1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2019 Intel Corporation 5 */ 6 7 #include <linux/debugobjects.h> 8 9 #include "gt/intel_context.h" 10 #include "gt/intel_engine_heartbeat.h" 11 #include "gt/intel_engine_pm.h" 12 #include "gt/intel_ring.h" 13 14 #include "i915_drv.h" 15 #include "i915_active.h" 16 17 /* 18 * Active refs memory management 19 * 20 * To be more economical with memory, we reap all the i915_active trees as 21 * they idle (when we know the active requests are inactive) and allocate the 22 * nodes from a local slab cache to hopefully reduce the fragmentation. 23 */ 24 static struct kmem_cache *slab_cache; 25 26 struct active_node { 27 struct rb_node node; 28 struct i915_active_fence base; 29 struct i915_active *ref; 30 u64 timeline; 31 }; 32 33 #define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node) 34 35 static inline struct active_node * 36 node_from_active(struct i915_active_fence *active) 37 { 38 return container_of(active, struct active_node, base); 39 } 40 41 #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers) 42 43 static inline bool is_barrier(const struct i915_active_fence *active) 44 { 45 return IS_ERR(rcu_access_pointer(active->fence)); 46 } 47 48 static inline struct llist_node *barrier_to_ll(struct active_node *node) 49 { 50 GEM_BUG_ON(!is_barrier(&node->base)); 51 return (struct llist_node *)&node->base.cb.node; 52 } 53 54 static inline struct intel_engine_cs * 55 __barrier_to_engine(struct active_node *node) 56 { 57 return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev); 58 } 59 60 static inline struct intel_engine_cs * 61 barrier_to_engine(struct active_node *node) 62 { 63 GEM_BUG_ON(!is_barrier(&node->base)); 64 return __barrier_to_engine(node); 65 } 66 67 static inline struct active_node *barrier_from_ll(struct llist_node *x) 68 { 69 return container_of((struct list_head *)x, 70 struct active_node, base.cb.node); 71 } 72 73 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS) 74 75 static void *active_debug_hint(void *addr) 76 { 77 struct i915_active *ref = addr; 78 79 return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref; 80 } 81 82 static const struct debug_obj_descr active_debug_desc = { 83 .name = "i915_active", 84 .debug_hint = active_debug_hint, 85 }; 86 87 static void debug_active_init(struct i915_active *ref) 88 { 89 debug_object_init(ref, &active_debug_desc); 90 } 91 92 static void debug_active_activate(struct i915_active *ref) 93 { 94 lockdep_assert_held(&ref->tree_lock); 95 if (!atomic_read(&ref->count)) /* before the first inc */ 96 debug_object_activate(ref, &active_debug_desc); 97 } 98 99 static void debug_active_deactivate(struct i915_active *ref) 100 { 101 lockdep_assert_held(&ref->tree_lock); 102 if (!atomic_read(&ref->count)) /* after the last dec */ 103 debug_object_deactivate(ref, &active_debug_desc); 104 } 105 106 static void debug_active_fini(struct i915_active *ref) 107 { 108 debug_object_free(ref, &active_debug_desc); 109 } 110 111 static void debug_active_assert(struct i915_active *ref) 112 { 113 debug_object_assert_init(ref, &active_debug_desc); 114 } 115 116 #else 117 118 static inline void debug_active_init(struct i915_active *ref) { } 119 static inline void debug_active_activate(struct i915_active *ref) { } 120 static inline void debug_active_deactivate(struct i915_active *ref) { } 121 static inline void debug_active_fini(struct i915_active *ref) { } 122 static inline void debug_active_assert(struct i915_active *ref) { } 123 124 #endif 125 126 static void 127 __active_retire(struct i915_active *ref) 128 { 129 struct rb_root root = RB_ROOT; 130 struct active_node *it, *n; 131 unsigned long flags; 132 133 GEM_BUG_ON(i915_active_is_idle(ref)); 134 135 /* return the unused nodes to our slabcache -- flushing the allocator */ 136 if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags)) 137 return; 138 139 GEM_BUG_ON(rcu_access_pointer(ref->excl.fence)); 140 debug_active_deactivate(ref); 141 142 /* Even if we have not used the cache, we may still have a barrier */ 143 if (!ref->cache) 144 ref->cache = fetch_node(ref->tree.rb_node); 145 146 /* Keep the MRU cached node for reuse */ 147 if (ref->cache) { 148 /* Discard all other nodes in the tree */ 149 rb_erase(&ref->cache->node, &ref->tree); 150 root = ref->tree; 151 152 /* Rebuild the tree with only the cached node */ 153 rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node); 154 rb_insert_color(&ref->cache->node, &ref->tree); 155 GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node); 156 157 /* Make the cached node available for reuse with any timeline */ 158 ref->cache->timeline = 0; /* needs cmpxchg(u64) */ 159 } 160 161 spin_unlock_irqrestore(&ref->tree_lock, flags); 162 163 /* After the final retire, the entire struct may be freed */ 164 if (ref->retire) 165 ref->retire(ref); 166 167 /* ... except if you wait on it, you must manage your own references! */ 168 wake_up_var(ref); 169 170 /* Finally free the discarded timeline tree */ 171 rbtree_postorder_for_each_entry_safe(it, n, &root, node) { 172 GEM_BUG_ON(i915_active_fence_isset(&it->base)); 173 kmem_cache_free(slab_cache, it); 174 } 175 } 176 177 static void 178 active_work(struct work_struct *wrk) 179 { 180 struct i915_active *ref = container_of(wrk, typeof(*ref), work); 181 182 GEM_BUG_ON(!atomic_read(&ref->count)); 183 if (atomic_add_unless(&ref->count, -1, 1)) 184 return; 185 186 __active_retire(ref); 187 } 188 189 static void 190 active_retire(struct i915_active *ref) 191 { 192 GEM_BUG_ON(!atomic_read(&ref->count)); 193 if (atomic_add_unless(&ref->count, -1, 1)) 194 return; 195 196 if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) { 197 queue_work(system_unbound_wq, &ref->work); 198 return; 199 } 200 201 __active_retire(ref); 202 } 203 204 static inline struct dma_fence ** 205 __active_fence_slot(struct i915_active_fence *active) 206 { 207 return (struct dma_fence ** __force)&active->fence; 208 } 209 210 static inline bool 211 active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 212 { 213 struct i915_active_fence *active = 214 container_of(cb, typeof(*active), cb); 215 216 return cmpxchg(__active_fence_slot(active), fence, NULL) == fence; 217 } 218 219 static void 220 node_retire(struct dma_fence *fence, struct dma_fence_cb *cb) 221 { 222 if (active_fence_cb(fence, cb)) 223 active_retire(container_of(cb, struct active_node, base.cb)->ref); 224 } 225 226 static void 227 excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb) 228 { 229 if (active_fence_cb(fence, cb)) 230 active_retire(container_of(cb, struct i915_active, excl.cb)); 231 } 232 233 static struct active_node *__active_lookup(struct i915_active *ref, u64 idx) 234 { 235 struct active_node *it; 236 237 GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */ 238 239 /* 240 * We track the most recently used timeline to skip a rbtree search 241 * for the common case, under typical loads we never need the rbtree 242 * at all. We can reuse the last slot if it is empty, that is 243 * after the previous activity has been retired, or if it matches the 244 * current timeline. 245 */ 246 it = READ_ONCE(ref->cache); 247 if (it) { 248 u64 cached = READ_ONCE(it->timeline); 249 250 /* Once claimed, this slot will only belong to this idx */ 251 if (cached == idx) 252 return it; 253 254 /* 255 * An unclaimed cache [.timeline=0] can only be claimed once. 256 * 257 * If the value is already non-zero, some other thread has 258 * claimed the cache and we know that is does not match our 259 * idx. If, and only if, the timeline is currently zero is it 260 * worth competing to claim it atomically for ourselves (for 261 * only the winner of that race will cmpxchg return the old 262 * value of 0). 263 */ 264 if (!cached && !cmpxchg64(&it->timeline, 0, idx)) 265 return it; 266 } 267 268 BUILD_BUG_ON(offsetof(typeof(*it), node)); 269 270 /* While active, the tree can only be built; not destroyed */ 271 GEM_BUG_ON(i915_active_is_idle(ref)); 272 273 it = fetch_node(ref->tree.rb_node); 274 while (it) { 275 if (it->timeline < idx) { 276 it = fetch_node(it->node.rb_right); 277 } else if (it->timeline > idx) { 278 it = fetch_node(it->node.rb_left); 279 } else { 280 WRITE_ONCE(ref->cache, it); 281 break; 282 } 283 } 284 285 /* NB: If the tree rotated beneath us, we may miss our target. */ 286 return it; 287 } 288 289 static struct i915_active_fence * 290 active_instance(struct i915_active *ref, u64 idx) 291 { 292 struct active_node *node; 293 struct rb_node **p, *parent; 294 295 node = __active_lookup(ref, idx); 296 if (likely(node)) 297 return &node->base; 298 299 spin_lock_irq(&ref->tree_lock); 300 GEM_BUG_ON(i915_active_is_idle(ref)); 301 302 parent = NULL; 303 p = &ref->tree.rb_node; 304 while (*p) { 305 parent = *p; 306 307 node = rb_entry(parent, struct active_node, node); 308 if (node->timeline == idx) 309 goto out; 310 311 if (node->timeline < idx) 312 p = &parent->rb_right; 313 else 314 p = &parent->rb_left; 315 } 316 317 /* 318 * XXX: We should preallocate this before i915_active_ref() is ever 319 * called, but we cannot call into fs_reclaim() anyway, so use GFP_ATOMIC. 320 */ 321 node = kmem_cache_alloc(slab_cache, GFP_ATOMIC); 322 if (!node) 323 goto out; 324 325 __i915_active_fence_init(&node->base, NULL, node_retire); 326 node->ref = ref; 327 node->timeline = idx; 328 329 rb_link_node(&node->node, parent, p); 330 rb_insert_color(&node->node, &ref->tree); 331 332 out: 333 WRITE_ONCE(ref->cache, node); 334 spin_unlock_irq(&ref->tree_lock); 335 336 return &node->base; 337 } 338 339 void __i915_active_init(struct i915_active *ref, 340 int (*active)(struct i915_active *ref), 341 void (*retire)(struct i915_active *ref), 342 unsigned long flags, 343 struct lock_class_key *mkey, 344 struct lock_class_key *wkey) 345 { 346 debug_active_init(ref); 347 348 ref->flags = flags; 349 ref->active = active; 350 ref->retire = retire; 351 352 spin_lock_init(&ref->tree_lock); 353 ref->tree = RB_ROOT; 354 ref->cache = NULL; 355 356 init_llist_head(&ref->preallocated_barriers); 357 atomic_set(&ref->count, 0); 358 __mutex_init(&ref->mutex, "i915_active", mkey); 359 __i915_active_fence_init(&ref->excl, NULL, excl_retire); 360 INIT_WORK(&ref->work, active_work); 361 #if IS_ENABLED(CONFIG_LOCKDEP) 362 lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0); 363 #endif 364 } 365 366 static bool ____active_del_barrier(struct i915_active *ref, 367 struct active_node *node, 368 struct intel_engine_cs *engine) 369 370 { 371 struct llist_node *head = NULL, *tail = NULL; 372 struct llist_node *pos, *next; 373 374 GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context); 375 376 /* 377 * Rebuild the llist excluding our node. We may perform this 378 * outside of the kernel_context timeline mutex and so someone 379 * else may be manipulating the engine->barrier_tasks, in 380 * which case either we or they will be upset :) 381 * 382 * A second __active_del_barrier() will report failure to claim 383 * the active_node and the caller will just shrug and know not to 384 * claim ownership of its node. 385 * 386 * A concurrent i915_request_add_active_barriers() will miss adding 387 * any of the tasks, but we will try again on the next -- and since 388 * we are actively using the barrier, we know that there will be 389 * at least another opportunity when we idle. 390 */ 391 llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) { 392 if (node == barrier_from_ll(pos)) { 393 node = NULL; 394 continue; 395 } 396 397 pos->next = head; 398 head = pos; 399 if (!tail) 400 tail = pos; 401 } 402 if (head) 403 llist_add_batch(head, tail, &engine->barrier_tasks); 404 405 return !node; 406 } 407 408 static bool 409 __active_del_barrier(struct i915_active *ref, struct active_node *node) 410 { 411 return ____active_del_barrier(ref, node, barrier_to_engine(node)); 412 } 413 414 static bool 415 replace_barrier(struct i915_active *ref, struct i915_active_fence *active) 416 { 417 if (!is_barrier(active)) /* proto-node used by our idle barrier? */ 418 return false; 419 420 /* 421 * This request is on the kernel_context timeline, and so 422 * we can use it to substitute for the pending idle-barrer 423 * request that we want to emit on the kernel_context. 424 */ 425 __active_del_barrier(ref, node_from_active(active)); 426 return true; 427 } 428 429 int i915_active_add_request(struct i915_active *ref, struct i915_request *rq) 430 { 431 struct dma_fence *fence = &rq->fence; 432 struct i915_active_fence *active; 433 int err; 434 435 /* Prevent reaping in case we malloc/wait while building the tree */ 436 err = i915_active_acquire(ref); 437 if (err) 438 return err; 439 440 active = active_instance(ref, i915_request_timeline(rq)->fence_context); 441 if (!active) { 442 err = -ENOMEM; 443 goto out; 444 } 445 446 if (replace_barrier(ref, active)) { 447 RCU_INIT_POINTER(active->fence, NULL); 448 atomic_dec(&ref->count); 449 } 450 if (!__i915_active_fence_set(active, fence)) 451 __i915_active_acquire(ref); 452 453 out: 454 i915_active_release(ref); 455 return err; 456 } 457 458 static struct dma_fence * 459 __i915_active_set_fence(struct i915_active *ref, 460 struct i915_active_fence *active, 461 struct dma_fence *fence) 462 { 463 struct dma_fence *prev; 464 465 if (replace_barrier(ref, active)) { 466 RCU_INIT_POINTER(active->fence, fence); 467 return NULL; 468 } 469 470 rcu_read_lock(); 471 prev = __i915_active_fence_set(active, fence); 472 if (prev) 473 prev = dma_fence_get_rcu(prev); 474 else 475 __i915_active_acquire(ref); 476 rcu_read_unlock(); 477 478 return prev; 479 } 480 481 struct dma_fence * 482 i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f) 483 { 484 /* We expect the caller to manage the exclusive timeline ordering */ 485 return __i915_active_set_fence(ref, &ref->excl, f); 486 } 487 488 bool i915_active_acquire_if_busy(struct i915_active *ref) 489 { 490 debug_active_assert(ref); 491 return atomic_add_unless(&ref->count, 1, 0); 492 } 493 494 static void __i915_active_activate(struct i915_active *ref) 495 { 496 spin_lock_irq(&ref->tree_lock); /* __active_retire() */ 497 if (!atomic_fetch_inc(&ref->count)) 498 debug_active_activate(ref); 499 spin_unlock_irq(&ref->tree_lock); 500 } 501 502 int i915_active_acquire(struct i915_active *ref) 503 { 504 int err; 505 506 if (i915_active_acquire_if_busy(ref)) 507 return 0; 508 509 if (!ref->active) { 510 __i915_active_activate(ref); 511 return 0; 512 } 513 514 err = mutex_lock_interruptible(&ref->mutex); 515 if (err) 516 return err; 517 518 if (likely(!i915_active_acquire_if_busy(ref))) { 519 err = ref->active(ref); 520 if (!err) 521 __i915_active_activate(ref); 522 } 523 524 mutex_unlock(&ref->mutex); 525 526 return err; 527 } 528 529 int i915_active_acquire_for_context(struct i915_active *ref, u64 idx) 530 { 531 struct i915_active_fence *active; 532 int err; 533 534 err = i915_active_acquire(ref); 535 if (err) 536 return err; 537 538 active = active_instance(ref, idx); 539 if (!active) { 540 i915_active_release(ref); 541 return -ENOMEM; 542 } 543 544 return 0; /* return with active ref */ 545 } 546 547 void i915_active_release(struct i915_active *ref) 548 { 549 debug_active_assert(ref); 550 active_retire(ref); 551 } 552 553 static void enable_signaling(struct i915_active_fence *active) 554 { 555 struct dma_fence *fence; 556 557 if (unlikely(is_barrier(active))) 558 return; 559 560 fence = i915_active_fence_get(active); 561 if (!fence) 562 return; 563 564 dma_fence_enable_sw_signaling(fence); 565 dma_fence_put(fence); 566 } 567 568 static int flush_barrier(struct active_node *it) 569 { 570 struct intel_engine_cs *engine; 571 572 if (likely(!is_barrier(&it->base))) 573 return 0; 574 575 engine = __barrier_to_engine(it); 576 smp_rmb(); /* serialise with add_active_barriers */ 577 if (!is_barrier(&it->base)) 578 return 0; 579 580 return intel_engine_flush_barriers(engine); 581 } 582 583 static int flush_lazy_signals(struct i915_active *ref) 584 { 585 struct active_node *it, *n; 586 int err = 0; 587 588 enable_signaling(&ref->excl); 589 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) { 590 err = flush_barrier(it); /* unconnected idle barrier? */ 591 if (err) 592 break; 593 594 enable_signaling(&it->base); 595 } 596 597 return err; 598 } 599 600 int __i915_active_wait(struct i915_active *ref, int state) 601 { 602 might_sleep(); 603 604 /* Any fence added after the wait begins will not be auto-signaled */ 605 if (i915_active_acquire_if_busy(ref)) { 606 int err; 607 608 err = flush_lazy_signals(ref); 609 i915_active_release(ref); 610 if (err) 611 return err; 612 613 if (___wait_var_event(ref, i915_active_is_idle(ref), 614 state, 0, 0, schedule())) 615 return -EINTR; 616 } 617 618 /* 619 * After the wait is complete, the caller may free the active. 620 * We have to flush any concurrent retirement before returning. 621 */ 622 flush_work(&ref->work); 623 return 0; 624 } 625 626 static int __await_active(struct i915_active_fence *active, 627 int (*fn)(void *arg, struct dma_fence *fence), 628 void *arg) 629 { 630 struct dma_fence *fence; 631 632 if (is_barrier(active)) /* XXX flush the barrier? */ 633 return 0; 634 635 fence = i915_active_fence_get(active); 636 if (fence) { 637 int err; 638 639 err = fn(arg, fence); 640 dma_fence_put(fence); 641 if (err < 0) 642 return err; 643 } 644 645 return 0; 646 } 647 648 struct wait_barrier { 649 struct wait_queue_entry base; 650 struct i915_active *ref; 651 }; 652 653 static int 654 barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key) 655 { 656 struct wait_barrier *wb = container_of(wq, typeof(*wb), base); 657 658 if (i915_active_is_idle(wb->ref)) { 659 list_del(&wq->entry); 660 i915_sw_fence_complete(wq->private); 661 kfree(wq); 662 } 663 664 return 0; 665 } 666 667 static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence) 668 { 669 struct wait_barrier *wb; 670 671 wb = kmalloc(sizeof(*wb), GFP_KERNEL); 672 if (unlikely(!wb)) 673 return -ENOMEM; 674 675 GEM_BUG_ON(i915_active_is_idle(ref)); 676 if (!i915_sw_fence_await(fence)) { 677 kfree(wb); 678 return -EINVAL; 679 } 680 681 wb->base.flags = 0; 682 wb->base.func = barrier_wake; 683 wb->base.private = fence; 684 wb->ref = ref; 685 686 add_wait_queue(__var_waitqueue(ref), &wb->base); 687 return 0; 688 } 689 690 static int await_active(struct i915_active *ref, 691 unsigned int flags, 692 int (*fn)(void *arg, struct dma_fence *fence), 693 void *arg, struct i915_sw_fence *barrier) 694 { 695 int err = 0; 696 697 if (!i915_active_acquire_if_busy(ref)) 698 return 0; 699 700 if (flags & I915_ACTIVE_AWAIT_EXCL && 701 rcu_access_pointer(ref->excl.fence)) { 702 err = __await_active(&ref->excl, fn, arg); 703 if (err) 704 goto out; 705 } 706 707 if (flags & I915_ACTIVE_AWAIT_ACTIVE) { 708 struct active_node *it, *n; 709 710 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) { 711 err = __await_active(&it->base, fn, arg); 712 if (err) 713 goto out; 714 } 715 } 716 717 if (flags & I915_ACTIVE_AWAIT_BARRIER) { 718 err = flush_lazy_signals(ref); 719 if (err) 720 goto out; 721 722 err = __await_barrier(ref, barrier); 723 if (err) 724 goto out; 725 } 726 727 out: 728 i915_active_release(ref); 729 return err; 730 } 731 732 static int rq_await_fence(void *arg, struct dma_fence *fence) 733 { 734 return i915_request_await_dma_fence(arg, fence); 735 } 736 737 int i915_request_await_active(struct i915_request *rq, 738 struct i915_active *ref, 739 unsigned int flags) 740 { 741 return await_active(ref, flags, rq_await_fence, rq, &rq->submit); 742 } 743 744 static int sw_await_fence(void *arg, struct dma_fence *fence) 745 { 746 return i915_sw_fence_await_dma_fence(arg, fence, 0, 747 GFP_NOWAIT | __GFP_NOWARN); 748 } 749 750 int i915_sw_fence_await_active(struct i915_sw_fence *fence, 751 struct i915_active *ref, 752 unsigned int flags) 753 { 754 return await_active(ref, flags, sw_await_fence, fence, fence); 755 } 756 757 void i915_active_fini(struct i915_active *ref) 758 { 759 debug_active_fini(ref); 760 GEM_BUG_ON(atomic_read(&ref->count)); 761 GEM_BUG_ON(work_pending(&ref->work)); 762 mutex_destroy(&ref->mutex); 763 764 if (ref->cache) 765 kmem_cache_free(slab_cache, ref->cache); 766 } 767 768 static inline bool is_idle_barrier(struct active_node *node, u64 idx) 769 { 770 return node->timeline == idx && !i915_active_fence_isset(&node->base); 771 } 772 773 static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx) 774 { 775 struct rb_node *prev, *p; 776 777 if (RB_EMPTY_ROOT(&ref->tree)) 778 return NULL; 779 780 GEM_BUG_ON(i915_active_is_idle(ref)); 781 782 /* 783 * Try to reuse any existing barrier nodes already allocated for this 784 * i915_active, due to overlapping active phases there is likely a 785 * node kept alive (as we reuse before parking). We prefer to reuse 786 * completely idle barriers (less hassle in manipulating the llists), 787 * but otherwise any will do. 788 */ 789 if (ref->cache && is_idle_barrier(ref->cache, idx)) { 790 p = &ref->cache->node; 791 goto match; 792 } 793 794 prev = NULL; 795 p = ref->tree.rb_node; 796 while (p) { 797 struct active_node *node = 798 rb_entry(p, struct active_node, node); 799 800 if (is_idle_barrier(node, idx)) 801 goto match; 802 803 prev = p; 804 if (node->timeline < idx) 805 p = READ_ONCE(p->rb_right); 806 else 807 p = READ_ONCE(p->rb_left); 808 } 809 810 /* 811 * No quick match, but we did find the leftmost rb_node for the 812 * kernel_context. Walk the rb_tree in-order to see if there were 813 * any idle-barriers on this timeline that we missed, or just use 814 * the first pending barrier. 815 */ 816 for (p = prev; p; p = rb_next(p)) { 817 struct active_node *node = 818 rb_entry(p, struct active_node, node); 819 struct intel_engine_cs *engine; 820 821 if (node->timeline > idx) 822 break; 823 824 if (node->timeline < idx) 825 continue; 826 827 if (is_idle_barrier(node, idx)) 828 goto match; 829 830 /* 831 * The list of pending barriers is protected by the 832 * kernel_context timeline, which notably we do not hold 833 * here. i915_request_add_active_barriers() may consume 834 * the barrier before we claim it, so we have to check 835 * for success. 836 */ 837 engine = __barrier_to_engine(node); 838 smp_rmb(); /* serialise with add_active_barriers */ 839 if (is_barrier(&node->base) && 840 ____active_del_barrier(ref, node, engine)) 841 goto match; 842 } 843 844 return NULL; 845 846 match: 847 spin_lock_irq(&ref->tree_lock); 848 rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */ 849 if (p == &ref->cache->node) 850 WRITE_ONCE(ref->cache, NULL); 851 spin_unlock_irq(&ref->tree_lock); 852 853 return rb_entry(p, struct active_node, node); 854 } 855 856 int i915_active_acquire_preallocate_barrier(struct i915_active *ref, 857 struct intel_engine_cs *engine) 858 { 859 intel_engine_mask_t tmp, mask = engine->mask; 860 struct llist_node *first = NULL, *last = NULL; 861 struct intel_gt *gt = engine->gt; 862 863 GEM_BUG_ON(i915_active_is_idle(ref)); 864 865 /* Wait until the previous preallocation is completed */ 866 while (!llist_empty(&ref->preallocated_barriers)) 867 cond_resched(); 868 869 /* 870 * Preallocate a node for each physical engine supporting the target 871 * engine (remember virtual engines have more than one sibling). 872 * We can then use the preallocated nodes in 873 * i915_active_acquire_barrier() 874 */ 875 GEM_BUG_ON(!mask); 876 for_each_engine_masked(engine, gt, mask, tmp) { 877 u64 idx = engine->kernel_context->timeline->fence_context; 878 struct llist_node *prev = first; 879 struct active_node *node; 880 881 rcu_read_lock(); 882 node = reuse_idle_barrier(ref, idx); 883 rcu_read_unlock(); 884 if (!node) { 885 node = kmem_cache_alloc(slab_cache, GFP_KERNEL); 886 if (!node) 887 goto unwind; 888 889 RCU_INIT_POINTER(node->base.fence, NULL); 890 node->base.cb.func = node_retire; 891 node->timeline = idx; 892 node->ref = ref; 893 } 894 895 if (!i915_active_fence_isset(&node->base)) { 896 /* 897 * Mark this as being *our* unconnected proto-node. 898 * 899 * Since this node is not in any list, and we have 900 * decoupled it from the rbtree, we can reuse the 901 * request to indicate this is an idle-barrier node 902 * and then we can use the rb_node and list pointers 903 * for our tracking of the pending barrier. 904 */ 905 RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN)); 906 node->base.cb.node.prev = (void *)engine; 907 __i915_active_acquire(ref); 908 } 909 GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN)); 910 911 GEM_BUG_ON(barrier_to_engine(node) != engine); 912 first = barrier_to_ll(node); 913 first->next = prev; 914 if (!last) 915 last = first; 916 intel_engine_pm_get(engine); 917 } 918 919 GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers)); 920 llist_add_batch(first, last, &ref->preallocated_barriers); 921 922 return 0; 923 924 unwind: 925 while (first) { 926 struct active_node *node = barrier_from_ll(first); 927 928 first = first->next; 929 930 atomic_dec(&ref->count); 931 intel_engine_pm_put(barrier_to_engine(node)); 932 933 kmem_cache_free(slab_cache, node); 934 } 935 return -ENOMEM; 936 } 937 938 void i915_active_acquire_barrier(struct i915_active *ref) 939 { 940 struct llist_node *pos, *next; 941 unsigned long flags; 942 943 GEM_BUG_ON(i915_active_is_idle(ref)); 944 945 /* 946 * Transfer the list of preallocated barriers into the 947 * i915_active rbtree, but only as proto-nodes. They will be 948 * populated by i915_request_add_active_barriers() to point to the 949 * request that will eventually release them. 950 */ 951 llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) { 952 struct active_node *node = barrier_from_ll(pos); 953 struct intel_engine_cs *engine = barrier_to_engine(node); 954 struct rb_node **p, *parent; 955 956 spin_lock_irqsave_nested(&ref->tree_lock, flags, 957 SINGLE_DEPTH_NESTING); 958 parent = NULL; 959 p = &ref->tree.rb_node; 960 while (*p) { 961 struct active_node *it; 962 963 parent = *p; 964 965 it = rb_entry(parent, struct active_node, node); 966 if (it->timeline < node->timeline) 967 p = &parent->rb_right; 968 else 969 p = &parent->rb_left; 970 } 971 rb_link_node(&node->node, parent, p); 972 rb_insert_color(&node->node, &ref->tree); 973 spin_unlock_irqrestore(&ref->tree_lock, flags); 974 975 GEM_BUG_ON(!intel_engine_pm_is_awake(engine)); 976 llist_add(barrier_to_ll(node), &engine->barrier_tasks); 977 intel_engine_pm_put_delay(engine, 2); 978 } 979 } 980 981 static struct dma_fence **ll_to_fence_slot(struct llist_node *node) 982 { 983 return __active_fence_slot(&barrier_from_ll(node)->base); 984 } 985 986 void i915_request_add_active_barriers(struct i915_request *rq) 987 { 988 struct intel_engine_cs *engine = rq->engine; 989 struct llist_node *node, *next; 990 unsigned long flags; 991 992 GEM_BUG_ON(!intel_context_is_barrier(rq->context)); 993 GEM_BUG_ON(intel_engine_is_virtual(engine)); 994 GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline); 995 996 node = llist_del_all(&engine->barrier_tasks); 997 if (!node) 998 return; 999 /* 1000 * Attach the list of proto-fences to the in-flight request such 1001 * that the parent i915_active will be released when this request 1002 * is retired. 1003 */ 1004 spin_lock_irqsave(&rq->lock, flags); 1005 llist_for_each_safe(node, next, node) { 1006 /* serialise with reuse_idle_barrier */ 1007 smp_store_mb(*ll_to_fence_slot(node), &rq->fence); 1008 list_add_tail((struct list_head *)node, &rq->fence.cb_list); 1009 } 1010 spin_unlock_irqrestore(&rq->lock, flags); 1011 } 1012 1013 /* 1014 * __i915_active_fence_set: Update the last active fence along its timeline 1015 * @active: the active tracker 1016 * @fence: the new fence (under construction) 1017 * 1018 * Records the new @fence as the last active fence along its timeline in 1019 * this active tracker, moving the tracking callbacks from the previous 1020 * fence onto this one. Returns the previous fence (if not already completed), 1021 * which the caller must ensure is executed before the new fence. To ensure 1022 * that the order of fences within the timeline of the i915_active_fence is 1023 * understood, it should be locked by the caller. 1024 */ 1025 struct dma_fence * 1026 __i915_active_fence_set(struct i915_active_fence *active, 1027 struct dma_fence *fence) 1028 { 1029 struct dma_fence *prev; 1030 unsigned long flags; 1031 1032 if (fence == rcu_access_pointer(active->fence)) 1033 return fence; 1034 1035 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)); 1036 1037 /* 1038 * Consider that we have two threads arriving (A and B), with 1039 * C already resident as the active->fence. 1040 * 1041 * A does the xchg first, and so it sees C or NULL depending 1042 * on the timing of the interrupt handler. If it is NULL, the 1043 * previous fence must have been signaled and we know that 1044 * we are first on the timeline. If it is still present, 1045 * we acquire the lock on that fence and serialise with the interrupt 1046 * handler, in the process removing it from any future interrupt 1047 * callback. A will then wait on C before executing (if present). 1048 * 1049 * As B is second, it sees A as the previous fence and so waits for 1050 * it to complete its transition and takes over the occupancy for 1051 * itself -- remembering that it needs to wait on A before executing. 1052 * 1053 * Note the strong ordering of the timeline also provides consistent 1054 * nesting rules for the fence->lock; the inner lock is always the 1055 * older lock. 1056 */ 1057 spin_lock_irqsave(fence->lock, flags); 1058 prev = xchg(__active_fence_slot(active), fence); 1059 if (prev) { 1060 GEM_BUG_ON(prev == fence); 1061 spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING); 1062 __list_del_entry(&active->cb.node); 1063 spin_unlock(prev->lock); /* serialise with prev->cb_list */ 1064 } 1065 list_add_tail(&active->cb.node, &fence->cb_list); 1066 spin_unlock_irqrestore(fence->lock, flags); 1067 1068 return prev; 1069 } 1070 1071 int i915_active_fence_set(struct i915_active_fence *active, 1072 struct i915_request *rq) 1073 { 1074 struct dma_fence *fence; 1075 int err = 0; 1076 1077 /* Must maintain timeline ordering wrt previous active requests */ 1078 rcu_read_lock(); 1079 fence = __i915_active_fence_set(active, &rq->fence); 1080 if (fence) /* but the previous fence may not belong to that timeline! */ 1081 fence = dma_fence_get_rcu(fence); 1082 rcu_read_unlock(); 1083 if (fence) { 1084 err = i915_request_await_dma_fence(rq, fence); 1085 dma_fence_put(fence); 1086 } 1087 1088 return err; 1089 } 1090 1091 void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb) 1092 { 1093 active_fence_cb(fence, cb); 1094 } 1095 1096 struct auto_active { 1097 struct i915_active base; 1098 struct kref ref; 1099 }; 1100 1101 struct i915_active *i915_active_get(struct i915_active *ref) 1102 { 1103 struct auto_active *aa = container_of(ref, typeof(*aa), base); 1104 1105 kref_get(&aa->ref); 1106 return &aa->base; 1107 } 1108 1109 static void auto_release(struct kref *ref) 1110 { 1111 struct auto_active *aa = container_of(ref, typeof(*aa), ref); 1112 1113 i915_active_fini(&aa->base); 1114 kfree(aa); 1115 } 1116 1117 void i915_active_put(struct i915_active *ref) 1118 { 1119 struct auto_active *aa = container_of(ref, typeof(*aa), base); 1120 1121 kref_put(&aa->ref, auto_release); 1122 } 1123 1124 static int auto_active(struct i915_active *ref) 1125 { 1126 i915_active_get(ref); 1127 return 0; 1128 } 1129 1130 static void auto_retire(struct i915_active *ref) 1131 { 1132 i915_active_put(ref); 1133 } 1134 1135 struct i915_active *i915_active_create(void) 1136 { 1137 struct auto_active *aa; 1138 1139 aa = kmalloc(sizeof(*aa), GFP_KERNEL); 1140 if (!aa) 1141 return NULL; 1142 1143 kref_init(&aa->ref); 1144 i915_active_init(&aa->base, auto_active, auto_retire, 0); 1145 1146 return &aa->base; 1147 } 1148 1149 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1150 #include "selftests/i915_active.c" 1151 #endif 1152 1153 void i915_active_module_exit(void) 1154 { 1155 kmem_cache_destroy(slab_cache); 1156 } 1157 1158 int __init i915_active_module_init(void) 1159 { 1160 slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN); 1161 if (!slab_cache) 1162 return -ENOMEM; 1163 1164 return 0; 1165 } 1166