1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2019 Intel Corporation 5 */ 6 7 #include <linux/debugobjects.h> 8 9 #include "gt/intel_context.h" 10 #include "gt/intel_engine_heartbeat.h" 11 #include "gt/intel_engine_pm.h" 12 #include "gt/intel_ring.h" 13 14 #include "i915_drv.h" 15 #include "i915_active.h" 16 17 /* 18 * Active refs memory management 19 * 20 * To be more economical with memory, we reap all the i915_active trees as 21 * they idle (when we know the active requests are inactive) and allocate the 22 * nodes from a local slab cache to hopefully reduce the fragmentation. 23 */ 24 static struct kmem_cache *slab_cache; 25 26 struct active_node { 27 struct rb_node node; 28 struct i915_active_fence base; 29 struct i915_active *ref; 30 u64 timeline; 31 }; 32 33 #define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node) 34 35 static inline struct active_node * 36 node_from_active(struct i915_active_fence *active) 37 { 38 return container_of(active, struct active_node, base); 39 } 40 41 #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers) 42 43 static inline bool is_barrier(const struct i915_active_fence *active) 44 { 45 return IS_ERR(rcu_access_pointer(active->fence)); 46 } 47 48 static inline struct llist_node *barrier_to_ll(struct active_node *node) 49 { 50 GEM_BUG_ON(!is_barrier(&node->base)); 51 return (struct llist_node *)&node->base.cb.node; 52 } 53 54 static inline struct intel_engine_cs * 55 __barrier_to_engine(struct active_node *node) 56 { 57 return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev); 58 } 59 60 static inline struct intel_engine_cs * 61 barrier_to_engine(struct active_node *node) 62 { 63 GEM_BUG_ON(!is_barrier(&node->base)); 64 return __barrier_to_engine(node); 65 } 66 67 static inline struct active_node *barrier_from_ll(struct llist_node *x) 68 { 69 return container_of((struct list_head *)x, 70 struct active_node, base.cb.node); 71 } 72 73 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS) 74 75 static void *active_debug_hint(void *addr) 76 { 77 struct i915_active *ref = addr; 78 79 return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref; 80 } 81 82 static const struct debug_obj_descr active_debug_desc = { 83 .name = "i915_active", 84 .debug_hint = active_debug_hint, 85 }; 86 87 static void debug_active_init(struct i915_active *ref) 88 { 89 debug_object_init(ref, &active_debug_desc); 90 } 91 92 static void debug_active_activate(struct i915_active *ref) 93 { 94 lockdep_assert_held(&ref->tree_lock); 95 debug_object_activate(ref, &active_debug_desc); 96 } 97 98 static void debug_active_deactivate(struct i915_active *ref) 99 { 100 lockdep_assert_held(&ref->tree_lock); 101 if (!atomic_read(&ref->count)) /* after the last dec */ 102 debug_object_deactivate(ref, &active_debug_desc); 103 } 104 105 static void debug_active_fini(struct i915_active *ref) 106 { 107 debug_object_free(ref, &active_debug_desc); 108 } 109 110 static void debug_active_assert(struct i915_active *ref) 111 { 112 debug_object_assert_init(ref, &active_debug_desc); 113 } 114 115 #else 116 117 static inline void debug_active_init(struct i915_active *ref) { } 118 static inline void debug_active_activate(struct i915_active *ref) { } 119 static inline void debug_active_deactivate(struct i915_active *ref) { } 120 static inline void debug_active_fini(struct i915_active *ref) { } 121 static inline void debug_active_assert(struct i915_active *ref) { } 122 123 #endif 124 125 static void 126 __active_retire(struct i915_active *ref) 127 { 128 struct rb_root root = RB_ROOT; 129 struct active_node *it, *n; 130 unsigned long flags; 131 132 GEM_BUG_ON(i915_active_is_idle(ref)); 133 134 /* return the unused nodes to our slabcache -- flushing the allocator */ 135 if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags)) 136 return; 137 138 GEM_BUG_ON(rcu_access_pointer(ref->excl.fence)); 139 debug_active_deactivate(ref); 140 141 /* Even if we have not used the cache, we may still have a barrier */ 142 if (!ref->cache) 143 ref->cache = fetch_node(ref->tree.rb_node); 144 145 /* Keep the MRU cached node for reuse */ 146 if (ref->cache) { 147 /* Discard all other nodes in the tree */ 148 rb_erase(&ref->cache->node, &ref->tree); 149 root = ref->tree; 150 151 /* Rebuild the tree with only the cached node */ 152 rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node); 153 rb_insert_color(&ref->cache->node, &ref->tree); 154 GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node); 155 156 /* Make the cached node available for reuse with any timeline */ 157 ref->cache->timeline = 0; /* needs cmpxchg(u64) */ 158 } 159 160 spin_unlock_irqrestore(&ref->tree_lock, flags); 161 162 /* After the final retire, the entire struct may be freed */ 163 if (ref->retire) 164 ref->retire(ref); 165 166 /* ... except if you wait on it, you must manage your own references! */ 167 wake_up_var(ref); 168 169 /* Finally free the discarded timeline tree */ 170 rbtree_postorder_for_each_entry_safe(it, n, &root, node) { 171 GEM_BUG_ON(i915_active_fence_isset(&it->base)); 172 kmem_cache_free(slab_cache, it); 173 } 174 } 175 176 static void 177 active_work(struct work_struct *wrk) 178 { 179 struct i915_active *ref = container_of(wrk, typeof(*ref), work); 180 181 GEM_BUG_ON(!atomic_read(&ref->count)); 182 if (atomic_add_unless(&ref->count, -1, 1)) 183 return; 184 185 __active_retire(ref); 186 } 187 188 static void 189 active_retire(struct i915_active *ref) 190 { 191 GEM_BUG_ON(!atomic_read(&ref->count)); 192 if (atomic_add_unless(&ref->count, -1, 1)) 193 return; 194 195 if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) { 196 queue_work(system_unbound_wq, &ref->work); 197 return; 198 } 199 200 __active_retire(ref); 201 } 202 203 static inline struct dma_fence ** 204 __active_fence_slot(struct i915_active_fence *active) 205 { 206 return (struct dma_fence ** __force)&active->fence; 207 } 208 209 static inline bool 210 active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 211 { 212 struct i915_active_fence *active = 213 container_of(cb, typeof(*active), cb); 214 215 return try_cmpxchg(__active_fence_slot(active), &fence, NULL); 216 } 217 218 static void 219 node_retire(struct dma_fence *fence, struct dma_fence_cb *cb) 220 { 221 if (active_fence_cb(fence, cb)) 222 active_retire(container_of(cb, struct active_node, base.cb)->ref); 223 } 224 225 static void 226 excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb) 227 { 228 if (active_fence_cb(fence, cb)) 229 active_retire(container_of(cb, struct i915_active, excl.cb)); 230 } 231 232 static struct active_node *__active_lookup(struct i915_active *ref, u64 idx) 233 { 234 struct active_node *it; 235 236 GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */ 237 238 /* 239 * We track the most recently used timeline to skip a rbtree search 240 * for the common case, under typical loads we never need the rbtree 241 * at all. We can reuse the last slot if it is empty, that is 242 * after the previous activity has been retired, or if it matches the 243 * current timeline. 244 */ 245 it = READ_ONCE(ref->cache); 246 if (it) { 247 u64 cached = READ_ONCE(it->timeline); 248 249 /* Once claimed, this slot will only belong to this idx */ 250 if (cached == idx) 251 return it; 252 253 /* 254 * An unclaimed cache [.timeline=0] can only be claimed once. 255 * 256 * If the value is already non-zero, some other thread has 257 * claimed the cache and we know that is does not match our 258 * idx. If, and only if, the timeline is currently zero is it 259 * worth competing to claim it atomically for ourselves (for 260 * only the winner of that race will cmpxchg succeed). 261 */ 262 if (!cached && try_cmpxchg64(&it->timeline, &cached, idx)) 263 return it; 264 } 265 266 BUILD_BUG_ON(offsetof(typeof(*it), node)); 267 268 /* While active, the tree can only be built; not destroyed */ 269 GEM_BUG_ON(i915_active_is_idle(ref)); 270 271 it = fetch_node(ref->tree.rb_node); 272 while (it) { 273 if (it->timeline < idx) { 274 it = fetch_node(it->node.rb_right); 275 } else if (it->timeline > idx) { 276 it = fetch_node(it->node.rb_left); 277 } else { 278 WRITE_ONCE(ref->cache, it); 279 break; 280 } 281 } 282 283 /* NB: If the tree rotated beneath us, we may miss our target. */ 284 return it; 285 } 286 287 static struct i915_active_fence * 288 active_instance(struct i915_active *ref, u64 idx) 289 { 290 struct active_node *node; 291 struct rb_node **p, *parent; 292 293 node = __active_lookup(ref, idx); 294 if (likely(node)) 295 return &node->base; 296 297 spin_lock_irq(&ref->tree_lock); 298 GEM_BUG_ON(i915_active_is_idle(ref)); 299 300 parent = NULL; 301 p = &ref->tree.rb_node; 302 while (*p) { 303 parent = *p; 304 305 node = rb_entry(parent, struct active_node, node); 306 if (node->timeline == idx) 307 goto out; 308 309 if (node->timeline < idx) 310 p = &parent->rb_right; 311 else 312 p = &parent->rb_left; 313 } 314 315 /* 316 * XXX: We should preallocate this before i915_active_ref() is ever 317 * called, but we cannot call into fs_reclaim() anyway, so use GFP_ATOMIC. 318 */ 319 node = kmem_cache_alloc(slab_cache, GFP_ATOMIC); 320 if (!node) 321 goto out; 322 323 __i915_active_fence_init(&node->base, NULL, node_retire); 324 node->ref = ref; 325 node->timeline = idx; 326 327 rb_link_node(&node->node, parent, p); 328 rb_insert_color(&node->node, &ref->tree); 329 330 out: 331 WRITE_ONCE(ref->cache, node); 332 spin_unlock_irq(&ref->tree_lock); 333 334 return &node->base; 335 } 336 337 void __i915_active_init(struct i915_active *ref, 338 int (*active)(struct i915_active *ref), 339 void (*retire)(struct i915_active *ref), 340 unsigned long flags, 341 struct lock_class_key *mkey, 342 struct lock_class_key *wkey) 343 { 344 debug_active_init(ref); 345 346 ref->flags = flags; 347 ref->active = active; 348 ref->retire = retire; 349 350 spin_lock_init(&ref->tree_lock); 351 ref->tree = RB_ROOT; 352 ref->cache = NULL; 353 354 init_llist_head(&ref->preallocated_barriers); 355 atomic_set(&ref->count, 0); 356 __mutex_init(&ref->mutex, "i915_active", mkey); 357 __i915_active_fence_init(&ref->excl, NULL, excl_retire); 358 INIT_WORK(&ref->work, active_work); 359 #if IS_ENABLED(CONFIG_LOCKDEP) 360 lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0); 361 #endif 362 } 363 364 static bool ____active_del_barrier(struct i915_active *ref, 365 struct active_node *node, 366 struct intel_engine_cs *engine) 367 368 { 369 struct llist_node *head = NULL, *tail = NULL; 370 struct llist_node *pos, *next; 371 372 GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context); 373 374 /* 375 * Rebuild the llist excluding our node. We may perform this 376 * outside of the kernel_context timeline mutex and so someone 377 * else may be manipulating the engine->barrier_tasks, in 378 * which case either we or they will be upset :) 379 * 380 * A second __active_del_barrier() will report failure to claim 381 * the active_node and the caller will just shrug and know not to 382 * claim ownership of its node. 383 * 384 * A concurrent i915_request_add_active_barriers() will miss adding 385 * any of the tasks, but we will try again on the next -- and since 386 * we are actively using the barrier, we know that there will be 387 * at least another opportunity when we idle. 388 */ 389 llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) { 390 if (node == barrier_from_ll(pos)) { 391 node = NULL; 392 continue; 393 } 394 395 pos->next = head; 396 head = pos; 397 if (!tail) 398 tail = pos; 399 } 400 if (head) 401 llist_add_batch(head, tail, &engine->barrier_tasks); 402 403 return !node; 404 } 405 406 static bool 407 __active_del_barrier(struct i915_active *ref, struct active_node *node) 408 { 409 return ____active_del_barrier(ref, node, barrier_to_engine(node)); 410 } 411 412 static bool 413 replace_barrier(struct i915_active *ref, struct i915_active_fence *active) 414 { 415 if (!is_barrier(active)) /* proto-node used by our idle barrier? */ 416 return false; 417 418 /* 419 * This request is on the kernel_context timeline, and so 420 * we can use it to substitute for the pending idle-barrer 421 * request that we want to emit on the kernel_context. 422 */ 423 return __active_del_barrier(ref, node_from_active(active)); 424 } 425 426 int i915_active_add_request(struct i915_active *ref, struct i915_request *rq) 427 { 428 u64 idx = i915_request_timeline(rq)->fence_context; 429 struct dma_fence *fence = &rq->fence; 430 struct i915_active_fence *active; 431 int err; 432 433 /* Prevent reaping in case we malloc/wait while building the tree */ 434 err = i915_active_acquire(ref); 435 if (err) 436 return err; 437 438 do { 439 active = active_instance(ref, idx); 440 if (!active) { 441 err = -ENOMEM; 442 goto out; 443 } 444 445 if (replace_barrier(ref, active)) { 446 RCU_INIT_POINTER(active->fence, NULL); 447 atomic_dec(&ref->count); 448 } 449 } while (unlikely(is_barrier(active))); 450 451 fence = __i915_active_fence_set(active, fence); 452 if (!fence) 453 __i915_active_acquire(ref); 454 else 455 dma_fence_put(fence); 456 457 out: 458 i915_active_release(ref); 459 return err; 460 } 461 462 static struct dma_fence * 463 __i915_active_set_fence(struct i915_active *ref, 464 struct i915_active_fence *active, 465 struct dma_fence *fence) 466 { 467 struct dma_fence *prev; 468 469 if (replace_barrier(ref, active)) { 470 RCU_INIT_POINTER(active->fence, fence); 471 return NULL; 472 } 473 474 prev = __i915_active_fence_set(active, fence); 475 if (!prev) 476 __i915_active_acquire(ref); 477 478 return prev; 479 } 480 481 struct dma_fence * 482 i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f) 483 { 484 /* We expect the caller to manage the exclusive timeline ordering */ 485 return __i915_active_set_fence(ref, &ref->excl, f); 486 } 487 488 bool i915_active_acquire_if_busy(struct i915_active *ref) 489 { 490 debug_active_assert(ref); 491 return atomic_add_unless(&ref->count, 1, 0); 492 } 493 494 static void __i915_active_activate(struct i915_active *ref) 495 { 496 spin_lock_irq(&ref->tree_lock); /* __active_retire() */ 497 if (!atomic_fetch_inc(&ref->count)) 498 debug_active_activate(ref); 499 spin_unlock_irq(&ref->tree_lock); 500 } 501 502 int i915_active_acquire(struct i915_active *ref) 503 { 504 int err; 505 506 if (i915_active_acquire_if_busy(ref)) 507 return 0; 508 509 if (!ref->active) { 510 __i915_active_activate(ref); 511 return 0; 512 } 513 514 err = mutex_lock_interruptible(&ref->mutex); 515 if (err) 516 return err; 517 518 if (likely(!i915_active_acquire_if_busy(ref))) { 519 err = ref->active(ref); 520 if (!err) 521 __i915_active_activate(ref); 522 } 523 524 mutex_unlock(&ref->mutex); 525 526 return err; 527 } 528 529 void i915_active_release(struct i915_active *ref) 530 { 531 debug_active_assert(ref); 532 active_retire(ref); 533 } 534 535 static void enable_signaling(struct i915_active_fence *active) 536 { 537 struct dma_fence *fence; 538 539 if (unlikely(is_barrier(active))) 540 return; 541 542 fence = i915_active_fence_get(active); 543 if (!fence) 544 return; 545 546 dma_fence_enable_sw_signaling(fence); 547 dma_fence_put(fence); 548 } 549 550 static int flush_barrier(struct active_node *it) 551 { 552 struct intel_engine_cs *engine; 553 554 if (likely(!is_barrier(&it->base))) 555 return 0; 556 557 engine = __barrier_to_engine(it); 558 smp_rmb(); /* serialise with add_active_barriers */ 559 if (!is_barrier(&it->base)) 560 return 0; 561 562 return intel_engine_flush_barriers(engine); 563 } 564 565 static int flush_lazy_signals(struct i915_active *ref) 566 { 567 struct active_node *it, *n; 568 int err = 0; 569 570 enable_signaling(&ref->excl); 571 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) { 572 err = flush_barrier(it); /* unconnected idle barrier? */ 573 if (err) 574 break; 575 576 enable_signaling(&it->base); 577 } 578 579 return err; 580 } 581 582 int __i915_active_wait(struct i915_active *ref, int state) 583 { 584 might_sleep(); 585 586 /* Any fence added after the wait begins will not be auto-signaled */ 587 if (i915_active_acquire_if_busy(ref)) { 588 int err; 589 590 err = flush_lazy_signals(ref); 591 i915_active_release(ref); 592 if (err) 593 return err; 594 595 if (___wait_var_event(ref, i915_active_is_idle(ref), 596 state, 0, 0, schedule())) 597 return -EINTR; 598 } 599 600 /* 601 * After the wait is complete, the caller may free the active. 602 * We have to flush any concurrent retirement before returning. 603 */ 604 flush_work(&ref->work); 605 return 0; 606 } 607 608 static int __await_active(struct i915_active_fence *active, 609 int (*fn)(void *arg, struct dma_fence *fence), 610 void *arg) 611 { 612 struct dma_fence *fence; 613 614 if (is_barrier(active)) /* XXX flush the barrier? */ 615 return 0; 616 617 fence = i915_active_fence_get(active); 618 if (fence) { 619 int err; 620 621 err = fn(arg, fence); 622 dma_fence_put(fence); 623 if (err < 0) 624 return err; 625 } 626 627 return 0; 628 } 629 630 struct wait_barrier { 631 struct wait_queue_entry base; 632 struct i915_active *ref; 633 }; 634 635 static int 636 barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key) 637 { 638 struct wait_barrier *wb = container_of(wq, typeof(*wb), base); 639 640 if (i915_active_is_idle(wb->ref)) { 641 list_del(&wq->entry); 642 i915_sw_fence_complete(wq->private); 643 kfree(wq); 644 } 645 646 return 0; 647 } 648 649 static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence) 650 { 651 struct wait_barrier *wb; 652 653 wb = kmalloc(sizeof(*wb), GFP_KERNEL); 654 if (unlikely(!wb)) 655 return -ENOMEM; 656 657 GEM_BUG_ON(i915_active_is_idle(ref)); 658 if (!i915_sw_fence_await(fence)) { 659 kfree(wb); 660 return -EINVAL; 661 } 662 663 wb->base.flags = 0; 664 wb->base.func = barrier_wake; 665 wb->base.private = fence; 666 wb->ref = ref; 667 668 add_wait_queue(__var_waitqueue(ref), &wb->base); 669 return 0; 670 } 671 672 static int await_active(struct i915_active *ref, 673 unsigned int flags, 674 int (*fn)(void *arg, struct dma_fence *fence), 675 void *arg, struct i915_sw_fence *barrier) 676 { 677 int err = 0; 678 679 if (!i915_active_acquire_if_busy(ref)) 680 return 0; 681 682 if (flags & I915_ACTIVE_AWAIT_EXCL && 683 rcu_access_pointer(ref->excl.fence)) { 684 err = __await_active(&ref->excl, fn, arg); 685 if (err) 686 goto out; 687 } 688 689 if (flags & I915_ACTIVE_AWAIT_ACTIVE) { 690 struct active_node *it, *n; 691 692 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) { 693 err = __await_active(&it->base, fn, arg); 694 if (err) 695 goto out; 696 } 697 } 698 699 if (flags & I915_ACTIVE_AWAIT_BARRIER) { 700 err = flush_lazy_signals(ref); 701 if (err) 702 goto out; 703 704 err = __await_barrier(ref, barrier); 705 if (err) 706 goto out; 707 } 708 709 out: 710 i915_active_release(ref); 711 return err; 712 } 713 714 static int rq_await_fence(void *arg, struct dma_fence *fence) 715 { 716 return i915_request_await_dma_fence(arg, fence); 717 } 718 719 int i915_request_await_active(struct i915_request *rq, 720 struct i915_active *ref, 721 unsigned int flags) 722 { 723 return await_active(ref, flags, rq_await_fence, rq, &rq->submit); 724 } 725 726 static int sw_await_fence(void *arg, struct dma_fence *fence) 727 { 728 return i915_sw_fence_await_dma_fence(arg, fence, 0, 729 GFP_NOWAIT | __GFP_NOWARN); 730 } 731 732 int i915_sw_fence_await_active(struct i915_sw_fence *fence, 733 struct i915_active *ref, 734 unsigned int flags) 735 { 736 return await_active(ref, flags, sw_await_fence, fence, fence); 737 } 738 739 void i915_active_fini(struct i915_active *ref) 740 { 741 debug_active_fini(ref); 742 GEM_BUG_ON(atomic_read(&ref->count)); 743 GEM_BUG_ON(work_pending(&ref->work)); 744 mutex_destroy(&ref->mutex); 745 746 if (ref->cache) 747 kmem_cache_free(slab_cache, ref->cache); 748 } 749 750 static inline bool is_idle_barrier(struct active_node *node, u64 idx) 751 { 752 return node->timeline == idx && !i915_active_fence_isset(&node->base); 753 } 754 755 static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx) 756 { 757 struct rb_node *prev, *p; 758 759 if (RB_EMPTY_ROOT(&ref->tree)) 760 return NULL; 761 762 GEM_BUG_ON(i915_active_is_idle(ref)); 763 764 /* 765 * Try to reuse any existing barrier nodes already allocated for this 766 * i915_active, due to overlapping active phases there is likely a 767 * node kept alive (as we reuse before parking). We prefer to reuse 768 * completely idle barriers (less hassle in manipulating the llists), 769 * but otherwise any will do. 770 */ 771 if (ref->cache && is_idle_barrier(ref->cache, idx)) { 772 p = &ref->cache->node; 773 goto match; 774 } 775 776 prev = NULL; 777 p = ref->tree.rb_node; 778 while (p) { 779 struct active_node *node = 780 rb_entry(p, struct active_node, node); 781 782 if (is_idle_barrier(node, idx)) 783 goto match; 784 785 prev = p; 786 if (node->timeline < idx) 787 p = READ_ONCE(p->rb_right); 788 else 789 p = READ_ONCE(p->rb_left); 790 } 791 792 /* 793 * No quick match, but we did find the leftmost rb_node for the 794 * kernel_context. Walk the rb_tree in-order to see if there were 795 * any idle-barriers on this timeline that we missed, or just use 796 * the first pending barrier. 797 */ 798 for (p = prev; p; p = rb_next(p)) { 799 struct active_node *node = 800 rb_entry(p, struct active_node, node); 801 struct intel_engine_cs *engine; 802 803 if (node->timeline > idx) 804 break; 805 806 if (node->timeline < idx) 807 continue; 808 809 if (is_idle_barrier(node, idx)) 810 goto match; 811 812 /* 813 * The list of pending barriers is protected by the 814 * kernel_context timeline, which notably we do not hold 815 * here. i915_request_add_active_barriers() may consume 816 * the barrier before we claim it, so we have to check 817 * for success. 818 */ 819 engine = __barrier_to_engine(node); 820 smp_rmb(); /* serialise with add_active_barriers */ 821 if (is_barrier(&node->base) && 822 ____active_del_barrier(ref, node, engine)) 823 goto match; 824 } 825 826 return NULL; 827 828 match: 829 spin_lock_irq(&ref->tree_lock); 830 rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */ 831 if (p == &ref->cache->node) 832 WRITE_ONCE(ref->cache, NULL); 833 spin_unlock_irq(&ref->tree_lock); 834 835 return rb_entry(p, struct active_node, node); 836 } 837 838 int i915_active_acquire_preallocate_barrier(struct i915_active *ref, 839 struct intel_engine_cs *engine) 840 { 841 intel_engine_mask_t tmp, mask = engine->mask; 842 struct llist_node *first = NULL, *last = NULL; 843 struct intel_gt *gt = engine->gt; 844 845 GEM_BUG_ON(i915_active_is_idle(ref)); 846 847 /* Wait until the previous preallocation is completed */ 848 while (!llist_empty(&ref->preallocated_barriers)) 849 cond_resched(); 850 851 /* 852 * Preallocate a node for each physical engine supporting the target 853 * engine (remember virtual engines have more than one sibling). 854 * We can then use the preallocated nodes in 855 * i915_active_acquire_barrier() 856 */ 857 GEM_BUG_ON(!mask); 858 for_each_engine_masked(engine, gt, mask, tmp) { 859 u64 idx = engine->kernel_context->timeline->fence_context; 860 struct llist_node *prev = first; 861 struct active_node *node; 862 863 rcu_read_lock(); 864 node = reuse_idle_barrier(ref, idx); 865 rcu_read_unlock(); 866 if (!node) { 867 node = kmem_cache_alloc(slab_cache, GFP_KERNEL); 868 if (!node) 869 goto unwind; 870 871 RCU_INIT_POINTER(node->base.fence, NULL); 872 node->base.cb.func = node_retire; 873 node->timeline = idx; 874 node->ref = ref; 875 } 876 877 if (!i915_active_fence_isset(&node->base)) { 878 /* 879 * Mark this as being *our* unconnected proto-node. 880 * 881 * Since this node is not in any list, and we have 882 * decoupled it from the rbtree, we can reuse the 883 * request to indicate this is an idle-barrier node 884 * and then we can use the rb_node and list pointers 885 * for our tracking of the pending barrier. 886 */ 887 RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN)); 888 node->base.cb.node.prev = (void *)engine; 889 __i915_active_acquire(ref); 890 } 891 GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN)); 892 893 GEM_BUG_ON(barrier_to_engine(node) != engine); 894 first = barrier_to_ll(node); 895 first->next = prev; 896 if (!last) 897 last = first; 898 intel_engine_pm_get(engine); 899 } 900 901 GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers)); 902 llist_add_batch(first, last, &ref->preallocated_barriers); 903 904 return 0; 905 906 unwind: 907 while (first) { 908 struct active_node *node = barrier_from_ll(first); 909 910 first = first->next; 911 912 atomic_dec(&ref->count); 913 intel_engine_pm_put(barrier_to_engine(node)); 914 915 kmem_cache_free(slab_cache, node); 916 } 917 return -ENOMEM; 918 } 919 920 void i915_active_acquire_barrier(struct i915_active *ref) 921 { 922 struct llist_node *pos, *next; 923 unsigned long flags; 924 925 GEM_BUG_ON(i915_active_is_idle(ref)); 926 927 /* 928 * Transfer the list of preallocated barriers into the 929 * i915_active rbtree, but only as proto-nodes. They will be 930 * populated by i915_request_add_active_barriers() to point to the 931 * request that will eventually release them. 932 */ 933 llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) { 934 struct active_node *node = barrier_from_ll(pos); 935 struct intel_engine_cs *engine = barrier_to_engine(node); 936 struct rb_node **p, *parent; 937 938 spin_lock_irqsave_nested(&ref->tree_lock, flags, 939 SINGLE_DEPTH_NESTING); 940 parent = NULL; 941 p = &ref->tree.rb_node; 942 while (*p) { 943 struct active_node *it; 944 945 parent = *p; 946 947 it = rb_entry(parent, struct active_node, node); 948 if (it->timeline < node->timeline) 949 p = &parent->rb_right; 950 else 951 p = &parent->rb_left; 952 } 953 rb_link_node(&node->node, parent, p); 954 rb_insert_color(&node->node, &ref->tree); 955 spin_unlock_irqrestore(&ref->tree_lock, flags); 956 957 GEM_BUG_ON(!intel_engine_pm_is_awake(engine)); 958 llist_add(barrier_to_ll(node), &engine->barrier_tasks); 959 intel_engine_pm_put_delay(engine, 2); 960 } 961 } 962 963 static struct dma_fence **ll_to_fence_slot(struct llist_node *node) 964 { 965 return __active_fence_slot(&barrier_from_ll(node)->base); 966 } 967 968 void i915_request_add_active_barriers(struct i915_request *rq) 969 { 970 struct intel_engine_cs *engine = rq->engine; 971 struct llist_node *node, *next; 972 unsigned long flags; 973 974 GEM_BUG_ON(!intel_context_is_barrier(rq->context)); 975 GEM_BUG_ON(intel_engine_is_virtual(engine)); 976 GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline); 977 978 node = llist_del_all(&engine->barrier_tasks); 979 if (!node) 980 return; 981 /* 982 * Attach the list of proto-fences to the in-flight request such 983 * that the parent i915_active will be released when this request 984 * is retired. 985 */ 986 spin_lock_irqsave(&rq->lock, flags); 987 llist_for_each_safe(node, next, node) { 988 /* serialise with reuse_idle_barrier */ 989 smp_store_mb(*ll_to_fence_slot(node), &rq->fence); 990 list_add_tail((struct list_head *)node, &rq->fence.cb_list); 991 } 992 spin_unlock_irqrestore(&rq->lock, flags); 993 } 994 995 /* 996 * __i915_active_fence_set: Update the last active fence along its timeline 997 * @active: the active tracker 998 * @fence: the new fence (under construction) 999 * 1000 * Records the new @fence as the last active fence along its timeline in 1001 * this active tracker, moving the tracking callbacks from the previous 1002 * fence onto this one. Gets and returns a reference to the previous fence 1003 * (if not already completed), which the caller must put after making sure 1004 * that it is executed before the new fence. To ensure that the order of 1005 * fences within the timeline of the i915_active_fence is understood, it 1006 * should be locked by the caller. 1007 */ 1008 struct dma_fence * 1009 __i915_active_fence_set(struct i915_active_fence *active, 1010 struct dma_fence *fence) 1011 { 1012 struct dma_fence *prev; 1013 unsigned long flags; 1014 1015 /* 1016 * In case of fences embedded in i915_requests, their memory is 1017 * SLAB_FAILSAFE_BY_RCU, then it can be reused right after release 1018 * by new requests. Then, there is a risk of passing back a pointer 1019 * to a new, completely unrelated fence that reuses the same memory 1020 * while tracked under a different active tracker. Combined with i915 1021 * perf open/close operations that build await dependencies between 1022 * engine kernel context requests and user requests from different 1023 * timelines, this can lead to dependency loops and infinite waits. 1024 * 1025 * As a countermeasure, we try to get a reference to the active->fence 1026 * first, so if we succeed and pass it back to our user then it is not 1027 * released and potentially reused by an unrelated request before the 1028 * user has a chance to set up an await dependency on it. 1029 */ 1030 prev = i915_active_fence_get(active); 1031 if (fence == prev) 1032 return fence; 1033 1034 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)); 1035 1036 /* 1037 * Consider that we have two threads arriving (A and B), with 1038 * C already resident as the active->fence. 1039 * 1040 * Both A and B have got a reference to C or NULL, depending on the 1041 * timing of the interrupt handler. Let's assume that if A has got C 1042 * then it has locked C first (before B). 1043 * 1044 * Note the strong ordering of the timeline also provides consistent 1045 * nesting rules for the fence->lock; the inner lock is always the 1046 * older lock. 1047 */ 1048 spin_lock_irqsave(fence->lock, flags); 1049 if (prev) 1050 spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING); 1051 1052 /* 1053 * A does the cmpxchg first, and so it sees C or NULL, as before, or 1054 * something else, depending on the timing of other threads and/or 1055 * interrupt handler. If not the same as before then A unlocks C if 1056 * applicable and retries, starting from an attempt to get a new 1057 * active->fence. Meanwhile, B follows the same path as A. 1058 * Once A succeeds with cmpxch, B fails again, retires, gets A from 1059 * active->fence, locks it as soon as A completes, and possibly 1060 * succeeds with cmpxchg. 1061 */ 1062 while (cmpxchg(__active_fence_slot(active), prev, fence) != prev) { 1063 if (prev) { 1064 spin_unlock(prev->lock); 1065 dma_fence_put(prev); 1066 } 1067 spin_unlock_irqrestore(fence->lock, flags); 1068 1069 prev = i915_active_fence_get(active); 1070 GEM_BUG_ON(prev == fence); 1071 1072 spin_lock_irqsave(fence->lock, flags); 1073 if (prev) 1074 spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING); 1075 } 1076 1077 /* 1078 * If prev is NULL then the previous fence must have been signaled 1079 * and we know that we are first on the timeline. If it is still 1080 * present then, having the lock on that fence already acquired, we 1081 * serialise with the interrupt handler, in the process of removing it 1082 * from any future interrupt callback. A will then wait on C before 1083 * executing (if present). 1084 * 1085 * As B is second, it sees A as the previous fence and so waits for 1086 * it to complete its transition and takes over the occupancy for 1087 * itself -- remembering that it needs to wait on A before executing. 1088 */ 1089 if (prev) { 1090 __list_del_entry(&active->cb.node); 1091 spin_unlock(prev->lock); /* serialise with prev->cb_list */ 1092 } 1093 list_add_tail(&active->cb.node, &fence->cb_list); 1094 spin_unlock_irqrestore(fence->lock, flags); 1095 1096 return prev; 1097 } 1098 1099 int i915_active_fence_set(struct i915_active_fence *active, 1100 struct i915_request *rq) 1101 { 1102 struct dma_fence *fence; 1103 int err = 0; 1104 1105 /* Must maintain timeline ordering wrt previous active requests */ 1106 fence = __i915_active_fence_set(active, &rq->fence); 1107 if (fence) { 1108 err = i915_request_await_dma_fence(rq, fence); 1109 dma_fence_put(fence); 1110 } 1111 1112 return err; 1113 } 1114 1115 void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb) 1116 { 1117 active_fence_cb(fence, cb); 1118 } 1119 1120 struct auto_active { 1121 struct i915_active base; 1122 struct kref ref; 1123 }; 1124 1125 struct i915_active *i915_active_get(struct i915_active *ref) 1126 { 1127 struct auto_active *aa = container_of(ref, typeof(*aa), base); 1128 1129 kref_get(&aa->ref); 1130 return &aa->base; 1131 } 1132 1133 static void auto_release(struct kref *ref) 1134 { 1135 struct auto_active *aa = container_of(ref, typeof(*aa), ref); 1136 1137 i915_active_fini(&aa->base); 1138 kfree(aa); 1139 } 1140 1141 void i915_active_put(struct i915_active *ref) 1142 { 1143 struct auto_active *aa = container_of(ref, typeof(*aa), base); 1144 1145 kref_put(&aa->ref, auto_release); 1146 } 1147 1148 static int auto_active(struct i915_active *ref) 1149 { 1150 i915_active_get(ref); 1151 return 0; 1152 } 1153 1154 static void auto_retire(struct i915_active *ref) 1155 { 1156 i915_active_put(ref); 1157 } 1158 1159 struct i915_active *i915_active_create(void) 1160 { 1161 struct auto_active *aa; 1162 1163 aa = kmalloc(sizeof(*aa), GFP_KERNEL); 1164 if (!aa) 1165 return NULL; 1166 1167 kref_init(&aa->ref); 1168 i915_active_init(&aa->base, auto_active, auto_retire, 0); 1169 1170 return &aa->base; 1171 } 1172 1173 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1174 #include "selftests/i915_active.c" 1175 #endif 1176 1177 void i915_active_module_exit(void) 1178 { 1179 kmem_cache_destroy(slab_cache); 1180 } 1181 1182 int __init i915_active_module_init(void) 1183 { 1184 slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN); 1185 if (!slab_cache) 1186 return -ENOMEM; 1187 1188 return 0; 1189 } 1190