1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2019 Intel Corporation 5 */ 6 7 #include <linux/debugobjects.h> 8 9 #include "gt/intel_context.h" 10 #include "gt/intel_engine_heartbeat.h" 11 #include "gt/intel_engine_pm.h" 12 #include "gt/intel_ring.h" 13 14 #include "i915_drv.h" 15 #include "i915_active.h" 16 17 /* 18 * Active refs memory management 19 * 20 * To be more economical with memory, we reap all the i915_active trees as 21 * they idle (when we know the active requests are inactive) and allocate the 22 * nodes from a local slab cache to hopefully reduce the fragmentation. 23 */ 24 static struct kmem_cache *slab_cache; 25 26 struct active_node { 27 struct rb_node node; 28 struct i915_active_fence base; 29 struct i915_active *ref; 30 u64 timeline; 31 }; 32 33 #define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node) 34 35 static inline struct active_node * 36 node_from_active(struct i915_active_fence *active) 37 { 38 return container_of(active, struct active_node, base); 39 } 40 41 #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers) 42 43 static inline bool is_barrier(const struct i915_active_fence *active) 44 { 45 return IS_ERR(rcu_access_pointer(active->fence)); 46 } 47 48 static inline struct llist_node *barrier_to_ll(struct active_node *node) 49 { 50 GEM_BUG_ON(!is_barrier(&node->base)); 51 return (struct llist_node *)&node->base.cb.node; 52 } 53 54 static inline struct intel_engine_cs * 55 __barrier_to_engine(struct active_node *node) 56 { 57 return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev); 58 } 59 60 static inline struct intel_engine_cs * 61 barrier_to_engine(struct active_node *node) 62 { 63 GEM_BUG_ON(!is_barrier(&node->base)); 64 return __barrier_to_engine(node); 65 } 66 67 static inline struct active_node *barrier_from_ll(struct llist_node *x) 68 { 69 return container_of((struct list_head *)x, 70 struct active_node, base.cb.node); 71 } 72 73 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS) 74 75 static void *active_debug_hint(void *addr) 76 { 77 struct i915_active *ref = addr; 78 79 return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref; 80 } 81 82 static const struct debug_obj_descr active_debug_desc = { 83 .name = "i915_active", 84 .debug_hint = active_debug_hint, 85 }; 86 87 static void debug_active_init(struct i915_active *ref) 88 { 89 debug_object_init(ref, &active_debug_desc); 90 } 91 92 static void debug_active_activate(struct i915_active *ref) 93 { 94 lockdep_assert_held(&ref->tree_lock); 95 if (!atomic_read(&ref->count)) /* before the first inc */ 96 debug_object_activate(ref, &active_debug_desc); 97 } 98 99 static void debug_active_deactivate(struct i915_active *ref) 100 { 101 lockdep_assert_held(&ref->tree_lock); 102 if (!atomic_read(&ref->count)) /* after the last dec */ 103 debug_object_deactivate(ref, &active_debug_desc); 104 } 105 106 static void debug_active_fini(struct i915_active *ref) 107 { 108 debug_object_free(ref, &active_debug_desc); 109 } 110 111 static void debug_active_assert(struct i915_active *ref) 112 { 113 debug_object_assert_init(ref, &active_debug_desc); 114 } 115 116 #else 117 118 static inline void debug_active_init(struct i915_active *ref) { } 119 static inline void debug_active_activate(struct i915_active *ref) { } 120 static inline void debug_active_deactivate(struct i915_active *ref) { } 121 static inline void debug_active_fini(struct i915_active *ref) { } 122 static inline void debug_active_assert(struct i915_active *ref) { } 123 124 #endif 125 126 static void 127 __active_retire(struct i915_active *ref) 128 { 129 struct rb_root root = RB_ROOT; 130 struct active_node *it, *n; 131 unsigned long flags; 132 133 GEM_BUG_ON(i915_active_is_idle(ref)); 134 135 /* return the unused nodes to our slabcache -- flushing the allocator */ 136 if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags)) 137 return; 138 139 GEM_BUG_ON(rcu_access_pointer(ref->excl.fence)); 140 debug_active_deactivate(ref); 141 142 /* Even if we have not used the cache, we may still have a barrier */ 143 if (!ref->cache) 144 ref->cache = fetch_node(ref->tree.rb_node); 145 146 /* Keep the MRU cached node for reuse */ 147 if (ref->cache) { 148 /* Discard all other nodes in the tree */ 149 rb_erase(&ref->cache->node, &ref->tree); 150 root = ref->tree; 151 152 /* Rebuild the tree with only the cached node */ 153 rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node); 154 rb_insert_color(&ref->cache->node, &ref->tree); 155 GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node); 156 157 /* Make the cached node available for reuse with any timeline */ 158 ref->cache->timeline = 0; /* needs cmpxchg(u64) */ 159 } 160 161 spin_unlock_irqrestore(&ref->tree_lock, flags); 162 163 /* After the final retire, the entire struct may be freed */ 164 if (ref->retire) 165 ref->retire(ref); 166 167 /* ... except if you wait on it, you must manage your own references! */ 168 wake_up_var(ref); 169 170 /* Finally free the discarded timeline tree */ 171 rbtree_postorder_for_each_entry_safe(it, n, &root, node) { 172 GEM_BUG_ON(i915_active_fence_isset(&it->base)); 173 kmem_cache_free(slab_cache, it); 174 } 175 } 176 177 static void 178 active_work(struct work_struct *wrk) 179 { 180 struct i915_active *ref = container_of(wrk, typeof(*ref), work); 181 182 GEM_BUG_ON(!atomic_read(&ref->count)); 183 if (atomic_add_unless(&ref->count, -1, 1)) 184 return; 185 186 __active_retire(ref); 187 } 188 189 static void 190 active_retire(struct i915_active *ref) 191 { 192 GEM_BUG_ON(!atomic_read(&ref->count)); 193 if (atomic_add_unless(&ref->count, -1, 1)) 194 return; 195 196 if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) { 197 queue_work(system_unbound_wq, &ref->work); 198 return; 199 } 200 201 __active_retire(ref); 202 } 203 204 static inline struct dma_fence ** 205 __active_fence_slot(struct i915_active_fence *active) 206 { 207 return (struct dma_fence ** __force)&active->fence; 208 } 209 210 static inline bool 211 active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 212 { 213 struct i915_active_fence *active = 214 container_of(cb, typeof(*active), cb); 215 216 return cmpxchg(__active_fence_slot(active), fence, NULL) == fence; 217 } 218 219 static void 220 node_retire(struct dma_fence *fence, struct dma_fence_cb *cb) 221 { 222 if (active_fence_cb(fence, cb)) 223 active_retire(container_of(cb, struct active_node, base.cb)->ref); 224 } 225 226 static void 227 excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb) 228 { 229 if (active_fence_cb(fence, cb)) 230 active_retire(container_of(cb, struct i915_active, excl.cb)); 231 } 232 233 static struct active_node *__active_lookup(struct i915_active *ref, u64 idx) 234 { 235 struct active_node *it; 236 237 GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */ 238 239 /* 240 * We track the most recently used timeline to skip a rbtree search 241 * for the common case, under typical loads we never need the rbtree 242 * at all. We can reuse the last slot if it is empty, that is 243 * after the previous activity has been retired, or if it matches the 244 * current timeline. 245 */ 246 it = READ_ONCE(ref->cache); 247 if (it) { 248 u64 cached = READ_ONCE(it->timeline); 249 250 /* Once claimed, this slot will only belong to this idx */ 251 if (cached == idx) 252 return it; 253 254 /* 255 * An unclaimed cache [.timeline=0] can only be claimed once. 256 * 257 * If the value is already non-zero, some other thread has 258 * claimed the cache and we know that is does not match our 259 * idx. If, and only if, the timeline is currently zero is it 260 * worth competing to claim it atomically for ourselves (for 261 * only the winner of that race will cmpxchg return the old 262 * value of 0). 263 */ 264 if (!cached && !cmpxchg64(&it->timeline, 0, idx)) 265 return it; 266 } 267 268 BUILD_BUG_ON(offsetof(typeof(*it), node)); 269 270 /* While active, the tree can only be built; not destroyed */ 271 GEM_BUG_ON(i915_active_is_idle(ref)); 272 273 it = fetch_node(ref->tree.rb_node); 274 while (it) { 275 if (it->timeline < idx) { 276 it = fetch_node(it->node.rb_right); 277 } else if (it->timeline > idx) { 278 it = fetch_node(it->node.rb_left); 279 } else { 280 WRITE_ONCE(ref->cache, it); 281 break; 282 } 283 } 284 285 /* NB: If the tree rotated beneath us, we may miss our target. */ 286 return it; 287 } 288 289 static struct i915_active_fence * 290 active_instance(struct i915_active *ref, u64 idx) 291 { 292 struct active_node *node; 293 struct rb_node **p, *parent; 294 295 node = __active_lookup(ref, idx); 296 if (likely(node)) 297 return &node->base; 298 299 spin_lock_irq(&ref->tree_lock); 300 GEM_BUG_ON(i915_active_is_idle(ref)); 301 302 parent = NULL; 303 p = &ref->tree.rb_node; 304 while (*p) { 305 parent = *p; 306 307 node = rb_entry(parent, struct active_node, node); 308 if (node->timeline == idx) 309 goto out; 310 311 if (node->timeline < idx) 312 p = &parent->rb_right; 313 else 314 p = &parent->rb_left; 315 } 316 317 /* 318 * XXX: We should preallocate this before i915_active_ref() is ever 319 * called, but we cannot call into fs_reclaim() anyway, so use GFP_ATOMIC. 320 */ 321 node = kmem_cache_alloc(slab_cache, GFP_ATOMIC); 322 if (!node) 323 goto out; 324 325 __i915_active_fence_init(&node->base, NULL, node_retire); 326 node->ref = ref; 327 node->timeline = idx; 328 329 rb_link_node(&node->node, parent, p); 330 rb_insert_color(&node->node, &ref->tree); 331 332 out: 333 WRITE_ONCE(ref->cache, node); 334 spin_unlock_irq(&ref->tree_lock); 335 336 return &node->base; 337 } 338 339 void __i915_active_init(struct i915_active *ref, 340 int (*active)(struct i915_active *ref), 341 void (*retire)(struct i915_active *ref), 342 unsigned long flags, 343 struct lock_class_key *mkey, 344 struct lock_class_key *wkey) 345 { 346 debug_active_init(ref); 347 348 ref->flags = flags; 349 ref->active = active; 350 ref->retire = retire; 351 352 spin_lock_init(&ref->tree_lock); 353 ref->tree = RB_ROOT; 354 ref->cache = NULL; 355 356 init_llist_head(&ref->preallocated_barriers); 357 atomic_set(&ref->count, 0); 358 __mutex_init(&ref->mutex, "i915_active", mkey); 359 __i915_active_fence_init(&ref->excl, NULL, excl_retire); 360 INIT_WORK(&ref->work, active_work); 361 #if IS_ENABLED(CONFIG_LOCKDEP) 362 lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0); 363 #endif 364 } 365 366 static bool ____active_del_barrier(struct i915_active *ref, 367 struct active_node *node, 368 struct intel_engine_cs *engine) 369 370 { 371 struct llist_node *head = NULL, *tail = NULL; 372 struct llist_node *pos, *next; 373 374 GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context); 375 376 /* 377 * Rebuild the llist excluding our node. We may perform this 378 * outside of the kernel_context timeline mutex and so someone 379 * else may be manipulating the engine->barrier_tasks, in 380 * which case either we or they will be upset :) 381 * 382 * A second __active_del_barrier() will report failure to claim 383 * the active_node and the caller will just shrug and know not to 384 * claim ownership of its node. 385 * 386 * A concurrent i915_request_add_active_barriers() will miss adding 387 * any of the tasks, but we will try again on the next -- and since 388 * we are actively using the barrier, we know that there will be 389 * at least another opportunity when we idle. 390 */ 391 llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) { 392 if (node == barrier_from_ll(pos)) { 393 node = NULL; 394 continue; 395 } 396 397 pos->next = head; 398 head = pos; 399 if (!tail) 400 tail = pos; 401 } 402 if (head) 403 llist_add_batch(head, tail, &engine->barrier_tasks); 404 405 return !node; 406 } 407 408 static bool 409 __active_del_barrier(struct i915_active *ref, struct active_node *node) 410 { 411 return ____active_del_barrier(ref, node, barrier_to_engine(node)); 412 } 413 414 static bool 415 replace_barrier(struct i915_active *ref, struct i915_active_fence *active) 416 { 417 if (!is_barrier(active)) /* proto-node used by our idle barrier? */ 418 return false; 419 420 /* 421 * This request is on the kernel_context timeline, and so 422 * we can use it to substitute for the pending idle-barrer 423 * request that we want to emit on the kernel_context. 424 */ 425 __active_del_barrier(ref, node_from_active(active)); 426 return true; 427 } 428 429 int i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence) 430 { 431 struct i915_active_fence *active; 432 int err; 433 434 /* Prevent reaping in case we malloc/wait while building the tree */ 435 err = i915_active_acquire(ref); 436 if (err) 437 return err; 438 439 active = active_instance(ref, idx); 440 if (!active) { 441 err = -ENOMEM; 442 goto out; 443 } 444 445 if (replace_barrier(ref, active)) { 446 RCU_INIT_POINTER(active->fence, NULL); 447 atomic_dec(&ref->count); 448 } 449 if (!__i915_active_fence_set(active, fence)) 450 __i915_active_acquire(ref); 451 452 out: 453 i915_active_release(ref); 454 return err; 455 } 456 457 static struct dma_fence * 458 __i915_active_set_fence(struct i915_active *ref, 459 struct i915_active_fence *active, 460 struct dma_fence *fence) 461 { 462 struct dma_fence *prev; 463 464 if (replace_barrier(ref, active)) { 465 RCU_INIT_POINTER(active->fence, fence); 466 return NULL; 467 } 468 469 rcu_read_lock(); 470 prev = __i915_active_fence_set(active, fence); 471 if (prev) 472 prev = dma_fence_get_rcu(prev); 473 else 474 __i915_active_acquire(ref); 475 rcu_read_unlock(); 476 477 return prev; 478 } 479 480 static struct i915_active_fence * 481 __active_fence(struct i915_active *ref, u64 idx) 482 { 483 struct active_node *it; 484 485 it = __active_lookup(ref, idx); 486 if (unlikely(!it)) { /* Contention with parallel tree builders! */ 487 spin_lock_irq(&ref->tree_lock); 488 it = __active_lookup(ref, idx); 489 spin_unlock_irq(&ref->tree_lock); 490 } 491 GEM_BUG_ON(!it); /* slot must be preallocated */ 492 493 return &it->base; 494 } 495 496 struct dma_fence * 497 __i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence) 498 { 499 /* Only valid while active, see i915_active_acquire_for_context() */ 500 return __i915_active_set_fence(ref, __active_fence(ref, idx), fence); 501 } 502 503 struct dma_fence * 504 i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f) 505 { 506 /* We expect the caller to manage the exclusive timeline ordering */ 507 return __i915_active_set_fence(ref, &ref->excl, f); 508 } 509 510 bool i915_active_acquire_if_busy(struct i915_active *ref) 511 { 512 debug_active_assert(ref); 513 return atomic_add_unless(&ref->count, 1, 0); 514 } 515 516 static void __i915_active_activate(struct i915_active *ref) 517 { 518 spin_lock_irq(&ref->tree_lock); /* __active_retire() */ 519 if (!atomic_fetch_inc(&ref->count)) 520 debug_active_activate(ref); 521 spin_unlock_irq(&ref->tree_lock); 522 } 523 524 int i915_active_acquire(struct i915_active *ref) 525 { 526 int err; 527 528 if (i915_active_acquire_if_busy(ref)) 529 return 0; 530 531 if (!ref->active) { 532 __i915_active_activate(ref); 533 return 0; 534 } 535 536 err = mutex_lock_interruptible(&ref->mutex); 537 if (err) 538 return err; 539 540 if (likely(!i915_active_acquire_if_busy(ref))) { 541 err = ref->active(ref); 542 if (!err) 543 __i915_active_activate(ref); 544 } 545 546 mutex_unlock(&ref->mutex); 547 548 return err; 549 } 550 551 int i915_active_acquire_for_context(struct i915_active *ref, u64 idx) 552 { 553 struct i915_active_fence *active; 554 int err; 555 556 err = i915_active_acquire(ref); 557 if (err) 558 return err; 559 560 active = active_instance(ref, idx); 561 if (!active) { 562 i915_active_release(ref); 563 return -ENOMEM; 564 } 565 566 return 0; /* return with active ref */ 567 } 568 569 void i915_active_release(struct i915_active *ref) 570 { 571 debug_active_assert(ref); 572 active_retire(ref); 573 } 574 575 static void enable_signaling(struct i915_active_fence *active) 576 { 577 struct dma_fence *fence; 578 579 if (unlikely(is_barrier(active))) 580 return; 581 582 fence = i915_active_fence_get(active); 583 if (!fence) 584 return; 585 586 dma_fence_enable_sw_signaling(fence); 587 dma_fence_put(fence); 588 } 589 590 static int flush_barrier(struct active_node *it) 591 { 592 struct intel_engine_cs *engine; 593 594 if (likely(!is_barrier(&it->base))) 595 return 0; 596 597 engine = __barrier_to_engine(it); 598 smp_rmb(); /* serialise with add_active_barriers */ 599 if (!is_barrier(&it->base)) 600 return 0; 601 602 return intel_engine_flush_barriers(engine); 603 } 604 605 static int flush_lazy_signals(struct i915_active *ref) 606 { 607 struct active_node *it, *n; 608 int err = 0; 609 610 enable_signaling(&ref->excl); 611 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) { 612 err = flush_barrier(it); /* unconnected idle barrier? */ 613 if (err) 614 break; 615 616 enable_signaling(&it->base); 617 } 618 619 return err; 620 } 621 622 int __i915_active_wait(struct i915_active *ref, int state) 623 { 624 might_sleep(); 625 626 /* Any fence added after the wait begins will not be auto-signaled */ 627 if (i915_active_acquire_if_busy(ref)) { 628 int err; 629 630 err = flush_lazy_signals(ref); 631 i915_active_release(ref); 632 if (err) 633 return err; 634 635 if (___wait_var_event(ref, i915_active_is_idle(ref), 636 state, 0, 0, schedule())) 637 return -EINTR; 638 } 639 640 /* 641 * After the wait is complete, the caller may free the active. 642 * We have to flush any concurrent retirement before returning. 643 */ 644 flush_work(&ref->work); 645 return 0; 646 } 647 648 static int __await_active(struct i915_active_fence *active, 649 int (*fn)(void *arg, struct dma_fence *fence), 650 void *arg) 651 { 652 struct dma_fence *fence; 653 654 if (is_barrier(active)) /* XXX flush the barrier? */ 655 return 0; 656 657 fence = i915_active_fence_get(active); 658 if (fence) { 659 int err; 660 661 err = fn(arg, fence); 662 dma_fence_put(fence); 663 if (err < 0) 664 return err; 665 } 666 667 return 0; 668 } 669 670 struct wait_barrier { 671 struct wait_queue_entry base; 672 struct i915_active *ref; 673 }; 674 675 static int 676 barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key) 677 { 678 struct wait_barrier *wb = container_of(wq, typeof(*wb), base); 679 680 if (i915_active_is_idle(wb->ref)) { 681 list_del(&wq->entry); 682 i915_sw_fence_complete(wq->private); 683 kfree(wq); 684 } 685 686 return 0; 687 } 688 689 static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence) 690 { 691 struct wait_barrier *wb; 692 693 wb = kmalloc(sizeof(*wb), GFP_KERNEL); 694 if (unlikely(!wb)) 695 return -ENOMEM; 696 697 GEM_BUG_ON(i915_active_is_idle(ref)); 698 if (!i915_sw_fence_await(fence)) { 699 kfree(wb); 700 return -EINVAL; 701 } 702 703 wb->base.flags = 0; 704 wb->base.func = barrier_wake; 705 wb->base.private = fence; 706 wb->ref = ref; 707 708 add_wait_queue(__var_waitqueue(ref), &wb->base); 709 return 0; 710 } 711 712 static int await_active(struct i915_active *ref, 713 unsigned int flags, 714 int (*fn)(void *arg, struct dma_fence *fence), 715 void *arg, struct i915_sw_fence *barrier) 716 { 717 int err = 0; 718 719 if (!i915_active_acquire_if_busy(ref)) 720 return 0; 721 722 if (flags & I915_ACTIVE_AWAIT_EXCL && 723 rcu_access_pointer(ref->excl.fence)) { 724 err = __await_active(&ref->excl, fn, arg); 725 if (err) 726 goto out; 727 } 728 729 if (flags & I915_ACTIVE_AWAIT_ACTIVE) { 730 struct active_node *it, *n; 731 732 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) { 733 err = __await_active(&it->base, fn, arg); 734 if (err) 735 goto out; 736 } 737 } 738 739 if (flags & I915_ACTIVE_AWAIT_BARRIER) { 740 err = flush_lazy_signals(ref); 741 if (err) 742 goto out; 743 744 err = __await_barrier(ref, barrier); 745 if (err) 746 goto out; 747 } 748 749 out: 750 i915_active_release(ref); 751 return err; 752 } 753 754 static int rq_await_fence(void *arg, struct dma_fence *fence) 755 { 756 return i915_request_await_dma_fence(arg, fence); 757 } 758 759 int i915_request_await_active(struct i915_request *rq, 760 struct i915_active *ref, 761 unsigned int flags) 762 { 763 return await_active(ref, flags, rq_await_fence, rq, &rq->submit); 764 } 765 766 static int sw_await_fence(void *arg, struct dma_fence *fence) 767 { 768 return i915_sw_fence_await_dma_fence(arg, fence, 0, 769 GFP_NOWAIT | __GFP_NOWARN); 770 } 771 772 int i915_sw_fence_await_active(struct i915_sw_fence *fence, 773 struct i915_active *ref, 774 unsigned int flags) 775 { 776 return await_active(ref, flags, sw_await_fence, fence, fence); 777 } 778 779 void i915_active_fini(struct i915_active *ref) 780 { 781 debug_active_fini(ref); 782 GEM_BUG_ON(atomic_read(&ref->count)); 783 GEM_BUG_ON(work_pending(&ref->work)); 784 mutex_destroy(&ref->mutex); 785 786 if (ref->cache) 787 kmem_cache_free(slab_cache, ref->cache); 788 } 789 790 static inline bool is_idle_barrier(struct active_node *node, u64 idx) 791 { 792 return node->timeline == idx && !i915_active_fence_isset(&node->base); 793 } 794 795 static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx) 796 { 797 struct rb_node *prev, *p; 798 799 if (RB_EMPTY_ROOT(&ref->tree)) 800 return NULL; 801 802 GEM_BUG_ON(i915_active_is_idle(ref)); 803 804 /* 805 * Try to reuse any existing barrier nodes already allocated for this 806 * i915_active, due to overlapping active phases there is likely a 807 * node kept alive (as we reuse before parking). We prefer to reuse 808 * completely idle barriers (less hassle in manipulating the llists), 809 * but otherwise any will do. 810 */ 811 if (ref->cache && is_idle_barrier(ref->cache, idx)) { 812 p = &ref->cache->node; 813 goto match; 814 } 815 816 prev = NULL; 817 p = ref->tree.rb_node; 818 while (p) { 819 struct active_node *node = 820 rb_entry(p, struct active_node, node); 821 822 if (is_idle_barrier(node, idx)) 823 goto match; 824 825 prev = p; 826 if (node->timeline < idx) 827 p = READ_ONCE(p->rb_right); 828 else 829 p = READ_ONCE(p->rb_left); 830 } 831 832 /* 833 * No quick match, but we did find the leftmost rb_node for the 834 * kernel_context. Walk the rb_tree in-order to see if there were 835 * any idle-barriers on this timeline that we missed, or just use 836 * the first pending barrier. 837 */ 838 for (p = prev; p; p = rb_next(p)) { 839 struct active_node *node = 840 rb_entry(p, struct active_node, node); 841 struct intel_engine_cs *engine; 842 843 if (node->timeline > idx) 844 break; 845 846 if (node->timeline < idx) 847 continue; 848 849 if (is_idle_barrier(node, idx)) 850 goto match; 851 852 /* 853 * The list of pending barriers is protected by the 854 * kernel_context timeline, which notably we do not hold 855 * here. i915_request_add_active_barriers() may consume 856 * the barrier before we claim it, so we have to check 857 * for success. 858 */ 859 engine = __barrier_to_engine(node); 860 smp_rmb(); /* serialise with add_active_barriers */ 861 if (is_barrier(&node->base) && 862 ____active_del_barrier(ref, node, engine)) 863 goto match; 864 } 865 866 return NULL; 867 868 match: 869 spin_lock_irq(&ref->tree_lock); 870 rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */ 871 if (p == &ref->cache->node) 872 WRITE_ONCE(ref->cache, NULL); 873 spin_unlock_irq(&ref->tree_lock); 874 875 return rb_entry(p, struct active_node, node); 876 } 877 878 int i915_active_acquire_preallocate_barrier(struct i915_active *ref, 879 struct intel_engine_cs *engine) 880 { 881 intel_engine_mask_t tmp, mask = engine->mask; 882 struct llist_node *first = NULL, *last = NULL; 883 struct intel_gt *gt = engine->gt; 884 885 GEM_BUG_ON(i915_active_is_idle(ref)); 886 887 /* Wait until the previous preallocation is completed */ 888 while (!llist_empty(&ref->preallocated_barriers)) 889 cond_resched(); 890 891 /* 892 * Preallocate a node for each physical engine supporting the target 893 * engine (remember virtual engines have more than one sibling). 894 * We can then use the preallocated nodes in 895 * i915_active_acquire_barrier() 896 */ 897 GEM_BUG_ON(!mask); 898 for_each_engine_masked(engine, gt, mask, tmp) { 899 u64 idx = engine->kernel_context->timeline->fence_context; 900 struct llist_node *prev = first; 901 struct active_node *node; 902 903 rcu_read_lock(); 904 node = reuse_idle_barrier(ref, idx); 905 rcu_read_unlock(); 906 if (!node) { 907 node = kmem_cache_alloc(slab_cache, GFP_KERNEL); 908 if (!node) 909 goto unwind; 910 911 RCU_INIT_POINTER(node->base.fence, NULL); 912 node->base.cb.func = node_retire; 913 node->timeline = idx; 914 node->ref = ref; 915 } 916 917 if (!i915_active_fence_isset(&node->base)) { 918 /* 919 * Mark this as being *our* unconnected proto-node. 920 * 921 * Since this node is not in any list, and we have 922 * decoupled it from the rbtree, we can reuse the 923 * request to indicate this is an idle-barrier node 924 * and then we can use the rb_node and list pointers 925 * for our tracking of the pending barrier. 926 */ 927 RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN)); 928 node->base.cb.node.prev = (void *)engine; 929 __i915_active_acquire(ref); 930 } 931 GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN)); 932 933 GEM_BUG_ON(barrier_to_engine(node) != engine); 934 first = barrier_to_ll(node); 935 first->next = prev; 936 if (!last) 937 last = first; 938 intel_engine_pm_get(engine); 939 } 940 941 GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers)); 942 llist_add_batch(first, last, &ref->preallocated_barriers); 943 944 return 0; 945 946 unwind: 947 while (first) { 948 struct active_node *node = barrier_from_ll(first); 949 950 first = first->next; 951 952 atomic_dec(&ref->count); 953 intel_engine_pm_put(barrier_to_engine(node)); 954 955 kmem_cache_free(slab_cache, node); 956 } 957 return -ENOMEM; 958 } 959 960 void i915_active_acquire_barrier(struct i915_active *ref) 961 { 962 struct llist_node *pos, *next; 963 unsigned long flags; 964 965 GEM_BUG_ON(i915_active_is_idle(ref)); 966 967 /* 968 * Transfer the list of preallocated barriers into the 969 * i915_active rbtree, but only as proto-nodes. They will be 970 * populated by i915_request_add_active_barriers() to point to the 971 * request that will eventually release them. 972 */ 973 llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) { 974 struct active_node *node = barrier_from_ll(pos); 975 struct intel_engine_cs *engine = barrier_to_engine(node); 976 struct rb_node **p, *parent; 977 978 spin_lock_irqsave_nested(&ref->tree_lock, flags, 979 SINGLE_DEPTH_NESTING); 980 parent = NULL; 981 p = &ref->tree.rb_node; 982 while (*p) { 983 struct active_node *it; 984 985 parent = *p; 986 987 it = rb_entry(parent, struct active_node, node); 988 if (it->timeline < node->timeline) 989 p = &parent->rb_right; 990 else 991 p = &parent->rb_left; 992 } 993 rb_link_node(&node->node, parent, p); 994 rb_insert_color(&node->node, &ref->tree); 995 spin_unlock_irqrestore(&ref->tree_lock, flags); 996 997 GEM_BUG_ON(!intel_engine_pm_is_awake(engine)); 998 llist_add(barrier_to_ll(node), &engine->barrier_tasks); 999 intel_engine_pm_put_delay(engine, 1); 1000 } 1001 } 1002 1003 static struct dma_fence **ll_to_fence_slot(struct llist_node *node) 1004 { 1005 return __active_fence_slot(&barrier_from_ll(node)->base); 1006 } 1007 1008 void i915_request_add_active_barriers(struct i915_request *rq) 1009 { 1010 struct intel_engine_cs *engine = rq->engine; 1011 struct llist_node *node, *next; 1012 unsigned long flags; 1013 1014 GEM_BUG_ON(!intel_context_is_barrier(rq->context)); 1015 GEM_BUG_ON(intel_engine_is_virtual(engine)); 1016 GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline); 1017 1018 node = llist_del_all(&engine->barrier_tasks); 1019 if (!node) 1020 return; 1021 /* 1022 * Attach the list of proto-fences to the in-flight request such 1023 * that the parent i915_active will be released when this request 1024 * is retired. 1025 */ 1026 spin_lock_irqsave(&rq->lock, flags); 1027 llist_for_each_safe(node, next, node) { 1028 /* serialise with reuse_idle_barrier */ 1029 smp_store_mb(*ll_to_fence_slot(node), &rq->fence); 1030 list_add_tail((struct list_head *)node, &rq->fence.cb_list); 1031 } 1032 spin_unlock_irqrestore(&rq->lock, flags); 1033 } 1034 1035 /* 1036 * __i915_active_fence_set: Update the last active fence along its timeline 1037 * @active: the active tracker 1038 * @fence: the new fence (under construction) 1039 * 1040 * Records the new @fence as the last active fence along its timeline in 1041 * this active tracker, moving the tracking callbacks from the previous 1042 * fence onto this one. Returns the previous fence (if not already completed), 1043 * which the caller must ensure is executed before the new fence. To ensure 1044 * that the order of fences within the timeline of the i915_active_fence is 1045 * understood, it should be locked by the caller. 1046 */ 1047 struct dma_fence * 1048 __i915_active_fence_set(struct i915_active_fence *active, 1049 struct dma_fence *fence) 1050 { 1051 struct dma_fence *prev; 1052 unsigned long flags; 1053 1054 if (fence == rcu_access_pointer(active->fence)) 1055 return fence; 1056 1057 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)); 1058 1059 /* 1060 * Consider that we have two threads arriving (A and B), with 1061 * C already resident as the active->fence. 1062 * 1063 * A does the xchg first, and so it sees C or NULL depending 1064 * on the timing of the interrupt handler. If it is NULL, the 1065 * previous fence must have been signaled and we know that 1066 * we are first on the timeline. If it is still present, 1067 * we acquire the lock on that fence and serialise with the interrupt 1068 * handler, in the process removing it from any future interrupt 1069 * callback. A will then wait on C before executing (if present). 1070 * 1071 * As B is second, it sees A as the previous fence and so waits for 1072 * it to complete its transition and takes over the occupancy for 1073 * itself -- remembering that it needs to wait on A before executing. 1074 * 1075 * Note the strong ordering of the timeline also provides consistent 1076 * nesting rules for the fence->lock; the inner lock is always the 1077 * older lock. 1078 */ 1079 spin_lock_irqsave(fence->lock, flags); 1080 prev = xchg(__active_fence_slot(active), fence); 1081 if (prev) { 1082 GEM_BUG_ON(prev == fence); 1083 spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING); 1084 __list_del_entry(&active->cb.node); 1085 spin_unlock(prev->lock); /* serialise with prev->cb_list */ 1086 } 1087 list_add_tail(&active->cb.node, &fence->cb_list); 1088 spin_unlock_irqrestore(fence->lock, flags); 1089 1090 return prev; 1091 } 1092 1093 int i915_active_fence_set(struct i915_active_fence *active, 1094 struct i915_request *rq) 1095 { 1096 struct dma_fence *fence; 1097 int err = 0; 1098 1099 /* Must maintain timeline ordering wrt previous active requests */ 1100 rcu_read_lock(); 1101 fence = __i915_active_fence_set(active, &rq->fence); 1102 if (fence) /* but the previous fence may not belong to that timeline! */ 1103 fence = dma_fence_get_rcu(fence); 1104 rcu_read_unlock(); 1105 if (fence) { 1106 err = i915_request_await_dma_fence(rq, fence); 1107 dma_fence_put(fence); 1108 } 1109 1110 return err; 1111 } 1112 1113 void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb) 1114 { 1115 active_fence_cb(fence, cb); 1116 } 1117 1118 struct auto_active { 1119 struct i915_active base; 1120 struct kref ref; 1121 }; 1122 1123 struct i915_active *i915_active_get(struct i915_active *ref) 1124 { 1125 struct auto_active *aa = container_of(ref, typeof(*aa), base); 1126 1127 kref_get(&aa->ref); 1128 return &aa->base; 1129 } 1130 1131 static void auto_release(struct kref *ref) 1132 { 1133 struct auto_active *aa = container_of(ref, typeof(*aa), ref); 1134 1135 i915_active_fini(&aa->base); 1136 kfree(aa); 1137 } 1138 1139 void i915_active_put(struct i915_active *ref) 1140 { 1141 struct auto_active *aa = container_of(ref, typeof(*aa), base); 1142 1143 kref_put(&aa->ref, auto_release); 1144 } 1145 1146 static int auto_active(struct i915_active *ref) 1147 { 1148 i915_active_get(ref); 1149 return 0; 1150 } 1151 1152 static void auto_retire(struct i915_active *ref) 1153 { 1154 i915_active_put(ref); 1155 } 1156 1157 struct i915_active *i915_active_create(void) 1158 { 1159 struct auto_active *aa; 1160 1161 aa = kmalloc(sizeof(*aa), GFP_KERNEL); 1162 if (!aa) 1163 return NULL; 1164 1165 kref_init(&aa->ref); 1166 i915_active_init(&aa->base, auto_active, auto_retire, 0); 1167 1168 return &aa->base; 1169 } 1170 1171 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1172 #include "selftests/i915_active.c" 1173 #endif 1174 1175 void i915_active_module_exit(void) 1176 { 1177 kmem_cache_destroy(slab_cache); 1178 } 1179 1180 int __init i915_active_module_init(void) 1181 { 1182 slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN); 1183 if (!slab_cache) 1184 return -ENOMEM; 1185 1186 return 0; 1187 } 1188