xref: /linux/drivers/gpu/drm/i915/gvt/scheduler.c (revision 2305f60b76110cb3e8658a4ae85d1f7eb0c66a5b)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35 
36 #include <linux/kthread.h>
37 
38 #include "gem/i915_gem_pm.h"
39 #include "gt/intel_context.h"
40 #include "gt/intel_ring.h"
41 
42 #include "i915_drv.h"
43 #include "i915_gem_gtt.h"
44 #include "gvt.h"
45 
46 #define RING_CTX_OFF(x) \
47 	offsetof(struct execlist_ring_context, x)
48 
49 static void set_context_pdp_root_pointer(
50 		struct execlist_ring_context *ring_context,
51 		u32 pdp[8])
52 {
53 	int i;
54 
55 	for (i = 0; i < 8; i++)
56 		ring_context->pdps[i].val = pdp[7 - i];
57 }
58 
59 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
60 {
61 	struct drm_i915_gem_object *ctx_obj =
62 		workload->req->context->state->obj;
63 	struct execlist_ring_context *shadow_ring_context;
64 	struct page *page;
65 
66 	if (WARN_ON(!workload->shadow_mm))
67 		return;
68 
69 	if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
70 		return;
71 
72 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
73 	shadow_ring_context = kmap(page);
74 	set_context_pdp_root_pointer(shadow_ring_context,
75 			(void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
76 	kunmap(page);
77 }
78 
79 /*
80  * when populating shadow ctx from guest, we should not overrride oa related
81  * registers, so that they will not be overlapped by guest oa configs. Thus
82  * made it possible to capture oa data from host for both host and guests.
83  */
84 static void sr_oa_regs(struct intel_vgpu_workload *workload,
85 		u32 *reg_state, bool save)
86 {
87 	struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
88 	u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset;
89 	u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset;
90 	int i = 0;
91 	u32 flex_mmio[] = {
92 		i915_mmio_reg_offset(EU_PERF_CNTL0),
93 		i915_mmio_reg_offset(EU_PERF_CNTL1),
94 		i915_mmio_reg_offset(EU_PERF_CNTL2),
95 		i915_mmio_reg_offset(EU_PERF_CNTL3),
96 		i915_mmio_reg_offset(EU_PERF_CNTL4),
97 		i915_mmio_reg_offset(EU_PERF_CNTL5),
98 		i915_mmio_reg_offset(EU_PERF_CNTL6),
99 	};
100 
101 	if (workload->ring_id != RCS0)
102 		return;
103 
104 	if (save) {
105 		workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
106 
107 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
108 			u32 state_offset = ctx_flexeu0 + i * 2;
109 
110 			workload->flex_mmio[i] = reg_state[state_offset + 1];
111 		}
112 	} else {
113 		reg_state[ctx_oactxctrl] =
114 			i915_mmio_reg_offset(GEN8_OACTXCONTROL);
115 		reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
116 
117 		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
118 			u32 state_offset = ctx_flexeu0 + i * 2;
119 			u32 mmio = flex_mmio[i];
120 
121 			reg_state[state_offset] = mmio;
122 			reg_state[state_offset + 1] = workload->flex_mmio[i];
123 		}
124 	}
125 }
126 
127 static int populate_shadow_context(struct intel_vgpu_workload *workload)
128 {
129 	struct intel_vgpu *vgpu = workload->vgpu;
130 	struct intel_gvt *gvt = vgpu->gvt;
131 	int ring_id = workload->ring_id;
132 	struct drm_i915_gem_object *ctx_obj =
133 		workload->req->context->state->obj;
134 	struct execlist_ring_context *shadow_ring_context;
135 	struct page *page;
136 	void *dst;
137 	unsigned long context_gpa, context_page_num;
138 	int i;
139 
140 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
141 	shadow_ring_context = kmap(page);
142 
143 	sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
144 #define COPY_REG(name) \
145 	intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
146 		+ RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
147 #define COPY_REG_MASKED(name) {\
148 		intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
149 					      + RING_CTX_OFF(name.val),\
150 					      &shadow_ring_context->name.val, 4);\
151 		shadow_ring_context->name.val |= 0xffff << 16;\
152 	}
153 
154 	COPY_REG_MASKED(ctx_ctrl);
155 	COPY_REG(ctx_timestamp);
156 
157 	if (ring_id == RCS0) {
158 		COPY_REG(bb_per_ctx_ptr);
159 		COPY_REG(rcs_indirect_ctx);
160 		COPY_REG(rcs_indirect_ctx_offset);
161 	}
162 #undef COPY_REG
163 #undef COPY_REG_MASKED
164 
165 	intel_gvt_hypervisor_read_gpa(vgpu,
166 			workload->ring_context_gpa +
167 			sizeof(*shadow_ring_context),
168 			(void *)shadow_ring_context +
169 			sizeof(*shadow_ring_context),
170 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
171 
172 	sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
173 	kunmap(page);
174 
175 	if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val))
176 		return 0;
177 
178 	gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
179 			workload->ctx_desc.lrca);
180 
181 	context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
182 
183 	context_page_num = context_page_num >> PAGE_SHIFT;
184 
185 	if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS0)
186 		context_page_num = 19;
187 
188 	i = 2;
189 	while (i < context_page_num) {
190 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
191 				(u32)((workload->ctx_desc.lrca + i) <<
192 				I915_GTT_PAGE_SHIFT));
193 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
194 			gvt_vgpu_err("Invalid guest context descriptor\n");
195 			return -EFAULT;
196 		}
197 
198 		page = i915_gem_object_get_page(ctx_obj, i);
199 		dst = kmap(page);
200 		intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
201 				I915_GTT_PAGE_SIZE);
202 		kunmap(page);
203 		i++;
204 	}
205 	return 0;
206 }
207 
208 static inline bool is_gvt_request(struct i915_request *rq)
209 {
210 	return intel_context_force_single_submission(rq->context);
211 }
212 
213 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
214 {
215 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
216 	u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
217 	i915_reg_t reg;
218 
219 	reg = RING_INSTDONE(ring_base);
220 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
221 	reg = RING_ACTHD(ring_base);
222 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
223 	reg = RING_ACTHD_UDW(ring_base);
224 	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
225 }
226 
227 static int shadow_context_status_change(struct notifier_block *nb,
228 		unsigned long action, void *data)
229 {
230 	struct i915_request *req = data;
231 	struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
232 				shadow_ctx_notifier_block[req->engine->id]);
233 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
234 	enum intel_engine_id ring_id = req->engine->id;
235 	struct intel_vgpu_workload *workload;
236 	unsigned long flags;
237 
238 	if (!is_gvt_request(req)) {
239 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
240 		if (action == INTEL_CONTEXT_SCHEDULE_IN &&
241 		    scheduler->engine_owner[ring_id]) {
242 			/* Switch ring from vGPU to host. */
243 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
244 					      NULL, ring_id);
245 			scheduler->engine_owner[ring_id] = NULL;
246 		}
247 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
248 
249 		return NOTIFY_OK;
250 	}
251 
252 	workload = scheduler->current_workload[ring_id];
253 	if (unlikely(!workload))
254 		return NOTIFY_OK;
255 
256 	switch (action) {
257 	case INTEL_CONTEXT_SCHEDULE_IN:
258 		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
259 		if (workload->vgpu != scheduler->engine_owner[ring_id]) {
260 			/* Switch ring from host to vGPU or vGPU to vGPU. */
261 			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
262 					      workload->vgpu, ring_id);
263 			scheduler->engine_owner[ring_id] = workload->vgpu;
264 		} else
265 			gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
266 				      ring_id, workload->vgpu->id);
267 		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
268 		atomic_set(&workload->shadow_ctx_active, 1);
269 		break;
270 	case INTEL_CONTEXT_SCHEDULE_OUT:
271 		save_ring_hw_state(workload->vgpu, ring_id);
272 		atomic_set(&workload->shadow_ctx_active, 0);
273 		break;
274 	case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
275 		save_ring_hw_state(workload->vgpu, ring_id);
276 		break;
277 	default:
278 		WARN_ON(1);
279 		return NOTIFY_OK;
280 	}
281 	wake_up(&workload->shadow_ctx_status_wq);
282 	return NOTIFY_OK;
283 }
284 
285 static void
286 shadow_context_descriptor_update(struct intel_context *ce,
287 				 struct intel_vgpu_workload *workload)
288 {
289 	u64 desc = ce->lrc_desc;
290 
291 	/*
292 	 * Update bits 0-11 of the context descriptor which includes flags
293 	 * like GEN8_CTX_* cached in desc_template
294 	 */
295 	desc &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
296 	desc |= workload->ctx_desc.addressing_mode <<
297 		GEN8_CTX_ADDRESSING_MODE_SHIFT;
298 
299 	ce->lrc_desc = desc;
300 }
301 
302 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
303 {
304 	struct intel_vgpu *vgpu = workload->vgpu;
305 	struct i915_request *req = workload->req;
306 	void *shadow_ring_buffer_va;
307 	u32 *cs;
308 	int err;
309 
310 	if (IS_GEN(req->i915, 9) && is_inhibit_context(req->context))
311 		intel_vgpu_restore_inhibit_context(vgpu, req);
312 
313 	/*
314 	 * To track whether a request has started on HW, we can emit a
315 	 * breadcrumb at the beginning of the request and check its
316 	 * timeline's HWSP to see if the breadcrumb has advanced past the
317 	 * start of this request. Actually, the request must have the
318 	 * init_breadcrumb if its timeline set has_init_bread_crumb, or the
319 	 * scheduler might get a wrong state of it during reset. Since the
320 	 * requests from gvt always set the has_init_breadcrumb flag, here
321 	 * need to do the emit_init_breadcrumb for all the requests.
322 	 */
323 	if (req->engine->emit_init_breadcrumb) {
324 		err = req->engine->emit_init_breadcrumb(req);
325 		if (err) {
326 			gvt_vgpu_err("fail to emit init breadcrumb\n");
327 			return err;
328 		}
329 	}
330 
331 	/* allocate shadow ring buffer */
332 	cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
333 	if (IS_ERR(cs)) {
334 		gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
335 			workload->rb_len);
336 		return PTR_ERR(cs);
337 	}
338 
339 	shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
340 
341 	/* get shadow ring buffer va */
342 	workload->shadow_ring_buffer_va = cs;
343 
344 	memcpy(cs, shadow_ring_buffer_va,
345 			workload->rb_len);
346 
347 	cs += workload->rb_len / sizeof(u32);
348 	intel_ring_advance(workload->req, cs);
349 
350 	return 0;
351 }
352 
353 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
354 {
355 	if (!wa_ctx->indirect_ctx.obj)
356 		return;
357 
358 	i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
359 	i915_gem_object_put(wa_ctx->indirect_ctx.obj);
360 
361 	wa_ctx->indirect_ctx.obj = NULL;
362 	wa_ctx->indirect_ctx.shadow_va = NULL;
363 }
364 
365 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
366 					  struct intel_context *ce)
367 {
368 	struct intel_vgpu_mm *mm = workload->shadow_mm;
369 	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm);
370 	int i = 0;
371 
372 	if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
373 		px_dma(ppgtt->pd) = mm->ppgtt_mm.shadow_pdps[0];
374 	} else {
375 		for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
376 			struct i915_page_directory * const pd =
377 				i915_pd_entry(ppgtt->pd, i);
378 
379 			px_dma(pd) = mm->ppgtt_mm.shadow_pdps[i];
380 		}
381 	}
382 }
383 
384 static int
385 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
386 {
387 	struct intel_vgpu *vgpu = workload->vgpu;
388 	struct intel_vgpu_submission *s = &vgpu->submission;
389 	struct i915_request *rq;
390 
391 	if (workload->req)
392 		return 0;
393 
394 	rq = i915_request_create(s->shadow[workload->ring_id]);
395 	if (IS_ERR(rq)) {
396 		gvt_vgpu_err("fail to allocate gem request\n");
397 		return PTR_ERR(rq);
398 	}
399 
400 	workload->req = i915_request_get(rq);
401 	return 0;
402 }
403 
404 /**
405  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
406  * shadow it as well, include ringbuffer,wa_ctx and ctx.
407  * @workload: an abstract entity for each execlist submission.
408  *
409  * This function is called before the workload submitting to i915, to make
410  * sure the content of the workload is valid.
411  */
412 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
413 {
414 	struct intel_vgpu *vgpu = workload->vgpu;
415 	struct intel_vgpu_submission *s = &vgpu->submission;
416 	int ret;
417 
418 	lockdep_assert_held(&vgpu->vgpu_lock);
419 
420 	if (workload->shadow)
421 		return 0;
422 
423 	if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated))
424 		shadow_context_descriptor_update(s->shadow[workload->ring_id],
425 						 workload);
426 
427 	ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
428 	if (ret)
429 		return ret;
430 
431 	if (workload->ring_id == RCS0 && workload->wa_ctx.indirect_ctx.size) {
432 		ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
433 		if (ret)
434 			goto err_shadow;
435 	}
436 
437 	workload->shadow = true;
438 	return 0;
439 err_shadow:
440 	release_shadow_wa_ctx(&workload->wa_ctx);
441 	return ret;
442 }
443 
444 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
445 
446 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
447 {
448 	struct intel_gvt *gvt = workload->vgpu->gvt;
449 	const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
450 	struct intel_vgpu_shadow_bb *bb;
451 	int ret;
452 
453 	list_for_each_entry(bb, &workload->shadow_bb, list) {
454 		/* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
455 		 * is only updated into ring_scan_buffer, not real ring address
456 		 * allocated in later copy_workload_to_ring_buffer. pls be noted
457 		 * shadow_ring_buffer_va is now pointed to real ring buffer va
458 		 * in copy_workload_to_ring_buffer.
459 		 */
460 
461 		if (bb->bb_offset)
462 			bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
463 				+ bb->bb_offset;
464 
465 		if (bb->ppgtt) {
466 			/* for non-priv bb, scan&shadow is only for
467 			 * debugging purpose, so the content of shadow bb
468 			 * is the same as original bb. Therefore,
469 			 * here, rather than switch to shadow bb's gma
470 			 * address, we directly use original batch buffer's
471 			 * gma address, and send original bb to hardware
472 			 * directly
473 			 */
474 			if (bb->clflush & CLFLUSH_AFTER) {
475 				drm_clflush_virt_range(bb->va,
476 						bb->obj->base.size);
477 				bb->clflush &= ~CLFLUSH_AFTER;
478 			}
479 			i915_gem_object_finish_access(bb->obj);
480 			bb->accessing = false;
481 
482 		} else {
483 			bb->vma = i915_gem_object_ggtt_pin(bb->obj,
484 					NULL, 0, 0, 0);
485 			if (IS_ERR(bb->vma)) {
486 				ret = PTR_ERR(bb->vma);
487 				goto err;
488 			}
489 
490 			/* relocate shadow batch buffer */
491 			bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
492 			if (gmadr_bytes == 8)
493 				bb->bb_start_cmd_va[2] = 0;
494 
495 			/* No one is going to touch shadow bb from now on. */
496 			if (bb->clflush & CLFLUSH_AFTER) {
497 				drm_clflush_virt_range(bb->va,
498 						bb->obj->base.size);
499 				bb->clflush &= ~CLFLUSH_AFTER;
500 			}
501 
502 			ret = i915_gem_object_set_to_gtt_domain(bb->obj,
503 								false);
504 			if (ret)
505 				goto err;
506 
507 			ret = i915_vma_move_to_active(bb->vma,
508 						      workload->req,
509 						      0);
510 			if (ret)
511 				goto err;
512 
513 			i915_gem_object_finish_access(bb->obj);
514 			bb->accessing = false;
515 		}
516 	}
517 	return 0;
518 err:
519 	release_shadow_batch_buffer(workload);
520 	return ret;
521 }
522 
523 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
524 {
525 	struct intel_vgpu_workload *workload =
526 		container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
527 	struct i915_request *rq = workload->req;
528 	struct execlist_ring_context *shadow_ring_context =
529 		(struct execlist_ring_context *)rq->context->lrc_reg_state;
530 
531 	shadow_ring_context->bb_per_ctx_ptr.val =
532 		(shadow_ring_context->bb_per_ctx_ptr.val &
533 		(~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
534 	shadow_ring_context->rcs_indirect_ctx.val =
535 		(shadow_ring_context->rcs_indirect_ctx.val &
536 		(~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
537 }
538 
539 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
540 {
541 	struct i915_vma *vma;
542 	unsigned char *per_ctx_va =
543 		(unsigned char *)wa_ctx->indirect_ctx.shadow_va +
544 		wa_ctx->indirect_ctx.size;
545 
546 	if (wa_ctx->indirect_ctx.size == 0)
547 		return 0;
548 
549 	vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
550 				       0, CACHELINE_BYTES, 0);
551 	if (IS_ERR(vma))
552 		return PTR_ERR(vma);
553 
554 	/* FIXME: we are not tracking our pinned VMA leaving it
555 	 * up to the core to fix up the stray pin_count upon
556 	 * free.
557 	 */
558 
559 	wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
560 
561 	wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
562 	memset(per_ctx_va, 0, CACHELINE_BYTES);
563 
564 	update_wa_ctx_2_shadow_ctx(wa_ctx);
565 	return 0;
566 }
567 
568 static void update_vreg_in_ctx(struct intel_vgpu_workload *workload)
569 {
570 	struct intel_vgpu *vgpu = workload->vgpu;
571 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
572 	u32 ring_base;
573 
574 	ring_base = dev_priv->engine[workload->ring_id]->mmio_base;
575 	vgpu_vreg_t(vgpu, RING_START(ring_base)) = workload->rb_start;
576 }
577 
578 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
579 {
580 	struct intel_vgpu_shadow_bb *bb, *pos;
581 
582 	if (list_empty(&workload->shadow_bb))
583 		return;
584 
585 	bb = list_first_entry(&workload->shadow_bb,
586 			struct intel_vgpu_shadow_bb, list);
587 
588 	list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
589 		if (bb->obj) {
590 			if (bb->accessing)
591 				i915_gem_object_finish_access(bb->obj);
592 
593 			if (bb->va && !IS_ERR(bb->va))
594 				i915_gem_object_unpin_map(bb->obj);
595 
596 			if (bb->vma && !IS_ERR(bb->vma)) {
597 				i915_vma_unpin(bb->vma);
598 				i915_vma_close(bb->vma);
599 			}
600 			i915_gem_object_put(bb->obj);
601 		}
602 		list_del(&bb->list);
603 		kfree(bb);
604 	}
605 }
606 
607 static int prepare_workload(struct intel_vgpu_workload *workload)
608 {
609 	struct intel_vgpu *vgpu = workload->vgpu;
610 	struct intel_vgpu_submission *s = &vgpu->submission;
611 	int ring = workload->ring_id;
612 	int ret = 0;
613 
614 	ret = intel_vgpu_pin_mm(workload->shadow_mm);
615 	if (ret) {
616 		gvt_vgpu_err("fail to vgpu pin mm\n");
617 		return ret;
618 	}
619 
620 	if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT ||
621 	    !workload->shadow_mm->ppgtt_mm.shadowed) {
622 		gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
623 		return -EINVAL;
624 	}
625 
626 	update_shadow_pdps(workload);
627 
628 	set_context_ppgtt_from_shadow(workload, s->shadow[ring]);
629 
630 	ret = intel_vgpu_sync_oos_pages(workload->vgpu);
631 	if (ret) {
632 		gvt_vgpu_err("fail to vgpu sync oos pages\n");
633 		goto err_unpin_mm;
634 	}
635 
636 	ret = intel_vgpu_flush_post_shadow(workload->vgpu);
637 	if (ret) {
638 		gvt_vgpu_err("fail to flush post shadow\n");
639 		goto err_unpin_mm;
640 	}
641 
642 	ret = copy_workload_to_ring_buffer(workload);
643 	if (ret) {
644 		gvt_vgpu_err("fail to generate request\n");
645 		goto err_unpin_mm;
646 	}
647 
648 	ret = prepare_shadow_batch_buffer(workload);
649 	if (ret) {
650 		gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
651 		goto err_unpin_mm;
652 	}
653 
654 	ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
655 	if (ret) {
656 		gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
657 		goto err_shadow_batch;
658 	}
659 
660 	if (workload->prepare) {
661 		ret = workload->prepare(workload);
662 		if (ret)
663 			goto err_shadow_wa_ctx;
664 	}
665 
666 	return 0;
667 err_shadow_wa_ctx:
668 	release_shadow_wa_ctx(&workload->wa_ctx);
669 err_shadow_batch:
670 	release_shadow_batch_buffer(workload);
671 err_unpin_mm:
672 	intel_vgpu_unpin_mm(workload->shadow_mm);
673 	return ret;
674 }
675 
676 static int dispatch_workload(struct intel_vgpu_workload *workload)
677 {
678 	struct intel_vgpu *vgpu = workload->vgpu;
679 	struct i915_request *rq;
680 	int ring_id = workload->ring_id;
681 	int ret;
682 
683 	gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
684 		ring_id, workload);
685 
686 	mutex_lock(&vgpu->vgpu_lock);
687 
688 	ret = intel_gvt_workload_req_alloc(workload);
689 	if (ret)
690 		goto err_req;
691 
692 	ret = intel_gvt_scan_and_shadow_workload(workload);
693 	if (ret)
694 		goto out;
695 
696 	ret = populate_shadow_context(workload);
697 	if (ret) {
698 		release_shadow_wa_ctx(&workload->wa_ctx);
699 		goto out;
700 	}
701 
702 	ret = prepare_workload(workload);
703 out:
704 	if (ret) {
705 		/* We might still need to add request with
706 		 * clean ctx to retire it properly..
707 		 */
708 		rq = fetch_and_zero(&workload->req);
709 		i915_request_put(rq);
710 	}
711 
712 	if (!IS_ERR_OR_NULL(workload->req)) {
713 		gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
714 				ring_id, workload->req);
715 		i915_request_add(workload->req);
716 		workload->dispatched = true;
717 	}
718 err_req:
719 	if (ret)
720 		workload->status = ret;
721 	mutex_unlock(&vgpu->vgpu_lock);
722 	return ret;
723 }
724 
725 static struct intel_vgpu_workload *pick_next_workload(
726 		struct intel_gvt *gvt, int ring_id)
727 {
728 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
729 	struct intel_vgpu_workload *workload = NULL;
730 
731 	mutex_lock(&gvt->sched_lock);
732 
733 	/*
734 	 * no current vgpu / will be scheduled out / no workload
735 	 * bail out
736 	 */
737 	if (!scheduler->current_vgpu) {
738 		gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
739 		goto out;
740 	}
741 
742 	if (scheduler->need_reschedule) {
743 		gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
744 		goto out;
745 	}
746 
747 	if (!scheduler->current_vgpu->active ||
748 	    list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
749 		goto out;
750 
751 	/*
752 	 * still have current workload, maybe the workload disptacher
753 	 * fail to submit it for some reason, resubmit it.
754 	 */
755 	if (scheduler->current_workload[ring_id]) {
756 		workload = scheduler->current_workload[ring_id];
757 		gvt_dbg_sched("ring id %d still have current workload %p\n",
758 				ring_id, workload);
759 		goto out;
760 	}
761 
762 	/*
763 	 * pick a workload as current workload
764 	 * once current workload is set, schedule policy routines
765 	 * will wait the current workload is finished when trying to
766 	 * schedule out a vgpu.
767 	 */
768 	scheduler->current_workload[ring_id] = container_of(
769 			workload_q_head(scheduler->current_vgpu, ring_id)->next,
770 			struct intel_vgpu_workload, list);
771 
772 	workload = scheduler->current_workload[ring_id];
773 
774 	gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
775 
776 	atomic_inc(&workload->vgpu->submission.running_workload_num);
777 out:
778 	mutex_unlock(&gvt->sched_lock);
779 	return workload;
780 }
781 
782 static void update_guest_context(struct intel_vgpu_workload *workload)
783 {
784 	struct i915_request *rq = workload->req;
785 	struct intel_vgpu *vgpu = workload->vgpu;
786 	struct intel_gvt *gvt = vgpu->gvt;
787 	struct drm_i915_gem_object *ctx_obj = rq->context->state->obj;
788 	struct execlist_ring_context *shadow_ring_context;
789 	struct page *page;
790 	void *src;
791 	unsigned long context_gpa, context_page_num;
792 	int i;
793 	struct drm_i915_private *dev_priv = gvt->dev_priv;
794 	u32 ring_base;
795 	u32 head, tail;
796 	u16 wrap_count;
797 
798 	gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
799 		      workload->ctx_desc.lrca);
800 
801 	head = workload->rb_head;
802 	tail = workload->rb_tail;
803 	wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF;
804 
805 	if (tail < head) {
806 		if (wrap_count == RB_HEAD_WRAP_CNT_MAX)
807 			wrap_count = 0;
808 		else
809 			wrap_count += 1;
810 	}
811 
812 	head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail;
813 
814 	ring_base = dev_priv->engine[workload->ring_id]->mmio_base;
815 	vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail;
816 	vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head;
817 
818 	context_page_num = rq->engine->context_size;
819 	context_page_num = context_page_num >> PAGE_SHIFT;
820 
821 	if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS0)
822 		context_page_num = 19;
823 
824 	i = 2;
825 
826 	while (i < context_page_num) {
827 		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
828 				(u32)((workload->ctx_desc.lrca + i) <<
829 					I915_GTT_PAGE_SHIFT));
830 		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
831 			gvt_vgpu_err("invalid guest context descriptor\n");
832 			return;
833 		}
834 
835 		page = i915_gem_object_get_page(ctx_obj, i);
836 		src = kmap(page);
837 		intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
838 				I915_GTT_PAGE_SIZE);
839 		kunmap(page);
840 		i++;
841 	}
842 
843 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
844 		RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
845 
846 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
847 	shadow_ring_context = kmap(page);
848 
849 #define COPY_REG(name) \
850 	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
851 		RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
852 
853 	COPY_REG(ctx_ctrl);
854 	COPY_REG(ctx_timestamp);
855 
856 #undef COPY_REG
857 
858 	intel_gvt_hypervisor_write_gpa(vgpu,
859 			workload->ring_context_gpa +
860 			sizeof(*shadow_ring_context),
861 			(void *)shadow_ring_context +
862 			sizeof(*shadow_ring_context),
863 			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
864 
865 	kunmap(page);
866 }
867 
868 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
869 				intel_engine_mask_t engine_mask)
870 {
871 	struct intel_vgpu_submission *s = &vgpu->submission;
872 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
873 	struct intel_engine_cs *engine;
874 	struct intel_vgpu_workload *pos, *n;
875 	intel_engine_mask_t tmp;
876 
877 	/* free the unsubmited workloads in the queues. */
878 	for_each_engine_masked(engine, &dev_priv->gt, engine_mask, tmp) {
879 		list_for_each_entry_safe(pos, n,
880 			&s->workload_q_head[engine->id], list) {
881 			list_del_init(&pos->list);
882 			intel_vgpu_destroy_workload(pos);
883 		}
884 		clear_bit(engine->id, s->shadow_ctx_desc_updated);
885 	}
886 }
887 
888 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
889 {
890 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
891 	struct intel_vgpu_workload *workload =
892 		scheduler->current_workload[ring_id];
893 	struct intel_vgpu *vgpu = workload->vgpu;
894 	struct intel_vgpu_submission *s = &vgpu->submission;
895 	struct i915_request *rq = workload->req;
896 	int event;
897 
898 	mutex_lock(&vgpu->vgpu_lock);
899 	mutex_lock(&gvt->sched_lock);
900 
901 	/* For the workload w/ request, needs to wait for the context
902 	 * switch to make sure request is completed.
903 	 * For the workload w/o request, directly complete the workload.
904 	 */
905 	if (rq) {
906 		wait_event(workload->shadow_ctx_status_wq,
907 			   !atomic_read(&workload->shadow_ctx_active));
908 
909 		/* If this request caused GPU hang, req->fence.error will
910 		 * be set to -EIO. Use -EIO to set workload status so
911 		 * that when this request caused GPU hang, didn't trigger
912 		 * context switch interrupt to guest.
913 		 */
914 		if (likely(workload->status == -EINPROGRESS)) {
915 			if (workload->req->fence.error == -EIO)
916 				workload->status = -EIO;
917 			else
918 				workload->status = 0;
919 		}
920 
921 		if (!workload->status &&
922 		    !(vgpu->resetting_eng & BIT(ring_id))) {
923 			update_guest_context(workload);
924 
925 			for_each_set_bit(event, workload->pending_events,
926 					 INTEL_GVT_EVENT_MAX)
927 				intel_vgpu_trigger_virtual_event(vgpu, event);
928 		}
929 
930 		i915_request_put(fetch_and_zero(&workload->req));
931 	}
932 
933 	gvt_dbg_sched("ring id %d complete workload %p status %d\n",
934 			ring_id, workload, workload->status);
935 
936 	scheduler->current_workload[ring_id] = NULL;
937 
938 	list_del_init(&workload->list);
939 
940 	if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
941 		/* if workload->status is not successful means HW GPU
942 		 * has occurred GPU hang or something wrong with i915/GVT,
943 		 * and GVT won't inject context switch interrupt to guest.
944 		 * So this error is a vGPU hang actually to the guest.
945 		 * According to this we should emunlate a vGPU hang. If
946 		 * there are pending workloads which are already submitted
947 		 * from guest, we should clean them up like HW GPU does.
948 		 *
949 		 * if it is in middle of engine resetting, the pending
950 		 * workloads won't be submitted to HW GPU and will be
951 		 * cleaned up during the resetting process later, so doing
952 		 * the workload clean up here doesn't have any impact.
953 		 **/
954 		intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
955 	}
956 
957 	workload->complete(workload);
958 
959 	atomic_dec(&s->running_workload_num);
960 	wake_up(&scheduler->workload_complete_wq);
961 
962 	if (gvt->scheduler.need_reschedule)
963 		intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
964 
965 	mutex_unlock(&gvt->sched_lock);
966 	mutex_unlock(&vgpu->vgpu_lock);
967 }
968 
969 struct workload_thread_param {
970 	struct intel_gvt *gvt;
971 	int ring_id;
972 };
973 
974 static int workload_thread(void *priv)
975 {
976 	struct workload_thread_param *p = (struct workload_thread_param *)priv;
977 	struct intel_gvt *gvt = p->gvt;
978 	int ring_id = p->ring_id;
979 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
980 	struct intel_vgpu_workload *workload = NULL;
981 	struct intel_vgpu *vgpu = NULL;
982 	int ret;
983 	bool need_force_wake = (INTEL_GEN(gvt->dev_priv) >= 9);
984 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
985 	struct intel_runtime_pm *rpm = &gvt->dev_priv->runtime_pm;
986 
987 	kfree(p);
988 
989 	gvt_dbg_core("workload thread for ring %d started\n", ring_id);
990 
991 	while (!kthread_should_stop()) {
992 		add_wait_queue(&scheduler->waitq[ring_id], &wait);
993 		do {
994 			workload = pick_next_workload(gvt, ring_id);
995 			if (workload)
996 				break;
997 			wait_woken(&wait, TASK_INTERRUPTIBLE,
998 				   MAX_SCHEDULE_TIMEOUT);
999 		} while (!kthread_should_stop());
1000 		remove_wait_queue(&scheduler->waitq[ring_id], &wait);
1001 
1002 		if (!workload)
1003 			break;
1004 
1005 		gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
1006 				workload->ring_id, workload,
1007 				workload->vgpu->id);
1008 
1009 		intel_runtime_pm_get(rpm);
1010 
1011 		gvt_dbg_sched("ring id %d will dispatch workload %p\n",
1012 				workload->ring_id, workload);
1013 
1014 		if (need_force_wake)
1015 			intel_uncore_forcewake_get(&gvt->dev_priv->uncore,
1016 					FORCEWAKE_ALL);
1017 		/*
1018 		 * Update the vReg of the vGPU which submitted this
1019 		 * workload. The vGPU may use these registers for checking
1020 		 * the context state. The value comes from GPU commands
1021 		 * in this workload.
1022 		 */
1023 		update_vreg_in_ctx(workload);
1024 
1025 		ret = dispatch_workload(workload);
1026 
1027 		if (ret) {
1028 			vgpu = workload->vgpu;
1029 			gvt_vgpu_err("fail to dispatch workload, skip\n");
1030 			goto complete;
1031 		}
1032 
1033 		gvt_dbg_sched("ring id %d wait workload %p\n",
1034 				workload->ring_id, workload);
1035 		i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1036 
1037 complete:
1038 		gvt_dbg_sched("will complete workload %p, status: %d\n",
1039 				workload, workload->status);
1040 
1041 		complete_current_workload(gvt, ring_id);
1042 
1043 		if (need_force_wake)
1044 			intel_uncore_forcewake_put(&gvt->dev_priv->uncore,
1045 					FORCEWAKE_ALL);
1046 
1047 		intel_runtime_pm_put_unchecked(rpm);
1048 		if (ret && (vgpu_is_vm_unhealthy(ret)))
1049 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1050 	}
1051 	return 0;
1052 }
1053 
1054 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1055 {
1056 	struct intel_vgpu_submission *s = &vgpu->submission;
1057 	struct intel_gvt *gvt = vgpu->gvt;
1058 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1059 
1060 	if (atomic_read(&s->running_workload_num)) {
1061 		gvt_dbg_sched("wait vgpu idle\n");
1062 
1063 		wait_event(scheduler->workload_complete_wq,
1064 				!atomic_read(&s->running_workload_num));
1065 	}
1066 }
1067 
1068 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1069 {
1070 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1071 	struct intel_engine_cs *engine;
1072 	enum intel_engine_id i;
1073 
1074 	gvt_dbg_core("clean workload scheduler\n");
1075 
1076 	for_each_engine(engine, gvt->dev_priv, i) {
1077 		atomic_notifier_chain_unregister(
1078 					&engine->context_status_notifier,
1079 					&gvt->shadow_ctx_notifier_block[i]);
1080 		kthread_stop(scheduler->thread[i]);
1081 	}
1082 }
1083 
1084 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1085 {
1086 	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1087 	struct workload_thread_param *param = NULL;
1088 	struct intel_engine_cs *engine;
1089 	enum intel_engine_id i;
1090 	int ret;
1091 
1092 	gvt_dbg_core("init workload scheduler\n");
1093 
1094 	init_waitqueue_head(&scheduler->workload_complete_wq);
1095 
1096 	for_each_engine(engine, gvt->dev_priv, i) {
1097 		init_waitqueue_head(&scheduler->waitq[i]);
1098 
1099 		param = kzalloc(sizeof(*param), GFP_KERNEL);
1100 		if (!param) {
1101 			ret = -ENOMEM;
1102 			goto err;
1103 		}
1104 
1105 		param->gvt = gvt;
1106 		param->ring_id = i;
1107 
1108 		scheduler->thread[i] = kthread_run(workload_thread, param,
1109 			"gvt workload %d", i);
1110 		if (IS_ERR(scheduler->thread[i])) {
1111 			gvt_err("fail to create workload thread\n");
1112 			ret = PTR_ERR(scheduler->thread[i]);
1113 			goto err;
1114 		}
1115 
1116 		gvt->shadow_ctx_notifier_block[i].notifier_call =
1117 					shadow_context_status_change;
1118 		atomic_notifier_chain_register(&engine->context_status_notifier,
1119 					&gvt->shadow_ctx_notifier_block[i]);
1120 	}
1121 	return 0;
1122 err:
1123 	intel_gvt_clean_workload_scheduler(gvt);
1124 	kfree(param);
1125 	param = NULL;
1126 	return ret;
1127 }
1128 
1129 static void
1130 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s,
1131 				struct i915_ppgtt *ppgtt)
1132 {
1133 	int i;
1134 
1135 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1136 		px_dma(ppgtt->pd) = s->i915_context_pml4;
1137 	} else {
1138 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1139 			struct i915_page_directory * const pd =
1140 				i915_pd_entry(ppgtt->pd, i);
1141 
1142 			px_dma(pd) = s->i915_context_pdps[i];
1143 		}
1144 	}
1145 }
1146 
1147 /**
1148  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1149  * @vgpu: a vGPU
1150  *
1151  * This function is called when a vGPU is being destroyed.
1152  *
1153  */
1154 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1155 {
1156 	struct intel_vgpu_submission *s = &vgpu->submission;
1157 	struct intel_engine_cs *engine;
1158 	enum intel_engine_id id;
1159 
1160 	intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1161 
1162 	i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm));
1163 	for_each_engine(engine, vgpu->gvt->dev_priv, id)
1164 		intel_context_unpin(s->shadow[id]);
1165 
1166 	kmem_cache_destroy(s->workloads);
1167 }
1168 
1169 
1170 /**
1171  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1172  * @vgpu: a vGPU
1173  * @engine_mask: engines expected to be reset
1174  *
1175  * This function is called when a vGPU is being destroyed.
1176  *
1177  */
1178 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1179 				 intel_engine_mask_t engine_mask)
1180 {
1181 	struct intel_vgpu_submission *s = &vgpu->submission;
1182 
1183 	if (!s->active)
1184 		return;
1185 
1186 	intel_vgpu_clean_workloads(vgpu, engine_mask);
1187 	s->ops->reset(vgpu, engine_mask);
1188 }
1189 
1190 static void
1191 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s,
1192 			     struct i915_ppgtt *ppgtt)
1193 {
1194 	int i;
1195 
1196 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1197 		s->i915_context_pml4 = px_dma(ppgtt->pd);
1198 	} else {
1199 		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1200 			struct i915_page_directory * const pd =
1201 				i915_pd_entry(ppgtt->pd, i);
1202 
1203 			s->i915_context_pdps[i] = px_dma(pd);
1204 		}
1205 	}
1206 }
1207 
1208 /**
1209  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1210  * @vgpu: a vGPU
1211  *
1212  * This function is called when a vGPU is being created.
1213  *
1214  * Returns:
1215  * Zero on success, negative error code if failed.
1216  *
1217  */
1218 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1219 {
1220 	struct drm_i915_private *i915 = vgpu->gvt->dev_priv;
1221 	struct intel_vgpu_submission *s = &vgpu->submission;
1222 	struct intel_engine_cs *engine;
1223 	struct i915_ppgtt *ppgtt;
1224 	enum intel_engine_id i;
1225 	int ret;
1226 
1227 	ppgtt = i915_ppgtt_create(&i915->gt);
1228 	if (IS_ERR(ppgtt))
1229 		return PTR_ERR(ppgtt);
1230 
1231 	i915_context_ppgtt_root_save(s, ppgtt);
1232 
1233 	for_each_engine(engine, i915, i) {
1234 		struct intel_context *ce;
1235 
1236 		INIT_LIST_HEAD(&s->workload_q_head[i]);
1237 		s->shadow[i] = ERR_PTR(-EINVAL);
1238 
1239 		ce = intel_context_create(engine);
1240 		if (IS_ERR(ce)) {
1241 			ret = PTR_ERR(ce);
1242 			goto out_shadow_ctx;
1243 		}
1244 
1245 		i915_vm_put(ce->vm);
1246 		ce->vm = i915_vm_get(&ppgtt->vm);
1247 		intel_context_set_single_submission(ce);
1248 
1249 		if (!USES_GUC_SUBMISSION(i915)) { /* Max ring buffer size */
1250 			const unsigned int ring_size = 512 * SZ_4K;
1251 
1252 			ce->ring = __intel_context_ring_size(ring_size);
1253 		}
1254 
1255 		ret = intel_context_pin(ce);
1256 		intel_context_put(ce);
1257 		if (ret)
1258 			goto out_shadow_ctx;
1259 
1260 		s->shadow[i] = ce;
1261 	}
1262 
1263 	bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1264 
1265 	s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1266 						  sizeof(struct intel_vgpu_workload), 0,
1267 						  SLAB_HWCACHE_ALIGN,
1268 						  offsetof(struct intel_vgpu_workload, rb_tail),
1269 						  sizeof_field(struct intel_vgpu_workload, rb_tail),
1270 						  NULL);
1271 
1272 	if (!s->workloads) {
1273 		ret = -ENOMEM;
1274 		goto out_shadow_ctx;
1275 	}
1276 
1277 	atomic_set(&s->running_workload_num, 0);
1278 	bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1279 
1280 	i915_vm_put(&ppgtt->vm);
1281 	return 0;
1282 
1283 out_shadow_ctx:
1284 	i915_context_ppgtt_root_restore(s, ppgtt);
1285 	for_each_engine(engine, i915, i) {
1286 		if (IS_ERR(s->shadow[i]))
1287 			break;
1288 
1289 		intel_context_unpin(s->shadow[i]);
1290 		intel_context_put(s->shadow[i]);
1291 	}
1292 	i915_vm_put(&ppgtt->vm);
1293 	return ret;
1294 }
1295 
1296 /**
1297  * intel_vgpu_select_submission_ops - select virtual submission interface
1298  * @vgpu: a vGPU
1299  * @engine_mask: either ALL_ENGINES or target engine mask
1300  * @interface: expected vGPU virtual submission interface
1301  *
1302  * This function is called when guest configures submission interface.
1303  *
1304  * Returns:
1305  * Zero on success, negative error code if failed.
1306  *
1307  */
1308 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1309 				     intel_engine_mask_t engine_mask,
1310 				     unsigned int interface)
1311 {
1312 	struct intel_vgpu_submission *s = &vgpu->submission;
1313 	const struct intel_vgpu_submission_ops *ops[] = {
1314 		[INTEL_VGPU_EXECLIST_SUBMISSION] =
1315 			&intel_vgpu_execlist_submission_ops,
1316 	};
1317 	int ret;
1318 
1319 	if (WARN_ON(interface >= ARRAY_SIZE(ops)))
1320 		return -EINVAL;
1321 
1322 	if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
1323 		return -EINVAL;
1324 
1325 	if (s->active)
1326 		s->ops->clean(vgpu, engine_mask);
1327 
1328 	if (interface == 0) {
1329 		s->ops = NULL;
1330 		s->virtual_submission_interface = 0;
1331 		s->active = false;
1332 		gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1333 		return 0;
1334 	}
1335 
1336 	ret = ops[interface]->init(vgpu, engine_mask);
1337 	if (ret)
1338 		return ret;
1339 
1340 	s->ops = ops[interface];
1341 	s->virtual_submission_interface = interface;
1342 	s->active = true;
1343 
1344 	gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1345 			vgpu->id, s->ops->name);
1346 
1347 	return 0;
1348 }
1349 
1350 /**
1351  * intel_vgpu_destroy_workload - destroy a vGPU workload
1352  * @workload: workload to destroy
1353  *
1354  * This function is called when destroy a vGPU workload.
1355  *
1356  */
1357 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1358 {
1359 	struct intel_vgpu_submission *s = &workload->vgpu->submission;
1360 
1361 	release_shadow_batch_buffer(workload);
1362 	release_shadow_wa_ctx(&workload->wa_ctx);
1363 
1364 	if (workload->shadow_mm)
1365 		intel_vgpu_mm_put(workload->shadow_mm);
1366 
1367 	kmem_cache_free(s->workloads, workload);
1368 }
1369 
1370 static struct intel_vgpu_workload *
1371 alloc_workload(struct intel_vgpu *vgpu)
1372 {
1373 	struct intel_vgpu_submission *s = &vgpu->submission;
1374 	struct intel_vgpu_workload *workload;
1375 
1376 	workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1377 	if (!workload)
1378 		return ERR_PTR(-ENOMEM);
1379 
1380 	INIT_LIST_HEAD(&workload->list);
1381 	INIT_LIST_HEAD(&workload->shadow_bb);
1382 
1383 	init_waitqueue_head(&workload->shadow_ctx_status_wq);
1384 	atomic_set(&workload->shadow_ctx_active, 0);
1385 
1386 	workload->status = -EINPROGRESS;
1387 	workload->vgpu = vgpu;
1388 
1389 	return workload;
1390 }
1391 
1392 #define RING_CTX_OFF(x) \
1393 	offsetof(struct execlist_ring_context, x)
1394 
1395 static void read_guest_pdps(struct intel_vgpu *vgpu,
1396 		u64 ring_context_gpa, u32 pdp[8])
1397 {
1398 	u64 gpa;
1399 	int i;
1400 
1401 	gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1402 
1403 	for (i = 0; i < 8; i++)
1404 		intel_gvt_hypervisor_read_gpa(vgpu,
1405 				gpa + i * 8, &pdp[7 - i], 4);
1406 }
1407 
1408 static int prepare_mm(struct intel_vgpu_workload *workload)
1409 {
1410 	struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1411 	struct intel_vgpu_mm *mm;
1412 	struct intel_vgpu *vgpu = workload->vgpu;
1413 	enum intel_gvt_gtt_type root_entry_type;
1414 	u64 pdps[GVT_RING_CTX_NR_PDPS];
1415 
1416 	switch (desc->addressing_mode) {
1417 	case 1: /* legacy 32-bit */
1418 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1419 		break;
1420 	case 3: /* legacy 64-bit */
1421 		root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1422 		break;
1423 	default:
1424 		gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1425 		return -EINVAL;
1426 	}
1427 
1428 	read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1429 
1430 	mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1431 	if (IS_ERR(mm))
1432 		return PTR_ERR(mm);
1433 
1434 	workload->shadow_mm = mm;
1435 	return 0;
1436 }
1437 
1438 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1439 		((a)->lrca == (b)->lrca))
1440 
1441 /**
1442  * intel_vgpu_create_workload - create a vGPU workload
1443  * @vgpu: a vGPU
1444  * @ring_id: ring index
1445  * @desc: a guest context descriptor
1446  *
1447  * This function is called when creating a vGPU workload.
1448  *
1449  * Returns:
1450  * struct intel_vgpu_workload * on success, negative error code in
1451  * pointer if failed.
1452  *
1453  */
1454 struct intel_vgpu_workload *
1455 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
1456 			   struct execlist_ctx_descriptor_format *desc)
1457 {
1458 	struct intel_vgpu_submission *s = &vgpu->submission;
1459 	struct list_head *q = workload_q_head(vgpu, ring_id);
1460 	struct intel_vgpu_workload *last_workload = NULL;
1461 	struct intel_vgpu_workload *workload = NULL;
1462 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1463 	u64 ring_context_gpa;
1464 	u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1465 	u32 guest_head;
1466 	int ret;
1467 
1468 	ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1469 			(u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1470 	if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1471 		gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1472 		return ERR_PTR(-EINVAL);
1473 	}
1474 
1475 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1476 			RING_CTX_OFF(ring_header.val), &head, 4);
1477 
1478 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1479 			RING_CTX_OFF(ring_tail.val), &tail, 4);
1480 
1481 	guest_head = head;
1482 
1483 	head &= RB_HEAD_OFF_MASK;
1484 	tail &= RB_TAIL_OFF_MASK;
1485 
1486 	list_for_each_entry_reverse(last_workload, q, list) {
1487 
1488 		if (same_context(&last_workload->ctx_desc, desc)) {
1489 			gvt_dbg_el("ring id %d cur workload == last\n",
1490 					ring_id);
1491 			gvt_dbg_el("ctx head %x real head %lx\n", head,
1492 					last_workload->rb_tail);
1493 			/*
1494 			 * cannot use guest context head pointer here,
1495 			 * as it might not be updated at this time
1496 			 */
1497 			head = last_workload->rb_tail;
1498 			break;
1499 		}
1500 	}
1501 
1502 	gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
1503 
1504 	/* record some ring buffer register values for scan and shadow */
1505 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1506 			RING_CTX_OFF(rb_start.val), &start, 4);
1507 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1508 			RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1509 	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1510 			RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1511 
1512 	if (!intel_gvt_ggtt_validate_range(vgpu, start,
1513 				_RING_CTL_BUF_SIZE(ctl))) {
1514 		gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start);
1515 		return ERR_PTR(-EINVAL);
1516 	}
1517 
1518 	workload = alloc_workload(vgpu);
1519 	if (IS_ERR(workload))
1520 		return workload;
1521 
1522 	workload->ring_id = ring_id;
1523 	workload->ctx_desc = *desc;
1524 	workload->ring_context_gpa = ring_context_gpa;
1525 	workload->rb_head = head;
1526 	workload->guest_rb_head = guest_head;
1527 	workload->rb_tail = tail;
1528 	workload->rb_start = start;
1529 	workload->rb_ctl = ctl;
1530 
1531 	if (ring_id == RCS0) {
1532 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1533 			RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1534 		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1535 			RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1536 
1537 		workload->wa_ctx.indirect_ctx.guest_gma =
1538 			indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1539 		workload->wa_ctx.indirect_ctx.size =
1540 			(indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1541 			CACHELINE_BYTES;
1542 
1543 		if (workload->wa_ctx.indirect_ctx.size != 0) {
1544 			if (!intel_gvt_ggtt_validate_range(vgpu,
1545 				workload->wa_ctx.indirect_ctx.guest_gma,
1546 				workload->wa_ctx.indirect_ctx.size)) {
1547 				gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n",
1548 				    workload->wa_ctx.indirect_ctx.guest_gma);
1549 				kmem_cache_free(s->workloads, workload);
1550 				return ERR_PTR(-EINVAL);
1551 			}
1552 		}
1553 
1554 		workload->wa_ctx.per_ctx.guest_gma =
1555 			per_ctx & PER_CTX_ADDR_MASK;
1556 		workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1557 		if (workload->wa_ctx.per_ctx.valid) {
1558 			if (!intel_gvt_ggtt_validate_range(vgpu,
1559 				workload->wa_ctx.per_ctx.guest_gma,
1560 				CACHELINE_BYTES)) {
1561 				gvt_vgpu_err("invalid per_ctx at: 0x%lx\n",
1562 					workload->wa_ctx.per_ctx.guest_gma);
1563 				kmem_cache_free(s->workloads, workload);
1564 				return ERR_PTR(-EINVAL);
1565 			}
1566 		}
1567 	}
1568 
1569 	gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
1570 			workload, ring_id, head, tail, start, ctl);
1571 
1572 	ret = prepare_mm(workload);
1573 	if (ret) {
1574 		kmem_cache_free(s->workloads, workload);
1575 		return ERR_PTR(ret);
1576 	}
1577 
1578 	/* Only scan and shadow the first workload in the queue
1579 	 * as there is only one pre-allocated buf-obj for shadow.
1580 	 */
1581 	if (list_empty(workload_q_head(vgpu, ring_id))) {
1582 		intel_runtime_pm_get(&dev_priv->runtime_pm);
1583 		ret = intel_gvt_scan_and_shadow_workload(workload);
1584 		intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm);
1585 	}
1586 
1587 	if (ret) {
1588 		if (vgpu_is_vm_unhealthy(ret))
1589 			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1590 		intel_vgpu_destroy_workload(workload);
1591 		return ERR_PTR(ret);
1592 	}
1593 
1594 	return workload;
1595 }
1596 
1597 /**
1598  * intel_vgpu_queue_workload - Qeue a vGPU workload
1599  * @workload: the workload to queue in
1600  */
1601 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1602 {
1603 	list_add_tail(&workload->list,
1604 		workload_q_head(workload->vgpu, workload->ring_id));
1605 	intel_gvt_kick_schedule(workload->vgpu->gvt);
1606 	wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);
1607 }
1608