xref: /linux/drivers/gpu/drm/i915/gvt/kvmgt.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 /*
2  * KVMGT - the implementation of Intel mediated pass-through framework for KVM
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Kevin Tian <kevin.tian@intel.com>
27  *    Jike Song <jike.song@intel.com>
28  *    Xiaoguang Chen <xiaoguang.chen@intel.com>
29  *    Eddie Dong <eddie.dong@intel.com>
30  *
31  * Contributors:
32  *    Niu Bing <bing.niu@intel.com>
33  *    Zhi Wang <zhi.a.wang@intel.com>
34  */
35 
36 #include <linux/init.h>
37 #include <linux/mm.h>
38 #include <linux/kthread.h>
39 #include <linux/sched/mm.h>
40 #include <linux/types.h>
41 #include <linux/list.h>
42 #include <linux/rbtree.h>
43 #include <linux/spinlock.h>
44 #include <linux/eventfd.h>
45 #include <linux/mdev.h>
46 #include <linux/debugfs.h>
47 
48 #include <linux/nospec.h>
49 
50 #include <drm/drm_edid.h>
51 
52 #include "i915_drv.h"
53 #include "intel_gvt.h"
54 #include "gvt.h"
55 
56 MODULE_IMPORT_NS(DMA_BUF);
57 MODULE_IMPORT_NS(I915_GVT);
58 
59 /* helper macros copied from vfio-pci */
60 #define VFIO_PCI_OFFSET_SHIFT   40
61 #define VFIO_PCI_OFFSET_TO_INDEX(off)   (off >> VFIO_PCI_OFFSET_SHIFT)
62 #define VFIO_PCI_INDEX_TO_OFFSET(index) ((u64)(index) << VFIO_PCI_OFFSET_SHIFT)
63 #define VFIO_PCI_OFFSET_MASK    (((u64)(1) << VFIO_PCI_OFFSET_SHIFT) - 1)
64 
65 #define EDID_BLOB_OFFSET (PAGE_SIZE/2)
66 
67 #define OPREGION_SIGNATURE "IntelGraphicsMem"
68 
69 struct vfio_region;
70 struct intel_vgpu_regops {
71 	size_t (*rw)(struct intel_vgpu *vgpu, char *buf,
72 			size_t count, loff_t *ppos, bool iswrite);
73 	void (*release)(struct intel_vgpu *vgpu,
74 			struct vfio_region *region);
75 };
76 
77 struct vfio_region {
78 	u32				type;
79 	u32				subtype;
80 	size_t				size;
81 	u32				flags;
82 	const struct intel_vgpu_regops	*ops;
83 	void				*data;
84 };
85 
86 struct vfio_edid_region {
87 	struct vfio_region_gfx_edid vfio_edid_regs;
88 	void *edid_blob;
89 };
90 
91 struct kvmgt_pgfn {
92 	gfn_t gfn;
93 	struct hlist_node hnode;
94 };
95 
96 struct gvt_dma {
97 	struct intel_vgpu *vgpu;
98 	struct rb_node gfn_node;
99 	struct rb_node dma_addr_node;
100 	gfn_t gfn;
101 	dma_addr_t dma_addr;
102 	unsigned long size;
103 	struct kref ref;
104 };
105 
106 #define vfio_dev_to_vgpu(vfio_dev) \
107 	container_of((vfio_dev), struct intel_vgpu, vfio_device)
108 
109 static void kvmgt_page_track_write(gpa_t gpa, const u8 *val, int len,
110 				   struct kvm_page_track_notifier_node *node);
111 static void kvmgt_page_track_remove_region(gfn_t gfn, unsigned long nr_pages,
112 					   struct kvm_page_track_notifier_node *node);
113 
114 static ssize_t intel_vgpu_show_description(struct mdev_type *mtype, char *buf)
115 {
116 	struct intel_vgpu_type *type =
117 		container_of(mtype, struct intel_vgpu_type, type);
118 
119 	return sprintf(buf, "low_gm_size: %dMB\nhigh_gm_size: %dMB\n"
120 		       "fence: %d\nresolution: %s\n"
121 		       "weight: %d\n",
122 		       BYTES_TO_MB(type->conf->low_mm),
123 		       BYTES_TO_MB(type->conf->high_mm),
124 		       type->conf->fence, vgpu_edid_str(type->conf->edid),
125 		       type->conf->weight);
126 }
127 
128 static void gvt_unpin_guest_page(struct intel_vgpu *vgpu, unsigned long gfn,
129 		unsigned long size)
130 {
131 	vfio_unpin_pages(&vgpu->vfio_device, gfn << PAGE_SHIFT,
132 			 DIV_ROUND_UP(size, PAGE_SIZE));
133 }
134 
135 /* Pin a normal or compound guest page for dma. */
136 static int gvt_pin_guest_page(struct intel_vgpu *vgpu, unsigned long gfn,
137 		unsigned long size, struct page **page)
138 {
139 	int total_pages = DIV_ROUND_UP(size, PAGE_SIZE);
140 	struct page *base_page = NULL;
141 	int npage;
142 	int ret;
143 
144 	/*
145 	 * We pin the pages one-by-one to avoid allocating a big arrary
146 	 * on stack to hold pfns.
147 	 */
148 	for (npage = 0; npage < total_pages; npage++) {
149 		dma_addr_t cur_iova = (gfn + npage) << PAGE_SHIFT;
150 		struct page *cur_page;
151 
152 		ret = vfio_pin_pages(&vgpu->vfio_device, cur_iova, 1,
153 				     IOMMU_READ | IOMMU_WRITE, &cur_page);
154 		if (ret != 1) {
155 			gvt_vgpu_err("vfio_pin_pages failed for iova %pad, ret %d\n",
156 				     &cur_iova, ret);
157 			goto err;
158 		}
159 
160 		if (npage == 0)
161 			base_page = cur_page;
162 		else if (page_to_pfn(base_page) + npage != page_to_pfn(cur_page)) {
163 			ret = -EINVAL;
164 			npage++;
165 			goto err;
166 		}
167 	}
168 
169 	*page = base_page;
170 	return 0;
171 err:
172 	if (npage)
173 		gvt_unpin_guest_page(vgpu, gfn, npage * PAGE_SIZE);
174 	return ret;
175 }
176 
177 static int gvt_dma_map_page(struct intel_vgpu *vgpu, unsigned long gfn,
178 		dma_addr_t *dma_addr, unsigned long size)
179 {
180 	struct device *dev = vgpu->gvt->gt->i915->drm.dev;
181 	struct page *page = NULL;
182 	int ret;
183 
184 	ret = gvt_pin_guest_page(vgpu, gfn, size, &page);
185 	if (ret)
186 		return ret;
187 
188 	/* Setup DMA mapping. */
189 	*dma_addr = dma_map_page(dev, page, 0, size, DMA_BIDIRECTIONAL);
190 	if (dma_mapping_error(dev, *dma_addr)) {
191 		gvt_vgpu_err("DMA mapping failed for pfn 0x%lx, ret %d\n",
192 			     page_to_pfn(page), ret);
193 		gvt_unpin_guest_page(vgpu, gfn, size);
194 		return -ENOMEM;
195 	}
196 
197 	return 0;
198 }
199 
200 static void gvt_dma_unmap_page(struct intel_vgpu *vgpu, unsigned long gfn,
201 		dma_addr_t dma_addr, unsigned long size)
202 {
203 	struct device *dev = vgpu->gvt->gt->i915->drm.dev;
204 
205 	dma_unmap_page(dev, dma_addr, size, DMA_BIDIRECTIONAL);
206 	gvt_unpin_guest_page(vgpu, gfn, size);
207 }
208 
209 static struct gvt_dma *__gvt_cache_find_dma_addr(struct intel_vgpu *vgpu,
210 		dma_addr_t dma_addr)
211 {
212 	struct rb_node *node = vgpu->dma_addr_cache.rb_node;
213 	struct gvt_dma *itr;
214 
215 	while (node) {
216 		itr = rb_entry(node, struct gvt_dma, dma_addr_node);
217 
218 		if (dma_addr < itr->dma_addr)
219 			node = node->rb_left;
220 		else if (dma_addr > itr->dma_addr)
221 			node = node->rb_right;
222 		else
223 			return itr;
224 	}
225 	return NULL;
226 }
227 
228 static struct gvt_dma *__gvt_cache_find_gfn(struct intel_vgpu *vgpu, gfn_t gfn)
229 {
230 	struct rb_node *node = vgpu->gfn_cache.rb_node;
231 	struct gvt_dma *itr;
232 
233 	while (node) {
234 		itr = rb_entry(node, struct gvt_dma, gfn_node);
235 
236 		if (gfn < itr->gfn)
237 			node = node->rb_left;
238 		else if (gfn > itr->gfn)
239 			node = node->rb_right;
240 		else
241 			return itr;
242 	}
243 	return NULL;
244 }
245 
246 static int __gvt_cache_add(struct intel_vgpu *vgpu, gfn_t gfn,
247 		dma_addr_t dma_addr, unsigned long size)
248 {
249 	struct gvt_dma *new, *itr;
250 	struct rb_node **link, *parent = NULL;
251 
252 	new = kzalloc(sizeof(struct gvt_dma), GFP_KERNEL);
253 	if (!new)
254 		return -ENOMEM;
255 
256 	new->vgpu = vgpu;
257 	new->gfn = gfn;
258 	new->dma_addr = dma_addr;
259 	new->size = size;
260 	kref_init(&new->ref);
261 
262 	/* gfn_cache maps gfn to struct gvt_dma. */
263 	link = &vgpu->gfn_cache.rb_node;
264 	while (*link) {
265 		parent = *link;
266 		itr = rb_entry(parent, struct gvt_dma, gfn_node);
267 
268 		if (gfn < itr->gfn)
269 			link = &parent->rb_left;
270 		else
271 			link = &parent->rb_right;
272 	}
273 	rb_link_node(&new->gfn_node, parent, link);
274 	rb_insert_color(&new->gfn_node, &vgpu->gfn_cache);
275 
276 	/* dma_addr_cache maps dma addr to struct gvt_dma. */
277 	parent = NULL;
278 	link = &vgpu->dma_addr_cache.rb_node;
279 	while (*link) {
280 		parent = *link;
281 		itr = rb_entry(parent, struct gvt_dma, dma_addr_node);
282 
283 		if (dma_addr < itr->dma_addr)
284 			link = &parent->rb_left;
285 		else
286 			link = &parent->rb_right;
287 	}
288 	rb_link_node(&new->dma_addr_node, parent, link);
289 	rb_insert_color(&new->dma_addr_node, &vgpu->dma_addr_cache);
290 
291 	vgpu->nr_cache_entries++;
292 	return 0;
293 }
294 
295 static void __gvt_cache_remove_entry(struct intel_vgpu *vgpu,
296 				struct gvt_dma *entry)
297 {
298 	rb_erase(&entry->gfn_node, &vgpu->gfn_cache);
299 	rb_erase(&entry->dma_addr_node, &vgpu->dma_addr_cache);
300 	kfree(entry);
301 	vgpu->nr_cache_entries--;
302 }
303 
304 static void gvt_cache_destroy(struct intel_vgpu *vgpu)
305 {
306 	struct gvt_dma *dma;
307 	struct rb_node *node = NULL;
308 
309 	for (;;) {
310 		mutex_lock(&vgpu->cache_lock);
311 		node = rb_first(&vgpu->gfn_cache);
312 		if (!node) {
313 			mutex_unlock(&vgpu->cache_lock);
314 			break;
315 		}
316 		dma = rb_entry(node, struct gvt_dma, gfn_node);
317 		gvt_dma_unmap_page(vgpu, dma->gfn, dma->dma_addr, dma->size);
318 		__gvt_cache_remove_entry(vgpu, dma);
319 		mutex_unlock(&vgpu->cache_lock);
320 	}
321 }
322 
323 static void gvt_cache_init(struct intel_vgpu *vgpu)
324 {
325 	vgpu->gfn_cache = RB_ROOT;
326 	vgpu->dma_addr_cache = RB_ROOT;
327 	vgpu->nr_cache_entries = 0;
328 	mutex_init(&vgpu->cache_lock);
329 }
330 
331 static void kvmgt_protect_table_init(struct intel_vgpu *info)
332 {
333 	hash_init(info->ptable);
334 }
335 
336 static void kvmgt_protect_table_destroy(struct intel_vgpu *info)
337 {
338 	struct kvmgt_pgfn *p;
339 	struct hlist_node *tmp;
340 	int i;
341 
342 	hash_for_each_safe(info->ptable, i, tmp, p, hnode) {
343 		hash_del(&p->hnode);
344 		kfree(p);
345 	}
346 }
347 
348 static struct kvmgt_pgfn *
349 __kvmgt_protect_table_find(struct intel_vgpu *info, gfn_t gfn)
350 {
351 	struct kvmgt_pgfn *p, *res = NULL;
352 
353 	lockdep_assert_held(&info->vgpu_lock);
354 
355 	hash_for_each_possible(info->ptable, p, hnode, gfn) {
356 		if (gfn == p->gfn) {
357 			res = p;
358 			break;
359 		}
360 	}
361 
362 	return res;
363 }
364 
365 static bool kvmgt_gfn_is_write_protected(struct intel_vgpu *info, gfn_t gfn)
366 {
367 	struct kvmgt_pgfn *p;
368 
369 	p = __kvmgt_protect_table_find(info, gfn);
370 	return !!p;
371 }
372 
373 static void kvmgt_protect_table_add(struct intel_vgpu *info, gfn_t gfn)
374 {
375 	struct kvmgt_pgfn *p;
376 
377 	if (kvmgt_gfn_is_write_protected(info, gfn))
378 		return;
379 
380 	p = kzalloc(sizeof(struct kvmgt_pgfn), GFP_ATOMIC);
381 	if (WARN(!p, "gfn: 0x%llx\n", gfn))
382 		return;
383 
384 	p->gfn = gfn;
385 	hash_add(info->ptable, &p->hnode, gfn);
386 }
387 
388 static void kvmgt_protect_table_del(struct intel_vgpu *info, gfn_t gfn)
389 {
390 	struct kvmgt_pgfn *p;
391 
392 	p = __kvmgt_protect_table_find(info, gfn);
393 	if (p) {
394 		hash_del(&p->hnode);
395 		kfree(p);
396 	}
397 }
398 
399 static size_t intel_vgpu_reg_rw_opregion(struct intel_vgpu *vgpu, char *buf,
400 		size_t count, loff_t *ppos, bool iswrite)
401 {
402 	unsigned int i = VFIO_PCI_OFFSET_TO_INDEX(*ppos) -
403 			VFIO_PCI_NUM_REGIONS;
404 	void *base = vgpu->region[i].data;
405 	loff_t pos = *ppos & VFIO_PCI_OFFSET_MASK;
406 
407 
408 	if (pos >= vgpu->region[i].size || iswrite) {
409 		gvt_vgpu_err("invalid op or offset for Intel vgpu OpRegion\n");
410 		return -EINVAL;
411 	}
412 	count = min(count, (size_t)(vgpu->region[i].size - pos));
413 	memcpy(buf, base + pos, count);
414 
415 	return count;
416 }
417 
418 static void intel_vgpu_reg_release_opregion(struct intel_vgpu *vgpu,
419 		struct vfio_region *region)
420 {
421 }
422 
423 static const struct intel_vgpu_regops intel_vgpu_regops_opregion = {
424 	.rw = intel_vgpu_reg_rw_opregion,
425 	.release = intel_vgpu_reg_release_opregion,
426 };
427 
428 static bool edid_valid(const void *edid, size_t size)
429 {
430 	const struct drm_edid *drm_edid;
431 	bool is_valid;
432 
433 	drm_edid = drm_edid_alloc(edid, size);
434 	is_valid = drm_edid_valid(drm_edid);
435 	drm_edid_free(drm_edid);
436 
437 	return is_valid;
438 }
439 
440 static int handle_edid_regs(struct intel_vgpu *vgpu,
441 			struct vfio_edid_region *region, char *buf,
442 			size_t count, u16 offset, bool is_write)
443 {
444 	struct vfio_region_gfx_edid *regs = &region->vfio_edid_regs;
445 	unsigned int data;
446 
447 	if (offset + count > sizeof(*regs))
448 		return -EINVAL;
449 
450 	if (count != 4)
451 		return -EINVAL;
452 
453 	if (is_write) {
454 		data = *((unsigned int *)buf);
455 		switch (offset) {
456 		case offsetof(struct vfio_region_gfx_edid, link_state):
457 			if (data == VFIO_DEVICE_GFX_LINK_STATE_UP) {
458 				if (!edid_valid(region->edid_blob, EDID_SIZE)) {
459 					gvt_vgpu_err("invalid EDID blob\n");
460 					return -EINVAL;
461 				}
462 				intel_vgpu_emulate_hotplug(vgpu, true);
463 			} else if (data == VFIO_DEVICE_GFX_LINK_STATE_DOWN)
464 				intel_vgpu_emulate_hotplug(vgpu, false);
465 			else {
466 				gvt_vgpu_err("invalid EDID link state %d\n",
467 					regs->link_state);
468 				return -EINVAL;
469 			}
470 			regs->link_state = data;
471 			break;
472 		case offsetof(struct vfio_region_gfx_edid, edid_size):
473 			if (data > regs->edid_max_size) {
474 				gvt_vgpu_err("EDID size is bigger than %d!\n",
475 					regs->edid_max_size);
476 				return -EINVAL;
477 			}
478 			regs->edid_size = data;
479 			break;
480 		default:
481 			/* read-only regs */
482 			gvt_vgpu_err("write read-only EDID region at offset %d\n",
483 				offset);
484 			return -EPERM;
485 		}
486 	} else {
487 		memcpy(buf, (char *)regs + offset, count);
488 	}
489 
490 	return count;
491 }
492 
493 static int handle_edid_blob(struct vfio_edid_region *region, char *buf,
494 			size_t count, u16 offset, bool is_write)
495 {
496 	if (offset + count > region->vfio_edid_regs.edid_size)
497 		return -EINVAL;
498 
499 	if (is_write)
500 		memcpy(region->edid_blob + offset, buf, count);
501 	else
502 		memcpy(buf, region->edid_blob + offset, count);
503 
504 	return count;
505 }
506 
507 static size_t intel_vgpu_reg_rw_edid(struct intel_vgpu *vgpu, char *buf,
508 		size_t count, loff_t *ppos, bool iswrite)
509 {
510 	int ret;
511 	unsigned int i = VFIO_PCI_OFFSET_TO_INDEX(*ppos) -
512 			VFIO_PCI_NUM_REGIONS;
513 	struct vfio_edid_region *region = vgpu->region[i].data;
514 	loff_t pos = *ppos & VFIO_PCI_OFFSET_MASK;
515 
516 	if (pos < region->vfio_edid_regs.edid_offset) {
517 		ret = handle_edid_regs(vgpu, region, buf, count, pos, iswrite);
518 	} else {
519 		pos -= EDID_BLOB_OFFSET;
520 		ret = handle_edid_blob(region, buf, count, pos, iswrite);
521 	}
522 
523 	if (ret < 0)
524 		gvt_vgpu_err("failed to access EDID region\n");
525 
526 	return ret;
527 }
528 
529 static void intel_vgpu_reg_release_edid(struct intel_vgpu *vgpu,
530 					struct vfio_region *region)
531 {
532 	kfree(region->data);
533 }
534 
535 static const struct intel_vgpu_regops intel_vgpu_regops_edid = {
536 	.rw = intel_vgpu_reg_rw_edid,
537 	.release = intel_vgpu_reg_release_edid,
538 };
539 
540 static int intel_vgpu_register_reg(struct intel_vgpu *vgpu,
541 		unsigned int type, unsigned int subtype,
542 		const struct intel_vgpu_regops *ops,
543 		size_t size, u32 flags, void *data)
544 {
545 	struct vfio_region *region;
546 
547 	region = krealloc(vgpu->region,
548 			(vgpu->num_regions + 1) * sizeof(*region),
549 			GFP_KERNEL);
550 	if (!region)
551 		return -ENOMEM;
552 
553 	vgpu->region = region;
554 	vgpu->region[vgpu->num_regions].type = type;
555 	vgpu->region[vgpu->num_regions].subtype = subtype;
556 	vgpu->region[vgpu->num_regions].ops = ops;
557 	vgpu->region[vgpu->num_regions].size = size;
558 	vgpu->region[vgpu->num_regions].flags = flags;
559 	vgpu->region[vgpu->num_regions].data = data;
560 	vgpu->num_regions++;
561 	return 0;
562 }
563 
564 int intel_gvt_set_opregion(struct intel_vgpu *vgpu)
565 {
566 	void *base;
567 	int ret;
568 
569 	/* Each vgpu has its own opregion, although VFIO would create another
570 	 * one later. This one is used to expose opregion to VFIO. And the
571 	 * other one created by VFIO later, is used by guest actually.
572 	 */
573 	base = vgpu_opregion(vgpu)->va;
574 	if (!base)
575 		return -ENOMEM;
576 
577 	if (memcmp(base, OPREGION_SIGNATURE, 16)) {
578 		memunmap(base);
579 		return -EINVAL;
580 	}
581 
582 	ret = intel_vgpu_register_reg(vgpu,
583 			PCI_VENDOR_ID_INTEL | VFIO_REGION_TYPE_PCI_VENDOR_TYPE,
584 			VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION,
585 			&intel_vgpu_regops_opregion, INTEL_GVT_OPREGION_SIZE,
586 			VFIO_REGION_INFO_FLAG_READ, base);
587 
588 	return ret;
589 }
590 
591 int intel_gvt_set_edid(struct intel_vgpu *vgpu, int port_num)
592 {
593 	struct intel_vgpu_port *port = intel_vgpu_port(vgpu, port_num);
594 	struct vfio_edid_region *base;
595 	int ret;
596 
597 	base = kzalloc(sizeof(*base), GFP_KERNEL);
598 	if (!base)
599 		return -ENOMEM;
600 
601 	/* TODO: Add multi-port and EDID extension block support */
602 	base->vfio_edid_regs.edid_offset = EDID_BLOB_OFFSET;
603 	base->vfio_edid_regs.edid_max_size = EDID_SIZE;
604 	base->vfio_edid_regs.edid_size = EDID_SIZE;
605 	base->vfio_edid_regs.max_xres = vgpu_edid_xres(port->id);
606 	base->vfio_edid_regs.max_yres = vgpu_edid_yres(port->id);
607 	base->edid_blob = port->edid->edid_block;
608 
609 	ret = intel_vgpu_register_reg(vgpu,
610 			VFIO_REGION_TYPE_GFX,
611 			VFIO_REGION_SUBTYPE_GFX_EDID,
612 			&intel_vgpu_regops_edid, EDID_SIZE,
613 			VFIO_REGION_INFO_FLAG_READ |
614 			VFIO_REGION_INFO_FLAG_WRITE |
615 			VFIO_REGION_INFO_FLAG_CAPS, base);
616 
617 	return ret;
618 }
619 
620 static void intel_vgpu_dma_unmap(struct vfio_device *vfio_dev, u64 iova,
621 				 u64 length)
622 {
623 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
624 	struct gvt_dma *entry;
625 	u64 iov_pfn = iova >> PAGE_SHIFT;
626 	u64 end_iov_pfn = iov_pfn + length / PAGE_SIZE;
627 
628 	mutex_lock(&vgpu->cache_lock);
629 	for (; iov_pfn < end_iov_pfn; iov_pfn++) {
630 		entry = __gvt_cache_find_gfn(vgpu, iov_pfn);
631 		if (!entry)
632 			continue;
633 
634 		gvt_dma_unmap_page(vgpu, entry->gfn, entry->dma_addr,
635 				   entry->size);
636 		__gvt_cache_remove_entry(vgpu, entry);
637 	}
638 	mutex_unlock(&vgpu->cache_lock);
639 }
640 
641 static bool __kvmgt_vgpu_exist(struct intel_vgpu *vgpu)
642 {
643 	struct intel_vgpu *itr;
644 	int id;
645 	bool ret = false;
646 
647 	mutex_lock(&vgpu->gvt->lock);
648 	for_each_active_vgpu(vgpu->gvt, itr, id) {
649 		if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, itr->status))
650 			continue;
651 
652 		if (vgpu->vfio_device.kvm == itr->vfio_device.kvm) {
653 			ret = true;
654 			goto out;
655 		}
656 	}
657 out:
658 	mutex_unlock(&vgpu->gvt->lock);
659 	return ret;
660 }
661 
662 static int intel_vgpu_open_device(struct vfio_device *vfio_dev)
663 {
664 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
665 	int ret;
666 
667 	if (__kvmgt_vgpu_exist(vgpu))
668 		return -EEXIST;
669 
670 	vgpu->track_node.track_write = kvmgt_page_track_write;
671 	vgpu->track_node.track_remove_region = kvmgt_page_track_remove_region;
672 	ret = kvm_page_track_register_notifier(vgpu->vfio_device.kvm,
673 					       &vgpu->track_node);
674 	if (ret) {
675 		gvt_vgpu_err("KVM is required to use Intel vGPU\n");
676 		return ret;
677 	}
678 
679 	set_bit(INTEL_VGPU_STATUS_ATTACHED, vgpu->status);
680 
681 	debugfs_create_ulong(KVMGT_DEBUGFS_FILENAME, 0444, vgpu->debugfs,
682 			     &vgpu->nr_cache_entries);
683 
684 	intel_gvt_activate_vgpu(vgpu);
685 
686 	return 0;
687 }
688 
689 static void intel_vgpu_release_msi_eventfd_ctx(struct intel_vgpu *vgpu)
690 {
691 	struct eventfd_ctx *trigger;
692 
693 	trigger = vgpu->msi_trigger;
694 	if (trigger) {
695 		eventfd_ctx_put(trigger);
696 		vgpu->msi_trigger = NULL;
697 	}
698 }
699 
700 static void intel_vgpu_close_device(struct vfio_device *vfio_dev)
701 {
702 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
703 
704 	intel_gvt_release_vgpu(vgpu);
705 
706 	clear_bit(INTEL_VGPU_STATUS_ATTACHED, vgpu->status);
707 
708 	debugfs_lookup_and_remove(KVMGT_DEBUGFS_FILENAME, vgpu->debugfs);
709 
710 	kvm_page_track_unregister_notifier(vgpu->vfio_device.kvm,
711 					   &vgpu->track_node);
712 
713 	kvmgt_protect_table_destroy(vgpu);
714 	gvt_cache_destroy(vgpu);
715 
716 	WARN_ON(vgpu->nr_cache_entries);
717 
718 	vgpu->gfn_cache = RB_ROOT;
719 	vgpu->dma_addr_cache = RB_ROOT;
720 
721 	intel_vgpu_release_msi_eventfd_ctx(vgpu);
722 }
723 
724 static u64 intel_vgpu_get_bar_addr(struct intel_vgpu *vgpu, int bar)
725 {
726 	u32 start_lo, start_hi;
727 	u32 mem_type;
728 
729 	start_lo = (*(u32 *)(vgpu->cfg_space.virtual_cfg_space + bar)) &
730 			PCI_BASE_ADDRESS_MEM_MASK;
731 	mem_type = (*(u32 *)(vgpu->cfg_space.virtual_cfg_space + bar)) &
732 			PCI_BASE_ADDRESS_MEM_TYPE_MASK;
733 
734 	switch (mem_type) {
735 	case PCI_BASE_ADDRESS_MEM_TYPE_64:
736 		start_hi = (*(u32 *)(vgpu->cfg_space.virtual_cfg_space
737 						+ bar + 4));
738 		break;
739 	case PCI_BASE_ADDRESS_MEM_TYPE_32:
740 	case PCI_BASE_ADDRESS_MEM_TYPE_1M:
741 		/* 1M mem BAR treated as 32-bit BAR */
742 	default:
743 		/* mem unknown type treated as 32-bit BAR */
744 		start_hi = 0;
745 		break;
746 	}
747 
748 	return ((u64)start_hi << 32) | start_lo;
749 }
750 
751 static int intel_vgpu_bar_rw(struct intel_vgpu *vgpu, int bar, u64 off,
752 			     void *buf, unsigned int count, bool is_write)
753 {
754 	u64 bar_start = intel_vgpu_get_bar_addr(vgpu, bar);
755 	int ret;
756 
757 	if (is_write)
758 		ret = intel_vgpu_emulate_mmio_write(vgpu,
759 					bar_start + off, buf, count);
760 	else
761 		ret = intel_vgpu_emulate_mmio_read(vgpu,
762 					bar_start + off, buf, count);
763 	return ret;
764 }
765 
766 static inline bool intel_vgpu_in_aperture(struct intel_vgpu *vgpu, u64 off)
767 {
768 	return off >= vgpu_aperture_offset(vgpu) &&
769 	       off < vgpu_aperture_offset(vgpu) + vgpu_aperture_sz(vgpu);
770 }
771 
772 static int intel_vgpu_aperture_rw(struct intel_vgpu *vgpu, u64 off,
773 		void *buf, unsigned long count, bool is_write)
774 {
775 	void __iomem *aperture_va;
776 
777 	if (!intel_vgpu_in_aperture(vgpu, off) ||
778 	    !intel_vgpu_in_aperture(vgpu, off + count)) {
779 		gvt_vgpu_err("Invalid aperture offset %llu\n", off);
780 		return -EINVAL;
781 	}
782 
783 	aperture_va = io_mapping_map_wc(&vgpu->gvt->gt->ggtt->iomap,
784 					ALIGN_DOWN(off, PAGE_SIZE),
785 					count + offset_in_page(off));
786 	if (!aperture_va)
787 		return -EIO;
788 
789 	if (is_write)
790 		memcpy_toio(aperture_va + offset_in_page(off), buf, count);
791 	else
792 		memcpy_fromio(buf, aperture_va + offset_in_page(off), count);
793 
794 	io_mapping_unmap(aperture_va);
795 
796 	return 0;
797 }
798 
799 static ssize_t intel_vgpu_rw(struct intel_vgpu *vgpu, char *buf,
800 			size_t count, loff_t *ppos, bool is_write)
801 {
802 	unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
803 	u64 pos = *ppos & VFIO_PCI_OFFSET_MASK;
804 	int ret = -EINVAL;
805 
806 
807 	if (index >= VFIO_PCI_NUM_REGIONS + vgpu->num_regions) {
808 		gvt_vgpu_err("invalid index: %u\n", index);
809 		return -EINVAL;
810 	}
811 
812 	switch (index) {
813 	case VFIO_PCI_CONFIG_REGION_INDEX:
814 		if (is_write)
815 			ret = intel_vgpu_emulate_cfg_write(vgpu, pos,
816 						buf, count);
817 		else
818 			ret = intel_vgpu_emulate_cfg_read(vgpu, pos,
819 						buf, count);
820 		break;
821 	case VFIO_PCI_BAR0_REGION_INDEX:
822 		ret = intel_vgpu_bar_rw(vgpu, PCI_BASE_ADDRESS_0, pos,
823 					buf, count, is_write);
824 		break;
825 	case VFIO_PCI_BAR2_REGION_INDEX:
826 		ret = intel_vgpu_aperture_rw(vgpu, pos, buf, count, is_write);
827 		break;
828 	case VFIO_PCI_BAR1_REGION_INDEX:
829 	case VFIO_PCI_BAR3_REGION_INDEX:
830 	case VFIO_PCI_BAR4_REGION_INDEX:
831 	case VFIO_PCI_BAR5_REGION_INDEX:
832 	case VFIO_PCI_VGA_REGION_INDEX:
833 	case VFIO_PCI_ROM_REGION_INDEX:
834 		break;
835 	default:
836 		if (index >= VFIO_PCI_NUM_REGIONS + vgpu->num_regions)
837 			return -EINVAL;
838 
839 		index -= VFIO_PCI_NUM_REGIONS;
840 		return vgpu->region[index].ops->rw(vgpu, buf, count,
841 				ppos, is_write);
842 	}
843 
844 	return ret == 0 ? count : ret;
845 }
846 
847 static bool gtt_entry(struct intel_vgpu *vgpu, loff_t *ppos)
848 {
849 	unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
850 	struct intel_gvt *gvt = vgpu->gvt;
851 	int offset;
852 
853 	/* Only allow MMIO GGTT entry access */
854 	if (index != PCI_BASE_ADDRESS_0)
855 		return false;
856 
857 	offset = (u64)(*ppos & VFIO_PCI_OFFSET_MASK) -
858 		intel_vgpu_get_bar_gpa(vgpu, PCI_BASE_ADDRESS_0);
859 
860 	return (offset >= gvt->device_info.gtt_start_offset &&
861 		offset < gvt->device_info.gtt_start_offset + gvt_ggtt_sz(gvt)) ?
862 			true : false;
863 }
864 
865 static ssize_t intel_vgpu_read(struct vfio_device *vfio_dev, char __user *buf,
866 			size_t count, loff_t *ppos)
867 {
868 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
869 	unsigned int done = 0;
870 	int ret;
871 
872 	while (count) {
873 		size_t filled;
874 
875 		/* Only support GGTT entry 8 bytes read */
876 		if (count >= 8 && !(*ppos % 8) &&
877 			gtt_entry(vgpu, ppos)) {
878 			u64 val;
879 
880 			ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val),
881 					ppos, false);
882 			if (ret <= 0)
883 				goto read_err;
884 
885 			if (copy_to_user(buf, &val, sizeof(val)))
886 				goto read_err;
887 
888 			filled = 8;
889 		} else if (count >= 4 && !(*ppos % 4)) {
890 			u32 val;
891 
892 			ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val),
893 					ppos, false);
894 			if (ret <= 0)
895 				goto read_err;
896 
897 			if (copy_to_user(buf, &val, sizeof(val)))
898 				goto read_err;
899 
900 			filled = 4;
901 		} else if (count >= 2 && !(*ppos % 2)) {
902 			u16 val;
903 
904 			ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val),
905 					ppos, false);
906 			if (ret <= 0)
907 				goto read_err;
908 
909 			if (copy_to_user(buf, &val, sizeof(val)))
910 				goto read_err;
911 
912 			filled = 2;
913 		} else {
914 			u8 val;
915 
916 			ret = intel_vgpu_rw(vgpu, &val, sizeof(val), ppos,
917 					false);
918 			if (ret <= 0)
919 				goto read_err;
920 
921 			if (copy_to_user(buf, &val, sizeof(val)))
922 				goto read_err;
923 
924 			filled = 1;
925 		}
926 
927 		count -= filled;
928 		done += filled;
929 		*ppos += filled;
930 		buf += filled;
931 	}
932 
933 	return done;
934 
935 read_err:
936 	return -EFAULT;
937 }
938 
939 static ssize_t intel_vgpu_write(struct vfio_device *vfio_dev,
940 				const char __user *buf,
941 				size_t count, loff_t *ppos)
942 {
943 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
944 	unsigned int done = 0;
945 	int ret;
946 
947 	while (count) {
948 		size_t filled;
949 
950 		/* Only support GGTT entry 8 bytes write */
951 		if (count >= 8 && !(*ppos % 8) &&
952 			gtt_entry(vgpu, ppos)) {
953 			u64 val;
954 
955 			if (copy_from_user(&val, buf, sizeof(val)))
956 				goto write_err;
957 
958 			ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val),
959 					ppos, true);
960 			if (ret <= 0)
961 				goto write_err;
962 
963 			filled = 8;
964 		} else if (count >= 4 && !(*ppos % 4)) {
965 			u32 val;
966 
967 			if (copy_from_user(&val, buf, sizeof(val)))
968 				goto write_err;
969 
970 			ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val),
971 					ppos, true);
972 			if (ret <= 0)
973 				goto write_err;
974 
975 			filled = 4;
976 		} else if (count >= 2 && !(*ppos % 2)) {
977 			u16 val;
978 
979 			if (copy_from_user(&val, buf, sizeof(val)))
980 				goto write_err;
981 
982 			ret = intel_vgpu_rw(vgpu, (char *)&val,
983 					sizeof(val), ppos, true);
984 			if (ret <= 0)
985 				goto write_err;
986 
987 			filled = 2;
988 		} else {
989 			u8 val;
990 
991 			if (copy_from_user(&val, buf, sizeof(val)))
992 				goto write_err;
993 
994 			ret = intel_vgpu_rw(vgpu, &val, sizeof(val),
995 					ppos, true);
996 			if (ret <= 0)
997 				goto write_err;
998 
999 			filled = 1;
1000 		}
1001 
1002 		count -= filled;
1003 		done += filled;
1004 		*ppos += filled;
1005 		buf += filled;
1006 	}
1007 
1008 	return done;
1009 write_err:
1010 	return -EFAULT;
1011 }
1012 
1013 static int intel_vgpu_mmap(struct vfio_device *vfio_dev,
1014 		struct vm_area_struct *vma)
1015 {
1016 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
1017 	unsigned int index;
1018 	u64 virtaddr;
1019 	unsigned long req_size, pgoff, req_start;
1020 	pgprot_t pg_prot;
1021 
1022 	index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT);
1023 	if (index >= VFIO_PCI_ROM_REGION_INDEX)
1024 		return -EINVAL;
1025 
1026 	if (vma->vm_end < vma->vm_start)
1027 		return -EINVAL;
1028 	if ((vma->vm_flags & VM_SHARED) == 0)
1029 		return -EINVAL;
1030 	if (index != VFIO_PCI_BAR2_REGION_INDEX)
1031 		return -EINVAL;
1032 
1033 	pg_prot = vma->vm_page_prot;
1034 	virtaddr = vma->vm_start;
1035 	req_size = vma->vm_end - vma->vm_start;
1036 	pgoff = vma->vm_pgoff &
1037 		((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1);
1038 	req_start = pgoff << PAGE_SHIFT;
1039 
1040 	if (!intel_vgpu_in_aperture(vgpu, req_start))
1041 		return -EINVAL;
1042 	if (req_start + req_size >
1043 	    vgpu_aperture_offset(vgpu) + vgpu_aperture_sz(vgpu))
1044 		return -EINVAL;
1045 
1046 	pgoff = (gvt_aperture_pa_base(vgpu->gvt) >> PAGE_SHIFT) + pgoff;
1047 
1048 	return remap_pfn_range(vma, virtaddr, pgoff, req_size, pg_prot);
1049 }
1050 
1051 static int intel_vgpu_get_irq_count(struct intel_vgpu *vgpu, int type)
1052 {
1053 	if (type == VFIO_PCI_INTX_IRQ_INDEX || type == VFIO_PCI_MSI_IRQ_INDEX)
1054 		return 1;
1055 
1056 	return 0;
1057 }
1058 
1059 static int intel_vgpu_set_intx_mask(struct intel_vgpu *vgpu,
1060 			unsigned int index, unsigned int start,
1061 			unsigned int count, u32 flags,
1062 			void *data)
1063 {
1064 	return 0;
1065 }
1066 
1067 static int intel_vgpu_set_intx_unmask(struct intel_vgpu *vgpu,
1068 			unsigned int index, unsigned int start,
1069 			unsigned int count, u32 flags, void *data)
1070 {
1071 	return 0;
1072 }
1073 
1074 static int intel_vgpu_set_intx_trigger(struct intel_vgpu *vgpu,
1075 		unsigned int index, unsigned int start, unsigned int count,
1076 		u32 flags, void *data)
1077 {
1078 	return 0;
1079 }
1080 
1081 static int intel_vgpu_set_msi_trigger(struct intel_vgpu *vgpu,
1082 		unsigned int index, unsigned int start, unsigned int count,
1083 		u32 flags, void *data)
1084 {
1085 	struct eventfd_ctx *trigger;
1086 
1087 	if (flags & VFIO_IRQ_SET_DATA_EVENTFD) {
1088 		int fd = *(int *)data;
1089 
1090 		trigger = eventfd_ctx_fdget(fd);
1091 		if (IS_ERR(trigger)) {
1092 			gvt_vgpu_err("eventfd_ctx_fdget failed\n");
1093 			return PTR_ERR(trigger);
1094 		}
1095 		vgpu->msi_trigger = trigger;
1096 	} else if ((flags & VFIO_IRQ_SET_DATA_NONE) && !count)
1097 		intel_vgpu_release_msi_eventfd_ctx(vgpu);
1098 
1099 	return 0;
1100 }
1101 
1102 static int intel_vgpu_set_irqs(struct intel_vgpu *vgpu, u32 flags,
1103 		unsigned int index, unsigned int start, unsigned int count,
1104 		void *data)
1105 {
1106 	int (*func)(struct intel_vgpu *vgpu, unsigned int index,
1107 			unsigned int start, unsigned int count, u32 flags,
1108 			void *data) = NULL;
1109 
1110 	switch (index) {
1111 	case VFIO_PCI_INTX_IRQ_INDEX:
1112 		switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) {
1113 		case VFIO_IRQ_SET_ACTION_MASK:
1114 			func = intel_vgpu_set_intx_mask;
1115 			break;
1116 		case VFIO_IRQ_SET_ACTION_UNMASK:
1117 			func = intel_vgpu_set_intx_unmask;
1118 			break;
1119 		case VFIO_IRQ_SET_ACTION_TRIGGER:
1120 			func = intel_vgpu_set_intx_trigger;
1121 			break;
1122 		}
1123 		break;
1124 	case VFIO_PCI_MSI_IRQ_INDEX:
1125 		switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) {
1126 		case VFIO_IRQ_SET_ACTION_MASK:
1127 		case VFIO_IRQ_SET_ACTION_UNMASK:
1128 			/* XXX Need masking support exported */
1129 			break;
1130 		case VFIO_IRQ_SET_ACTION_TRIGGER:
1131 			func = intel_vgpu_set_msi_trigger;
1132 			break;
1133 		}
1134 		break;
1135 	}
1136 
1137 	if (!func)
1138 		return -ENOTTY;
1139 
1140 	return func(vgpu, index, start, count, flags, data);
1141 }
1142 
1143 static long intel_vgpu_ioctl(struct vfio_device *vfio_dev, unsigned int cmd,
1144 			     unsigned long arg)
1145 {
1146 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
1147 	unsigned long minsz;
1148 
1149 	gvt_dbg_core("vgpu%d ioctl, cmd: %d\n", vgpu->id, cmd);
1150 
1151 	if (cmd == VFIO_DEVICE_GET_INFO) {
1152 		struct vfio_device_info info;
1153 
1154 		minsz = offsetofend(struct vfio_device_info, num_irqs);
1155 
1156 		if (copy_from_user(&info, (void __user *)arg, minsz))
1157 			return -EFAULT;
1158 
1159 		if (info.argsz < minsz)
1160 			return -EINVAL;
1161 
1162 		info.flags = VFIO_DEVICE_FLAGS_PCI;
1163 		info.flags |= VFIO_DEVICE_FLAGS_RESET;
1164 		info.num_regions = VFIO_PCI_NUM_REGIONS +
1165 				vgpu->num_regions;
1166 		info.num_irqs = VFIO_PCI_NUM_IRQS;
1167 
1168 		return copy_to_user((void __user *)arg, &info, minsz) ?
1169 			-EFAULT : 0;
1170 
1171 	} else if (cmd == VFIO_DEVICE_GET_REGION_INFO) {
1172 		struct vfio_region_info info;
1173 		struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
1174 		unsigned int i;
1175 		int ret;
1176 		struct vfio_region_info_cap_sparse_mmap *sparse = NULL;
1177 		int nr_areas = 1;
1178 		int cap_type_id;
1179 
1180 		minsz = offsetofend(struct vfio_region_info, offset);
1181 
1182 		if (copy_from_user(&info, (void __user *)arg, minsz))
1183 			return -EFAULT;
1184 
1185 		if (info.argsz < minsz)
1186 			return -EINVAL;
1187 
1188 		switch (info.index) {
1189 		case VFIO_PCI_CONFIG_REGION_INDEX:
1190 			info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1191 			info.size = vgpu->gvt->device_info.cfg_space_size;
1192 			info.flags = VFIO_REGION_INFO_FLAG_READ |
1193 				     VFIO_REGION_INFO_FLAG_WRITE;
1194 			break;
1195 		case VFIO_PCI_BAR0_REGION_INDEX:
1196 			info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1197 			info.size = vgpu->cfg_space.bar[info.index].size;
1198 			if (!info.size) {
1199 				info.flags = 0;
1200 				break;
1201 			}
1202 
1203 			info.flags = VFIO_REGION_INFO_FLAG_READ |
1204 				     VFIO_REGION_INFO_FLAG_WRITE;
1205 			break;
1206 		case VFIO_PCI_BAR1_REGION_INDEX:
1207 			info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1208 			info.size = 0;
1209 			info.flags = 0;
1210 			break;
1211 		case VFIO_PCI_BAR2_REGION_INDEX:
1212 			info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1213 			info.flags = VFIO_REGION_INFO_FLAG_CAPS |
1214 					VFIO_REGION_INFO_FLAG_MMAP |
1215 					VFIO_REGION_INFO_FLAG_READ |
1216 					VFIO_REGION_INFO_FLAG_WRITE;
1217 			info.size = gvt_aperture_sz(vgpu->gvt);
1218 
1219 			sparse = kzalloc(struct_size(sparse, areas, nr_areas),
1220 					 GFP_KERNEL);
1221 			if (!sparse)
1222 				return -ENOMEM;
1223 
1224 			sparse->header.id = VFIO_REGION_INFO_CAP_SPARSE_MMAP;
1225 			sparse->header.version = 1;
1226 			sparse->nr_areas = nr_areas;
1227 			cap_type_id = VFIO_REGION_INFO_CAP_SPARSE_MMAP;
1228 			sparse->areas[0].offset =
1229 					PAGE_ALIGN(vgpu_aperture_offset(vgpu));
1230 			sparse->areas[0].size = vgpu_aperture_sz(vgpu);
1231 			break;
1232 
1233 		case VFIO_PCI_BAR3_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX:
1234 			info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1235 			info.size = 0;
1236 			info.flags = 0;
1237 
1238 			gvt_dbg_core("get region info bar:%d\n", info.index);
1239 			break;
1240 
1241 		case VFIO_PCI_ROM_REGION_INDEX:
1242 		case VFIO_PCI_VGA_REGION_INDEX:
1243 			info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1244 			info.size = 0;
1245 			info.flags = 0;
1246 
1247 			gvt_dbg_core("get region info index:%d\n", info.index);
1248 			break;
1249 		default:
1250 			{
1251 				struct vfio_region_info_cap_type cap_type = {
1252 					.header.id = VFIO_REGION_INFO_CAP_TYPE,
1253 					.header.version = 1 };
1254 
1255 				if (info.index >= VFIO_PCI_NUM_REGIONS +
1256 						vgpu->num_regions)
1257 					return -EINVAL;
1258 				info.index =
1259 					array_index_nospec(info.index,
1260 							VFIO_PCI_NUM_REGIONS +
1261 							vgpu->num_regions);
1262 
1263 				i = info.index - VFIO_PCI_NUM_REGIONS;
1264 
1265 				info.offset =
1266 					VFIO_PCI_INDEX_TO_OFFSET(info.index);
1267 				info.size = vgpu->region[i].size;
1268 				info.flags = vgpu->region[i].flags;
1269 
1270 				cap_type.type = vgpu->region[i].type;
1271 				cap_type.subtype = vgpu->region[i].subtype;
1272 
1273 				ret = vfio_info_add_capability(&caps,
1274 							&cap_type.header,
1275 							sizeof(cap_type));
1276 				if (ret)
1277 					return ret;
1278 			}
1279 		}
1280 
1281 		if ((info.flags & VFIO_REGION_INFO_FLAG_CAPS) && sparse) {
1282 			switch (cap_type_id) {
1283 			case VFIO_REGION_INFO_CAP_SPARSE_MMAP:
1284 				ret = vfio_info_add_capability(&caps,
1285 					&sparse->header,
1286 					struct_size(sparse, areas,
1287 						    sparse->nr_areas));
1288 				if (ret) {
1289 					kfree(sparse);
1290 					return ret;
1291 				}
1292 				break;
1293 			default:
1294 				kfree(sparse);
1295 				return -EINVAL;
1296 			}
1297 		}
1298 
1299 		if (caps.size) {
1300 			info.flags |= VFIO_REGION_INFO_FLAG_CAPS;
1301 			if (info.argsz < sizeof(info) + caps.size) {
1302 				info.argsz = sizeof(info) + caps.size;
1303 				info.cap_offset = 0;
1304 			} else {
1305 				vfio_info_cap_shift(&caps, sizeof(info));
1306 				if (copy_to_user((void __user *)arg +
1307 						  sizeof(info), caps.buf,
1308 						  caps.size)) {
1309 					kfree(caps.buf);
1310 					kfree(sparse);
1311 					return -EFAULT;
1312 				}
1313 				info.cap_offset = sizeof(info);
1314 			}
1315 
1316 			kfree(caps.buf);
1317 		}
1318 
1319 		kfree(sparse);
1320 		return copy_to_user((void __user *)arg, &info, minsz) ?
1321 			-EFAULT : 0;
1322 	} else if (cmd == VFIO_DEVICE_GET_IRQ_INFO) {
1323 		struct vfio_irq_info info;
1324 
1325 		minsz = offsetofend(struct vfio_irq_info, count);
1326 
1327 		if (copy_from_user(&info, (void __user *)arg, minsz))
1328 			return -EFAULT;
1329 
1330 		if (info.argsz < minsz || info.index >= VFIO_PCI_NUM_IRQS)
1331 			return -EINVAL;
1332 
1333 		switch (info.index) {
1334 		case VFIO_PCI_INTX_IRQ_INDEX:
1335 		case VFIO_PCI_MSI_IRQ_INDEX:
1336 			break;
1337 		default:
1338 			return -EINVAL;
1339 		}
1340 
1341 		info.flags = VFIO_IRQ_INFO_EVENTFD;
1342 
1343 		info.count = intel_vgpu_get_irq_count(vgpu, info.index);
1344 
1345 		if (info.index == VFIO_PCI_INTX_IRQ_INDEX)
1346 			info.flags |= (VFIO_IRQ_INFO_MASKABLE |
1347 				       VFIO_IRQ_INFO_AUTOMASKED);
1348 		else
1349 			info.flags |= VFIO_IRQ_INFO_NORESIZE;
1350 
1351 		return copy_to_user((void __user *)arg, &info, minsz) ?
1352 			-EFAULT : 0;
1353 	} else if (cmd == VFIO_DEVICE_SET_IRQS) {
1354 		struct vfio_irq_set hdr;
1355 		u8 *data = NULL;
1356 		int ret = 0;
1357 		size_t data_size = 0;
1358 
1359 		minsz = offsetofend(struct vfio_irq_set, count);
1360 
1361 		if (copy_from_user(&hdr, (void __user *)arg, minsz))
1362 			return -EFAULT;
1363 
1364 		if (!(hdr.flags & VFIO_IRQ_SET_DATA_NONE)) {
1365 			int max = intel_vgpu_get_irq_count(vgpu, hdr.index);
1366 
1367 			ret = vfio_set_irqs_validate_and_prepare(&hdr, max,
1368 						VFIO_PCI_NUM_IRQS, &data_size);
1369 			if (ret) {
1370 				gvt_vgpu_err("intel:vfio_set_irqs_validate_and_prepare failed\n");
1371 				return -EINVAL;
1372 			}
1373 			if (data_size) {
1374 				data = memdup_user((void __user *)(arg + minsz),
1375 						   data_size);
1376 				if (IS_ERR(data))
1377 					return PTR_ERR(data);
1378 			}
1379 		}
1380 
1381 		ret = intel_vgpu_set_irqs(vgpu, hdr.flags, hdr.index,
1382 					hdr.start, hdr.count, data);
1383 		kfree(data);
1384 
1385 		return ret;
1386 	} else if (cmd == VFIO_DEVICE_RESET) {
1387 		intel_gvt_reset_vgpu(vgpu);
1388 		return 0;
1389 	} else if (cmd == VFIO_DEVICE_QUERY_GFX_PLANE) {
1390 		struct vfio_device_gfx_plane_info dmabuf = {};
1391 		int ret = 0;
1392 
1393 		minsz = offsetofend(struct vfio_device_gfx_plane_info,
1394 				    dmabuf_id);
1395 		if (copy_from_user(&dmabuf, (void __user *)arg, minsz))
1396 			return -EFAULT;
1397 		if (dmabuf.argsz < minsz)
1398 			return -EINVAL;
1399 
1400 		ret = intel_vgpu_query_plane(vgpu, &dmabuf);
1401 		if (ret != 0)
1402 			return ret;
1403 
1404 		return copy_to_user((void __user *)arg, &dmabuf, minsz) ?
1405 								-EFAULT : 0;
1406 	} else if (cmd == VFIO_DEVICE_GET_GFX_DMABUF) {
1407 		__u32 dmabuf_id;
1408 
1409 		if (get_user(dmabuf_id, (__u32 __user *)arg))
1410 			return -EFAULT;
1411 		return intel_vgpu_get_dmabuf(vgpu, dmabuf_id);
1412 	}
1413 
1414 	return -ENOTTY;
1415 }
1416 
1417 static ssize_t
1418 vgpu_id_show(struct device *dev, struct device_attribute *attr,
1419 	     char *buf)
1420 {
1421 	struct intel_vgpu *vgpu = dev_get_drvdata(dev);
1422 
1423 	return sprintf(buf, "%d\n", vgpu->id);
1424 }
1425 
1426 static DEVICE_ATTR_RO(vgpu_id);
1427 
1428 static struct attribute *intel_vgpu_attrs[] = {
1429 	&dev_attr_vgpu_id.attr,
1430 	NULL
1431 };
1432 
1433 static const struct attribute_group intel_vgpu_group = {
1434 	.name = "intel_vgpu",
1435 	.attrs = intel_vgpu_attrs,
1436 };
1437 
1438 static const struct attribute_group *intel_vgpu_groups[] = {
1439 	&intel_vgpu_group,
1440 	NULL,
1441 };
1442 
1443 static int intel_vgpu_init_dev(struct vfio_device *vfio_dev)
1444 {
1445 	struct mdev_device *mdev = to_mdev_device(vfio_dev->dev);
1446 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
1447 	struct intel_vgpu_type *type =
1448 		container_of(mdev->type, struct intel_vgpu_type, type);
1449 	int ret;
1450 
1451 	vgpu->gvt = kdev_to_i915(mdev->type->parent->dev)->gvt;
1452 	ret = intel_gvt_create_vgpu(vgpu, type->conf);
1453 	if (ret)
1454 		return ret;
1455 
1456 	kvmgt_protect_table_init(vgpu);
1457 	gvt_cache_init(vgpu);
1458 
1459 	return 0;
1460 }
1461 
1462 static void intel_vgpu_release_dev(struct vfio_device *vfio_dev)
1463 {
1464 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
1465 
1466 	intel_gvt_destroy_vgpu(vgpu);
1467 }
1468 
1469 static const struct vfio_device_ops intel_vgpu_dev_ops = {
1470 	.init		= intel_vgpu_init_dev,
1471 	.release	= intel_vgpu_release_dev,
1472 	.open_device	= intel_vgpu_open_device,
1473 	.close_device	= intel_vgpu_close_device,
1474 	.read		= intel_vgpu_read,
1475 	.write		= intel_vgpu_write,
1476 	.mmap		= intel_vgpu_mmap,
1477 	.ioctl		= intel_vgpu_ioctl,
1478 	.dma_unmap	= intel_vgpu_dma_unmap,
1479 	.bind_iommufd	= vfio_iommufd_emulated_bind,
1480 	.unbind_iommufd = vfio_iommufd_emulated_unbind,
1481 	.attach_ioas	= vfio_iommufd_emulated_attach_ioas,
1482 	.detach_ioas	= vfio_iommufd_emulated_detach_ioas,
1483 };
1484 
1485 static int intel_vgpu_probe(struct mdev_device *mdev)
1486 {
1487 	struct intel_vgpu *vgpu;
1488 	int ret;
1489 
1490 	vgpu = vfio_alloc_device(intel_vgpu, vfio_device, &mdev->dev,
1491 				 &intel_vgpu_dev_ops);
1492 	if (IS_ERR(vgpu)) {
1493 		gvt_err("failed to create intel vgpu: %ld\n", PTR_ERR(vgpu));
1494 		return PTR_ERR(vgpu);
1495 	}
1496 
1497 	dev_set_drvdata(&mdev->dev, vgpu);
1498 	ret = vfio_register_emulated_iommu_dev(&vgpu->vfio_device);
1499 	if (ret)
1500 		goto out_put_vdev;
1501 
1502 	gvt_dbg_core("intel_vgpu_create succeeded for mdev: %s\n",
1503 		     dev_name(mdev_dev(mdev)));
1504 	return 0;
1505 
1506 out_put_vdev:
1507 	vfio_put_device(&vgpu->vfio_device);
1508 	return ret;
1509 }
1510 
1511 static void intel_vgpu_remove(struct mdev_device *mdev)
1512 {
1513 	struct intel_vgpu *vgpu = dev_get_drvdata(&mdev->dev);
1514 
1515 	vfio_unregister_group_dev(&vgpu->vfio_device);
1516 	vfio_put_device(&vgpu->vfio_device);
1517 }
1518 
1519 static unsigned int intel_vgpu_get_available(struct mdev_type *mtype)
1520 {
1521 	struct intel_vgpu_type *type =
1522 		container_of(mtype, struct intel_vgpu_type, type);
1523 	struct intel_gvt *gvt = kdev_to_i915(mtype->parent->dev)->gvt;
1524 	unsigned int low_gm_avail, high_gm_avail, fence_avail;
1525 
1526 	mutex_lock(&gvt->lock);
1527 	low_gm_avail = gvt_aperture_sz(gvt) - HOST_LOW_GM_SIZE -
1528 		gvt->gm.vgpu_allocated_low_gm_size;
1529 	high_gm_avail = gvt_hidden_sz(gvt) - HOST_HIGH_GM_SIZE -
1530 		gvt->gm.vgpu_allocated_high_gm_size;
1531 	fence_avail = gvt_fence_sz(gvt) - HOST_FENCE -
1532 		gvt->fence.vgpu_allocated_fence_num;
1533 	mutex_unlock(&gvt->lock);
1534 
1535 	return min3(low_gm_avail / type->conf->low_mm,
1536 		    high_gm_avail / type->conf->high_mm,
1537 		    fence_avail / type->conf->fence);
1538 }
1539 
1540 static struct mdev_driver intel_vgpu_mdev_driver = {
1541 	.device_api	= VFIO_DEVICE_API_PCI_STRING,
1542 	.driver = {
1543 		.name		= "intel_vgpu_mdev",
1544 		.owner		= THIS_MODULE,
1545 		.dev_groups	= intel_vgpu_groups,
1546 	},
1547 	.probe			= intel_vgpu_probe,
1548 	.remove			= intel_vgpu_remove,
1549 	.get_available		= intel_vgpu_get_available,
1550 	.show_description	= intel_vgpu_show_description,
1551 };
1552 
1553 int intel_gvt_page_track_add(struct intel_vgpu *info, u64 gfn)
1554 {
1555 	int r;
1556 
1557 	if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, info->status))
1558 		return -ESRCH;
1559 
1560 	if (kvmgt_gfn_is_write_protected(info, gfn))
1561 		return 0;
1562 
1563 	r = kvm_write_track_add_gfn(info->vfio_device.kvm, gfn);
1564 	if (r)
1565 		return r;
1566 
1567 	kvmgt_protect_table_add(info, gfn);
1568 	return 0;
1569 }
1570 
1571 int intel_gvt_page_track_remove(struct intel_vgpu *info, u64 gfn)
1572 {
1573 	int r;
1574 
1575 	if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, info->status))
1576 		return -ESRCH;
1577 
1578 	if (!kvmgt_gfn_is_write_protected(info, gfn))
1579 		return 0;
1580 
1581 	r = kvm_write_track_remove_gfn(info->vfio_device.kvm, gfn);
1582 	if (r)
1583 		return r;
1584 
1585 	kvmgt_protect_table_del(info, gfn);
1586 	return 0;
1587 }
1588 
1589 static void kvmgt_page_track_write(gpa_t gpa, const u8 *val, int len,
1590 				   struct kvm_page_track_notifier_node *node)
1591 {
1592 	struct intel_vgpu *info =
1593 		container_of(node, struct intel_vgpu, track_node);
1594 
1595 	mutex_lock(&info->vgpu_lock);
1596 
1597 	if (kvmgt_gfn_is_write_protected(info, gpa >> PAGE_SHIFT))
1598 		intel_vgpu_page_track_handler(info, gpa,
1599 						     (void *)val, len);
1600 
1601 	mutex_unlock(&info->vgpu_lock);
1602 }
1603 
1604 static void kvmgt_page_track_remove_region(gfn_t gfn, unsigned long nr_pages,
1605 					   struct kvm_page_track_notifier_node *node)
1606 {
1607 	unsigned long i;
1608 	struct intel_vgpu *info =
1609 		container_of(node, struct intel_vgpu, track_node);
1610 
1611 	mutex_lock(&info->vgpu_lock);
1612 
1613 	for (i = 0; i < nr_pages; i++) {
1614 		if (kvmgt_gfn_is_write_protected(info, gfn + i))
1615 			kvmgt_protect_table_del(info, gfn + i);
1616 	}
1617 
1618 	mutex_unlock(&info->vgpu_lock);
1619 }
1620 
1621 void intel_vgpu_detach_regions(struct intel_vgpu *vgpu)
1622 {
1623 	int i;
1624 
1625 	if (!vgpu->region)
1626 		return;
1627 
1628 	for (i = 0; i < vgpu->num_regions; i++)
1629 		if (vgpu->region[i].ops->release)
1630 			vgpu->region[i].ops->release(vgpu,
1631 					&vgpu->region[i]);
1632 	vgpu->num_regions = 0;
1633 	kfree(vgpu->region);
1634 	vgpu->region = NULL;
1635 }
1636 
1637 int intel_gvt_dma_map_guest_page(struct intel_vgpu *vgpu, unsigned long gfn,
1638 		unsigned long size, dma_addr_t *dma_addr)
1639 {
1640 	struct gvt_dma *entry;
1641 	int ret;
1642 
1643 	if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, vgpu->status))
1644 		return -EINVAL;
1645 
1646 	mutex_lock(&vgpu->cache_lock);
1647 
1648 	entry = __gvt_cache_find_gfn(vgpu, gfn);
1649 	if (!entry) {
1650 		ret = gvt_dma_map_page(vgpu, gfn, dma_addr, size);
1651 		if (ret)
1652 			goto err_unlock;
1653 
1654 		ret = __gvt_cache_add(vgpu, gfn, *dma_addr, size);
1655 		if (ret)
1656 			goto err_unmap;
1657 	} else if (entry->size != size) {
1658 		/* the same gfn with different size: unmap and re-map */
1659 		gvt_dma_unmap_page(vgpu, gfn, entry->dma_addr, entry->size);
1660 		__gvt_cache_remove_entry(vgpu, entry);
1661 
1662 		ret = gvt_dma_map_page(vgpu, gfn, dma_addr, size);
1663 		if (ret)
1664 			goto err_unlock;
1665 
1666 		ret = __gvt_cache_add(vgpu, gfn, *dma_addr, size);
1667 		if (ret)
1668 			goto err_unmap;
1669 	} else {
1670 		kref_get(&entry->ref);
1671 		*dma_addr = entry->dma_addr;
1672 	}
1673 
1674 	mutex_unlock(&vgpu->cache_lock);
1675 	return 0;
1676 
1677 err_unmap:
1678 	gvt_dma_unmap_page(vgpu, gfn, *dma_addr, size);
1679 err_unlock:
1680 	mutex_unlock(&vgpu->cache_lock);
1681 	return ret;
1682 }
1683 
1684 int intel_gvt_dma_pin_guest_page(struct intel_vgpu *vgpu, dma_addr_t dma_addr)
1685 {
1686 	struct gvt_dma *entry;
1687 	int ret = 0;
1688 
1689 	if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, vgpu->status))
1690 		return -EINVAL;
1691 
1692 	mutex_lock(&vgpu->cache_lock);
1693 	entry = __gvt_cache_find_dma_addr(vgpu, dma_addr);
1694 	if (entry)
1695 		kref_get(&entry->ref);
1696 	else
1697 		ret = -ENOMEM;
1698 	mutex_unlock(&vgpu->cache_lock);
1699 
1700 	return ret;
1701 }
1702 
1703 static void __gvt_dma_release(struct kref *ref)
1704 {
1705 	struct gvt_dma *entry = container_of(ref, typeof(*entry), ref);
1706 
1707 	gvt_dma_unmap_page(entry->vgpu, entry->gfn, entry->dma_addr,
1708 			   entry->size);
1709 	__gvt_cache_remove_entry(entry->vgpu, entry);
1710 }
1711 
1712 void intel_gvt_dma_unmap_guest_page(struct intel_vgpu *vgpu,
1713 		dma_addr_t dma_addr)
1714 {
1715 	struct gvt_dma *entry;
1716 
1717 	if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, vgpu->status))
1718 		return;
1719 
1720 	mutex_lock(&vgpu->cache_lock);
1721 	entry = __gvt_cache_find_dma_addr(vgpu, dma_addr);
1722 	if (entry)
1723 		kref_put(&entry->ref, __gvt_dma_release);
1724 	mutex_unlock(&vgpu->cache_lock);
1725 }
1726 
1727 static void init_device_info(struct intel_gvt *gvt)
1728 {
1729 	struct intel_gvt_device_info *info = &gvt->device_info;
1730 	struct pci_dev *pdev = to_pci_dev(gvt->gt->i915->drm.dev);
1731 
1732 	info->max_support_vgpus = 8;
1733 	info->cfg_space_size = PCI_CFG_SPACE_EXP_SIZE;
1734 	info->mmio_size = 2 * 1024 * 1024;
1735 	info->mmio_bar = 0;
1736 	info->gtt_start_offset = 8 * 1024 * 1024;
1737 	info->gtt_entry_size = 8;
1738 	info->gtt_entry_size_shift = 3;
1739 	info->gmadr_bytes_in_cmd = 8;
1740 	info->max_surface_size = 36 * 1024 * 1024;
1741 	info->msi_cap_offset = pdev->msi_cap;
1742 }
1743 
1744 static void intel_gvt_test_and_emulate_vblank(struct intel_gvt *gvt)
1745 {
1746 	struct intel_vgpu *vgpu;
1747 	int id;
1748 
1749 	mutex_lock(&gvt->lock);
1750 	idr_for_each_entry((&(gvt)->vgpu_idr), (vgpu), (id)) {
1751 		if (test_and_clear_bit(INTEL_GVT_REQUEST_EMULATE_VBLANK + id,
1752 				       (void *)&gvt->service_request)) {
1753 			if (test_bit(INTEL_VGPU_STATUS_ACTIVE, vgpu->status))
1754 				intel_vgpu_emulate_vblank(vgpu);
1755 		}
1756 	}
1757 	mutex_unlock(&gvt->lock);
1758 }
1759 
1760 static int gvt_service_thread(void *data)
1761 {
1762 	struct intel_gvt *gvt = (struct intel_gvt *)data;
1763 	int ret;
1764 
1765 	gvt_dbg_core("service thread start\n");
1766 
1767 	while (!kthread_should_stop()) {
1768 		ret = wait_event_interruptible(gvt->service_thread_wq,
1769 				kthread_should_stop() || gvt->service_request);
1770 
1771 		if (kthread_should_stop())
1772 			break;
1773 
1774 		if (WARN_ONCE(ret, "service thread is waken up by signal.\n"))
1775 			continue;
1776 
1777 		intel_gvt_test_and_emulate_vblank(gvt);
1778 
1779 		if (test_bit(INTEL_GVT_REQUEST_SCHED,
1780 				(void *)&gvt->service_request) ||
1781 			test_bit(INTEL_GVT_REQUEST_EVENT_SCHED,
1782 					(void *)&gvt->service_request)) {
1783 			intel_gvt_schedule(gvt);
1784 		}
1785 	}
1786 
1787 	return 0;
1788 }
1789 
1790 static void clean_service_thread(struct intel_gvt *gvt)
1791 {
1792 	kthread_stop(gvt->service_thread);
1793 }
1794 
1795 static int init_service_thread(struct intel_gvt *gvt)
1796 {
1797 	init_waitqueue_head(&gvt->service_thread_wq);
1798 
1799 	gvt->service_thread = kthread_run(gvt_service_thread,
1800 			gvt, "gvt_service_thread");
1801 	if (IS_ERR(gvt->service_thread)) {
1802 		gvt_err("fail to start service thread.\n");
1803 		return PTR_ERR(gvt->service_thread);
1804 	}
1805 	return 0;
1806 }
1807 
1808 /**
1809  * intel_gvt_clean_device - clean a GVT device
1810  * @i915: i915 private
1811  *
1812  * This function is called at the driver unloading stage, to free the
1813  * resources owned by a GVT device.
1814  *
1815  */
1816 static void intel_gvt_clean_device(struct drm_i915_private *i915)
1817 {
1818 	struct intel_gvt *gvt = fetch_and_zero(&i915->gvt);
1819 
1820 	if (drm_WARN_ON(&i915->drm, !gvt))
1821 		return;
1822 
1823 	mdev_unregister_parent(&gvt->parent);
1824 	intel_gvt_destroy_idle_vgpu(gvt->idle_vgpu);
1825 	intel_gvt_clean_vgpu_types(gvt);
1826 
1827 	intel_gvt_debugfs_clean(gvt);
1828 	clean_service_thread(gvt);
1829 	intel_gvt_clean_cmd_parser(gvt);
1830 	intel_gvt_clean_sched_policy(gvt);
1831 	intel_gvt_clean_workload_scheduler(gvt);
1832 	intel_gvt_clean_gtt(gvt);
1833 	intel_gvt_free_firmware(gvt);
1834 	intel_gvt_clean_mmio_info(gvt);
1835 	idr_destroy(&gvt->vgpu_idr);
1836 
1837 	kfree(i915->gvt);
1838 }
1839 
1840 /**
1841  * intel_gvt_init_device - initialize a GVT device
1842  * @i915: drm i915 private data
1843  *
1844  * This function is called at the initialization stage, to initialize
1845  * necessary GVT components.
1846  *
1847  * Returns:
1848  * Zero on success, negative error code if failed.
1849  *
1850  */
1851 static int intel_gvt_init_device(struct drm_i915_private *i915)
1852 {
1853 	struct intel_gvt *gvt;
1854 	struct intel_vgpu *vgpu;
1855 	int ret;
1856 
1857 	if (drm_WARN_ON(&i915->drm, i915->gvt))
1858 		return -EEXIST;
1859 
1860 	gvt = kzalloc(sizeof(struct intel_gvt), GFP_KERNEL);
1861 	if (!gvt)
1862 		return -ENOMEM;
1863 
1864 	gvt_dbg_core("init gvt device\n");
1865 
1866 	idr_init_base(&gvt->vgpu_idr, 1);
1867 	spin_lock_init(&gvt->scheduler.mmio_context_lock);
1868 	mutex_init(&gvt->lock);
1869 	mutex_init(&gvt->sched_lock);
1870 	gvt->gt = to_gt(i915);
1871 	i915->gvt = gvt;
1872 
1873 	init_device_info(gvt);
1874 
1875 	ret = intel_gvt_setup_mmio_info(gvt);
1876 	if (ret)
1877 		goto out_clean_idr;
1878 
1879 	intel_gvt_init_engine_mmio_context(gvt);
1880 
1881 	ret = intel_gvt_load_firmware(gvt);
1882 	if (ret)
1883 		goto out_clean_mmio_info;
1884 
1885 	ret = intel_gvt_init_irq(gvt);
1886 	if (ret)
1887 		goto out_free_firmware;
1888 
1889 	ret = intel_gvt_init_gtt(gvt);
1890 	if (ret)
1891 		goto out_free_firmware;
1892 
1893 	ret = intel_gvt_init_workload_scheduler(gvt);
1894 	if (ret)
1895 		goto out_clean_gtt;
1896 
1897 	ret = intel_gvt_init_sched_policy(gvt);
1898 	if (ret)
1899 		goto out_clean_workload_scheduler;
1900 
1901 	ret = intel_gvt_init_cmd_parser(gvt);
1902 	if (ret)
1903 		goto out_clean_sched_policy;
1904 
1905 	ret = init_service_thread(gvt);
1906 	if (ret)
1907 		goto out_clean_cmd_parser;
1908 
1909 	ret = intel_gvt_init_vgpu_types(gvt);
1910 	if (ret)
1911 		goto out_clean_thread;
1912 
1913 	vgpu = intel_gvt_create_idle_vgpu(gvt);
1914 	if (IS_ERR(vgpu)) {
1915 		ret = PTR_ERR(vgpu);
1916 		gvt_err("failed to create idle vgpu\n");
1917 		goto out_clean_types;
1918 	}
1919 	gvt->idle_vgpu = vgpu;
1920 
1921 	intel_gvt_debugfs_init(gvt);
1922 
1923 	ret = mdev_register_parent(&gvt->parent, i915->drm.dev,
1924 				   &intel_vgpu_mdev_driver,
1925 				   gvt->mdev_types, gvt->num_types);
1926 	if (ret)
1927 		goto out_destroy_idle_vgpu;
1928 
1929 	gvt_dbg_core("gvt device initialization is done\n");
1930 	return 0;
1931 
1932 out_destroy_idle_vgpu:
1933 	intel_gvt_destroy_idle_vgpu(gvt->idle_vgpu);
1934 	intel_gvt_debugfs_clean(gvt);
1935 out_clean_types:
1936 	intel_gvt_clean_vgpu_types(gvt);
1937 out_clean_thread:
1938 	clean_service_thread(gvt);
1939 out_clean_cmd_parser:
1940 	intel_gvt_clean_cmd_parser(gvt);
1941 out_clean_sched_policy:
1942 	intel_gvt_clean_sched_policy(gvt);
1943 out_clean_workload_scheduler:
1944 	intel_gvt_clean_workload_scheduler(gvt);
1945 out_clean_gtt:
1946 	intel_gvt_clean_gtt(gvt);
1947 out_free_firmware:
1948 	intel_gvt_free_firmware(gvt);
1949 out_clean_mmio_info:
1950 	intel_gvt_clean_mmio_info(gvt);
1951 out_clean_idr:
1952 	idr_destroy(&gvt->vgpu_idr);
1953 	kfree(gvt);
1954 	i915->gvt = NULL;
1955 	return ret;
1956 }
1957 
1958 static void intel_gvt_pm_resume(struct drm_i915_private *i915)
1959 {
1960 	struct intel_gvt *gvt = i915->gvt;
1961 
1962 	intel_gvt_restore_fence(gvt);
1963 	intel_gvt_restore_mmio(gvt);
1964 	intel_gvt_restore_ggtt(gvt);
1965 }
1966 
1967 static const struct intel_vgpu_ops intel_gvt_vgpu_ops = {
1968 	.init_device	= intel_gvt_init_device,
1969 	.clean_device	= intel_gvt_clean_device,
1970 	.pm_resume	= intel_gvt_pm_resume,
1971 };
1972 
1973 static int __init kvmgt_init(void)
1974 {
1975 	int ret;
1976 
1977 	ret = intel_gvt_set_ops(&intel_gvt_vgpu_ops);
1978 	if (ret)
1979 		return ret;
1980 
1981 	ret = mdev_register_driver(&intel_vgpu_mdev_driver);
1982 	if (ret)
1983 		intel_gvt_clear_ops(&intel_gvt_vgpu_ops);
1984 	return ret;
1985 }
1986 
1987 static void __exit kvmgt_exit(void)
1988 {
1989 	mdev_unregister_driver(&intel_vgpu_mdev_driver);
1990 	intel_gvt_clear_ops(&intel_gvt_vgpu_ops);
1991 }
1992 
1993 module_init(kvmgt_init);
1994 module_exit(kvmgt_exit);
1995 
1996 MODULE_DESCRIPTION("Intel mediated pass-through framework for KVM");
1997 MODULE_LICENSE("GPL and additional rights");
1998 MODULE_AUTHOR("Intel Corporation");
1999