xref: /linux/drivers/gpu/drm/i915/i915_active.c (revision 92d6295a29dba56148406a8452c69ab49787741b)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2019 Intel Corporation
5  */
6 
7 #include <linux/debugobjects.h>
8 
9 #include "gt/intel_context.h"
10 #include "gt/intel_engine_heartbeat.h"
11 #include "gt/intel_engine_pm.h"
12 #include "gt/intel_ring.h"
13 
14 #include "i915_drv.h"
15 #include "i915_active.h"
16 
17 /*
18  * Active refs memory management
19  *
20  * To be more economical with memory, we reap all the i915_active trees as
21  * they idle (when we know the active requests are inactive) and allocate the
22  * nodes from a local slab cache to hopefully reduce the fragmentation.
23  */
24 static struct kmem_cache *slab_cache;
25 
26 struct active_node {
27 	struct rb_node node;
28 	struct i915_active_fence base;
29 	struct i915_active *ref;
30 	u64 timeline;
31 };
32 
33 #define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node)
34 
35 static inline struct active_node *
36 node_from_active(struct i915_active_fence *active)
37 {
38 	return container_of(active, struct active_node, base);
39 }
40 
41 #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers)
42 
43 static inline bool is_barrier(const struct i915_active_fence *active)
44 {
45 	return IS_ERR(rcu_access_pointer(active->fence));
46 }
47 
48 static inline struct llist_node *barrier_to_ll(struct active_node *node)
49 {
50 	GEM_BUG_ON(!is_barrier(&node->base));
51 	return (struct llist_node *)&node->base.cb.node;
52 }
53 
54 static inline struct intel_engine_cs *
55 __barrier_to_engine(struct active_node *node)
56 {
57 	return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev);
58 }
59 
60 static inline struct intel_engine_cs *
61 barrier_to_engine(struct active_node *node)
62 {
63 	GEM_BUG_ON(!is_barrier(&node->base));
64 	return __barrier_to_engine(node);
65 }
66 
67 static inline struct active_node *barrier_from_ll(struct llist_node *x)
68 {
69 	return container_of((struct list_head *)x,
70 			    struct active_node, base.cb.node);
71 }
72 
73 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS)
74 
75 static void *active_debug_hint(void *addr)
76 {
77 	struct i915_active *ref = addr;
78 
79 	return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref;
80 }
81 
82 static const struct debug_obj_descr active_debug_desc = {
83 	.name = "i915_active",
84 	.debug_hint = active_debug_hint,
85 };
86 
87 static void debug_active_init(struct i915_active *ref)
88 {
89 	debug_object_init(ref, &active_debug_desc);
90 }
91 
92 static void debug_active_activate(struct i915_active *ref)
93 {
94 	lockdep_assert_held(&ref->tree_lock);
95 	debug_object_activate(ref, &active_debug_desc);
96 }
97 
98 static void debug_active_deactivate(struct i915_active *ref)
99 {
100 	lockdep_assert_held(&ref->tree_lock);
101 	if (!atomic_read(&ref->count)) /* after the last dec */
102 		debug_object_deactivate(ref, &active_debug_desc);
103 }
104 
105 static void debug_active_fini(struct i915_active *ref)
106 {
107 	debug_object_free(ref, &active_debug_desc);
108 }
109 
110 static void debug_active_assert(struct i915_active *ref)
111 {
112 	debug_object_assert_init(ref, &active_debug_desc);
113 }
114 
115 #else
116 
117 static inline void debug_active_init(struct i915_active *ref) { }
118 static inline void debug_active_activate(struct i915_active *ref) { }
119 static inline void debug_active_deactivate(struct i915_active *ref) { }
120 static inline void debug_active_fini(struct i915_active *ref) { }
121 static inline void debug_active_assert(struct i915_active *ref) { }
122 
123 #endif
124 
125 static void
126 __active_retire(struct i915_active *ref)
127 {
128 	struct rb_root root = RB_ROOT;
129 	struct active_node *it, *n;
130 	unsigned long flags;
131 
132 	GEM_BUG_ON(i915_active_is_idle(ref));
133 
134 	/* return the unused nodes to our slabcache -- flushing the allocator */
135 	if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags))
136 		return;
137 
138 	GEM_BUG_ON(rcu_access_pointer(ref->excl.fence));
139 	debug_active_deactivate(ref);
140 
141 	/* Even if we have not used the cache, we may still have a barrier */
142 	if (!ref->cache)
143 		ref->cache = fetch_node(ref->tree.rb_node);
144 
145 	/* Keep the MRU cached node for reuse */
146 	if (ref->cache) {
147 		/* Discard all other nodes in the tree */
148 		rb_erase(&ref->cache->node, &ref->tree);
149 		root = ref->tree;
150 
151 		/* Rebuild the tree with only the cached node */
152 		rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node);
153 		rb_insert_color(&ref->cache->node, &ref->tree);
154 		GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node);
155 
156 		/* Make the cached node available for reuse with any timeline */
157 		ref->cache->timeline = 0; /* needs cmpxchg(u64) */
158 	}
159 
160 	spin_unlock_irqrestore(&ref->tree_lock, flags);
161 
162 	/* After the final retire, the entire struct may be freed */
163 	if (ref->retire)
164 		ref->retire(ref);
165 
166 	/* ... except if you wait on it, you must manage your own references! */
167 	wake_up_var(ref);
168 
169 	/* Finally free the discarded timeline tree  */
170 	rbtree_postorder_for_each_entry_safe(it, n, &root, node) {
171 		GEM_BUG_ON(i915_active_fence_isset(&it->base));
172 		kmem_cache_free(slab_cache, it);
173 	}
174 }
175 
176 static void
177 active_work(struct work_struct *wrk)
178 {
179 	struct i915_active *ref = container_of(wrk, typeof(*ref), work);
180 
181 	GEM_BUG_ON(!atomic_read(&ref->count));
182 	if (atomic_add_unless(&ref->count, -1, 1))
183 		return;
184 
185 	__active_retire(ref);
186 }
187 
188 static void
189 active_retire(struct i915_active *ref)
190 {
191 	GEM_BUG_ON(!atomic_read(&ref->count));
192 	if (atomic_add_unless(&ref->count, -1, 1))
193 		return;
194 
195 	if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) {
196 		queue_work(system_unbound_wq, &ref->work);
197 		return;
198 	}
199 
200 	__active_retire(ref);
201 }
202 
203 static inline struct dma_fence **
204 __active_fence_slot(struct i915_active_fence *active)
205 {
206 	return (struct dma_fence ** __force)&active->fence;
207 }
208 
209 static inline bool
210 active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
211 {
212 	struct i915_active_fence *active =
213 		container_of(cb, typeof(*active), cb);
214 
215 	return try_cmpxchg(__active_fence_slot(active), &fence, NULL);
216 }
217 
218 static void
219 node_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
220 {
221 	if (active_fence_cb(fence, cb))
222 		active_retire(container_of(cb, struct active_node, base.cb)->ref);
223 }
224 
225 static void
226 excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
227 {
228 	if (active_fence_cb(fence, cb))
229 		active_retire(container_of(cb, struct i915_active, excl.cb));
230 }
231 
232 static struct active_node *__active_lookup(struct i915_active *ref, u64 idx)
233 {
234 	struct active_node *it;
235 
236 	GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */
237 
238 	/*
239 	 * We track the most recently used timeline to skip a rbtree search
240 	 * for the common case, under typical loads we never need the rbtree
241 	 * at all. We can reuse the last slot if it is empty, that is
242 	 * after the previous activity has been retired, or if it matches the
243 	 * current timeline.
244 	 */
245 	it = READ_ONCE(ref->cache);
246 	if (it) {
247 		u64 cached = READ_ONCE(it->timeline);
248 
249 		/* Once claimed, this slot will only belong to this idx */
250 		if (cached == idx)
251 			return it;
252 
253 		/*
254 		 * An unclaimed cache [.timeline=0] can only be claimed once.
255 		 *
256 		 * If the value is already non-zero, some other thread has
257 		 * claimed the cache and we know that is does not match our
258 		 * idx. If, and only if, the timeline is currently zero is it
259 		 * worth competing to claim it atomically for ourselves (for
260 		 * only the winner of that race will cmpxchg succeed).
261 		 */
262 		if (!cached && try_cmpxchg64(&it->timeline, &cached, idx))
263 			return it;
264 	}
265 
266 	BUILD_BUG_ON(offsetof(typeof(*it), node));
267 
268 	/* While active, the tree can only be built; not destroyed */
269 	GEM_BUG_ON(i915_active_is_idle(ref));
270 
271 	it = fetch_node(ref->tree.rb_node);
272 	while (it) {
273 		if (it->timeline < idx) {
274 			it = fetch_node(it->node.rb_right);
275 		} else if (it->timeline > idx) {
276 			it = fetch_node(it->node.rb_left);
277 		} else {
278 			WRITE_ONCE(ref->cache, it);
279 			break;
280 		}
281 	}
282 
283 	/* NB: If the tree rotated beneath us, we may miss our target. */
284 	return it;
285 }
286 
287 static struct i915_active_fence *
288 active_instance(struct i915_active *ref, u64 idx)
289 {
290 	struct active_node *node;
291 	struct rb_node **p, *parent;
292 
293 	node = __active_lookup(ref, idx);
294 	if (likely(node))
295 		return &node->base;
296 
297 	spin_lock_irq(&ref->tree_lock);
298 	GEM_BUG_ON(i915_active_is_idle(ref));
299 
300 	parent = NULL;
301 	p = &ref->tree.rb_node;
302 	while (*p) {
303 		parent = *p;
304 
305 		node = rb_entry(parent, struct active_node, node);
306 		if (node->timeline == idx)
307 			goto out;
308 
309 		if (node->timeline < idx)
310 			p = &parent->rb_right;
311 		else
312 			p = &parent->rb_left;
313 	}
314 
315 	/*
316 	 * XXX: We should preallocate this before i915_active_ref() is ever
317 	 *  called, but we cannot call into fs_reclaim() anyway, so use GFP_ATOMIC.
318 	 */
319 	node = kmem_cache_alloc(slab_cache, GFP_ATOMIC);
320 	if (!node)
321 		goto out;
322 
323 	__i915_active_fence_init(&node->base, NULL, node_retire);
324 	node->ref = ref;
325 	node->timeline = idx;
326 
327 	rb_link_node(&node->node, parent, p);
328 	rb_insert_color(&node->node, &ref->tree);
329 
330 out:
331 	WRITE_ONCE(ref->cache, node);
332 	spin_unlock_irq(&ref->tree_lock);
333 
334 	return &node->base;
335 }
336 
337 void __i915_active_init(struct i915_active *ref,
338 			int (*active)(struct i915_active *ref),
339 			void (*retire)(struct i915_active *ref),
340 			unsigned long flags,
341 			struct lock_class_key *mkey,
342 			struct lock_class_key *wkey)
343 {
344 	debug_active_init(ref);
345 
346 	ref->flags = flags;
347 	ref->active = active;
348 	ref->retire = retire;
349 
350 	spin_lock_init(&ref->tree_lock);
351 	ref->tree = RB_ROOT;
352 	ref->cache = NULL;
353 
354 	init_llist_head(&ref->preallocated_barriers);
355 	atomic_set(&ref->count, 0);
356 	__mutex_init(&ref->mutex, "i915_active", mkey);
357 	__i915_active_fence_init(&ref->excl, NULL, excl_retire);
358 	INIT_WORK(&ref->work, active_work);
359 #if IS_ENABLED(CONFIG_LOCKDEP)
360 	lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0);
361 #endif
362 }
363 
364 static bool ____active_del_barrier(struct i915_active *ref,
365 				   struct active_node *node,
366 				   struct intel_engine_cs *engine)
367 
368 {
369 	struct llist_node *head = NULL, *tail = NULL;
370 	struct llist_node *pos, *next;
371 
372 	GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context);
373 
374 	/*
375 	 * Rebuild the llist excluding our node. We may perform this
376 	 * outside of the kernel_context timeline mutex and so someone
377 	 * else may be manipulating the engine->barrier_tasks, in
378 	 * which case either we or they will be upset :)
379 	 *
380 	 * A second __active_del_barrier() will report failure to claim
381 	 * the active_node and the caller will just shrug and know not to
382 	 * claim ownership of its node.
383 	 *
384 	 * A concurrent i915_request_add_active_barriers() will miss adding
385 	 * any of the tasks, but we will try again on the next -- and since
386 	 * we are actively using the barrier, we know that there will be
387 	 * at least another opportunity when we idle.
388 	 */
389 	llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) {
390 		if (node == barrier_from_ll(pos)) {
391 			node = NULL;
392 			continue;
393 		}
394 
395 		pos->next = head;
396 		head = pos;
397 		if (!tail)
398 			tail = pos;
399 	}
400 	if (head)
401 		llist_add_batch(head, tail, &engine->barrier_tasks);
402 
403 	return !node;
404 }
405 
406 static bool
407 __active_del_barrier(struct i915_active *ref, struct active_node *node)
408 {
409 	return ____active_del_barrier(ref, node, barrier_to_engine(node));
410 }
411 
412 static bool
413 replace_barrier(struct i915_active *ref, struct i915_active_fence *active)
414 {
415 	if (!is_barrier(active)) /* proto-node used by our idle barrier? */
416 		return false;
417 
418 	/*
419 	 * This request is on the kernel_context timeline, and so
420 	 * we can use it to substitute for the pending idle-barrer
421 	 * request that we want to emit on the kernel_context.
422 	 */
423 	return __active_del_barrier(ref, node_from_active(active));
424 }
425 
426 int i915_active_add_request(struct i915_active *ref, struct i915_request *rq)
427 {
428 	u64 idx = i915_request_timeline(rq)->fence_context;
429 	struct dma_fence *fence = &rq->fence;
430 	struct i915_active_fence *active;
431 	int err;
432 
433 	/* Prevent reaping in case we malloc/wait while building the tree */
434 	err = i915_active_acquire(ref);
435 	if (err)
436 		return err;
437 
438 	do {
439 		active = active_instance(ref, idx);
440 		if (!active) {
441 			err = -ENOMEM;
442 			goto out;
443 		}
444 
445 		if (replace_barrier(ref, active)) {
446 			RCU_INIT_POINTER(active->fence, NULL);
447 			atomic_dec(&ref->count);
448 		}
449 	} while (unlikely(is_barrier(active)));
450 
451 	fence = __i915_active_fence_set(active, fence);
452 	if (!fence)
453 		__i915_active_acquire(ref);
454 	else
455 		dma_fence_put(fence);
456 
457 out:
458 	i915_active_release(ref);
459 	return err;
460 }
461 
462 static struct dma_fence *
463 __i915_active_set_fence(struct i915_active *ref,
464 			struct i915_active_fence *active,
465 			struct dma_fence *fence)
466 {
467 	struct dma_fence *prev;
468 
469 	if (replace_barrier(ref, active)) {
470 		RCU_INIT_POINTER(active->fence, fence);
471 		return NULL;
472 	}
473 
474 	prev = __i915_active_fence_set(active, fence);
475 	if (!prev)
476 		__i915_active_acquire(ref);
477 
478 	return prev;
479 }
480 
481 struct dma_fence *
482 i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f)
483 {
484 	/* We expect the caller to manage the exclusive timeline ordering */
485 	return __i915_active_set_fence(ref, &ref->excl, f);
486 }
487 
488 bool i915_active_acquire_if_busy(struct i915_active *ref)
489 {
490 	debug_active_assert(ref);
491 	return atomic_add_unless(&ref->count, 1, 0);
492 }
493 
494 static void __i915_active_activate(struct i915_active *ref)
495 {
496 	spin_lock_irq(&ref->tree_lock); /* __active_retire() */
497 	if (!atomic_fetch_inc(&ref->count))
498 		debug_active_activate(ref);
499 	spin_unlock_irq(&ref->tree_lock);
500 }
501 
502 int i915_active_acquire(struct i915_active *ref)
503 {
504 	int err;
505 
506 	if (i915_active_acquire_if_busy(ref))
507 		return 0;
508 
509 	if (!ref->active) {
510 		__i915_active_activate(ref);
511 		return 0;
512 	}
513 
514 	err = mutex_lock_interruptible(&ref->mutex);
515 	if (err)
516 		return err;
517 
518 	if (likely(!i915_active_acquire_if_busy(ref))) {
519 		err = ref->active(ref);
520 		if (!err)
521 			__i915_active_activate(ref);
522 	}
523 
524 	mutex_unlock(&ref->mutex);
525 
526 	return err;
527 }
528 
529 void i915_active_release(struct i915_active *ref)
530 {
531 	debug_active_assert(ref);
532 	active_retire(ref);
533 }
534 
535 static void enable_signaling(struct i915_active_fence *active)
536 {
537 	struct dma_fence *fence;
538 
539 	if (unlikely(is_barrier(active)))
540 		return;
541 
542 	fence = i915_active_fence_get(active);
543 	if (!fence)
544 		return;
545 
546 	dma_fence_enable_sw_signaling(fence);
547 	dma_fence_put(fence);
548 }
549 
550 static int flush_barrier(struct active_node *it)
551 {
552 	struct intel_engine_cs *engine;
553 
554 	if (likely(!is_barrier(&it->base)))
555 		return 0;
556 
557 	engine = __barrier_to_engine(it);
558 	smp_rmb(); /* serialise with add_active_barriers */
559 	if (!is_barrier(&it->base))
560 		return 0;
561 
562 	return intel_engine_flush_barriers(engine);
563 }
564 
565 static int flush_lazy_signals(struct i915_active *ref)
566 {
567 	struct active_node *it, *n;
568 	int err = 0;
569 
570 	enable_signaling(&ref->excl);
571 	rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
572 		err = flush_barrier(it); /* unconnected idle barrier? */
573 		if (err)
574 			break;
575 
576 		enable_signaling(&it->base);
577 	}
578 
579 	return err;
580 }
581 
582 int __i915_active_wait(struct i915_active *ref, int state)
583 {
584 	might_sleep();
585 
586 	/* Any fence added after the wait begins will not be auto-signaled */
587 	if (i915_active_acquire_if_busy(ref)) {
588 		int err;
589 
590 		err = flush_lazy_signals(ref);
591 		i915_active_release(ref);
592 		if (err)
593 			return err;
594 
595 		if (___wait_var_event(ref, i915_active_is_idle(ref),
596 				      state, 0, 0, schedule()))
597 			return -EINTR;
598 	}
599 
600 	/*
601 	 * After the wait is complete, the caller may free the active.
602 	 * We have to flush any concurrent retirement before returning.
603 	 */
604 	flush_work(&ref->work);
605 	return 0;
606 }
607 
608 static int __await_active(struct i915_active_fence *active,
609 			  int (*fn)(void *arg, struct dma_fence *fence),
610 			  void *arg)
611 {
612 	struct dma_fence *fence;
613 
614 	if (is_barrier(active)) /* XXX flush the barrier? */
615 		return 0;
616 
617 	fence = i915_active_fence_get(active);
618 	if (fence) {
619 		int err;
620 
621 		err = fn(arg, fence);
622 		dma_fence_put(fence);
623 		if (err < 0)
624 			return err;
625 	}
626 
627 	return 0;
628 }
629 
630 struct wait_barrier {
631 	struct wait_queue_entry base;
632 	struct i915_active *ref;
633 };
634 
635 static int
636 barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key)
637 {
638 	struct wait_barrier *wb = container_of(wq, typeof(*wb), base);
639 
640 	if (i915_active_is_idle(wb->ref)) {
641 		list_del(&wq->entry);
642 		i915_sw_fence_complete(wq->private);
643 		kfree(wq);
644 	}
645 
646 	return 0;
647 }
648 
649 static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence)
650 {
651 	struct wait_barrier *wb;
652 
653 	wb = kmalloc(sizeof(*wb), GFP_KERNEL);
654 	if (unlikely(!wb))
655 		return -ENOMEM;
656 
657 	GEM_BUG_ON(i915_active_is_idle(ref));
658 	if (!i915_sw_fence_await(fence)) {
659 		kfree(wb);
660 		return -EINVAL;
661 	}
662 
663 	wb->base.flags = 0;
664 	wb->base.func = barrier_wake;
665 	wb->base.private = fence;
666 	wb->ref = ref;
667 
668 	add_wait_queue(__var_waitqueue(ref), &wb->base);
669 	return 0;
670 }
671 
672 static int await_active(struct i915_active *ref,
673 			unsigned int flags,
674 			int (*fn)(void *arg, struct dma_fence *fence),
675 			void *arg, struct i915_sw_fence *barrier)
676 {
677 	int err = 0;
678 
679 	if (!i915_active_acquire_if_busy(ref))
680 		return 0;
681 
682 	if (flags & I915_ACTIVE_AWAIT_EXCL &&
683 	    rcu_access_pointer(ref->excl.fence)) {
684 		err = __await_active(&ref->excl, fn, arg);
685 		if (err)
686 			goto out;
687 	}
688 
689 	if (flags & I915_ACTIVE_AWAIT_ACTIVE) {
690 		struct active_node *it, *n;
691 
692 		rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
693 			err = __await_active(&it->base, fn, arg);
694 			if (err)
695 				goto out;
696 		}
697 	}
698 
699 	if (flags & I915_ACTIVE_AWAIT_BARRIER) {
700 		err = flush_lazy_signals(ref);
701 		if (err)
702 			goto out;
703 
704 		err = __await_barrier(ref, barrier);
705 		if (err)
706 			goto out;
707 	}
708 
709 out:
710 	i915_active_release(ref);
711 	return err;
712 }
713 
714 static int rq_await_fence(void *arg, struct dma_fence *fence)
715 {
716 	return i915_request_await_dma_fence(arg, fence);
717 }
718 
719 int i915_request_await_active(struct i915_request *rq,
720 			      struct i915_active *ref,
721 			      unsigned int flags)
722 {
723 	return await_active(ref, flags, rq_await_fence, rq, &rq->submit);
724 }
725 
726 static int sw_await_fence(void *arg, struct dma_fence *fence)
727 {
728 	return i915_sw_fence_await_dma_fence(arg, fence, 0,
729 					     GFP_NOWAIT | __GFP_NOWARN);
730 }
731 
732 int i915_sw_fence_await_active(struct i915_sw_fence *fence,
733 			       struct i915_active *ref,
734 			       unsigned int flags)
735 {
736 	return await_active(ref, flags, sw_await_fence, fence, fence);
737 }
738 
739 void i915_active_fini(struct i915_active *ref)
740 {
741 	debug_active_fini(ref);
742 	GEM_BUG_ON(atomic_read(&ref->count));
743 	GEM_BUG_ON(work_pending(&ref->work));
744 	mutex_destroy(&ref->mutex);
745 
746 	if (ref->cache)
747 		kmem_cache_free(slab_cache, ref->cache);
748 }
749 
750 static inline bool is_idle_barrier(struct active_node *node, u64 idx)
751 {
752 	return node->timeline == idx && !i915_active_fence_isset(&node->base);
753 }
754 
755 static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx)
756 {
757 	struct rb_node *prev, *p;
758 
759 	if (RB_EMPTY_ROOT(&ref->tree))
760 		return NULL;
761 
762 	GEM_BUG_ON(i915_active_is_idle(ref));
763 
764 	/*
765 	 * Try to reuse any existing barrier nodes already allocated for this
766 	 * i915_active, due to overlapping active phases there is likely a
767 	 * node kept alive (as we reuse before parking). We prefer to reuse
768 	 * completely idle barriers (less hassle in manipulating the llists),
769 	 * but otherwise any will do.
770 	 */
771 	if (ref->cache && is_idle_barrier(ref->cache, idx)) {
772 		p = &ref->cache->node;
773 		goto match;
774 	}
775 
776 	prev = NULL;
777 	p = ref->tree.rb_node;
778 	while (p) {
779 		struct active_node *node =
780 			rb_entry(p, struct active_node, node);
781 
782 		if (is_idle_barrier(node, idx))
783 			goto match;
784 
785 		prev = p;
786 		if (node->timeline < idx)
787 			p = READ_ONCE(p->rb_right);
788 		else
789 			p = READ_ONCE(p->rb_left);
790 	}
791 
792 	/*
793 	 * No quick match, but we did find the leftmost rb_node for the
794 	 * kernel_context. Walk the rb_tree in-order to see if there were
795 	 * any idle-barriers on this timeline that we missed, or just use
796 	 * the first pending barrier.
797 	 */
798 	for (p = prev; p; p = rb_next(p)) {
799 		struct active_node *node =
800 			rb_entry(p, struct active_node, node);
801 		struct intel_engine_cs *engine;
802 
803 		if (node->timeline > idx)
804 			break;
805 
806 		if (node->timeline < idx)
807 			continue;
808 
809 		if (is_idle_barrier(node, idx))
810 			goto match;
811 
812 		/*
813 		 * The list of pending barriers is protected by the
814 		 * kernel_context timeline, which notably we do not hold
815 		 * here. i915_request_add_active_barriers() may consume
816 		 * the barrier before we claim it, so we have to check
817 		 * for success.
818 		 */
819 		engine = __barrier_to_engine(node);
820 		smp_rmb(); /* serialise with add_active_barriers */
821 		if (is_barrier(&node->base) &&
822 		    ____active_del_barrier(ref, node, engine))
823 			goto match;
824 	}
825 
826 	return NULL;
827 
828 match:
829 	spin_lock_irq(&ref->tree_lock);
830 	rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */
831 	if (p == &ref->cache->node)
832 		WRITE_ONCE(ref->cache, NULL);
833 	spin_unlock_irq(&ref->tree_lock);
834 
835 	return rb_entry(p, struct active_node, node);
836 }
837 
838 int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
839 					    struct intel_engine_cs *engine)
840 {
841 	intel_engine_mask_t tmp, mask = engine->mask;
842 	struct llist_node *first = NULL, *last = NULL;
843 	struct intel_gt *gt = engine->gt;
844 
845 	GEM_BUG_ON(i915_active_is_idle(ref));
846 
847 	/* Wait until the previous preallocation is completed */
848 	while (!llist_empty(&ref->preallocated_barriers))
849 		cond_resched();
850 
851 	/*
852 	 * Preallocate a node for each physical engine supporting the target
853 	 * engine (remember virtual engines have more than one sibling).
854 	 * We can then use the preallocated nodes in
855 	 * i915_active_acquire_barrier()
856 	 */
857 	GEM_BUG_ON(!mask);
858 	for_each_engine_masked(engine, gt, mask, tmp) {
859 		u64 idx = engine->kernel_context->timeline->fence_context;
860 		struct llist_node *prev = first;
861 		struct active_node *node;
862 
863 		rcu_read_lock();
864 		node = reuse_idle_barrier(ref, idx);
865 		rcu_read_unlock();
866 		if (!node) {
867 			node = kmem_cache_alloc(slab_cache, GFP_KERNEL);
868 			if (!node)
869 				goto unwind;
870 
871 			RCU_INIT_POINTER(node->base.fence, NULL);
872 			node->base.cb.func = node_retire;
873 			node->timeline = idx;
874 			node->ref = ref;
875 		}
876 
877 		if (!i915_active_fence_isset(&node->base)) {
878 			/*
879 			 * Mark this as being *our* unconnected proto-node.
880 			 *
881 			 * Since this node is not in any list, and we have
882 			 * decoupled it from the rbtree, we can reuse the
883 			 * request to indicate this is an idle-barrier node
884 			 * and then we can use the rb_node and list pointers
885 			 * for our tracking of the pending barrier.
886 			 */
887 			RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN));
888 			node->base.cb.node.prev = (void *)engine;
889 			__i915_active_acquire(ref);
890 		}
891 		GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN));
892 
893 		GEM_BUG_ON(barrier_to_engine(node) != engine);
894 		first = barrier_to_ll(node);
895 		first->next = prev;
896 		if (!last)
897 			last = first;
898 		intel_engine_pm_get(engine);
899 	}
900 
901 	GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers));
902 	llist_add_batch(first, last, &ref->preallocated_barriers);
903 
904 	return 0;
905 
906 unwind:
907 	while (first) {
908 		struct active_node *node = barrier_from_ll(first);
909 
910 		first = first->next;
911 
912 		atomic_dec(&ref->count);
913 		intel_engine_pm_put(barrier_to_engine(node));
914 
915 		kmem_cache_free(slab_cache, node);
916 	}
917 	return -ENOMEM;
918 }
919 
920 void i915_active_acquire_barrier(struct i915_active *ref)
921 {
922 	struct llist_node *pos, *next;
923 	unsigned long flags;
924 
925 	GEM_BUG_ON(i915_active_is_idle(ref));
926 
927 	/*
928 	 * Transfer the list of preallocated barriers into the
929 	 * i915_active rbtree, but only as proto-nodes. They will be
930 	 * populated by i915_request_add_active_barriers() to point to the
931 	 * request that will eventually release them.
932 	 */
933 	llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) {
934 		struct active_node *node = barrier_from_ll(pos);
935 		struct intel_engine_cs *engine = barrier_to_engine(node);
936 		struct rb_node **p, *parent;
937 
938 		spin_lock_irqsave_nested(&ref->tree_lock, flags,
939 					 SINGLE_DEPTH_NESTING);
940 		parent = NULL;
941 		p = &ref->tree.rb_node;
942 		while (*p) {
943 			struct active_node *it;
944 
945 			parent = *p;
946 
947 			it = rb_entry(parent, struct active_node, node);
948 			if (it->timeline < node->timeline)
949 				p = &parent->rb_right;
950 			else
951 				p = &parent->rb_left;
952 		}
953 		rb_link_node(&node->node, parent, p);
954 		rb_insert_color(&node->node, &ref->tree);
955 		spin_unlock_irqrestore(&ref->tree_lock, flags);
956 
957 		GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
958 		llist_add(barrier_to_ll(node), &engine->barrier_tasks);
959 		intel_engine_pm_put_delay(engine, 2);
960 	}
961 }
962 
963 static struct dma_fence **ll_to_fence_slot(struct llist_node *node)
964 {
965 	return __active_fence_slot(&barrier_from_ll(node)->base);
966 }
967 
968 void i915_request_add_active_barriers(struct i915_request *rq)
969 {
970 	struct intel_engine_cs *engine = rq->engine;
971 	struct llist_node *node, *next;
972 	unsigned long flags;
973 
974 	GEM_BUG_ON(!intel_context_is_barrier(rq->context));
975 	GEM_BUG_ON(intel_engine_is_virtual(engine));
976 	GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline);
977 
978 	node = llist_del_all(&engine->barrier_tasks);
979 	if (!node)
980 		return;
981 	/*
982 	 * Attach the list of proto-fences to the in-flight request such
983 	 * that the parent i915_active will be released when this request
984 	 * is retired.
985 	 */
986 	spin_lock_irqsave(&rq->lock, flags);
987 	llist_for_each_safe(node, next, node) {
988 		/* serialise with reuse_idle_barrier */
989 		smp_store_mb(*ll_to_fence_slot(node), &rq->fence);
990 		list_add_tail((struct list_head *)node, &rq->fence.cb_list);
991 	}
992 	spin_unlock_irqrestore(&rq->lock, flags);
993 }
994 
995 /*
996  * __i915_active_fence_set: Update the last active fence along its timeline
997  * @active: the active tracker
998  * @fence: the new fence (under construction)
999  *
1000  * Records the new @fence as the last active fence along its timeline in
1001  * this active tracker, moving the tracking callbacks from the previous
1002  * fence onto this one. Gets and returns a reference to the previous fence
1003  * (if not already completed), which the caller must put after making sure
1004  * that it is executed before the new fence. To ensure that the order of
1005  * fences within the timeline of the i915_active_fence is understood, it
1006  * should be locked by the caller.
1007  */
1008 struct dma_fence *
1009 __i915_active_fence_set(struct i915_active_fence *active,
1010 			struct dma_fence *fence)
1011 {
1012 	struct dma_fence *prev;
1013 	unsigned long flags;
1014 
1015 	/*
1016 	 * In case of fences embedded in i915_requests, their memory is
1017 	 * SLAB_FAILSAFE_BY_RCU, then it can be reused right after release
1018 	 * by new requests.  Then, there is a risk of passing back a pointer
1019 	 * to a new, completely unrelated fence that reuses the same memory
1020 	 * while tracked under a different active tracker.  Combined with i915
1021 	 * perf open/close operations that build await dependencies between
1022 	 * engine kernel context requests and user requests from different
1023 	 * timelines, this can lead to dependency loops and infinite waits.
1024 	 *
1025 	 * As a countermeasure, we try to get a reference to the active->fence
1026 	 * first, so if we succeed and pass it back to our user then it is not
1027 	 * released and potentially reused by an unrelated request before the
1028 	 * user has a chance to set up an await dependency on it.
1029 	 */
1030 	prev = i915_active_fence_get(active);
1031 	if (fence == prev)
1032 		return fence;
1033 
1034 	GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
1035 
1036 	/*
1037 	 * Consider that we have two threads arriving (A and B), with
1038 	 * C already resident as the active->fence.
1039 	 *
1040 	 * Both A and B have got a reference to C or NULL, depending on the
1041 	 * timing of the interrupt handler.  Let's assume that if A has got C
1042 	 * then it has locked C first (before B).
1043 	 *
1044 	 * Note the strong ordering of the timeline also provides consistent
1045 	 * nesting rules for the fence->lock; the inner lock is always the
1046 	 * older lock.
1047 	 */
1048 	spin_lock_irqsave(fence->lock, flags);
1049 	if (prev)
1050 		spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
1051 
1052 	/*
1053 	 * A does the cmpxchg first, and so it sees C or NULL, as before, or
1054 	 * something else, depending on the timing of other threads and/or
1055 	 * interrupt handler.  If not the same as before then A unlocks C if
1056 	 * applicable and retries, starting from an attempt to get a new
1057 	 * active->fence.  Meanwhile, B follows the same path as A.
1058 	 * Once A succeeds with cmpxch, B fails again, retires, gets A from
1059 	 * active->fence, locks it as soon as A completes, and possibly
1060 	 * succeeds with cmpxchg.
1061 	 */
1062 	while (cmpxchg(__active_fence_slot(active), prev, fence) != prev) {
1063 		if (prev) {
1064 			spin_unlock(prev->lock);
1065 			dma_fence_put(prev);
1066 		}
1067 		spin_unlock_irqrestore(fence->lock, flags);
1068 
1069 		prev = i915_active_fence_get(active);
1070 		GEM_BUG_ON(prev == fence);
1071 
1072 		spin_lock_irqsave(fence->lock, flags);
1073 		if (prev)
1074 			spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
1075 	}
1076 
1077 	/*
1078 	 * If prev is NULL then the previous fence must have been signaled
1079 	 * and we know that we are first on the timeline.  If it is still
1080 	 * present then, having the lock on that fence already acquired, we
1081 	 * serialise with the interrupt handler, in the process of removing it
1082 	 * from any future interrupt callback.  A will then wait on C before
1083 	 * executing (if present).
1084 	 *
1085 	 * As B is second, it sees A as the previous fence and so waits for
1086 	 * it to complete its transition and takes over the occupancy for
1087 	 * itself -- remembering that it needs to wait on A before executing.
1088 	 */
1089 	if (prev) {
1090 		__list_del_entry(&active->cb.node);
1091 		spin_unlock(prev->lock); /* serialise with prev->cb_list */
1092 	}
1093 	list_add_tail(&active->cb.node, &fence->cb_list);
1094 	spin_unlock_irqrestore(fence->lock, flags);
1095 
1096 	return prev;
1097 }
1098 
1099 int i915_active_fence_set(struct i915_active_fence *active,
1100 			  struct i915_request *rq)
1101 {
1102 	struct dma_fence *fence;
1103 	int err = 0;
1104 
1105 	/* Must maintain timeline ordering wrt previous active requests */
1106 	fence = __i915_active_fence_set(active, &rq->fence);
1107 	if (fence) {
1108 		err = i915_request_await_dma_fence(rq, fence);
1109 		dma_fence_put(fence);
1110 	}
1111 
1112 	return err;
1113 }
1114 
1115 void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb)
1116 {
1117 	active_fence_cb(fence, cb);
1118 }
1119 
1120 struct auto_active {
1121 	struct i915_active base;
1122 	struct kref ref;
1123 };
1124 
1125 struct i915_active *i915_active_get(struct i915_active *ref)
1126 {
1127 	struct auto_active *aa = container_of(ref, typeof(*aa), base);
1128 
1129 	kref_get(&aa->ref);
1130 	return &aa->base;
1131 }
1132 
1133 static void auto_release(struct kref *ref)
1134 {
1135 	struct auto_active *aa = container_of(ref, typeof(*aa), ref);
1136 
1137 	i915_active_fini(&aa->base);
1138 	kfree(aa);
1139 }
1140 
1141 void i915_active_put(struct i915_active *ref)
1142 {
1143 	struct auto_active *aa = container_of(ref, typeof(*aa), base);
1144 
1145 	kref_put(&aa->ref, auto_release);
1146 }
1147 
1148 static int auto_active(struct i915_active *ref)
1149 {
1150 	i915_active_get(ref);
1151 	return 0;
1152 }
1153 
1154 static void auto_retire(struct i915_active *ref)
1155 {
1156 	i915_active_put(ref);
1157 }
1158 
1159 struct i915_active *i915_active_create(void)
1160 {
1161 	struct auto_active *aa;
1162 
1163 	aa = kmalloc(sizeof(*aa), GFP_KERNEL);
1164 	if (!aa)
1165 		return NULL;
1166 
1167 	kref_init(&aa->ref);
1168 	i915_active_init(&aa->base, auto_active, auto_retire, 0);
1169 
1170 	return &aa->base;
1171 }
1172 
1173 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1174 #include "selftests/i915_active.c"
1175 #endif
1176 
1177 void i915_active_module_exit(void)
1178 {
1179 	kmem_cache_destroy(slab_cache);
1180 }
1181 
1182 int __init i915_active_module_init(void)
1183 {
1184 	slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN);
1185 	if (!slab_cache)
1186 		return -ENOMEM;
1187 
1188 	return 0;
1189 }
1190