xref: /linux/drivers/gpu/drm/i915/i915_active.c (revision e0ad4d68548005adb54cc7c35fd9abf760a2a050)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2019 Intel Corporation
5  */
6 
7 #include <linux/debugobjects.h>
8 
9 #include "gt/intel_context.h"
10 #include "gt/intel_engine_pm.h"
11 #include "gt/intel_ring.h"
12 
13 #include "i915_drv.h"
14 #include "i915_active.h"
15 #include "i915_globals.h"
16 
17 /*
18  * Active refs memory management
19  *
20  * To be more economical with memory, we reap all the i915_active trees as
21  * they idle (when we know the active requests are inactive) and allocate the
22  * nodes from a local slab cache to hopefully reduce the fragmentation.
23  */
24 static struct i915_global_active {
25 	struct i915_global base;
26 	struct kmem_cache *slab_cache;
27 } global;
28 
29 struct active_node {
30 	struct i915_active_fence base;
31 	struct i915_active *ref;
32 	struct rb_node node;
33 	u64 timeline;
34 };
35 
36 static inline struct active_node *
37 node_from_active(struct i915_active_fence *active)
38 {
39 	return container_of(active, struct active_node, base);
40 }
41 
42 #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers)
43 
44 static inline bool is_barrier(const struct i915_active_fence *active)
45 {
46 	return IS_ERR(rcu_access_pointer(active->fence));
47 }
48 
49 static inline struct llist_node *barrier_to_ll(struct active_node *node)
50 {
51 	GEM_BUG_ON(!is_barrier(&node->base));
52 	return (struct llist_node *)&node->base.cb.node;
53 }
54 
55 static inline struct intel_engine_cs *
56 __barrier_to_engine(struct active_node *node)
57 {
58 	return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev);
59 }
60 
61 static inline struct intel_engine_cs *
62 barrier_to_engine(struct active_node *node)
63 {
64 	GEM_BUG_ON(!is_barrier(&node->base));
65 	return __barrier_to_engine(node);
66 }
67 
68 static inline struct active_node *barrier_from_ll(struct llist_node *x)
69 {
70 	return container_of((struct list_head *)x,
71 			    struct active_node, base.cb.node);
72 }
73 
74 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS)
75 
76 static void *active_debug_hint(void *addr)
77 {
78 	struct i915_active *ref = addr;
79 
80 	return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref;
81 }
82 
83 static struct debug_obj_descr active_debug_desc = {
84 	.name = "i915_active",
85 	.debug_hint = active_debug_hint,
86 };
87 
88 static void debug_active_init(struct i915_active *ref)
89 {
90 	debug_object_init(ref, &active_debug_desc);
91 }
92 
93 static void debug_active_activate(struct i915_active *ref)
94 {
95 	lockdep_assert_held(&ref->tree_lock);
96 	if (!atomic_read(&ref->count)) /* before the first inc */
97 		debug_object_activate(ref, &active_debug_desc);
98 }
99 
100 static void debug_active_deactivate(struct i915_active *ref)
101 {
102 	lockdep_assert_held(&ref->tree_lock);
103 	if (!atomic_read(&ref->count)) /* after the last dec */
104 		debug_object_deactivate(ref, &active_debug_desc);
105 }
106 
107 static void debug_active_fini(struct i915_active *ref)
108 {
109 	debug_object_free(ref, &active_debug_desc);
110 }
111 
112 static void debug_active_assert(struct i915_active *ref)
113 {
114 	debug_object_assert_init(ref, &active_debug_desc);
115 }
116 
117 #else
118 
119 static inline void debug_active_init(struct i915_active *ref) { }
120 static inline void debug_active_activate(struct i915_active *ref) { }
121 static inline void debug_active_deactivate(struct i915_active *ref) { }
122 static inline void debug_active_fini(struct i915_active *ref) { }
123 static inline void debug_active_assert(struct i915_active *ref) { }
124 
125 #endif
126 
127 static void
128 __active_retire(struct i915_active *ref)
129 {
130 	struct active_node *it, *n;
131 	struct rb_root root;
132 	unsigned long flags;
133 
134 	GEM_BUG_ON(i915_active_is_idle(ref));
135 
136 	/* return the unused nodes to our slabcache -- flushing the allocator */
137 	if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags))
138 		return;
139 
140 	GEM_BUG_ON(rcu_access_pointer(ref->excl.fence));
141 	debug_active_deactivate(ref);
142 
143 	root = ref->tree;
144 	ref->tree = RB_ROOT;
145 	ref->cache = NULL;
146 
147 	spin_unlock_irqrestore(&ref->tree_lock, flags);
148 
149 	/* After the final retire, the entire struct may be freed */
150 	if (ref->retire)
151 		ref->retire(ref);
152 
153 	/* ... except if you wait on it, you must manage your own references! */
154 	wake_up_var(ref);
155 
156 	rbtree_postorder_for_each_entry_safe(it, n, &root, node) {
157 		GEM_BUG_ON(i915_active_fence_isset(&it->base));
158 		kmem_cache_free(global.slab_cache, it);
159 	}
160 }
161 
162 static void
163 active_work(struct work_struct *wrk)
164 {
165 	struct i915_active *ref = container_of(wrk, typeof(*ref), work);
166 
167 	GEM_BUG_ON(!atomic_read(&ref->count));
168 	if (atomic_add_unless(&ref->count, -1, 1))
169 		return;
170 
171 	__active_retire(ref);
172 }
173 
174 static void
175 active_retire(struct i915_active *ref)
176 {
177 	GEM_BUG_ON(!atomic_read(&ref->count));
178 	if (atomic_add_unless(&ref->count, -1, 1))
179 		return;
180 
181 	if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) {
182 		queue_work(system_unbound_wq, &ref->work);
183 		return;
184 	}
185 
186 	__active_retire(ref);
187 }
188 
189 static inline struct dma_fence **
190 __active_fence_slot(struct i915_active_fence *active)
191 {
192 	return (struct dma_fence ** __force)&active->fence;
193 }
194 
195 static inline bool
196 active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
197 {
198 	struct i915_active_fence *active =
199 		container_of(cb, typeof(*active), cb);
200 
201 	return cmpxchg(__active_fence_slot(active), fence, NULL) == fence;
202 }
203 
204 static void
205 node_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
206 {
207 	if (active_fence_cb(fence, cb))
208 		active_retire(container_of(cb, struct active_node, base.cb)->ref);
209 }
210 
211 static void
212 excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
213 {
214 	if (active_fence_cb(fence, cb))
215 		active_retire(container_of(cb, struct i915_active, excl.cb));
216 }
217 
218 static struct i915_active_fence *
219 active_instance(struct i915_active *ref, struct intel_timeline *tl)
220 {
221 	struct active_node *node, *prealloc;
222 	struct rb_node **p, *parent;
223 	u64 idx = tl->fence_context;
224 
225 	/*
226 	 * We track the most recently used timeline to skip a rbtree search
227 	 * for the common case, under typical loads we never need the rbtree
228 	 * at all. We can reuse the last slot if it is empty, that is
229 	 * after the previous activity has been retired, or if it matches the
230 	 * current timeline.
231 	 */
232 	node = READ_ONCE(ref->cache);
233 	if (node && node->timeline == idx)
234 		return &node->base;
235 
236 	/* Preallocate a replacement, just in case */
237 	prealloc = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
238 	if (!prealloc)
239 		return NULL;
240 
241 	spin_lock_irq(&ref->tree_lock);
242 	GEM_BUG_ON(i915_active_is_idle(ref));
243 
244 	parent = NULL;
245 	p = &ref->tree.rb_node;
246 	while (*p) {
247 		parent = *p;
248 
249 		node = rb_entry(parent, struct active_node, node);
250 		if (node->timeline == idx) {
251 			kmem_cache_free(global.slab_cache, prealloc);
252 			goto out;
253 		}
254 
255 		if (node->timeline < idx)
256 			p = &parent->rb_right;
257 		else
258 			p = &parent->rb_left;
259 	}
260 
261 	node = prealloc;
262 	__i915_active_fence_init(&node->base, NULL, node_retire);
263 	node->ref = ref;
264 	node->timeline = idx;
265 
266 	rb_link_node(&node->node, parent, p);
267 	rb_insert_color(&node->node, &ref->tree);
268 
269 out:
270 	ref->cache = node;
271 	spin_unlock_irq(&ref->tree_lock);
272 
273 	BUILD_BUG_ON(offsetof(typeof(*node), base));
274 	return &node->base;
275 }
276 
277 void __i915_active_init(struct i915_active *ref,
278 			int (*active)(struct i915_active *ref),
279 			void (*retire)(struct i915_active *ref),
280 			struct lock_class_key *mkey,
281 			struct lock_class_key *wkey)
282 {
283 	unsigned long bits;
284 
285 	debug_active_init(ref);
286 
287 	ref->flags = 0;
288 	ref->active = active;
289 	ref->retire = ptr_unpack_bits(retire, &bits, 2);
290 	if (bits & I915_ACTIVE_MAY_SLEEP)
291 		ref->flags |= I915_ACTIVE_RETIRE_SLEEPS;
292 
293 	spin_lock_init(&ref->tree_lock);
294 	ref->tree = RB_ROOT;
295 	ref->cache = NULL;
296 
297 	init_llist_head(&ref->preallocated_barriers);
298 	atomic_set(&ref->count, 0);
299 	__mutex_init(&ref->mutex, "i915_active", mkey);
300 	__i915_active_fence_init(&ref->excl, NULL, excl_retire);
301 	INIT_WORK(&ref->work, active_work);
302 #if IS_ENABLED(CONFIG_LOCKDEP)
303 	lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0);
304 #endif
305 }
306 
307 static bool ____active_del_barrier(struct i915_active *ref,
308 				   struct active_node *node,
309 				   struct intel_engine_cs *engine)
310 
311 {
312 	struct llist_node *head = NULL, *tail = NULL;
313 	struct llist_node *pos, *next;
314 
315 	GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context);
316 
317 	/*
318 	 * Rebuild the llist excluding our node. We may perform this
319 	 * outside of the kernel_context timeline mutex and so someone
320 	 * else may be manipulating the engine->barrier_tasks, in
321 	 * which case either we or they will be upset :)
322 	 *
323 	 * A second __active_del_barrier() will report failure to claim
324 	 * the active_node and the caller will just shrug and know not to
325 	 * claim ownership of its node.
326 	 *
327 	 * A concurrent i915_request_add_active_barriers() will miss adding
328 	 * any of the tasks, but we will try again on the next -- and since
329 	 * we are actively using the barrier, we know that there will be
330 	 * at least another opportunity when we idle.
331 	 */
332 	llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) {
333 		if (node == barrier_from_ll(pos)) {
334 			node = NULL;
335 			continue;
336 		}
337 
338 		pos->next = head;
339 		head = pos;
340 		if (!tail)
341 			tail = pos;
342 	}
343 	if (head)
344 		llist_add_batch(head, tail, &engine->barrier_tasks);
345 
346 	return !node;
347 }
348 
349 static bool
350 __active_del_barrier(struct i915_active *ref, struct active_node *node)
351 {
352 	return ____active_del_barrier(ref, node, barrier_to_engine(node));
353 }
354 
355 int i915_active_ref(struct i915_active *ref,
356 		    struct intel_timeline *tl,
357 		    struct dma_fence *fence)
358 {
359 	struct i915_active_fence *active;
360 	int err;
361 
362 	lockdep_assert_held(&tl->mutex);
363 
364 	/* Prevent reaping in case we malloc/wait while building the tree */
365 	err = i915_active_acquire(ref);
366 	if (err)
367 		return err;
368 
369 	active = active_instance(ref, tl);
370 	if (!active) {
371 		err = -ENOMEM;
372 		goto out;
373 	}
374 
375 	if (is_barrier(active)) { /* proto-node used by our idle barrier */
376 		/*
377 		 * This request is on the kernel_context timeline, and so
378 		 * we can use it to substitute for the pending idle-barrer
379 		 * request that we want to emit on the kernel_context.
380 		 */
381 		__active_del_barrier(ref, node_from_active(active));
382 		RCU_INIT_POINTER(active->fence, NULL);
383 		atomic_dec(&ref->count);
384 	}
385 	if (!__i915_active_fence_set(active, fence))
386 		atomic_inc(&ref->count);
387 
388 out:
389 	i915_active_release(ref);
390 	return err;
391 }
392 
393 void i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f)
394 {
395 	/* We expect the caller to manage the exclusive timeline ordering */
396 	GEM_BUG_ON(i915_active_is_idle(ref));
397 
398 	if (!__i915_active_fence_set(&ref->excl, f))
399 		atomic_inc(&ref->count);
400 }
401 
402 bool i915_active_acquire_if_busy(struct i915_active *ref)
403 {
404 	debug_active_assert(ref);
405 	return atomic_add_unless(&ref->count, 1, 0);
406 }
407 
408 int i915_active_acquire(struct i915_active *ref)
409 {
410 	int err;
411 
412 	if (i915_active_acquire_if_busy(ref))
413 		return 0;
414 
415 	err = mutex_lock_interruptible(&ref->mutex);
416 	if (err)
417 		return err;
418 
419 	if (likely(!i915_active_acquire_if_busy(ref))) {
420 		if (ref->active)
421 			err = ref->active(ref);
422 		if (!err) {
423 			spin_lock_irq(&ref->tree_lock); /* __active_retire() */
424 			debug_active_activate(ref);
425 			atomic_inc(&ref->count);
426 			spin_unlock_irq(&ref->tree_lock);
427 		}
428 	}
429 
430 	mutex_unlock(&ref->mutex);
431 
432 	return err;
433 }
434 
435 void i915_active_release(struct i915_active *ref)
436 {
437 	debug_active_assert(ref);
438 	active_retire(ref);
439 }
440 
441 static void enable_signaling(struct i915_active_fence *active)
442 {
443 	struct dma_fence *fence;
444 
445 	fence = i915_active_fence_get(active);
446 	if (!fence)
447 		return;
448 
449 	dma_fence_enable_sw_signaling(fence);
450 	dma_fence_put(fence);
451 }
452 
453 int i915_active_wait(struct i915_active *ref)
454 {
455 	struct active_node *it, *n;
456 	int err = 0;
457 
458 	might_sleep();
459 
460 	if (!i915_active_acquire_if_busy(ref))
461 		return 0;
462 
463 	/* Flush lazy signals */
464 	enable_signaling(&ref->excl);
465 	rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
466 		if (is_barrier(&it->base)) /* unconnected idle barrier */
467 			continue;
468 
469 		enable_signaling(&it->base);
470 	}
471 	/* Any fence added after the wait begins will not be auto-signaled */
472 
473 	i915_active_release(ref);
474 	if (err)
475 		return err;
476 
477 	if (wait_var_event_interruptible(ref, i915_active_is_idle(ref)))
478 		return -EINTR;
479 
480 	flush_work(&ref->work);
481 	return 0;
482 }
483 
484 int i915_request_await_active(struct i915_request *rq, struct i915_active *ref)
485 {
486 	int err = 0;
487 
488 	if (rcu_access_pointer(ref->excl.fence)) {
489 		struct dma_fence *fence;
490 
491 		rcu_read_lock();
492 		fence = dma_fence_get_rcu_safe(&ref->excl.fence);
493 		rcu_read_unlock();
494 		if (fence) {
495 			err = i915_request_await_dma_fence(rq, fence);
496 			dma_fence_put(fence);
497 		}
498 	}
499 
500 	/* In the future we may choose to await on all fences */
501 
502 	return err;
503 }
504 
505 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
506 void i915_active_fini(struct i915_active *ref)
507 {
508 	debug_active_fini(ref);
509 	GEM_BUG_ON(atomic_read(&ref->count));
510 	GEM_BUG_ON(work_pending(&ref->work));
511 	GEM_BUG_ON(!RB_EMPTY_ROOT(&ref->tree));
512 	mutex_destroy(&ref->mutex);
513 }
514 #endif
515 
516 static inline bool is_idle_barrier(struct active_node *node, u64 idx)
517 {
518 	return node->timeline == idx && !i915_active_fence_isset(&node->base);
519 }
520 
521 static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx)
522 {
523 	struct rb_node *prev, *p;
524 
525 	if (RB_EMPTY_ROOT(&ref->tree))
526 		return NULL;
527 
528 	spin_lock_irq(&ref->tree_lock);
529 	GEM_BUG_ON(i915_active_is_idle(ref));
530 
531 	/*
532 	 * Try to reuse any existing barrier nodes already allocated for this
533 	 * i915_active, due to overlapping active phases there is likely a
534 	 * node kept alive (as we reuse before parking). We prefer to reuse
535 	 * completely idle barriers (less hassle in manipulating the llists),
536 	 * but otherwise any will do.
537 	 */
538 	if (ref->cache && is_idle_barrier(ref->cache, idx)) {
539 		p = &ref->cache->node;
540 		goto match;
541 	}
542 
543 	prev = NULL;
544 	p = ref->tree.rb_node;
545 	while (p) {
546 		struct active_node *node =
547 			rb_entry(p, struct active_node, node);
548 
549 		if (is_idle_barrier(node, idx))
550 			goto match;
551 
552 		prev = p;
553 		if (node->timeline < idx)
554 			p = p->rb_right;
555 		else
556 			p = p->rb_left;
557 	}
558 
559 	/*
560 	 * No quick match, but we did find the leftmost rb_node for the
561 	 * kernel_context. Walk the rb_tree in-order to see if there were
562 	 * any idle-barriers on this timeline that we missed, or just use
563 	 * the first pending barrier.
564 	 */
565 	for (p = prev; p; p = rb_next(p)) {
566 		struct active_node *node =
567 			rb_entry(p, struct active_node, node);
568 		struct intel_engine_cs *engine;
569 
570 		if (node->timeline > idx)
571 			break;
572 
573 		if (node->timeline < idx)
574 			continue;
575 
576 		if (is_idle_barrier(node, idx))
577 			goto match;
578 
579 		/*
580 		 * The list of pending barriers is protected by the
581 		 * kernel_context timeline, which notably we do not hold
582 		 * here. i915_request_add_active_barriers() may consume
583 		 * the barrier before we claim it, so we have to check
584 		 * for success.
585 		 */
586 		engine = __barrier_to_engine(node);
587 		smp_rmb(); /* serialise with add_active_barriers */
588 		if (is_barrier(&node->base) &&
589 		    ____active_del_barrier(ref, node, engine))
590 			goto match;
591 	}
592 
593 	spin_unlock_irq(&ref->tree_lock);
594 
595 	return NULL;
596 
597 match:
598 	rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */
599 	if (p == &ref->cache->node)
600 		ref->cache = NULL;
601 	spin_unlock_irq(&ref->tree_lock);
602 
603 	return rb_entry(p, struct active_node, node);
604 }
605 
606 int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
607 					    struct intel_engine_cs *engine)
608 {
609 	intel_engine_mask_t tmp, mask = engine->mask;
610 	struct llist_node *first = NULL, *last = NULL;
611 	struct intel_gt *gt = engine->gt;
612 	int err;
613 
614 	GEM_BUG_ON(i915_active_is_idle(ref));
615 
616 	/* Wait until the previous preallocation is completed */
617 	while (!llist_empty(&ref->preallocated_barriers))
618 		cond_resched();
619 
620 	/*
621 	 * Preallocate a node for each physical engine supporting the target
622 	 * engine (remember virtual engines have more than one sibling).
623 	 * We can then use the preallocated nodes in
624 	 * i915_active_acquire_barrier()
625 	 */
626 	for_each_engine_masked(engine, gt, mask, tmp) {
627 		u64 idx = engine->kernel_context->timeline->fence_context;
628 		struct llist_node *prev = first;
629 		struct active_node *node;
630 
631 		node = reuse_idle_barrier(ref, idx);
632 		if (!node) {
633 			node = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
634 			if (!node) {
635 				err = ENOMEM;
636 				goto unwind;
637 			}
638 
639 			RCU_INIT_POINTER(node->base.fence, NULL);
640 			node->base.cb.func = node_retire;
641 			node->timeline = idx;
642 			node->ref = ref;
643 		}
644 
645 		if (!i915_active_fence_isset(&node->base)) {
646 			/*
647 			 * Mark this as being *our* unconnected proto-node.
648 			 *
649 			 * Since this node is not in any list, and we have
650 			 * decoupled it from the rbtree, we can reuse the
651 			 * request to indicate this is an idle-barrier node
652 			 * and then we can use the rb_node and list pointers
653 			 * for our tracking of the pending barrier.
654 			 */
655 			RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN));
656 			node->base.cb.node.prev = (void *)engine;
657 			atomic_inc(&ref->count);
658 		}
659 		GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN));
660 
661 		GEM_BUG_ON(barrier_to_engine(node) != engine);
662 		first = barrier_to_ll(node);
663 		first->next = prev;
664 		if (!last)
665 			last = first;
666 		intel_engine_pm_get(engine);
667 	}
668 
669 	GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers));
670 	llist_add_batch(first, last, &ref->preallocated_barriers);
671 
672 	return 0;
673 
674 unwind:
675 	while (first) {
676 		struct active_node *node = barrier_from_ll(first);
677 
678 		first = first->next;
679 
680 		atomic_dec(&ref->count);
681 		intel_engine_pm_put(barrier_to_engine(node));
682 
683 		kmem_cache_free(global.slab_cache, node);
684 	}
685 	return err;
686 }
687 
688 void i915_active_acquire_barrier(struct i915_active *ref)
689 {
690 	struct llist_node *pos, *next;
691 	unsigned long flags;
692 
693 	GEM_BUG_ON(i915_active_is_idle(ref));
694 
695 	/*
696 	 * Transfer the list of preallocated barriers into the
697 	 * i915_active rbtree, but only as proto-nodes. They will be
698 	 * populated by i915_request_add_active_barriers() to point to the
699 	 * request that will eventually release them.
700 	 */
701 	llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) {
702 		struct active_node *node = barrier_from_ll(pos);
703 		struct intel_engine_cs *engine = barrier_to_engine(node);
704 		struct rb_node **p, *parent;
705 
706 		spin_lock_irqsave_nested(&ref->tree_lock, flags,
707 					 SINGLE_DEPTH_NESTING);
708 		parent = NULL;
709 		p = &ref->tree.rb_node;
710 		while (*p) {
711 			struct active_node *it;
712 
713 			parent = *p;
714 
715 			it = rb_entry(parent, struct active_node, node);
716 			if (it->timeline < node->timeline)
717 				p = &parent->rb_right;
718 			else
719 				p = &parent->rb_left;
720 		}
721 		rb_link_node(&node->node, parent, p);
722 		rb_insert_color(&node->node, &ref->tree);
723 		spin_unlock_irqrestore(&ref->tree_lock, flags);
724 
725 		GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
726 		llist_add(barrier_to_ll(node), &engine->barrier_tasks);
727 		intel_engine_pm_put(engine);
728 	}
729 }
730 
731 static struct dma_fence **ll_to_fence_slot(struct llist_node *node)
732 {
733 	return __active_fence_slot(&barrier_from_ll(node)->base);
734 }
735 
736 void i915_request_add_active_barriers(struct i915_request *rq)
737 {
738 	struct intel_engine_cs *engine = rq->engine;
739 	struct llist_node *node, *next;
740 	unsigned long flags;
741 
742 	GEM_BUG_ON(!intel_context_is_barrier(rq->context));
743 	GEM_BUG_ON(intel_engine_is_virtual(engine));
744 	GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline);
745 
746 	node = llist_del_all(&engine->barrier_tasks);
747 	if (!node)
748 		return;
749 	/*
750 	 * Attach the list of proto-fences to the in-flight request such
751 	 * that the parent i915_active will be released when this request
752 	 * is retired.
753 	 */
754 	spin_lock_irqsave(&rq->lock, flags);
755 	llist_for_each_safe(node, next, node) {
756 		/* serialise with reuse_idle_barrier */
757 		smp_store_mb(*ll_to_fence_slot(node), &rq->fence);
758 		list_add_tail((struct list_head *)node, &rq->fence.cb_list);
759 	}
760 	spin_unlock_irqrestore(&rq->lock, flags);
761 }
762 
763 /*
764  * __i915_active_fence_set: Update the last active fence along its timeline
765  * @active: the active tracker
766  * @fence: the new fence (under construction)
767  *
768  * Records the new @fence as the last active fence along its timeline in
769  * this active tracker, moving the tracking callbacks from the previous
770  * fence onto this one. Returns the previous fence (if not already completed),
771  * which the caller must ensure is executed before the new fence. To ensure
772  * that the order of fences within the timeline of the i915_active_fence is
773  * understood, it should be locked by the caller.
774  */
775 struct dma_fence *
776 __i915_active_fence_set(struct i915_active_fence *active,
777 			struct dma_fence *fence)
778 {
779 	struct dma_fence *prev;
780 	unsigned long flags;
781 
782 	if (fence == rcu_access_pointer(active->fence))
783 		return fence;
784 
785 	GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
786 
787 	/*
788 	 * Consider that we have two threads arriving (A and B), with
789 	 * C already resident as the active->fence.
790 	 *
791 	 * A does the xchg first, and so it sees C or NULL depending
792 	 * on the timing of the interrupt handler. If it is NULL, the
793 	 * previous fence must have been signaled and we know that
794 	 * we are first on the timeline. If it is still present,
795 	 * we acquire the lock on that fence and serialise with the interrupt
796 	 * handler, in the process removing it from any future interrupt
797 	 * callback. A will then wait on C before executing (if present).
798 	 *
799 	 * As B is second, it sees A as the previous fence and so waits for
800 	 * it to complete its transition and takes over the occupancy for
801 	 * itself -- remembering that it needs to wait on A before executing.
802 	 *
803 	 * Note the strong ordering of the timeline also provides consistent
804 	 * nesting rules for the fence->lock; the inner lock is always the
805 	 * older lock.
806 	 */
807 	spin_lock_irqsave(fence->lock, flags);
808 	prev = xchg(__active_fence_slot(active), fence);
809 	if (prev) {
810 		GEM_BUG_ON(prev == fence);
811 		spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
812 		__list_del_entry(&active->cb.node);
813 		spin_unlock(prev->lock); /* serialise with prev->cb_list */
814 	}
815 	GEM_BUG_ON(rcu_access_pointer(active->fence) != fence);
816 	list_add_tail(&active->cb.node, &fence->cb_list);
817 	spin_unlock_irqrestore(fence->lock, flags);
818 
819 	return prev;
820 }
821 
822 int i915_active_fence_set(struct i915_active_fence *active,
823 			  struct i915_request *rq)
824 {
825 	struct dma_fence *fence;
826 	int err = 0;
827 
828 	/* Must maintain timeline ordering wrt previous active requests */
829 	rcu_read_lock();
830 	fence = __i915_active_fence_set(active, &rq->fence);
831 	if (fence) /* but the previous fence may not belong to that timeline! */
832 		fence = dma_fence_get_rcu(fence);
833 	rcu_read_unlock();
834 	if (fence) {
835 		err = i915_request_await_dma_fence(rq, fence);
836 		dma_fence_put(fence);
837 	}
838 
839 	return err;
840 }
841 
842 void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb)
843 {
844 	active_fence_cb(fence, cb);
845 }
846 
847 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
848 #include "selftests/i915_active.c"
849 #endif
850 
851 static void i915_global_active_shrink(void)
852 {
853 	kmem_cache_shrink(global.slab_cache);
854 }
855 
856 static void i915_global_active_exit(void)
857 {
858 	kmem_cache_destroy(global.slab_cache);
859 }
860 
861 static struct i915_global_active global = { {
862 	.shrink = i915_global_active_shrink,
863 	.exit = i915_global_active_exit,
864 } };
865 
866 int __init i915_global_active_init(void)
867 {
868 	global.slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN);
869 	if (!global.slab_cache)
870 		return -ENOMEM;
871 
872 	i915_global_register(&global.base);
873 	return 0;
874 }
875