1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2019 Intel Corporation 5 */ 6 7 #include <linux/debugobjects.h> 8 9 #include "gt/intel_context.h" 10 #include "gt/intel_engine_heartbeat.h" 11 #include "gt/intel_engine_pm.h" 12 #include "gt/intel_ring.h" 13 14 #include "i915_drv.h" 15 #include "i915_active.h" 16 #include "i915_globals.h" 17 18 /* 19 * Active refs memory management 20 * 21 * To be more economical with memory, we reap all the i915_active trees as 22 * they idle (when we know the active requests are inactive) and allocate the 23 * nodes from a local slab cache to hopefully reduce the fragmentation. 24 */ 25 static struct i915_global_active { 26 struct i915_global base; 27 struct kmem_cache *slab_cache; 28 } global; 29 30 struct active_node { 31 struct rb_node node; 32 struct i915_active_fence base; 33 struct i915_active *ref; 34 u64 timeline; 35 }; 36 37 #define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node) 38 39 static inline struct active_node * 40 node_from_active(struct i915_active_fence *active) 41 { 42 return container_of(active, struct active_node, base); 43 } 44 45 #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers) 46 47 static inline bool is_barrier(const struct i915_active_fence *active) 48 { 49 return IS_ERR(rcu_access_pointer(active->fence)); 50 } 51 52 static inline struct llist_node *barrier_to_ll(struct active_node *node) 53 { 54 GEM_BUG_ON(!is_barrier(&node->base)); 55 return (struct llist_node *)&node->base.cb.node; 56 } 57 58 static inline struct intel_engine_cs * 59 __barrier_to_engine(struct active_node *node) 60 { 61 return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev); 62 } 63 64 static inline struct intel_engine_cs * 65 barrier_to_engine(struct active_node *node) 66 { 67 GEM_BUG_ON(!is_barrier(&node->base)); 68 return __barrier_to_engine(node); 69 } 70 71 static inline struct active_node *barrier_from_ll(struct llist_node *x) 72 { 73 return container_of((struct list_head *)x, 74 struct active_node, base.cb.node); 75 } 76 77 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS) 78 79 static void *active_debug_hint(void *addr) 80 { 81 struct i915_active *ref = addr; 82 83 return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref; 84 } 85 86 static const struct debug_obj_descr active_debug_desc = { 87 .name = "i915_active", 88 .debug_hint = active_debug_hint, 89 }; 90 91 static void debug_active_init(struct i915_active *ref) 92 { 93 debug_object_init(ref, &active_debug_desc); 94 } 95 96 static void debug_active_activate(struct i915_active *ref) 97 { 98 lockdep_assert_held(&ref->tree_lock); 99 if (!atomic_read(&ref->count)) /* before the first inc */ 100 debug_object_activate(ref, &active_debug_desc); 101 } 102 103 static void debug_active_deactivate(struct i915_active *ref) 104 { 105 lockdep_assert_held(&ref->tree_lock); 106 if (!atomic_read(&ref->count)) /* after the last dec */ 107 debug_object_deactivate(ref, &active_debug_desc); 108 } 109 110 static void debug_active_fini(struct i915_active *ref) 111 { 112 debug_object_free(ref, &active_debug_desc); 113 } 114 115 static void debug_active_assert(struct i915_active *ref) 116 { 117 debug_object_assert_init(ref, &active_debug_desc); 118 } 119 120 #else 121 122 static inline void debug_active_init(struct i915_active *ref) { } 123 static inline void debug_active_activate(struct i915_active *ref) { } 124 static inline void debug_active_deactivate(struct i915_active *ref) { } 125 static inline void debug_active_fini(struct i915_active *ref) { } 126 static inline void debug_active_assert(struct i915_active *ref) { } 127 128 #endif 129 130 static void 131 __active_retire(struct i915_active *ref) 132 { 133 struct rb_root root = RB_ROOT; 134 struct active_node *it, *n; 135 unsigned long flags; 136 137 GEM_BUG_ON(i915_active_is_idle(ref)); 138 139 /* return the unused nodes to our slabcache -- flushing the allocator */ 140 if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags)) 141 return; 142 143 GEM_BUG_ON(rcu_access_pointer(ref->excl.fence)); 144 debug_active_deactivate(ref); 145 146 /* Even if we have not used the cache, we may still have a barrier */ 147 if (!ref->cache) 148 ref->cache = fetch_node(ref->tree.rb_node); 149 150 /* Keep the MRU cached node for reuse */ 151 if (ref->cache) { 152 /* Discard all other nodes in the tree */ 153 rb_erase(&ref->cache->node, &ref->tree); 154 root = ref->tree; 155 156 /* Rebuild the tree with only the cached node */ 157 rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node); 158 rb_insert_color(&ref->cache->node, &ref->tree); 159 GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node); 160 161 /* Make the cached node available for reuse with any timeline */ 162 ref->cache->timeline = 0; /* needs cmpxchg(u64) */ 163 } 164 165 spin_unlock_irqrestore(&ref->tree_lock, flags); 166 167 /* After the final retire, the entire struct may be freed */ 168 if (ref->retire) 169 ref->retire(ref); 170 171 /* ... except if you wait on it, you must manage your own references! */ 172 wake_up_var(ref); 173 174 /* Finally free the discarded timeline tree */ 175 rbtree_postorder_for_each_entry_safe(it, n, &root, node) { 176 GEM_BUG_ON(i915_active_fence_isset(&it->base)); 177 kmem_cache_free(global.slab_cache, it); 178 } 179 } 180 181 static void 182 active_work(struct work_struct *wrk) 183 { 184 struct i915_active *ref = container_of(wrk, typeof(*ref), work); 185 186 GEM_BUG_ON(!atomic_read(&ref->count)); 187 if (atomic_add_unless(&ref->count, -1, 1)) 188 return; 189 190 __active_retire(ref); 191 } 192 193 static void 194 active_retire(struct i915_active *ref) 195 { 196 GEM_BUG_ON(!atomic_read(&ref->count)); 197 if (atomic_add_unless(&ref->count, -1, 1)) 198 return; 199 200 if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) { 201 queue_work(system_unbound_wq, &ref->work); 202 return; 203 } 204 205 __active_retire(ref); 206 } 207 208 static inline struct dma_fence ** 209 __active_fence_slot(struct i915_active_fence *active) 210 { 211 return (struct dma_fence ** __force)&active->fence; 212 } 213 214 static inline bool 215 active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 216 { 217 struct i915_active_fence *active = 218 container_of(cb, typeof(*active), cb); 219 220 return cmpxchg(__active_fence_slot(active), fence, NULL) == fence; 221 } 222 223 static void 224 node_retire(struct dma_fence *fence, struct dma_fence_cb *cb) 225 { 226 if (active_fence_cb(fence, cb)) 227 active_retire(container_of(cb, struct active_node, base.cb)->ref); 228 } 229 230 static void 231 excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb) 232 { 233 if (active_fence_cb(fence, cb)) 234 active_retire(container_of(cb, struct i915_active, excl.cb)); 235 } 236 237 static struct active_node *__active_lookup(struct i915_active *ref, u64 idx) 238 { 239 struct active_node *it; 240 241 GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */ 242 243 /* 244 * We track the most recently used timeline to skip a rbtree search 245 * for the common case, under typical loads we never need the rbtree 246 * at all. We can reuse the last slot if it is empty, that is 247 * after the previous activity has been retired, or if it matches the 248 * current timeline. 249 */ 250 it = READ_ONCE(ref->cache); 251 if (it) { 252 u64 cached = READ_ONCE(it->timeline); 253 254 /* Once claimed, this slot will only belong to this idx */ 255 if (cached == idx) 256 return it; 257 258 /* 259 * An unclaimed cache [.timeline=0] can only be claimed once. 260 * 261 * If the value is already non-zero, some other thread has 262 * claimed the cache and we know that is does not match our 263 * idx. If, and only if, the timeline is currently zero is it 264 * worth competing to claim it atomically for ourselves (for 265 * only the winner of that race will cmpxchg return the old 266 * value of 0). 267 */ 268 if (!cached && !cmpxchg64(&it->timeline, 0, idx)) 269 return it; 270 } 271 272 BUILD_BUG_ON(offsetof(typeof(*it), node)); 273 274 /* While active, the tree can only be built; not destroyed */ 275 GEM_BUG_ON(i915_active_is_idle(ref)); 276 277 it = fetch_node(ref->tree.rb_node); 278 while (it) { 279 if (it->timeline < idx) { 280 it = fetch_node(it->node.rb_right); 281 } else if (it->timeline > idx) { 282 it = fetch_node(it->node.rb_left); 283 } else { 284 WRITE_ONCE(ref->cache, it); 285 break; 286 } 287 } 288 289 /* NB: If the tree rotated beneath us, we may miss our target. */ 290 return it; 291 } 292 293 static struct i915_active_fence * 294 active_instance(struct i915_active *ref, u64 idx) 295 { 296 struct active_node *node, *prealloc; 297 struct rb_node **p, *parent; 298 299 node = __active_lookup(ref, idx); 300 if (likely(node)) 301 return &node->base; 302 303 /* Preallocate a replacement, just in case */ 304 prealloc = kmem_cache_alloc(global.slab_cache, GFP_KERNEL); 305 if (!prealloc) 306 return NULL; 307 308 spin_lock_irq(&ref->tree_lock); 309 GEM_BUG_ON(i915_active_is_idle(ref)); 310 311 parent = NULL; 312 p = &ref->tree.rb_node; 313 while (*p) { 314 parent = *p; 315 316 node = rb_entry(parent, struct active_node, node); 317 if (node->timeline == idx) { 318 kmem_cache_free(global.slab_cache, prealloc); 319 goto out; 320 } 321 322 if (node->timeline < idx) 323 p = &parent->rb_right; 324 else 325 p = &parent->rb_left; 326 } 327 328 node = prealloc; 329 __i915_active_fence_init(&node->base, NULL, node_retire); 330 node->ref = ref; 331 node->timeline = idx; 332 333 rb_link_node(&node->node, parent, p); 334 rb_insert_color(&node->node, &ref->tree); 335 336 out: 337 WRITE_ONCE(ref->cache, node); 338 spin_unlock_irq(&ref->tree_lock); 339 340 return &node->base; 341 } 342 343 void __i915_active_init(struct i915_active *ref, 344 int (*active)(struct i915_active *ref), 345 void (*retire)(struct i915_active *ref), 346 struct lock_class_key *mkey, 347 struct lock_class_key *wkey) 348 { 349 unsigned long bits; 350 351 debug_active_init(ref); 352 353 ref->flags = 0; 354 ref->active = active; 355 ref->retire = ptr_unpack_bits(retire, &bits, 2); 356 if (bits & I915_ACTIVE_MAY_SLEEP) 357 ref->flags |= I915_ACTIVE_RETIRE_SLEEPS; 358 359 spin_lock_init(&ref->tree_lock); 360 ref->tree = RB_ROOT; 361 ref->cache = NULL; 362 363 init_llist_head(&ref->preallocated_barriers); 364 atomic_set(&ref->count, 0); 365 __mutex_init(&ref->mutex, "i915_active", mkey); 366 __i915_active_fence_init(&ref->excl, NULL, excl_retire); 367 INIT_WORK(&ref->work, active_work); 368 #if IS_ENABLED(CONFIG_LOCKDEP) 369 lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0); 370 #endif 371 } 372 373 static bool ____active_del_barrier(struct i915_active *ref, 374 struct active_node *node, 375 struct intel_engine_cs *engine) 376 377 { 378 struct llist_node *head = NULL, *tail = NULL; 379 struct llist_node *pos, *next; 380 381 GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context); 382 383 /* 384 * Rebuild the llist excluding our node. We may perform this 385 * outside of the kernel_context timeline mutex and so someone 386 * else may be manipulating the engine->barrier_tasks, in 387 * which case either we or they will be upset :) 388 * 389 * A second __active_del_barrier() will report failure to claim 390 * the active_node and the caller will just shrug and know not to 391 * claim ownership of its node. 392 * 393 * A concurrent i915_request_add_active_barriers() will miss adding 394 * any of the tasks, but we will try again on the next -- and since 395 * we are actively using the barrier, we know that there will be 396 * at least another opportunity when we idle. 397 */ 398 llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) { 399 if (node == barrier_from_ll(pos)) { 400 node = NULL; 401 continue; 402 } 403 404 pos->next = head; 405 head = pos; 406 if (!tail) 407 tail = pos; 408 } 409 if (head) 410 llist_add_batch(head, tail, &engine->barrier_tasks); 411 412 return !node; 413 } 414 415 static bool 416 __active_del_barrier(struct i915_active *ref, struct active_node *node) 417 { 418 return ____active_del_barrier(ref, node, barrier_to_engine(node)); 419 } 420 421 static bool 422 replace_barrier(struct i915_active *ref, struct i915_active_fence *active) 423 { 424 if (!is_barrier(active)) /* proto-node used by our idle barrier? */ 425 return false; 426 427 /* 428 * This request is on the kernel_context timeline, and so 429 * we can use it to substitute for the pending idle-barrer 430 * request that we want to emit on the kernel_context. 431 */ 432 __active_del_barrier(ref, node_from_active(active)); 433 return true; 434 } 435 436 int i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence) 437 { 438 struct i915_active_fence *active; 439 int err; 440 441 /* Prevent reaping in case we malloc/wait while building the tree */ 442 err = i915_active_acquire(ref); 443 if (err) 444 return err; 445 446 active = active_instance(ref, idx); 447 if (!active) { 448 err = -ENOMEM; 449 goto out; 450 } 451 452 if (replace_barrier(ref, active)) { 453 RCU_INIT_POINTER(active->fence, NULL); 454 atomic_dec(&ref->count); 455 } 456 if (!__i915_active_fence_set(active, fence)) 457 __i915_active_acquire(ref); 458 459 out: 460 i915_active_release(ref); 461 return err; 462 } 463 464 static struct dma_fence * 465 __i915_active_set_fence(struct i915_active *ref, 466 struct i915_active_fence *active, 467 struct dma_fence *fence) 468 { 469 struct dma_fence *prev; 470 471 if (replace_barrier(ref, active)) { 472 RCU_INIT_POINTER(active->fence, fence); 473 return NULL; 474 } 475 476 rcu_read_lock(); 477 prev = __i915_active_fence_set(active, fence); 478 if (prev) 479 prev = dma_fence_get_rcu(prev); 480 else 481 __i915_active_acquire(ref); 482 rcu_read_unlock(); 483 484 return prev; 485 } 486 487 static struct i915_active_fence * 488 __active_fence(struct i915_active *ref, u64 idx) 489 { 490 struct active_node *it; 491 492 it = __active_lookup(ref, idx); 493 if (unlikely(!it)) { /* Contention with parallel tree builders! */ 494 spin_lock_irq(&ref->tree_lock); 495 it = __active_lookup(ref, idx); 496 spin_unlock_irq(&ref->tree_lock); 497 } 498 GEM_BUG_ON(!it); /* slot must be preallocated */ 499 500 return &it->base; 501 } 502 503 struct dma_fence * 504 __i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence) 505 { 506 /* Only valid while active, see i915_active_acquire_for_context() */ 507 return __i915_active_set_fence(ref, __active_fence(ref, idx), fence); 508 } 509 510 struct dma_fence * 511 i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f) 512 { 513 /* We expect the caller to manage the exclusive timeline ordering */ 514 return __i915_active_set_fence(ref, &ref->excl, f); 515 } 516 517 bool i915_active_acquire_if_busy(struct i915_active *ref) 518 { 519 debug_active_assert(ref); 520 return atomic_add_unless(&ref->count, 1, 0); 521 } 522 523 static void __i915_active_activate(struct i915_active *ref) 524 { 525 spin_lock_irq(&ref->tree_lock); /* __active_retire() */ 526 if (!atomic_fetch_inc(&ref->count)) 527 debug_active_activate(ref); 528 spin_unlock_irq(&ref->tree_lock); 529 } 530 531 int i915_active_acquire(struct i915_active *ref) 532 { 533 int err; 534 535 if (i915_active_acquire_if_busy(ref)) 536 return 0; 537 538 if (!ref->active) { 539 __i915_active_activate(ref); 540 return 0; 541 } 542 543 err = mutex_lock_interruptible(&ref->mutex); 544 if (err) 545 return err; 546 547 if (likely(!i915_active_acquire_if_busy(ref))) { 548 err = ref->active(ref); 549 if (!err) 550 __i915_active_activate(ref); 551 } 552 553 mutex_unlock(&ref->mutex); 554 555 return err; 556 } 557 558 int i915_active_acquire_for_context(struct i915_active *ref, u64 idx) 559 { 560 struct i915_active_fence *active; 561 int err; 562 563 err = i915_active_acquire(ref); 564 if (err) 565 return err; 566 567 active = active_instance(ref, idx); 568 if (!active) { 569 i915_active_release(ref); 570 return -ENOMEM; 571 } 572 573 return 0; /* return with active ref */ 574 } 575 576 void i915_active_release(struct i915_active *ref) 577 { 578 debug_active_assert(ref); 579 active_retire(ref); 580 } 581 582 static void enable_signaling(struct i915_active_fence *active) 583 { 584 struct dma_fence *fence; 585 586 if (unlikely(is_barrier(active))) 587 return; 588 589 fence = i915_active_fence_get(active); 590 if (!fence) 591 return; 592 593 dma_fence_enable_sw_signaling(fence); 594 dma_fence_put(fence); 595 } 596 597 static int flush_barrier(struct active_node *it) 598 { 599 struct intel_engine_cs *engine; 600 601 if (likely(!is_barrier(&it->base))) 602 return 0; 603 604 engine = __barrier_to_engine(it); 605 smp_rmb(); /* serialise with add_active_barriers */ 606 if (!is_barrier(&it->base)) 607 return 0; 608 609 return intel_engine_flush_barriers(engine); 610 } 611 612 static int flush_lazy_signals(struct i915_active *ref) 613 { 614 struct active_node *it, *n; 615 int err = 0; 616 617 enable_signaling(&ref->excl); 618 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) { 619 err = flush_barrier(it); /* unconnected idle barrier? */ 620 if (err) 621 break; 622 623 enable_signaling(&it->base); 624 } 625 626 return err; 627 } 628 629 int __i915_active_wait(struct i915_active *ref, int state) 630 { 631 might_sleep(); 632 633 /* Any fence added after the wait begins will not be auto-signaled */ 634 if (i915_active_acquire_if_busy(ref)) { 635 int err; 636 637 err = flush_lazy_signals(ref); 638 i915_active_release(ref); 639 if (err) 640 return err; 641 642 if (___wait_var_event(ref, i915_active_is_idle(ref), 643 state, 0, 0, schedule())) 644 return -EINTR; 645 } 646 647 /* 648 * After the wait is complete, the caller may free the active. 649 * We have to flush any concurrent retirement before returning. 650 */ 651 flush_work(&ref->work); 652 return 0; 653 } 654 655 static int __await_active(struct i915_active_fence *active, 656 int (*fn)(void *arg, struct dma_fence *fence), 657 void *arg) 658 { 659 struct dma_fence *fence; 660 661 if (is_barrier(active)) /* XXX flush the barrier? */ 662 return 0; 663 664 fence = i915_active_fence_get(active); 665 if (fence) { 666 int err; 667 668 err = fn(arg, fence); 669 dma_fence_put(fence); 670 if (err < 0) 671 return err; 672 } 673 674 return 0; 675 } 676 677 struct wait_barrier { 678 struct wait_queue_entry base; 679 struct i915_active *ref; 680 }; 681 682 static int 683 barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key) 684 { 685 struct wait_barrier *wb = container_of(wq, typeof(*wb), base); 686 687 if (i915_active_is_idle(wb->ref)) { 688 list_del(&wq->entry); 689 i915_sw_fence_complete(wq->private); 690 kfree(wq); 691 } 692 693 return 0; 694 } 695 696 static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence) 697 { 698 struct wait_barrier *wb; 699 700 wb = kmalloc(sizeof(*wb), GFP_KERNEL); 701 if (unlikely(!wb)) 702 return -ENOMEM; 703 704 GEM_BUG_ON(i915_active_is_idle(ref)); 705 if (!i915_sw_fence_await(fence)) { 706 kfree(wb); 707 return -EINVAL; 708 } 709 710 wb->base.flags = 0; 711 wb->base.func = barrier_wake; 712 wb->base.private = fence; 713 wb->ref = ref; 714 715 add_wait_queue(__var_waitqueue(ref), &wb->base); 716 return 0; 717 } 718 719 static int await_active(struct i915_active *ref, 720 unsigned int flags, 721 int (*fn)(void *arg, struct dma_fence *fence), 722 void *arg, struct i915_sw_fence *barrier) 723 { 724 int err = 0; 725 726 if (!i915_active_acquire_if_busy(ref)) 727 return 0; 728 729 if (flags & I915_ACTIVE_AWAIT_EXCL && 730 rcu_access_pointer(ref->excl.fence)) { 731 err = __await_active(&ref->excl, fn, arg); 732 if (err) 733 goto out; 734 } 735 736 if (flags & I915_ACTIVE_AWAIT_ACTIVE) { 737 struct active_node *it, *n; 738 739 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) { 740 err = __await_active(&it->base, fn, arg); 741 if (err) 742 goto out; 743 } 744 } 745 746 if (flags & I915_ACTIVE_AWAIT_BARRIER) { 747 err = flush_lazy_signals(ref); 748 if (err) 749 goto out; 750 751 err = __await_barrier(ref, barrier); 752 if (err) 753 goto out; 754 } 755 756 out: 757 i915_active_release(ref); 758 return err; 759 } 760 761 static int rq_await_fence(void *arg, struct dma_fence *fence) 762 { 763 return i915_request_await_dma_fence(arg, fence); 764 } 765 766 int i915_request_await_active(struct i915_request *rq, 767 struct i915_active *ref, 768 unsigned int flags) 769 { 770 return await_active(ref, flags, rq_await_fence, rq, &rq->submit); 771 } 772 773 static int sw_await_fence(void *arg, struct dma_fence *fence) 774 { 775 return i915_sw_fence_await_dma_fence(arg, fence, 0, 776 GFP_NOWAIT | __GFP_NOWARN); 777 } 778 779 int i915_sw_fence_await_active(struct i915_sw_fence *fence, 780 struct i915_active *ref, 781 unsigned int flags) 782 { 783 return await_active(ref, flags, sw_await_fence, fence, fence); 784 } 785 786 void i915_active_fini(struct i915_active *ref) 787 { 788 debug_active_fini(ref); 789 GEM_BUG_ON(atomic_read(&ref->count)); 790 GEM_BUG_ON(work_pending(&ref->work)); 791 mutex_destroy(&ref->mutex); 792 793 if (ref->cache) 794 kmem_cache_free(global.slab_cache, ref->cache); 795 } 796 797 static inline bool is_idle_barrier(struct active_node *node, u64 idx) 798 { 799 return node->timeline == idx && !i915_active_fence_isset(&node->base); 800 } 801 802 static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx) 803 { 804 struct rb_node *prev, *p; 805 806 if (RB_EMPTY_ROOT(&ref->tree)) 807 return NULL; 808 809 GEM_BUG_ON(i915_active_is_idle(ref)); 810 811 /* 812 * Try to reuse any existing barrier nodes already allocated for this 813 * i915_active, due to overlapping active phases there is likely a 814 * node kept alive (as we reuse before parking). We prefer to reuse 815 * completely idle barriers (less hassle in manipulating the llists), 816 * but otherwise any will do. 817 */ 818 if (ref->cache && is_idle_barrier(ref->cache, idx)) { 819 p = &ref->cache->node; 820 goto match; 821 } 822 823 prev = NULL; 824 p = ref->tree.rb_node; 825 while (p) { 826 struct active_node *node = 827 rb_entry(p, struct active_node, node); 828 829 if (is_idle_barrier(node, idx)) 830 goto match; 831 832 prev = p; 833 if (node->timeline < idx) 834 p = READ_ONCE(p->rb_right); 835 else 836 p = READ_ONCE(p->rb_left); 837 } 838 839 /* 840 * No quick match, but we did find the leftmost rb_node for the 841 * kernel_context. Walk the rb_tree in-order to see if there were 842 * any idle-barriers on this timeline that we missed, or just use 843 * the first pending barrier. 844 */ 845 for (p = prev; p; p = rb_next(p)) { 846 struct active_node *node = 847 rb_entry(p, struct active_node, node); 848 struct intel_engine_cs *engine; 849 850 if (node->timeline > idx) 851 break; 852 853 if (node->timeline < idx) 854 continue; 855 856 if (is_idle_barrier(node, idx)) 857 goto match; 858 859 /* 860 * The list of pending barriers is protected by the 861 * kernel_context timeline, which notably we do not hold 862 * here. i915_request_add_active_barriers() may consume 863 * the barrier before we claim it, so we have to check 864 * for success. 865 */ 866 engine = __barrier_to_engine(node); 867 smp_rmb(); /* serialise with add_active_barriers */ 868 if (is_barrier(&node->base) && 869 ____active_del_barrier(ref, node, engine)) 870 goto match; 871 } 872 873 return NULL; 874 875 match: 876 spin_lock_irq(&ref->tree_lock); 877 rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */ 878 if (p == &ref->cache->node) 879 WRITE_ONCE(ref->cache, NULL); 880 spin_unlock_irq(&ref->tree_lock); 881 882 return rb_entry(p, struct active_node, node); 883 } 884 885 int i915_active_acquire_preallocate_barrier(struct i915_active *ref, 886 struct intel_engine_cs *engine) 887 { 888 intel_engine_mask_t tmp, mask = engine->mask; 889 struct llist_node *first = NULL, *last = NULL; 890 struct intel_gt *gt = engine->gt; 891 892 GEM_BUG_ON(i915_active_is_idle(ref)); 893 894 /* Wait until the previous preallocation is completed */ 895 while (!llist_empty(&ref->preallocated_barriers)) 896 cond_resched(); 897 898 /* 899 * Preallocate a node for each physical engine supporting the target 900 * engine (remember virtual engines have more than one sibling). 901 * We can then use the preallocated nodes in 902 * i915_active_acquire_barrier() 903 */ 904 GEM_BUG_ON(!mask); 905 for_each_engine_masked(engine, gt, mask, tmp) { 906 u64 idx = engine->kernel_context->timeline->fence_context; 907 struct llist_node *prev = first; 908 struct active_node *node; 909 910 rcu_read_lock(); 911 node = reuse_idle_barrier(ref, idx); 912 rcu_read_unlock(); 913 if (!node) { 914 node = kmem_cache_alloc(global.slab_cache, GFP_KERNEL); 915 if (!node) 916 goto unwind; 917 918 RCU_INIT_POINTER(node->base.fence, NULL); 919 node->base.cb.func = node_retire; 920 node->timeline = idx; 921 node->ref = ref; 922 } 923 924 if (!i915_active_fence_isset(&node->base)) { 925 /* 926 * Mark this as being *our* unconnected proto-node. 927 * 928 * Since this node is not in any list, and we have 929 * decoupled it from the rbtree, we can reuse the 930 * request to indicate this is an idle-barrier node 931 * and then we can use the rb_node and list pointers 932 * for our tracking of the pending barrier. 933 */ 934 RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN)); 935 node->base.cb.node.prev = (void *)engine; 936 __i915_active_acquire(ref); 937 } 938 GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN)); 939 940 GEM_BUG_ON(barrier_to_engine(node) != engine); 941 first = barrier_to_ll(node); 942 first->next = prev; 943 if (!last) 944 last = first; 945 intel_engine_pm_get(engine); 946 } 947 948 GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers)); 949 llist_add_batch(first, last, &ref->preallocated_barriers); 950 951 return 0; 952 953 unwind: 954 while (first) { 955 struct active_node *node = barrier_from_ll(first); 956 957 first = first->next; 958 959 atomic_dec(&ref->count); 960 intel_engine_pm_put(barrier_to_engine(node)); 961 962 kmem_cache_free(global.slab_cache, node); 963 } 964 return -ENOMEM; 965 } 966 967 void i915_active_acquire_barrier(struct i915_active *ref) 968 { 969 struct llist_node *pos, *next; 970 unsigned long flags; 971 972 GEM_BUG_ON(i915_active_is_idle(ref)); 973 974 /* 975 * Transfer the list of preallocated barriers into the 976 * i915_active rbtree, but only as proto-nodes. They will be 977 * populated by i915_request_add_active_barriers() to point to the 978 * request that will eventually release them. 979 */ 980 llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) { 981 struct active_node *node = barrier_from_ll(pos); 982 struct intel_engine_cs *engine = barrier_to_engine(node); 983 struct rb_node **p, *parent; 984 985 spin_lock_irqsave_nested(&ref->tree_lock, flags, 986 SINGLE_DEPTH_NESTING); 987 parent = NULL; 988 p = &ref->tree.rb_node; 989 while (*p) { 990 struct active_node *it; 991 992 parent = *p; 993 994 it = rb_entry(parent, struct active_node, node); 995 if (it->timeline < node->timeline) 996 p = &parent->rb_right; 997 else 998 p = &parent->rb_left; 999 } 1000 rb_link_node(&node->node, parent, p); 1001 rb_insert_color(&node->node, &ref->tree); 1002 spin_unlock_irqrestore(&ref->tree_lock, flags); 1003 1004 GEM_BUG_ON(!intel_engine_pm_is_awake(engine)); 1005 llist_add(barrier_to_ll(node), &engine->barrier_tasks); 1006 intel_engine_pm_put_delay(engine, 1); 1007 } 1008 } 1009 1010 static struct dma_fence **ll_to_fence_slot(struct llist_node *node) 1011 { 1012 return __active_fence_slot(&barrier_from_ll(node)->base); 1013 } 1014 1015 void i915_request_add_active_barriers(struct i915_request *rq) 1016 { 1017 struct intel_engine_cs *engine = rq->engine; 1018 struct llist_node *node, *next; 1019 unsigned long flags; 1020 1021 GEM_BUG_ON(!intel_context_is_barrier(rq->context)); 1022 GEM_BUG_ON(intel_engine_is_virtual(engine)); 1023 GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline); 1024 1025 node = llist_del_all(&engine->barrier_tasks); 1026 if (!node) 1027 return; 1028 /* 1029 * Attach the list of proto-fences to the in-flight request such 1030 * that the parent i915_active will be released when this request 1031 * is retired. 1032 */ 1033 spin_lock_irqsave(&rq->lock, flags); 1034 llist_for_each_safe(node, next, node) { 1035 /* serialise with reuse_idle_barrier */ 1036 smp_store_mb(*ll_to_fence_slot(node), &rq->fence); 1037 list_add_tail((struct list_head *)node, &rq->fence.cb_list); 1038 } 1039 spin_unlock_irqrestore(&rq->lock, flags); 1040 } 1041 1042 /* 1043 * __i915_active_fence_set: Update the last active fence along its timeline 1044 * @active: the active tracker 1045 * @fence: the new fence (under construction) 1046 * 1047 * Records the new @fence as the last active fence along its timeline in 1048 * this active tracker, moving the tracking callbacks from the previous 1049 * fence onto this one. Returns the previous fence (if not already completed), 1050 * which the caller must ensure is executed before the new fence. To ensure 1051 * that the order of fences within the timeline of the i915_active_fence is 1052 * understood, it should be locked by the caller. 1053 */ 1054 struct dma_fence * 1055 __i915_active_fence_set(struct i915_active_fence *active, 1056 struct dma_fence *fence) 1057 { 1058 struct dma_fence *prev; 1059 unsigned long flags; 1060 1061 if (fence == rcu_access_pointer(active->fence)) 1062 return fence; 1063 1064 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)); 1065 1066 /* 1067 * Consider that we have two threads arriving (A and B), with 1068 * C already resident as the active->fence. 1069 * 1070 * A does the xchg first, and so it sees C or NULL depending 1071 * on the timing of the interrupt handler. If it is NULL, the 1072 * previous fence must have been signaled and we know that 1073 * we are first on the timeline. If it is still present, 1074 * we acquire the lock on that fence and serialise with the interrupt 1075 * handler, in the process removing it from any future interrupt 1076 * callback. A will then wait on C before executing (if present). 1077 * 1078 * As B is second, it sees A as the previous fence and so waits for 1079 * it to complete its transition and takes over the occupancy for 1080 * itself -- remembering that it needs to wait on A before executing. 1081 * 1082 * Note the strong ordering of the timeline also provides consistent 1083 * nesting rules for the fence->lock; the inner lock is always the 1084 * older lock. 1085 */ 1086 spin_lock_irqsave(fence->lock, flags); 1087 prev = xchg(__active_fence_slot(active), fence); 1088 if (prev) { 1089 GEM_BUG_ON(prev == fence); 1090 spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING); 1091 __list_del_entry(&active->cb.node); 1092 spin_unlock(prev->lock); /* serialise with prev->cb_list */ 1093 } 1094 list_add_tail(&active->cb.node, &fence->cb_list); 1095 spin_unlock_irqrestore(fence->lock, flags); 1096 1097 return prev; 1098 } 1099 1100 int i915_active_fence_set(struct i915_active_fence *active, 1101 struct i915_request *rq) 1102 { 1103 struct dma_fence *fence; 1104 int err = 0; 1105 1106 /* Must maintain timeline ordering wrt previous active requests */ 1107 rcu_read_lock(); 1108 fence = __i915_active_fence_set(active, &rq->fence); 1109 if (fence) /* but the previous fence may not belong to that timeline! */ 1110 fence = dma_fence_get_rcu(fence); 1111 rcu_read_unlock(); 1112 if (fence) { 1113 err = i915_request_await_dma_fence(rq, fence); 1114 dma_fence_put(fence); 1115 } 1116 1117 return err; 1118 } 1119 1120 void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb) 1121 { 1122 active_fence_cb(fence, cb); 1123 } 1124 1125 struct auto_active { 1126 struct i915_active base; 1127 struct kref ref; 1128 }; 1129 1130 struct i915_active *i915_active_get(struct i915_active *ref) 1131 { 1132 struct auto_active *aa = container_of(ref, typeof(*aa), base); 1133 1134 kref_get(&aa->ref); 1135 return &aa->base; 1136 } 1137 1138 static void auto_release(struct kref *ref) 1139 { 1140 struct auto_active *aa = container_of(ref, typeof(*aa), ref); 1141 1142 i915_active_fini(&aa->base); 1143 kfree(aa); 1144 } 1145 1146 void i915_active_put(struct i915_active *ref) 1147 { 1148 struct auto_active *aa = container_of(ref, typeof(*aa), base); 1149 1150 kref_put(&aa->ref, auto_release); 1151 } 1152 1153 static int auto_active(struct i915_active *ref) 1154 { 1155 i915_active_get(ref); 1156 return 0; 1157 } 1158 1159 static void auto_retire(struct i915_active *ref) 1160 { 1161 i915_active_put(ref); 1162 } 1163 1164 struct i915_active *i915_active_create(void) 1165 { 1166 struct auto_active *aa; 1167 1168 aa = kmalloc(sizeof(*aa), GFP_KERNEL); 1169 if (!aa) 1170 return NULL; 1171 1172 kref_init(&aa->ref); 1173 i915_active_init(&aa->base, auto_active, auto_retire); 1174 1175 return &aa->base; 1176 } 1177 1178 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1179 #include "selftests/i915_active.c" 1180 #endif 1181 1182 static void i915_global_active_shrink(void) 1183 { 1184 kmem_cache_shrink(global.slab_cache); 1185 } 1186 1187 static void i915_global_active_exit(void) 1188 { 1189 kmem_cache_destroy(global.slab_cache); 1190 } 1191 1192 static struct i915_global_active global = { { 1193 .shrink = i915_global_active_shrink, 1194 .exit = i915_global_active_exit, 1195 } }; 1196 1197 int __init i915_global_active_init(void) 1198 { 1199 global.slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN); 1200 if (!global.slab_cache) 1201 return -ENOMEM; 1202 1203 i915_global_register(&global.base); 1204 return 0; 1205 } 1206