xref: /linux/drivers/gpu/drm/i915/gvt/scheduler.c (revision 95298d63c67673c654c08952672d016212b26054)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35 
36 #include <linux/kthread.h>
37 
38 #include "gem/i915_gem_pm.h"
39 #include "gt/intel_context.h"
40 #include "gt/intel_ring.h"
41 
42 #include "i915_drv.h"
43 #include "i915_gem_gtt.h"
44 #include "gvt.h"
45 
46 #define RING_CTX_OFF(x) \
47 	offsetof(struct execlist_ring_context, x)
48 
49 static void set_context_pdp_root_pointer(
50 		struct execlist_ring_context *ring_context,
51 		u32 pdp[8])
52 {
53 	int i;
54 
55 	for (i = 0; i < 8; i++)
56 		ring_context->pdps[i].val = pdp[7 - i];
57 }
58 
59 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
60 {
61 	struct execlist_ring_context *shadow_ring_context;
62 	struct intel_context *ctx = workload->req->context;
63 
64 	if (WARN_ON(!workload->shadow_mm))
65 		return;
66 
67 	if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
68 		return;
69 
70 	shadow_ring_context = (struct execlist_ring_context *)ctx->lrc_reg_state;
71 	set_context_pdp_root_pointer(shadow_ring_context,
72 			(void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
73 }
74 
75 /*
76  * when populating shadow ctx from guest, we should not overrride oa related
77  * registers, so that they will not be overlapped by guest oa configs. Thus
78  * made it possible to capture oa data from host for both host and guests.
79  */
80 static void sr_oa_regs(struct intel_vgpu_workload *workload,
81 		u32 *reg_state, bool save)
82 {
83 	struct drm_i915_private *dev_priv = workload->vgpu->gvt->gt->i915;
84 	u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset;
85 	u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset;
86 	int i = 0;
87 	u32 flex_mmio[] = {
88 		i915_mmio_reg_offset(EU_PERF_CNTL0),
89 		i915_mmio_reg_offset(EU_PERF_CNTL1),
90 		i915_mmio_reg_offset(EU_PERF_CNTL2),
91 		i915_mmio_reg_offset(EU_PERF_CNTL3),
92 		i915_mmio_reg_offset(EU_PERF_CNTL4),
93 		i915_mmio_reg_offset(EU_PERF_CNTL5),
94 		i915_mmio_reg_offset(EU_PERF_CNTL6),
95 	};
96 
97 	if (workload->engine->id != RCS0)
98 		return;
99 
100 	if (save) {
101 		workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
102 
103 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
104 			u32 state_offset = ctx_flexeu0 + i * 2;
105 
106 			workload->flex_mmio[i] = reg_state[state_offset + 1];
107 		}
108 	} else {
109 		reg_state[ctx_oactxctrl] =
110 			i915_mmio_reg_offset(GEN8_OACTXCONTROL);
111 		reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
112 
113 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
114 			u32 state_offset = ctx_flexeu0 + i * 2;
115 			u32 mmio = flex_mmio[i];
116 
117 			reg_state[state_offset] = mmio;
118 			reg_state[state_offset + 1] = workload->flex_mmio[i];
119 		}
120 	}
121 }
122 
123 static int populate_shadow_context(struct intel_vgpu_workload *workload)
124 {
125 	struct intel_vgpu *vgpu = workload->vgpu;
126 	struct intel_gvt *gvt = vgpu->gvt;
127 	struct intel_context *ctx = workload->req->context;
128 	struct execlist_ring_context *shadow_ring_context;
129 	void *dst;
130 	void *context_base;
131 	unsigned long context_gpa, context_page_num;
132 	unsigned long gpa_base; /* first gpa of consecutive GPAs */
133 	unsigned long gpa_size; /* size of consecutive GPAs */
134 	struct intel_vgpu_submission *s = &vgpu->submission;
135 	int i;
136 	bool skip = false;
137 	int ring_id = workload->engine->id;
138 
139 	GEM_BUG_ON(!intel_context_is_pinned(ctx));
140 
141 	context_base = (void *) ctx->lrc_reg_state -
142 				(LRC_STATE_PN << I915_GTT_PAGE_SHIFT);
143 
144 	shadow_ring_context = (void *) ctx->lrc_reg_state;
145 
146 	sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
147 #define COPY_REG(name) \
148 	intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
149 		+ RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
150 #define COPY_REG_MASKED(name) {\
151 		intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
152 					      + RING_CTX_OFF(name.val),\
153 					      &shadow_ring_context->name.val, 4);\
154 		shadow_ring_context->name.val |= 0xffff << 16;\
155 	}
156 
157 	COPY_REG_MASKED(ctx_ctrl);
158 	COPY_REG(ctx_timestamp);
159 
160 	if (workload->engine->id == RCS0) {
161 		COPY_REG(bb_per_ctx_ptr);
162 		COPY_REG(rcs_indirect_ctx);
163 		COPY_REG(rcs_indirect_ctx_offset);
164 	}
165 #undef COPY_REG
166 #undef COPY_REG_MASKED
167 
168 	intel_gvt_hypervisor_read_gpa(vgpu,
169 			workload->ring_context_gpa +
170 			sizeof(*shadow_ring_context),
171 			(void *)shadow_ring_context +
172 			sizeof(*shadow_ring_context),
173 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
174 
175 	sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
176 
177 	gvt_dbg_sched("ring %s workload lrca %x, ctx_id %x, ctx gpa %llx",
178 			workload->engine->name, workload->ctx_desc.lrca,
179 			workload->ctx_desc.context_id,
180 			workload->ring_context_gpa);
181 
182 	/* only need to ensure this context is not pinned/unpinned during the
183 	 * period from last submission to this this submission.
184 	 * Upon reaching this function, the currently submitted context is not
185 	 * supposed to get unpinned. If a misbehaving guest driver ever does
186 	 * this, it would corrupt itself.
187 	 */
188 	if (s->last_ctx[ring_id].valid &&
189 			(s->last_ctx[ring_id].lrca ==
190 				workload->ctx_desc.lrca) &&
191 			(s->last_ctx[ring_id].ring_context_gpa ==
192 				workload->ring_context_gpa))
193 		skip = true;
194 
195 	s->last_ctx[ring_id].lrca = workload->ctx_desc.lrca;
196 	s->last_ctx[ring_id].ring_context_gpa = workload->ring_context_gpa;
197 
198 	if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val) || skip)
199 		return 0;
200 
201 	s->last_ctx[ring_id].valid = false;
202 	context_page_num = workload->engine->context_size;
203 	context_page_num = context_page_num >> PAGE_SHIFT;
204 
205 	if (IS_BROADWELL(gvt->gt->i915) && workload->engine->id == RCS0)
206 		context_page_num = 19;
207 
208 	/* find consecutive GPAs from gma until the first inconsecutive GPA.
209 	 * read from the continuous GPAs into dst virtual address
210 	 */
211 	gpa_size = 0;
212 	for (i = 2; i < context_page_num; i++) {
213 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
214 				(u32)((workload->ctx_desc.lrca + i) <<
215 				I915_GTT_PAGE_SHIFT));
216 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
217 			gvt_vgpu_err("Invalid guest context descriptor\n");
218 			return -EFAULT;
219 		}
220 
221 		if (gpa_size == 0) {
222 			gpa_base = context_gpa;
223 			dst = context_base + (i << I915_GTT_PAGE_SHIFT);
224 		} else if (context_gpa != gpa_base + gpa_size)
225 			goto read;
226 
227 		gpa_size += I915_GTT_PAGE_SIZE;
228 
229 		if (i == context_page_num - 1)
230 			goto read;
231 
232 		continue;
233 
234 read:
235 		intel_gvt_hypervisor_read_gpa(vgpu, gpa_base, dst, gpa_size);
236 		gpa_base = context_gpa;
237 		gpa_size = I915_GTT_PAGE_SIZE;
238 		dst = context_base + (i << I915_GTT_PAGE_SHIFT);
239 	}
240 	s->last_ctx[ring_id].valid = true;
241 	return 0;
242 }
243 
244 static inline bool is_gvt_request(struct i915_request *rq)
245 {
246 	return intel_context_force_single_submission(rq->context);
247 }
248 
249 static void save_ring_hw_state(struct intel_vgpu *vgpu,
250 			       const struct intel_engine_cs *engine)
251 {
252 	struct intel_uncore *uncore = engine->uncore;
253 	i915_reg_t reg;
254 
255 	reg = RING_INSTDONE(engine->mmio_base);
256 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
257 		intel_uncore_read(uncore, reg);
258 
259 	reg = RING_ACTHD(engine->mmio_base);
260 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
261 		intel_uncore_read(uncore, reg);
262 
263 	reg = RING_ACTHD_UDW(engine->mmio_base);
264 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
265 		intel_uncore_read(uncore, reg);
266 }
267 
268 static int shadow_context_status_change(struct notifier_block *nb,
269 		unsigned long action, void *data)
270 {
271 	struct i915_request *rq = data;
272 	struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
273 				shadow_ctx_notifier_block[rq->engine->id]);
274 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
275 	enum intel_engine_id ring_id = rq->engine->id;
276 	struct intel_vgpu_workload *workload;
277 	unsigned long flags;
278 
279 	if (!is_gvt_request(rq)) {
280 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
281 		if (action == INTEL_CONTEXT_SCHEDULE_IN &&
282 		    scheduler->engine_owner[ring_id]) {
283 			/* Switch ring from vGPU to host. */
284 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
285 					      NULL, rq->engine);
286 			scheduler->engine_owner[ring_id] = NULL;
287 		}
288 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
289 
290 		return NOTIFY_OK;
291 	}
292 
293 	workload = scheduler->current_workload[ring_id];
294 	if (unlikely(!workload))
295 		return NOTIFY_OK;
296 
297 	switch (action) {
298 	case INTEL_CONTEXT_SCHEDULE_IN:
299 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
300 		if (workload->vgpu != scheduler->engine_owner[ring_id]) {
301 			/* Switch ring from host to vGPU or vGPU to vGPU. */
302 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
303 					      workload->vgpu, rq->engine);
304 			scheduler->engine_owner[ring_id] = workload->vgpu;
305 		} else
306 			gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
307 				      ring_id, workload->vgpu->id);
308 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
309 		atomic_set(&workload->shadow_ctx_active, 1);
310 		break;
311 	case INTEL_CONTEXT_SCHEDULE_OUT:
312 		save_ring_hw_state(workload->vgpu, rq->engine);
313 		atomic_set(&workload->shadow_ctx_active, 0);
314 		break;
315 	case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
316 		save_ring_hw_state(workload->vgpu, rq->engine);
317 		break;
318 	default:
319 		WARN_ON(1);
320 		return NOTIFY_OK;
321 	}
322 	wake_up(&workload->shadow_ctx_status_wq);
323 	return NOTIFY_OK;
324 }
325 
326 static void
327 shadow_context_descriptor_update(struct intel_context *ce,
328 				 struct intel_vgpu_workload *workload)
329 {
330 	u64 desc = ce->lrc.desc;
331 
332 	/*
333 	 * Update bits 0-11 of the context descriptor which includes flags
334 	 * like GEN8_CTX_* cached in desc_template
335 	 */
336 	desc &= ~(0x3ull << GEN8_CTX_ADDRESSING_MODE_SHIFT);
337 	desc |= (u64)workload->ctx_desc.addressing_mode <<
338 		GEN8_CTX_ADDRESSING_MODE_SHIFT;
339 
340 	ce->lrc.desc = desc;
341 }
342 
343 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
344 {
345 	struct intel_vgpu *vgpu = workload->vgpu;
346 	struct i915_request *req = workload->req;
347 	void *shadow_ring_buffer_va;
348 	u32 *cs;
349 	int err;
350 
351 	if (IS_GEN(req->i915, 9) && is_inhibit_context(req->context))
352 		intel_vgpu_restore_inhibit_context(vgpu, req);
353 
354 	/*
355 	 * To track whether a request has started on HW, we can emit a
356 	 * breadcrumb at the beginning of the request and check its
357 	 * timeline's HWSP to see if the breadcrumb has advanced past the
358 	 * start of this request. Actually, the request must have the
359 	 * init_breadcrumb if its timeline set has_init_bread_crumb, or the
360 	 * scheduler might get a wrong state of it during reset. Since the
361 	 * requests from gvt always set the has_init_breadcrumb flag, here
362 	 * need to do the emit_init_breadcrumb for all the requests.
363 	 */
364 	if (req->engine->emit_init_breadcrumb) {
365 		err = req->engine->emit_init_breadcrumb(req);
366 		if (err) {
367 			gvt_vgpu_err("fail to emit init breadcrumb\n");
368 			return err;
369 		}
370 	}
371 
372 	/* allocate shadow ring buffer */
373 	cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
374 	if (IS_ERR(cs)) {
375 		gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
376 			workload->rb_len);
377 		return PTR_ERR(cs);
378 	}
379 
380 	shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
381 
382 	/* get shadow ring buffer va */
383 	workload->shadow_ring_buffer_va = cs;
384 
385 	memcpy(cs, shadow_ring_buffer_va,
386 			workload->rb_len);
387 
388 	cs += workload->rb_len / sizeof(u32);
389 	intel_ring_advance(workload->req, cs);
390 
391 	return 0;
392 }
393 
394 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
395 {
396 	if (!wa_ctx->indirect_ctx.obj)
397 		return;
398 
399 	i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
400 	i915_gem_object_put(wa_ctx->indirect_ctx.obj);
401 
402 	wa_ctx->indirect_ctx.obj = NULL;
403 	wa_ctx->indirect_ctx.shadow_va = NULL;
404 }
405 
406 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
407 					  struct intel_context *ce)
408 {
409 	struct intel_vgpu_mm *mm = workload->shadow_mm;
410 	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm);
411 	int i = 0;
412 
413 	if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
414 		px_dma(ppgtt->pd) = mm->ppgtt_mm.shadow_pdps[0];
415 	} else {
416 		for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
417 			struct i915_page_directory * const pd =
418 				i915_pd_entry(ppgtt->pd, i);
419 			/* skip now as current i915 ppgtt alloc won't allocate
420 			   top level pdp for non 4-level table, won't impact
421 			   shadow ppgtt. */
422 			if (!pd)
423 				break;
424 			px_dma(pd) = mm->ppgtt_mm.shadow_pdps[i];
425 		}
426 	}
427 }
428 
429 static int
430 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
431 {
432 	struct intel_vgpu *vgpu = workload->vgpu;
433 	struct intel_vgpu_submission *s = &vgpu->submission;
434 	struct i915_request *rq;
435 
436 	if (workload->req)
437 		return 0;
438 
439 	rq = i915_request_create(s->shadow[workload->engine->id]);
440 	if (IS_ERR(rq)) {
441 		gvt_vgpu_err("fail to allocate gem request\n");
442 		return PTR_ERR(rq);
443 	}
444 
445 	workload->req = i915_request_get(rq);
446 	return 0;
447 }
448 
449 /**
450  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
451  * shadow it as well, include ringbuffer,wa_ctx and ctx.
452  * @workload: an abstract entity for each execlist submission.
453  *
454  * This function is called before the workload submitting to i915, to make
455  * sure the content of the workload is valid.
456  */
457 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
458 {
459 	struct intel_vgpu *vgpu = workload->vgpu;
460 	struct intel_vgpu_submission *s = &vgpu->submission;
461 	int ret;
462 
463 	lockdep_assert_held(&vgpu->vgpu_lock);
464 
465 	if (workload->shadow)
466 		return 0;
467 
468 	if (!test_and_set_bit(workload->engine->id, s->shadow_ctx_desc_updated))
469 		shadow_context_descriptor_update(s->shadow[workload->engine->id],
470 						 workload);
471 
472 	ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
473 	if (ret)
474 		return ret;
475 
476 	if (workload->engine->id == RCS0 &&
477 	    workload->wa_ctx.indirect_ctx.size) {
478 		ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
479 		if (ret)
480 			goto err_shadow;
481 	}
482 
483 	workload->shadow = true;
484 	return 0;
485 
486 err_shadow:
487 	release_shadow_wa_ctx(&workload->wa_ctx);
488 	return ret;
489 }
490 
491 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
492 
493 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
494 {
495 	struct intel_gvt *gvt = workload->vgpu->gvt;
496 	const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
497 	struct intel_vgpu_shadow_bb *bb;
498 	int ret;
499 
500 	list_for_each_entry(bb, &workload->shadow_bb, list) {
501 		/* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
502 		 * is only updated into ring_scan_buffer, not real ring address
503 		 * allocated in later copy_workload_to_ring_buffer. pls be noted
504 		 * shadow_ring_buffer_va is now pointed to real ring buffer va
505 		 * in copy_workload_to_ring_buffer.
506 		 */
507 
508 		if (bb->bb_offset)
509 			bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
510 				+ bb->bb_offset;
511 
512 		if (bb->ppgtt) {
513 			/* for non-priv bb, scan&shadow is only for
514 			 * debugging purpose, so the content of shadow bb
515 			 * is the same as original bb. Therefore,
516 			 * here, rather than switch to shadow bb's gma
517 			 * address, we directly use original batch buffer's
518 			 * gma address, and send original bb to hardware
519 			 * directly
520 			 */
521 			if (bb->clflush & CLFLUSH_AFTER) {
522 				drm_clflush_virt_range(bb->va,
523 						bb->obj->base.size);
524 				bb->clflush &= ~CLFLUSH_AFTER;
525 			}
526 			i915_gem_object_finish_access(bb->obj);
527 			bb->accessing = false;
528 
529 		} else {
530 			bb->vma = i915_gem_object_ggtt_pin(bb->obj,
531 					NULL, 0, 0, 0);
532 			if (IS_ERR(bb->vma)) {
533 				ret = PTR_ERR(bb->vma);
534 				goto err;
535 			}
536 
537 			/* relocate shadow batch buffer */
538 			bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
539 			if (gmadr_bytes == 8)
540 				bb->bb_start_cmd_va[2] = 0;
541 
542 			/* No one is going to touch shadow bb from now on. */
543 			if (bb->clflush & CLFLUSH_AFTER) {
544 				drm_clflush_virt_range(bb->va,
545 						bb->obj->base.size);
546 				bb->clflush &= ~CLFLUSH_AFTER;
547 			}
548 
549 			ret = i915_gem_object_set_to_gtt_domain(bb->obj,
550 								false);
551 			if (ret)
552 				goto err;
553 
554 			ret = i915_vma_move_to_active(bb->vma,
555 						      workload->req,
556 						      0);
557 			if (ret)
558 				goto err;
559 
560 			i915_gem_object_finish_access(bb->obj);
561 			bb->accessing = false;
562 		}
563 	}
564 	return 0;
565 err:
566 	release_shadow_batch_buffer(workload);
567 	return ret;
568 }
569 
570 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
571 {
572 	struct intel_vgpu_workload *workload =
573 		container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
574 	struct i915_request *rq = workload->req;
575 	struct execlist_ring_context *shadow_ring_context =
576 		(struct execlist_ring_context *)rq->context->lrc_reg_state;
577 
578 	shadow_ring_context->bb_per_ctx_ptr.val =
579 		(shadow_ring_context->bb_per_ctx_ptr.val &
580 		(~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
581 	shadow_ring_context->rcs_indirect_ctx.val =
582 		(shadow_ring_context->rcs_indirect_ctx.val &
583 		(~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
584 }
585 
586 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
587 {
588 	struct i915_vma *vma;
589 	unsigned char *per_ctx_va =
590 		(unsigned char *)wa_ctx->indirect_ctx.shadow_va +
591 		wa_ctx->indirect_ctx.size;
592 
593 	if (wa_ctx->indirect_ctx.size == 0)
594 		return 0;
595 
596 	vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
597 				       0, CACHELINE_BYTES, 0);
598 	if (IS_ERR(vma))
599 		return PTR_ERR(vma);
600 
601 	/* FIXME: we are not tracking our pinned VMA leaving it
602 	 * up to the core to fix up the stray pin_count upon
603 	 * free.
604 	 */
605 
606 	wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
607 
608 	wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
609 	memset(per_ctx_va, 0, CACHELINE_BYTES);
610 
611 	update_wa_ctx_2_shadow_ctx(wa_ctx);
612 	return 0;
613 }
614 
615 static void update_vreg_in_ctx(struct intel_vgpu_workload *workload)
616 {
617 	vgpu_vreg_t(workload->vgpu, RING_START(workload->engine->mmio_base)) =
618 		workload->rb_start;
619 }
620 
621 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
622 {
623 	struct intel_vgpu_shadow_bb *bb, *pos;
624 
625 	if (list_empty(&workload->shadow_bb))
626 		return;
627 
628 	bb = list_first_entry(&workload->shadow_bb,
629 			struct intel_vgpu_shadow_bb, list);
630 
631 	list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
632 		if (bb->obj) {
633 			if (bb->accessing)
634 				i915_gem_object_finish_access(bb->obj);
635 
636 			if (bb->va && !IS_ERR(bb->va))
637 				i915_gem_object_unpin_map(bb->obj);
638 
639 			if (bb->vma && !IS_ERR(bb->vma))
640 				i915_vma_unpin(bb->vma);
641 
642 			i915_gem_object_put(bb->obj);
643 		}
644 		list_del(&bb->list);
645 		kfree(bb);
646 	}
647 }
648 
649 static int
650 intel_vgpu_shadow_mm_pin(struct intel_vgpu_workload *workload)
651 {
652 	struct intel_vgpu *vgpu = workload->vgpu;
653 	struct intel_vgpu_mm *m;
654 	int ret = 0;
655 
656 	ret = intel_vgpu_pin_mm(workload->shadow_mm);
657 	if (ret) {
658 		gvt_vgpu_err("fail to vgpu pin mm\n");
659 		return ret;
660 	}
661 
662 	if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT ||
663 	    !workload->shadow_mm->ppgtt_mm.shadowed) {
664 		gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
665 		return -EINVAL;
666 	}
667 
668 	if (!list_empty(&workload->lri_shadow_mm)) {
669 		list_for_each_entry(m, &workload->lri_shadow_mm,
670 				    ppgtt_mm.link) {
671 			ret = intel_vgpu_pin_mm(m);
672 			if (ret) {
673 				list_for_each_entry_from_reverse(m,
674 								 &workload->lri_shadow_mm,
675 								 ppgtt_mm.link)
676 					intel_vgpu_unpin_mm(m);
677 				gvt_vgpu_err("LRI shadow ppgtt fail to pin\n");
678 				break;
679 			}
680 		}
681 	}
682 
683 	if (ret)
684 		intel_vgpu_unpin_mm(workload->shadow_mm);
685 
686 	return ret;
687 }
688 
689 static void
690 intel_vgpu_shadow_mm_unpin(struct intel_vgpu_workload *workload)
691 {
692 	struct intel_vgpu_mm *m;
693 
694 	if (!list_empty(&workload->lri_shadow_mm)) {
695 		list_for_each_entry(m, &workload->lri_shadow_mm,
696 				    ppgtt_mm.link)
697 			intel_vgpu_unpin_mm(m);
698 	}
699 	intel_vgpu_unpin_mm(workload->shadow_mm);
700 }
701 
702 static int prepare_workload(struct intel_vgpu_workload *workload)
703 {
704 	struct intel_vgpu *vgpu = workload->vgpu;
705 	struct intel_vgpu_submission *s = &vgpu->submission;
706 	int ret = 0;
707 
708 	ret = intel_vgpu_shadow_mm_pin(workload);
709 	if (ret) {
710 		gvt_vgpu_err("fail to pin shadow mm\n");
711 		return ret;
712 	}
713 
714 	update_shadow_pdps(workload);
715 
716 	set_context_ppgtt_from_shadow(workload, s->shadow[workload->engine->id]);
717 
718 	ret = intel_vgpu_sync_oos_pages(workload->vgpu);
719 	if (ret) {
720 		gvt_vgpu_err("fail to vgpu sync oos pages\n");
721 		goto err_unpin_mm;
722 	}
723 
724 	ret = intel_vgpu_flush_post_shadow(workload->vgpu);
725 	if (ret) {
726 		gvt_vgpu_err("fail to flush post shadow\n");
727 		goto err_unpin_mm;
728 	}
729 
730 	ret = copy_workload_to_ring_buffer(workload);
731 	if (ret) {
732 		gvt_vgpu_err("fail to generate request\n");
733 		goto err_unpin_mm;
734 	}
735 
736 	ret = prepare_shadow_batch_buffer(workload);
737 	if (ret) {
738 		gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
739 		goto err_unpin_mm;
740 	}
741 
742 	ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
743 	if (ret) {
744 		gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
745 		goto err_shadow_batch;
746 	}
747 
748 	if (workload->prepare) {
749 		ret = workload->prepare(workload);
750 		if (ret)
751 			goto err_shadow_wa_ctx;
752 	}
753 
754 	return 0;
755 err_shadow_wa_ctx:
756 	release_shadow_wa_ctx(&workload->wa_ctx);
757 err_shadow_batch:
758 	release_shadow_batch_buffer(workload);
759 err_unpin_mm:
760 	intel_vgpu_shadow_mm_unpin(workload);
761 	return ret;
762 }
763 
764 static int dispatch_workload(struct intel_vgpu_workload *workload)
765 {
766 	struct intel_vgpu *vgpu = workload->vgpu;
767 	struct i915_request *rq;
768 	int ret;
769 
770 	gvt_dbg_sched("ring id %s prepare to dispatch workload %p\n",
771 		      workload->engine->name, workload);
772 
773 	mutex_lock(&vgpu->vgpu_lock);
774 
775 	ret = intel_gvt_workload_req_alloc(workload);
776 	if (ret)
777 		goto err_req;
778 
779 	ret = intel_gvt_scan_and_shadow_workload(workload);
780 	if (ret)
781 		goto out;
782 
783 	ret = populate_shadow_context(workload);
784 	if (ret) {
785 		release_shadow_wa_ctx(&workload->wa_ctx);
786 		goto out;
787 	}
788 
789 	ret = prepare_workload(workload);
790 out:
791 	if (ret) {
792 		/* We might still need to add request with
793 		 * clean ctx to retire it properly..
794 		 */
795 		rq = fetch_and_zero(&workload->req);
796 		i915_request_put(rq);
797 	}
798 
799 	if (!IS_ERR_OR_NULL(workload->req)) {
800 		gvt_dbg_sched("ring id %s submit workload to i915 %p\n",
801 			      workload->engine->name, workload->req);
802 		i915_request_add(workload->req);
803 		workload->dispatched = true;
804 	}
805 err_req:
806 	if (ret)
807 		workload->status = ret;
808 	mutex_unlock(&vgpu->vgpu_lock);
809 	return ret;
810 }
811 
812 static struct intel_vgpu_workload *
813 pick_next_workload(struct intel_gvt *gvt, struct intel_engine_cs *engine)
814 {
815 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
816 	struct intel_vgpu_workload *workload = NULL;
817 
818 	mutex_lock(&gvt->sched_lock);
819 
820 	/*
821 	 * no current vgpu / will be scheduled out / no workload
822 	 * bail out
823 	 */
824 	if (!scheduler->current_vgpu) {
825 		gvt_dbg_sched("ring %s stop - no current vgpu\n", engine->name);
826 		goto out;
827 	}
828 
829 	if (scheduler->need_reschedule) {
830 		gvt_dbg_sched("ring %s stop - will reschedule\n", engine->name);
831 		goto out;
832 	}
833 
834 	if (!scheduler->current_vgpu->active ||
835 	    list_empty(workload_q_head(scheduler->current_vgpu, engine)))
836 		goto out;
837 
838 	/*
839 	 * still have current workload, maybe the workload disptacher
840 	 * fail to submit it for some reason, resubmit it.
841 	 */
842 	if (scheduler->current_workload[engine->id]) {
843 		workload = scheduler->current_workload[engine->id];
844 		gvt_dbg_sched("ring %s still have current workload %p\n",
845 			      engine->name, workload);
846 		goto out;
847 	}
848 
849 	/*
850 	 * pick a workload as current workload
851 	 * once current workload is set, schedule policy routines
852 	 * will wait the current workload is finished when trying to
853 	 * schedule out a vgpu.
854 	 */
855 	scheduler->current_workload[engine->id] =
856 		list_first_entry(workload_q_head(scheduler->current_vgpu,
857 						 engine),
858 				 struct intel_vgpu_workload, list);
859 
860 	workload = scheduler->current_workload[engine->id];
861 
862 	gvt_dbg_sched("ring %s pick new workload %p\n", engine->name, workload);
863 
864 	atomic_inc(&workload->vgpu->submission.running_workload_num);
865 out:
866 	mutex_unlock(&gvt->sched_lock);
867 	return workload;
868 }
869 
870 static void update_guest_pdps(struct intel_vgpu *vgpu,
871 			      u64 ring_context_gpa, u32 pdp[8])
872 {
873 	u64 gpa;
874 	int i;
875 
876 	gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
877 
878 	for (i = 0; i < 8; i++)
879 		intel_gvt_hypervisor_write_gpa(vgpu,
880 				gpa + i * 8, &pdp[7 - i], 4);
881 }
882 
883 static __maybe_unused bool
884 check_shadow_context_ppgtt(struct execlist_ring_context *c, struct intel_vgpu_mm *m)
885 {
886 	if (m->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
887 		u64 shadow_pdp = c->pdps[7].val | (u64) c->pdps[6].val << 32;
888 
889 		if (shadow_pdp != m->ppgtt_mm.shadow_pdps[0]) {
890 			gvt_dbg_mm("4-level context ppgtt not match LRI command\n");
891 			return false;
892 		}
893 		return true;
894 	} else {
895 		/* see comment in LRI handler in cmd_parser.c */
896 		gvt_dbg_mm("invalid shadow mm type\n");
897 		return false;
898 	}
899 }
900 
901 static void update_guest_context(struct intel_vgpu_workload *workload)
902 {
903 	struct i915_request *rq = workload->req;
904 	struct intel_vgpu *vgpu = workload->vgpu;
905 	struct execlist_ring_context *shadow_ring_context;
906 	struct intel_context *ctx = workload->req->context;
907 	void *context_base;
908 	void *src;
909 	unsigned long context_gpa, context_page_num;
910 	unsigned long gpa_base; /* first gpa of consecutive GPAs */
911 	unsigned long gpa_size; /* size of consecutive GPAs*/
912 	int i;
913 	u32 ring_base;
914 	u32 head, tail;
915 	u16 wrap_count;
916 
917 	gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
918 		      workload->ctx_desc.lrca);
919 
920 	GEM_BUG_ON(!intel_context_is_pinned(ctx));
921 
922 	head = workload->rb_head;
923 	tail = workload->rb_tail;
924 	wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF;
925 
926 	if (tail < head) {
927 		if (wrap_count == RB_HEAD_WRAP_CNT_MAX)
928 			wrap_count = 0;
929 		else
930 			wrap_count += 1;
931 	}
932 
933 	head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail;
934 
935 	ring_base = rq->engine->mmio_base;
936 	vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail;
937 	vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head;
938 
939 	context_page_num = rq->engine->context_size;
940 	context_page_num = context_page_num >> PAGE_SHIFT;
941 
942 	if (IS_BROADWELL(rq->i915) && rq->engine->id == RCS0)
943 		context_page_num = 19;
944 
945 	context_base = (void *) ctx->lrc_reg_state -
946 			(LRC_STATE_PN << I915_GTT_PAGE_SHIFT);
947 
948 	/* find consecutive GPAs from gma until the first inconsecutive GPA.
949 	 * write to the consecutive GPAs from src virtual address
950 	 */
951 	gpa_size = 0;
952 	for (i = 2; i < context_page_num; i++) {
953 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
954 				(u32)((workload->ctx_desc.lrca + i) <<
955 					I915_GTT_PAGE_SHIFT));
956 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
957 			gvt_vgpu_err("invalid guest context descriptor\n");
958 			return;
959 		}
960 
961 		if (gpa_size == 0) {
962 			gpa_base = context_gpa;
963 			src = context_base + (i << I915_GTT_PAGE_SHIFT);
964 		} else if (context_gpa != gpa_base + gpa_size)
965 			goto write;
966 
967 		gpa_size += I915_GTT_PAGE_SIZE;
968 
969 		if (i == context_page_num - 1)
970 			goto write;
971 
972 		continue;
973 
974 write:
975 		intel_gvt_hypervisor_write_gpa(vgpu, gpa_base, src, gpa_size);
976 		gpa_base = context_gpa;
977 		gpa_size = I915_GTT_PAGE_SIZE;
978 		src = context_base + (i << I915_GTT_PAGE_SHIFT);
979 	}
980 
981 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
982 		RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
983 
984 	shadow_ring_context = (void *) ctx->lrc_reg_state;
985 
986 	if (!list_empty(&workload->lri_shadow_mm)) {
987 		struct intel_vgpu_mm *m = list_last_entry(&workload->lri_shadow_mm,
988 							  struct intel_vgpu_mm,
989 							  ppgtt_mm.link);
990 		GEM_BUG_ON(!check_shadow_context_ppgtt(shadow_ring_context, m));
991 		update_guest_pdps(vgpu, workload->ring_context_gpa,
992 				  (void *)m->ppgtt_mm.guest_pdps);
993 	}
994 
995 #define COPY_REG(name) \
996 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
997 		RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
998 
999 	COPY_REG(ctx_ctrl);
1000 	COPY_REG(ctx_timestamp);
1001 
1002 #undef COPY_REG
1003 
1004 	intel_gvt_hypervisor_write_gpa(vgpu,
1005 			workload->ring_context_gpa +
1006 			sizeof(*shadow_ring_context),
1007 			(void *)shadow_ring_context +
1008 			sizeof(*shadow_ring_context),
1009 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
1010 }
1011 
1012 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
1013 				intel_engine_mask_t engine_mask)
1014 {
1015 	struct intel_vgpu_submission *s = &vgpu->submission;
1016 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1017 	struct intel_engine_cs *engine;
1018 	struct intel_vgpu_workload *pos, *n;
1019 	intel_engine_mask_t tmp;
1020 
1021 	/* free the unsubmited workloads in the queues. */
1022 	for_each_engine_masked(engine, &dev_priv->gt, engine_mask, tmp) {
1023 		list_for_each_entry_safe(pos, n,
1024 			&s->workload_q_head[engine->id], list) {
1025 			list_del_init(&pos->list);
1026 			intel_vgpu_destroy_workload(pos);
1027 		}
1028 		clear_bit(engine->id, s->shadow_ctx_desc_updated);
1029 	}
1030 }
1031 
1032 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
1033 {
1034 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1035 	struct intel_vgpu_workload *workload =
1036 		scheduler->current_workload[ring_id];
1037 	struct intel_vgpu *vgpu = workload->vgpu;
1038 	struct intel_vgpu_submission *s = &vgpu->submission;
1039 	struct i915_request *rq = workload->req;
1040 	int event;
1041 
1042 	mutex_lock(&vgpu->vgpu_lock);
1043 	mutex_lock(&gvt->sched_lock);
1044 
1045 	/* For the workload w/ request, needs to wait for the context
1046 	 * switch to make sure request is completed.
1047 	 * For the workload w/o request, directly complete the workload.
1048 	 */
1049 	if (rq) {
1050 		wait_event(workload->shadow_ctx_status_wq,
1051 			   !atomic_read(&workload->shadow_ctx_active));
1052 
1053 		/* If this request caused GPU hang, req->fence.error will
1054 		 * be set to -EIO. Use -EIO to set workload status so
1055 		 * that when this request caused GPU hang, didn't trigger
1056 		 * context switch interrupt to guest.
1057 		 */
1058 		if (likely(workload->status == -EINPROGRESS)) {
1059 			if (workload->req->fence.error == -EIO)
1060 				workload->status = -EIO;
1061 			else
1062 				workload->status = 0;
1063 		}
1064 
1065 		if (!workload->status &&
1066 		    !(vgpu->resetting_eng & BIT(ring_id))) {
1067 			update_guest_context(workload);
1068 
1069 			for_each_set_bit(event, workload->pending_events,
1070 					 INTEL_GVT_EVENT_MAX)
1071 				intel_vgpu_trigger_virtual_event(vgpu, event);
1072 		}
1073 
1074 		i915_request_put(fetch_and_zero(&workload->req));
1075 	}
1076 
1077 	gvt_dbg_sched("ring id %d complete workload %p status %d\n",
1078 			ring_id, workload, workload->status);
1079 
1080 	scheduler->current_workload[ring_id] = NULL;
1081 
1082 	list_del_init(&workload->list);
1083 
1084 	if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
1085 		/* if workload->status is not successful means HW GPU
1086 		 * has occurred GPU hang or something wrong with i915/GVT,
1087 		 * and GVT won't inject context switch interrupt to guest.
1088 		 * So this error is a vGPU hang actually to the guest.
1089 		 * According to this we should emunlate a vGPU hang. If
1090 		 * there are pending workloads which are already submitted
1091 		 * from guest, we should clean them up like HW GPU does.
1092 		 *
1093 		 * if it is in middle of engine resetting, the pending
1094 		 * workloads won't be submitted to HW GPU and will be
1095 		 * cleaned up during the resetting process later, so doing
1096 		 * the workload clean up here doesn't have any impact.
1097 		 **/
1098 		intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
1099 	}
1100 
1101 	workload->complete(workload);
1102 
1103 	intel_vgpu_shadow_mm_unpin(workload);
1104 	intel_vgpu_destroy_workload(workload);
1105 
1106 	atomic_dec(&s->running_workload_num);
1107 	wake_up(&scheduler->workload_complete_wq);
1108 
1109 	if (gvt->scheduler.need_reschedule)
1110 		intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
1111 
1112 	mutex_unlock(&gvt->sched_lock);
1113 	mutex_unlock(&vgpu->vgpu_lock);
1114 }
1115 
1116 static int workload_thread(void *arg)
1117 {
1118 	struct intel_engine_cs *engine = arg;
1119 	const bool need_force_wake = INTEL_GEN(engine->i915) >= 9;
1120 	struct intel_gvt *gvt = engine->i915->gvt;
1121 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1122 	struct intel_vgpu_workload *workload = NULL;
1123 	struct intel_vgpu *vgpu = NULL;
1124 	int ret;
1125 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1126 
1127 	gvt_dbg_core("workload thread for ring %s started\n", engine->name);
1128 
1129 	while (!kthread_should_stop()) {
1130 		intel_wakeref_t wakeref;
1131 
1132 		add_wait_queue(&scheduler->waitq[engine->id], &wait);
1133 		do {
1134 			workload = pick_next_workload(gvt, engine);
1135 			if (workload)
1136 				break;
1137 			wait_woken(&wait, TASK_INTERRUPTIBLE,
1138 				   MAX_SCHEDULE_TIMEOUT);
1139 		} while (!kthread_should_stop());
1140 		remove_wait_queue(&scheduler->waitq[engine->id], &wait);
1141 
1142 		if (!workload)
1143 			break;
1144 
1145 		gvt_dbg_sched("ring %s next workload %p vgpu %d\n",
1146 			      engine->name, workload,
1147 			      workload->vgpu->id);
1148 
1149 		wakeref = intel_runtime_pm_get(engine->uncore->rpm);
1150 
1151 		gvt_dbg_sched("ring %s will dispatch workload %p\n",
1152 			      engine->name, workload);
1153 
1154 		if (need_force_wake)
1155 			intel_uncore_forcewake_get(engine->uncore,
1156 						   FORCEWAKE_ALL);
1157 		/*
1158 		 * Update the vReg of the vGPU which submitted this
1159 		 * workload. The vGPU may use these registers for checking
1160 		 * the context state. The value comes from GPU commands
1161 		 * in this workload.
1162 		 */
1163 		update_vreg_in_ctx(workload);
1164 
1165 		ret = dispatch_workload(workload);
1166 
1167 		if (ret) {
1168 			vgpu = workload->vgpu;
1169 			gvt_vgpu_err("fail to dispatch workload, skip\n");
1170 			goto complete;
1171 		}
1172 
1173 		gvt_dbg_sched("ring %s wait workload %p\n",
1174 			      engine->name, workload);
1175 		i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1176 
1177 complete:
1178 		gvt_dbg_sched("will complete workload %p, status: %d\n",
1179 			      workload, workload->status);
1180 
1181 		complete_current_workload(gvt, engine->id);
1182 
1183 		if (need_force_wake)
1184 			intel_uncore_forcewake_put(engine->uncore,
1185 						   FORCEWAKE_ALL);
1186 
1187 		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1188 		if (ret && (vgpu_is_vm_unhealthy(ret)))
1189 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1190 	}
1191 	return 0;
1192 }
1193 
1194 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1195 {
1196 	struct intel_vgpu_submission *s = &vgpu->submission;
1197 	struct intel_gvt *gvt = vgpu->gvt;
1198 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1199 
1200 	if (atomic_read(&s->running_workload_num)) {
1201 		gvt_dbg_sched("wait vgpu idle\n");
1202 
1203 		wait_event(scheduler->workload_complete_wq,
1204 				!atomic_read(&s->running_workload_num));
1205 	}
1206 }
1207 
1208 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1209 {
1210 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1211 	struct intel_engine_cs *engine;
1212 	enum intel_engine_id i;
1213 
1214 	gvt_dbg_core("clean workload scheduler\n");
1215 
1216 	for_each_engine(engine, gvt->gt, i) {
1217 		atomic_notifier_chain_unregister(
1218 					&engine->context_status_notifier,
1219 					&gvt->shadow_ctx_notifier_block[i]);
1220 		kthread_stop(scheduler->thread[i]);
1221 	}
1222 }
1223 
1224 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1225 {
1226 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1227 	struct intel_engine_cs *engine;
1228 	enum intel_engine_id i;
1229 	int ret;
1230 
1231 	gvt_dbg_core("init workload scheduler\n");
1232 
1233 	init_waitqueue_head(&scheduler->workload_complete_wq);
1234 
1235 	for_each_engine(engine, gvt->gt, i) {
1236 		init_waitqueue_head(&scheduler->waitq[i]);
1237 
1238 		scheduler->thread[i] = kthread_run(workload_thread, engine,
1239 						   "gvt:%s", engine->name);
1240 		if (IS_ERR(scheduler->thread[i])) {
1241 			gvt_err("fail to create workload thread\n");
1242 			ret = PTR_ERR(scheduler->thread[i]);
1243 			goto err;
1244 		}
1245 
1246 		gvt->shadow_ctx_notifier_block[i].notifier_call =
1247 					shadow_context_status_change;
1248 		atomic_notifier_chain_register(&engine->context_status_notifier,
1249 					&gvt->shadow_ctx_notifier_block[i]);
1250 	}
1251 
1252 	return 0;
1253 
1254 err:
1255 	intel_gvt_clean_workload_scheduler(gvt);
1256 	return ret;
1257 }
1258 
1259 static void
1260 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s,
1261 				struct i915_ppgtt *ppgtt)
1262 {
1263 	int i;
1264 
1265 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1266 		px_dma(ppgtt->pd) = s->i915_context_pml4;
1267 	} else {
1268 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1269 			struct i915_page_directory * const pd =
1270 				i915_pd_entry(ppgtt->pd, i);
1271 
1272 			px_dma(pd) = s->i915_context_pdps[i];
1273 		}
1274 	}
1275 }
1276 
1277 /**
1278  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1279  * @vgpu: a vGPU
1280  *
1281  * This function is called when a vGPU is being destroyed.
1282  *
1283  */
1284 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1285 {
1286 	struct intel_vgpu_submission *s = &vgpu->submission;
1287 	struct intel_engine_cs *engine;
1288 	enum intel_engine_id id;
1289 
1290 	intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1291 
1292 	i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm));
1293 	for_each_engine(engine, vgpu->gvt->gt, id)
1294 		intel_context_unpin(s->shadow[id]);
1295 
1296 	kmem_cache_destroy(s->workloads);
1297 }
1298 
1299 
1300 /**
1301  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1302  * @vgpu: a vGPU
1303  * @engine_mask: engines expected to be reset
1304  *
1305  * This function is called when a vGPU is being destroyed.
1306  *
1307  */
1308 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1309 				 intel_engine_mask_t engine_mask)
1310 {
1311 	struct intel_vgpu_submission *s = &vgpu->submission;
1312 
1313 	if (!s->active)
1314 		return;
1315 
1316 	intel_vgpu_clean_workloads(vgpu, engine_mask);
1317 	s->ops->reset(vgpu, engine_mask);
1318 }
1319 
1320 static void
1321 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s,
1322 			     struct i915_ppgtt *ppgtt)
1323 {
1324 	int i;
1325 
1326 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1327 		s->i915_context_pml4 = px_dma(ppgtt->pd);
1328 	} else {
1329 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1330 			struct i915_page_directory * const pd =
1331 				i915_pd_entry(ppgtt->pd, i);
1332 
1333 			s->i915_context_pdps[i] = px_dma(pd);
1334 		}
1335 	}
1336 }
1337 
1338 /**
1339  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1340  * @vgpu: a vGPU
1341  *
1342  * This function is called when a vGPU is being created.
1343  *
1344  * Returns:
1345  * Zero on success, negative error code if failed.
1346  *
1347  */
1348 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1349 {
1350 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1351 	struct intel_vgpu_submission *s = &vgpu->submission;
1352 	struct intel_engine_cs *engine;
1353 	struct i915_ppgtt *ppgtt;
1354 	enum intel_engine_id i;
1355 	int ret;
1356 
1357 	ppgtt = i915_ppgtt_create(&i915->gt);
1358 	if (IS_ERR(ppgtt))
1359 		return PTR_ERR(ppgtt);
1360 
1361 	i915_context_ppgtt_root_save(s, ppgtt);
1362 
1363 	for_each_engine(engine, vgpu->gvt->gt, i) {
1364 		struct intel_context *ce;
1365 
1366 		INIT_LIST_HEAD(&s->workload_q_head[i]);
1367 		s->shadow[i] = ERR_PTR(-EINVAL);
1368 
1369 		ce = intel_context_create(engine);
1370 		if (IS_ERR(ce)) {
1371 			ret = PTR_ERR(ce);
1372 			goto out_shadow_ctx;
1373 		}
1374 
1375 		i915_vm_put(ce->vm);
1376 		ce->vm = i915_vm_get(&ppgtt->vm);
1377 		intel_context_set_single_submission(ce);
1378 
1379 		/* Max ring buffer size */
1380 		if (!intel_uc_wants_guc_submission(&engine->gt->uc)) {
1381 			const unsigned int ring_size = 512 * SZ_4K;
1382 
1383 			ce->ring = __intel_context_ring_size(ring_size);
1384 		}
1385 
1386 		ret = intel_context_pin(ce);
1387 		intel_context_put(ce);
1388 		if (ret)
1389 			goto out_shadow_ctx;
1390 
1391 		s->shadow[i] = ce;
1392 	}
1393 
1394 	bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1395 
1396 	s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1397 						  sizeof(struct intel_vgpu_workload), 0,
1398 						  SLAB_HWCACHE_ALIGN,
1399 						  offsetof(struct intel_vgpu_workload, rb_tail),
1400 						  sizeof_field(struct intel_vgpu_workload, rb_tail),
1401 						  NULL);
1402 
1403 	if (!s->workloads) {
1404 		ret = -ENOMEM;
1405 		goto out_shadow_ctx;
1406 	}
1407 
1408 	atomic_set(&s->running_workload_num, 0);
1409 	bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1410 
1411 	memset(s->last_ctx, 0, sizeof(s->last_ctx));
1412 
1413 	i915_vm_put(&ppgtt->vm);
1414 	return 0;
1415 
1416 out_shadow_ctx:
1417 	i915_context_ppgtt_root_restore(s, ppgtt);
1418 	for_each_engine(engine, vgpu->gvt->gt, i) {
1419 		if (IS_ERR(s->shadow[i]))
1420 			break;
1421 
1422 		intel_context_unpin(s->shadow[i]);
1423 		intel_context_put(s->shadow[i]);
1424 	}
1425 	i915_vm_put(&ppgtt->vm);
1426 	return ret;
1427 }
1428 
1429 /**
1430  * intel_vgpu_select_submission_ops - select virtual submission interface
1431  * @vgpu: a vGPU
1432  * @engine_mask: either ALL_ENGINES or target engine mask
1433  * @interface: expected vGPU virtual submission interface
1434  *
1435  * This function is called when guest configures submission interface.
1436  *
1437  * Returns:
1438  * Zero on success, negative error code if failed.
1439  *
1440  */
1441 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1442 				     intel_engine_mask_t engine_mask,
1443 				     unsigned int interface)
1444 {
1445 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1446 	struct intel_vgpu_submission *s = &vgpu->submission;
1447 	const struct intel_vgpu_submission_ops *ops[] = {
1448 		[INTEL_VGPU_EXECLIST_SUBMISSION] =
1449 			&intel_vgpu_execlist_submission_ops,
1450 	};
1451 	int ret;
1452 
1453 	if (drm_WARN_ON(&i915->drm, interface >= ARRAY_SIZE(ops)))
1454 		return -EINVAL;
1455 
1456 	if (drm_WARN_ON(&i915->drm,
1457 			interface == 0 && engine_mask != ALL_ENGINES))
1458 		return -EINVAL;
1459 
1460 	if (s->active)
1461 		s->ops->clean(vgpu, engine_mask);
1462 
1463 	if (interface == 0) {
1464 		s->ops = NULL;
1465 		s->virtual_submission_interface = 0;
1466 		s->active = false;
1467 		gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1468 		return 0;
1469 	}
1470 
1471 	ret = ops[interface]->init(vgpu, engine_mask);
1472 	if (ret)
1473 		return ret;
1474 
1475 	s->ops = ops[interface];
1476 	s->virtual_submission_interface = interface;
1477 	s->active = true;
1478 
1479 	gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1480 			vgpu->id, s->ops->name);
1481 
1482 	return 0;
1483 }
1484 
1485 /**
1486  * intel_vgpu_destroy_workload - destroy a vGPU workload
1487  * @workload: workload to destroy
1488  *
1489  * This function is called when destroy a vGPU workload.
1490  *
1491  */
1492 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1493 {
1494 	struct intel_vgpu_submission *s = &workload->vgpu->submission;
1495 
1496 	release_shadow_batch_buffer(workload);
1497 	release_shadow_wa_ctx(&workload->wa_ctx);
1498 
1499 	if (!list_empty(&workload->lri_shadow_mm)) {
1500 		struct intel_vgpu_mm *m, *mm;
1501 		list_for_each_entry_safe(m, mm, &workload->lri_shadow_mm,
1502 					 ppgtt_mm.link) {
1503 			list_del(&m->ppgtt_mm.link);
1504 			intel_vgpu_mm_put(m);
1505 		}
1506 	}
1507 
1508 	GEM_BUG_ON(!list_empty(&workload->lri_shadow_mm));
1509 	if (workload->shadow_mm)
1510 		intel_vgpu_mm_put(workload->shadow_mm);
1511 
1512 	kmem_cache_free(s->workloads, workload);
1513 }
1514 
1515 static struct intel_vgpu_workload *
1516 alloc_workload(struct intel_vgpu *vgpu)
1517 {
1518 	struct intel_vgpu_submission *s = &vgpu->submission;
1519 	struct intel_vgpu_workload *workload;
1520 
1521 	workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1522 	if (!workload)
1523 		return ERR_PTR(-ENOMEM);
1524 
1525 	INIT_LIST_HEAD(&workload->list);
1526 	INIT_LIST_HEAD(&workload->shadow_bb);
1527 	INIT_LIST_HEAD(&workload->lri_shadow_mm);
1528 
1529 	init_waitqueue_head(&workload->shadow_ctx_status_wq);
1530 	atomic_set(&workload->shadow_ctx_active, 0);
1531 
1532 	workload->status = -EINPROGRESS;
1533 	workload->vgpu = vgpu;
1534 
1535 	return workload;
1536 }
1537 
1538 #define RING_CTX_OFF(x) \
1539 	offsetof(struct execlist_ring_context, x)
1540 
1541 static void read_guest_pdps(struct intel_vgpu *vgpu,
1542 		u64 ring_context_gpa, u32 pdp[8])
1543 {
1544 	u64 gpa;
1545 	int i;
1546 
1547 	gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1548 
1549 	for (i = 0; i < 8; i++)
1550 		intel_gvt_hypervisor_read_gpa(vgpu,
1551 				gpa + i * 8, &pdp[7 - i], 4);
1552 }
1553 
1554 static int prepare_mm(struct intel_vgpu_workload *workload)
1555 {
1556 	struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1557 	struct intel_vgpu_mm *mm;
1558 	struct intel_vgpu *vgpu = workload->vgpu;
1559 	enum intel_gvt_gtt_type root_entry_type;
1560 	u64 pdps[GVT_RING_CTX_NR_PDPS];
1561 
1562 	switch (desc->addressing_mode) {
1563 	case 1: /* legacy 32-bit */
1564 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1565 		break;
1566 	case 3: /* legacy 64-bit */
1567 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1568 		break;
1569 	default:
1570 		gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1571 		return -EINVAL;
1572 	}
1573 
1574 	read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1575 
1576 	mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1577 	if (IS_ERR(mm))
1578 		return PTR_ERR(mm);
1579 
1580 	workload->shadow_mm = mm;
1581 	return 0;
1582 }
1583 
1584 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1585 		((a)->lrca == (b)->lrca))
1586 
1587 /**
1588  * intel_vgpu_create_workload - create a vGPU workload
1589  * @vgpu: a vGPU
1590  * @engine: the engine
1591  * @desc: a guest context descriptor
1592  *
1593  * This function is called when creating a vGPU workload.
1594  *
1595  * Returns:
1596  * struct intel_vgpu_workload * on success, negative error code in
1597  * pointer if failed.
1598  *
1599  */
1600 struct intel_vgpu_workload *
1601 intel_vgpu_create_workload(struct intel_vgpu *vgpu,
1602 			   const struct intel_engine_cs *engine,
1603 			   struct execlist_ctx_descriptor_format *desc)
1604 {
1605 	struct intel_vgpu_submission *s = &vgpu->submission;
1606 	struct list_head *q = workload_q_head(vgpu, engine);
1607 	struct intel_vgpu_workload *last_workload = NULL;
1608 	struct intel_vgpu_workload *workload = NULL;
1609 	u64 ring_context_gpa;
1610 	u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1611 	u32 guest_head;
1612 	int ret;
1613 
1614 	ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1615 			(u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1616 	if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1617 		gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1618 		return ERR_PTR(-EINVAL);
1619 	}
1620 
1621 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1622 			RING_CTX_OFF(ring_header.val), &head, 4);
1623 
1624 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1625 			RING_CTX_OFF(ring_tail.val), &tail, 4);
1626 
1627 	guest_head = head;
1628 
1629 	head &= RB_HEAD_OFF_MASK;
1630 	tail &= RB_TAIL_OFF_MASK;
1631 
1632 	list_for_each_entry_reverse(last_workload, q, list) {
1633 
1634 		if (same_context(&last_workload->ctx_desc, desc)) {
1635 			gvt_dbg_el("ring %s cur workload == last\n",
1636 				   engine->name);
1637 			gvt_dbg_el("ctx head %x real head %lx\n", head,
1638 				   last_workload->rb_tail);
1639 			/*
1640 			 * cannot use guest context head pointer here,
1641 			 * as it might not be updated at this time
1642 			 */
1643 			head = last_workload->rb_tail;
1644 			break;
1645 		}
1646 	}
1647 
1648 	gvt_dbg_el("ring %s begin a new workload\n", engine->name);
1649 
1650 	/* record some ring buffer register values for scan and shadow */
1651 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1652 			RING_CTX_OFF(rb_start.val), &start, 4);
1653 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1654 			RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1655 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1656 			RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1657 
1658 	if (!intel_gvt_ggtt_validate_range(vgpu, start,
1659 				_RING_CTL_BUF_SIZE(ctl))) {
1660 		gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start);
1661 		return ERR_PTR(-EINVAL);
1662 	}
1663 
1664 	workload = alloc_workload(vgpu);
1665 	if (IS_ERR(workload))
1666 		return workload;
1667 
1668 	workload->engine = engine;
1669 	workload->ctx_desc = *desc;
1670 	workload->ring_context_gpa = ring_context_gpa;
1671 	workload->rb_head = head;
1672 	workload->guest_rb_head = guest_head;
1673 	workload->rb_tail = tail;
1674 	workload->rb_start = start;
1675 	workload->rb_ctl = ctl;
1676 
1677 	if (engine->id == RCS0) {
1678 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1679 			RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1680 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1681 			RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1682 
1683 		workload->wa_ctx.indirect_ctx.guest_gma =
1684 			indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1685 		workload->wa_ctx.indirect_ctx.size =
1686 			(indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1687 			CACHELINE_BYTES;
1688 
1689 		if (workload->wa_ctx.indirect_ctx.size != 0) {
1690 			if (!intel_gvt_ggtt_validate_range(vgpu,
1691 				workload->wa_ctx.indirect_ctx.guest_gma,
1692 				workload->wa_ctx.indirect_ctx.size)) {
1693 				gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n",
1694 				    workload->wa_ctx.indirect_ctx.guest_gma);
1695 				kmem_cache_free(s->workloads, workload);
1696 				return ERR_PTR(-EINVAL);
1697 			}
1698 		}
1699 
1700 		workload->wa_ctx.per_ctx.guest_gma =
1701 			per_ctx & PER_CTX_ADDR_MASK;
1702 		workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1703 		if (workload->wa_ctx.per_ctx.valid) {
1704 			if (!intel_gvt_ggtt_validate_range(vgpu,
1705 				workload->wa_ctx.per_ctx.guest_gma,
1706 				CACHELINE_BYTES)) {
1707 				gvt_vgpu_err("invalid per_ctx at: 0x%lx\n",
1708 					workload->wa_ctx.per_ctx.guest_gma);
1709 				kmem_cache_free(s->workloads, workload);
1710 				return ERR_PTR(-EINVAL);
1711 			}
1712 		}
1713 	}
1714 
1715 	gvt_dbg_el("workload %p ring %s head %x tail %x start %x ctl %x\n",
1716 		   workload, engine->name, head, tail, start, ctl);
1717 
1718 	ret = prepare_mm(workload);
1719 	if (ret) {
1720 		kmem_cache_free(s->workloads, workload);
1721 		return ERR_PTR(ret);
1722 	}
1723 
1724 	/* Only scan and shadow the first workload in the queue
1725 	 * as there is only one pre-allocated buf-obj for shadow.
1726 	 */
1727 	if (list_empty(q)) {
1728 		intel_wakeref_t wakeref;
1729 
1730 		with_intel_runtime_pm(engine->gt->uncore->rpm, wakeref)
1731 			ret = intel_gvt_scan_and_shadow_workload(workload);
1732 	}
1733 
1734 	if (ret) {
1735 		if (vgpu_is_vm_unhealthy(ret))
1736 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1737 		intel_vgpu_destroy_workload(workload);
1738 		return ERR_PTR(ret);
1739 	}
1740 
1741 	return workload;
1742 }
1743 
1744 /**
1745  * intel_vgpu_queue_workload - Qeue a vGPU workload
1746  * @workload: the workload to queue in
1747  */
1748 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1749 {
1750 	list_add_tail(&workload->list,
1751 		      workload_q_head(workload->vgpu, workload->engine));
1752 	intel_gvt_kick_schedule(workload->vgpu->gvt);
1753 	wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->engine->id]);
1754 }
1755