1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2019 Intel Corporation 5 */ 6 7 #include <linux/debugobjects.h> 8 9 #include "gt/intel_context.h" 10 #include "gt/intel_engine_heartbeat.h" 11 #include "gt/intel_engine_pm.h" 12 #include "gt/intel_ring.h" 13 14 #include "i915_drv.h" 15 #include "i915_active.h" 16 17 /* 18 * Active refs memory management 19 * 20 * To be more economical with memory, we reap all the i915_active trees as 21 * they idle (when we know the active requests are inactive) and allocate the 22 * nodes from a local slab cache to hopefully reduce the fragmentation. 23 */ 24 static struct kmem_cache *slab_cache; 25 26 struct active_node { 27 struct rb_node node; 28 struct i915_active_fence base; 29 struct i915_active *ref; 30 u64 timeline; 31 }; 32 33 #define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node) 34 35 static inline struct active_node * 36 node_from_active(struct i915_active_fence *active) 37 { 38 return container_of(active, struct active_node, base); 39 } 40 41 #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers) 42 43 static inline bool is_barrier(const struct i915_active_fence *active) 44 { 45 return IS_ERR(rcu_access_pointer(active->fence)); 46 } 47 48 static inline struct llist_node *barrier_to_ll(struct active_node *node) 49 { 50 GEM_BUG_ON(!is_barrier(&node->base)); 51 return (struct llist_node *)&node->base.cb.node; 52 } 53 54 static inline struct intel_engine_cs * 55 __barrier_to_engine(struct active_node *node) 56 { 57 return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev); 58 } 59 60 static inline struct intel_engine_cs * 61 barrier_to_engine(struct active_node *node) 62 { 63 GEM_BUG_ON(!is_barrier(&node->base)); 64 return __barrier_to_engine(node); 65 } 66 67 static inline struct active_node *barrier_from_ll(struct llist_node *x) 68 { 69 return container_of((struct list_head *)x, 70 struct active_node, base.cb.node); 71 } 72 73 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS) 74 75 static void *active_debug_hint(void *addr) 76 { 77 struct i915_active *ref = addr; 78 79 return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref; 80 } 81 82 static const struct debug_obj_descr active_debug_desc = { 83 .name = "i915_active", 84 .debug_hint = active_debug_hint, 85 }; 86 87 static void debug_active_init(struct i915_active *ref) 88 { 89 debug_object_init(ref, &active_debug_desc); 90 } 91 92 static void debug_active_activate(struct i915_active *ref) 93 { 94 lockdep_assert_held(&ref->tree_lock); 95 debug_object_activate(ref, &active_debug_desc); 96 } 97 98 static void debug_active_deactivate(struct i915_active *ref) 99 { 100 lockdep_assert_held(&ref->tree_lock); 101 if (!atomic_read(&ref->count)) /* after the last dec */ 102 debug_object_deactivate(ref, &active_debug_desc); 103 } 104 105 static void debug_active_fini(struct i915_active *ref) 106 { 107 debug_object_free(ref, &active_debug_desc); 108 } 109 110 static void debug_active_assert(struct i915_active *ref) 111 { 112 debug_object_assert_init(ref, &active_debug_desc); 113 } 114 115 #else 116 117 static inline void debug_active_init(struct i915_active *ref) { } 118 static inline void debug_active_activate(struct i915_active *ref) { } 119 static inline void debug_active_deactivate(struct i915_active *ref) { } 120 static inline void debug_active_fini(struct i915_active *ref) { } 121 static inline void debug_active_assert(struct i915_active *ref) { } 122 123 #endif 124 125 static void 126 __active_retire(struct i915_active *ref) 127 { 128 struct rb_root root = RB_ROOT; 129 struct active_node *it, *n; 130 unsigned long flags; 131 132 GEM_BUG_ON(i915_active_is_idle(ref)); 133 134 /* return the unused nodes to our slabcache -- flushing the allocator */ 135 if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags)) 136 return; 137 138 GEM_BUG_ON(rcu_access_pointer(ref->excl.fence)); 139 debug_active_deactivate(ref); 140 141 /* Even if we have not used the cache, we may still have a barrier */ 142 if (!ref->cache) 143 ref->cache = fetch_node(ref->tree.rb_node); 144 145 /* Keep the MRU cached node for reuse */ 146 if (ref->cache) { 147 /* Discard all other nodes in the tree */ 148 rb_erase(&ref->cache->node, &ref->tree); 149 root = ref->tree; 150 151 /* Rebuild the tree with only the cached node */ 152 rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node); 153 rb_insert_color(&ref->cache->node, &ref->tree); 154 GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node); 155 156 /* Make the cached node available for reuse with any timeline */ 157 ref->cache->timeline = 0; /* needs cmpxchg(u64) */ 158 } 159 160 spin_unlock_irqrestore(&ref->tree_lock, flags); 161 162 /* After the final retire, the entire struct may be freed */ 163 if (ref->retire) 164 ref->retire(ref); 165 166 /* ... except if you wait on it, you must manage your own references! */ 167 wake_up_var(ref); 168 169 /* Finally free the discarded timeline tree */ 170 rbtree_postorder_for_each_entry_safe(it, n, &root, node) { 171 GEM_BUG_ON(i915_active_fence_isset(&it->base)); 172 kmem_cache_free(slab_cache, it); 173 } 174 } 175 176 static void 177 active_work(struct work_struct *wrk) 178 { 179 struct i915_active *ref = container_of(wrk, typeof(*ref), work); 180 181 GEM_BUG_ON(!atomic_read(&ref->count)); 182 if (atomic_add_unless(&ref->count, -1, 1)) 183 return; 184 185 __active_retire(ref); 186 } 187 188 static void 189 active_retire(struct i915_active *ref) 190 { 191 GEM_BUG_ON(!atomic_read(&ref->count)); 192 if (atomic_add_unless(&ref->count, -1, 1)) 193 return; 194 195 if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) { 196 queue_work(system_unbound_wq, &ref->work); 197 return; 198 } 199 200 __active_retire(ref); 201 } 202 203 static inline struct dma_fence ** 204 __active_fence_slot(struct i915_active_fence *active) 205 { 206 return (struct dma_fence ** __force)&active->fence; 207 } 208 209 static inline bool 210 active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 211 { 212 struct i915_active_fence *active = 213 container_of(cb, typeof(*active), cb); 214 215 return try_cmpxchg(__active_fence_slot(active), &fence, NULL); 216 } 217 218 static void 219 node_retire(struct dma_fence *fence, struct dma_fence_cb *cb) 220 { 221 if (active_fence_cb(fence, cb)) 222 active_retire(container_of(cb, struct active_node, base.cb)->ref); 223 } 224 225 static void 226 excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb) 227 { 228 if (active_fence_cb(fence, cb)) 229 active_retire(container_of(cb, struct i915_active, excl.cb)); 230 } 231 232 static struct active_node *__active_lookup(struct i915_active *ref, u64 idx) 233 { 234 struct active_node *it; 235 236 GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */ 237 238 /* 239 * We track the most recently used timeline to skip a rbtree search 240 * for the common case, under typical loads we never need the rbtree 241 * at all. We can reuse the last slot if it is empty, that is 242 * after the previous activity has been retired, or if it matches the 243 * current timeline. 244 */ 245 it = READ_ONCE(ref->cache); 246 if (it) { 247 u64 cached = READ_ONCE(it->timeline); 248 249 /* Once claimed, this slot will only belong to this idx */ 250 if (cached == idx) 251 return it; 252 253 /* 254 * An unclaimed cache [.timeline=0] can only be claimed once. 255 * 256 * If the value is already non-zero, some other thread has 257 * claimed the cache and we know that is does not match our 258 * idx. If, and only if, the timeline is currently zero is it 259 * worth competing to claim it atomically for ourselves (for 260 * only the winner of that race will cmpxchg return the old 261 * value of 0). 262 */ 263 if (!cached && !cmpxchg64(&it->timeline, 0, idx)) 264 return it; 265 } 266 267 BUILD_BUG_ON(offsetof(typeof(*it), node)); 268 269 /* While active, the tree can only be built; not destroyed */ 270 GEM_BUG_ON(i915_active_is_idle(ref)); 271 272 it = fetch_node(ref->tree.rb_node); 273 while (it) { 274 if (it->timeline < idx) { 275 it = fetch_node(it->node.rb_right); 276 } else if (it->timeline > idx) { 277 it = fetch_node(it->node.rb_left); 278 } else { 279 WRITE_ONCE(ref->cache, it); 280 break; 281 } 282 } 283 284 /* NB: If the tree rotated beneath us, we may miss our target. */ 285 return it; 286 } 287 288 static struct i915_active_fence * 289 active_instance(struct i915_active *ref, u64 idx) 290 { 291 struct active_node *node; 292 struct rb_node **p, *parent; 293 294 node = __active_lookup(ref, idx); 295 if (likely(node)) 296 return &node->base; 297 298 spin_lock_irq(&ref->tree_lock); 299 GEM_BUG_ON(i915_active_is_idle(ref)); 300 301 parent = NULL; 302 p = &ref->tree.rb_node; 303 while (*p) { 304 parent = *p; 305 306 node = rb_entry(parent, struct active_node, node); 307 if (node->timeline == idx) 308 goto out; 309 310 if (node->timeline < idx) 311 p = &parent->rb_right; 312 else 313 p = &parent->rb_left; 314 } 315 316 /* 317 * XXX: We should preallocate this before i915_active_ref() is ever 318 * called, but we cannot call into fs_reclaim() anyway, so use GFP_ATOMIC. 319 */ 320 node = kmem_cache_alloc(slab_cache, GFP_ATOMIC); 321 if (!node) 322 goto out; 323 324 __i915_active_fence_init(&node->base, NULL, node_retire); 325 node->ref = ref; 326 node->timeline = idx; 327 328 rb_link_node(&node->node, parent, p); 329 rb_insert_color(&node->node, &ref->tree); 330 331 out: 332 WRITE_ONCE(ref->cache, node); 333 spin_unlock_irq(&ref->tree_lock); 334 335 return &node->base; 336 } 337 338 void __i915_active_init(struct i915_active *ref, 339 int (*active)(struct i915_active *ref), 340 void (*retire)(struct i915_active *ref), 341 unsigned long flags, 342 struct lock_class_key *mkey, 343 struct lock_class_key *wkey) 344 { 345 debug_active_init(ref); 346 347 ref->flags = flags; 348 ref->active = active; 349 ref->retire = retire; 350 351 spin_lock_init(&ref->tree_lock); 352 ref->tree = RB_ROOT; 353 ref->cache = NULL; 354 355 init_llist_head(&ref->preallocated_barriers); 356 atomic_set(&ref->count, 0); 357 __mutex_init(&ref->mutex, "i915_active", mkey); 358 __i915_active_fence_init(&ref->excl, NULL, excl_retire); 359 INIT_WORK(&ref->work, active_work); 360 #if IS_ENABLED(CONFIG_LOCKDEP) 361 lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0); 362 #endif 363 } 364 365 static bool ____active_del_barrier(struct i915_active *ref, 366 struct active_node *node, 367 struct intel_engine_cs *engine) 368 369 { 370 struct llist_node *head = NULL, *tail = NULL; 371 struct llist_node *pos, *next; 372 373 GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context); 374 375 /* 376 * Rebuild the llist excluding our node. We may perform this 377 * outside of the kernel_context timeline mutex and so someone 378 * else may be manipulating the engine->barrier_tasks, in 379 * which case either we or they will be upset :) 380 * 381 * A second __active_del_barrier() will report failure to claim 382 * the active_node and the caller will just shrug and know not to 383 * claim ownership of its node. 384 * 385 * A concurrent i915_request_add_active_barriers() will miss adding 386 * any of the tasks, but we will try again on the next -- and since 387 * we are actively using the barrier, we know that there will be 388 * at least another opportunity when we idle. 389 */ 390 llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) { 391 if (node == barrier_from_ll(pos)) { 392 node = NULL; 393 continue; 394 } 395 396 pos->next = head; 397 head = pos; 398 if (!tail) 399 tail = pos; 400 } 401 if (head) 402 llist_add_batch(head, tail, &engine->barrier_tasks); 403 404 return !node; 405 } 406 407 static bool 408 __active_del_barrier(struct i915_active *ref, struct active_node *node) 409 { 410 return ____active_del_barrier(ref, node, barrier_to_engine(node)); 411 } 412 413 static bool 414 replace_barrier(struct i915_active *ref, struct i915_active_fence *active) 415 { 416 if (!is_barrier(active)) /* proto-node used by our idle barrier? */ 417 return false; 418 419 /* 420 * This request is on the kernel_context timeline, and so 421 * we can use it to substitute for the pending idle-barrer 422 * request that we want to emit on the kernel_context. 423 */ 424 return __active_del_barrier(ref, node_from_active(active)); 425 } 426 427 int i915_active_add_request(struct i915_active *ref, struct i915_request *rq) 428 { 429 u64 idx = i915_request_timeline(rq)->fence_context; 430 struct dma_fence *fence = &rq->fence; 431 struct i915_active_fence *active; 432 int err; 433 434 /* Prevent reaping in case we malloc/wait while building the tree */ 435 err = i915_active_acquire(ref); 436 if (err) 437 return err; 438 439 do { 440 active = active_instance(ref, idx); 441 if (!active) { 442 err = -ENOMEM; 443 goto out; 444 } 445 446 if (replace_barrier(ref, active)) { 447 RCU_INIT_POINTER(active->fence, NULL); 448 atomic_dec(&ref->count); 449 } 450 } while (unlikely(is_barrier(active))); 451 452 fence = __i915_active_fence_set(active, fence); 453 if (!fence) 454 __i915_active_acquire(ref); 455 else 456 dma_fence_put(fence); 457 458 out: 459 i915_active_release(ref); 460 return err; 461 } 462 463 static struct dma_fence * 464 __i915_active_set_fence(struct i915_active *ref, 465 struct i915_active_fence *active, 466 struct dma_fence *fence) 467 { 468 struct dma_fence *prev; 469 470 if (replace_barrier(ref, active)) { 471 RCU_INIT_POINTER(active->fence, fence); 472 return NULL; 473 } 474 475 prev = __i915_active_fence_set(active, fence); 476 if (!prev) 477 __i915_active_acquire(ref); 478 479 return prev; 480 } 481 482 struct dma_fence * 483 i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f) 484 { 485 /* We expect the caller to manage the exclusive timeline ordering */ 486 return __i915_active_set_fence(ref, &ref->excl, f); 487 } 488 489 bool i915_active_acquire_if_busy(struct i915_active *ref) 490 { 491 debug_active_assert(ref); 492 return atomic_add_unless(&ref->count, 1, 0); 493 } 494 495 static void __i915_active_activate(struct i915_active *ref) 496 { 497 spin_lock_irq(&ref->tree_lock); /* __active_retire() */ 498 if (!atomic_fetch_inc(&ref->count)) 499 debug_active_activate(ref); 500 spin_unlock_irq(&ref->tree_lock); 501 } 502 503 int i915_active_acquire(struct i915_active *ref) 504 { 505 int err; 506 507 if (i915_active_acquire_if_busy(ref)) 508 return 0; 509 510 if (!ref->active) { 511 __i915_active_activate(ref); 512 return 0; 513 } 514 515 err = mutex_lock_interruptible(&ref->mutex); 516 if (err) 517 return err; 518 519 if (likely(!i915_active_acquire_if_busy(ref))) { 520 err = ref->active(ref); 521 if (!err) 522 __i915_active_activate(ref); 523 } 524 525 mutex_unlock(&ref->mutex); 526 527 return err; 528 } 529 530 int i915_active_acquire_for_context(struct i915_active *ref, u64 idx) 531 { 532 struct i915_active_fence *active; 533 int err; 534 535 err = i915_active_acquire(ref); 536 if (err) 537 return err; 538 539 active = active_instance(ref, idx); 540 if (!active) { 541 i915_active_release(ref); 542 return -ENOMEM; 543 } 544 545 return 0; /* return with active ref */ 546 } 547 548 void i915_active_release(struct i915_active *ref) 549 { 550 debug_active_assert(ref); 551 active_retire(ref); 552 } 553 554 static void enable_signaling(struct i915_active_fence *active) 555 { 556 struct dma_fence *fence; 557 558 if (unlikely(is_barrier(active))) 559 return; 560 561 fence = i915_active_fence_get(active); 562 if (!fence) 563 return; 564 565 dma_fence_enable_sw_signaling(fence); 566 dma_fence_put(fence); 567 } 568 569 static int flush_barrier(struct active_node *it) 570 { 571 struct intel_engine_cs *engine; 572 573 if (likely(!is_barrier(&it->base))) 574 return 0; 575 576 engine = __barrier_to_engine(it); 577 smp_rmb(); /* serialise with add_active_barriers */ 578 if (!is_barrier(&it->base)) 579 return 0; 580 581 return intel_engine_flush_barriers(engine); 582 } 583 584 static int flush_lazy_signals(struct i915_active *ref) 585 { 586 struct active_node *it, *n; 587 int err = 0; 588 589 enable_signaling(&ref->excl); 590 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) { 591 err = flush_barrier(it); /* unconnected idle barrier? */ 592 if (err) 593 break; 594 595 enable_signaling(&it->base); 596 } 597 598 return err; 599 } 600 601 int __i915_active_wait(struct i915_active *ref, int state) 602 { 603 might_sleep(); 604 605 /* Any fence added after the wait begins will not be auto-signaled */ 606 if (i915_active_acquire_if_busy(ref)) { 607 int err; 608 609 err = flush_lazy_signals(ref); 610 i915_active_release(ref); 611 if (err) 612 return err; 613 614 if (___wait_var_event(ref, i915_active_is_idle(ref), 615 state, 0, 0, schedule())) 616 return -EINTR; 617 } 618 619 /* 620 * After the wait is complete, the caller may free the active. 621 * We have to flush any concurrent retirement before returning. 622 */ 623 flush_work(&ref->work); 624 return 0; 625 } 626 627 static int __await_active(struct i915_active_fence *active, 628 int (*fn)(void *arg, struct dma_fence *fence), 629 void *arg) 630 { 631 struct dma_fence *fence; 632 633 if (is_barrier(active)) /* XXX flush the barrier? */ 634 return 0; 635 636 fence = i915_active_fence_get(active); 637 if (fence) { 638 int err; 639 640 err = fn(arg, fence); 641 dma_fence_put(fence); 642 if (err < 0) 643 return err; 644 } 645 646 return 0; 647 } 648 649 struct wait_barrier { 650 struct wait_queue_entry base; 651 struct i915_active *ref; 652 }; 653 654 static int 655 barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key) 656 { 657 struct wait_barrier *wb = container_of(wq, typeof(*wb), base); 658 659 if (i915_active_is_idle(wb->ref)) { 660 list_del(&wq->entry); 661 i915_sw_fence_complete(wq->private); 662 kfree(wq); 663 } 664 665 return 0; 666 } 667 668 static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence) 669 { 670 struct wait_barrier *wb; 671 672 wb = kmalloc(sizeof(*wb), GFP_KERNEL); 673 if (unlikely(!wb)) 674 return -ENOMEM; 675 676 GEM_BUG_ON(i915_active_is_idle(ref)); 677 if (!i915_sw_fence_await(fence)) { 678 kfree(wb); 679 return -EINVAL; 680 } 681 682 wb->base.flags = 0; 683 wb->base.func = barrier_wake; 684 wb->base.private = fence; 685 wb->ref = ref; 686 687 add_wait_queue(__var_waitqueue(ref), &wb->base); 688 return 0; 689 } 690 691 static int await_active(struct i915_active *ref, 692 unsigned int flags, 693 int (*fn)(void *arg, struct dma_fence *fence), 694 void *arg, struct i915_sw_fence *barrier) 695 { 696 int err = 0; 697 698 if (!i915_active_acquire_if_busy(ref)) 699 return 0; 700 701 if (flags & I915_ACTIVE_AWAIT_EXCL && 702 rcu_access_pointer(ref->excl.fence)) { 703 err = __await_active(&ref->excl, fn, arg); 704 if (err) 705 goto out; 706 } 707 708 if (flags & I915_ACTIVE_AWAIT_ACTIVE) { 709 struct active_node *it, *n; 710 711 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) { 712 err = __await_active(&it->base, fn, arg); 713 if (err) 714 goto out; 715 } 716 } 717 718 if (flags & I915_ACTIVE_AWAIT_BARRIER) { 719 err = flush_lazy_signals(ref); 720 if (err) 721 goto out; 722 723 err = __await_barrier(ref, barrier); 724 if (err) 725 goto out; 726 } 727 728 out: 729 i915_active_release(ref); 730 return err; 731 } 732 733 static int rq_await_fence(void *arg, struct dma_fence *fence) 734 { 735 return i915_request_await_dma_fence(arg, fence); 736 } 737 738 int i915_request_await_active(struct i915_request *rq, 739 struct i915_active *ref, 740 unsigned int flags) 741 { 742 return await_active(ref, flags, rq_await_fence, rq, &rq->submit); 743 } 744 745 static int sw_await_fence(void *arg, struct dma_fence *fence) 746 { 747 return i915_sw_fence_await_dma_fence(arg, fence, 0, 748 GFP_NOWAIT | __GFP_NOWARN); 749 } 750 751 int i915_sw_fence_await_active(struct i915_sw_fence *fence, 752 struct i915_active *ref, 753 unsigned int flags) 754 { 755 return await_active(ref, flags, sw_await_fence, fence, fence); 756 } 757 758 void i915_active_fini(struct i915_active *ref) 759 { 760 debug_active_fini(ref); 761 GEM_BUG_ON(atomic_read(&ref->count)); 762 GEM_BUG_ON(work_pending(&ref->work)); 763 mutex_destroy(&ref->mutex); 764 765 if (ref->cache) 766 kmem_cache_free(slab_cache, ref->cache); 767 } 768 769 static inline bool is_idle_barrier(struct active_node *node, u64 idx) 770 { 771 return node->timeline == idx && !i915_active_fence_isset(&node->base); 772 } 773 774 static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx) 775 { 776 struct rb_node *prev, *p; 777 778 if (RB_EMPTY_ROOT(&ref->tree)) 779 return NULL; 780 781 GEM_BUG_ON(i915_active_is_idle(ref)); 782 783 /* 784 * Try to reuse any existing barrier nodes already allocated for this 785 * i915_active, due to overlapping active phases there is likely a 786 * node kept alive (as we reuse before parking). We prefer to reuse 787 * completely idle barriers (less hassle in manipulating the llists), 788 * but otherwise any will do. 789 */ 790 if (ref->cache && is_idle_barrier(ref->cache, idx)) { 791 p = &ref->cache->node; 792 goto match; 793 } 794 795 prev = NULL; 796 p = ref->tree.rb_node; 797 while (p) { 798 struct active_node *node = 799 rb_entry(p, struct active_node, node); 800 801 if (is_idle_barrier(node, idx)) 802 goto match; 803 804 prev = p; 805 if (node->timeline < idx) 806 p = READ_ONCE(p->rb_right); 807 else 808 p = READ_ONCE(p->rb_left); 809 } 810 811 /* 812 * No quick match, but we did find the leftmost rb_node for the 813 * kernel_context. Walk the rb_tree in-order to see if there were 814 * any idle-barriers on this timeline that we missed, or just use 815 * the first pending barrier. 816 */ 817 for (p = prev; p; p = rb_next(p)) { 818 struct active_node *node = 819 rb_entry(p, struct active_node, node); 820 struct intel_engine_cs *engine; 821 822 if (node->timeline > idx) 823 break; 824 825 if (node->timeline < idx) 826 continue; 827 828 if (is_idle_barrier(node, idx)) 829 goto match; 830 831 /* 832 * The list of pending barriers is protected by the 833 * kernel_context timeline, which notably we do not hold 834 * here. i915_request_add_active_barriers() may consume 835 * the barrier before we claim it, so we have to check 836 * for success. 837 */ 838 engine = __barrier_to_engine(node); 839 smp_rmb(); /* serialise with add_active_barriers */ 840 if (is_barrier(&node->base) && 841 ____active_del_barrier(ref, node, engine)) 842 goto match; 843 } 844 845 return NULL; 846 847 match: 848 spin_lock_irq(&ref->tree_lock); 849 rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */ 850 if (p == &ref->cache->node) 851 WRITE_ONCE(ref->cache, NULL); 852 spin_unlock_irq(&ref->tree_lock); 853 854 return rb_entry(p, struct active_node, node); 855 } 856 857 int i915_active_acquire_preallocate_barrier(struct i915_active *ref, 858 struct intel_engine_cs *engine) 859 { 860 intel_engine_mask_t tmp, mask = engine->mask; 861 struct llist_node *first = NULL, *last = NULL; 862 struct intel_gt *gt = engine->gt; 863 864 GEM_BUG_ON(i915_active_is_idle(ref)); 865 866 /* Wait until the previous preallocation is completed */ 867 while (!llist_empty(&ref->preallocated_barriers)) 868 cond_resched(); 869 870 /* 871 * Preallocate a node for each physical engine supporting the target 872 * engine (remember virtual engines have more than one sibling). 873 * We can then use the preallocated nodes in 874 * i915_active_acquire_barrier() 875 */ 876 GEM_BUG_ON(!mask); 877 for_each_engine_masked(engine, gt, mask, tmp) { 878 u64 idx = engine->kernel_context->timeline->fence_context; 879 struct llist_node *prev = first; 880 struct active_node *node; 881 882 rcu_read_lock(); 883 node = reuse_idle_barrier(ref, idx); 884 rcu_read_unlock(); 885 if (!node) { 886 node = kmem_cache_alloc(slab_cache, GFP_KERNEL); 887 if (!node) 888 goto unwind; 889 890 RCU_INIT_POINTER(node->base.fence, NULL); 891 node->base.cb.func = node_retire; 892 node->timeline = idx; 893 node->ref = ref; 894 } 895 896 if (!i915_active_fence_isset(&node->base)) { 897 /* 898 * Mark this as being *our* unconnected proto-node. 899 * 900 * Since this node is not in any list, and we have 901 * decoupled it from the rbtree, we can reuse the 902 * request to indicate this is an idle-barrier node 903 * and then we can use the rb_node and list pointers 904 * for our tracking of the pending barrier. 905 */ 906 RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN)); 907 node->base.cb.node.prev = (void *)engine; 908 __i915_active_acquire(ref); 909 } 910 GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN)); 911 912 GEM_BUG_ON(barrier_to_engine(node) != engine); 913 first = barrier_to_ll(node); 914 first->next = prev; 915 if (!last) 916 last = first; 917 intel_engine_pm_get(engine); 918 } 919 920 GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers)); 921 llist_add_batch(first, last, &ref->preallocated_barriers); 922 923 return 0; 924 925 unwind: 926 while (first) { 927 struct active_node *node = barrier_from_ll(first); 928 929 first = first->next; 930 931 atomic_dec(&ref->count); 932 intel_engine_pm_put(barrier_to_engine(node)); 933 934 kmem_cache_free(slab_cache, node); 935 } 936 return -ENOMEM; 937 } 938 939 void i915_active_acquire_barrier(struct i915_active *ref) 940 { 941 struct llist_node *pos, *next; 942 unsigned long flags; 943 944 GEM_BUG_ON(i915_active_is_idle(ref)); 945 946 /* 947 * Transfer the list of preallocated barriers into the 948 * i915_active rbtree, but only as proto-nodes. They will be 949 * populated by i915_request_add_active_barriers() to point to the 950 * request that will eventually release them. 951 */ 952 llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) { 953 struct active_node *node = barrier_from_ll(pos); 954 struct intel_engine_cs *engine = barrier_to_engine(node); 955 struct rb_node **p, *parent; 956 957 spin_lock_irqsave_nested(&ref->tree_lock, flags, 958 SINGLE_DEPTH_NESTING); 959 parent = NULL; 960 p = &ref->tree.rb_node; 961 while (*p) { 962 struct active_node *it; 963 964 parent = *p; 965 966 it = rb_entry(parent, struct active_node, node); 967 if (it->timeline < node->timeline) 968 p = &parent->rb_right; 969 else 970 p = &parent->rb_left; 971 } 972 rb_link_node(&node->node, parent, p); 973 rb_insert_color(&node->node, &ref->tree); 974 spin_unlock_irqrestore(&ref->tree_lock, flags); 975 976 GEM_BUG_ON(!intel_engine_pm_is_awake(engine)); 977 llist_add(barrier_to_ll(node), &engine->barrier_tasks); 978 intel_engine_pm_put_delay(engine, 2); 979 } 980 } 981 982 static struct dma_fence **ll_to_fence_slot(struct llist_node *node) 983 { 984 return __active_fence_slot(&barrier_from_ll(node)->base); 985 } 986 987 void i915_request_add_active_barriers(struct i915_request *rq) 988 { 989 struct intel_engine_cs *engine = rq->engine; 990 struct llist_node *node, *next; 991 unsigned long flags; 992 993 GEM_BUG_ON(!intel_context_is_barrier(rq->context)); 994 GEM_BUG_ON(intel_engine_is_virtual(engine)); 995 GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline); 996 997 node = llist_del_all(&engine->barrier_tasks); 998 if (!node) 999 return; 1000 /* 1001 * Attach the list of proto-fences to the in-flight request such 1002 * that the parent i915_active will be released when this request 1003 * is retired. 1004 */ 1005 spin_lock_irqsave(&rq->lock, flags); 1006 llist_for_each_safe(node, next, node) { 1007 /* serialise with reuse_idle_barrier */ 1008 smp_store_mb(*ll_to_fence_slot(node), &rq->fence); 1009 list_add_tail((struct list_head *)node, &rq->fence.cb_list); 1010 } 1011 spin_unlock_irqrestore(&rq->lock, flags); 1012 } 1013 1014 /* 1015 * __i915_active_fence_set: Update the last active fence along its timeline 1016 * @active: the active tracker 1017 * @fence: the new fence (under construction) 1018 * 1019 * Records the new @fence as the last active fence along its timeline in 1020 * this active tracker, moving the tracking callbacks from the previous 1021 * fence onto this one. Gets and returns a reference to the previous fence 1022 * (if not already completed), which the caller must put after making sure 1023 * that it is executed before the new fence. To ensure that the order of 1024 * fences within the timeline of the i915_active_fence is understood, it 1025 * should be locked by the caller. 1026 */ 1027 struct dma_fence * 1028 __i915_active_fence_set(struct i915_active_fence *active, 1029 struct dma_fence *fence) 1030 { 1031 struct dma_fence *prev; 1032 unsigned long flags; 1033 1034 /* 1035 * In case of fences embedded in i915_requests, their memory is 1036 * SLAB_FAILSAFE_BY_RCU, then it can be reused right after release 1037 * by new requests. Then, there is a risk of passing back a pointer 1038 * to a new, completely unrelated fence that reuses the same memory 1039 * while tracked under a different active tracker. Combined with i915 1040 * perf open/close operations that build await dependencies between 1041 * engine kernel context requests and user requests from different 1042 * timelines, this can lead to dependency loops and infinite waits. 1043 * 1044 * As a countermeasure, we try to get a reference to the active->fence 1045 * first, so if we succeed and pass it back to our user then it is not 1046 * released and potentially reused by an unrelated request before the 1047 * user has a chance to set up an await dependency on it. 1048 */ 1049 prev = i915_active_fence_get(active); 1050 if (fence == prev) 1051 return fence; 1052 1053 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)); 1054 1055 /* 1056 * Consider that we have two threads arriving (A and B), with 1057 * C already resident as the active->fence. 1058 * 1059 * Both A and B have got a reference to C or NULL, depending on the 1060 * timing of the interrupt handler. Let's assume that if A has got C 1061 * then it has locked C first (before B). 1062 * 1063 * Note the strong ordering of the timeline also provides consistent 1064 * nesting rules for the fence->lock; the inner lock is always the 1065 * older lock. 1066 */ 1067 spin_lock_irqsave(fence->lock, flags); 1068 if (prev) 1069 spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING); 1070 1071 /* 1072 * A does the cmpxchg first, and so it sees C or NULL, as before, or 1073 * something else, depending on the timing of other threads and/or 1074 * interrupt handler. If not the same as before then A unlocks C if 1075 * applicable and retries, starting from an attempt to get a new 1076 * active->fence. Meanwhile, B follows the same path as A. 1077 * Once A succeeds with cmpxch, B fails again, retires, gets A from 1078 * active->fence, locks it as soon as A completes, and possibly 1079 * succeeds with cmpxchg. 1080 */ 1081 while (cmpxchg(__active_fence_slot(active), prev, fence) != prev) { 1082 if (prev) { 1083 spin_unlock(prev->lock); 1084 dma_fence_put(prev); 1085 } 1086 spin_unlock_irqrestore(fence->lock, flags); 1087 1088 prev = i915_active_fence_get(active); 1089 GEM_BUG_ON(prev == fence); 1090 1091 spin_lock_irqsave(fence->lock, flags); 1092 if (prev) 1093 spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING); 1094 } 1095 1096 /* 1097 * If prev is NULL then the previous fence must have been signaled 1098 * and we know that we are first on the timeline. If it is still 1099 * present then, having the lock on that fence already acquired, we 1100 * serialise with the interrupt handler, in the process of removing it 1101 * from any future interrupt callback. A will then wait on C before 1102 * executing (if present). 1103 * 1104 * As B is second, it sees A as the previous fence and so waits for 1105 * it to complete its transition and takes over the occupancy for 1106 * itself -- remembering that it needs to wait on A before executing. 1107 */ 1108 if (prev) { 1109 __list_del_entry(&active->cb.node); 1110 spin_unlock(prev->lock); /* serialise with prev->cb_list */ 1111 } 1112 list_add_tail(&active->cb.node, &fence->cb_list); 1113 spin_unlock_irqrestore(fence->lock, flags); 1114 1115 return prev; 1116 } 1117 1118 int i915_active_fence_set(struct i915_active_fence *active, 1119 struct i915_request *rq) 1120 { 1121 struct dma_fence *fence; 1122 int err = 0; 1123 1124 /* Must maintain timeline ordering wrt previous active requests */ 1125 fence = __i915_active_fence_set(active, &rq->fence); 1126 if (fence) { 1127 err = i915_request_await_dma_fence(rq, fence); 1128 dma_fence_put(fence); 1129 } 1130 1131 return err; 1132 } 1133 1134 void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb) 1135 { 1136 active_fence_cb(fence, cb); 1137 } 1138 1139 struct auto_active { 1140 struct i915_active base; 1141 struct kref ref; 1142 }; 1143 1144 struct i915_active *i915_active_get(struct i915_active *ref) 1145 { 1146 struct auto_active *aa = container_of(ref, typeof(*aa), base); 1147 1148 kref_get(&aa->ref); 1149 return &aa->base; 1150 } 1151 1152 static void auto_release(struct kref *ref) 1153 { 1154 struct auto_active *aa = container_of(ref, typeof(*aa), ref); 1155 1156 i915_active_fini(&aa->base); 1157 kfree(aa); 1158 } 1159 1160 void i915_active_put(struct i915_active *ref) 1161 { 1162 struct auto_active *aa = container_of(ref, typeof(*aa), base); 1163 1164 kref_put(&aa->ref, auto_release); 1165 } 1166 1167 static int auto_active(struct i915_active *ref) 1168 { 1169 i915_active_get(ref); 1170 return 0; 1171 } 1172 1173 static void auto_retire(struct i915_active *ref) 1174 { 1175 i915_active_put(ref); 1176 } 1177 1178 struct i915_active *i915_active_create(void) 1179 { 1180 struct auto_active *aa; 1181 1182 aa = kmalloc(sizeof(*aa), GFP_KERNEL); 1183 if (!aa) 1184 return NULL; 1185 1186 kref_init(&aa->ref); 1187 i915_active_init(&aa->base, auto_active, auto_retire, 0); 1188 1189 return &aa->base; 1190 } 1191 1192 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1193 #include "selftests/i915_active.c" 1194 #endif 1195 1196 void i915_active_module_exit(void) 1197 { 1198 kmem_cache_destroy(slab_cache); 1199 } 1200 1201 int __init i915_active_module_init(void) 1202 { 1203 slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN); 1204 if (!slab_cache) 1205 return -ENOMEM; 1206 1207 return 0; 1208 } 1209