1 /* 2 * Copyright © 2013 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Brad Volkin <bradley.d.volkin@intel.com> 25 * 26 */ 27 28 #include <linux/highmem.h> 29 30 #include <drm/drm_cache.h> 31 #include <drm/drm_print.h> 32 33 #include "gt/intel_engine.h" 34 #include "gt/intel_engine_regs.h" 35 #include "gt/intel_gpu_commands.h" 36 #include "gt/intel_gt_regs.h" 37 38 #include "i915_cmd_parser.h" 39 #include "i915_drv.h" 40 #include "i915_memcpy.h" 41 #include "i915_reg.h" 42 43 /** 44 * DOC: batch buffer command parser 45 * 46 * Motivation: 47 * Certain OpenGL features (e.g. transform feedback, performance monitoring) 48 * require userspace code to submit batches containing commands such as 49 * MI_LOAD_REGISTER_IMM to access various registers. Unfortunately, some 50 * generations of the hardware will noop these commands in "unsecure" batches 51 * (which includes all userspace batches submitted via i915) even though the 52 * commands may be safe and represent the intended programming model of the 53 * device. 54 * 55 * The software command parser is similar in operation to the command parsing 56 * done in hardware for unsecure batches. However, the software parser allows 57 * some operations that would be noop'd by hardware, if the parser determines 58 * the operation is safe, and submits the batch as "secure" to prevent hardware 59 * parsing. 60 * 61 * Threats: 62 * At a high level, the hardware (and software) checks attempt to prevent 63 * granting userspace undue privileges. There are three categories of privilege. 64 * 65 * First, commands which are explicitly defined as privileged or which should 66 * only be used by the kernel driver. The parser rejects such commands 67 * 68 * Second, commands which access registers. To support correct/enhanced 69 * userspace functionality, particularly certain OpenGL extensions, the parser 70 * provides a whitelist of registers which userspace may safely access 71 * 72 * Third, commands which access privileged memory (i.e. GGTT, HWS page, etc). 73 * The parser always rejects such commands. 74 * 75 * The majority of the problematic commands fall in the MI_* range, with only a 76 * few specific commands on each engine (e.g. PIPE_CONTROL and MI_FLUSH_DW). 77 * 78 * Implementation: 79 * Each engine maintains tables of commands and registers which the parser 80 * uses in scanning batch buffers submitted to that engine. 81 * 82 * Since the set of commands that the parser must check for is significantly 83 * smaller than the number of commands supported, the parser tables contain only 84 * those commands required by the parser. This generally works because command 85 * opcode ranges have standard command length encodings. So for commands that 86 * the parser does not need to check, it can easily skip them. This is 87 * implemented via a per-engine length decoding vfunc. 88 * 89 * Unfortunately, there are a number of commands that do not follow the standard 90 * length encoding for their opcode range, primarily amongst the MI_* commands. 91 * To handle this, the parser provides a way to define explicit "skip" entries 92 * in the per-engine command tables. 93 * 94 * Other command table entries map fairly directly to high level categories 95 * mentioned above: rejected, register whitelist. The parser implements a number 96 * of checks, including the privileged memory checks, via a general bitmasking 97 * mechanism. 98 */ 99 100 /* 101 * A command that requires special handling by the command parser. 102 */ 103 struct drm_i915_cmd_descriptor { 104 /* 105 * Flags describing how the command parser processes the command. 106 * 107 * CMD_DESC_FIXED: The command has a fixed length if this is set, 108 * a length mask if not set 109 * CMD_DESC_SKIP: The command is allowed but does not follow the 110 * standard length encoding for the opcode range in 111 * which it falls 112 * CMD_DESC_REJECT: The command is never allowed 113 * CMD_DESC_REGISTER: The command should be checked against the 114 * register whitelist for the appropriate ring 115 */ 116 u32 flags; 117 #define CMD_DESC_FIXED (1<<0) 118 #define CMD_DESC_SKIP (1<<1) 119 #define CMD_DESC_REJECT (1<<2) 120 #define CMD_DESC_REGISTER (1<<3) 121 #define CMD_DESC_BITMASK (1<<4) 122 123 /* 124 * The command's unique identification bits and the bitmask to get them. 125 * This isn't strictly the opcode field as defined in the spec and may 126 * also include type, subtype, and/or subop fields. 127 */ 128 struct { 129 u32 value; 130 u32 mask; 131 } cmd; 132 133 /* 134 * The command's length. The command is either fixed length (i.e. does 135 * not include a length field) or has a length field mask. The flag 136 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has 137 * a length mask. All command entries in a command table must include 138 * length information. 139 */ 140 union { 141 u32 fixed; 142 u32 mask; 143 } length; 144 145 /* 146 * Describes where to find a register address in the command to check 147 * against the ring's register whitelist. Only valid if flags has the 148 * CMD_DESC_REGISTER bit set. 149 * 150 * A non-zero step value implies that the command may access multiple 151 * registers in sequence (e.g. LRI), in that case step gives the 152 * distance in dwords between individual offset fields. 153 */ 154 struct { 155 u32 offset; 156 u32 mask; 157 u32 step; 158 } reg; 159 160 #define MAX_CMD_DESC_BITMASKS 3 161 /* 162 * Describes command checks where a particular dword is masked and 163 * compared against an expected value. If the command does not match 164 * the expected value, the parser rejects it. Only valid if flags has 165 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero 166 * are valid. 167 * 168 * If the check specifies a non-zero condition_mask then the parser 169 * only performs the check when the bits specified by condition_mask 170 * are non-zero. 171 */ 172 struct { 173 u32 offset; 174 u32 mask; 175 u32 expected; 176 u32 condition_offset; 177 u32 condition_mask; 178 } bits[MAX_CMD_DESC_BITMASKS]; 179 }; 180 181 /* 182 * A table of commands requiring special handling by the command parser. 183 * 184 * Each engine has an array of tables. Each table consists of an array of 185 * command descriptors, which must be sorted with command opcodes in 186 * ascending order. 187 */ 188 struct drm_i915_cmd_table { 189 const struct drm_i915_cmd_descriptor *table; 190 int count; 191 }; 192 193 #define STD_MI_OPCODE_SHIFT (32 - 9) 194 #define STD_3D_OPCODE_SHIFT (32 - 16) 195 #define STD_2D_OPCODE_SHIFT (32 - 10) 196 #define STD_MFX_OPCODE_SHIFT (32 - 16) 197 #define MIN_OPCODE_SHIFT 16 198 199 #define CMD(op, opm, f, lm, fl, ...) \ 200 { \ 201 .flags = (fl) | ((f) ? CMD_DESC_FIXED : 0), \ 202 .cmd = { (op & ~0u << (opm)), ~0u << (opm) }, \ 203 .length = { (lm) }, \ 204 __VA_ARGS__ \ 205 } 206 207 /* Convenience macros to compress the tables */ 208 #define SMI STD_MI_OPCODE_SHIFT 209 #define S3D STD_3D_OPCODE_SHIFT 210 #define S2D STD_2D_OPCODE_SHIFT 211 #define SMFX STD_MFX_OPCODE_SHIFT 212 #define F true 213 #define S CMD_DESC_SKIP 214 #define R CMD_DESC_REJECT 215 #define W CMD_DESC_REGISTER 216 #define B CMD_DESC_BITMASK 217 218 /* Command Mask Fixed Len Action 219 ---------------------------------------------------------- */ 220 static const struct drm_i915_cmd_descriptor gen7_common_cmds[] = { 221 CMD( MI_NOOP, SMI, F, 1, S ), 222 CMD( MI_USER_INTERRUPT, SMI, F, 1, R ), 223 CMD( MI_WAIT_FOR_EVENT, SMI, F, 1, R ), 224 CMD( MI_ARB_CHECK, SMI, F, 1, S ), 225 CMD( MI_REPORT_HEAD, SMI, F, 1, S ), 226 CMD( MI_SUSPEND_FLUSH, SMI, F, 1, S ), 227 CMD( MI_SEMAPHORE_MBOX, SMI, !F, 0xFF, R ), 228 CMD( MI_STORE_DWORD_INDEX, SMI, !F, 0xFF, R ), 229 CMD( MI_LOAD_REGISTER_IMM(1), SMI, !F, 0xFF, W, 230 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 } ), 231 CMD( MI_STORE_REGISTER_MEM, SMI, F, 3, W | B, 232 .reg = { .offset = 1, .mask = 0x007FFFFC }, 233 .bits = {{ 234 .offset = 0, 235 .mask = MI_GLOBAL_GTT, 236 .expected = 0, 237 }}, ), 238 CMD( MI_LOAD_REGISTER_MEM, SMI, F, 3, W | B, 239 .reg = { .offset = 1, .mask = 0x007FFFFC }, 240 .bits = {{ 241 .offset = 0, 242 .mask = MI_GLOBAL_GTT, 243 .expected = 0, 244 }}, ), 245 /* 246 * MI_BATCH_BUFFER_START requires some special handling. It's not 247 * really a 'skip' action but it doesn't seem like it's worth adding 248 * a new action. See intel_engine_cmd_parser(). 249 */ 250 CMD( MI_BATCH_BUFFER_START, SMI, !F, 0xFF, S ), 251 }; 252 253 static const struct drm_i915_cmd_descriptor gen7_render_cmds[] = { 254 CMD( MI_FLUSH, SMI, F, 1, S ), 255 CMD( MI_ARB_ON_OFF, SMI, F, 1, R ), 256 CMD( MI_PREDICATE, SMI, F, 1, S ), 257 CMD( MI_TOPOLOGY_FILTER, SMI, F, 1, S ), 258 CMD( MI_SET_APPID, SMI, F, 1, S ), 259 CMD( MI_DISPLAY_FLIP, SMI, !F, 0xFF, R ), 260 CMD( MI_SET_CONTEXT, SMI, !F, 0xFF, R ), 261 CMD( MI_URB_CLEAR, SMI, !F, 0xFF, S ), 262 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3F, B, 263 .bits = {{ 264 .offset = 0, 265 .mask = MI_GLOBAL_GTT, 266 .expected = 0, 267 }}, ), 268 CMD( MI_UPDATE_GTT, SMI, !F, 0xFF, R ), 269 CMD( MI_CLFLUSH, SMI, !F, 0x3FF, B, 270 .bits = {{ 271 .offset = 0, 272 .mask = MI_GLOBAL_GTT, 273 .expected = 0, 274 }}, ), 275 CMD( MI_REPORT_PERF_COUNT, SMI, !F, 0x3F, B, 276 .bits = {{ 277 .offset = 1, 278 .mask = MI_REPORT_PERF_COUNT_GGTT, 279 .expected = 0, 280 }}, ), 281 CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B, 282 .bits = {{ 283 .offset = 0, 284 .mask = MI_GLOBAL_GTT, 285 .expected = 0, 286 }}, ), 287 CMD( GFX_OP_3DSTATE_VF_STATISTICS, S3D, F, 1, S ), 288 CMD( PIPELINE_SELECT, S3D, F, 1, S ), 289 CMD( MEDIA_VFE_STATE, S3D, !F, 0xFFFF, B, 290 .bits = {{ 291 .offset = 2, 292 .mask = MEDIA_VFE_STATE_MMIO_ACCESS_MASK, 293 .expected = 0, 294 }}, ), 295 CMD( GPGPU_OBJECT, S3D, !F, 0xFF, S ), 296 CMD( GPGPU_WALKER, S3D, !F, 0xFF, S ), 297 CMD( GFX_OP_3DSTATE_SO_DECL_LIST, S3D, !F, 0x1FF, S ), 298 CMD( GFX_OP_PIPE_CONTROL(5), S3D, !F, 0xFF, B, 299 .bits = {{ 300 .offset = 1, 301 .mask = (PIPE_CONTROL_MMIO_WRITE | PIPE_CONTROL_NOTIFY), 302 .expected = 0, 303 }, 304 { 305 .offset = 1, 306 .mask = (PIPE_CONTROL_GLOBAL_GTT_IVB | 307 PIPE_CONTROL_STORE_DATA_INDEX), 308 .expected = 0, 309 .condition_offset = 1, 310 .condition_mask = PIPE_CONTROL_POST_SYNC_OP_MASK, 311 }}, ), 312 }; 313 314 static const struct drm_i915_cmd_descriptor hsw_render_cmds[] = { 315 CMD( MI_SET_PREDICATE, SMI, F, 1, S ), 316 CMD( MI_RS_CONTROL, SMI, F, 1, S ), 317 CMD( MI_URB_ATOMIC_ALLOC, SMI, F, 1, S ), 318 CMD( MI_SET_APPID, SMI, F, 1, S ), 319 CMD( MI_RS_CONTEXT, SMI, F, 1, S ), 320 CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, R ), 321 CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, R ), 322 CMD( MI_LOAD_REGISTER_REG, SMI, !F, 0xFF, W, 323 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 } ), 324 CMD( MI_RS_STORE_DATA_IMM, SMI, !F, 0xFF, S ), 325 CMD( MI_LOAD_URB_MEM, SMI, !F, 0xFF, S ), 326 CMD( MI_STORE_URB_MEM, SMI, !F, 0xFF, S ), 327 CMD( GFX_OP_3DSTATE_DX9_CONSTANTF_VS, S3D, !F, 0x7FF, S ), 328 CMD( GFX_OP_3DSTATE_DX9_CONSTANTF_PS, S3D, !F, 0x7FF, S ), 329 330 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_VS, S3D, !F, 0x1FF, S ), 331 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_GS, S3D, !F, 0x1FF, S ), 332 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_HS, S3D, !F, 0x1FF, S ), 333 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_DS, S3D, !F, 0x1FF, S ), 334 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_PS, S3D, !F, 0x1FF, S ), 335 }; 336 337 static const struct drm_i915_cmd_descriptor gen7_video_cmds[] = { 338 CMD( MI_ARB_ON_OFF, SMI, F, 1, R ), 339 CMD( MI_SET_APPID, SMI, F, 1, S ), 340 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0xFF, B, 341 .bits = {{ 342 .offset = 0, 343 .mask = MI_GLOBAL_GTT, 344 .expected = 0, 345 }}, ), 346 CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ), 347 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B, 348 .bits = {{ 349 .offset = 0, 350 .mask = MI_FLUSH_DW_NOTIFY, 351 .expected = 0, 352 }, 353 { 354 .offset = 1, 355 .mask = MI_FLUSH_DW_USE_GTT, 356 .expected = 0, 357 .condition_offset = 0, 358 .condition_mask = MI_FLUSH_DW_OP_MASK, 359 }, 360 { 361 .offset = 0, 362 .mask = MI_FLUSH_DW_STORE_INDEX, 363 .expected = 0, 364 .condition_offset = 0, 365 .condition_mask = MI_FLUSH_DW_OP_MASK, 366 }}, ), 367 CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B, 368 .bits = {{ 369 .offset = 0, 370 .mask = MI_GLOBAL_GTT, 371 .expected = 0, 372 }}, ), 373 /* 374 * MFX_WAIT doesn't fit the way we handle length for most commands. 375 * It has a length field but it uses a non-standard length bias. 376 * It is always 1 dword though, so just treat it as fixed length. 377 */ 378 CMD( MFX_WAIT, SMFX, F, 1, S ), 379 }; 380 381 static const struct drm_i915_cmd_descriptor gen7_vecs_cmds[] = { 382 CMD( MI_ARB_ON_OFF, SMI, F, 1, R ), 383 CMD( MI_SET_APPID, SMI, F, 1, S ), 384 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0xFF, B, 385 .bits = {{ 386 .offset = 0, 387 .mask = MI_GLOBAL_GTT, 388 .expected = 0, 389 }}, ), 390 CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ), 391 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B, 392 .bits = {{ 393 .offset = 0, 394 .mask = MI_FLUSH_DW_NOTIFY, 395 .expected = 0, 396 }, 397 { 398 .offset = 1, 399 .mask = MI_FLUSH_DW_USE_GTT, 400 .expected = 0, 401 .condition_offset = 0, 402 .condition_mask = MI_FLUSH_DW_OP_MASK, 403 }, 404 { 405 .offset = 0, 406 .mask = MI_FLUSH_DW_STORE_INDEX, 407 .expected = 0, 408 .condition_offset = 0, 409 .condition_mask = MI_FLUSH_DW_OP_MASK, 410 }}, ), 411 CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B, 412 .bits = {{ 413 .offset = 0, 414 .mask = MI_GLOBAL_GTT, 415 .expected = 0, 416 }}, ), 417 }; 418 419 static const struct drm_i915_cmd_descriptor gen7_blt_cmds[] = { 420 CMD( MI_DISPLAY_FLIP, SMI, !F, 0xFF, R ), 421 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3FF, B, 422 .bits = {{ 423 .offset = 0, 424 .mask = MI_GLOBAL_GTT, 425 .expected = 0, 426 }}, ), 427 CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ), 428 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B, 429 .bits = {{ 430 .offset = 0, 431 .mask = MI_FLUSH_DW_NOTIFY, 432 .expected = 0, 433 }, 434 { 435 .offset = 1, 436 .mask = MI_FLUSH_DW_USE_GTT, 437 .expected = 0, 438 .condition_offset = 0, 439 .condition_mask = MI_FLUSH_DW_OP_MASK, 440 }, 441 { 442 .offset = 0, 443 .mask = MI_FLUSH_DW_STORE_INDEX, 444 .expected = 0, 445 .condition_offset = 0, 446 .condition_mask = MI_FLUSH_DW_OP_MASK, 447 }}, ), 448 CMD( COLOR_BLT, S2D, !F, 0x3F, S ), 449 CMD( SRC_COPY_BLT, S2D, !F, 0x3F, S ), 450 }; 451 452 static const struct drm_i915_cmd_descriptor hsw_blt_cmds[] = { 453 CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, R ), 454 CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, R ), 455 }; 456 457 /* 458 * For Gen9 we can still rely on the h/w to enforce cmd security, and only 459 * need to re-enforce the register access checks. We therefore only need to 460 * teach the cmdparser how to find the end of each command, and identify 461 * register accesses. The table doesn't need to reject any commands, and so 462 * the only commands listed here are: 463 * 1) Those that touch registers 464 * 2) Those that do not have the default 8-bit length 465 * 466 * Note that the default MI length mask chosen for this table is 0xFF, not 467 * the 0x3F used on older devices. This is because the vast majority of MI 468 * cmds on Gen9 use a standard 8-bit Length field. 469 * All the Gen9 blitter instructions are standard 0xFF length mask, and 470 * none allow access to non-general registers, so in fact no BLT cmds are 471 * included in the table at all. 472 * 473 */ 474 static const struct drm_i915_cmd_descriptor gen9_blt_cmds[] = { 475 CMD( MI_NOOP, SMI, F, 1, S ), 476 CMD( MI_USER_INTERRUPT, SMI, F, 1, S ), 477 CMD( MI_WAIT_FOR_EVENT, SMI, F, 1, S ), 478 CMD( MI_FLUSH, SMI, F, 1, S ), 479 CMD( MI_ARB_CHECK, SMI, F, 1, S ), 480 CMD( MI_REPORT_HEAD, SMI, F, 1, S ), 481 CMD( MI_ARB_ON_OFF, SMI, F, 1, S ), 482 CMD( MI_SUSPEND_FLUSH, SMI, F, 1, S ), 483 CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, S ), 484 CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, S ), 485 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3FF, S ), 486 CMD( MI_LOAD_REGISTER_IMM(1), SMI, !F, 0xFF, W, 487 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 } ), 488 CMD( MI_UPDATE_GTT, SMI, !F, 0x3FF, S ), 489 CMD( MI_STORE_REGISTER_MEM_GEN8, SMI, F, 4, W, 490 .reg = { .offset = 1, .mask = 0x007FFFFC } ), 491 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, S ), 492 CMD( MI_LOAD_REGISTER_MEM_GEN8, SMI, F, 4, W, 493 .reg = { .offset = 1, .mask = 0x007FFFFC } ), 494 CMD( MI_LOAD_REGISTER_REG, SMI, !F, 0xFF, W, 495 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 } ), 496 497 /* 498 * We allow BB_START but apply further checks. We just sanitize the 499 * basic fields here. 500 */ 501 #define MI_BB_START_OPERAND_MASK GENMASK(SMI-1, 0) 502 #define MI_BB_START_OPERAND_EXPECT (MI_BATCH_PPGTT_HSW | 1) 503 CMD( MI_BATCH_BUFFER_START_GEN8, SMI, !F, 0xFF, B, 504 .bits = {{ 505 .offset = 0, 506 .mask = MI_BB_START_OPERAND_MASK, 507 .expected = MI_BB_START_OPERAND_EXPECT, 508 }}, ), 509 }; 510 511 static const struct drm_i915_cmd_descriptor noop_desc = 512 CMD(MI_NOOP, SMI, F, 1, S); 513 514 #undef CMD 515 #undef SMI 516 #undef S3D 517 #undef S2D 518 #undef SMFX 519 #undef F 520 #undef S 521 #undef R 522 #undef W 523 #undef B 524 525 static const struct drm_i915_cmd_table gen7_render_cmd_table[] = { 526 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, 527 { gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) }, 528 }; 529 530 static const struct drm_i915_cmd_table hsw_render_ring_cmd_table[] = { 531 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, 532 { gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) }, 533 { hsw_render_cmds, ARRAY_SIZE(hsw_render_cmds) }, 534 }; 535 536 static const struct drm_i915_cmd_table gen7_video_cmd_table[] = { 537 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, 538 { gen7_video_cmds, ARRAY_SIZE(gen7_video_cmds) }, 539 }; 540 541 static const struct drm_i915_cmd_table hsw_vebox_cmd_table[] = { 542 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, 543 { gen7_vecs_cmds, ARRAY_SIZE(gen7_vecs_cmds) }, 544 }; 545 546 static const struct drm_i915_cmd_table gen7_blt_cmd_table[] = { 547 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, 548 { gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) }, 549 }; 550 551 static const struct drm_i915_cmd_table hsw_blt_ring_cmd_table[] = { 552 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) }, 553 { gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) }, 554 { hsw_blt_cmds, ARRAY_SIZE(hsw_blt_cmds) }, 555 }; 556 557 static const struct drm_i915_cmd_table gen9_blt_cmd_table[] = { 558 { gen9_blt_cmds, ARRAY_SIZE(gen9_blt_cmds) }, 559 }; 560 561 562 /* 563 * Register whitelists, sorted by increasing register offset. 564 */ 565 566 /* 567 * An individual whitelist entry granting access to register addr. If 568 * mask is non-zero the argument of immediate register writes will be 569 * AND-ed with mask, and the command will be rejected if the result 570 * doesn't match value. 571 * 572 * Registers with non-zero mask are only allowed to be written using 573 * LRI. 574 */ 575 struct drm_i915_reg_descriptor { 576 i915_reg_t addr; 577 u32 mask; 578 u32 value; 579 }; 580 581 /* Convenience macro for adding 32-bit registers. */ 582 #define REG32(_reg, ...) \ 583 { .addr = (_reg), __VA_ARGS__ } 584 585 #define REG32_IDX(_reg, idx) \ 586 { .addr = _reg(idx) } 587 588 /* 589 * Convenience macro for adding 64-bit registers. 590 * 591 * Some registers that userspace accesses are 64 bits. The register 592 * access commands only allow 32-bit accesses. Hence, we have to include 593 * entries for both halves of the 64-bit registers. 594 */ 595 #define REG64(_reg) \ 596 { .addr = _reg }, \ 597 { .addr = _reg ## _UDW } 598 599 #define REG64_IDX(_reg, idx) \ 600 { .addr = _reg(idx) }, \ 601 { .addr = _reg ## _UDW(idx) } 602 603 #define REG64_BASE_IDX(_reg, base, idx) \ 604 { .addr = _reg(base, idx) }, \ 605 { .addr = _reg ## _UDW(base, idx) } 606 607 static const struct drm_i915_reg_descriptor gen7_render_regs[] = { 608 REG64(GPGPU_THREADS_DISPATCHED), 609 REG64(HS_INVOCATION_COUNT), 610 REG64(DS_INVOCATION_COUNT), 611 REG64(IA_VERTICES_COUNT), 612 REG64(IA_PRIMITIVES_COUNT), 613 REG64(VS_INVOCATION_COUNT), 614 REG64(GS_INVOCATION_COUNT), 615 REG64(GS_PRIMITIVES_COUNT), 616 REG64(CL_INVOCATION_COUNT), 617 REG64(CL_PRIMITIVES_COUNT), 618 REG64(PS_INVOCATION_COUNT), 619 REG64(PS_DEPTH_COUNT), 620 REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE), 621 REG64_IDX(MI_PREDICATE_SRC0, RENDER_RING_BASE), 622 REG64_IDX(MI_PREDICATE_SRC1, RENDER_RING_BASE), 623 REG32(GEN7_3DPRIM_END_OFFSET), 624 REG32(GEN7_3DPRIM_START_VERTEX), 625 REG32(GEN7_3DPRIM_VERTEX_COUNT), 626 REG32(GEN7_3DPRIM_INSTANCE_COUNT), 627 REG32(GEN7_3DPRIM_START_INSTANCE), 628 REG32(GEN7_3DPRIM_BASE_VERTEX), 629 REG32(GEN7_GPGPU_DISPATCHDIMX), 630 REG32(GEN7_GPGPU_DISPATCHDIMY), 631 REG32(GEN7_GPGPU_DISPATCHDIMZ), 632 REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE), 633 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 0), 634 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 1), 635 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 2), 636 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 3), 637 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 0), 638 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 1), 639 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 2), 640 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 3), 641 REG32(GEN7_SO_WRITE_OFFSET(0)), 642 REG32(GEN7_SO_WRITE_OFFSET(1)), 643 REG32(GEN7_SO_WRITE_OFFSET(2)), 644 REG32(GEN7_SO_WRITE_OFFSET(3)), 645 REG32(GEN7_L3SQCREG1), 646 REG32(GEN7_L3CNTLREG2), 647 REG32(GEN7_L3CNTLREG3), 648 REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE), 649 }; 650 651 static const struct drm_i915_reg_descriptor hsw_render_regs[] = { 652 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 0), 653 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 1), 654 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 2), 655 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 3), 656 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 4), 657 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 5), 658 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 6), 659 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 7), 660 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 8), 661 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 9), 662 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 10), 663 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 11), 664 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 12), 665 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 13), 666 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 14), 667 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 15), 668 REG32(HSW_SCRATCH1, 669 .mask = ~HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE, 670 .value = 0), 671 REG32(HSW_ROW_CHICKEN3, 672 .mask = ~(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE << 16 | 673 HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE), 674 .value = 0), 675 }; 676 677 static const struct drm_i915_reg_descriptor gen7_blt_regs[] = { 678 REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE), 679 REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE), 680 REG32(BCS_SWCTRL), 681 REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE), 682 }; 683 684 static const struct drm_i915_reg_descriptor gen9_blt_regs[] = { 685 REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE), 686 REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE), 687 REG32(BCS_SWCTRL), 688 REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE), 689 REG32_IDX(RING_CTX_TIMESTAMP, BLT_RING_BASE), 690 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 0), 691 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 1), 692 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 2), 693 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 3), 694 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 4), 695 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 5), 696 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 6), 697 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 7), 698 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 8), 699 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 9), 700 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 10), 701 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 11), 702 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 12), 703 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 13), 704 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 14), 705 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 15), 706 }; 707 708 #undef REG64 709 #undef REG32 710 711 struct drm_i915_reg_table { 712 const struct drm_i915_reg_descriptor *regs; 713 int num_regs; 714 }; 715 716 static const struct drm_i915_reg_table ivb_render_reg_tables[] = { 717 { gen7_render_regs, ARRAY_SIZE(gen7_render_regs) }, 718 }; 719 720 static const struct drm_i915_reg_table ivb_blt_reg_tables[] = { 721 { gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs) }, 722 }; 723 724 static const struct drm_i915_reg_table hsw_render_reg_tables[] = { 725 { gen7_render_regs, ARRAY_SIZE(gen7_render_regs) }, 726 { hsw_render_regs, ARRAY_SIZE(hsw_render_regs) }, 727 }; 728 729 static const struct drm_i915_reg_table hsw_blt_reg_tables[] = { 730 { gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs) }, 731 }; 732 733 static const struct drm_i915_reg_table gen9_blt_reg_tables[] = { 734 { gen9_blt_regs, ARRAY_SIZE(gen9_blt_regs) }, 735 }; 736 737 static u32 gen7_render_get_cmd_length_mask(u32 cmd_header) 738 { 739 u32 client = cmd_header >> INSTR_CLIENT_SHIFT; 740 u32 subclient = 741 (cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT; 742 743 if (client == INSTR_MI_CLIENT) 744 return 0x3F; 745 else if (client == INSTR_RC_CLIENT) { 746 if (subclient == INSTR_MEDIA_SUBCLIENT) 747 return 0xFFFF; 748 else 749 return 0xFF; 750 } 751 752 DRM_DEBUG("CMD: Abnormal rcs cmd length! 0x%08X\n", cmd_header); 753 return 0; 754 } 755 756 static u32 gen7_bsd_get_cmd_length_mask(u32 cmd_header) 757 { 758 u32 client = cmd_header >> INSTR_CLIENT_SHIFT; 759 u32 subclient = 760 (cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT; 761 u32 op = (cmd_header & INSTR_26_TO_24_MASK) >> INSTR_26_TO_24_SHIFT; 762 763 if (client == INSTR_MI_CLIENT) 764 return 0x3F; 765 else if (client == INSTR_RC_CLIENT) { 766 if (subclient == INSTR_MEDIA_SUBCLIENT) { 767 if (op == 6) 768 return 0xFFFF; 769 else 770 return 0xFFF; 771 } else 772 return 0xFF; 773 } 774 775 DRM_DEBUG("CMD: Abnormal bsd cmd length! 0x%08X\n", cmd_header); 776 return 0; 777 } 778 779 static u32 gen7_blt_get_cmd_length_mask(u32 cmd_header) 780 { 781 u32 client = cmd_header >> INSTR_CLIENT_SHIFT; 782 783 if (client == INSTR_MI_CLIENT) 784 return 0x3F; 785 else if (client == INSTR_BC_CLIENT) 786 return 0xFF; 787 788 DRM_DEBUG("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header); 789 return 0; 790 } 791 792 static u32 gen9_blt_get_cmd_length_mask(u32 cmd_header) 793 { 794 u32 client = cmd_header >> INSTR_CLIENT_SHIFT; 795 796 if (client == INSTR_MI_CLIENT || client == INSTR_BC_CLIENT) 797 return 0xFF; 798 799 DRM_DEBUG("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header); 800 return 0; 801 } 802 803 static bool validate_cmds_sorted(const struct intel_engine_cs *engine, 804 const struct drm_i915_cmd_table *cmd_tables, 805 int cmd_table_count) 806 { 807 int i; 808 bool ret = true; 809 810 if (!cmd_tables || cmd_table_count == 0) 811 return true; 812 813 for (i = 0; i < cmd_table_count; i++) { 814 const struct drm_i915_cmd_table *table = &cmd_tables[i]; 815 u32 previous = 0; 816 int j; 817 818 for (j = 0; j < table->count; j++) { 819 const struct drm_i915_cmd_descriptor *desc = 820 &table->table[j]; 821 u32 curr = desc->cmd.value & desc->cmd.mask; 822 823 if (curr < previous) { 824 drm_err(&engine->i915->drm, 825 "CMD: %s [%d] command table not sorted: " 826 "table=%d entry=%d cmd=0x%08X prev=0x%08X\n", 827 engine->name, engine->id, 828 i, j, curr, previous); 829 ret = false; 830 } 831 832 previous = curr; 833 } 834 } 835 836 return ret; 837 } 838 839 static bool check_sorted(const struct intel_engine_cs *engine, 840 const struct drm_i915_reg_descriptor *reg_table, 841 int reg_count) 842 { 843 int i; 844 u32 previous = 0; 845 bool ret = true; 846 847 for (i = 0; i < reg_count; i++) { 848 u32 curr = i915_mmio_reg_offset(reg_table[i].addr); 849 850 if (curr < previous) { 851 drm_err(&engine->i915->drm, 852 "CMD: %s [%d] register table not sorted: " 853 "entry=%d reg=0x%08X prev=0x%08X\n", 854 engine->name, engine->id, 855 i, curr, previous); 856 ret = false; 857 } 858 859 previous = curr; 860 } 861 862 return ret; 863 } 864 865 static bool validate_regs_sorted(struct intel_engine_cs *engine) 866 { 867 int i; 868 const struct drm_i915_reg_table *table; 869 870 for (i = 0; i < engine->reg_table_count; i++) { 871 table = &engine->reg_tables[i]; 872 if (!check_sorted(engine, table->regs, table->num_regs)) 873 return false; 874 } 875 876 return true; 877 } 878 879 struct cmd_node { 880 const struct drm_i915_cmd_descriptor *desc; 881 struct hlist_node node; 882 }; 883 884 /* 885 * Different command ranges have different numbers of bits for the opcode. For 886 * example, MI commands use bits 31:23 while 3D commands use bits 31:16. The 887 * problem is that, for example, MI commands use bits 22:16 for other fields 888 * such as GGTT vs PPGTT bits. If we include those bits in the mask then when 889 * we mask a command from a batch it could hash to the wrong bucket due to 890 * non-opcode bits being set. But if we don't include those bits, some 3D 891 * commands may hash to the same bucket due to not including opcode bits that 892 * make the command unique. For now, we will risk hashing to the same bucket. 893 */ 894 static inline u32 cmd_header_key(u32 x) 895 { 896 switch (x >> INSTR_CLIENT_SHIFT) { 897 default: 898 case INSTR_MI_CLIENT: 899 return x >> STD_MI_OPCODE_SHIFT; 900 case INSTR_RC_CLIENT: 901 return x >> STD_3D_OPCODE_SHIFT; 902 case INSTR_BC_CLIENT: 903 return x >> STD_2D_OPCODE_SHIFT; 904 } 905 } 906 907 static int init_hash_table(struct intel_engine_cs *engine, 908 const struct drm_i915_cmd_table *cmd_tables, 909 int cmd_table_count) 910 { 911 int i, j; 912 913 hash_init(engine->cmd_hash); 914 915 for (i = 0; i < cmd_table_count; i++) { 916 const struct drm_i915_cmd_table *table = &cmd_tables[i]; 917 918 for (j = 0; j < table->count; j++) { 919 const struct drm_i915_cmd_descriptor *desc = 920 &table->table[j]; 921 struct cmd_node *desc_node = 922 kmalloc(sizeof(*desc_node), GFP_KERNEL); 923 924 if (!desc_node) 925 return -ENOMEM; 926 927 desc_node->desc = desc; 928 hash_add(engine->cmd_hash, &desc_node->node, 929 cmd_header_key(desc->cmd.value)); 930 } 931 } 932 933 return 0; 934 } 935 936 static void fini_hash_table(struct intel_engine_cs *engine) 937 { 938 struct hlist_node *tmp; 939 struct cmd_node *desc_node; 940 int i; 941 942 hash_for_each_safe(engine->cmd_hash, i, tmp, desc_node, node) { 943 hash_del(&desc_node->node); 944 kfree(desc_node); 945 } 946 } 947 948 /** 949 * intel_engine_init_cmd_parser() - set cmd parser related fields for an engine 950 * @engine: the engine to initialize 951 * 952 * Optionally initializes fields related to batch buffer command parsing in the 953 * struct intel_engine_cs based on whether the platform requires software 954 * command parsing. 955 */ 956 int intel_engine_init_cmd_parser(struct intel_engine_cs *engine) 957 { 958 const struct drm_i915_cmd_table *cmd_tables; 959 int cmd_table_count; 960 int ret; 961 962 if (GRAPHICS_VER(engine->i915) != 7 && !(GRAPHICS_VER(engine->i915) == 9 && 963 engine->class == COPY_ENGINE_CLASS)) 964 return 0; 965 966 switch (engine->class) { 967 case RENDER_CLASS: 968 if (IS_HASWELL(engine->i915)) { 969 cmd_tables = hsw_render_ring_cmd_table; 970 cmd_table_count = 971 ARRAY_SIZE(hsw_render_ring_cmd_table); 972 } else { 973 cmd_tables = gen7_render_cmd_table; 974 cmd_table_count = ARRAY_SIZE(gen7_render_cmd_table); 975 } 976 977 if (IS_HASWELL(engine->i915)) { 978 engine->reg_tables = hsw_render_reg_tables; 979 engine->reg_table_count = ARRAY_SIZE(hsw_render_reg_tables); 980 } else { 981 engine->reg_tables = ivb_render_reg_tables; 982 engine->reg_table_count = ARRAY_SIZE(ivb_render_reg_tables); 983 } 984 engine->get_cmd_length_mask = gen7_render_get_cmd_length_mask; 985 break; 986 case VIDEO_DECODE_CLASS: 987 cmd_tables = gen7_video_cmd_table; 988 cmd_table_count = ARRAY_SIZE(gen7_video_cmd_table); 989 engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask; 990 break; 991 case COPY_ENGINE_CLASS: 992 engine->get_cmd_length_mask = gen7_blt_get_cmd_length_mask; 993 if (GRAPHICS_VER(engine->i915) == 9) { 994 cmd_tables = gen9_blt_cmd_table; 995 cmd_table_count = ARRAY_SIZE(gen9_blt_cmd_table); 996 engine->get_cmd_length_mask = 997 gen9_blt_get_cmd_length_mask; 998 999 /* BCS Engine unsafe without parser */ 1000 engine->flags |= I915_ENGINE_REQUIRES_CMD_PARSER; 1001 } else if (IS_HASWELL(engine->i915)) { 1002 cmd_tables = hsw_blt_ring_cmd_table; 1003 cmd_table_count = ARRAY_SIZE(hsw_blt_ring_cmd_table); 1004 } else { 1005 cmd_tables = gen7_blt_cmd_table; 1006 cmd_table_count = ARRAY_SIZE(gen7_blt_cmd_table); 1007 } 1008 1009 if (GRAPHICS_VER(engine->i915) == 9) { 1010 engine->reg_tables = gen9_blt_reg_tables; 1011 engine->reg_table_count = 1012 ARRAY_SIZE(gen9_blt_reg_tables); 1013 } else if (IS_HASWELL(engine->i915)) { 1014 engine->reg_tables = hsw_blt_reg_tables; 1015 engine->reg_table_count = ARRAY_SIZE(hsw_blt_reg_tables); 1016 } else { 1017 engine->reg_tables = ivb_blt_reg_tables; 1018 engine->reg_table_count = ARRAY_SIZE(ivb_blt_reg_tables); 1019 } 1020 break; 1021 case VIDEO_ENHANCEMENT_CLASS: 1022 cmd_tables = hsw_vebox_cmd_table; 1023 cmd_table_count = ARRAY_SIZE(hsw_vebox_cmd_table); 1024 /* VECS can use the same length_mask function as VCS */ 1025 engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask; 1026 break; 1027 default: 1028 MISSING_CASE(engine->class); 1029 goto out; 1030 } 1031 1032 if (!validate_cmds_sorted(engine, cmd_tables, cmd_table_count)) { 1033 drm_err(&engine->i915->drm, 1034 "%s: command descriptions are not sorted\n", 1035 engine->name); 1036 goto out; 1037 } 1038 if (!validate_regs_sorted(engine)) { 1039 drm_err(&engine->i915->drm, 1040 "%s: registers are not sorted\n", engine->name); 1041 goto out; 1042 } 1043 1044 ret = init_hash_table(engine, cmd_tables, cmd_table_count); 1045 if (ret) { 1046 drm_err(&engine->i915->drm, 1047 "%s: initialised failed!\n", engine->name); 1048 fini_hash_table(engine); 1049 goto out; 1050 } 1051 1052 engine->flags |= I915_ENGINE_USING_CMD_PARSER; 1053 1054 out: 1055 if (intel_engine_requires_cmd_parser(engine) && 1056 !intel_engine_using_cmd_parser(engine)) 1057 return -EINVAL; 1058 1059 return 0; 1060 } 1061 1062 /** 1063 * intel_engine_cleanup_cmd_parser() - clean up cmd parser related fields 1064 * @engine: the engine to clean up 1065 * 1066 * Releases any resources related to command parsing that may have been 1067 * initialized for the specified engine. 1068 */ 1069 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine) 1070 { 1071 if (!intel_engine_using_cmd_parser(engine)) 1072 return; 1073 1074 fini_hash_table(engine); 1075 } 1076 1077 static const struct drm_i915_cmd_descriptor* 1078 find_cmd_in_table(struct intel_engine_cs *engine, 1079 u32 cmd_header) 1080 { 1081 struct cmd_node *desc_node; 1082 1083 hash_for_each_possible(engine->cmd_hash, desc_node, node, 1084 cmd_header_key(cmd_header)) { 1085 const struct drm_i915_cmd_descriptor *desc = desc_node->desc; 1086 if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0) 1087 return desc; 1088 } 1089 1090 return NULL; 1091 } 1092 1093 /* 1094 * Returns a pointer to a descriptor for the command specified by cmd_header. 1095 * 1096 * The caller must supply space for a default descriptor via the default_desc 1097 * parameter. If no descriptor for the specified command exists in the engine's 1098 * command parser tables, this function fills in default_desc based on the 1099 * engine's default length encoding and returns default_desc. 1100 */ 1101 static const struct drm_i915_cmd_descriptor* 1102 find_cmd(struct intel_engine_cs *engine, 1103 u32 cmd_header, 1104 const struct drm_i915_cmd_descriptor *desc, 1105 struct drm_i915_cmd_descriptor *default_desc) 1106 { 1107 u32 mask; 1108 1109 if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0) 1110 return desc; 1111 1112 desc = find_cmd_in_table(engine, cmd_header); 1113 if (desc) 1114 return desc; 1115 1116 mask = engine->get_cmd_length_mask(cmd_header); 1117 if (!mask) 1118 return NULL; 1119 1120 default_desc->cmd.value = cmd_header; 1121 default_desc->cmd.mask = ~0u << MIN_OPCODE_SHIFT; 1122 default_desc->length.mask = mask; 1123 default_desc->flags = CMD_DESC_SKIP; 1124 return default_desc; 1125 } 1126 1127 static const struct drm_i915_reg_descriptor * 1128 __find_reg(const struct drm_i915_reg_descriptor *table, int count, u32 addr) 1129 { 1130 int start = 0, end = count; 1131 while (start < end) { 1132 int mid = start + (end - start) / 2; 1133 int ret = addr - i915_mmio_reg_offset(table[mid].addr); 1134 if (ret < 0) 1135 end = mid; 1136 else if (ret > 0) 1137 start = mid + 1; 1138 else 1139 return &table[mid]; 1140 } 1141 return NULL; 1142 } 1143 1144 static const struct drm_i915_reg_descriptor * 1145 find_reg(const struct intel_engine_cs *engine, u32 addr) 1146 { 1147 const struct drm_i915_reg_table *table = engine->reg_tables; 1148 const struct drm_i915_reg_descriptor *reg = NULL; 1149 int count = engine->reg_table_count; 1150 1151 for (; !reg && (count > 0); ++table, --count) 1152 reg = __find_reg(table->regs, table->num_regs, addr); 1153 1154 return reg; 1155 } 1156 1157 /* Returns a vmap'd pointer to dst_obj, which the caller must unmap */ 1158 static u32 *copy_batch(struct drm_i915_gem_object *dst_obj, 1159 struct drm_i915_gem_object *src_obj, 1160 unsigned long offset, unsigned long length, 1161 bool *needs_clflush_after) 1162 { 1163 unsigned int src_needs_clflush; 1164 unsigned int dst_needs_clflush; 1165 void *dst, *src; 1166 int ret; 1167 1168 ret = i915_gem_object_prepare_write(dst_obj, &dst_needs_clflush); 1169 if (ret) 1170 return ERR_PTR(ret); 1171 1172 dst = i915_gem_object_pin_map(dst_obj, I915_MAP_WB); 1173 i915_gem_object_finish_access(dst_obj); 1174 if (IS_ERR(dst)) 1175 return dst; 1176 1177 ret = i915_gem_object_prepare_read(src_obj, &src_needs_clflush); 1178 if (ret) { 1179 i915_gem_object_unpin_map(dst_obj); 1180 return ERR_PTR(ret); 1181 } 1182 1183 src = ERR_PTR(-ENODEV); 1184 if (src_needs_clflush && i915_has_memcpy_from_wc()) { 1185 src = i915_gem_object_pin_map(src_obj, I915_MAP_WC); 1186 if (!IS_ERR(src)) { 1187 i915_unaligned_memcpy_from_wc(dst, 1188 src + offset, 1189 length); 1190 i915_gem_object_unpin_map(src_obj); 1191 } 1192 } 1193 if (IS_ERR(src)) { 1194 unsigned long x, n, remain; 1195 void *ptr; 1196 1197 /* 1198 * We can avoid clflushing partial cachelines before the write 1199 * if we only every write full cache-lines. Since we know that 1200 * both the source and destination are in multiples of 1201 * PAGE_SIZE, we can simply round up to the next cacheline. 1202 * We don't care about copying too much here as we only 1203 * validate up to the end of the batch. 1204 */ 1205 remain = length; 1206 if (dst_needs_clflush & CLFLUSH_BEFORE) 1207 remain = round_up(remain, 1208 boot_cpu_data.x86_clflush_size); 1209 1210 ptr = dst; 1211 x = offset_in_page(offset); 1212 for (n = offset >> PAGE_SHIFT; remain; n++) { 1213 int len = min(remain, PAGE_SIZE - x); 1214 1215 src = kmap_local_page(i915_gem_object_get_page(src_obj, n)); 1216 if (src_needs_clflush) 1217 drm_clflush_virt_range(src + x, len); 1218 memcpy(ptr, src + x, len); 1219 kunmap_local(src); 1220 1221 ptr += len; 1222 remain -= len; 1223 x = 0; 1224 } 1225 } 1226 1227 i915_gem_object_finish_access(src_obj); 1228 1229 memset32(dst + length, 0, (dst_obj->base.size - length) / sizeof(u32)); 1230 1231 /* dst_obj is returned with vmap pinned */ 1232 *needs_clflush_after = dst_needs_clflush & CLFLUSH_AFTER; 1233 1234 return dst; 1235 } 1236 1237 static inline bool cmd_desc_is(const struct drm_i915_cmd_descriptor * const desc, 1238 const u32 cmd) 1239 { 1240 return desc->cmd.value == (cmd & desc->cmd.mask); 1241 } 1242 1243 static bool check_cmd(const struct intel_engine_cs *engine, 1244 const struct drm_i915_cmd_descriptor *desc, 1245 const u32 *cmd, u32 length) 1246 { 1247 if (desc->flags & CMD_DESC_SKIP) 1248 return true; 1249 1250 if (desc->flags & CMD_DESC_REJECT) { 1251 DRM_DEBUG("CMD: Rejected command: 0x%08X\n", *cmd); 1252 return false; 1253 } 1254 1255 if (desc->flags & CMD_DESC_REGISTER) { 1256 /* 1257 * Get the distance between individual register offset 1258 * fields if the command can perform more than one 1259 * access at a time. 1260 */ 1261 const u32 step = desc->reg.step ? desc->reg.step : length; 1262 u32 offset; 1263 1264 for (offset = desc->reg.offset; offset < length; 1265 offset += step) { 1266 const u32 reg_addr = cmd[offset] & desc->reg.mask; 1267 const struct drm_i915_reg_descriptor *reg = 1268 find_reg(engine, reg_addr); 1269 1270 if (!reg) { 1271 DRM_DEBUG("CMD: Rejected register 0x%08X in command: 0x%08X (%s)\n", 1272 reg_addr, *cmd, engine->name); 1273 return false; 1274 } 1275 1276 /* 1277 * Check the value written to the register against the 1278 * allowed mask/value pair given in the whitelist entry. 1279 */ 1280 if (reg->mask) { 1281 if (cmd_desc_is(desc, MI_LOAD_REGISTER_MEM)) { 1282 DRM_DEBUG("CMD: Rejected LRM to masked register 0x%08X\n", 1283 reg_addr); 1284 return false; 1285 } 1286 1287 if (cmd_desc_is(desc, MI_LOAD_REGISTER_REG)) { 1288 DRM_DEBUG("CMD: Rejected LRR to masked register 0x%08X\n", 1289 reg_addr); 1290 return false; 1291 } 1292 1293 if (cmd_desc_is(desc, MI_LOAD_REGISTER_IMM(1)) && 1294 (offset + 2 > length || 1295 (cmd[offset + 1] & reg->mask) != reg->value)) { 1296 DRM_DEBUG("CMD: Rejected LRI to masked register 0x%08X\n", 1297 reg_addr); 1298 return false; 1299 } 1300 } 1301 } 1302 } 1303 1304 if (desc->flags & CMD_DESC_BITMASK) { 1305 int i; 1306 1307 for (i = 0; i < MAX_CMD_DESC_BITMASKS; i++) { 1308 u32 dword; 1309 1310 if (desc->bits[i].mask == 0) 1311 break; 1312 1313 if (desc->bits[i].condition_mask != 0) { 1314 u32 offset = 1315 desc->bits[i].condition_offset; 1316 u32 condition = cmd[offset] & 1317 desc->bits[i].condition_mask; 1318 1319 if (condition == 0) 1320 continue; 1321 } 1322 1323 if (desc->bits[i].offset >= length) { 1324 DRM_DEBUG("CMD: Rejected command 0x%08X, too short to check bitmask (%s)\n", 1325 *cmd, engine->name); 1326 return false; 1327 } 1328 1329 dword = cmd[desc->bits[i].offset] & 1330 desc->bits[i].mask; 1331 1332 if (dword != desc->bits[i].expected) { 1333 DRM_DEBUG("CMD: Rejected command 0x%08X for bitmask 0x%08X (exp=0x%08X act=0x%08X) (%s)\n", 1334 *cmd, 1335 desc->bits[i].mask, 1336 desc->bits[i].expected, 1337 dword, engine->name); 1338 return false; 1339 } 1340 } 1341 } 1342 1343 return true; 1344 } 1345 1346 static int check_bbstart(u32 *cmd, u32 offset, u32 length, 1347 u32 batch_length, 1348 u64 batch_addr, 1349 u64 shadow_addr, 1350 const unsigned long *jump_whitelist) 1351 { 1352 u64 jump_offset, jump_target; 1353 u32 target_cmd_offset, target_cmd_index; 1354 1355 /* For igt compatibility on older platforms */ 1356 if (!jump_whitelist) { 1357 DRM_DEBUG("CMD: Rejecting BB_START for ggtt based submission\n"); 1358 return -EACCES; 1359 } 1360 1361 if (length != 3) { 1362 DRM_DEBUG("CMD: Recursive BB_START with bad length(%u)\n", 1363 length); 1364 return -EINVAL; 1365 } 1366 1367 jump_target = *(u64 *)(cmd + 1); 1368 jump_offset = jump_target - batch_addr; 1369 1370 /* 1371 * Any underflow of jump_target is guaranteed to be outside the range 1372 * of a u32, so >= test catches both too large and too small 1373 */ 1374 if (jump_offset >= batch_length) { 1375 DRM_DEBUG("CMD: BB_START to 0x%llx jumps out of BB\n", 1376 jump_target); 1377 return -EINVAL; 1378 } 1379 1380 /* 1381 * This cannot overflow a u32 because we already checked jump_offset 1382 * is within the BB, and the batch_length is a u32 1383 */ 1384 target_cmd_offset = lower_32_bits(jump_offset); 1385 target_cmd_index = target_cmd_offset / sizeof(u32); 1386 1387 *(u64 *)(cmd + 1) = shadow_addr + target_cmd_offset; 1388 1389 if (target_cmd_index == offset) 1390 return 0; 1391 1392 if (IS_ERR(jump_whitelist)) 1393 return PTR_ERR(jump_whitelist); 1394 1395 if (!test_bit(target_cmd_index, jump_whitelist)) { 1396 DRM_DEBUG("CMD: BB_START to 0x%llx not a previously executed cmd\n", 1397 jump_target); 1398 return -EINVAL; 1399 } 1400 1401 return 0; 1402 } 1403 1404 static unsigned long *alloc_whitelist(u32 batch_length) 1405 { 1406 unsigned long *jmp; 1407 1408 /* 1409 * We expect batch_length to be less than 256KiB for known users, 1410 * i.e. we need at most an 8KiB bitmap allocation which should be 1411 * reasonably cheap due to kmalloc caches. 1412 */ 1413 1414 /* Prefer to report transient allocation failure rather than hit oom */ 1415 jmp = bitmap_zalloc(DIV_ROUND_UP(batch_length, sizeof(u32)), 1416 GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 1417 if (!jmp) 1418 return ERR_PTR(-ENOMEM); 1419 1420 return jmp; 1421 } 1422 1423 #define LENGTH_BIAS 2 1424 1425 /** 1426 * intel_engine_cmd_parser() - parse a batch buffer for privilege violations 1427 * @engine: the engine on which the batch is to execute 1428 * @batch: the batch buffer in question 1429 * @batch_offset: byte offset in the batch at which execution starts 1430 * @batch_length: length of the commands in batch_obj 1431 * @shadow: validated copy of the batch buffer in question 1432 * @trampoline: true if we need to trampoline into privileged execution 1433 * 1434 * Parses the specified batch buffer looking for privilege violations as 1435 * described in the overview. 1436 * 1437 * Return: non-zero if the parser finds violations or otherwise fails; -EACCES 1438 * if the batch appears legal but should use hardware parsing 1439 */ 1440 1441 int intel_engine_cmd_parser(struct intel_engine_cs *engine, 1442 struct i915_vma *batch, 1443 unsigned long batch_offset, 1444 unsigned long batch_length, 1445 struct i915_vma *shadow, 1446 bool trampoline) 1447 { 1448 u32 *cmd, *batch_end, offset = 0; 1449 struct drm_i915_cmd_descriptor default_desc = noop_desc; 1450 const struct drm_i915_cmd_descriptor *desc = &default_desc; 1451 bool needs_clflush_after = false; 1452 unsigned long *jump_whitelist; 1453 u64 batch_addr, shadow_addr; 1454 int ret = 0; 1455 1456 GEM_BUG_ON(!IS_ALIGNED(batch_offset, sizeof(*cmd))); 1457 GEM_BUG_ON(!IS_ALIGNED(batch_length, sizeof(*cmd))); 1458 GEM_BUG_ON(range_overflows_t(u64, batch_offset, batch_length, 1459 batch->size)); 1460 GEM_BUG_ON(!batch_length); 1461 1462 cmd = copy_batch(shadow->obj, batch->obj, 1463 batch_offset, batch_length, 1464 &needs_clflush_after); 1465 if (IS_ERR(cmd)) { 1466 DRM_DEBUG("CMD: Failed to copy batch\n"); 1467 return PTR_ERR(cmd); 1468 } 1469 1470 jump_whitelist = NULL; 1471 if (!trampoline) 1472 /* Defer failure until attempted use */ 1473 jump_whitelist = alloc_whitelist(batch_length); 1474 1475 shadow_addr = gen8_canonical_addr(i915_vma_offset(shadow)); 1476 batch_addr = gen8_canonical_addr(i915_vma_offset(batch) + batch_offset); 1477 1478 /* 1479 * We use the batch length as size because the shadow object is as 1480 * large or larger and copy_batch() will write MI_NOPs to the extra 1481 * space. Parsing should be faster in some cases this way. 1482 */ 1483 batch_end = cmd + batch_length / sizeof(*batch_end); 1484 do { 1485 u32 length; 1486 1487 if (*cmd == MI_BATCH_BUFFER_END) 1488 break; 1489 1490 desc = find_cmd(engine, *cmd, desc, &default_desc); 1491 if (!desc) { 1492 DRM_DEBUG("CMD: Unrecognized command: 0x%08X\n", *cmd); 1493 ret = -EINVAL; 1494 break; 1495 } 1496 1497 if (desc->flags & CMD_DESC_FIXED) 1498 length = desc->length.fixed; 1499 else 1500 length = (*cmd & desc->length.mask) + LENGTH_BIAS; 1501 1502 if ((batch_end - cmd) < length) { 1503 DRM_DEBUG("CMD: Command length exceeds batch length: 0x%08X length=%u batchlen=%td\n", 1504 *cmd, 1505 length, 1506 batch_end - cmd); 1507 ret = -EINVAL; 1508 break; 1509 } 1510 1511 if (!check_cmd(engine, desc, cmd, length)) { 1512 ret = -EACCES; 1513 break; 1514 } 1515 1516 if (cmd_desc_is(desc, MI_BATCH_BUFFER_START)) { 1517 ret = check_bbstart(cmd, offset, length, batch_length, 1518 batch_addr, shadow_addr, 1519 jump_whitelist); 1520 break; 1521 } 1522 1523 if (!IS_ERR_OR_NULL(jump_whitelist)) 1524 __set_bit(offset, jump_whitelist); 1525 1526 cmd += length; 1527 offset += length; 1528 if (cmd >= batch_end) { 1529 DRM_DEBUG("CMD: Got to the end of the buffer w/o a BBE cmd!\n"); 1530 ret = -EINVAL; 1531 break; 1532 } 1533 } while (1); 1534 1535 if (trampoline) { 1536 /* 1537 * With the trampoline, the shadow is executed twice. 1538 * 1539 * 1 - starting at offset 0, in privileged mode 1540 * 2 - starting at offset batch_len, as non-privileged 1541 * 1542 * Only if the batch is valid and safe to execute, do we 1543 * allow the first privileged execution to proceed. If not, 1544 * we terminate the first batch and use the second batchbuffer 1545 * entry to chain to the original unsafe non-privileged batch, 1546 * leaving it to the HW to validate. 1547 */ 1548 *batch_end = MI_BATCH_BUFFER_END; 1549 1550 if (ret) { 1551 /* Batch unsafe to execute with privileges, cancel! */ 1552 cmd = page_mask_bits(shadow->obj->mm.mapping); 1553 *cmd = MI_BATCH_BUFFER_END; 1554 1555 /* If batch is unsafe but valid, jump to the original */ 1556 if (ret == -EACCES) { 1557 unsigned int flags; 1558 1559 flags = MI_BATCH_NON_SECURE_I965; 1560 if (IS_HASWELL(engine->i915)) 1561 flags = MI_BATCH_NON_SECURE_HSW; 1562 1563 GEM_BUG_ON(!IS_GRAPHICS_VER(engine->i915, 6, 7)); 1564 __gen6_emit_bb_start(batch_end, 1565 batch_addr, 1566 flags); 1567 1568 ret = 0; /* allow execution */ 1569 } 1570 } 1571 } 1572 1573 i915_gem_object_flush_map(shadow->obj); 1574 1575 if (!IS_ERR_OR_NULL(jump_whitelist)) 1576 kfree(jump_whitelist); 1577 i915_gem_object_unpin_map(shadow->obj); 1578 return ret; 1579 } 1580 1581 /** 1582 * i915_cmd_parser_get_version() - get the cmd parser version number 1583 * @dev_priv: i915 device private 1584 * 1585 * The cmd parser maintains a simple increasing integer version number suitable 1586 * for passing to userspace clients to determine what operations are permitted. 1587 * 1588 * Return: the current version number of the cmd parser 1589 */ 1590 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv) 1591 { 1592 struct intel_engine_cs *engine; 1593 bool active = false; 1594 1595 /* If the command parser is not enabled, report 0 - unsupported */ 1596 for_each_uabi_engine(engine, dev_priv) { 1597 if (intel_engine_using_cmd_parser(engine)) { 1598 active = true; 1599 break; 1600 } 1601 } 1602 if (!active) 1603 return 0; 1604 1605 /* 1606 * Command parser version history 1607 * 1608 * 1. Initial version. Checks batches and reports violations, but leaves 1609 * hardware parsing enabled (so does not allow new use cases). 1610 * 2. Allow access to the MI_PREDICATE_SRC0 and 1611 * MI_PREDICATE_SRC1 registers. 1612 * 3. Allow access to the GPGPU_THREADS_DISPATCHED register. 1613 * 4. L3 atomic chicken bits of HSW_SCRATCH1 and HSW_ROW_CHICKEN3. 1614 * 5. GPGPU dispatch compute indirect registers. 1615 * 6. TIMESTAMP register and Haswell CS GPR registers 1616 * 7. Allow MI_LOAD_REGISTER_REG between whitelisted registers. 1617 * 8. Don't report cmd_check() failures as EINVAL errors to userspace; 1618 * rely on the HW to NOOP disallowed commands as it would without 1619 * the parser enabled. 1620 * 9. Don't whitelist or handle oacontrol specially, as ownership 1621 * for oacontrol state is moving to i915-perf. 1622 * 10. Support for Gen9 BCS Parsing 1623 */ 1624 return 10; 1625 } 1626