xref: /linux/drivers/gpu/drm/i915/gvt/kvmgt.c (revision 815e260a18a3af4dab59025ee99a7156c0e8b5e0)
1 /*
2  * KVMGT - the implementation of Intel mediated pass-through framework for KVM
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Kevin Tian <kevin.tian@intel.com>
27  *    Jike Song <jike.song@intel.com>
28  *    Xiaoguang Chen <xiaoguang.chen@intel.com>
29  *    Eddie Dong <eddie.dong@intel.com>
30  *
31  * Contributors:
32  *    Niu Bing <bing.niu@intel.com>
33  *    Zhi Wang <zhi.a.wang@intel.com>
34  */
35 
36 #include <linux/init.h>
37 #include <linux/mm.h>
38 #include <linux/kthread.h>
39 #include <linux/sched/mm.h>
40 #include <linux/types.h>
41 #include <linux/list.h>
42 #include <linux/rbtree.h>
43 #include <linux/spinlock.h>
44 #include <linux/eventfd.h>
45 #include <linux/mdev.h>
46 #include <linux/debugfs.h>
47 
48 #include <linux/nospec.h>
49 
50 #include <drm/drm_edid.h>
51 #include <drm/drm_print.h>
52 
53 #include "i915_drv.h"
54 #include "intel_gvt.h"
55 #include "gvt.h"
56 
57 MODULE_IMPORT_NS("DMA_BUF");
58 MODULE_IMPORT_NS("I915_GVT");
59 
60 /* helper macros copied from vfio-pci */
61 #define VFIO_PCI_OFFSET_SHIFT   40
62 #define VFIO_PCI_OFFSET_TO_INDEX(off)   (off >> VFIO_PCI_OFFSET_SHIFT)
63 #define VFIO_PCI_INDEX_TO_OFFSET(index) ((u64)(index) << VFIO_PCI_OFFSET_SHIFT)
64 #define VFIO_PCI_OFFSET_MASK    (((u64)(1) << VFIO_PCI_OFFSET_SHIFT) - 1)
65 
66 #define EDID_BLOB_OFFSET (PAGE_SIZE/2)
67 
68 #define OPREGION_SIGNATURE "IntelGraphicsMem"
69 
70 struct vfio_region;
71 struct intel_vgpu_regops {
72 	size_t (*rw)(struct intel_vgpu *vgpu, char *buf,
73 			size_t count, loff_t *ppos, bool iswrite);
74 	void (*release)(struct intel_vgpu *vgpu,
75 			struct vfio_region *region);
76 };
77 
78 struct vfio_region {
79 	u32				type;
80 	u32				subtype;
81 	size_t				size;
82 	u32				flags;
83 	const struct intel_vgpu_regops	*ops;
84 	void				*data;
85 };
86 
87 struct vfio_edid_region {
88 	struct vfio_region_gfx_edid vfio_edid_regs;
89 	void *edid_blob;
90 };
91 
92 struct kvmgt_pgfn {
93 	gfn_t gfn;
94 	struct hlist_node hnode;
95 };
96 
97 struct gvt_dma {
98 	struct intel_vgpu *vgpu;
99 	struct rb_node gfn_node;
100 	struct rb_node dma_addr_node;
101 	gfn_t gfn;
102 	dma_addr_t dma_addr;
103 	unsigned long size;
104 	struct kref ref;
105 };
106 
107 #define vfio_dev_to_vgpu(vfio_dev) \
108 	container_of((vfio_dev), struct intel_vgpu, vfio_device)
109 
110 static void kvmgt_page_track_write(gpa_t gpa, const u8 *val, int len,
111 				   struct kvm_page_track_notifier_node *node);
112 static void kvmgt_page_track_remove_region(gfn_t gfn, unsigned long nr_pages,
113 					   struct kvm_page_track_notifier_node *node);
114 
115 static ssize_t intel_vgpu_show_description(struct mdev_type *mtype, char *buf)
116 {
117 	struct intel_vgpu_type *type =
118 		container_of(mtype, struct intel_vgpu_type, type);
119 
120 	return sprintf(buf, "low_gm_size: %dMB\nhigh_gm_size: %dMB\n"
121 		       "fence: %d\nresolution: %s\n"
122 		       "weight: %d\n",
123 		       BYTES_TO_MB(type->conf->low_mm),
124 		       BYTES_TO_MB(type->conf->high_mm),
125 		       type->conf->fence, vgpu_edid_str(type->conf->edid),
126 		       type->conf->weight);
127 }
128 
129 static void gvt_unpin_guest_page(struct intel_vgpu *vgpu, unsigned long gfn,
130 		unsigned long size)
131 {
132 	vfio_unpin_pages(&vgpu->vfio_device, gfn << PAGE_SHIFT,
133 			 DIV_ROUND_UP(size, PAGE_SIZE));
134 }
135 
136 /* Pin a normal or compound guest page for dma. */
137 static int gvt_pin_guest_page(struct intel_vgpu *vgpu, unsigned long gfn,
138 		unsigned long size, struct page **page)
139 {
140 	int total_pages = DIV_ROUND_UP(size, PAGE_SIZE);
141 	struct page *base_page = NULL;
142 	int npage;
143 	int ret;
144 
145 	/*
146 	 * We pin the pages one-by-one to avoid allocating a big array
147 	 * on stack to hold pfns.
148 	 */
149 	for (npage = 0; npage < total_pages; npage++) {
150 		dma_addr_t cur_iova = (gfn + npage) << PAGE_SHIFT;
151 		struct page *cur_page;
152 
153 		ret = vfio_pin_pages(&vgpu->vfio_device, cur_iova, 1,
154 				     IOMMU_READ | IOMMU_WRITE, &cur_page);
155 		if (ret != 1) {
156 			gvt_vgpu_err("vfio_pin_pages failed for iova %pad, ret %d\n",
157 				     &cur_iova, ret);
158 			goto err;
159 		}
160 
161 		if (npage == 0)
162 			base_page = cur_page;
163 		else if (page_to_pfn(base_page) + npage != page_to_pfn(cur_page)) {
164 			ret = -EINVAL;
165 			npage++;
166 			goto err;
167 		}
168 	}
169 
170 	*page = base_page;
171 	return 0;
172 err:
173 	if (npage)
174 		gvt_unpin_guest_page(vgpu, gfn, npage * PAGE_SIZE);
175 	return ret;
176 }
177 
178 static int gvt_dma_map_page(struct intel_vgpu *vgpu, unsigned long gfn,
179 		dma_addr_t *dma_addr, unsigned long size)
180 {
181 	struct device *dev = vgpu->gvt->gt->i915->drm.dev;
182 	struct page *page = NULL;
183 	int ret;
184 
185 	ret = gvt_pin_guest_page(vgpu, gfn, size, &page);
186 	if (ret)
187 		return ret;
188 
189 	/* Setup DMA mapping. */
190 	*dma_addr = dma_map_page(dev, page, 0, size, DMA_BIDIRECTIONAL);
191 	if (dma_mapping_error(dev, *dma_addr)) {
192 		gvt_vgpu_err("DMA mapping failed for pfn 0x%lx, ret %d\n",
193 			     page_to_pfn(page), ret);
194 		gvt_unpin_guest_page(vgpu, gfn, size);
195 		return -ENOMEM;
196 	}
197 
198 	return 0;
199 }
200 
201 static void gvt_dma_unmap_page(struct intel_vgpu *vgpu, unsigned long gfn,
202 		dma_addr_t dma_addr, unsigned long size)
203 {
204 	struct device *dev = vgpu->gvt->gt->i915->drm.dev;
205 
206 	dma_unmap_page(dev, dma_addr, size, DMA_BIDIRECTIONAL);
207 	gvt_unpin_guest_page(vgpu, gfn, size);
208 }
209 
210 static struct gvt_dma *__gvt_cache_find_dma_addr(struct intel_vgpu *vgpu,
211 		dma_addr_t dma_addr)
212 {
213 	struct rb_node *node = vgpu->dma_addr_cache.rb_node;
214 	struct gvt_dma *itr;
215 
216 	while (node) {
217 		itr = rb_entry(node, struct gvt_dma, dma_addr_node);
218 
219 		if (dma_addr < itr->dma_addr)
220 			node = node->rb_left;
221 		else if (dma_addr > itr->dma_addr)
222 			node = node->rb_right;
223 		else
224 			return itr;
225 	}
226 	return NULL;
227 }
228 
229 static struct gvt_dma *__gvt_cache_find_gfn(struct intel_vgpu *vgpu, gfn_t gfn)
230 {
231 	struct rb_node *node = vgpu->gfn_cache.rb_node;
232 	struct gvt_dma *itr;
233 
234 	while (node) {
235 		itr = rb_entry(node, struct gvt_dma, gfn_node);
236 
237 		if (gfn < itr->gfn)
238 			node = node->rb_left;
239 		else if (gfn > itr->gfn)
240 			node = node->rb_right;
241 		else
242 			return itr;
243 	}
244 	return NULL;
245 }
246 
247 static int __gvt_cache_add(struct intel_vgpu *vgpu, gfn_t gfn,
248 		dma_addr_t dma_addr, unsigned long size)
249 {
250 	struct gvt_dma *new, *itr;
251 	struct rb_node **link, *parent = NULL;
252 
253 	new = kzalloc(sizeof(struct gvt_dma), GFP_KERNEL);
254 	if (!new)
255 		return -ENOMEM;
256 
257 	new->vgpu = vgpu;
258 	new->gfn = gfn;
259 	new->dma_addr = dma_addr;
260 	new->size = size;
261 	kref_init(&new->ref);
262 
263 	/* gfn_cache maps gfn to struct gvt_dma. */
264 	link = &vgpu->gfn_cache.rb_node;
265 	while (*link) {
266 		parent = *link;
267 		itr = rb_entry(parent, struct gvt_dma, gfn_node);
268 
269 		if (gfn < itr->gfn)
270 			link = &parent->rb_left;
271 		else
272 			link = &parent->rb_right;
273 	}
274 	rb_link_node(&new->gfn_node, parent, link);
275 	rb_insert_color(&new->gfn_node, &vgpu->gfn_cache);
276 
277 	/* dma_addr_cache maps dma addr to struct gvt_dma. */
278 	parent = NULL;
279 	link = &vgpu->dma_addr_cache.rb_node;
280 	while (*link) {
281 		parent = *link;
282 		itr = rb_entry(parent, struct gvt_dma, dma_addr_node);
283 
284 		if (dma_addr < itr->dma_addr)
285 			link = &parent->rb_left;
286 		else
287 			link = &parent->rb_right;
288 	}
289 	rb_link_node(&new->dma_addr_node, parent, link);
290 	rb_insert_color(&new->dma_addr_node, &vgpu->dma_addr_cache);
291 
292 	vgpu->nr_cache_entries++;
293 	return 0;
294 }
295 
296 static void __gvt_cache_remove_entry(struct intel_vgpu *vgpu,
297 				struct gvt_dma *entry)
298 {
299 	rb_erase(&entry->gfn_node, &vgpu->gfn_cache);
300 	rb_erase(&entry->dma_addr_node, &vgpu->dma_addr_cache);
301 	kfree(entry);
302 	vgpu->nr_cache_entries--;
303 }
304 
305 static void gvt_cache_destroy(struct intel_vgpu *vgpu)
306 {
307 	struct gvt_dma *dma;
308 	struct rb_node *node = NULL;
309 
310 	for (;;) {
311 		mutex_lock(&vgpu->cache_lock);
312 		node = rb_first(&vgpu->gfn_cache);
313 		if (!node) {
314 			mutex_unlock(&vgpu->cache_lock);
315 			break;
316 		}
317 		dma = rb_entry(node, struct gvt_dma, gfn_node);
318 		gvt_dma_unmap_page(vgpu, dma->gfn, dma->dma_addr, dma->size);
319 		__gvt_cache_remove_entry(vgpu, dma);
320 		mutex_unlock(&vgpu->cache_lock);
321 	}
322 }
323 
324 static void gvt_cache_init(struct intel_vgpu *vgpu)
325 {
326 	vgpu->gfn_cache = RB_ROOT;
327 	vgpu->dma_addr_cache = RB_ROOT;
328 	vgpu->nr_cache_entries = 0;
329 	mutex_init(&vgpu->cache_lock);
330 }
331 
332 static void kvmgt_protect_table_init(struct intel_vgpu *info)
333 {
334 	hash_init(info->ptable);
335 }
336 
337 static void kvmgt_protect_table_destroy(struct intel_vgpu *info)
338 {
339 	struct kvmgt_pgfn *p;
340 	struct hlist_node *tmp;
341 	int i;
342 
343 	hash_for_each_safe(info->ptable, i, tmp, p, hnode) {
344 		hash_del(&p->hnode);
345 		kfree(p);
346 	}
347 }
348 
349 static struct kvmgt_pgfn *
350 __kvmgt_protect_table_find(struct intel_vgpu *info, gfn_t gfn)
351 {
352 	struct kvmgt_pgfn *p, *res = NULL;
353 
354 	lockdep_assert_held(&info->vgpu_lock);
355 
356 	hash_for_each_possible(info->ptable, p, hnode, gfn) {
357 		if (gfn == p->gfn) {
358 			res = p;
359 			break;
360 		}
361 	}
362 
363 	return res;
364 }
365 
366 static bool kvmgt_gfn_is_write_protected(struct intel_vgpu *info, gfn_t gfn)
367 {
368 	struct kvmgt_pgfn *p;
369 
370 	p = __kvmgt_protect_table_find(info, gfn);
371 	return !!p;
372 }
373 
374 static void kvmgt_protect_table_add(struct intel_vgpu *info, gfn_t gfn)
375 {
376 	struct kvmgt_pgfn *p;
377 
378 	if (kvmgt_gfn_is_write_protected(info, gfn))
379 		return;
380 
381 	p = kzalloc(sizeof(struct kvmgt_pgfn), GFP_ATOMIC);
382 	if (WARN(!p, "gfn: 0x%llx\n", gfn))
383 		return;
384 
385 	p->gfn = gfn;
386 	hash_add(info->ptable, &p->hnode, gfn);
387 }
388 
389 static void kvmgt_protect_table_del(struct intel_vgpu *info, gfn_t gfn)
390 {
391 	struct kvmgt_pgfn *p;
392 
393 	p = __kvmgt_protect_table_find(info, gfn);
394 	if (p) {
395 		hash_del(&p->hnode);
396 		kfree(p);
397 	}
398 }
399 
400 static size_t intel_vgpu_reg_rw_opregion(struct intel_vgpu *vgpu, char *buf,
401 		size_t count, loff_t *ppos, bool iswrite)
402 {
403 	unsigned int i = VFIO_PCI_OFFSET_TO_INDEX(*ppos) -
404 			VFIO_PCI_NUM_REGIONS;
405 	void *base = vgpu->region[i].data;
406 	loff_t pos = *ppos & VFIO_PCI_OFFSET_MASK;
407 
408 
409 	if (pos >= vgpu->region[i].size || iswrite) {
410 		gvt_vgpu_err("invalid op or offset for Intel vgpu OpRegion\n");
411 		return -EINVAL;
412 	}
413 	count = min(count, (size_t)(vgpu->region[i].size - pos));
414 	memcpy(buf, base + pos, count);
415 
416 	return count;
417 }
418 
419 static void intel_vgpu_reg_release_opregion(struct intel_vgpu *vgpu,
420 		struct vfio_region *region)
421 {
422 }
423 
424 static const struct intel_vgpu_regops intel_vgpu_regops_opregion = {
425 	.rw = intel_vgpu_reg_rw_opregion,
426 	.release = intel_vgpu_reg_release_opregion,
427 };
428 
429 static bool edid_valid(const void *edid, size_t size)
430 {
431 	const struct drm_edid *drm_edid;
432 	bool is_valid;
433 
434 	drm_edid = drm_edid_alloc(edid, size);
435 	is_valid = drm_edid_valid(drm_edid);
436 	drm_edid_free(drm_edid);
437 
438 	return is_valid;
439 }
440 
441 static int handle_edid_regs(struct intel_vgpu *vgpu,
442 			struct vfio_edid_region *region, char *buf,
443 			size_t count, u16 offset, bool is_write)
444 {
445 	struct vfio_region_gfx_edid *regs = &region->vfio_edid_regs;
446 	unsigned int data;
447 
448 	if (offset + count > sizeof(*regs))
449 		return -EINVAL;
450 
451 	if (count != 4)
452 		return -EINVAL;
453 
454 	if (is_write) {
455 		data = *((unsigned int *)buf);
456 		switch (offset) {
457 		case offsetof(struct vfio_region_gfx_edid, link_state):
458 			if (data == VFIO_DEVICE_GFX_LINK_STATE_UP) {
459 				if (!edid_valid(region->edid_blob, EDID_SIZE)) {
460 					gvt_vgpu_err("invalid EDID blob\n");
461 					return -EINVAL;
462 				}
463 				intel_vgpu_emulate_hotplug(vgpu, true);
464 			} else if (data == VFIO_DEVICE_GFX_LINK_STATE_DOWN)
465 				intel_vgpu_emulate_hotplug(vgpu, false);
466 			else {
467 				gvt_vgpu_err("invalid EDID link state %d\n",
468 					regs->link_state);
469 				return -EINVAL;
470 			}
471 			regs->link_state = data;
472 			break;
473 		case offsetof(struct vfio_region_gfx_edid, edid_size):
474 			if (data > regs->edid_max_size) {
475 				gvt_vgpu_err("EDID size is bigger than %d!\n",
476 					regs->edid_max_size);
477 				return -EINVAL;
478 			}
479 			regs->edid_size = data;
480 			break;
481 		default:
482 			/* read-only regs */
483 			gvt_vgpu_err("write read-only EDID region at offset %d\n",
484 				offset);
485 			return -EPERM;
486 		}
487 	} else {
488 		memcpy(buf, (char *)regs + offset, count);
489 	}
490 
491 	return count;
492 }
493 
494 static int handle_edid_blob(struct vfio_edid_region *region, char *buf,
495 			size_t count, u16 offset, bool is_write)
496 {
497 	if (offset + count > region->vfio_edid_regs.edid_size)
498 		return -EINVAL;
499 
500 	if (is_write)
501 		memcpy(region->edid_blob + offset, buf, count);
502 	else
503 		memcpy(buf, region->edid_blob + offset, count);
504 
505 	return count;
506 }
507 
508 static size_t intel_vgpu_reg_rw_edid(struct intel_vgpu *vgpu, char *buf,
509 		size_t count, loff_t *ppos, bool iswrite)
510 {
511 	int ret;
512 	unsigned int i = VFIO_PCI_OFFSET_TO_INDEX(*ppos) -
513 			VFIO_PCI_NUM_REGIONS;
514 	struct vfio_edid_region *region = vgpu->region[i].data;
515 	loff_t pos = *ppos & VFIO_PCI_OFFSET_MASK;
516 
517 	if (pos < region->vfio_edid_regs.edid_offset) {
518 		ret = handle_edid_regs(vgpu, region, buf, count, pos, iswrite);
519 	} else {
520 		pos -= EDID_BLOB_OFFSET;
521 		ret = handle_edid_blob(region, buf, count, pos, iswrite);
522 	}
523 
524 	if (ret < 0)
525 		gvt_vgpu_err("failed to access EDID region\n");
526 
527 	return ret;
528 }
529 
530 static void intel_vgpu_reg_release_edid(struct intel_vgpu *vgpu,
531 					struct vfio_region *region)
532 {
533 	kfree(region->data);
534 }
535 
536 static const struct intel_vgpu_regops intel_vgpu_regops_edid = {
537 	.rw = intel_vgpu_reg_rw_edid,
538 	.release = intel_vgpu_reg_release_edid,
539 };
540 
541 static int intel_vgpu_register_reg(struct intel_vgpu *vgpu,
542 		unsigned int type, unsigned int subtype,
543 		const struct intel_vgpu_regops *ops,
544 		size_t size, u32 flags, void *data)
545 {
546 	struct vfio_region *region;
547 
548 	region = krealloc(vgpu->region,
549 			(vgpu->num_regions + 1) * sizeof(*region),
550 			GFP_KERNEL);
551 	if (!region)
552 		return -ENOMEM;
553 
554 	vgpu->region = region;
555 	vgpu->region[vgpu->num_regions].type = type;
556 	vgpu->region[vgpu->num_regions].subtype = subtype;
557 	vgpu->region[vgpu->num_regions].ops = ops;
558 	vgpu->region[vgpu->num_regions].size = size;
559 	vgpu->region[vgpu->num_regions].flags = flags;
560 	vgpu->region[vgpu->num_regions].data = data;
561 	vgpu->num_regions++;
562 	return 0;
563 }
564 
565 int intel_gvt_set_opregion(struct intel_vgpu *vgpu)
566 {
567 	void *base;
568 	int ret;
569 
570 	/* Each vgpu has its own opregion, although VFIO would create another
571 	 * one later. This one is used to expose opregion to VFIO. And the
572 	 * other one created by VFIO later, is used by guest actually.
573 	 */
574 	base = vgpu_opregion(vgpu)->va;
575 	if (!base)
576 		return -ENOMEM;
577 
578 	if (memcmp(base, OPREGION_SIGNATURE, 16)) {
579 		memunmap(base);
580 		return -EINVAL;
581 	}
582 
583 	ret = intel_vgpu_register_reg(vgpu,
584 			PCI_VENDOR_ID_INTEL | VFIO_REGION_TYPE_PCI_VENDOR_TYPE,
585 			VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION,
586 			&intel_vgpu_regops_opregion, INTEL_GVT_OPREGION_SIZE,
587 			VFIO_REGION_INFO_FLAG_READ, base);
588 
589 	return ret;
590 }
591 
592 int intel_gvt_set_edid(struct intel_vgpu *vgpu, int port_num)
593 {
594 	struct intel_vgpu_port *port = intel_vgpu_port(vgpu, port_num);
595 	struct vfio_edid_region *base;
596 	int ret;
597 
598 	base = kzalloc(sizeof(*base), GFP_KERNEL);
599 	if (!base)
600 		return -ENOMEM;
601 
602 	/* TODO: Add multi-port and EDID extension block support */
603 	base->vfio_edid_regs.edid_offset = EDID_BLOB_OFFSET;
604 	base->vfio_edid_regs.edid_max_size = EDID_SIZE;
605 	base->vfio_edid_regs.edid_size = EDID_SIZE;
606 	base->vfio_edid_regs.max_xres = vgpu_edid_xres(port->id);
607 	base->vfio_edid_regs.max_yres = vgpu_edid_yres(port->id);
608 	base->edid_blob = port->edid->edid_block;
609 
610 	ret = intel_vgpu_register_reg(vgpu,
611 			VFIO_REGION_TYPE_GFX,
612 			VFIO_REGION_SUBTYPE_GFX_EDID,
613 			&intel_vgpu_regops_edid, EDID_SIZE,
614 			VFIO_REGION_INFO_FLAG_READ |
615 			VFIO_REGION_INFO_FLAG_WRITE |
616 			VFIO_REGION_INFO_FLAG_CAPS, base);
617 
618 	return ret;
619 }
620 
621 static void intel_vgpu_dma_unmap(struct vfio_device *vfio_dev, u64 iova,
622 				 u64 length)
623 {
624 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
625 	struct gvt_dma *entry;
626 	u64 iov_pfn = iova >> PAGE_SHIFT;
627 	u64 end_iov_pfn = iov_pfn + length / PAGE_SIZE;
628 
629 	mutex_lock(&vgpu->cache_lock);
630 	for (; iov_pfn < end_iov_pfn; iov_pfn++) {
631 		entry = __gvt_cache_find_gfn(vgpu, iov_pfn);
632 		if (!entry)
633 			continue;
634 
635 		gvt_dma_unmap_page(vgpu, entry->gfn, entry->dma_addr,
636 				   entry->size);
637 		__gvt_cache_remove_entry(vgpu, entry);
638 	}
639 	mutex_unlock(&vgpu->cache_lock);
640 }
641 
642 static bool __kvmgt_vgpu_exist(struct intel_vgpu *vgpu)
643 {
644 	struct intel_vgpu *itr;
645 	int id;
646 	bool ret = false;
647 
648 	mutex_lock(&vgpu->gvt->lock);
649 	for_each_active_vgpu(vgpu->gvt, itr, id) {
650 		if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, itr->status))
651 			continue;
652 
653 		if (vgpu->vfio_device.kvm == itr->vfio_device.kvm) {
654 			ret = true;
655 			goto out;
656 		}
657 	}
658 out:
659 	mutex_unlock(&vgpu->gvt->lock);
660 	return ret;
661 }
662 
663 static int intel_vgpu_open_device(struct vfio_device *vfio_dev)
664 {
665 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
666 	int ret;
667 
668 	if (__kvmgt_vgpu_exist(vgpu))
669 		return -EEXIST;
670 
671 	vgpu->track_node.track_write = kvmgt_page_track_write;
672 	vgpu->track_node.track_remove_region = kvmgt_page_track_remove_region;
673 	ret = kvm_page_track_register_notifier(vgpu->vfio_device.kvm,
674 					       &vgpu->track_node);
675 	if (ret) {
676 		gvt_vgpu_err("KVM is required to use Intel vGPU\n");
677 		return ret;
678 	}
679 
680 	set_bit(INTEL_VGPU_STATUS_ATTACHED, vgpu->status);
681 
682 	debugfs_create_ulong(KVMGT_DEBUGFS_FILENAME, 0444, vgpu->debugfs,
683 			     &vgpu->nr_cache_entries);
684 
685 	intel_gvt_activate_vgpu(vgpu);
686 
687 	return 0;
688 }
689 
690 static void intel_vgpu_release_msi_eventfd_ctx(struct intel_vgpu *vgpu)
691 {
692 	struct eventfd_ctx *trigger;
693 
694 	trigger = vgpu->msi_trigger;
695 	if (trigger) {
696 		eventfd_ctx_put(trigger);
697 		vgpu->msi_trigger = NULL;
698 	}
699 }
700 
701 static void intel_vgpu_close_device(struct vfio_device *vfio_dev)
702 {
703 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
704 
705 	intel_gvt_release_vgpu(vgpu);
706 
707 	clear_bit(INTEL_VGPU_STATUS_ATTACHED, vgpu->status);
708 
709 	debugfs_lookup_and_remove(KVMGT_DEBUGFS_FILENAME, vgpu->debugfs);
710 
711 	kvm_page_track_unregister_notifier(vgpu->vfio_device.kvm,
712 					   &vgpu->track_node);
713 
714 	kvmgt_protect_table_destroy(vgpu);
715 	gvt_cache_destroy(vgpu);
716 
717 	WARN_ON(vgpu->nr_cache_entries);
718 
719 	vgpu->gfn_cache = RB_ROOT;
720 	vgpu->dma_addr_cache = RB_ROOT;
721 
722 	intel_vgpu_release_msi_eventfd_ctx(vgpu);
723 }
724 
725 static u64 intel_vgpu_get_bar_addr(struct intel_vgpu *vgpu, int bar)
726 {
727 	u32 start_lo, start_hi;
728 	u32 mem_type;
729 
730 	start_lo = (*(u32 *)(vgpu->cfg_space.virtual_cfg_space + bar)) &
731 			PCI_BASE_ADDRESS_MEM_MASK;
732 	mem_type = (*(u32 *)(vgpu->cfg_space.virtual_cfg_space + bar)) &
733 			PCI_BASE_ADDRESS_MEM_TYPE_MASK;
734 
735 	switch (mem_type) {
736 	case PCI_BASE_ADDRESS_MEM_TYPE_64:
737 		start_hi = (*(u32 *)(vgpu->cfg_space.virtual_cfg_space
738 						+ bar + 4));
739 		break;
740 	case PCI_BASE_ADDRESS_MEM_TYPE_32:
741 	case PCI_BASE_ADDRESS_MEM_TYPE_1M:
742 		/* 1M mem BAR treated as 32-bit BAR */
743 	default:
744 		/* mem unknown type treated as 32-bit BAR */
745 		start_hi = 0;
746 		break;
747 	}
748 
749 	return ((u64)start_hi << 32) | start_lo;
750 }
751 
752 static int intel_vgpu_bar_rw(struct intel_vgpu *vgpu, int bar, u64 off,
753 			     void *buf, unsigned int count, bool is_write)
754 {
755 	u64 bar_start = intel_vgpu_get_bar_addr(vgpu, bar);
756 	int ret;
757 
758 	if (is_write)
759 		ret = intel_vgpu_emulate_mmio_write(vgpu,
760 					bar_start + off, buf, count);
761 	else
762 		ret = intel_vgpu_emulate_mmio_read(vgpu,
763 					bar_start + off, buf, count);
764 	return ret;
765 }
766 
767 static inline bool intel_vgpu_in_aperture(struct intel_vgpu *vgpu, u64 off)
768 {
769 	return off >= vgpu_aperture_offset(vgpu) &&
770 	       off < vgpu_aperture_offset(vgpu) + vgpu_aperture_sz(vgpu);
771 }
772 
773 static int intel_vgpu_aperture_rw(struct intel_vgpu *vgpu, u64 off,
774 		void *buf, unsigned long count, bool is_write)
775 {
776 	void __iomem *aperture_va;
777 
778 	if (!intel_vgpu_in_aperture(vgpu, off) ||
779 	    !intel_vgpu_in_aperture(vgpu, off + count)) {
780 		gvt_vgpu_err("Invalid aperture offset %llu\n", off);
781 		return -EINVAL;
782 	}
783 
784 	aperture_va = io_mapping_map_wc(&vgpu->gvt->gt->ggtt->iomap,
785 					ALIGN_DOWN(off, PAGE_SIZE),
786 					count + offset_in_page(off));
787 	if (!aperture_va)
788 		return -EIO;
789 
790 	if (is_write)
791 		memcpy_toio(aperture_va + offset_in_page(off), buf, count);
792 	else
793 		memcpy_fromio(buf, aperture_va + offset_in_page(off), count);
794 
795 	io_mapping_unmap(aperture_va);
796 
797 	return 0;
798 }
799 
800 static ssize_t intel_vgpu_rw(struct intel_vgpu *vgpu, char *buf,
801 			size_t count, loff_t *ppos, bool is_write)
802 {
803 	unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
804 	u64 pos = *ppos & VFIO_PCI_OFFSET_MASK;
805 	int ret = -EINVAL;
806 
807 
808 	if (index >= VFIO_PCI_NUM_REGIONS + vgpu->num_regions) {
809 		gvt_vgpu_err("invalid index: %u\n", index);
810 		return -EINVAL;
811 	}
812 
813 	switch (index) {
814 	case VFIO_PCI_CONFIG_REGION_INDEX:
815 		if (is_write)
816 			ret = intel_vgpu_emulate_cfg_write(vgpu, pos,
817 						buf, count);
818 		else
819 			ret = intel_vgpu_emulate_cfg_read(vgpu, pos,
820 						buf, count);
821 		break;
822 	case VFIO_PCI_BAR0_REGION_INDEX:
823 		ret = intel_vgpu_bar_rw(vgpu, PCI_BASE_ADDRESS_0, pos,
824 					buf, count, is_write);
825 		break;
826 	case VFIO_PCI_BAR2_REGION_INDEX:
827 		ret = intel_vgpu_aperture_rw(vgpu, pos, buf, count, is_write);
828 		break;
829 	case VFIO_PCI_BAR1_REGION_INDEX:
830 	case VFIO_PCI_BAR3_REGION_INDEX:
831 	case VFIO_PCI_BAR4_REGION_INDEX:
832 	case VFIO_PCI_BAR5_REGION_INDEX:
833 	case VFIO_PCI_VGA_REGION_INDEX:
834 	case VFIO_PCI_ROM_REGION_INDEX:
835 		break;
836 	default:
837 		if (index >= VFIO_PCI_NUM_REGIONS + vgpu->num_regions)
838 			return -EINVAL;
839 
840 		index -= VFIO_PCI_NUM_REGIONS;
841 		return vgpu->region[index].ops->rw(vgpu, buf, count,
842 				ppos, is_write);
843 	}
844 
845 	return ret == 0 ? count : ret;
846 }
847 
848 static bool gtt_entry(struct intel_vgpu *vgpu, loff_t *ppos)
849 {
850 	unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
851 	struct intel_gvt *gvt = vgpu->gvt;
852 	int offset;
853 
854 	/* Only allow MMIO GGTT entry access */
855 	if (index != PCI_BASE_ADDRESS_0)
856 		return false;
857 
858 	offset = (u64)(*ppos & VFIO_PCI_OFFSET_MASK) -
859 		intel_vgpu_get_bar_gpa(vgpu, PCI_BASE_ADDRESS_0);
860 
861 	return (offset >= gvt->device_info.gtt_start_offset &&
862 		offset < gvt->device_info.gtt_start_offset + gvt_ggtt_sz(gvt)) ?
863 			true : false;
864 }
865 
866 static ssize_t intel_vgpu_read(struct vfio_device *vfio_dev, char __user *buf,
867 			size_t count, loff_t *ppos)
868 {
869 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
870 	unsigned int done = 0;
871 	int ret;
872 
873 	while (count) {
874 		size_t filled;
875 
876 		/* Only support GGTT entry 8 bytes read */
877 		if (count >= 8 && !(*ppos % 8) &&
878 			gtt_entry(vgpu, ppos)) {
879 			u64 val;
880 
881 			ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val),
882 					ppos, false);
883 			if (ret <= 0)
884 				goto read_err;
885 
886 			if (copy_to_user(buf, &val, sizeof(val)))
887 				goto read_err;
888 
889 			filled = 8;
890 		} else if (count >= 4 && !(*ppos % 4)) {
891 			u32 val;
892 
893 			ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val),
894 					ppos, false);
895 			if (ret <= 0)
896 				goto read_err;
897 
898 			if (copy_to_user(buf, &val, sizeof(val)))
899 				goto read_err;
900 
901 			filled = 4;
902 		} else if (count >= 2 && !(*ppos % 2)) {
903 			u16 val;
904 
905 			ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val),
906 					ppos, false);
907 			if (ret <= 0)
908 				goto read_err;
909 
910 			if (copy_to_user(buf, &val, sizeof(val)))
911 				goto read_err;
912 
913 			filled = 2;
914 		} else {
915 			u8 val;
916 
917 			ret = intel_vgpu_rw(vgpu, &val, sizeof(val), ppos,
918 					false);
919 			if (ret <= 0)
920 				goto read_err;
921 
922 			if (copy_to_user(buf, &val, sizeof(val)))
923 				goto read_err;
924 
925 			filled = 1;
926 		}
927 
928 		count -= filled;
929 		done += filled;
930 		*ppos += filled;
931 		buf += filled;
932 	}
933 
934 	return done;
935 
936 read_err:
937 	return -EFAULT;
938 }
939 
940 static ssize_t intel_vgpu_write(struct vfio_device *vfio_dev,
941 				const char __user *buf,
942 				size_t count, loff_t *ppos)
943 {
944 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
945 	unsigned int done = 0;
946 	int ret;
947 
948 	while (count) {
949 		size_t filled;
950 
951 		/* Only support GGTT entry 8 bytes write */
952 		if (count >= 8 && !(*ppos % 8) &&
953 			gtt_entry(vgpu, ppos)) {
954 			u64 val;
955 
956 			if (copy_from_user(&val, buf, sizeof(val)))
957 				goto write_err;
958 
959 			ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val),
960 					ppos, true);
961 			if (ret <= 0)
962 				goto write_err;
963 
964 			filled = 8;
965 		} else if (count >= 4 && !(*ppos % 4)) {
966 			u32 val;
967 
968 			if (copy_from_user(&val, buf, sizeof(val)))
969 				goto write_err;
970 
971 			ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val),
972 					ppos, true);
973 			if (ret <= 0)
974 				goto write_err;
975 
976 			filled = 4;
977 		} else if (count >= 2 && !(*ppos % 2)) {
978 			u16 val;
979 
980 			if (copy_from_user(&val, buf, sizeof(val)))
981 				goto write_err;
982 
983 			ret = intel_vgpu_rw(vgpu, (char *)&val,
984 					sizeof(val), ppos, true);
985 			if (ret <= 0)
986 				goto write_err;
987 
988 			filled = 2;
989 		} else {
990 			u8 val;
991 
992 			if (copy_from_user(&val, buf, sizeof(val)))
993 				goto write_err;
994 
995 			ret = intel_vgpu_rw(vgpu, &val, sizeof(val),
996 					ppos, true);
997 			if (ret <= 0)
998 				goto write_err;
999 
1000 			filled = 1;
1001 		}
1002 
1003 		count -= filled;
1004 		done += filled;
1005 		*ppos += filled;
1006 		buf += filled;
1007 	}
1008 
1009 	return done;
1010 write_err:
1011 	return -EFAULT;
1012 }
1013 
1014 static int intel_vgpu_mmap(struct vfio_device *vfio_dev,
1015 		struct vm_area_struct *vma)
1016 {
1017 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
1018 	unsigned int index;
1019 	u64 virtaddr;
1020 	unsigned long req_size, pgoff, req_start;
1021 	pgprot_t pg_prot;
1022 
1023 	index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT);
1024 	if (index >= VFIO_PCI_ROM_REGION_INDEX)
1025 		return -EINVAL;
1026 
1027 	if (vma->vm_end < vma->vm_start)
1028 		return -EINVAL;
1029 	if ((vma->vm_flags & VM_SHARED) == 0)
1030 		return -EINVAL;
1031 	if (index != VFIO_PCI_BAR2_REGION_INDEX)
1032 		return -EINVAL;
1033 
1034 	pg_prot = vma->vm_page_prot;
1035 	virtaddr = vma->vm_start;
1036 	req_size = vma->vm_end - vma->vm_start;
1037 	pgoff = vma->vm_pgoff &
1038 		((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1);
1039 	req_start = pgoff << PAGE_SHIFT;
1040 
1041 	if (!intel_vgpu_in_aperture(vgpu, req_start))
1042 		return -EINVAL;
1043 	if (req_start + req_size >
1044 	    vgpu_aperture_offset(vgpu) + vgpu_aperture_sz(vgpu))
1045 		return -EINVAL;
1046 
1047 	pgoff = (gvt_aperture_pa_base(vgpu->gvt) >> PAGE_SHIFT) + pgoff;
1048 
1049 	return remap_pfn_range(vma, virtaddr, pgoff, req_size, pg_prot);
1050 }
1051 
1052 static int intel_vgpu_get_irq_count(struct intel_vgpu *vgpu, int type)
1053 {
1054 	if (type == VFIO_PCI_INTX_IRQ_INDEX || type == VFIO_PCI_MSI_IRQ_INDEX)
1055 		return 1;
1056 
1057 	return 0;
1058 }
1059 
1060 static int intel_vgpu_set_intx_mask(struct intel_vgpu *vgpu,
1061 			unsigned int index, unsigned int start,
1062 			unsigned int count, u32 flags,
1063 			void *data)
1064 {
1065 	return 0;
1066 }
1067 
1068 static int intel_vgpu_set_intx_unmask(struct intel_vgpu *vgpu,
1069 			unsigned int index, unsigned int start,
1070 			unsigned int count, u32 flags, void *data)
1071 {
1072 	return 0;
1073 }
1074 
1075 static int intel_vgpu_set_intx_trigger(struct intel_vgpu *vgpu,
1076 		unsigned int index, unsigned int start, unsigned int count,
1077 		u32 flags, void *data)
1078 {
1079 	return 0;
1080 }
1081 
1082 static int intel_vgpu_set_msi_trigger(struct intel_vgpu *vgpu,
1083 		unsigned int index, unsigned int start, unsigned int count,
1084 		u32 flags, void *data)
1085 {
1086 	struct eventfd_ctx *trigger;
1087 
1088 	if (flags & VFIO_IRQ_SET_DATA_EVENTFD) {
1089 		int fd = *(int *)data;
1090 
1091 		trigger = eventfd_ctx_fdget(fd);
1092 		if (IS_ERR(trigger)) {
1093 			gvt_vgpu_err("eventfd_ctx_fdget failed\n");
1094 			return PTR_ERR(trigger);
1095 		}
1096 		vgpu->msi_trigger = trigger;
1097 	} else if ((flags & VFIO_IRQ_SET_DATA_NONE) && !count)
1098 		intel_vgpu_release_msi_eventfd_ctx(vgpu);
1099 
1100 	return 0;
1101 }
1102 
1103 static int intel_vgpu_set_irqs(struct intel_vgpu *vgpu, u32 flags,
1104 		unsigned int index, unsigned int start, unsigned int count,
1105 		void *data)
1106 {
1107 	int (*func)(struct intel_vgpu *vgpu, unsigned int index,
1108 			unsigned int start, unsigned int count, u32 flags,
1109 			void *data) = NULL;
1110 
1111 	switch (index) {
1112 	case VFIO_PCI_INTX_IRQ_INDEX:
1113 		switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) {
1114 		case VFIO_IRQ_SET_ACTION_MASK:
1115 			func = intel_vgpu_set_intx_mask;
1116 			break;
1117 		case VFIO_IRQ_SET_ACTION_UNMASK:
1118 			func = intel_vgpu_set_intx_unmask;
1119 			break;
1120 		case VFIO_IRQ_SET_ACTION_TRIGGER:
1121 			func = intel_vgpu_set_intx_trigger;
1122 			break;
1123 		}
1124 		break;
1125 	case VFIO_PCI_MSI_IRQ_INDEX:
1126 		switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) {
1127 		case VFIO_IRQ_SET_ACTION_MASK:
1128 		case VFIO_IRQ_SET_ACTION_UNMASK:
1129 			/* XXX Need masking support exported */
1130 			break;
1131 		case VFIO_IRQ_SET_ACTION_TRIGGER:
1132 			func = intel_vgpu_set_msi_trigger;
1133 			break;
1134 		}
1135 		break;
1136 	}
1137 
1138 	if (!func)
1139 		return -ENOTTY;
1140 
1141 	return func(vgpu, index, start, count, flags, data);
1142 }
1143 
1144 static long intel_vgpu_ioctl(struct vfio_device *vfio_dev, unsigned int cmd,
1145 			     unsigned long arg)
1146 {
1147 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
1148 	unsigned long minsz;
1149 
1150 	gvt_dbg_core("vgpu%d ioctl, cmd: %d\n", vgpu->id, cmd);
1151 
1152 	if (cmd == VFIO_DEVICE_GET_INFO) {
1153 		struct vfio_device_info info;
1154 
1155 		minsz = offsetofend(struct vfio_device_info, num_irqs);
1156 
1157 		if (copy_from_user(&info, (void __user *)arg, minsz))
1158 			return -EFAULT;
1159 
1160 		if (info.argsz < minsz)
1161 			return -EINVAL;
1162 
1163 		info.flags = VFIO_DEVICE_FLAGS_PCI;
1164 		info.flags |= VFIO_DEVICE_FLAGS_RESET;
1165 		info.num_regions = VFIO_PCI_NUM_REGIONS +
1166 				vgpu->num_regions;
1167 		info.num_irqs = VFIO_PCI_NUM_IRQS;
1168 
1169 		return copy_to_user((void __user *)arg, &info, minsz) ?
1170 			-EFAULT : 0;
1171 
1172 	} else if (cmd == VFIO_DEVICE_GET_REGION_INFO) {
1173 		struct vfio_region_info info;
1174 		struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
1175 		unsigned int i;
1176 		int ret;
1177 		struct vfio_region_info_cap_sparse_mmap *sparse = NULL;
1178 		int nr_areas = 1;
1179 		int cap_type_id;
1180 
1181 		minsz = offsetofend(struct vfio_region_info, offset);
1182 
1183 		if (copy_from_user(&info, (void __user *)arg, minsz))
1184 			return -EFAULT;
1185 
1186 		if (info.argsz < minsz)
1187 			return -EINVAL;
1188 
1189 		switch (info.index) {
1190 		case VFIO_PCI_CONFIG_REGION_INDEX:
1191 			info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1192 			info.size = vgpu->gvt->device_info.cfg_space_size;
1193 			info.flags = VFIO_REGION_INFO_FLAG_READ |
1194 				     VFIO_REGION_INFO_FLAG_WRITE;
1195 			break;
1196 		case VFIO_PCI_BAR0_REGION_INDEX:
1197 			info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1198 			info.size = vgpu->cfg_space.bar[info.index].size;
1199 			if (!info.size) {
1200 				info.flags = 0;
1201 				break;
1202 			}
1203 
1204 			info.flags = VFIO_REGION_INFO_FLAG_READ |
1205 				     VFIO_REGION_INFO_FLAG_WRITE;
1206 			break;
1207 		case VFIO_PCI_BAR1_REGION_INDEX:
1208 			info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1209 			info.size = 0;
1210 			info.flags = 0;
1211 			break;
1212 		case VFIO_PCI_BAR2_REGION_INDEX:
1213 			info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1214 			info.flags = VFIO_REGION_INFO_FLAG_CAPS |
1215 					VFIO_REGION_INFO_FLAG_MMAP |
1216 					VFIO_REGION_INFO_FLAG_READ |
1217 					VFIO_REGION_INFO_FLAG_WRITE;
1218 			info.size = gvt_aperture_sz(vgpu->gvt);
1219 
1220 			sparse = kzalloc(struct_size(sparse, areas, nr_areas),
1221 					 GFP_KERNEL);
1222 			if (!sparse)
1223 				return -ENOMEM;
1224 
1225 			sparse->header.id = VFIO_REGION_INFO_CAP_SPARSE_MMAP;
1226 			sparse->header.version = 1;
1227 			sparse->nr_areas = nr_areas;
1228 			cap_type_id = VFIO_REGION_INFO_CAP_SPARSE_MMAP;
1229 			sparse->areas[0].offset =
1230 					PAGE_ALIGN(vgpu_aperture_offset(vgpu));
1231 			sparse->areas[0].size = vgpu_aperture_sz(vgpu);
1232 			break;
1233 
1234 		case VFIO_PCI_BAR3_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX:
1235 			info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1236 			info.size = 0;
1237 			info.flags = 0;
1238 
1239 			gvt_dbg_core("get region info bar:%d\n", info.index);
1240 			break;
1241 
1242 		case VFIO_PCI_ROM_REGION_INDEX:
1243 		case VFIO_PCI_VGA_REGION_INDEX:
1244 			info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1245 			info.size = 0;
1246 			info.flags = 0;
1247 
1248 			gvt_dbg_core("get region info index:%d\n", info.index);
1249 			break;
1250 		default:
1251 			{
1252 				struct vfio_region_info_cap_type cap_type = {
1253 					.header.id = VFIO_REGION_INFO_CAP_TYPE,
1254 					.header.version = 1 };
1255 
1256 				if (info.index >= VFIO_PCI_NUM_REGIONS +
1257 						vgpu->num_regions)
1258 					return -EINVAL;
1259 				info.index =
1260 					array_index_nospec(info.index,
1261 							VFIO_PCI_NUM_REGIONS +
1262 							vgpu->num_regions);
1263 
1264 				i = info.index - VFIO_PCI_NUM_REGIONS;
1265 
1266 				info.offset =
1267 					VFIO_PCI_INDEX_TO_OFFSET(info.index);
1268 				info.size = vgpu->region[i].size;
1269 				info.flags = vgpu->region[i].flags;
1270 
1271 				cap_type.type = vgpu->region[i].type;
1272 				cap_type.subtype = vgpu->region[i].subtype;
1273 
1274 				ret = vfio_info_add_capability(&caps,
1275 							&cap_type.header,
1276 							sizeof(cap_type));
1277 				if (ret)
1278 					return ret;
1279 			}
1280 		}
1281 
1282 		if ((info.flags & VFIO_REGION_INFO_FLAG_CAPS) && sparse) {
1283 			ret = -EINVAL;
1284 			if (cap_type_id == VFIO_REGION_INFO_CAP_SPARSE_MMAP)
1285 				ret = vfio_info_add_capability(&caps,
1286 					&sparse->header,
1287 					struct_size(sparse, areas,
1288 						    sparse->nr_areas));
1289 			if (ret) {
1290 				kfree(sparse);
1291 				return ret;
1292 			}
1293 		}
1294 
1295 		if (caps.size) {
1296 			info.flags |= VFIO_REGION_INFO_FLAG_CAPS;
1297 			if (info.argsz < sizeof(info) + caps.size) {
1298 				info.argsz = sizeof(info) + caps.size;
1299 				info.cap_offset = 0;
1300 			} else {
1301 				vfio_info_cap_shift(&caps, sizeof(info));
1302 				if (copy_to_user((void __user *)arg +
1303 						  sizeof(info), caps.buf,
1304 						  caps.size)) {
1305 					kfree(caps.buf);
1306 					kfree(sparse);
1307 					return -EFAULT;
1308 				}
1309 				info.cap_offset = sizeof(info);
1310 			}
1311 
1312 			kfree(caps.buf);
1313 		}
1314 
1315 		kfree(sparse);
1316 		return copy_to_user((void __user *)arg, &info, minsz) ?
1317 			-EFAULT : 0;
1318 	} else if (cmd == VFIO_DEVICE_GET_IRQ_INFO) {
1319 		struct vfio_irq_info info;
1320 
1321 		minsz = offsetofend(struct vfio_irq_info, count);
1322 
1323 		if (copy_from_user(&info, (void __user *)arg, minsz))
1324 			return -EFAULT;
1325 
1326 		if (info.argsz < minsz || info.index >= VFIO_PCI_NUM_IRQS)
1327 			return -EINVAL;
1328 
1329 		switch (info.index) {
1330 		case VFIO_PCI_INTX_IRQ_INDEX:
1331 		case VFIO_PCI_MSI_IRQ_INDEX:
1332 			break;
1333 		default:
1334 			return -EINVAL;
1335 		}
1336 
1337 		info.flags = VFIO_IRQ_INFO_EVENTFD;
1338 
1339 		info.count = intel_vgpu_get_irq_count(vgpu, info.index);
1340 
1341 		if (info.index == VFIO_PCI_INTX_IRQ_INDEX)
1342 			info.flags |= (VFIO_IRQ_INFO_MASKABLE |
1343 				       VFIO_IRQ_INFO_AUTOMASKED);
1344 		else
1345 			info.flags |= VFIO_IRQ_INFO_NORESIZE;
1346 
1347 		return copy_to_user((void __user *)arg, &info, minsz) ?
1348 			-EFAULT : 0;
1349 	} else if (cmd == VFIO_DEVICE_SET_IRQS) {
1350 		struct vfio_irq_set hdr;
1351 		u8 *data = NULL;
1352 		int ret = 0;
1353 		size_t data_size = 0;
1354 
1355 		minsz = offsetofend(struct vfio_irq_set, count);
1356 
1357 		if (copy_from_user(&hdr, (void __user *)arg, minsz))
1358 			return -EFAULT;
1359 
1360 		if (!is_power_of_2(hdr.flags & VFIO_IRQ_SET_DATA_TYPE_MASK) ||
1361 		    !is_power_of_2(hdr.flags & VFIO_IRQ_SET_ACTION_TYPE_MASK))
1362 			return -EINVAL;
1363 
1364 		if (!(hdr.flags & VFIO_IRQ_SET_DATA_NONE)) {
1365 			int max = intel_vgpu_get_irq_count(vgpu, hdr.index);
1366 
1367 			if (!hdr.count)
1368 				return -EINVAL;
1369 
1370 			ret = vfio_set_irqs_validate_and_prepare(&hdr, max,
1371 						VFIO_PCI_NUM_IRQS, &data_size);
1372 			if (ret) {
1373 				gvt_vgpu_err("vfio_set_irqs_validate_and_prepare failed\n");
1374 				return ret;
1375 			}
1376 
1377 			data = memdup_user((void __user *)(arg + minsz),
1378 					   data_size);
1379 			if (IS_ERR(data))
1380 				return PTR_ERR(data);
1381 		}
1382 
1383 		ret = intel_vgpu_set_irqs(vgpu, hdr.flags, hdr.index,
1384 					hdr.start, hdr.count, data);
1385 		kfree(data);
1386 
1387 		return ret;
1388 	} else if (cmd == VFIO_DEVICE_RESET) {
1389 		intel_gvt_reset_vgpu(vgpu);
1390 		return 0;
1391 	} else if (cmd == VFIO_DEVICE_QUERY_GFX_PLANE) {
1392 		struct vfio_device_gfx_plane_info dmabuf = {};
1393 		int ret = 0;
1394 
1395 		minsz = offsetofend(struct vfio_device_gfx_plane_info,
1396 				    dmabuf_id);
1397 		if (copy_from_user(&dmabuf, (void __user *)arg, minsz))
1398 			return -EFAULT;
1399 		if (dmabuf.argsz < minsz)
1400 			return -EINVAL;
1401 
1402 		ret = intel_vgpu_query_plane(vgpu, &dmabuf);
1403 		if (ret != 0)
1404 			return ret;
1405 
1406 		return copy_to_user((void __user *)arg, &dmabuf, minsz) ?
1407 								-EFAULT : 0;
1408 	} else if (cmd == VFIO_DEVICE_GET_GFX_DMABUF) {
1409 		__u32 dmabuf_id;
1410 
1411 		if (get_user(dmabuf_id, (__u32 __user *)arg))
1412 			return -EFAULT;
1413 		return intel_vgpu_get_dmabuf(vgpu, dmabuf_id);
1414 	}
1415 
1416 	return -ENOTTY;
1417 }
1418 
1419 static ssize_t
1420 vgpu_id_show(struct device *dev, struct device_attribute *attr,
1421 	     char *buf)
1422 {
1423 	struct intel_vgpu *vgpu = dev_get_drvdata(dev);
1424 
1425 	return sprintf(buf, "%d\n", vgpu->id);
1426 }
1427 
1428 static DEVICE_ATTR_RO(vgpu_id);
1429 
1430 static struct attribute *intel_vgpu_attrs[] = {
1431 	&dev_attr_vgpu_id.attr,
1432 	NULL
1433 };
1434 
1435 static const struct attribute_group intel_vgpu_group = {
1436 	.name = "intel_vgpu",
1437 	.attrs = intel_vgpu_attrs,
1438 };
1439 
1440 static const struct attribute_group *intel_vgpu_groups[] = {
1441 	&intel_vgpu_group,
1442 	NULL,
1443 };
1444 
1445 static int intel_vgpu_init_dev(struct vfio_device *vfio_dev)
1446 {
1447 	struct mdev_device *mdev = to_mdev_device(vfio_dev->dev);
1448 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
1449 	struct intel_vgpu_type *type =
1450 		container_of(mdev->type, struct intel_vgpu_type, type);
1451 	int ret;
1452 
1453 	vgpu->gvt = kdev_to_i915(mdev->type->parent->dev)->gvt;
1454 	ret = intel_gvt_create_vgpu(vgpu, type->conf);
1455 	if (ret)
1456 		return ret;
1457 
1458 	kvmgt_protect_table_init(vgpu);
1459 	gvt_cache_init(vgpu);
1460 
1461 	return 0;
1462 }
1463 
1464 static void intel_vgpu_release_dev(struct vfio_device *vfio_dev)
1465 {
1466 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
1467 
1468 	intel_gvt_destroy_vgpu(vgpu);
1469 }
1470 
1471 static const struct vfio_device_ops intel_vgpu_dev_ops = {
1472 	.init		= intel_vgpu_init_dev,
1473 	.release	= intel_vgpu_release_dev,
1474 	.open_device	= intel_vgpu_open_device,
1475 	.close_device	= intel_vgpu_close_device,
1476 	.read		= intel_vgpu_read,
1477 	.write		= intel_vgpu_write,
1478 	.mmap		= intel_vgpu_mmap,
1479 	.ioctl		= intel_vgpu_ioctl,
1480 	.dma_unmap	= intel_vgpu_dma_unmap,
1481 	.bind_iommufd	= vfio_iommufd_emulated_bind,
1482 	.unbind_iommufd = vfio_iommufd_emulated_unbind,
1483 	.attach_ioas	= vfio_iommufd_emulated_attach_ioas,
1484 	.detach_ioas	= vfio_iommufd_emulated_detach_ioas,
1485 };
1486 
1487 static int intel_vgpu_probe(struct mdev_device *mdev)
1488 {
1489 	struct intel_vgpu *vgpu;
1490 	int ret;
1491 
1492 	vgpu = vfio_alloc_device(intel_vgpu, vfio_device, &mdev->dev,
1493 				 &intel_vgpu_dev_ops);
1494 	if (IS_ERR(vgpu)) {
1495 		gvt_err("failed to create intel vgpu: %ld\n", PTR_ERR(vgpu));
1496 		return PTR_ERR(vgpu);
1497 	}
1498 
1499 	dev_set_drvdata(&mdev->dev, vgpu);
1500 	ret = vfio_register_emulated_iommu_dev(&vgpu->vfio_device);
1501 	if (ret)
1502 		goto out_put_vdev;
1503 
1504 	gvt_dbg_core("intel_vgpu_create succeeded for mdev: %s\n",
1505 		     dev_name(mdev_dev(mdev)));
1506 	return 0;
1507 
1508 out_put_vdev:
1509 	vfio_put_device(&vgpu->vfio_device);
1510 	return ret;
1511 }
1512 
1513 static void intel_vgpu_remove(struct mdev_device *mdev)
1514 {
1515 	struct intel_vgpu *vgpu = dev_get_drvdata(&mdev->dev);
1516 
1517 	vfio_unregister_group_dev(&vgpu->vfio_device);
1518 	vfio_put_device(&vgpu->vfio_device);
1519 }
1520 
1521 static unsigned int intel_vgpu_get_available(struct mdev_type *mtype)
1522 {
1523 	struct intel_vgpu_type *type =
1524 		container_of(mtype, struct intel_vgpu_type, type);
1525 	struct intel_gvt *gvt = kdev_to_i915(mtype->parent->dev)->gvt;
1526 	unsigned int low_gm_avail, high_gm_avail, fence_avail;
1527 
1528 	mutex_lock(&gvt->lock);
1529 	low_gm_avail = gvt_aperture_sz(gvt) - HOST_LOW_GM_SIZE -
1530 		gvt->gm.vgpu_allocated_low_gm_size;
1531 	high_gm_avail = gvt_hidden_sz(gvt) - HOST_HIGH_GM_SIZE -
1532 		gvt->gm.vgpu_allocated_high_gm_size;
1533 	fence_avail = gvt_fence_sz(gvt) - HOST_FENCE -
1534 		gvt->fence.vgpu_allocated_fence_num;
1535 	mutex_unlock(&gvt->lock);
1536 
1537 	return min3(low_gm_avail / type->conf->low_mm,
1538 		    high_gm_avail / type->conf->high_mm,
1539 		    fence_avail / type->conf->fence);
1540 }
1541 
1542 static struct mdev_driver intel_vgpu_mdev_driver = {
1543 	.device_api	= VFIO_DEVICE_API_PCI_STRING,
1544 	.driver = {
1545 		.name		= "intel_vgpu_mdev",
1546 		.owner		= THIS_MODULE,
1547 		.dev_groups	= intel_vgpu_groups,
1548 	},
1549 	.probe			= intel_vgpu_probe,
1550 	.remove			= intel_vgpu_remove,
1551 	.get_available		= intel_vgpu_get_available,
1552 	.show_description	= intel_vgpu_show_description,
1553 };
1554 
1555 int intel_gvt_page_track_add(struct intel_vgpu *info, u64 gfn)
1556 {
1557 	int r;
1558 
1559 	if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, info->status))
1560 		return -ESRCH;
1561 
1562 	if (kvmgt_gfn_is_write_protected(info, gfn))
1563 		return 0;
1564 
1565 	r = kvm_write_track_add_gfn(info->vfio_device.kvm, gfn);
1566 	if (r)
1567 		return r;
1568 
1569 	kvmgt_protect_table_add(info, gfn);
1570 	return 0;
1571 }
1572 
1573 int intel_gvt_page_track_remove(struct intel_vgpu *info, u64 gfn)
1574 {
1575 	int r;
1576 
1577 	if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, info->status))
1578 		return -ESRCH;
1579 
1580 	if (!kvmgt_gfn_is_write_protected(info, gfn))
1581 		return 0;
1582 
1583 	r = kvm_write_track_remove_gfn(info->vfio_device.kvm, gfn);
1584 	if (r)
1585 		return r;
1586 
1587 	kvmgt_protect_table_del(info, gfn);
1588 	return 0;
1589 }
1590 
1591 static void kvmgt_page_track_write(gpa_t gpa, const u8 *val, int len,
1592 				   struct kvm_page_track_notifier_node *node)
1593 {
1594 	struct intel_vgpu *info =
1595 		container_of(node, struct intel_vgpu, track_node);
1596 
1597 	mutex_lock(&info->vgpu_lock);
1598 
1599 	if (kvmgt_gfn_is_write_protected(info, gpa >> PAGE_SHIFT))
1600 		intel_vgpu_page_track_handler(info, gpa,
1601 						     (void *)val, len);
1602 
1603 	mutex_unlock(&info->vgpu_lock);
1604 }
1605 
1606 static void kvmgt_page_track_remove_region(gfn_t gfn, unsigned long nr_pages,
1607 					   struct kvm_page_track_notifier_node *node)
1608 {
1609 	unsigned long i;
1610 	struct intel_vgpu *info =
1611 		container_of(node, struct intel_vgpu, track_node);
1612 
1613 	mutex_lock(&info->vgpu_lock);
1614 
1615 	for (i = 0; i < nr_pages; i++) {
1616 		if (kvmgt_gfn_is_write_protected(info, gfn + i))
1617 			kvmgt_protect_table_del(info, gfn + i);
1618 	}
1619 
1620 	mutex_unlock(&info->vgpu_lock);
1621 }
1622 
1623 void intel_vgpu_detach_regions(struct intel_vgpu *vgpu)
1624 {
1625 	int i;
1626 
1627 	if (!vgpu->region)
1628 		return;
1629 
1630 	for (i = 0; i < vgpu->num_regions; i++)
1631 		if (vgpu->region[i].ops->release)
1632 			vgpu->region[i].ops->release(vgpu,
1633 					&vgpu->region[i]);
1634 	vgpu->num_regions = 0;
1635 	kfree(vgpu->region);
1636 	vgpu->region = NULL;
1637 }
1638 
1639 int intel_gvt_dma_map_guest_page(struct intel_vgpu *vgpu, unsigned long gfn,
1640 		unsigned long size, dma_addr_t *dma_addr)
1641 {
1642 	struct gvt_dma *entry;
1643 	int ret;
1644 
1645 	if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, vgpu->status))
1646 		return -EINVAL;
1647 
1648 	mutex_lock(&vgpu->cache_lock);
1649 
1650 	entry = __gvt_cache_find_gfn(vgpu, gfn);
1651 	if (!entry) {
1652 		ret = gvt_dma_map_page(vgpu, gfn, dma_addr, size);
1653 		if (ret)
1654 			goto err_unlock;
1655 
1656 		ret = __gvt_cache_add(vgpu, gfn, *dma_addr, size);
1657 		if (ret)
1658 			goto err_unmap;
1659 	} else if (entry->size != size) {
1660 		/* the same gfn with different size: unmap and re-map */
1661 		gvt_dma_unmap_page(vgpu, gfn, entry->dma_addr, entry->size);
1662 		__gvt_cache_remove_entry(vgpu, entry);
1663 
1664 		ret = gvt_dma_map_page(vgpu, gfn, dma_addr, size);
1665 		if (ret)
1666 			goto err_unlock;
1667 
1668 		ret = __gvt_cache_add(vgpu, gfn, *dma_addr, size);
1669 		if (ret)
1670 			goto err_unmap;
1671 	} else {
1672 		kref_get(&entry->ref);
1673 		*dma_addr = entry->dma_addr;
1674 	}
1675 
1676 	mutex_unlock(&vgpu->cache_lock);
1677 	return 0;
1678 
1679 err_unmap:
1680 	gvt_dma_unmap_page(vgpu, gfn, *dma_addr, size);
1681 err_unlock:
1682 	mutex_unlock(&vgpu->cache_lock);
1683 	return ret;
1684 }
1685 
1686 int intel_gvt_dma_pin_guest_page(struct intel_vgpu *vgpu, dma_addr_t dma_addr)
1687 {
1688 	struct gvt_dma *entry;
1689 	int ret = 0;
1690 
1691 	if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, vgpu->status))
1692 		return -EINVAL;
1693 
1694 	mutex_lock(&vgpu->cache_lock);
1695 	entry = __gvt_cache_find_dma_addr(vgpu, dma_addr);
1696 	if (entry)
1697 		kref_get(&entry->ref);
1698 	else
1699 		ret = -ENOMEM;
1700 	mutex_unlock(&vgpu->cache_lock);
1701 
1702 	return ret;
1703 }
1704 
1705 static void __gvt_dma_release(struct kref *ref)
1706 {
1707 	struct gvt_dma *entry = container_of(ref, typeof(*entry), ref);
1708 
1709 	gvt_dma_unmap_page(entry->vgpu, entry->gfn, entry->dma_addr,
1710 			   entry->size);
1711 	__gvt_cache_remove_entry(entry->vgpu, entry);
1712 }
1713 
1714 void intel_gvt_dma_unmap_guest_page(struct intel_vgpu *vgpu,
1715 		dma_addr_t dma_addr)
1716 {
1717 	struct gvt_dma *entry;
1718 
1719 	if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, vgpu->status))
1720 		return;
1721 
1722 	mutex_lock(&vgpu->cache_lock);
1723 	entry = __gvt_cache_find_dma_addr(vgpu, dma_addr);
1724 	if (entry)
1725 		kref_put(&entry->ref, __gvt_dma_release);
1726 	mutex_unlock(&vgpu->cache_lock);
1727 }
1728 
1729 static void init_device_info(struct intel_gvt *gvt)
1730 {
1731 	struct intel_gvt_device_info *info = &gvt->device_info;
1732 	struct pci_dev *pdev = to_pci_dev(gvt->gt->i915->drm.dev);
1733 
1734 	info->max_support_vgpus = 8;
1735 	info->cfg_space_size = PCI_CFG_SPACE_EXP_SIZE;
1736 	info->mmio_size = 2 * 1024 * 1024;
1737 	info->mmio_bar = 0;
1738 	info->gtt_start_offset = 8 * 1024 * 1024;
1739 	info->gtt_entry_size = 8;
1740 	info->gtt_entry_size_shift = 3;
1741 	info->gmadr_bytes_in_cmd = 8;
1742 	info->max_surface_size = 36 * 1024 * 1024;
1743 	info->msi_cap_offset = pdev->msi_cap;
1744 }
1745 
1746 static void intel_gvt_test_and_emulate_vblank(struct intel_gvt *gvt)
1747 {
1748 	struct intel_vgpu *vgpu;
1749 	int id;
1750 
1751 	mutex_lock(&gvt->lock);
1752 	idr_for_each_entry((&(gvt)->vgpu_idr), (vgpu), (id)) {
1753 		if (test_and_clear_bit(INTEL_GVT_REQUEST_EMULATE_VBLANK + id,
1754 				       (void *)&gvt->service_request)) {
1755 			if (test_bit(INTEL_VGPU_STATUS_ACTIVE, vgpu->status))
1756 				intel_vgpu_emulate_vblank(vgpu);
1757 		}
1758 	}
1759 	mutex_unlock(&gvt->lock);
1760 }
1761 
1762 static int gvt_service_thread(void *data)
1763 {
1764 	struct intel_gvt *gvt = (struct intel_gvt *)data;
1765 	int ret;
1766 
1767 	gvt_dbg_core("service thread start\n");
1768 
1769 	while (!kthread_should_stop()) {
1770 		ret = wait_event_interruptible(gvt->service_thread_wq,
1771 				kthread_should_stop() || gvt->service_request);
1772 
1773 		if (kthread_should_stop())
1774 			break;
1775 
1776 		if (WARN_ONCE(ret, "service thread is waken up by signal.\n"))
1777 			continue;
1778 
1779 		intel_gvt_test_and_emulate_vblank(gvt);
1780 
1781 		if (test_bit(INTEL_GVT_REQUEST_SCHED,
1782 				(void *)&gvt->service_request) ||
1783 			test_bit(INTEL_GVT_REQUEST_EVENT_SCHED,
1784 					(void *)&gvt->service_request)) {
1785 			intel_gvt_schedule(gvt);
1786 		}
1787 	}
1788 
1789 	return 0;
1790 }
1791 
1792 static void clean_service_thread(struct intel_gvt *gvt)
1793 {
1794 	kthread_stop(gvt->service_thread);
1795 }
1796 
1797 static int init_service_thread(struct intel_gvt *gvt)
1798 {
1799 	init_waitqueue_head(&gvt->service_thread_wq);
1800 
1801 	gvt->service_thread = kthread_run(gvt_service_thread,
1802 			gvt, "gvt_service_thread");
1803 	if (IS_ERR(gvt->service_thread)) {
1804 		gvt_err("fail to start service thread.\n");
1805 		return PTR_ERR(gvt->service_thread);
1806 	}
1807 	return 0;
1808 }
1809 
1810 /**
1811  * intel_gvt_clean_device - clean a GVT device
1812  * @i915: i915 private
1813  *
1814  * This function is called at the driver unloading stage, to free the
1815  * resources owned by a GVT device.
1816  *
1817  */
1818 static void intel_gvt_clean_device(struct drm_i915_private *i915)
1819 {
1820 	struct intel_gvt *gvt = fetch_and_zero(&i915->gvt);
1821 
1822 	if (drm_WARN_ON(&i915->drm, !gvt))
1823 		return;
1824 
1825 	mdev_unregister_parent(&gvt->parent);
1826 	intel_gvt_destroy_idle_vgpu(gvt->idle_vgpu);
1827 	intel_gvt_clean_vgpu_types(gvt);
1828 
1829 	intel_gvt_debugfs_clean(gvt);
1830 	clean_service_thread(gvt);
1831 	intel_gvt_clean_cmd_parser(gvt);
1832 	intel_gvt_clean_sched_policy(gvt);
1833 	intel_gvt_clean_workload_scheduler(gvt);
1834 	intel_gvt_clean_gtt(gvt);
1835 	intel_gvt_free_firmware(gvt);
1836 	intel_gvt_clean_mmio_info(gvt);
1837 	idr_destroy(&gvt->vgpu_idr);
1838 
1839 	kfree(i915->gvt);
1840 }
1841 
1842 /**
1843  * intel_gvt_init_device - initialize a GVT device
1844  * @i915: drm i915 private data
1845  *
1846  * This function is called at the initialization stage, to initialize
1847  * necessary GVT components.
1848  *
1849  * Returns:
1850  * Zero on success, negative error code if failed.
1851  *
1852  */
1853 static int intel_gvt_init_device(struct drm_i915_private *i915)
1854 {
1855 	struct intel_gvt *gvt;
1856 	struct intel_vgpu *vgpu;
1857 	int ret;
1858 
1859 	if (drm_WARN_ON(&i915->drm, i915->gvt))
1860 		return -EEXIST;
1861 
1862 	gvt = kzalloc(sizeof(struct intel_gvt), GFP_KERNEL);
1863 	if (!gvt)
1864 		return -ENOMEM;
1865 
1866 	gvt_dbg_core("init gvt device\n");
1867 
1868 	idr_init_base(&gvt->vgpu_idr, 1);
1869 	spin_lock_init(&gvt->scheduler.mmio_context_lock);
1870 	mutex_init(&gvt->lock);
1871 	mutex_init(&gvt->sched_lock);
1872 	gvt->gt = to_gt(i915);
1873 	i915->gvt = gvt;
1874 
1875 	init_device_info(gvt);
1876 
1877 	ret = intel_gvt_setup_mmio_info(gvt);
1878 	if (ret)
1879 		goto out_clean_idr;
1880 
1881 	intel_gvt_init_engine_mmio_context(gvt);
1882 
1883 	ret = intel_gvt_load_firmware(gvt);
1884 	if (ret)
1885 		goto out_clean_mmio_info;
1886 
1887 	ret = intel_gvt_init_irq(gvt);
1888 	if (ret)
1889 		goto out_free_firmware;
1890 
1891 	ret = intel_gvt_init_gtt(gvt);
1892 	if (ret)
1893 		goto out_free_firmware;
1894 
1895 	ret = intel_gvt_init_workload_scheduler(gvt);
1896 	if (ret)
1897 		goto out_clean_gtt;
1898 
1899 	ret = intel_gvt_init_sched_policy(gvt);
1900 	if (ret)
1901 		goto out_clean_workload_scheduler;
1902 
1903 	ret = intel_gvt_init_cmd_parser(gvt);
1904 	if (ret)
1905 		goto out_clean_sched_policy;
1906 
1907 	ret = init_service_thread(gvt);
1908 	if (ret)
1909 		goto out_clean_cmd_parser;
1910 
1911 	ret = intel_gvt_init_vgpu_types(gvt);
1912 	if (ret)
1913 		goto out_clean_thread;
1914 
1915 	vgpu = intel_gvt_create_idle_vgpu(gvt);
1916 	if (IS_ERR(vgpu)) {
1917 		ret = PTR_ERR(vgpu);
1918 		gvt_err("failed to create idle vgpu\n");
1919 		goto out_clean_types;
1920 	}
1921 	gvt->idle_vgpu = vgpu;
1922 
1923 	intel_gvt_debugfs_init(gvt);
1924 
1925 	ret = mdev_register_parent(&gvt->parent, i915->drm.dev,
1926 				   &intel_vgpu_mdev_driver,
1927 				   gvt->mdev_types, gvt->num_types);
1928 	if (ret)
1929 		goto out_destroy_idle_vgpu;
1930 
1931 	gvt_dbg_core("gvt device initialization is done\n");
1932 	return 0;
1933 
1934 out_destroy_idle_vgpu:
1935 	intel_gvt_destroy_idle_vgpu(gvt->idle_vgpu);
1936 	intel_gvt_debugfs_clean(gvt);
1937 out_clean_types:
1938 	intel_gvt_clean_vgpu_types(gvt);
1939 out_clean_thread:
1940 	clean_service_thread(gvt);
1941 out_clean_cmd_parser:
1942 	intel_gvt_clean_cmd_parser(gvt);
1943 out_clean_sched_policy:
1944 	intel_gvt_clean_sched_policy(gvt);
1945 out_clean_workload_scheduler:
1946 	intel_gvt_clean_workload_scheduler(gvt);
1947 out_clean_gtt:
1948 	intel_gvt_clean_gtt(gvt);
1949 out_free_firmware:
1950 	intel_gvt_free_firmware(gvt);
1951 out_clean_mmio_info:
1952 	intel_gvt_clean_mmio_info(gvt);
1953 out_clean_idr:
1954 	idr_destroy(&gvt->vgpu_idr);
1955 	kfree(gvt);
1956 	i915->gvt = NULL;
1957 	return ret;
1958 }
1959 
1960 static void intel_gvt_pm_resume(struct drm_i915_private *i915)
1961 {
1962 	struct intel_gvt *gvt = i915->gvt;
1963 
1964 	intel_gvt_restore_fence(gvt);
1965 	intel_gvt_restore_mmio(gvt);
1966 	intel_gvt_restore_ggtt(gvt);
1967 }
1968 
1969 static const struct intel_vgpu_ops intel_gvt_vgpu_ops = {
1970 	.init_device	= intel_gvt_init_device,
1971 	.clean_device	= intel_gvt_clean_device,
1972 	.pm_resume	= intel_gvt_pm_resume,
1973 };
1974 
1975 static int __init kvmgt_init(void)
1976 {
1977 	int ret;
1978 
1979 	ret = intel_gvt_set_ops(&intel_gvt_vgpu_ops);
1980 	if (ret)
1981 		return ret;
1982 
1983 	ret = mdev_register_driver(&intel_vgpu_mdev_driver);
1984 	if (ret)
1985 		intel_gvt_clear_ops(&intel_gvt_vgpu_ops);
1986 	return ret;
1987 }
1988 
1989 static void __exit kvmgt_exit(void)
1990 {
1991 	mdev_unregister_driver(&intel_vgpu_mdev_driver);
1992 	intel_gvt_clear_ops(&intel_gvt_vgpu_ops);
1993 }
1994 
1995 module_init(kvmgt_init);
1996 module_exit(kvmgt_exit);
1997 
1998 MODULE_DESCRIPTION("Intel mediated pass-through framework for KVM");
1999 MODULE_LICENSE("GPL and additional rights");
2000 MODULE_AUTHOR("Intel Corporation");
2001