 	intel_runtime_pm_get(dev_priv);
2577 
2578 	mutex_lock(&dev_priv->psr.lock);
2579 	seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2580 	seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2581 	seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2582 	seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2583 	seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2584 		   dev_priv->psr.busy_frontbuffer_bits);
2585 	seq_printf(m, "Re-enable work scheduled: %s\n",
2586 		   yesno(work_busy(&dev_priv->psr.work.work)));
2587 
2588 	if (HAS_DDI(dev))
2589 		enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2590 	else {
2591 		for_each_pipe(dev_priv, pipe) {
2592 			stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2593 				VLV_EDP_PSR_CURR_STATE_MASK;
2594 			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2595 			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2596 				enabled = true;
2597 		}
2598 	}
2599 
2600 	seq_printf(m, "Main link in standby mode: %s\n",
2601 		   yesno(dev_priv->psr.link_standby));
2602 
2603 	seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2604 
2605 	if (!HAS_DDI(dev))
2606 		for_each_pipe(dev_priv, pipe) {
2607 			if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2608 			    (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2609 				seq_printf(m, " pipe %c", pipe_name(pipe));
2610 		}
2611 	seq_puts(m, "\n");
2612 
2613 	/*
2614 	 * VLV/CHV PSR has no kind of performance counter
2615 	 * SKL+ Perf counter is reset to 0 everytime DC state is entered
2616 	 */
2617 	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2618 		psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2619 			EDP_PSR_PERF_CNT_MASK;
2620 
2621 		seq_printf(m, "Performance_Counter: %u\n", psrperf);
2622 	}
2623 	mutex_unlock(&dev_priv->psr.lock);
2624 
2625 	intel_runtime_pm_put(dev_priv);
2626 	return 0;
2627 }
2628 
2629 static int i915_sink_crc(struct seq_file *m, void *data)
2630 {
2631 	struct drm_info_node *node = m->private;
2632 	struct drm_device *dev = node->minor->dev;
2633 	struct intel_encoder *encoder;
2634 	struct intel_connector *connector;
2635 	struct intel_dp *intel_dp = NULL;
2636 	int ret;
2637 	u8 crc[6];
2638 
2639 	drm_modeset_lock_all(dev);
2640 	for_each_intel_connector(dev, connector) {
2641 
2642 		if (connector->base.dpms != DRM_MODE_DPMS_ON)
2643 			continue;
2644 
2645 		if (!connector->base.encoder)
2646 			continue;
2647 
2648 		encoder = to_intel_encoder(connector->base.encoder);
2649 		if (encoder->type != INTEL_OUTPUT_EDP)
2650 			continue;
2651 
2652 		intel_dp = enc_to_intel_dp(&encoder->base);
2653 
2654 		ret = intel_dp_sink_crc(intel_dp, crc);
2655 		if (ret)
2656 			goto out;
2657 
2658 		seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2659 			   crc[0], crc[1], crc[2],
2660 			   crc[3], crc[4], crc[5]);
2661 		goto out;
2662 	}
2663 	ret = -ENODEV;
2664 out:
2665 	drm_modeset_unlock_all(dev);
2666 	return ret;
2667 }
2668 
2669 static int i915_energy_uJ(struct seq_file *m, void *data)
2670 {
2671 	struct drm_info_node *node = m->private;
2672 	struct drm_device *dev = node->minor->dev;
2673 	struct drm_i915_private *dev_priv = dev->dev_private;
2674 	u64 power;
2675 	u32 units;
2676 
2677 	if (INTEL_INFO(dev)->gen < 6)
2678 		return -ENODEV;
2679 
2680 	intel_runtime_pm_get(dev_priv);
2681 
2682 	rdmsrl(MSR_RAPL_POWER_UNIT, power);
2683 	power = (power & 0x1f00) >> 8;
2684 	units = 1000000 / (1 << power); /* convert to uJ */
2685 	power = I915_READ(MCH_SECP_NRG_STTS);
2686 	power *= units;
2687 
2688 	intel_runtime_pm_put(dev_priv);
2689 
2690 	seq_printf(m, "%llu", (long long unsigned)power);
2691 
2692 	return 0;
2693 }
2694 
2695 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2696 {
2697 	struct drm_info_node *node = m->private;
2698 	struct drm_device *dev = node->minor->dev;
2699 	struct drm_i915_private *dev_priv = dev->dev_private;
2700 
2701 	if (!HAS_RUNTIME_PM(dev_priv))
2702 		seq_puts(m, "Runtime power management not supported\n");
2703 
2704 	seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2705 	seq_printf(m, "IRQs disabled: %s\n",
2706 		   yesno(!intel_irqs_enabled(dev_priv)));
2707 #ifdef CONFIG_PM
2708 	seq_printf(m, "Usage count: %d\n",
2709 		   atomic_read(&dev->dev->power.usage_count));
2710 #else
2711 	seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2712 #endif
2713 	seq_printf(m, "PCI device power state: %s [%d]\n",
2714 		   pci_power_name(dev_priv->dev->pdev->current_state),
2715 		   dev_priv->dev->pdev->current_state);
2716 
2717 	return 0;
2718 }
2719 
2720 static int i915_power_domain_info(struct seq_file *m, void *unused)
2721 {
2722 	struct drm_info_node *node = m->private;
2723 	struct drm_device *dev = node->minor->dev;
2724 	struct drm_i915_private *dev_priv = dev->dev_private;
2725 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2726 	int i;
2727 
2728 	mutex_lock(&power_domains->lock);
2729 
2730 	seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2731 	for (i = 0; i < power_domains->power_well_count; i++) {
2732 		struct i915_power_well *power_well;
2733 		enum intel_display_power_domain power_domain;
2734 
2735 		power_well = &power_domains->power_wells[i];
2736 		seq_printf(m, "%-25s %d\n", power_well->name,
2737 			   power_well->count);
2738 
2739 		for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2740 		     power_domain++) {
2741 			if (!(BIT(power_domain) & power_well->domains))
2742 				continue;
2743 
2744 			seq_printf(m, "  %-23s %d\n",
2745 				 intel_display_power_domain_str(power_domain),
2746 				 power_domains->domain_use_count[power_domain]);
2747 		}
2748 	}
2749 
2750 	mutex_unlock(&power_domains->lock);
2751 
2752 	return 0;
2753 }
2754 
2755 static int i915_dmc_info(struct seq_file *m, void *unused)
2756 {
2757 	struct drm_info_node *node = m->private;
2758 	struct drm_device *dev = node->minor->dev;
2759 	struct drm_i915_private *dev_priv = dev->dev_private;
2760 	struct intel_csr *csr;
2761 
2762 	if (!HAS_CSR(dev)) {
2763 		seq_puts(m, "not supported\n");
2764 		return 0;
2765 	}
2766 
2767 	csr = &dev_priv->csr;
2768 
2769 	intel_runtime_pm_get(dev_priv);
2770 
2771 	seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2772 	seq_printf(m, "path: %s\n", csr->fw_path);
2773 
2774 	if (!csr->dmc_payload)
2775 		goto out;
2776 
2777 	seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2778 		   CSR_VERSION_MINOR(csr->version));
2779 
2780 	if (IS_SKYLAKE(dev) && csr->version >= CSR_VERSION(1, 6)) {
2781 		seq_printf(m, "DC3 -> DC5 count: %d\n",
2782 			   I915_READ(SKL_CSR_DC3_DC5_COUNT));
2783 		seq_printf(m, "DC5 -> DC6 count: %d\n",
2784 			   I915_READ(SKL_CSR_DC5_DC6_COUNT));
2785 	} else if (IS_BROXTON(dev) && csr->version >= CSR_VERSION(1, 4)) {
2786 		seq_printf(m, "DC3 -> DC5 count: %d\n",
2787 			   I915_READ(BXT_CSR_DC3_DC5_COUNT));
2788 	}
2789 
2790 out:
2791 	seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2792 	seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2793 	seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2794 
2795 	intel_runtime_pm_put(dev_priv);
2796 
2797 	return 0;
2798 }
2799 
2800 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2801 				 struct drm_display_mode *mode)
2802 {
2803 	int i;
2804 
2805 	for (i = 0; i < tabs; i++)
2806 		seq_putc(m, '\t');
2807 
2808 	seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2809 		   mode->base.id, mode->name,
2810 		   mode->vrefresh, mode->clock,
2811 		   mode->hdisplay, mode->hsync_start,
2812 		   mode->hsync_end, mode->htotal,
2813 		   mode->vdisplay, mode->vsync_start,
2814 		   mode->vsync_end, mode->vtotal,
2815 		   mode->type, mode->flags);
2816 }
2817 
2818 static void intel_encoder_info(struct seq_file *m,
2819 			       struct intel_crtc *intel_crtc,
2820 			       struct intel_encoder *intel_encoder)
2821 {
2822 	struct drm_info_node *node = m->private;
2823 	struct drm_device *dev = node->minor->dev;
2824 	struct drm_crtc *crtc = &intel_crtc->base;
2825 	struct intel_connector *intel_connector;
2826 	struct drm_encoder *encoder;
2827 
2828 	encoder = &intel_encoder->base;
2829 	seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2830 		   encoder->base.id, encoder->name);
2831 	for_each_connector_on_encoder(dev, encoder, intel_connector) {
2832 		struct drm_connector *connector = &intel_connector->base;
2833 		seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2834 			   connector->base.id,
2835 			   connector->name,
2836 			   drm_get_connector_status_name(connector->status));
2837 		if (connector->status == connector_status_connected) {
2838 			struct drm_display_mode *mode = &crtc->mode;
2839 			seq_printf(m, ", mode:\n");
2840 			intel_seq_print_mode(m, 2, mode);
2841 		} else {
2842 			seq_putc(m, '\n');
2843 		}
2844 	}
2845 }
2846 
2847 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2848 {
2849 	struct drm_info_node *node = m->private;
2850 	struct drm_device *dev = node->minor->dev;
2851 	struct drm_crtc *crtc = &intel_crtc->base;
2852 	struct intel_encoder *intel_encoder;
2853 	struct drm_plane_state *plane_state = crtc->primary->state;
2854 	struct drm_framebuffer *fb = plane_state->fb;
2855 
2856 	if (fb)
2857 		seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2858 			   fb->base.id, plane_state->src_x >> 16,
2859 			   plane_state->src_y >> 16, fb->width, fb->height);
2860 	else
2861 		seq_puts(m, "\tprimary plane disabled\n");
2862 	for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2863 		intel_encoder_info(m, intel_crtc, intel_encoder);
2864 }
2865 
2866 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2867 {
2868 	struct drm_display_mode *mode = panel->fixed_mode;
2869 
2870 	seq_printf(m, "\tfixed mode:\n");
2871 	intel_seq_print_mode(m, 2, mode);
2872 }
2873 
2874 static void intel_dp_info(struct seq_file *m,
2875 			  struct intel_connector *intel_connector)
2876 {
2877 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2878 	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2879 
2880 	seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2881 	seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2882 	if (intel_encoder->type == INTEL_OUTPUT_EDP)
2883 		intel_panel_info(m, &intel_connector->panel);
2884 }
2885 
2886 static void intel_dp_mst_info(struct seq_file *m,
2887 			  struct intel_connector *intel_connector)
2888 {
2889 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2890 	struct intel_dp_mst_encoder *intel_mst =
2891 		enc_to_mst(&intel_encoder->base);
2892 	struct intel_digital_port *intel_dig_port = intel_mst->primary;
2893 	struct intel_dp *intel_dp = &intel_dig_port->dp;
2894 	bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
2895 					intel_connector->port);
2896 
2897 	seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
2898 }
2899 
2900 static void intel_hdmi_info(struct seq_file *m,
2901 			    struct intel_connector *intel_connector)
2902 {
2903 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2904 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2905 
2906 	seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2907 }
2908 
2909 static void intel_lvds_info(struct seq_file *m,
2910 			    struct intel_connector *intel_connector)
2911 {
2912 	intel_panel_info(m, &intel_connector->panel);
2913 }
2914 
2915 static void intel_connector_info(struct seq_file *m,
2916 				 struct drm_connector *connector)
2917 {
2918 	struct intel_connector *intel_connector = to_intel_connector(connector);
2919 	struct intel_encoder *intel_encoder = intel_connector->encoder;
2920 	struct drm_display_mode *mode;
2921 
2922 	seq_printf(m, "connector %d: type %s, status: %s\n",
2923 		   connector->base.id, connector->name,
2924 		   drm_get_connector_status_name(connector->status));
2925 	if (connector->status == connector_status_connected) {
2926 		seq_printf(m, "\tname: %s\n", connector->display_info.name);
2927 		seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2928 			   connector->display_info.width_mm,
2929 			   connector->display_info.height_mm);
2930 		seq_printf(m, "\tsubpixel order: %s\n",
2931 			   drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2932 		seq_printf(m, "\tCEA rev: %d\n",
2933 			   connector->display_info.cea_rev);
2934 	}
2935 	if (intel_encoder) {
2936 		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2937 		    intel_encoder->type == INTEL_OUTPUT_EDP)
2938 			intel_dp_info(m, intel_connector);
2939 		else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2940 			intel_hdmi_info(m, intel_connector);
2941 		else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2942 			intel_lvds_info(m, intel_connector);
2943 		else if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
2944 			intel_dp_mst_info(m, intel_connector);
2945 	}
2946 
2947 	seq_printf(m, "\tmodes:\n");
2948 	list_for_each_entry(mode, &connector->modes, head)
2949 		intel_seq_print_mode(m, 2, mode);
2950 }
2951 
2952 static bool cursor_active(struct drm_device *dev, int pipe)
2953 {
2954 	struct drm_i915_private *dev_priv = dev->dev_private;
2955 	u32 state;
2956 
2957 	if (IS_845G(dev) || IS_I865G(dev))
2958 		state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
2959 	else
2960 		state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2961 
2962 	return state;
2963 }
2964 
2965 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2966 {
2967 	struct drm_i915_private *dev_priv = dev->dev_private;
2968 	u32 pos;
2969 
2970 	pos = I915_READ(CURPOS(pipe));
2971 
2972 	*x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2973 	if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2974 		*x = -*x;
2975 
2976 	*y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2977 	if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2978 		*y = -*y;
2979 
2980 	return cursor_active(dev, pipe);
2981 }
2982 
2983 static const char *plane_type(enum drm_plane_type type)
2984 {
2985 	switch (type) {
2986 	case DRM_PLANE_TYPE_OVERLAY:
2987 		return "OVL";
2988 	case DRM_PLANE_TYPE_PRIMARY:
2989 		return "PRI";
2990 	case DRM_PLANE_TYPE_CURSOR:
2991 		return "CUR";
2992 	/*
2993 	 * Deliberately omitting default: to generate compiler warnings
2994 	 * when a new drm_plane_type gets added.
2995 	 */
2996 	}
2997 
2998 	return "unknown";
2999 }
3000 
3001 static const char *plane_rotation(unsigned int rotation)
3002 {
3003 	static char buf[48];
3004 	/*
3005 	 * According to doc only one DRM_ROTATE_ is allowed but this
3006 	 * will print them all to visualize if the values are misused
3007 	 */
3008 	snprintf(buf, sizeof(buf),
3009 		 "%s%s%s%s%s%s(0x%08x)",
3010 		 (rotation & BIT(DRM_ROTATE_0)) ? "0 " : "",
3011 		 (rotation & BIT(DRM_ROTATE_90)) ? "90 " : "",
3012 		 (rotation & BIT(DRM_ROTATE_180)) ? "180 " : "",
3013 		 (rotation & BIT(DRM_ROTATE_270)) ? "270 " : "",
3014 		 (rotation & BIT(DRM_REFLECT_X)) ? "FLIPX " : "",
3015 		 (rotation & BIT(DRM_REFLECT_Y)) ? "FLIPY " : "",
3016 		 rotation);
3017 
3018 	return buf;
3019 }
3020 
3021 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3022 {
3023 	struct drm_info_node *node = m->private;
3024 	struct drm_device *dev = node->minor->dev;
3025 	struct intel_plane *intel_plane;
3026 
3027 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3028 		struct drm_plane_state *state;
3029 		struct drm_plane *plane = &intel_plane->base;
3030 
3031 		if (!plane->state) {
3032 			seq_puts(m, "plane->state is NULL!\n");
3033 			continue;
3034 		}
3035 
3036 		state = plane->state;
3037 
3038 		seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3039 			   plane->base.id,
3040 			   plane_type(intel_plane->base.type),
3041 			   state->crtc_x, state->crtc_y,
3042 			   state->crtc_w, state->crtc_h,
3043 			   (state->src_x >> 16),
3044 			   ((state->src_x & 0xffff) * 15625) >> 10,
3045 			   (state->src_y >> 16),
3046 			   ((state->src_y & 0xffff) * 15625) >> 10,
3047 			   (state->src_w >> 16),
3048 			   ((state->src_w & 0xffff) * 15625) >> 10,
3049 			   (state->src_h >> 16),
3050 			   ((state->src_h & 0xffff) * 15625) >> 10,
3051 			   state->fb ? drm_get_format_name(state->fb->pixel_format) : "N/A",
3052 			   plane_rotation(state->rotation));
3053 	}
3054 }
3055 
3056 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3057 {
3058 	struct intel_crtc_state *pipe_config;
3059 	int num_scalers = intel_crtc->num_scalers;
3060 	int i;
3061 
3062 	pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3063 
3064 	/* Not all platformas have a scaler */
3065 	if (num_scalers) {
3066 		seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3067 			   num_scalers,
3068 			   pipe_config->scaler_state.scaler_users,
3069 			   pipe_config->scaler_state.scaler_id);
3070 
3071 		for (i = 0; i < SKL_NUM_SCALERS; i++) {
3072 			struct intel_scaler *sc =
3073 					&pipe_config->scaler_state.scalers[i];
3074 
3075 			seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3076 				   i, yesno(sc->in_use), sc->mode);
3077 		}
3078 		seq_puts(m, "\n");
3079 	} else {
3080 		seq_puts(m, "\tNo scalers available on this platform\n");
3081 	}
3082 }
3083 
3084 static int i915_display_info(struct seq_file *m, void *unused)
3085 {
3086 	struct drm_info_node *node = m->private;
3087 	struct drm_device *dev = node->minor->dev;
3088 	struct drm_i915_private *dev_priv = dev->dev_private;
3089 	struct intel_crtc *crtc;
3090 	struct drm_connector *connector;
3091 
3092 	intel_runtime_pm_get(dev_priv);
3093 	drm_modeset_lock_all(dev);
3094 	seq_printf(m, "CRTC info\n");
3095 	seq_printf(m, "---------\n");
3096 	for_each_intel_crtc(dev, crtc) {
3097 		bool active;
3098 		struct intel_crtc_state *pipe_config;
3099 		int x, y;
3100 
3101 		pipe_config = to_intel_crtc_state(crtc->base.state);
3102 
3103 		seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3104 			   crtc->base.base.id, pipe_name(crtc->pipe),
3105 			   yesno(pipe_config->base.active),
3106 			   pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3107 			   yesno(pipe_config->dither), pipe_config->pipe_bpp);
3108 
3109 		if (pipe_config->base.active) {
3110 			intel_crtc_info(m, crtc);
3111 
3112 			active = cursor_position(dev, crtc->pipe, &x, &y);
3113 			seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
3114 				   yesno(crtc->cursor_base),
3115 				   x, y, crtc->base.cursor->state->crtc_w,
3116 				   crtc->base.cursor->state->crtc_h,
3117 				   crtc->cursor_addr, yesno(active));
3118 			intel_scaler_info(m, crtc);
3119 			intel_plane_info(m, crtc);
3120 		}
3121 
3122 		seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3123 			   yesno(!crtc->cpu_fifo_underrun_disabled),
3124 			   yesno(!crtc->pch_fifo_underrun_disabled));
3125 	}
3126 
3127 	seq_printf(m, "\n");
3128 	seq_printf(m, "Connector info\n");
3129 	seq_printf(m, "--------------\n");
3130 	list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3131 		intel_connector_info(m, connector);
3132 	}
3133 	drm_modeset_unlock_all(dev);
3134 	intel_runtime_pm_put(dev_priv);
3135 
3136 	return 0;
3137 }
3138 
3139 static int i915_semaphore_status(struct seq_file *m, void *unused)
3140 {
3141 	struct drm_info_node *node = (struct drm_info_node *) m->private;
3142 	struct drm_device *dev = node->minor->dev;
3143 	struct drm_i915_private *dev_priv = dev->dev_private;
3144 	struct intel_engine_cs *engine;
3145 	int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
3146 	enum intel_engine_id id;
3147 	int j, ret;
3148 
3149 	if (!i915_semaphore_is_enabled(dev)) {
3150 		seq_puts(m, "Semaphores are disabled\n");
3151 		return 0;
3152 	}
3153 
3154 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3155 	if (ret)
3156 		return ret;
3157 	intel_runtime_pm_get(dev_priv);
3158 
3159 	if (IS_BROADWELL(dev)) {
3160 		struct page *page;
3161 		uint64_t *seqno;
3162 
3163 		page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
3164 
3165 		seqno = (uint64_t *)kmap_atomic(page);
3166 		for_each_engine_id(engine, dev_priv, id) {
3167 			uint64_t offset;
3168 
3169 			seq_printf(m, "%s\n", engine->name);
3170 
3171 			seq_puts(m, "  Last signal:");
3172 			for (j = 0; j < num_rings; j++) {
3173 				offset = id * I915_NUM_ENGINES + j;
3174 				seq_printf(m, "0x%08llx (0x%02llx) ",
3175 					   seqno[offset], offset * 8);
3176 			}
3177 			seq_putc(m, '\n');
3178 
3179 			seq_puts(m, "  Last wait:  ");
3180 			for (j = 0; j < num_rings; j++) {
3181 				offset = id + (j * I915_NUM_ENGINES);
3182 				seq_printf(m, "0x%08llx (0x%02llx) ",
3183 					   seqno[offset], offset * 8);
3184 			}
3185 			seq_putc(m, '\n');
3186 
3187 		}
3188 		kunmap_atomic(seqno);
3189 	} else {
3190 		seq_puts(m, "  Last signal:");
3191 		for_each_engine(engine, dev_priv)
3192 			for (j = 0; j < num_rings; j++)
3193 				seq_printf(m, "0x%08x\n",
3194 					   I915_READ(engine->semaphore.mbox.signal[j]));
3195 		seq_putc(m, '\n');
3196 	}
3197 
3198 	seq_puts(m, "\nSync seqno:\n");
3199 	for_each_engine(engine, dev_priv) {
3200 		for (j = 0; j < num_rings; j++)
3201 			seq_printf(m, "  0x%08x ",
3202 				   engine->semaphore.sync_seqno[j]);
3203 		seq_putc(m, '\n');
3204 	}
3205 	seq_putc(m, '\n');
3206 
3207 	intel_runtime_pm_put(dev_priv);
3208 	mutex_unlock(&dev->struct_mutex);
3209 	return 0;
3210 }
3211 
3212 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3213 {
3214 	struct drm_info_node *node = (struct drm_info_node *) m->private;
3215 	struct drm_device *dev = node->minor->dev;
3216 	struct drm_i915_private *dev_priv = dev->dev_private;
3217 	int i;
3218 
3219 	drm_modeset_lock_all(dev);
3220 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3221 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3222 
3223 		seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3224 		seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
3225 			   pll->config.crtc_mask, pll->active_mask, yesno(pll->on));
3226 		seq_printf(m, " tracked hardware state:\n");
3227 		seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
3228 		seq_printf(m, " dpll_md: 0x%08x\n",
3229 			   pll->config.hw_state.dpll_md);
3230 		seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
3231 		seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
3232 		seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
3233 	}
3234 	drm_modeset_unlock_all(dev);
3235 
3236 	return 0;
3237 }
3238 
3239 static int i915_wa_registers(struct seq_file *m, void *unused)
3240 {
3241 	int i;
3242 	int ret;
3243 	struct intel_engine_cs *engine;
3244 	struct drm_info_node *node = (struct drm_info_node *) m->private;
3245 	struct drm_device *dev = node->minor->dev;
3246 	struct drm_i915_private *dev_priv = dev->dev_private;
3247 	struct i915_workarounds *workarounds = &dev_priv->workarounds;
3248 	enum intel_engine_id id;
3249 
3250 	ret = mutex_lock_interruptible(&dev->struct_mutex);
3251 	if (ret)
3252 		return ret;
3253 
3254 	intel_runtime_pm_get(dev_priv);
3255 
3256 	seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3257 	for_each_engine_id(engine, dev_priv, id)
3258 		seq_printf(m, "HW whitelist count for %s: %d\n",
3259 			   engine->name, workarounds->hw_whitelist_count[id]);
3260 	for (i = 0; i < workarounds->count; ++i) {
3261 		i915_reg_t addr;
3262 		u32 mask, value, read;
3263 		bool ok;
3264 
3265 		addr = workarounds->reg[i].addr;
3266 		mask = workarounds->reg[i].mask;
3267 		value = workarounds->reg[i].value;
3268 		read = I915_READ(addr);
3269 		ok = (value & mask) == (read & mask);
3270 		seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3271 			   i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3272 	}
3273 
3274 	intel_runtime_pm_put(dev_priv);
3275 	mutex_unlock(&dev->struct_mutex);
3276 
3277 	return 0;
3278 }
3279 
3280 static int i915_ddb_info(struct seq_file *m, void *unused)
3281 {
3282 	struct drm_info_node *node = m->private;
3283 	struct drm_device *dev = node->minor->dev;
3284 	struct drm_i915_private *dev_priv = dev->dev_private;
3285 	struct skl_ddb_allocation *ddb;
3286 	struct skl_ddb_entry *entry;
3287 	enum pipe pipe;
3288 	int plane;
3289 
3290 	if (INTEL_INFO(dev)->gen < 9)
3291 		return 0;
3292 
3293 	drm_modeset_lock_all(dev);
3294 
3295 	ddb = &dev_priv->wm.skl_hw.ddb;
3296 
3297 	seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3298 
3299 	for_each_pipe(dev_priv, pipe) {
3300 		seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3301 
3302 		for_each_plane(dev_priv, pipe, plane) {
3303 			entry = &ddb->plane[pipe][plane];
3304 			seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3305 				   entry->start, entry->end,
3306 				   skl_ddb_entry_size(entry));
3307 		}
3308 
3309 		entry = &ddb->plane[pipe][PLANE_CURSOR];
3310 		seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3311 			   entry->end, skl_ddb_entry_size(entry));
3312 	}
3313 
3314 	drm_modeset_unlock_all(dev);
3315 
3316 	return 0;
3317 }
3318 
3319 static void drrs_status_per_crtc(struct seq_file *m,
3320 		struct drm_device *dev, struct intel_crtc *intel_crtc)
3321 {
3322 	struct intel_encoder *intel_encoder;
3323 	struct drm_i915_private *dev_priv = dev->dev_private;
3324 	struct i915_drrs *drrs = &dev_priv->drrs;
3325 	int vrefresh = 0;
3326 
3327 	for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
3328 		/* Encoder connected on this CRTC */
3329 		switch (intel_encoder->type) {
3330 		case INTEL_OUTPUT_EDP:
3331 			seq_puts(m, "eDP:\n");
3332 			break;
3333 		case INTEL_OUTPUT_DSI:
3334 			seq_puts(m, "DSI:\n");
3335 			break;
3336 		case INTEL_OUTPUT_HDMI:
3337 			seq_puts(m, "HDMI:\n");
3338 			break;
3339 		case INTEL_OUTPUT_DISPLAYPORT:
3340 			seq_puts(m, "DP:\n");
3341 			break;
3342 		default:
3343 			seq_printf(m, "Other encoder (id=%d).\n",
3344 						intel_encoder->type);
3345 			return;
3346 		}
3347 	}
3348 
3349 	if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3350 		seq_puts(m, "\tVBT: DRRS_type: Static");
3351 	else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3352 		seq_puts(m, "\tVBT: DRRS_type: Seamless");
3353 	else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3354 		seq_puts(m, "\tVBT: DRRS_type: None");
3355 	else
3356 		seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3357 
3358 	seq_puts(m, "\n\n");
3359 
3360 	if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3361 		struct intel_panel *panel;
3362 
3363 		mutex_lock(&drrs->mutex);
3364 		/* DRRS Supported */
3365 		seq_puts(m, "\tDRRS Supported: Yes\n");
3366 
3367 		/* disable_drrs() will make drrs->dp NULL */
3368 		if (!drrs->dp) {
3369 			seq_puts(m, "Idleness DRRS: Disabled");
3370 			mutex_unlock(&drrs->mutex);
3371 			return;
3372 		}
3373 
3374 		panel = &drrs->dp->attached_connector->panel;
3375 		seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3376 					drrs->busy_frontbuffer_bits);
3377 
3378 		seq_puts(m, "\n\t\t");
3379 		if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3380 			seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3381 			vrefresh = panel->fixed_mode->vrefresh;
3382 		} else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3383 			seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3384 			vrefresh = panel->downclock_mode->vrefresh;
3385 		} else {
3386 			seq_printf(m, "DRRS_State: Unknown(%d)\n",
3387 						drrs->refresh_rate_type);
3388 			mutex_unlock(&drrs->mutex);
3389 			return;
3390 		}
3391 		seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3392 
3393 		seq_puts(m, "\n\t\t");
3394 		mutex_unlock(&drrs->mutex);
3395 	} else {
3396 		/* DRRS not supported. Print the VBT parameter*/
3397 		seq_puts(m, "\tDRRS Supported : No");
3398 	}
3399 	seq_puts(m, "\n");
3400 }
3401 
3402 static int i915_drrs_status(struct seq_file *m, void *unused)
3403 {
3404 	struct drm_info_node *node = m->private;
3405 	struct drm_device *dev = node->minor->dev;
3406 	struct intel_crtc *intel_crtc;
3407 	int active_crtc_cnt = 0;
3408 
3409 	for_each_intel_crtc(dev, intel_crtc) {
3410 		drm_modeset_lock(&intel_crtc->base.mutex, NULL);
3411 
3412 		if (intel_crtc->base.state->active) {
3413 			active_crtc_cnt++;
3414 			seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3415 
3416 			drrs_status_per_crtc(m, dev, intel_crtc);
3417 		}
3418 
3419 		drm_modeset_unlock(&intel_crtc->base.mutex);
3420 	}
3421 
3422 	if (!active_crtc_cnt)
3423 		seq_puts(m, "No active crtc found\n");
3424 
3425 	return 0;
3426 }
3427 
3428 struct pipe_crc_info {
3429 	const char *name;
3430 	struct drm_device *dev;
3431 	enum pipe pipe;
3432 };
3433 
3434 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3435 {
3436 	struct drm_info_node *node = (struct drm_info_node *) m->private;
3437 	struct drm_device *dev = node->minor->dev;
3438 	struct drm_encoder *encoder;
3439 	struct intel_encoder *intel_encoder;
3440 	struct intel_digital_port *intel_dig_port;
3441 	drm_modeset_lock_all(dev);
3442 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3443 		intel_encoder = to_intel_encoder(encoder);
3444 		if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
3445 			continue;
3446 		intel_dig_port = enc_to_dig_port(encoder);
3447 		if (!intel_dig_port->dp.can_mst)
3448 			continue;
3449 		seq_printf(m, "MST Source Port %c\n",
3450 			   port_name(intel_dig_port->port));
3451 		drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3452 	}
3453 	drm_modeset_unlock_all(dev);
3454 	return 0;
3455 }
3456 
3457 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3458 {
3459 	struct pipe_crc_info *info = inode->i_private;
3460 	struct drm_i915_private *dev_priv = info->dev->dev_private;
3461 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3462 
3463 	if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3464 		return -ENODEV;
3465 
3466 	spin_lock_irq(&pipe_crc->lock);
3467 
3468 	if (pipe_crc->opened) {
3469 		spin_unlock_irq(&pipe_crc->lock);
3470 		return -EBUSY; /* already open */
3471 	}
3472 
3473 	pipe_crc->opened = true;
3474 	filep->private_data = inode->i_private;
3475 
3476 	spin_unlock_irq(&pipe_crc->lock);
3477 
3478 	return 0;
3479 }
3480 
3481 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3482 {
3483 	struct pipe_crc_info *info = inode->i_private;
3484 	struct drm_i915_private *dev_priv = info->dev->dev_private;
3485 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3486 
3487 	spin_lock_irq(&pipe_crc->lock);
3488 	pipe_crc->opened = false;
3489 	spin_unlock_irq(&pipe_crc->lock);
3490 
3491 	return 0;
3492 }
3493 
3494 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3495 #define PIPE_CRC_LINE_LEN	(6 * 8 + 5 + 1)
3496 /* account for \'0' */
3497 #define PIPE_CRC_BUFFER_LEN	(PIPE_CRC_LINE_LEN + 1)
3498 
3499 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3500 {
3501 	assert_spin_locked(&pipe_crc->lock);
3502 	return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3503 			INTEL_PIPE_CRC_ENTRIES_NR);
3504 }
3505 
3506 static ssize_t
3507 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3508 		   loff_t *pos)
3509 {
3510 	struct pipe_crc_info *info = filep->private_data;
3511 	struct drm_device *dev = info->dev;
3512 	struct drm_i915_private *dev_priv = dev->dev_private;
3513 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3514 	char buf[PIPE_CRC_BUFFER_LEN];
3515 	int n_entries;
3516 	ssize_t bytes_read;
3517 
3518 	/*
3519 	 * Don't allow user space to provide buffers not big enough to hold
3520 	 * a line of data.
3521 	 */
3522 	if (count < PIPE_CRC_LINE_LEN)
3523 		return -EINVAL;
3524 
3525 	if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3526 		return 0;
3527 
3528 	/* nothing to read */
3529 	spin_lock_irq(&pipe_crc->lock);
3530 	while (pipe_crc_data_count(pipe_crc) == 0) {
3531 		int ret;
3532 
3533 		if (filep->f_flags & O_NONBLOCK) {
3534 			spin_unlock_irq(&pipe_crc->lock);
3535 			return -EAGAIN;
3536 		}
3537 
3538 		ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3539 				pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3540 		if (ret) {
3541 			spin_unlock_irq(&pipe_crc->lock);
3542 			return ret;
3543 		}
3544 	}
3545 
3546 	/* We now have one or more entries to read */
3547 	n_entries = count / PIPE_CRC_LINE_LEN;
3548 
3549 	bytes_read = 0;
3550 	while (n_entries > 0) {
3551 		struct intel_pipe_crc_entry *entry =
3552 			&pipe_crc->entries[pipe_crc->tail];
3553 		int ret;
3554 
3555 		if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3556 			     INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3557 			break;
3558 
3559 		BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3560 		pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3561 
3562 		bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3563 				       "%8u %8x %8x %8x %8x %8x\n",
3564 				       entry->frame, entry->crc[0],
3565 				       entry->crc[1], entry->crc[2],
3566 				       entry->crc[3], entry->crc[4]);
3567 
3568 		spin_unlock_irq(&pipe_crc->lock);
3569 
3570 		ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3571 		if (ret == PIPE_CRC_LINE_LEN)
3572 			return -EFAULT;
3573 
3574 		user_buf += PIPE_CRC_LINE_LEN;
3575 		n_entries--;
3576 
3577 		spin_lock_irq(&pipe_crc->lock);
3578 	}
3579 
3580 	spin_unlock_irq(&pipe_crc->lock);
3581 
3582 	return bytes_read;
3583 }
3584 
3585 static const struct file_operations i915_pipe_crc_fops = {
3586 	.owner = THIS_MODULE,
3587 	.open = i915_pipe_crc_open,
3588 	.read = i915_pipe_crc_read,
3589 	.release = i915_pipe_crc_release,
3590 };
3591 
3592 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3593 	{
3594 		.name = "i915_pipe_A_crc",
3595 		.pipe = PIPE_A,
3596 	},
3597 	{
3598 		.name = "i915_pipe_B_crc",
3599 		.pipe = PIPE_B,
3600 	},
3601 	{
3602 		.name = "i915_pipe_C_crc",
3603 		.pipe = PIPE_C,
3604 	},
3605 };
3606 
3607 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3608 				enum pipe pipe)
3609 {
3610 	struct drm_device *dev = minor->dev;
3611 	struct dentry *ent;
3612 	struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3613 
3614 	info->dev = dev;
3615 	ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3616 				  &i915_pipe_crc_fops);
3617 	if (!ent)
3618 		return -ENOMEM;
3619 
3620 	return drm_add_fake_info_node(minor, ent, info);
3621 }
3622 
3623 static const char * const pipe_crc_sources[] = {
3624 	"none",
3625 	"plane1",
3626 	"plane2",
3627 	"pf",
3628 	"pipe",
3629 	"TV",
3630 	"DP-B",
3631 	"DP-C",
3632 	"DP-D",
3633 	"auto",
3634 };
3635 
3636 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3637 {
3638 	BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3639 	return pipe_crc_sources[source];
3640 }
3641 
3642 static int display_crc_ctl_show(struct seq_file *m, void *data)
3643 {
3644 	struct drm_device *dev = m->private;
3645 	struct drm_i915_private *dev_priv = dev->dev_private;
3646 	int i;
3647 
3648 	for (i = 0; i < I915_MAX_PIPES; i++)
3649 		seq_printf(m, "%c %s\n", pipe_name(i),
3650 			   pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3651 
3652 	return 0;
3653 }
3654 
3655 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3656 {
3657 	struct drm_device *dev = inode->i_private;
3658 
3659 	return single_open(file, display_crc_ctl_show, dev);
3660 }
3661 
3662 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3663 				 uint32_t *val)
3664 {
3665 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3666 		*source = INTEL_PIPE_CRC_SOURCE_PIPE;
3667 
3668 	switch (*source) {
3669 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3670 		*val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3671 		break;
3672 	case INTEL_PIPE_CRC_SOURCE_NONE:
3673 		*val = 0;
3674 		break;
3675 	default:
3676 		return -EINVAL;
3677 	}
3678 
3679 	return 0;
3680 }
3681 
3682 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3683 				     enum intel_pipe_crc_source *source)
3684 {
3685 	struct intel_encoder *encoder;
3686 	struct intel_crtc *crtc;
3687 	struct intel_digital_port *dig_port;
3688 	int ret = 0;
3689 
3690 	*source = INTEL_PIPE_CRC_SOURCE_PIPE;
3691 
3692 	drm_modeset_lock_all(dev);
3693 	for_each_intel_encoder(dev, encoder) {
3694 		if (!encoder->base.crtc)
3695 			continue;
3696 
3697 		crtc = to_intel_crtc(encoder->base.crtc);
3698 
3699 		if (crtc->pipe != pipe)
3700 			continue;
3701 
3702 		switch (encoder->type) {
3703 		case INTEL_OUTPUT_TVOUT:
3704 			*source = INTEL_PIPE_CRC_SOURCE_TV;
3705 			break;
3706 		case INTEL_OUTPUT_DISPLAYPORT:
3707 		case INTEL_OUTPUT_EDP:
3708 			dig_port = enc_to_dig_port(&encoder->base);
3709 			switch (dig_port->port) {
3710 			case PORT_B:
3711 				*source = INTEL_PIPE_CRC_SOURCE_DP_B;
3712 				break;
3713 			case PORT_C:
3714 				*source = INTEL_PIPE_CRC_SOURCE_DP_C;
3715 				break;
3716 			case PORT_D:
3717 				*source = INTEL_PIPE_CRC_SOURCE_DP_D;
3718 				break;
3719 			default:
3720 				WARN(1, "nonexisting DP port %c\n",
3721 				     port_name(dig_port->port));
3722 				break;
3723 			}
3724 			break;
3725 		default:
3726 			break;
3727 		}
3728 	}
3729 	drm_modeset_unlock_all(dev);
3730 
3731 	return ret;
3732 }
3733 
3734 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3735 				enum pipe pipe,
3736 				enum intel_pipe_crc_source *source,
3737 				uint32_t *val)
3738 {
3739 	struct drm_i915_private *dev_priv = dev->dev_private;
3740 	bool need_stable_symbols = false;
3741 
3742 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3743 		int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3744 		if (ret)
3745 			return ret;
3746 	}
3747 
3748 	switch (*source) {
3749 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3750 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3751 		break;
3752 	case INTEL_PIPE_CRC_SOURCE_DP_B:
3753 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3754 		need_stable_symbols = true;
3755 		break;
3756 	case INTEL_PIPE_CRC_SOURCE_DP_C:
3757 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3758 		need_stable_symbols = true;
3759 		break;
3760 	case INTEL_PIPE_CRC_SOURCE_DP_D:
3761 		if (!IS_CHERRYVIEW(dev))
3762 			return -EINVAL;
3763 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3764 		need_stable_symbols = true;
3765 		break;
3766 	case INTEL_PIPE_CRC_SOURCE_NONE:
3767 		*val = 0;
3768 		break;
3769 	default:
3770 		return -EINVAL;
3771 	}
3772 
3773 	/*
3774 	 * When the pipe CRC tap point is after the transcoders we need
3775 	 * to tweak symbol-level features to produce a deterministic series of
3776 	 * symbols for a given frame. We need to reset those features only once
3777 	 * a frame (instead of every nth symbol):
3778 	 *   - DC-balance: used to ensure a better clock recovery from the data
3779 	 *     link (SDVO)
3780 	 *   - DisplayPort scrambling: used for EMI reduction
3781 	 */
3782 	if (need_stable_symbols) {
3783 		uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3784 
3785 		tmp |= DC_BALANCE_RESET_VLV;
3786 		switch (pipe) {
3787 		case PIPE_A:
3788 			tmp |= PIPE_A_SCRAMBLE_RESET;
3789 			break;
3790 		case PIPE_B:
3791 			tmp |= PIPE_B_SCRAMBLE_RESET;
3792 			break;
3793 		case PIPE_C:
3794 			tmp |= PIPE_C_SCRAMBLE_RESET;
3795 			break;
3796 		default:
3797 			return -EINVAL;
3798 		}
3799 		I915_WRITE(PORT_DFT2_G4X, tmp);
3800 	}
3801 
3802 	return 0;
3803 }
3804 
3805 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3806 				 enum pipe pipe,
3807 				 enum intel_pipe_crc_source *source,
3808 				 uint32_t *val)
3809 {
3810 	struct drm_i915_private *dev_priv = dev->dev_private;
3811 	bool need_stable_symbols = false;
3812 
3813 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3814 		int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3815 		if (ret)
3816 			return ret;
3817 	}
3818 
3819 	switch (*source) {
3820 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3821 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3822 		break;
3823 	case INTEL_PIPE_CRC_SOURCE_TV:
3824 		if (!SUPPORTS_TV(dev))
3825 			return -EINVAL;
3826 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3827 		break;
3828 	case INTEL_PIPE_CRC_SOURCE_DP_B:
3829 		if (!IS_G4X(dev))
3830 			return -EINVAL;
3831 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3832 		need_stable_symbols = true;
3833 		break;
3834 	case INTEL_PIPE_CRC_SOURCE_DP_C:
3835 		if (!IS_G4X(dev))
3836 			return -EINVAL;
3837 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3838 		need_stable_symbols = true;
3839 		break;
3840 	case INTEL_PIPE_CRC_SOURCE_DP_D:
3841 		if (!IS_G4X(dev))
3842 			return -EINVAL;
3843 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3844 		need_stable_symbols = true;
3845 		break;
3846 	case INTEL_PIPE_CRC_SOURCE_NONE:
3847 		*val = 0;
3848 		break;
3849 	default:
3850 		return -EINVAL;
3851 	}
3852 
3853 	/*
3854 	 * When the pipe CRC tap point is after the transcoders we need
3855 	 * to tweak symbol-level features to produce a deterministic series of
3856 	 * symbols for a given frame. We need to reset those features only once
3857 	 * a frame (instead of every nth symbol):
3858 	 *   - DC-balance: used to ensure a better clock recovery from the data
3859 	 *     link (SDVO)
3860 	 *   - DisplayPort scrambling: used for EMI reduction
3861 	 */
3862 	if (need_stable_symbols) {
3863 		uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3864 
3865 		WARN_ON(!IS_G4X(dev));
3866 
3867 		I915_WRITE(PORT_DFT_I9XX,
3868 			   I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3869 
3870 		if (pipe == PIPE_A)
3871 			tmp |= PIPE_A_SCRAMBLE_RESET;
3872 		else
3873 			tmp |= PIPE_B_SCRAMBLE_RESET;
3874 
3875 		I915_WRITE(PORT_DFT2_G4X, tmp);
3876 	}
3877 
3878 	return 0;
3879 }
3880 
3881 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3882 					 enum pipe pipe)
3883 {
3884 	struct drm_i915_private *dev_priv = dev->dev_private;
3885 	uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3886 
3887 	switch (pipe) {
3888 	case PIPE_A:
3889 		tmp &= ~PIPE_A_SCRAMBLE_RESET;
3890 		break;
3891 	case PIPE_B:
3892 		tmp &= ~PIPE_B_SCRAMBLE_RESET;
3893 		break;
3894 	case PIPE_C:
3895 		tmp &= ~PIPE_C_SCRAMBLE_RESET;
3896 		break;
3897 	default:
3898 		return;
3899 	}
3900 	if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3901 		tmp &= ~DC_BALANCE_RESET_VLV;
3902 	I915_WRITE(PORT_DFT2_G4X, tmp);
3903 
3904 }
3905 
3906 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3907 					 enum pipe pipe)
3908 {
3909 	struct drm_i915_private *dev_priv = dev->dev_private;
3910 	uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3911 
3912 	if (pipe == PIPE_A)
3913 		tmp &= ~PIPE_A_SCRAMBLE_RESET;
3914 	else
3915 		tmp &= ~PIPE_B_SCRAMBLE_RESET;
3916 	I915_WRITE(PORT_DFT2_G4X, tmp);
3917 
3918 	if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3919 		I915_WRITE(PORT_DFT_I9XX,
3920 			   I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3921 	}
3922 }
3923 
3924 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3925 				uint32_t *val)
3926 {
3927 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3928 		*source = INTEL_PIPE_CRC_SOURCE_PIPE;
3929 
3930 	switch (*source) {
3931 	case INTEL_PIPE_CRC_SOURCE_PLANE1:
3932 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3933 		break;
3934 	case INTEL_PIPE_CRC_SOURCE_PLANE2:
3935 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3936 		break;
3937 	case INTEL_PIPE_CRC_SOURCE_PIPE:
3938 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3939 		break;
3940 	case INTEL_PIPE_CRC_SOURCE_NONE:
3941 		*val = 0;
3942 		break;
3943 	default:
3944 		return -EINVAL;
3945 	}
3946 
3947 	return 0;
3948 }
3949 
3950 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
3951 {
3952 	struct drm_i915_private *dev_priv = dev->dev_private;
3953 	struct intel_crtc *crtc =
3954 		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3955 	struct intel_crtc_state *pipe_config;
3956 	struct drm_atomic_state *state;
3957 	int ret = 0;
3958 
3959 	drm_modeset_lock_all(dev);
3960 	state = drm_atomic_state_alloc(dev);
3961 	if (!state) {
3962 		ret = -ENOMEM;
3963 		goto out;
3964 	}
3965 
3966 	state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
3967 	pipe_config = intel_atomic_get_crtc_state(state, crtc);
3968 	if (IS_ERR(pipe_config)) {
3969 		ret = PTR_ERR(pipe_config);
3970 		goto out;
3971 	}
3972 
3973 	pipe_config->pch_pfit.force_thru = enable;
3974 	if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
3975 	    pipe_config->pch_pfit.enabled != enable)
3976 		pipe_config->base.connectors_changed = true;
3977 
3978 	ret = drm_atomic_commit(state);
3979 out:
3980 	drm_modeset_unlock_all(dev);
3981 	WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
3982 	if (ret)
3983 		drm_atomic_state_free(state);
3984 }
3985 
3986 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3987 				enum pipe pipe,
3988 				enum intel_pipe_crc_source *source,
3989 				uint32_t *val)
3990 {
3991 	if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3992 		*source = INTEL_PIPE_CRC_SOURCE_PF;
3993 
3994 	switch (*source) {
3995 	case INTEL_PIPE_CRC_SOURCE_PLANE1:
3996 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3997 		break;
3998 	case INTEL_PIPE_CRC_SOURCE_PLANE2:
3999 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
4000 		break;
4001 	case INTEL_PIPE_CRC_SOURCE_PF:
4002 		if (IS_HASWELL(dev) && pipe == PIPE_A)
4003 			hsw_trans_edp_pipe_A_crc_wa(dev, true);
4004 
4005 		*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
4006 		break;
4007 	case INTEL_PIPE_CRC_SOURCE_NONE:
4008 		*val = 0;
4009 		break;
4010 	default:
4011 		return -EINVAL;
4012 	}
4013 
4014 	return 0;
4015 }
4016 
4017 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
4018 			       enum intel_pipe_crc_source source)
4019 {
4020 	struct drm_i915_private *dev_priv = dev->dev_private;
4021 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4022 	struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
4023 									pipe));
4024 	enum intel_display_power_domain power_domain;
4025 	u32 val = 0; /* shut up gcc */
4026 	int ret;
4027 
4028 	if (pipe_crc->source == source)
4029 		return 0;
4030 
4031 	/* forbid changing the source without going back to 'none' */
4032 	if (pipe_crc->source && source)
4033 		return -EINVAL;
4034 
4035 	power_domain = POWER_DOMAIN_PIPE(pipe);
4036 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) {
4037 		DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
4038 		return -EIO;
4039 	}
4040 
4041 	if (IS_GEN2(dev))
4042 		ret = i8xx_pipe_crc_ctl_reg(&source, &val);
4043 	else if (INTEL_INFO(dev)->gen < 5)
4044 		ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4045 	else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4046 		ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4047 	else if (IS_GEN5(dev) || IS_GEN6(dev))
4048 		ret = ilk_pipe_crc_ctl_reg(&source, &val);
4049 	else
4050 		ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4051 
4052 	if (ret != 0)
4053 		goto out;
4054 
4055 	/* none -> real source transition */
4056 	if (source) {
4057 		struct intel_pipe_crc_entry *entries;
4058 
4059 		DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
4060 				 pipe_name(pipe), pipe_crc_source_name(source));
4061 
4062 		entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
4063 				  sizeof(pipe_crc->entries[0]),
4064 				  GFP_KERNEL);
4065 		if (!entries) {
4066 			ret = -ENOMEM;
4067 			goto out;
4068 		}
4069 
4070 		/*
4071 		 * When IPS gets enabled, the pipe CRC changes. Since IPS gets
4072 		 * enabled and disabled dynamically based on package C states,
4073 		 * user space can't make reliable use of the CRCs, so let's just
4074 		 * completely disable it.
4075 		 */
4076 		hsw_disable_ips(crtc);
4077 
4078 		spin_lock_irq(&pipe_crc->lock);
4079 		kfree(pipe_crc->entries);
4080 		pipe_crc->entries = entries;
4081 		pipe_crc->head = 0;
4082 		pipe_crc->tail = 0;
4083 		spin_unlock_irq(&pipe_crc->lock);
4084 	}
4085 
4086 	pipe_crc->source = source;
4087 
4088 	I915_WRITE(PIPE_CRC_CTL(pipe), val);
4089 	POSTING_READ(PIPE_CRC_CTL(pipe));
4090 
4091 	/* real source -> none transition */
4092 	if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
4093 		struct intel_pipe_crc_entry *entries;
4094 		struct intel_crtc *crtc =
4095 			to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
4096 
4097 		DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
4098 				 pipe_name(pipe));
4099 
4100 		drm_modeset_lock(&crtc->base.mutex, NULL);
4101 		if (crtc->base.state->active)
4102 			intel_wait_for_vblank(dev, pipe);
4103 		drm_modeset_unlock(&crtc->base.mutex);
4104 
4105 		spin_lock_irq(&pipe_crc->lock);
4106 		entries = pipe_crc->entries;
4107 		pipe_crc->entries = NULL;
4108 		pipe_crc->head = 0;
4109 		pipe_crc->tail = 0;
4110 		spin_unlock_irq(&pipe_crc->lock);
4111 
4112 		kfree(entries);
4113 
4114 		if (IS_G4X(dev))
4115 			g4x_undo_pipe_scramble_reset(dev, pipe);
4116 		else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4117 			vlv_undo_pipe_scramble_reset(dev, pipe);
4118 		else if (IS_HASWELL(dev) && pipe == PIPE_A)
4119 			hsw_trans_edp_pipe_A_crc_wa(dev, false);
4120 
4121 		hsw_enable_ips(crtc);
4122 	}
4123 
4124 	ret = 0;
4125 
4126 out:
4127 	intel_display_power_put(dev_priv, power_domain);
4128 
4129 	return ret;
4130 }
4131 
4132 /*
4133  * Parse pipe CRC command strings:
4134  *   command: wsp* object wsp+ name wsp+ source wsp*
4135  *   object: 'pipe'
4136  *   name: (A | B | C)
4137  *   source: (none | plane1 | plane2 | pf)
4138  *   wsp: (#0x20 | #0x9 | #0xA)+
4139  *
4140  * eg.:
4141  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
4142  *  "pipe A none"    ->  Stop CRC
4143  */
4144 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
4145 {
4146 	int n_words = 0;
4147 
4148 	while (*buf) {
4149 		char *end;
4150 
4151 		/* skip leading white space */
4152 		buf = skip_spaces(buf);
4153 		if (!*buf)
4154 			break;	/* end of buffer */
4155 
4156 		/* find end of word */
4157 		for (end = buf; *end && !isspace(*end); end++)
4158 			;
4159 
4160 		if (n_words == max_words) {
4161 			DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
4162 					 max_words);
4163 			return -EINVAL;	/* ran out of words[] before bytes */
4164 		}
4165 
4166 		if (*end)
4167 			*end++ = '\0';
4168 		words[n_words++] = buf;
4169 		buf = end;
4170 	}
4171 
4172 	return n_words;
4173 }
4174 
4175 enum intel_pipe_crc_object {
4176 	PIPE_CRC_OBJECT_PIPE,
4177 };
4178 
4179 static const char * const pipe_crc_objects[] = {
4180 	"pipe",
4181 };
4182 
4183 static int
4184 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
4185 {
4186 	int i;
4187 
4188 	for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
4189 		if (!strcmp(buf, pipe_crc_objects[i])) {
4190 			*o = i;
4191 			return 0;
4192 		    }
4193 
4194 	return -EINVAL;
4195 }
4196 
4197 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
4198 {
4199 	const char name = buf[0];
4200 
4201 	if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
4202 		return -EINVAL;
4203 
4204 	*pipe = name - 'A';
4205 
4206 	return 0;
4207 }
4208 
4209 static int
4210 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
4211 {
4212 	int i;
4213 
4214 	for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
4215 		if (!strcmp(buf, pipe_crc_sources[i])) {
4216 			*s = i;
4217 			return 0;
4218 		    }
4219 
4220 	return -EINVAL;
4221 }
4222 
4223 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
4224 {
4225 #define N_WORDS 3
4226 	int n_words;
4227 	char *words[N_WORDS];
4228 	enum pipe pipe;
4229 	enum intel_pipe_crc_object object;
4230 	enum intel_pipe_crc_source source;
4231 
4232 	n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
4233 	if (n_words != N_WORDS) {
4234 		DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
4235 				 N_WORDS);
4236 		return -EINVAL;
4237 	}
4238 
4239 	if (display_crc_ctl_parse_object(words[0], &object) < 0) {
4240 		DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
4241 		return -EINVAL;
4242 	}
4243 
4244 	if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
4245 		DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
4246 		return -EINVAL;
4247 	}
4248 
4249 	if (display_crc_ctl_parse_source(words[2], &source) < 0) {
4250 		DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
4251 		return -EINVAL;
4252 	}
4253 
4254 	return pipe_crc_set_source(dev, pipe, source);
4255 }
4256 
4257 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
4258 				     size_t len, loff_t *offp)
4259 {
4260 	struct seq_file *m = file->private_data;
4261 	struct drm_device *dev = m->private;
4262 	char *tmpbuf;
4263 	int ret;
4264 
4265 	if (len == 0)
4266 		return 0;
4267 
4268 	if (len > PAGE_SIZE - 1) {
4269 		DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
4270 				 PAGE_SIZE);
4271 		return -E2BIG;
4272 	}
4273 
4274 	tmpbuf = kmalloc(len + 1, GFP_KERNEL);
4275 	if (!tmpbuf)
4276 		return -ENOMEM;
4277 
4278 	if (copy_from_user(tmpbuf, ubuf, len)) {
4279 		ret = -EFAULT;
4280 		goto out;
4281 	}
4282 	tmpbuf[len] = '\0';
4283 
4284 	ret = display_crc_ctl_parse(dev, tmpbuf, len);
4285 
4286 out:
4287 	kfree(tmpbuf);
4288 	if (ret < 0)
4289 		return ret;
4290 
4291 	*offp += len;
4292 	return len;
4293 }
4294 
4295 static const struct file_operations i915_display_crc_ctl_fops = {
4296 	.owner = THIS_MODULE,
4297 	.open = display_crc_ctl_open,
4298 	.read = seq_read,
4299 	.llseek = seq_lseek,
4300 	.release = single_release,
4301 	.write = display_crc_ctl_write
4302 };
4303 
4304 static ssize_t i915_displayport_test_active_write(struct file *file,
4305 					    const char __user *ubuf,
4306 					    size_t len, loff_t *offp)
4307 {
4308 	char *input_buffer;
4309 	int status = 0;
4310 	struct drm_device *dev;
4311 	struct drm_connector *connector;
4312 	struct list_head *connector_list;
4313 	struct intel_dp *intel_dp;
4314 	int val = 0;
4315 
4316 	dev = ((struct seq_file *)file->private_data)->private;
4317 
4318 	connector_list = &dev->mode_config.connector_list;
4319 
4320 	if (len == 0)
4321 		return 0;
4322 
4323 	input_buffer = kmalloc(len + 1, GFP_KERNEL);
4324 	if (!input_buffer)
4325 		return -ENOMEM;
4326 
4327 	if (copy_from_user(input_buffer, ubuf, len)) {
4328 		status = -EFAULT;
4329 		goto out;
4330 	}
4331 
4332 	input_buffer[len] = '\0';
4333 	DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4334 
4335 	list_for_each_entry(connector, connector_list, head) {
4336 
4337 		if (connector->connector_type !=
4338 		    DRM_MODE_CONNECTOR_DisplayPort)
4339 			continue;
4340 
4341 		if (connector->status == connector_status_connected &&
4342 		    connector->encoder != NULL) {
4343 			intel_dp = enc_to_intel_dp(connector->encoder);
4344 			status = kstrtoint(input_buffer, 10, &val);
4345 			if (status < 0)
4346 				goto out;
4347 			DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4348 			/* To prevent erroneous activation of the compliance
4349 			 * testing code, only accept an actual value of 1 here
4350 			 */
4351 			if (val == 1)
4352 				intel_dp->compliance_test_active = 1;
4353 			else
4354 				intel_dp->compliance_test_active = 0;
4355 		}
4356 	}
4357 out:
4358 	kfree(input_buffer);
4359 	if (status < 0)
4360 		return status;
4361 
4362 	*offp += len;
4363 	return len;
4364 }
4365 
4366 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4367 {
4368 	struct drm_device *dev = m->private;
4369 	struct drm_connector *connector;
4370 	struct list_head *connector_list = &dev->mode_config.connector_list;
4371 	struct intel_dp *intel_dp;
4372 
4373 	list_for_each_entry(connector, connector_list, head) {
4374 
4375 		if (connector->connector_type !=
4376 		    DRM_MODE_CONNECTOR_DisplayPort)
4377 			continue;
4378 
4379 		if (connector->status == connector_status_connected &&
4380 		    connector->encoder != NULL) {
4381 			intel_dp = enc_to_intel_dp(connector->encoder);
4382 			if (intel_dp->compliance_test_active)
4383 				seq_puts(m, "1");
4384 			else
4385 				seq_puts(m, "0");
4386 		} else
4387 			seq_puts(m, "0");
4388 	}
4389 
4390 	return 0;
4391 }
4392 
4393 static int i915_displayport_test_active_open(struct inode *inode,
4394 				       struct file *file)
4395 {
4396 	struct drm_device *dev = inode->i_private;
4397 
4398 	return single_open(file, i915_displayport_test_active_show, dev);
4399 }
4400 
4401 static const struct file_operations i915_displayport_test_active_fops = {
4402 	.owner = THIS_MODULE,
4403 	.open = i915_displayport_test_active_open,
4404 	.read = seq_read,
4405 	.llseek = seq_lseek,
4406 	.release = single_release,
4407 	.write = i915_displayport_test_active_write
4408 };
4409 
4410 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4411 {
4412 	struct drm_device *dev = m->private;
4413 	struct drm_connector *connector;
4414 	struct list_head *connector_list = &dev->mode_config.connector_list;
4415 	struct intel_dp *intel_dp;
4416 
4417 	list_for_each_entry(connector, connector_list, head) {
4418 
4419 		if (connector->connector_type !=
4420 		    DRM_MODE_CONNECTOR_DisplayPort)
4421 			continue;
4422 
4423 		if (connector->status == connector_status_connected &&
4424 		    connector->encoder != NULL) {
4425 			intel_dp = enc_to_intel_dp(connector->encoder);
4426 			seq_printf(m, "%lx", intel_dp->compliance_test_data);
4427 		} else
4428 			seq_puts(m, "0");
4429 	}
4430 
4431 	return 0;
4432 }
4433 static int i915_displayport_test_data_open(struct inode *inode,
4434 				       struct file *file)
4435 {
4436 	struct drm_device *dev = inode->i_private;
4437 
4438 	return single_open(file, i915_displayport_test_data_show, dev);
4439 }
4440 
4441 static const struct file_operations i915_displayport_test_data_fops = {
4442 	.owner = THIS_MODULE,
4443 	.open = i915_displayport_test_data_open,
4444 	.read = seq_read,
4445 	.llseek = seq_lseek,
4446 	.release = single_release
4447 };
4448 
4449 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4450 {
4451 	struct drm_device *dev = m->private;
4452 	struct drm_connector *connector;
4453 	struct list_head *connector_list = &dev->mode_config.connector_list;
4454 	struct intel_dp *intel_dp;
4455 
4456 	list_for_each_entry(connector, connector_list, head) {
4457 
4458 		if (connector->connector_type !=
4459 		    DRM_MODE_CONNECTOR_DisplayPort)
4460 			continue;
4461 
4462 		if (connector->status == connector_status_connected &&
4463 		    connector->encoder != NULL) {
4464 			intel_dp = enc_to_intel_dp(connector->encoder);
4465 			seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4466 		} else
4467 			seq_puts(m, "0");
4468 	}
4469 
4470 	return 0;
4471 }
4472 
4473 static int i915_displayport_test_type_open(struct inode *inode,
4474 				       struct file *file)
4475 {
4476 	struct drm_device *dev = inode->i_private;
4477 
4478 	return single_open(file, i915_displayport_test_type_show, dev);
4479 }
4480 
4481 static const struct file_operations i915_displayport_test_type_fops = {
4482 	.owner = THIS_MODULE,
4483 	.open = i915_displayport_test_type_open,
4484 	.read = seq_read,
4485 	.llseek = seq_lseek,
4486 	.release = single_release
4487 };
4488 
4489 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4490 {
4491 	struct drm_device *dev = m->private;
4492 	int level;
4493 	int num_levels;
4494 
4495 	if (IS_CHERRYVIEW(dev))
4496 		num_levels = 3;
4497 	else if (IS_VALLEYVIEW(dev))
4498 		num_levels = 1;
4499 	else
4500 		num_levels = ilk_wm_max_level(dev) + 1;
4501 
4502 	drm_modeset_lock_all(dev);
4503 
4504 	for (level = 0; level < num_levels; level++) {
4505 		unsigned int latency = wm[level];
4506 
4507 		/*
4508 		 * - WM1+ latency values in 0.5us units
4509 		 * - latencies are in us on gen9/vlv/chv
4510 		 */
4511 		if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev) ||
4512 		    IS_CHERRYVIEW(dev))
4513 			latency *= 10;
4514 		else if (level > 0)
4515 			latency *= 5;
4516 
4517 		seq_printf(m, "WM%d %u (%u.%u usec)\n",
4518 			   level, wm[level], latency / 10, latency % 10);
4519 	}
4520 
4521 	drm_modeset_unlock_all(dev);
4522 }
4523 
4524 static int pri_wm_latency_show(struct seq_file *m, void *data)
4525 {
4526 	struct drm_device *dev = m->private;
4527 	struct drm_i915_private *dev_priv = dev->dev_private;
4528 	const uint16_t *latencies;
4529 
4530 	if (INTEL_INFO(dev)->gen >= 9)
4531 		latencies = dev_priv->wm.skl_latency;
4532 	else
4533 		latencies = to_i915(dev)->wm.pri_latency;
4534 
4535 	wm_latency_show(m, latencies);
4536 
4537 	return 0;
4538 }
4539 
4540 static int spr_wm_latency_show(struct seq_file *m, void *data)
4541 {
4542 	struct drm_device *dev = m->private;
4543 	struct drm_i915_private *dev_priv = dev->dev_private;
4544 	const uint16_t *latencies;
4545 
4546 	if (INTEL_INFO(dev)->gen >= 9)
4547 		latencies = dev_priv->wm.skl_latency;
4548 	else
4549 		latencies = to_i915(dev)->wm.spr_latency;
4550 
4551 	wm_latency_show(m, latencies);
4552 
4553 	return 0;
4554 }
4555 
4556 static int cur_wm_latency_show(struct seq_file *m, void *data)
4557 {
4558 	struct drm_device *dev = m->private;
4559 	struct drm_i915_private *dev_priv = dev->dev_private;
4560 	const uint16_t *latencies;
4561 
4562 	if (INTEL_INFO(dev)->gen >= 9)
4563 		latencies = dev_priv->wm.skl_latency;
4564 	else
4565 		latencies = to_i915(dev)->wm.cur_latency;
4566 
4567 	wm_latency_show(m, latencies);
4568 
4569 	return 0;
4570 }
4571 
4572 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4573 {
4574 	struct drm_device *dev = inode->i_private;
4575 
4576 	if (INTEL_INFO(dev)->gen < 5)
4577 		return -ENODEV;
4578 
4579 	return single_open(file, pri_wm_latency_show, dev);
4580 }
4581 
4582 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4583 {
4584 	struct drm_device *dev = inode->i_private;
4585 
4586 	if (HAS_GMCH_DISPLAY(dev))
4587 		return -ENODEV;
4588 
4589 	return single_open(file, spr_wm_latency_show, dev);
4590 }
4591 
4592 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4593 {
4594 	struct drm_device *dev = inode->i_private;
4595 
4596 	if (HAS_GMCH_DISPLAY(dev))
4597 		return -ENODEV;
4598 
4599 	return single_open(file, cur_wm_latency_show, dev);
4600 }
4601 
4602 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4603 				size_t len, loff_t *offp, uint16_t wm[8])
4604 {
4605 	struct seq_file *m = file->private_data;
4606 	struct drm_device *dev = m->private;
4607 	uint16_t new[8] = { 0 };
4608 	int num_levels;
4609 	int level;
4610 	int ret;
4611 	char tmp[32];
4612 
4613 	if (IS_CHERRYVIEW(dev))
4614 		num_levels = 3;
4615 	else if (IS_VALLEYVIEW(dev))
4616 		num_levels = 1;
4617 	else
4618 		num_levels = ilk_wm_max_level(dev) + 1;
4619 
4620 	if (len >= sizeof(tmp))
4621 		return -EINVAL;
4622 
4623 	if (copy_from_user(tmp, ubuf, len))
4624 		return -EFAULT;
4625 
4626 	tmp[len] = '\0';
4627 
4628 	ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4629 		     &new[0], &new[1], &new[2], &new[3],
4630 		     &new[4], &new[5], &new[6], &new[7]);
4631 	if (ret != num_levels)
4632 		return -EINVAL;
4633 
4634 	drm_modeset_lock_all(dev);
4635 
4636 	for (level = 0; level < num_levels; level++)
4637 		wm[level] = new[level];
4638 
4639 	drm_modeset_unlock_all(dev);
4640 
4641 	return len;
4642 }
4643 
4644 
4645 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4646 				    size_t len, loff_t *offp)
4647 {
4648 	struct seq_file *m = file->private_data;
4649 	struct drm_device *dev = m->private;
4650 	struct drm_i915_private *dev_priv = dev->dev_private;
4651 	uint16_t *latencies;
4652 
4653 	if (INTEL_INFO(dev)->gen >= 9)
4654 		latencies = dev_priv->wm.skl_latency;
4655 	else
4656 		latencies = to_i915(dev)->wm.pri_latency;
4657 
4658 	return wm_latency_write(file, ubuf, len, offp, latencies);
4659 }
4660 
4661 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4662 				    size_t len, loff_t *offp)
4663 {
4664 	struct seq_file *m = file->private_data;
4665 	struct drm_device *dev = m->private;
4666 	struct drm_i915_private *dev_priv = dev->dev_private;
4667 	uint16_t *latencies;
4668 
4669 	if (INTEL_INFO(dev)->gen >= 9)
4670 		latencies = dev_priv->wm.skl_latency;
4671 	else
4672 		latencies = to_i915(dev)->wm.spr_latency;
4673 
4674 	return wm_latency_write(file, ubuf, len, offp, latencies);
4675 }
4676 
4677 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4678 				    size_t len, loff_t *offp)
4679 {
4680 	struct seq_file *m = file->private_data;
4681 	struct drm_device *dev = m->private;
4682 	struct drm_i915_private *dev_priv = dev->dev_private;
4683 	uint16_t *latencies;
4684 
4685 	if (INTEL_INFO(dev)->gen >= 9)
4686 		latencies = dev_priv->wm.skl_latency;
4687 	else
4688 		latencies = to_i915(dev)->wm.cur_latency;
4689 
4690 	return wm_latency_write(file, ubuf, len, offp, latencies);
4691 }
4692 
4693 static const struct file_operations i915_pri_wm_latency_fops = {
4694 	.owner = THIS_MODULE,
4695 	.open = pri_wm_latency_open,
4696 	.read = seq_read,
4697 	.llseek = seq_lseek,
4698 	.release = single_release,
4699 	.write = pri_wm_latency_write
4700 };
4701 
4702 static const struct file_operations i915_spr_wm_latency_fops = {
4703 	.owner = THIS_MODULE,
4704 	.open = spr_wm_latency_open,
4705 	.read = seq_read,
4706 	.llseek = seq_lseek,
4707 	.release = single_release,
4708 	.write = spr_wm_latency_write
4709 };
4710 
4711 static const struct file_operations i915_cur_wm_latency_fops = {
4712 	.owner = THIS_MODULE,
4713 	.open = cur_wm_latency_open,
4714 	.read = seq_read,
4715 	.llseek = seq_lseek,
4716 	.release = single_release,
4717 	.write = cur_wm_latency_write
4718 };
4719 
4720 static int
4721 i915_wedged_get(void *data, u64 *val)
4722 {
4723 	struct drm_device *dev = data;
4724 	struct drm_i915_private *dev_priv = dev->dev_private;
4725 
4726 	*val = atomic_read(&dev_priv->gpu_error.reset_counter);
4727 
4728 	return 0;
4729 }
4730 
4731 static int
4732 i915_wedged_set(void *data, u64 val)
4733 {
4734 	struct drm_device *dev = data;
4735 	struct drm_i915_private *dev_priv = dev->dev_private;
4736 
4737 	/*
4738 	 * There is no safeguard against this debugfs entry colliding
4739 	 * with the hangcheck calling same i915_handle_error() in
4740 	 * parallel, causing an explosion. For now we assume that the
4741 	 * test harness is responsible enough not to inject gpu hangs
4742 	 * while it is writing to 'i915_wedged'
4743 	 */
4744 
4745 	if (i915_reset_in_progress(&dev_priv->gpu_error))
4746 		return -EAGAIN;
4747 
4748 	intel_runtime_pm_get(dev_priv);
4749 
4750 	i915_handle_error(dev, val,
4751 			  "Manually setting wedged to %llu", val);
4752 
4753 	intel_runtime_pm_put(dev_priv);
4754 
4755 	return 0;
4756 }
4757 
4758 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4759 			i915_wedged_get, i915_wedged_set,
4760 			"%llu\n");
4761 
4762 static int
4763 i915_ring_stop_get(void *data, u64 *val)
4764 {
4765 	struct drm_device *dev = data;
4766 	struct drm_i915_private *dev_priv = dev->dev_private;
4767 
4768 	*val = dev_priv->gpu_error.stop_rings;
4769 
4770 	return 0;
4771 }
4772 
4773 static int
4774 i915_ring_stop_set(void *data, u64 val)
4775 {
4776 	struct drm_device *dev = data;
4777 	struct drm_i915_private *dev_priv = dev->dev_private;
4778 	int ret;
4779 
4780 	DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
4781 
4782 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4783 	if (ret)
4784 		return ret;
4785 
4786 	dev_priv->gpu_error.stop_rings = val;
4787 	mutex_unlock(&dev->struct_mutex);
4788 
4789 	return 0;
4790 }
4791 
4792 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
4793 			i915_ring_stop_get, i915_ring_stop_set,
4794 			"0x%08llx\n");
4795 
4796 static int
4797 i915_ring_missed_irq_get(void *data, u64 *val)
4798 {
4799 	struct drm_device *dev = data;
4800 	struct drm_i915_private *dev_priv = dev->dev_private;
4801 
4802 	*val = dev_priv->gpu_error.missed_irq_rings;
4803 	return 0;
4804 }
4805 
4806 static int
4807 i915_ring_missed_irq_set(void *data, u64 val)
4808 {
4809 	struct drm_device *dev = data;
4810 	struct drm_i915_private *dev_priv = dev->dev_private;
4811 	int ret;
4812 
4813 	/* Lock against concurrent debugfs callers */
4814 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4815 	if (ret)
4816 		return ret;
4817 	dev_priv->gpu_error.missed_irq_rings = val;
4818 	mutex_unlock(&dev->struct_mutex);
4819 
4820 	return 0;
4821 }
4822 
4823 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4824 			i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4825 			"0x%08llx\n");
4826 
4827 static int
4828 i915_ring_test_irq_get(void *data, u64 *val)
4829 {
4830 	struct drm_device *dev = data;
4831 	struct drm_i915_private *dev_priv = dev->dev_private;
4832 
4833 	*val = dev_priv->gpu_error.test_irq_rings;
4834 
4835 	return 0;
4836 }
4837 
4838 static int
4839 i915_ring_test_irq_set(void *data, u64 val)
4840 {
4841 	struct drm_device *dev = data;
4842 	struct drm_i915_private *dev_priv = dev->dev_private;
4843 	int ret;
4844 
4845 	DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4846 
4847 	/* Lock against concurrent debugfs callers */
4848 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4849 	if (ret)
4850 		return ret;
4851 
4852 	dev_priv->gpu_error.test_irq_rings = val;
4853 	mutex_unlock(&dev->struct_mutex);
4854 
4855 	return 0;
4856 }
4857 
4858 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4859 			i915_ring_test_irq_get, i915_ring_test_irq_set,
4860 			"0x%08llx\n");
4861 
4862 #define DROP_UNBOUND 0x1
4863 #define DROP_BOUND 0x2
4864 #define DROP_RETIRE 0x4
4865 #define DROP_ACTIVE 0x8
4866 #define DROP_ALL (DROP_UNBOUND | \
4867 		  DROP_BOUND | \
4868 		  DROP_RETIRE | \
4869 		  DROP_ACTIVE)
4870 static int
4871 i915_drop_caches_get(void *data, u64 *val)
4872 {
4873 	*val = DROP_ALL;
4874 
4875 	return 0;
4876 }
4877 
4878 static int
4879 i915_drop_caches_set(void *data, u64 val)
4880 {
4881 	struct drm_device *dev = data;
4882 	struct drm_i915_private *dev_priv = dev->dev_private;
4883 	int ret;
4884 
4885 	DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4886 
4887 	/* No need to check and wait for gpu resets, only libdrm auto-restarts
4888 	 * on ioctls on -EAGAIN. */
4889 	ret = mutex_lock_interruptible(&dev->struct_mutex);
4890 	if (ret)
4891 		return ret;
4892 
4893 	if (val & DROP_ACTIVE) {
4894 		ret = i915_gpu_idle(dev);
4895 		if (ret)
4896 			goto unlock;
4897 	}
4898 
4899 	if (val & (DROP_RETIRE | DROP_ACTIVE))
4900 		i915_gem_retire_requests(dev);
4901 
4902 	if (val & DROP_BOUND)
4903 		i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4904 
4905 	if (val & DROP_UNBOUND)
4906 		i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4907 
4908 unlock:
4909 	mutex_unlock(&dev->struct_mutex);
4910 
4911 	return ret;
4912 }
4913 
4914 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4915 			i915_drop_caches_get, i915_drop_caches_set,
4916 			"0x%08llx\n");
4917 
4918 static int
4919 i915_max_freq_get(void *data, u64 *val)
4920 {
4921 	struct drm_device *dev = data;
4922 	struct drm_i915_private *dev_priv = dev->dev_private;
4923 	int ret;
4924 
4925 	if (INTEL_INFO(dev)->gen < 6)
4926 		return -ENODEV;
4927 
4928 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4929 
4930 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4931 	if (ret)
4932 		return ret;
4933 
4934 	*val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4935 	mutex_unlock(&dev_priv->rps.hw_lock);
4936 
4937 	return 0;
4938 }
4939 
4940 static int
4941 i915_max_freq_set(void *data, u64 val)
4942 {
4943 	struct drm_device *dev = data;
4944 	struct drm_i915_private *dev_priv = dev->dev_private;
4945 	u32 hw_max, hw_min;
4946 	int ret;
4947 
4948 	if (INTEL_INFO(dev)->gen < 6)
4949 		return -ENODEV;
4950 
4951 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4952 
4953 	DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4954 
4955 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4956 	if (ret)
4957 		return ret;
4958 
4959 	/*
4960 	 * Turbo will still be enabled, but won't go above the set value.
4961 	 */
4962 	val = intel_freq_opcode(dev_priv, val);
4963 
4964 	hw_max = dev_priv->rps.max_freq;
4965 	hw_min = dev_priv->rps.min_freq;
4966 
4967 	if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4968 		mutex_unlock(&dev_priv->rps.hw_lock);
4969 		return -EINVAL;
4970 	}
4971 
4972 	dev_priv->rps.max_freq_softlimit = val;
4973 
4974 	intel_set_rps(dev, val);
4975 
4976 	mutex_unlock(&dev_priv->rps.hw_lock);
4977 
4978 	return 0;
4979 }
4980 
4981 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4982 			i915_max_freq_get, i915_max_freq_set,
4983 			"%llu\n");
4984 
4985 static int
4986 i915_min_freq_get(void *data, u64 *val)
4987 {
4988 	struct drm_device *dev = data;
4989 	struct drm_i915_private *dev_priv = dev->dev_private;
4990 	int ret;
4991 
4992 	if (INTEL_INFO(dev)->gen < 6)
4993 		return -ENODEV;
4994 
4995 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4996 
4997 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4998 	if (ret)
4999 		return ret;
5000 
5001 	*val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
5002 	mutex_unlock(&dev_priv->rps.hw_lock);
5003 
5004 	return 0;
5005 }
5006 
5007 static int
5008 i915_min_freq_set(void *data, u64 val)
5009 {
5010 	struct drm_device *dev = data;
5011 	struct drm_i915_private *dev_priv = dev->dev_private;
5012 	u32 hw_max, hw_min;
5013 	int ret;
5014 
5015 	if (INTEL_INFO(dev)->gen < 6)
5016 		return -ENODEV;
5017 
5018 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5019 
5020 	DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
5021 
5022 	ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
5023 	if (ret)
5024 		return ret;
5025 
5026 	/*
5027 	 * Turbo will still be enabled, but won't go below the set value.
5028 	 */
5029 	val = intel_freq_opcode(dev_priv, val);
5030 
5031 	hw_max = dev_priv->rps.max_freq;
5032 	hw_min = dev_priv->rps.min_freq;
5033 
5034 	if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
5035 		mutex_unlock(&dev_priv->rps.hw_lock);
5036 		return -EINVAL;
5037 	}
5038 
5039 	dev_priv->rps.min_freq_softlimit = val;
5040 
5041 	intel_set_rps(dev, val);
5042 
5043 	mutex_unlock(&dev_priv->rps.hw_lock);
5044 
5045 	return 0;
5046 }
5047 
5048 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
5049 			i915_min_freq_get, i915_min_freq_set,
5050 			"%llu\n");
5051 
5052 static int
5053 i915_cache_sharing_get(void *data, u64 *val)
5054 {
5055 	struct drm_device *dev = data;
5056 	struct drm_i915_private *dev_priv = dev->dev_private;
5057 	u32 snpcr;
5058 	int ret;
5059 
5060 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5061 		return -ENODEV;
5062 
5063 	ret = mutex_lock_interruptible(&dev->struct_mutex);
5064 	if (ret)
5065 		return ret;
5066 	intel_runtime_pm_get(dev_priv);
5067 
5068 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5069 
5070 	intel_runtime_pm_put(dev_priv);
5071 	mutex_unlock(&dev_priv->dev->struct_mutex);
5072 
5073 	*val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
5074 
5075 	return 0;
5076 }
5077 
5078 static int
5079 i915_cache_sharing_set(void *data, u64 val)
5080 {
5081 	struct drm_device *dev = data;
5082 	struct drm_i915_private *dev_priv = dev->dev_private;
5083 	u32 snpcr;
5084 
5085 	if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5086 		return -ENODEV;
5087 
5088 	if (val > 3)
5089 		return -EINVAL;
5090 
5091 	intel_runtime_pm_get(dev_priv);
5092 	DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
5093 
5094 	/* Update the cache sharing policy here as well */
5095 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5096 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
5097 	snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
5098 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5099 
5100 	intel_runtime_pm_put(dev_priv);
5101 	return 0;
5102 }
5103 
5104 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
5105 			i915_cache_sharing_get, i915_cache_sharing_set,
5106 			"%llu\n");
5107 
5108 struct sseu_dev_status {
5109 	unsigned int slice_total;
5110 	unsigned int subslice_total;
5111 	unsigned int subslice_per_slice;
5112 	unsigned int eu_total;
5113 	unsigned int eu_per_subslice;
5114 };
5115 
5116 static void cherryview_sseu_device_status(struct drm_device *dev,
5117 					  struct sseu_dev_status *stat)
5118 {
5119 	struct drm_i915_private *dev_priv = dev->dev_private;
5120 	int ss_max = 2;
5121 	int ss;
5122 	u32 sig1[ss_max], sig2[ss_max];
5123 
5124 	sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
5125 	sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
5126 	sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
5127 	sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
5128 
5129 	for (ss = 0; ss < ss_max; ss++) {
5130 		unsigned int eu_cnt;
5131 
5132 		if (sig1[ss] & CHV_SS_PG_ENABLE)
5133 			/* skip disabled subslice */
5134 			continue;
5135 
5136 		stat->slice_total = 1;
5137 		stat->subslice_per_slice++;
5138 		eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
5139 			 ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
5140 			 ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
5141 			 ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
5142 		stat->eu_total += eu_cnt;
5143 		stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
5144 	}
5145 	stat->subslice_total = stat->subslice_per_slice;
5146 }
5147 
5148 static void gen9_sseu_device_status(struct drm_device *dev,
5149 				    struct sseu_dev_status *stat)
5150 {
5151 	struct drm_i915_private *dev_priv = dev->dev_private;
5152 	int s_max = 3, ss_max = 4;
5153 	int s, ss;
5154 	u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
5155 
5156 	/* BXT has a single slice and at most 3 subslices. */
5157 	if (IS_BROXTON(dev)) {
5158 		s_max = 1;
5159 		ss_max = 3;
5160 	}
5161 
5162 	for (s = 0; s < s_max; s++) {
5163 		s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
5164 		eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
5165 		eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
5166 	}
5167 
5168 	eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
5169 		     GEN9_PGCTL_SSA_EU19_ACK |
5170 		     GEN9_PGCTL_SSA_EU210_ACK |
5171 		     GEN9_PGCTL_SSA_EU311_ACK;
5172 	eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
5173 		     GEN9_PGCTL_SSB_EU19_ACK |
5174 		     GEN9_PGCTL_SSB_EU210_ACK |
5175 		     GEN9_PGCTL_SSB_EU311_ACK;
5176 
5177 	for (s = 0; s < s_max; s++) {
5178 		unsigned int ss_cnt = 0;
5179 
5180 		if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
5181 			/* skip disabled slice */
5182 			continue;
5183 
5184 		stat->slice_total++;
5185 
5186 		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
5187 			ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
5188 
5189 		for (ss = 0; ss < ss_max; ss++) {
5190 			unsigned int eu_cnt;
5191 
5192 			if (IS_BROXTON(dev) &&
5193 			    !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
5194 				/* skip disabled subslice */
5195 				continue;
5196 
5197 			if (IS_BROXTON(dev))
5198 				ss_cnt++;
5199 
5200 			eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
5201 					       eu_mask[ss%2]);
5202 			stat->eu_total += eu_cnt;
5203 			stat->eu_per_subslice = max(stat->eu_per_subslice,
5204 						    eu_cnt);
5205 		}
5206 
5207 		stat->subslice_total += ss_cnt;
5208 		stat->subslice_per_slice = max(stat->subslice_per_slice,
5209 					       ss_cnt);
5210 	}
5211 }
5212 
5213 static void broadwell_sseu_device_status(struct drm_device *dev,
5214 					 struct sseu_dev_status *stat)
5215 {
5216 	struct drm_i915_private *dev_priv = dev->dev_private;
5217 	int s;
5218 	u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
5219 
5220 	stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK);
5221 
5222 	if (stat->slice_total) {
5223 		stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice;
5224 		stat->subslice_total = stat->slice_total *
5225 				       stat->subslice_per_slice;
5226 		stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice;
5227 		stat->eu_total = stat->eu_per_subslice * stat->subslice_total;
5228 
5229 		/* subtract fused off EU(s) from enabled slice(s) */
5230 		for (s = 0; s < stat->slice_total; s++) {
5231 			u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s];
5232 
5233 			stat->eu_total -= hweight8(subslice_7eu);
5234 		}
5235 	}
5236 }
5237 
5238 static int i915_sseu_status(struct seq_file *m, void *unused)
5239 {
5240 	struct drm_info_node *node = (struct drm_info_node *) m->private;
5241 	struct drm_device *dev = node->minor->dev;
5242 	struct sseu_dev_status stat;
5243 
5244 	if (INTEL_INFO(dev)->gen < 8)
5245 		return -ENODEV;
5246 
5247 	seq_puts(m, "SSEU Device Info\n");
5248 	seq_printf(m, "  Available Slice Total: %u\n",
5249 		   INTEL_INFO(dev)->slice_total);
5250 	seq_printf(m, "  Available Subslice Total: %u\n",
5251 		   INTEL_INFO(dev)->subslice_total);
5252 	seq_printf(m, "  Available Subslice Per Slice: %u\n",
5253 		   INTEL_INFO(dev)->subslice_per_slice);
5254 	seq_printf(m, "  Available EU Total: %u\n",
5255 		   INTEL_INFO(dev)->eu_total);
5256 	seq_printf(m, "  Available EU Per Subslice: %u\n",
5257 		   INTEL_INFO(dev)->eu_per_subslice);
5258 	seq_printf(m, "  Has Slice Power Gating: %s\n",
5259 		   yesno(INTEL_INFO(dev)->has_slice_pg));
5260 	seq_printf(m, "  Has Subslice Power Gating: %s\n",
5261 		   yesno(INTEL_INFO(dev)->has_subslice_pg));
5262 	seq_printf(m, "  Has EU Power Gating: %s\n",
5263 		   yesno(INTEL_INFO(dev)->has_eu_pg));
5264 
5265 	seq_puts(m, "SSEU Device Status\n");
5266 	memset(&stat, 0, sizeof(stat));
5267 	if (IS_CHERRYVIEW(dev)) {
5268 		cherryview_sseu_device_status(dev, &stat);
5269 	} else if (IS_BROADWELL(dev)) {
5270 		broadwell_sseu_device_status(dev, &stat);
5271 	} else if (INTEL_INFO(dev)->gen >= 9) {
5272 		gen9_sseu_device_status(dev, &stat);
5273 	}
5274 	seq_printf(m, "  Enabled Slice Total: %u\n",
5275 		   stat.slice_total);
5276 	seq_printf(m, "  Enabled Subslice Total: %u\n",
5277 		   stat.subslice_total);
5278 	seq_printf(m, "  Enabled Subslice Per Slice: %u\n",
5279 		   stat.subslice_per_slice);
5280 	seq_printf(m, "  Enabled EU Total: %u\n",
5281 		   stat.eu_total);
5282 	seq_printf(m, "  Enabled EU Per Subslice: %u\n",
5283 		   stat.eu_per_subslice);
5284 
5285 	return 0;
5286 }
5287 
5288 static int i915_forcewake_open(struct inode *inode, struct file *file)
5289 {
5290 	struct drm_device *dev = inode->i_private;
5291 	struct drm_i915_private *dev_priv = dev->dev_private;
5292 
5293 	if (INTEL_INFO(dev)->gen < 6)
5294 		return 0;
5295 
5296 	intel_runtime_pm_get(dev_priv);
5297 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5298 
5299 	return 0;
5300 }
5301 
5302 static int i915_forcewake_release(struct inode *inode, struct file *file)
5303 {
5304 	struct drm_device *dev = inode->i_private;
5305 	struct drm_i915_private *dev_priv = dev->dev_private;
5306 
5307 	if (INTEL_INFO(dev)->gen < 6)
5308 		return 0;
5309 
5310 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5311 	intel_runtime_pm_put(dev_priv);
5312 
5313 	return 0;
5314 }
5315 
5316 static const struct file_operations i915_forcewake_fops = {
5317 	.owner = THIS_MODULE,
5318 	.open = i915_forcewake_open,
5319 	.release = i915_forcewake_release,
5320 };
5321 
5322 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5323 {
5324 	struct drm_device *dev = minor->dev;
5325 	struct dentry *ent;
5326 
5327 	ent = debugfs_create_file("i915_forcewake_user",
5328 				  S_IRUSR,
5329 				  root, dev,
5330 				  &i915_forcewake_fops);
5331 	if (!ent)
5332 		return -ENOMEM;
5333 
5334 	return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5335 }
5336 
5337 static int i915_debugfs_create(struct dentry *root,
5338 			       struct drm_minor *minor,
5339 			       const char *name,
5340 			       const struct file_operations *fops)
5341 {
5342 	struct drm_device *dev = minor->dev;
5343 	struct dentry *ent;
5344 
5345 	ent = debugfs_create_file(name,
5346 				  S_IRUGO | S_IWUSR,
5347 				  root, dev,
5348 				  fops);
5349 	if (!ent)
5350 		return -ENOMEM;
5351 
5352 	return drm_add_fake_info_node(minor, ent, fops);
5353 }
5354 
5355 static const struct drm_info_list i915_debugfs_list[] = {
5356 	{"i915_capabilities", i915_capabilities, 0},
5357 	{"i915_gem_objects", i915_gem_object_info, 0},
5358 	{"i915_gem_gtt", i915_gem_gtt_info, 0},
5359 	{"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
5360 	{"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
5361 	{"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
5362 	{"i915_gem_stolen", i915_gem_stolen_list_info },
5363 	{"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5364 	{"i915_gem_request", i915_gem_request_info, 0},
5365 	{"i915_gem_seqno", i915_gem_seqno_info, 0},
5366 	{"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5367 	{"i915_gem_interrupt", i915_interrupt_info, 0},
5368 	{"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5369 	{"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5370 	{"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5371 	{"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5372 	{"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5373 	{"i915_guc_info", i915_guc_info, 0},
5374 	{"i915_guc_load_status", i915_guc_load_status_info, 0},
5375 	{"i915_guc_log_dump", i915_guc_log_dump, 0},
5376 	{"i915_frequency_info", i915_frequency_info, 0},
5377 	{"i915_hangcheck_info", i915_hangcheck_info, 0},
5378 	{"i915_drpc_info", i915_drpc_info, 0},
5379 	{"i915_emon_status", i915_emon_status, 0},
5380 	{"i915_ring_freq_table", i915_ring_freq_table, 0},
5381 	{"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5382 	{"i915_fbc_status", i915_fbc_status, 0},
5383 	{"i915_ips_status", i915_ips_status, 0},
5384 	{"i915_sr_status", i915_sr_status, 0},
5385 	{"i915_opregion", i915_opregion, 0},
5386 	{"i915_vbt", i915_vbt, 0},
5387 	{"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5388 	{"i915_context_status", i915_context_status, 0},
5389 	{"i915_dump_lrc", i915_dump_lrc, 0},
5390 	{"i915_execlists", i915_execlists, 0},
5391 	{"i915_forcewake_domains", i915_forcewake_domains, 0},
5392 	{"i915_swizzle_info", i915_swizzle_info, 0},
5393 	{"i915_ppgtt_info", i915_ppgtt_info, 0},
5394 	{"i915_llc", i915_llc, 0},
5395 	{"i915_edp_psr_status", i915_edp_psr_status, 0},
5396 	{"i915_sink_crc_eDP1", i915_sink_crc, 0},
5397 	{"i915_energy_uJ", i915_energy_uJ, 0},
5398 	{"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5399 	{"i915_power_domain_info", i915_power_domain_info, 0},
5400 	{"i915_dmc_info", i915_dmc_info, 0},
5401 	{"i915_display_info", i915_display_info, 0},
5402 	{"i915_semaphore_status", i915_semaphore_status, 0},
5403 	{"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5404 	{"i915_dp_mst_info", i915_dp_mst_info, 0},
5405 	{"i915_wa_registers", i915_wa_registers, 0},
5406 	{"i915_ddb_info", i915_ddb_info, 0},
5407 	{"i915_sseu_status", i915_sseu_status, 0},
5408 	{"i915_drrs_status", i915_drrs_status, 0},
5409 	{"i915_rps_boost_info", i915_rps_boost_info, 0},
5410 };
5411 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5412 
5413 static const struct i915_debugfs_files {
5414 	const char *name;
5415 	const struct file_operations *fops;
5416 } i915_debugfs_files[] = {
5417 	{"i915_wedged", &i915_wedged_fops},
5418 	{"i915_max_freq", &i915_max_freq_fops},
5419 	{"i915_min_freq", &i915_min_freq_fops},
5420 	{"i915_cache_sharing", &i915_cache_sharing_fops},
5421 	{"i915_ring_stop", &i915_ring_stop_fops},
5422 	{"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5423 	{"i915_ring_test_irq", &i915_ring_test_irq_fops},
5424 	{"i915_gem_drop_caches", &i915_drop_caches_fops},
5425 	{"i915_error_state", &i915_error_state_fops},
5426 	{"i915_next_seqno", &i915_next_seqno_fops},
5427 	{"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5428 	{"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5429 	{"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5430 	{"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5431 	{"i915_fbc_false_color", &i915_fbc_fc_fops},
5432 	{"i915_dp_test_data", &i915_displayport_test_data_fops},
5433 	{"i915_dp_test_type", &i915_displayport_test_type_fops},
5434 	{"i915_dp_test_active", &i915_displayport_test_active_fops}
5435 };
5436 
5437 void intel_display_crc_init(struct drm_device *dev)
5438 {
5439 	struct drm_i915_private *dev_priv = dev->dev_private;
5440 	enum pipe pipe;
5441 
5442 	for_each_pipe(dev_priv, pipe) {
5443 		struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5444 
5445 		pipe_crc->opened = false;
5446 		spin_lock_init(&pipe_crc->lock);
5447 		init_waitqueue_head(&pipe_crc->wq);
5448 	}
5449 }
5450 
5451 int i915_debugfs_init(struct drm_minor *minor)
5452 {
5453 	int ret, i;
5454 
5455 	ret = i915_forcewake_create(minor->debugfs_root, minor);
5456 	if (ret)
5457 		return ret;
5458 
5459 	for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5460 		ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5461 		if (ret)
5462 			return ret;
5463 	}
5464 
5465 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5466 		ret = i915_debugfs_create(minor->debugfs_root, minor,
5467 					  i915_debugfs_files[i].name,
5468 					  i915_debugfs_files[i].fops);
5469 		if (ret)
5470 			return ret;
5471 	}
5472 
5473 	return drm_debugfs_create_files(i915_debugfs_list,
5474 					I915_DEBUGFS_ENTRIES,
5475 					minor->debugfs_root, minor);
5476 }
5477 
5478 void i915_debugfs_cleanup(struct drm_minor *minor)
5479 {
5480 	int i;
5481 
5482 	drm_debugfs_remove_files(i915_debugfs_list,
5483 				 I915_DEBUGFS_ENTRIES, minor);
5484 
5485 	drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
5486 				 1, minor);
5487 
5488 	for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5489 		struct drm_info_list *info_list =
5490 			(struct drm_info_list *)&i915_pipe_crc_data[i];
5491 
5492 		drm_debugfs_remove_files(info_list, 1, minor);
5493 	}
5494 
5495 	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5496 		struct drm_info_list *info_list =
5497 			(struct drm_info_list *) i915_debugfs_files[i].fops;
5498 
5499 		drm_debugfs_remove_files(info_list, 1, minor);
5500 	}
5501 }
5502 
5503 struct dpcd_block {
5504 	/* DPCD dump start address. */
5505 	unsigned int offset;
5506 	/* DPCD dump end address, inclusive. If unset, .size will be used. */
5507 	unsigned int end;
5508 	/* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5509 	size_t size;
5510 	/* Only valid for eDP. */
5511 	bool edp;
5512 };
5513 
5514 static const struct dpcd_block i915_dpcd_debug[] = {
5515 	{ .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5516 	{ .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5517 	{ .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5518 	{ .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5519 	{ .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5520 	{ .offset = DP_SET_POWER },
5521 	{ .offset = DP_EDP_DPCD_REV },
5522 	{ .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5523 	{ .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5524 	{ .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5525 };
5526 
5527 static int i915_dpcd_show(struct seq_file *m, void *data)
5528 {
5529 	struct drm_connector *connector = m->private;
5530 	struct intel_dp *intel_dp =
5531 		enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5532 	uint8_t buf[16];
5533 	ssize_t err;
5534 	int i;
5535 
5536 	if (connector->status != connector_status_connected)
5537 		return -ENODEV;
5538 
5539 	for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5540 		const struct dpcd_block *b = &i915_dpcd_debug[i];
5541 		size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5542 
5543 		if (b->edp &&
5544 		    connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5545 			continue;
5546 
5547 		/* low tech for now */
5548 		if (WARN_ON(size > sizeof(buf)))
5549 			continue;
5550 
5551 		err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5552 		if (err <= 0) {
5553 			DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5554 				  size, b->offset, err);
5555 			continue;
5556 		}
5557 
5558 		seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5559 	}
5560 
5561 	return 0;
5562 }
5563 
5564 static int i915_dpcd_open(struct inode *inode, struct file *file)
5565 {
5566 	return single_open(file, i915_dpcd_show, inode->i_private);
5567 }
5568 
5569 static const struct file_operations i915_dpcd_fops = {
5570 	.owner = THIS_MODULE,
5571 	.open = i915_dpcd_open,
5572 	.read = seq_read,
5573 	.llseek = seq_lseek,
5574 	.release = single_release,
5575 };
5576 
5577 /**
5578  * i915_debugfs_connector_add - add i915 specific connector debugfs files
5579  * @connector: pointer to a registered drm_connector
5580  *
5581  * Cleanup will be done by drm_connector_unregister() through a call to
5582  * drm_debugfs_connector_remove().
5583  *
5584  * Returns 0 on success, negative error codes on error.
5585  */
5586 int i915_debugfs_connector_add(struct drm_connector *connector)
5587 {
5588 	struct dentry *root = connector->debugfs_entry;
5589 
5590 	/* The connector must have been registered beforehands. */
5591 	if (!root)
5592 		return -ENODEV;
5593 
5594 	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5595 	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5596 		debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
5597 				    &i915_dpcd_fops);
5598 
5599 	return 0;
5600 }
5601