xref: /linux/drivers/gpu/drm/i915/gvt/kvmgt.c (revision 685a1537f4c603cfcaf4b9be56ff6a571f7ddd08)
1 /*
2  * KVMGT - the implementation of Intel mediated pass-through framework for KVM
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Kevin Tian <kevin.tian@intel.com>
27  *    Jike Song <jike.song@intel.com>
28  *    Xiaoguang Chen <xiaoguang.chen@intel.com>
29  *    Eddie Dong <eddie.dong@intel.com>
30  *
31  * Contributors:
32  *    Niu Bing <bing.niu@intel.com>
33  *    Zhi Wang <zhi.a.wang@intel.com>
34  */
35 
36 #include <linux/init.h>
37 #include <linux/mm.h>
38 #include <linux/kthread.h>
39 #include <linux/sched/mm.h>
40 #include <linux/types.h>
41 #include <linux/list.h>
42 #include <linux/rbtree.h>
43 #include <linux/spinlock.h>
44 #include <linux/eventfd.h>
45 #include <linux/mdev.h>
46 #include <linux/debugfs.h>
47 
48 #include <linux/nospec.h>
49 
50 #include <drm/drm_edid.h>
51 
52 #include "i915_drv.h"
53 #include "intel_gvt.h"
54 #include "gvt.h"
55 
56 MODULE_IMPORT_NS(DMA_BUF);
57 MODULE_IMPORT_NS(I915_GVT);
58 
59 /* helper macros copied from vfio-pci */
60 #define VFIO_PCI_OFFSET_SHIFT   40
61 #define VFIO_PCI_OFFSET_TO_INDEX(off)   (off >> VFIO_PCI_OFFSET_SHIFT)
62 #define VFIO_PCI_INDEX_TO_OFFSET(index) ((u64)(index) << VFIO_PCI_OFFSET_SHIFT)
63 #define VFIO_PCI_OFFSET_MASK    (((u64)(1) << VFIO_PCI_OFFSET_SHIFT) - 1)
64 
65 #define EDID_BLOB_OFFSET (PAGE_SIZE/2)
66 
67 #define OPREGION_SIGNATURE "IntelGraphicsMem"
68 
69 struct vfio_region;
70 struct intel_vgpu_regops {
71 	size_t (*rw)(struct intel_vgpu *vgpu, char *buf,
72 			size_t count, loff_t *ppos, bool iswrite);
73 	void (*release)(struct intel_vgpu *vgpu,
74 			struct vfio_region *region);
75 };
76 
77 struct vfio_region {
78 	u32				type;
79 	u32				subtype;
80 	size_t				size;
81 	u32				flags;
82 	const struct intel_vgpu_regops	*ops;
83 	void				*data;
84 };
85 
86 struct vfio_edid_region {
87 	struct vfio_region_gfx_edid vfio_edid_regs;
88 	void *edid_blob;
89 };
90 
91 struct kvmgt_pgfn {
92 	gfn_t gfn;
93 	struct hlist_node hnode;
94 };
95 
96 struct gvt_dma {
97 	struct intel_vgpu *vgpu;
98 	struct rb_node gfn_node;
99 	struct rb_node dma_addr_node;
100 	gfn_t gfn;
101 	dma_addr_t dma_addr;
102 	unsigned long size;
103 	struct kref ref;
104 };
105 
106 #define vfio_dev_to_vgpu(vfio_dev) \
107 	container_of((vfio_dev), struct intel_vgpu, vfio_device)
108 
109 static void kvmgt_page_track_write(struct kvm_vcpu *vcpu, gpa_t gpa,
110 		const u8 *val, int len,
111 		struct kvm_page_track_notifier_node *node);
112 static void kvmgt_page_track_flush_slot(struct kvm *kvm,
113 		struct kvm_memory_slot *slot,
114 		struct kvm_page_track_notifier_node *node);
115 
116 static ssize_t intel_vgpu_show_description(struct mdev_type *mtype, char *buf)
117 {
118 	struct intel_vgpu_type *type =
119 		container_of(mtype, struct intel_vgpu_type, type);
120 
121 	return sprintf(buf, "low_gm_size: %dMB\nhigh_gm_size: %dMB\n"
122 		       "fence: %d\nresolution: %s\n"
123 		       "weight: %d\n",
124 		       BYTES_TO_MB(type->conf->low_mm),
125 		       BYTES_TO_MB(type->conf->high_mm),
126 		       type->conf->fence, vgpu_edid_str(type->conf->edid),
127 		       type->conf->weight);
128 }
129 
130 static void gvt_unpin_guest_page(struct intel_vgpu *vgpu, unsigned long gfn,
131 		unsigned long size)
132 {
133 	vfio_unpin_pages(&vgpu->vfio_device, gfn << PAGE_SHIFT,
134 			 DIV_ROUND_UP(size, PAGE_SIZE));
135 }
136 
137 /* Pin a normal or compound guest page for dma. */
138 static int gvt_pin_guest_page(struct intel_vgpu *vgpu, unsigned long gfn,
139 		unsigned long size, struct page **page)
140 {
141 	int total_pages = DIV_ROUND_UP(size, PAGE_SIZE);
142 	struct page *base_page = NULL;
143 	int npage;
144 	int ret;
145 
146 	/*
147 	 * We pin the pages one-by-one to avoid allocating a big arrary
148 	 * on stack to hold pfns.
149 	 */
150 	for (npage = 0; npage < total_pages; npage++) {
151 		dma_addr_t cur_iova = (gfn + npage) << PAGE_SHIFT;
152 		struct page *cur_page;
153 
154 		ret = vfio_pin_pages(&vgpu->vfio_device, cur_iova, 1,
155 				     IOMMU_READ | IOMMU_WRITE, &cur_page);
156 		if (ret != 1) {
157 			gvt_vgpu_err("vfio_pin_pages failed for iova %pad, ret %d\n",
158 				     &cur_iova, ret);
159 			goto err;
160 		}
161 
162 		if (npage == 0)
163 			base_page = cur_page;
164 		else if (base_page + npage != cur_page) {
165 			gvt_vgpu_err("The pages are not continuous\n");
166 			ret = -EINVAL;
167 			npage++;
168 			goto err;
169 		}
170 	}
171 
172 	*page = base_page;
173 	return 0;
174 err:
175 	gvt_unpin_guest_page(vgpu, gfn, npage * PAGE_SIZE);
176 	return ret;
177 }
178 
179 static int gvt_dma_map_page(struct intel_vgpu *vgpu, unsigned long gfn,
180 		dma_addr_t *dma_addr, unsigned long size)
181 {
182 	struct device *dev = vgpu->gvt->gt->i915->drm.dev;
183 	struct page *page = NULL;
184 	int ret;
185 
186 	ret = gvt_pin_guest_page(vgpu, gfn, size, &page);
187 	if (ret)
188 		return ret;
189 
190 	/* Setup DMA mapping. */
191 	*dma_addr = dma_map_page(dev, page, 0, size, DMA_BIDIRECTIONAL);
192 	if (dma_mapping_error(dev, *dma_addr)) {
193 		gvt_vgpu_err("DMA mapping failed for pfn 0x%lx, ret %d\n",
194 			     page_to_pfn(page), ret);
195 		gvt_unpin_guest_page(vgpu, gfn, size);
196 		return -ENOMEM;
197 	}
198 
199 	return 0;
200 }
201 
202 static void gvt_dma_unmap_page(struct intel_vgpu *vgpu, unsigned long gfn,
203 		dma_addr_t dma_addr, unsigned long size)
204 {
205 	struct device *dev = vgpu->gvt->gt->i915->drm.dev;
206 
207 	dma_unmap_page(dev, dma_addr, size, DMA_BIDIRECTIONAL);
208 	gvt_unpin_guest_page(vgpu, gfn, size);
209 }
210 
211 static struct gvt_dma *__gvt_cache_find_dma_addr(struct intel_vgpu *vgpu,
212 		dma_addr_t dma_addr)
213 {
214 	struct rb_node *node = vgpu->dma_addr_cache.rb_node;
215 	struct gvt_dma *itr;
216 
217 	while (node) {
218 		itr = rb_entry(node, struct gvt_dma, dma_addr_node);
219 
220 		if (dma_addr < itr->dma_addr)
221 			node = node->rb_left;
222 		else if (dma_addr > itr->dma_addr)
223 			node = node->rb_right;
224 		else
225 			return itr;
226 	}
227 	return NULL;
228 }
229 
230 static struct gvt_dma *__gvt_cache_find_gfn(struct intel_vgpu *vgpu, gfn_t gfn)
231 {
232 	struct rb_node *node = vgpu->gfn_cache.rb_node;
233 	struct gvt_dma *itr;
234 
235 	while (node) {
236 		itr = rb_entry(node, struct gvt_dma, gfn_node);
237 
238 		if (gfn < itr->gfn)
239 			node = node->rb_left;
240 		else if (gfn > itr->gfn)
241 			node = node->rb_right;
242 		else
243 			return itr;
244 	}
245 	return NULL;
246 }
247 
248 static int __gvt_cache_add(struct intel_vgpu *vgpu, gfn_t gfn,
249 		dma_addr_t dma_addr, unsigned long size)
250 {
251 	struct gvt_dma *new, *itr;
252 	struct rb_node **link, *parent = NULL;
253 
254 	new = kzalloc(sizeof(struct gvt_dma), GFP_KERNEL);
255 	if (!new)
256 		return -ENOMEM;
257 
258 	new->vgpu = vgpu;
259 	new->gfn = gfn;
260 	new->dma_addr = dma_addr;
261 	new->size = size;
262 	kref_init(&new->ref);
263 
264 	/* gfn_cache maps gfn to struct gvt_dma. */
265 	link = &vgpu->gfn_cache.rb_node;
266 	while (*link) {
267 		parent = *link;
268 		itr = rb_entry(parent, struct gvt_dma, gfn_node);
269 
270 		if (gfn < itr->gfn)
271 			link = &parent->rb_left;
272 		else
273 			link = &parent->rb_right;
274 	}
275 	rb_link_node(&new->gfn_node, parent, link);
276 	rb_insert_color(&new->gfn_node, &vgpu->gfn_cache);
277 
278 	/* dma_addr_cache maps dma addr to struct gvt_dma. */
279 	parent = NULL;
280 	link = &vgpu->dma_addr_cache.rb_node;
281 	while (*link) {
282 		parent = *link;
283 		itr = rb_entry(parent, struct gvt_dma, dma_addr_node);
284 
285 		if (dma_addr < itr->dma_addr)
286 			link = &parent->rb_left;
287 		else
288 			link = &parent->rb_right;
289 	}
290 	rb_link_node(&new->dma_addr_node, parent, link);
291 	rb_insert_color(&new->dma_addr_node, &vgpu->dma_addr_cache);
292 
293 	vgpu->nr_cache_entries++;
294 	return 0;
295 }
296 
297 static void __gvt_cache_remove_entry(struct intel_vgpu *vgpu,
298 				struct gvt_dma *entry)
299 {
300 	rb_erase(&entry->gfn_node, &vgpu->gfn_cache);
301 	rb_erase(&entry->dma_addr_node, &vgpu->dma_addr_cache);
302 	kfree(entry);
303 	vgpu->nr_cache_entries--;
304 }
305 
306 static void gvt_cache_destroy(struct intel_vgpu *vgpu)
307 {
308 	struct gvt_dma *dma;
309 	struct rb_node *node = NULL;
310 
311 	for (;;) {
312 		mutex_lock(&vgpu->cache_lock);
313 		node = rb_first(&vgpu->gfn_cache);
314 		if (!node) {
315 			mutex_unlock(&vgpu->cache_lock);
316 			break;
317 		}
318 		dma = rb_entry(node, struct gvt_dma, gfn_node);
319 		gvt_dma_unmap_page(vgpu, dma->gfn, dma->dma_addr, dma->size);
320 		__gvt_cache_remove_entry(vgpu, dma);
321 		mutex_unlock(&vgpu->cache_lock);
322 	}
323 }
324 
325 static void gvt_cache_init(struct intel_vgpu *vgpu)
326 {
327 	vgpu->gfn_cache = RB_ROOT;
328 	vgpu->dma_addr_cache = RB_ROOT;
329 	vgpu->nr_cache_entries = 0;
330 	mutex_init(&vgpu->cache_lock);
331 }
332 
333 static void kvmgt_protect_table_init(struct intel_vgpu *info)
334 {
335 	hash_init(info->ptable);
336 }
337 
338 static void kvmgt_protect_table_destroy(struct intel_vgpu *info)
339 {
340 	struct kvmgt_pgfn *p;
341 	struct hlist_node *tmp;
342 	int i;
343 
344 	hash_for_each_safe(info->ptable, i, tmp, p, hnode) {
345 		hash_del(&p->hnode);
346 		kfree(p);
347 	}
348 }
349 
350 static struct kvmgt_pgfn *
351 __kvmgt_protect_table_find(struct intel_vgpu *info, gfn_t gfn)
352 {
353 	struct kvmgt_pgfn *p, *res = NULL;
354 
355 	hash_for_each_possible(info->ptable, p, hnode, gfn) {
356 		if (gfn == p->gfn) {
357 			res = p;
358 			break;
359 		}
360 	}
361 
362 	return res;
363 }
364 
365 static bool kvmgt_gfn_is_write_protected(struct intel_vgpu *info, gfn_t gfn)
366 {
367 	struct kvmgt_pgfn *p;
368 
369 	p = __kvmgt_protect_table_find(info, gfn);
370 	return !!p;
371 }
372 
373 static void kvmgt_protect_table_add(struct intel_vgpu *info, gfn_t gfn)
374 {
375 	struct kvmgt_pgfn *p;
376 
377 	if (kvmgt_gfn_is_write_protected(info, gfn))
378 		return;
379 
380 	p = kzalloc(sizeof(struct kvmgt_pgfn), GFP_ATOMIC);
381 	if (WARN(!p, "gfn: 0x%llx\n", gfn))
382 		return;
383 
384 	p->gfn = gfn;
385 	hash_add(info->ptable, &p->hnode, gfn);
386 }
387 
388 static void kvmgt_protect_table_del(struct intel_vgpu *info, gfn_t gfn)
389 {
390 	struct kvmgt_pgfn *p;
391 
392 	p = __kvmgt_protect_table_find(info, gfn);
393 	if (p) {
394 		hash_del(&p->hnode);
395 		kfree(p);
396 	}
397 }
398 
399 static size_t intel_vgpu_reg_rw_opregion(struct intel_vgpu *vgpu, char *buf,
400 		size_t count, loff_t *ppos, bool iswrite)
401 {
402 	unsigned int i = VFIO_PCI_OFFSET_TO_INDEX(*ppos) -
403 			VFIO_PCI_NUM_REGIONS;
404 	void *base = vgpu->region[i].data;
405 	loff_t pos = *ppos & VFIO_PCI_OFFSET_MASK;
406 
407 
408 	if (pos >= vgpu->region[i].size || iswrite) {
409 		gvt_vgpu_err("invalid op or offset for Intel vgpu OpRegion\n");
410 		return -EINVAL;
411 	}
412 	count = min(count, (size_t)(vgpu->region[i].size - pos));
413 	memcpy(buf, base + pos, count);
414 
415 	return count;
416 }
417 
418 static void intel_vgpu_reg_release_opregion(struct intel_vgpu *vgpu,
419 		struct vfio_region *region)
420 {
421 }
422 
423 static const struct intel_vgpu_regops intel_vgpu_regops_opregion = {
424 	.rw = intel_vgpu_reg_rw_opregion,
425 	.release = intel_vgpu_reg_release_opregion,
426 };
427 
428 static int handle_edid_regs(struct intel_vgpu *vgpu,
429 			struct vfio_edid_region *region, char *buf,
430 			size_t count, u16 offset, bool is_write)
431 {
432 	struct vfio_region_gfx_edid *regs = &region->vfio_edid_regs;
433 	unsigned int data;
434 
435 	if (offset + count > sizeof(*regs))
436 		return -EINVAL;
437 
438 	if (count != 4)
439 		return -EINVAL;
440 
441 	if (is_write) {
442 		data = *((unsigned int *)buf);
443 		switch (offset) {
444 		case offsetof(struct vfio_region_gfx_edid, link_state):
445 			if (data == VFIO_DEVICE_GFX_LINK_STATE_UP) {
446 				if (!drm_edid_block_valid(
447 					(u8 *)region->edid_blob,
448 					0,
449 					true,
450 					NULL)) {
451 					gvt_vgpu_err("invalid EDID blob\n");
452 					return -EINVAL;
453 				}
454 				intel_vgpu_emulate_hotplug(vgpu, true);
455 			} else if (data == VFIO_DEVICE_GFX_LINK_STATE_DOWN)
456 				intel_vgpu_emulate_hotplug(vgpu, false);
457 			else {
458 				gvt_vgpu_err("invalid EDID link state %d\n",
459 					regs->link_state);
460 				return -EINVAL;
461 			}
462 			regs->link_state = data;
463 			break;
464 		case offsetof(struct vfio_region_gfx_edid, edid_size):
465 			if (data > regs->edid_max_size) {
466 				gvt_vgpu_err("EDID size is bigger than %d!\n",
467 					regs->edid_max_size);
468 				return -EINVAL;
469 			}
470 			regs->edid_size = data;
471 			break;
472 		default:
473 			/* read-only regs */
474 			gvt_vgpu_err("write read-only EDID region at offset %d\n",
475 				offset);
476 			return -EPERM;
477 		}
478 	} else {
479 		memcpy(buf, (char *)regs + offset, count);
480 	}
481 
482 	return count;
483 }
484 
485 static int handle_edid_blob(struct vfio_edid_region *region, char *buf,
486 			size_t count, u16 offset, bool is_write)
487 {
488 	if (offset + count > region->vfio_edid_regs.edid_size)
489 		return -EINVAL;
490 
491 	if (is_write)
492 		memcpy(region->edid_blob + offset, buf, count);
493 	else
494 		memcpy(buf, region->edid_blob + offset, count);
495 
496 	return count;
497 }
498 
499 static size_t intel_vgpu_reg_rw_edid(struct intel_vgpu *vgpu, char *buf,
500 		size_t count, loff_t *ppos, bool iswrite)
501 {
502 	int ret;
503 	unsigned int i = VFIO_PCI_OFFSET_TO_INDEX(*ppos) -
504 			VFIO_PCI_NUM_REGIONS;
505 	struct vfio_edid_region *region = vgpu->region[i].data;
506 	loff_t pos = *ppos & VFIO_PCI_OFFSET_MASK;
507 
508 	if (pos < region->vfio_edid_regs.edid_offset) {
509 		ret = handle_edid_regs(vgpu, region, buf, count, pos, iswrite);
510 	} else {
511 		pos -= EDID_BLOB_OFFSET;
512 		ret = handle_edid_blob(region, buf, count, pos, iswrite);
513 	}
514 
515 	if (ret < 0)
516 		gvt_vgpu_err("failed to access EDID region\n");
517 
518 	return ret;
519 }
520 
521 static void intel_vgpu_reg_release_edid(struct intel_vgpu *vgpu,
522 					struct vfio_region *region)
523 {
524 	kfree(region->data);
525 }
526 
527 static const struct intel_vgpu_regops intel_vgpu_regops_edid = {
528 	.rw = intel_vgpu_reg_rw_edid,
529 	.release = intel_vgpu_reg_release_edid,
530 };
531 
532 static int intel_vgpu_register_reg(struct intel_vgpu *vgpu,
533 		unsigned int type, unsigned int subtype,
534 		const struct intel_vgpu_regops *ops,
535 		size_t size, u32 flags, void *data)
536 {
537 	struct vfio_region *region;
538 
539 	region = krealloc(vgpu->region,
540 			(vgpu->num_regions + 1) * sizeof(*region),
541 			GFP_KERNEL);
542 	if (!region)
543 		return -ENOMEM;
544 
545 	vgpu->region = region;
546 	vgpu->region[vgpu->num_regions].type = type;
547 	vgpu->region[vgpu->num_regions].subtype = subtype;
548 	vgpu->region[vgpu->num_regions].ops = ops;
549 	vgpu->region[vgpu->num_regions].size = size;
550 	vgpu->region[vgpu->num_regions].flags = flags;
551 	vgpu->region[vgpu->num_regions].data = data;
552 	vgpu->num_regions++;
553 	return 0;
554 }
555 
556 int intel_gvt_set_opregion(struct intel_vgpu *vgpu)
557 {
558 	void *base;
559 	int ret;
560 
561 	/* Each vgpu has its own opregion, although VFIO would create another
562 	 * one later. This one is used to expose opregion to VFIO. And the
563 	 * other one created by VFIO later, is used by guest actually.
564 	 */
565 	base = vgpu_opregion(vgpu)->va;
566 	if (!base)
567 		return -ENOMEM;
568 
569 	if (memcmp(base, OPREGION_SIGNATURE, 16)) {
570 		memunmap(base);
571 		return -EINVAL;
572 	}
573 
574 	ret = intel_vgpu_register_reg(vgpu,
575 			PCI_VENDOR_ID_INTEL | VFIO_REGION_TYPE_PCI_VENDOR_TYPE,
576 			VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION,
577 			&intel_vgpu_regops_opregion, OPREGION_SIZE,
578 			VFIO_REGION_INFO_FLAG_READ, base);
579 
580 	return ret;
581 }
582 
583 int intel_gvt_set_edid(struct intel_vgpu *vgpu, int port_num)
584 {
585 	struct intel_vgpu_port *port = intel_vgpu_port(vgpu, port_num);
586 	struct vfio_edid_region *base;
587 	int ret;
588 
589 	base = kzalloc(sizeof(*base), GFP_KERNEL);
590 	if (!base)
591 		return -ENOMEM;
592 
593 	/* TODO: Add multi-port and EDID extension block support */
594 	base->vfio_edid_regs.edid_offset = EDID_BLOB_OFFSET;
595 	base->vfio_edid_regs.edid_max_size = EDID_SIZE;
596 	base->vfio_edid_regs.edid_size = EDID_SIZE;
597 	base->vfio_edid_regs.max_xres = vgpu_edid_xres(port->id);
598 	base->vfio_edid_regs.max_yres = vgpu_edid_yres(port->id);
599 	base->edid_blob = port->edid->edid_block;
600 
601 	ret = intel_vgpu_register_reg(vgpu,
602 			VFIO_REGION_TYPE_GFX,
603 			VFIO_REGION_SUBTYPE_GFX_EDID,
604 			&intel_vgpu_regops_edid, EDID_SIZE,
605 			VFIO_REGION_INFO_FLAG_READ |
606 			VFIO_REGION_INFO_FLAG_WRITE |
607 			VFIO_REGION_INFO_FLAG_CAPS, base);
608 
609 	return ret;
610 }
611 
612 static void intel_vgpu_dma_unmap(struct vfio_device *vfio_dev, u64 iova,
613 				 u64 length)
614 {
615 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
616 	struct gvt_dma *entry;
617 	u64 iov_pfn = iova >> PAGE_SHIFT;
618 	u64 end_iov_pfn = iov_pfn + length / PAGE_SIZE;
619 
620 	mutex_lock(&vgpu->cache_lock);
621 	for (; iov_pfn < end_iov_pfn; iov_pfn++) {
622 		entry = __gvt_cache_find_gfn(vgpu, iov_pfn);
623 		if (!entry)
624 			continue;
625 
626 		gvt_dma_unmap_page(vgpu, entry->gfn, entry->dma_addr,
627 				   entry->size);
628 		__gvt_cache_remove_entry(vgpu, entry);
629 	}
630 	mutex_unlock(&vgpu->cache_lock);
631 }
632 
633 static bool __kvmgt_vgpu_exist(struct intel_vgpu *vgpu)
634 {
635 	struct intel_vgpu *itr;
636 	int id;
637 	bool ret = false;
638 
639 	mutex_lock(&vgpu->gvt->lock);
640 	for_each_active_vgpu(vgpu->gvt, itr, id) {
641 		if (!itr->attached)
642 			continue;
643 
644 		if (vgpu->vfio_device.kvm == itr->vfio_device.kvm) {
645 			ret = true;
646 			goto out;
647 		}
648 	}
649 out:
650 	mutex_unlock(&vgpu->gvt->lock);
651 	return ret;
652 }
653 
654 static int intel_vgpu_open_device(struct vfio_device *vfio_dev)
655 {
656 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
657 
658 	if (vgpu->attached)
659 		return -EEXIST;
660 
661 	if (!vgpu->vfio_device.kvm ||
662 	    vgpu->vfio_device.kvm->mm != current->mm) {
663 		gvt_vgpu_err("KVM is required to use Intel vGPU\n");
664 		return -ESRCH;
665 	}
666 
667 	kvm_get_kvm(vgpu->vfio_device.kvm);
668 
669 	if (__kvmgt_vgpu_exist(vgpu))
670 		return -EEXIST;
671 
672 	vgpu->attached = true;
673 
674 	kvmgt_protect_table_init(vgpu);
675 	gvt_cache_init(vgpu);
676 
677 	vgpu->track_node.track_write = kvmgt_page_track_write;
678 	vgpu->track_node.track_flush_slot = kvmgt_page_track_flush_slot;
679 	kvm_page_track_register_notifier(vgpu->vfio_device.kvm,
680 					 &vgpu->track_node);
681 
682 	debugfs_create_ulong(KVMGT_DEBUGFS_FILENAME, 0444, vgpu->debugfs,
683 			     &vgpu->nr_cache_entries);
684 
685 	intel_gvt_activate_vgpu(vgpu);
686 
687 	atomic_set(&vgpu->released, 0);
688 	return 0;
689 }
690 
691 static void intel_vgpu_release_msi_eventfd_ctx(struct intel_vgpu *vgpu)
692 {
693 	struct eventfd_ctx *trigger;
694 
695 	trigger = vgpu->msi_trigger;
696 	if (trigger) {
697 		eventfd_ctx_put(trigger);
698 		vgpu->msi_trigger = NULL;
699 	}
700 }
701 
702 static void intel_vgpu_close_device(struct vfio_device *vfio_dev)
703 {
704 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
705 
706 	if (!vgpu->attached)
707 		return;
708 
709 	if (atomic_cmpxchg(&vgpu->released, 0, 1))
710 		return;
711 
712 	intel_gvt_release_vgpu(vgpu);
713 
714 	debugfs_remove(debugfs_lookup(KVMGT_DEBUGFS_FILENAME, vgpu->debugfs));
715 
716 	kvm_page_track_unregister_notifier(vgpu->vfio_device.kvm,
717 					   &vgpu->track_node);
718 	kvmgt_protect_table_destroy(vgpu);
719 	gvt_cache_destroy(vgpu);
720 
721 	intel_vgpu_release_msi_eventfd_ctx(vgpu);
722 
723 	vgpu->attached = false;
724 
725 	if (vgpu->vfio_device.kvm)
726 		kvm_put_kvm(vgpu->vfio_device.kvm);
727 }
728 
729 static u64 intel_vgpu_get_bar_addr(struct intel_vgpu *vgpu, int bar)
730 {
731 	u32 start_lo, start_hi;
732 	u32 mem_type;
733 
734 	start_lo = (*(u32 *)(vgpu->cfg_space.virtual_cfg_space + bar)) &
735 			PCI_BASE_ADDRESS_MEM_MASK;
736 	mem_type = (*(u32 *)(vgpu->cfg_space.virtual_cfg_space + bar)) &
737 			PCI_BASE_ADDRESS_MEM_TYPE_MASK;
738 
739 	switch (mem_type) {
740 	case PCI_BASE_ADDRESS_MEM_TYPE_64:
741 		start_hi = (*(u32 *)(vgpu->cfg_space.virtual_cfg_space
742 						+ bar + 4));
743 		break;
744 	case PCI_BASE_ADDRESS_MEM_TYPE_32:
745 	case PCI_BASE_ADDRESS_MEM_TYPE_1M:
746 		/* 1M mem BAR treated as 32-bit BAR */
747 	default:
748 		/* mem unknown type treated as 32-bit BAR */
749 		start_hi = 0;
750 		break;
751 	}
752 
753 	return ((u64)start_hi << 32) | start_lo;
754 }
755 
756 static int intel_vgpu_bar_rw(struct intel_vgpu *vgpu, int bar, u64 off,
757 			     void *buf, unsigned int count, bool is_write)
758 {
759 	u64 bar_start = intel_vgpu_get_bar_addr(vgpu, bar);
760 	int ret;
761 
762 	if (is_write)
763 		ret = intel_vgpu_emulate_mmio_write(vgpu,
764 					bar_start + off, buf, count);
765 	else
766 		ret = intel_vgpu_emulate_mmio_read(vgpu,
767 					bar_start + off, buf, count);
768 	return ret;
769 }
770 
771 static inline bool intel_vgpu_in_aperture(struct intel_vgpu *vgpu, u64 off)
772 {
773 	return off >= vgpu_aperture_offset(vgpu) &&
774 	       off < vgpu_aperture_offset(vgpu) + vgpu_aperture_sz(vgpu);
775 }
776 
777 static int intel_vgpu_aperture_rw(struct intel_vgpu *vgpu, u64 off,
778 		void *buf, unsigned long count, bool is_write)
779 {
780 	void __iomem *aperture_va;
781 
782 	if (!intel_vgpu_in_aperture(vgpu, off) ||
783 	    !intel_vgpu_in_aperture(vgpu, off + count)) {
784 		gvt_vgpu_err("Invalid aperture offset %llu\n", off);
785 		return -EINVAL;
786 	}
787 
788 	aperture_va = io_mapping_map_wc(&vgpu->gvt->gt->ggtt->iomap,
789 					ALIGN_DOWN(off, PAGE_SIZE),
790 					count + offset_in_page(off));
791 	if (!aperture_va)
792 		return -EIO;
793 
794 	if (is_write)
795 		memcpy_toio(aperture_va + offset_in_page(off), buf, count);
796 	else
797 		memcpy_fromio(buf, aperture_va + offset_in_page(off), count);
798 
799 	io_mapping_unmap(aperture_va);
800 
801 	return 0;
802 }
803 
804 static ssize_t intel_vgpu_rw(struct intel_vgpu *vgpu, char *buf,
805 			size_t count, loff_t *ppos, bool is_write)
806 {
807 	unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
808 	u64 pos = *ppos & VFIO_PCI_OFFSET_MASK;
809 	int ret = -EINVAL;
810 
811 
812 	if (index >= VFIO_PCI_NUM_REGIONS + vgpu->num_regions) {
813 		gvt_vgpu_err("invalid index: %u\n", index);
814 		return -EINVAL;
815 	}
816 
817 	switch (index) {
818 	case VFIO_PCI_CONFIG_REGION_INDEX:
819 		if (is_write)
820 			ret = intel_vgpu_emulate_cfg_write(vgpu, pos,
821 						buf, count);
822 		else
823 			ret = intel_vgpu_emulate_cfg_read(vgpu, pos,
824 						buf, count);
825 		break;
826 	case VFIO_PCI_BAR0_REGION_INDEX:
827 		ret = intel_vgpu_bar_rw(vgpu, PCI_BASE_ADDRESS_0, pos,
828 					buf, count, is_write);
829 		break;
830 	case VFIO_PCI_BAR2_REGION_INDEX:
831 		ret = intel_vgpu_aperture_rw(vgpu, pos, buf, count, is_write);
832 		break;
833 	case VFIO_PCI_BAR1_REGION_INDEX:
834 	case VFIO_PCI_BAR3_REGION_INDEX:
835 	case VFIO_PCI_BAR4_REGION_INDEX:
836 	case VFIO_PCI_BAR5_REGION_INDEX:
837 	case VFIO_PCI_VGA_REGION_INDEX:
838 	case VFIO_PCI_ROM_REGION_INDEX:
839 		break;
840 	default:
841 		if (index >= VFIO_PCI_NUM_REGIONS + vgpu->num_regions)
842 			return -EINVAL;
843 
844 		index -= VFIO_PCI_NUM_REGIONS;
845 		return vgpu->region[index].ops->rw(vgpu, buf, count,
846 				ppos, is_write);
847 	}
848 
849 	return ret == 0 ? count : ret;
850 }
851 
852 static bool gtt_entry(struct intel_vgpu *vgpu, loff_t *ppos)
853 {
854 	unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
855 	struct intel_gvt *gvt = vgpu->gvt;
856 	int offset;
857 
858 	/* Only allow MMIO GGTT entry access */
859 	if (index != PCI_BASE_ADDRESS_0)
860 		return false;
861 
862 	offset = (u64)(*ppos & VFIO_PCI_OFFSET_MASK) -
863 		intel_vgpu_get_bar_gpa(vgpu, PCI_BASE_ADDRESS_0);
864 
865 	return (offset >= gvt->device_info.gtt_start_offset &&
866 		offset < gvt->device_info.gtt_start_offset + gvt_ggtt_sz(gvt)) ?
867 			true : false;
868 }
869 
870 static ssize_t intel_vgpu_read(struct vfio_device *vfio_dev, char __user *buf,
871 			size_t count, loff_t *ppos)
872 {
873 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
874 	unsigned int done = 0;
875 	int ret;
876 
877 	while (count) {
878 		size_t filled;
879 
880 		/* Only support GGTT entry 8 bytes read */
881 		if (count >= 8 && !(*ppos % 8) &&
882 			gtt_entry(vgpu, ppos)) {
883 			u64 val;
884 
885 			ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val),
886 					ppos, false);
887 			if (ret <= 0)
888 				goto read_err;
889 
890 			if (copy_to_user(buf, &val, sizeof(val)))
891 				goto read_err;
892 
893 			filled = 8;
894 		} else if (count >= 4 && !(*ppos % 4)) {
895 			u32 val;
896 
897 			ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val),
898 					ppos, false);
899 			if (ret <= 0)
900 				goto read_err;
901 
902 			if (copy_to_user(buf, &val, sizeof(val)))
903 				goto read_err;
904 
905 			filled = 4;
906 		} else if (count >= 2 && !(*ppos % 2)) {
907 			u16 val;
908 
909 			ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val),
910 					ppos, false);
911 			if (ret <= 0)
912 				goto read_err;
913 
914 			if (copy_to_user(buf, &val, sizeof(val)))
915 				goto read_err;
916 
917 			filled = 2;
918 		} else {
919 			u8 val;
920 
921 			ret = intel_vgpu_rw(vgpu, &val, sizeof(val), ppos,
922 					false);
923 			if (ret <= 0)
924 				goto read_err;
925 
926 			if (copy_to_user(buf, &val, sizeof(val)))
927 				goto read_err;
928 
929 			filled = 1;
930 		}
931 
932 		count -= filled;
933 		done += filled;
934 		*ppos += filled;
935 		buf += filled;
936 	}
937 
938 	return done;
939 
940 read_err:
941 	return -EFAULT;
942 }
943 
944 static ssize_t intel_vgpu_write(struct vfio_device *vfio_dev,
945 				const char __user *buf,
946 				size_t count, loff_t *ppos)
947 {
948 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
949 	unsigned int done = 0;
950 	int ret;
951 
952 	while (count) {
953 		size_t filled;
954 
955 		/* Only support GGTT entry 8 bytes write */
956 		if (count >= 8 && !(*ppos % 8) &&
957 			gtt_entry(vgpu, ppos)) {
958 			u64 val;
959 
960 			if (copy_from_user(&val, buf, sizeof(val)))
961 				goto write_err;
962 
963 			ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val),
964 					ppos, true);
965 			if (ret <= 0)
966 				goto write_err;
967 
968 			filled = 8;
969 		} else if (count >= 4 && !(*ppos % 4)) {
970 			u32 val;
971 
972 			if (copy_from_user(&val, buf, sizeof(val)))
973 				goto write_err;
974 
975 			ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val),
976 					ppos, true);
977 			if (ret <= 0)
978 				goto write_err;
979 
980 			filled = 4;
981 		} else if (count >= 2 && !(*ppos % 2)) {
982 			u16 val;
983 
984 			if (copy_from_user(&val, buf, sizeof(val)))
985 				goto write_err;
986 
987 			ret = intel_vgpu_rw(vgpu, (char *)&val,
988 					sizeof(val), ppos, true);
989 			if (ret <= 0)
990 				goto write_err;
991 
992 			filled = 2;
993 		} else {
994 			u8 val;
995 
996 			if (copy_from_user(&val, buf, sizeof(val)))
997 				goto write_err;
998 
999 			ret = intel_vgpu_rw(vgpu, &val, sizeof(val),
1000 					ppos, true);
1001 			if (ret <= 0)
1002 				goto write_err;
1003 
1004 			filled = 1;
1005 		}
1006 
1007 		count -= filled;
1008 		done += filled;
1009 		*ppos += filled;
1010 		buf += filled;
1011 	}
1012 
1013 	return done;
1014 write_err:
1015 	return -EFAULT;
1016 }
1017 
1018 static int intel_vgpu_mmap(struct vfio_device *vfio_dev,
1019 		struct vm_area_struct *vma)
1020 {
1021 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
1022 	unsigned int index;
1023 	u64 virtaddr;
1024 	unsigned long req_size, pgoff, req_start;
1025 	pgprot_t pg_prot;
1026 
1027 	index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT);
1028 	if (index >= VFIO_PCI_ROM_REGION_INDEX)
1029 		return -EINVAL;
1030 
1031 	if (vma->vm_end < vma->vm_start)
1032 		return -EINVAL;
1033 	if ((vma->vm_flags & VM_SHARED) == 0)
1034 		return -EINVAL;
1035 	if (index != VFIO_PCI_BAR2_REGION_INDEX)
1036 		return -EINVAL;
1037 
1038 	pg_prot = vma->vm_page_prot;
1039 	virtaddr = vma->vm_start;
1040 	req_size = vma->vm_end - vma->vm_start;
1041 	pgoff = vma->vm_pgoff &
1042 		((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1);
1043 	req_start = pgoff << PAGE_SHIFT;
1044 
1045 	if (!intel_vgpu_in_aperture(vgpu, req_start))
1046 		return -EINVAL;
1047 	if (req_start + req_size >
1048 	    vgpu_aperture_offset(vgpu) + vgpu_aperture_sz(vgpu))
1049 		return -EINVAL;
1050 
1051 	pgoff = (gvt_aperture_pa_base(vgpu->gvt) >> PAGE_SHIFT) + pgoff;
1052 
1053 	return remap_pfn_range(vma, virtaddr, pgoff, req_size, pg_prot);
1054 }
1055 
1056 static int intel_vgpu_get_irq_count(struct intel_vgpu *vgpu, int type)
1057 {
1058 	if (type == VFIO_PCI_INTX_IRQ_INDEX || type == VFIO_PCI_MSI_IRQ_INDEX)
1059 		return 1;
1060 
1061 	return 0;
1062 }
1063 
1064 static int intel_vgpu_set_intx_mask(struct intel_vgpu *vgpu,
1065 			unsigned int index, unsigned int start,
1066 			unsigned int count, u32 flags,
1067 			void *data)
1068 {
1069 	return 0;
1070 }
1071 
1072 static int intel_vgpu_set_intx_unmask(struct intel_vgpu *vgpu,
1073 			unsigned int index, unsigned int start,
1074 			unsigned int count, u32 flags, void *data)
1075 {
1076 	return 0;
1077 }
1078 
1079 static int intel_vgpu_set_intx_trigger(struct intel_vgpu *vgpu,
1080 		unsigned int index, unsigned int start, unsigned int count,
1081 		u32 flags, void *data)
1082 {
1083 	return 0;
1084 }
1085 
1086 static int intel_vgpu_set_msi_trigger(struct intel_vgpu *vgpu,
1087 		unsigned int index, unsigned int start, unsigned int count,
1088 		u32 flags, void *data)
1089 {
1090 	struct eventfd_ctx *trigger;
1091 
1092 	if (flags & VFIO_IRQ_SET_DATA_EVENTFD) {
1093 		int fd = *(int *)data;
1094 
1095 		trigger = eventfd_ctx_fdget(fd);
1096 		if (IS_ERR(trigger)) {
1097 			gvt_vgpu_err("eventfd_ctx_fdget failed\n");
1098 			return PTR_ERR(trigger);
1099 		}
1100 		vgpu->msi_trigger = trigger;
1101 	} else if ((flags & VFIO_IRQ_SET_DATA_NONE) && !count)
1102 		intel_vgpu_release_msi_eventfd_ctx(vgpu);
1103 
1104 	return 0;
1105 }
1106 
1107 static int intel_vgpu_set_irqs(struct intel_vgpu *vgpu, u32 flags,
1108 		unsigned int index, unsigned int start, unsigned int count,
1109 		void *data)
1110 {
1111 	int (*func)(struct intel_vgpu *vgpu, unsigned int index,
1112 			unsigned int start, unsigned int count, u32 flags,
1113 			void *data) = NULL;
1114 
1115 	switch (index) {
1116 	case VFIO_PCI_INTX_IRQ_INDEX:
1117 		switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) {
1118 		case VFIO_IRQ_SET_ACTION_MASK:
1119 			func = intel_vgpu_set_intx_mask;
1120 			break;
1121 		case VFIO_IRQ_SET_ACTION_UNMASK:
1122 			func = intel_vgpu_set_intx_unmask;
1123 			break;
1124 		case VFIO_IRQ_SET_ACTION_TRIGGER:
1125 			func = intel_vgpu_set_intx_trigger;
1126 			break;
1127 		}
1128 		break;
1129 	case VFIO_PCI_MSI_IRQ_INDEX:
1130 		switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) {
1131 		case VFIO_IRQ_SET_ACTION_MASK:
1132 		case VFIO_IRQ_SET_ACTION_UNMASK:
1133 			/* XXX Need masking support exported */
1134 			break;
1135 		case VFIO_IRQ_SET_ACTION_TRIGGER:
1136 			func = intel_vgpu_set_msi_trigger;
1137 			break;
1138 		}
1139 		break;
1140 	}
1141 
1142 	if (!func)
1143 		return -ENOTTY;
1144 
1145 	return func(vgpu, index, start, count, flags, data);
1146 }
1147 
1148 static long intel_vgpu_ioctl(struct vfio_device *vfio_dev, unsigned int cmd,
1149 			     unsigned long arg)
1150 {
1151 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
1152 	unsigned long minsz;
1153 
1154 	gvt_dbg_core("vgpu%d ioctl, cmd: %d\n", vgpu->id, cmd);
1155 
1156 	if (cmd == VFIO_DEVICE_GET_INFO) {
1157 		struct vfio_device_info info;
1158 
1159 		minsz = offsetofend(struct vfio_device_info, num_irqs);
1160 
1161 		if (copy_from_user(&info, (void __user *)arg, minsz))
1162 			return -EFAULT;
1163 
1164 		if (info.argsz < minsz)
1165 			return -EINVAL;
1166 
1167 		info.flags = VFIO_DEVICE_FLAGS_PCI;
1168 		info.flags |= VFIO_DEVICE_FLAGS_RESET;
1169 		info.num_regions = VFIO_PCI_NUM_REGIONS +
1170 				vgpu->num_regions;
1171 		info.num_irqs = VFIO_PCI_NUM_IRQS;
1172 
1173 		return copy_to_user((void __user *)arg, &info, minsz) ?
1174 			-EFAULT : 0;
1175 
1176 	} else if (cmd == VFIO_DEVICE_GET_REGION_INFO) {
1177 		struct vfio_region_info info;
1178 		struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
1179 		unsigned int i;
1180 		int ret;
1181 		struct vfio_region_info_cap_sparse_mmap *sparse = NULL;
1182 		int nr_areas = 1;
1183 		int cap_type_id;
1184 
1185 		minsz = offsetofend(struct vfio_region_info, offset);
1186 
1187 		if (copy_from_user(&info, (void __user *)arg, minsz))
1188 			return -EFAULT;
1189 
1190 		if (info.argsz < minsz)
1191 			return -EINVAL;
1192 
1193 		switch (info.index) {
1194 		case VFIO_PCI_CONFIG_REGION_INDEX:
1195 			info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1196 			info.size = vgpu->gvt->device_info.cfg_space_size;
1197 			info.flags = VFIO_REGION_INFO_FLAG_READ |
1198 				     VFIO_REGION_INFO_FLAG_WRITE;
1199 			break;
1200 		case VFIO_PCI_BAR0_REGION_INDEX:
1201 			info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1202 			info.size = vgpu->cfg_space.bar[info.index].size;
1203 			if (!info.size) {
1204 				info.flags = 0;
1205 				break;
1206 			}
1207 
1208 			info.flags = VFIO_REGION_INFO_FLAG_READ |
1209 				     VFIO_REGION_INFO_FLAG_WRITE;
1210 			break;
1211 		case VFIO_PCI_BAR1_REGION_INDEX:
1212 			info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1213 			info.size = 0;
1214 			info.flags = 0;
1215 			break;
1216 		case VFIO_PCI_BAR2_REGION_INDEX:
1217 			info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1218 			info.flags = VFIO_REGION_INFO_FLAG_CAPS |
1219 					VFIO_REGION_INFO_FLAG_MMAP |
1220 					VFIO_REGION_INFO_FLAG_READ |
1221 					VFIO_REGION_INFO_FLAG_WRITE;
1222 			info.size = gvt_aperture_sz(vgpu->gvt);
1223 
1224 			sparse = kzalloc(struct_size(sparse, areas, nr_areas),
1225 					 GFP_KERNEL);
1226 			if (!sparse)
1227 				return -ENOMEM;
1228 
1229 			sparse->header.id = VFIO_REGION_INFO_CAP_SPARSE_MMAP;
1230 			sparse->header.version = 1;
1231 			sparse->nr_areas = nr_areas;
1232 			cap_type_id = VFIO_REGION_INFO_CAP_SPARSE_MMAP;
1233 			sparse->areas[0].offset =
1234 					PAGE_ALIGN(vgpu_aperture_offset(vgpu));
1235 			sparse->areas[0].size = vgpu_aperture_sz(vgpu);
1236 			break;
1237 
1238 		case VFIO_PCI_BAR3_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX:
1239 			info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1240 			info.size = 0;
1241 			info.flags = 0;
1242 
1243 			gvt_dbg_core("get region info bar:%d\n", info.index);
1244 			break;
1245 
1246 		case VFIO_PCI_ROM_REGION_INDEX:
1247 		case VFIO_PCI_VGA_REGION_INDEX:
1248 			info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1249 			info.size = 0;
1250 			info.flags = 0;
1251 
1252 			gvt_dbg_core("get region info index:%d\n", info.index);
1253 			break;
1254 		default:
1255 			{
1256 				struct vfio_region_info_cap_type cap_type = {
1257 					.header.id = VFIO_REGION_INFO_CAP_TYPE,
1258 					.header.version = 1 };
1259 
1260 				if (info.index >= VFIO_PCI_NUM_REGIONS +
1261 						vgpu->num_regions)
1262 					return -EINVAL;
1263 				info.index =
1264 					array_index_nospec(info.index,
1265 							VFIO_PCI_NUM_REGIONS +
1266 							vgpu->num_regions);
1267 
1268 				i = info.index - VFIO_PCI_NUM_REGIONS;
1269 
1270 				info.offset =
1271 					VFIO_PCI_INDEX_TO_OFFSET(info.index);
1272 				info.size = vgpu->region[i].size;
1273 				info.flags = vgpu->region[i].flags;
1274 
1275 				cap_type.type = vgpu->region[i].type;
1276 				cap_type.subtype = vgpu->region[i].subtype;
1277 
1278 				ret = vfio_info_add_capability(&caps,
1279 							&cap_type.header,
1280 							sizeof(cap_type));
1281 				if (ret)
1282 					return ret;
1283 			}
1284 		}
1285 
1286 		if ((info.flags & VFIO_REGION_INFO_FLAG_CAPS) && sparse) {
1287 			switch (cap_type_id) {
1288 			case VFIO_REGION_INFO_CAP_SPARSE_MMAP:
1289 				ret = vfio_info_add_capability(&caps,
1290 					&sparse->header,
1291 					struct_size(sparse, areas,
1292 						    sparse->nr_areas));
1293 				if (ret) {
1294 					kfree(sparse);
1295 					return ret;
1296 				}
1297 				break;
1298 			default:
1299 				kfree(sparse);
1300 				return -EINVAL;
1301 			}
1302 		}
1303 
1304 		if (caps.size) {
1305 			info.flags |= VFIO_REGION_INFO_FLAG_CAPS;
1306 			if (info.argsz < sizeof(info) + caps.size) {
1307 				info.argsz = sizeof(info) + caps.size;
1308 				info.cap_offset = 0;
1309 			} else {
1310 				vfio_info_cap_shift(&caps, sizeof(info));
1311 				if (copy_to_user((void __user *)arg +
1312 						  sizeof(info), caps.buf,
1313 						  caps.size)) {
1314 					kfree(caps.buf);
1315 					kfree(sparse);
1316 					return -EFAULT;
1317 				}
1318 				info.cap_offset = sizeof(info);
1319 			}
1320 
1321 			kfree(caps.buf);
1322 		}
1323 
1324 		kfree(sparse);
1325 		return copy_to_user((void __user *)arg, &info, minsz) ?
1326 			-EFAULT : 0;
1327 	} else if (cmd == VFIO_DEVICE_GET_IRQ_INFO) {
1328 		struct vfio_irq_info info;
1329 
1330 		minsz = offsetofend(struct vfio_irq_info, count);
1331 
1332 		if (copy_from_user(&info, (void __user *)arg, minsz))
1333 			return -EFAULT;
1334 
1335 		if (info.argsz < minsz || info.index >= VFIO_PCI_NUM_IRQS)
1336 			return -EINVAL;
1337 
1338 		switch (info.index) {
1339 		case VFIO_PCI_INTX_IRQ_INDEX:
1340 		case VFIO_PCI_MSI_IRQ_INDEX:
1341 			break;
1342 		default:
1343 			return -EINVAL;
1344 		}
1345 
1346 		info.flags = VFIO_IRQ_INFO_EVENTFD;
1347 
1348 		info.count = intel_vgpu_get_irq_count(vgpu, info.index);
1349 
1350 		if (info.index == VFIO_PCI_INTX_IRQ_INDEX)
1351 			info.flags |= (VFIO_IRQ_INFO_MASKABLE |
1352 				       VFIO_IRQ_INFO_AUTOMASKED);
1353 		else
1354 			info.flags |= VFIO_IRQ_INFO_NORESIZE;
1355 
1356 		return copy_to_user((void __user *)arg, &info, minsz) ?
1357 			-EFAULT : 0;
1358 	} else if (cmd == VFIO_DEVICE_SET_IRQS) {
1359 		struct vfio_irq_set hdr;
1360 		u8 *data = NULL;
1361 		int ret = 0;
1362 		size_t data_size = 0;
1363 
1364 		minsz = offsetofend(struct vfio_irq_set, count);
1365 
1366 		if (copy_from_user(&hdr, (void __user *)arg, minsz))
1367 			return -EFAULT;
1368 
1369 		if (!(hdr.flags & VFIO_IRQ_SET_DATA_NONE)) {
1370 			int max = intel_vgpu_get_irq_count(vgpu, hdr.index);
1371 
1372 			ret = vfio_set_irqs_validate_and_prepare(&hdr, max,
1373 						VFIO_PCI_NUM_IRQS, &data_size);
1374 			if (ret) {
1375 				gvt_vgpu_err("intel:vfio_set_irqs_validate_and_prepare failed\n");
1376 				return -EINVAL;
1377 			}
1378 			if (data_size) {
1379 				data = memdup_user((void __user *)(arg + minsz),
1380 						   data_size);
1381 				if (IS_ERR(data))
1382 					return PTR_ERR(data);
1383 			}
1384 		}
1385 
1386 		ret = intel_vgpu_set_irqs(vgpu, hdr.flags, hdr.index,
1387 					hdr.start, hdr.count, data);
1388 		kfree(data);
1389 
1390 		return ret;
1391 	} else if (cmd == VFIO_DEVICE_RESET) {
1392 		intel_gvt_reset_vgpu(vgpu);
1393 		return 0;
1394 	} else if (cmd == VFIO_DEVICE_QUERY_GFX_PLANE) {
1395 		struct vfio_device_gfx_plane_info dmabuf;
1396 		int ret = 0;
1397 
1398 		minsz = offsetofend(struct vfio_device_gfx_plane_info,
1399 				    dmabuf_id);
1400 		if (copy_from_user(&dmabuf, (void __user *)arg, minsz))
1401 			return -EFAULT;
1402 		if (dmabuf.argsz < minsz)
1403 			return -EINVAL;
1404 
1405 		ret = intel_vgpu_query_plane(vgpu, &dmabuf);
1406 		if (ret != 0)
1407 			return ret;
1408 
1409 		return copy_to_user((void __user *)arg, &dmabuf, minsz) ?
1410 								-EFAULT : 0;
1411 	} else if (cmd == VFIO_DEVICE_GET_GFX_DMABUF) {
1412 		__u32 dmabuf_id;
1413 
1414 		if (get_user(dmabuf_id, (__u32 __user *)arg))
1415 			return -EFAULT;
1416 		return intel_vgpu_get_dmabuf(vgpu, dmabuf_id);
1417 	}
1418 
1419 	return -ENOTTY;
1420 }
1421 
1422 static ssize_t
1423 vgpu_id_show(struct device *dev, struct device_attribute *attr,
1424 	     char *buf)
1425 {
1426 	struct intel_vgpu *vgpu = dev_get_drvdata(dev);
1427 
1428 	return sprintf(buf, "%d\n", vgpu->id);
1429 }
1430 
1431 static DEVICE_ATTR_RO(vgpu_id);
1432 
1433 static struct attribute *intel_vgpu_attrs[] = {
1434 	&dev_attr_vgpu_id.attr,
1435 	NULL
1436 };
1437 
1438 static const struct attribute_group intel_vgpu_group = {
1439 	.name = "intel_vgpu",
1440 	.attrs = intel_vgpu_attrs,
1441 };
1442 
1443 static const struct attribute_group *intel_vgpu_groups[] = {
1444 	&intel_vgpu_group,
1445 	NULL,
1446 };
1447 
1448 static int intel_vgpu_init_dev(struct vfio_device *vfio_dev)
1449 {
1450 	struct mdev_device *mdev = to_mdev_device(vfio_dev->dev);
1451 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
1452 	struct intel_vgpu_type *type =
1453 		container_of(mdev->type, struct intel_vgpu_type, type);
1454 
1455 	vgpu->gvt = kdev_to_i915(mdev->type->parent->dev)->gvt;
1456 	return intel_gvt_create_vgpu(vgpu, type->conf);
1457 }
1458 
1459 static void intel_vgpu_release_dev(struct vfio_device *vfio_dev)
1460 {
1461 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
1462 
1463 	intel_gvt_destroy_vgpu(vgpu);
1464 	vfio_free_device(vfio_dev);
1465 }
1466 
1467 static const struct vfio_device_ops intel_vgpu_dev_ops = {
1468 	.init		= intel_vgpu_init_dev,
1469 	.release	= intel_vgpu_release_dev,
1470 	.open_device	= intel_vgpu_open_device,
1471 	.close_device	= intel_vgpu_close_device,
1472 	.read		= intel_vgpu_read,
1473 	.write		= intel_vgpu_write,
1474 	.mmap		= intel_vgpu_mmap,
1475 	.ioctl		= intel_vgpu_ioctl,
1476 	.dma_unmap	= intel_vgpu_dma_unmap,
1477 };
1478 
1479 static int intel_vgpu_probe(struct mdev_device *mdev)
1480 {
1481 	struct intel_vgpu *vgpu;
1482 	int ret;
1483 
1484 	vgpu = vfio_alloc_device(intel_vgpu, vfio_device, &mdev->dev,
1485 				 &intel_vgpu_dev_ops);
1486 	if (IS_ERR(vgpu)) {
1487 		gvt_err("failed to create intel vgpu: %ld\n", PTR_ERR(vgpu));
1488 		return PTR_ERR(vgpu);
1489 	}
1490 
1491 	dev_set_drvdata(&mdev->dev, vgpu);
1492 	ret = vfio_register_emulated_iommu_dev(&vgpu->vfio_device);
1493 	if (ret)
1494 		goto out_put_vdev;
1495 
1496 	gvt_dbg_core("intel_vgpu_create succeeded for mdev: %s\n",
1497 		     dev_name(mdev_dev(mdev)));
1498 	return 0;
1499 
1500 out_put_vdev:
1501 	vfio_put_device(&vgpu->vfio_device);
1502 	return ret;
1503 }
1504 
1505 static void intel_vgpu_remove(struct mdev_device *mdev)
1506 {
1507 	struct intel_vgpu *vgpu = dev_get_drvdata(&mdev->dev);
1508 
1509 	if (WARN_ON_ONCE(vgpu->attached))
1510 		return;
1511 
1512 	vfio_unregister_group_dev(&vgpu->vfio_device);
1513 	vfio_put_device(&vgpu->vfio_device);
1514 }
1515 
1516 static unsigned int intel_vgpu_get_available(struct mdev_type *mtype)
1517 {
1518 	struct intel_vgpu_type *type =
1519 		container_of(mtype, struct intel_vgpu_type, type);
1520 	struct intel_gvt *gvt = kdev_to_i915(mtype->parent->dev)->gvt;
1521 	unsigned int low_gm_avail, high_gm_avail, fence_avail;
1522 
1523 	mutex_lock(&gvt->lock);
1524 	low_gm_avail = gvt_aperture_sz(gvt) - HOST_LOW_GM_SIZE -
1525 		gvt->gm.vgpu_allocated_low_gm_size;
1526 	high_gm_avail = gvt_hidden_sz(gvt) - HOST_HIGH_GM_SIZE -
1527 		gvt->gm.vgpu_allocated_high_gm_size;
1528 	fence_avail = gvt_fence_sz(gvt) - HOST_FENCE -
1529 		gvt->fence.vgpu_allocated_fence_num;
1530 	mutex_unlock(&gvt->lock);
1531 
1532 	return min3(low_gm_avail / type->conf->low_mm,
1533 		    high_gm_avail / type->conf->high_mm,
1534 		    fence_avail / type->conf->fence);
1535 }
1536 
1537 static struct mdev_driver intel_vgpu_mdev_driver = {
1538 	.device_api	= VFIO_DEVICE_API_PCI_STRING,
1539 	.driver = {
1540 		.name		= "intel_vgpu_mdev",
1541 		.owner		= THIS_MODULE,
1542 		.dev_groups	= intel_vgpu_groups,
1543 	},
1544 	.probe			= intel_vgpu_probe,
1545 	.remove			= intel_vgpu_remove,
1546 	.get_available		= intel_vgpu_get_available,
1547 	.show_description	= intel_vgpu_show_description,
1548 };
1549 
1550 int intel_gvt_page_track_add(struct intel_vgpu *info, u64 gfn)
1551 {
1552 	struct kvm *kvm = info->vfio_device.kvm;
1553 	struct kvm_memory_slot *slot;
1554 	int idx;
1555 
1556 	if (!info->attached)
1557 		return -ESRCH;
1558 
1559 	idx = srcu_read_lock(&kvm->srcu);
1560 	slot = gfn_to_memslot(kvm, gfn);
1561 	if (!slot) {
1562 		srcu_read_unlock(&kvm->srcu, idx);
1563 		return -EINVAL;
1564 	}
1565 
1566 	write_lock(&kvm->mmu_lock);
1567 
1568 	if (kvmgt_gfn_is_write_protected(info, gfn))
1569 		goto out;
1570 
1571 	kvm_slot_page_track_add_page(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE);
1572 	kvmgt_protect_table_add(info, gfn);
1573 
1574 out:
1575 	write_unlock(&kvm->mmu_lock);
1576 	srcu_read_unlock(&kvm->srcu, idx);
1577 	return 0;
1578 }
1579 
1580 int intel_gvt_page_track_remove(struct intel_vgpu *info, u64 gfn)
1581 {
1582 	struct kvm *kvm = info->vfio_device.kvm;
1583 	struct kvm_memory_slot *slot;
1584 	int idx;
1585 
1586 	if (!info->attached)
1587 		return 0;
1588 
1589 	idx = srcu_read_lock(&kvm->srcu);
1590 	slot = gfn_to_memslot(kvm, gfn);
1591 	if (!slot) {
1592 		srcu_read_unlock(&kvm->srcu, idx);
1593 		return -EINVAL;
1594 	}
1595 
1596 	write_lock(&kvm->mmu_lock);
1597 
1598 	if (!kvmgt_gfn_is_write_protected(info, gfn))
1599 		goto out;
1600 
1601 	kvm_slot_page_track_remove_page(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE);
1602 	kvmgt_protect_table_del(info, gfn);
1603 
1604 out:
1605 	write_unlock(&kvm->mmu_lock);
1606 	srcu_read_unlock(&kvm->srcu, idx);
1607 	return 0;
1608 }
1609 
1610 static void kvmgt_page_track_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1611 		const u8 *val, int len,
1612 		struct kvm_page_track_notifier_node *node)
1613 {
1614 	struct intel_vgpu *info =
1615 		container_of(node, struct intel_vgpu, track_node);
1616 
1617 	if (kvmgt_gfn_is_write_protected(info, gpa_to_gfn(gpa)))
1618 		intel_vgpu_page_track_handler(info, gpa,
1619 						     (void *)val, len);
1620 }
1621 
1622 static void kvmgt_page_track_flush_slot(struct kvm *kvm,
1623 		struct kvm_memory_slot *slot,
1624 		struct kvm_page_track_notifier_node *node)
1625 {
1626 	int i;
1627 	gfn_t gfn;
1628 	struct intel_vgpu *info =
1629 		container_of(node, struct intel_vgpu, track_node);
1630 
1631 	write_lock(&kvm->mmu_lock);
1632 	for (i = 0; i < slot->npages; i++) {
1633 		gfn = slot->base_gfn + i;
1634 		if (kvmgt_gfn_is_write_protected(info, gfn)) {
1635 			kvm_slot_page_track_remove_page(kvm, slot, gfn,
1636 						KVM_PAGE_TRACK_WRITE);
1637 			kvmgt_protect_table_del(info, gfn);
1638 		}
1639 	}
1640 	write_unlock(&kvm->mmu_lock);
1641 }
1642 
1643 void intel_vgpu_detach_regions(struct intel_vgpu *vgpu)
1644 {
1645 	int i;
1646 
1647 	if (!vgpu->region)
1648 		return;
1649 
1650 	for (i = 0; i < vgpu->num_regions; i++)
1651 		if (vgpu->region[i].ops->release)
1652 			vgpu->region[i].ops->release(vgpu,
1653 					&vgpu->region[i]);
1654 	vgpu->num_regions = 0;
1655 	kfree(vgpu->region);
1656 	vgpu->region = NULL;
1657 }
1658 
1659 int intel_gvt_dma_map_guest_page(struct intel_vgpu *vgpu, unsigned long gfn,
1660 		unsigned long size, dma_addr_t *dma_addr)
1661 {
1662 	struct gvt_dma *entry;
1663 	int ret;
1664 
1665 	if (!vgpu->attached)
1666 		return -EINVAL;
1667 
1668 	mutex_lock(&vgpu->cache_lock);
1669 
1670 	entry = __gvt_cache_find_gfn(vgpu, gfn);
1671 	if (!entry) {
1672 		ret = gvt_dma_map_page(vgpu, gfn, dma_addr, size);
1673 		if (ret)
1674 			goto err_unlock;
1675 
1676 		ret = __gvt_cache_add(vgpu, gfn, *dma_addr, size);
1677 		if (ret)
1678 			goto err_unmap;
1679 	} else if (entry->size != size) {
1680 		/* the same gfn with different size: unmap and re-map */
1681 		gvt_dma_unmap_page(vgpu, gfn, entry->dma_addr, entry->size);
1682 		__gvt_cache_remove_entry(vgpu, entry);
1683 
1684 		ret = gvt_dma_map_page(vgpu, gfn, dma_addr, size);
1685 		if (ret)
1686 			goto err_unlock;
1687 
1688 		ret = __gvt_cache_add(vgpu, gfn, *dma_addr, size);
1689 		if (ret)
1690 			goto err_unmap;
1691 	} else {
1692 		kref_get(&entry->ref);
1693 		*dma_addr = entry->dma_addr;
1694 	}
1695 
1696 	mutex_unlock(&vgpu->cache_lock);
1697 	return 0;
1698 
1699 err_unmap:
1700 	gvt_dma_unmap_page(vgpu, gfn, *dma_addr, size);
1701 err_unlock:
1702 	mutex_unlock(&vgpu->cache_lock);
1703 	return ret;
1704 }
1705 
1706 int intel_gvt_dma_pin_guest_page(struct intel_vgpu *vgpu, dma_addr_t dma_addr)
1707 {
1708 	struct gvt_dma *entry;
1709 	int ret = 0;
1710 
1711 	if (!vgpu->attached)
1712 		return -ENODEV;
1713 
1714 	mutex_lock(&vgpu->cache_lock);
1715 	entry = __gvt_cache_find_dma_addr(vgpu, dma_addr);
1716 	if (entry)
1717 		kref_get(&entry->ref);
1718 	else
1719 		ret = -ENOMEM;
1720 	mutex_unlock(&vgpu->cache_lock);
1721 
1722 	return ret;
1723 }
1724 
1725 static void __gvt_dma_release(struct kref *ref)
1726 {
1727 	struct gvt_dma *entry = container_of(ref, typeof(*entry), ref);
1728 
1729 	gvt_dma_unmap_page(entry->vgpu, entry->gfn, entry->dma_addr,
1730 			   entry->size);
1731 	__gvt_cache_remove_entry(entry->vgpu, entry);
1732 }
1733 
1734 void intel_gvt_dma_unmap_guest_page(struct intel_vgpu *vgpu,
1735 		dma_addr_t dma_addr)
1736 {
1737 	struct gvt_dma *entry;
1738 
1739 	if (!vgpu->attached)
1740 		return;
1741 
1742 	mutex_lock(&vgpu->cache_lock);
1743 	entry = __gvt_cache_find_dma_addr(vgpu, dma_addr);
1744 	if (entry)
1745 		kref_put(&entry->ref, __gvt_dma_release);
1746 	mutex_unlock(&vgpu->cache_lock);
1747 }
1748 
1749 static void init_device_info(struct intel_gvt *gvt)
1750 {
1751 	struct intel_gvt_device_info *info = &gvt->device_info;
1752 	struct pci_dev *pdev = to_pci_dev(gvt->gt->i915->drm.dev);
1753 
1754 	info->max_support_vgpus = 8;
1755 	info->cfg_space_size = PCI_CFG_SPACE_EXP_SIZE;
1756 	info->mmio_size = 2 * 1024 * 1024;
1757 	info->mmio_bar = 0;
1758 	info->gtt_start_offset = 8 * 1024 * 1024;
1759 	info->gtt_entry_size = 8;
1760 	info->gtt_entry_size_shift = 3;
1761 	info->gmadr_bytes_in_cmd = 8;
1762 	info->max_surface_size = 36 * 1024 * 1024;
1763 	info->msi_cap_offset = pdev->msi_cap;
1764 }
1765 
1766 static void intel_gvt_test_and_emulate_vblank(struct intel_gvt *gvt)
1767 {
1768 	struct intel_vgpu *vgpu;
1769 	int id;
1770 
1771 	mutex_lock(&gvt->lock);
1772 	idr_for_each_entry((&(gvt)->vgpu_idr), (vgpu), (id)) {
1773 		if (test_and_clear_bit(INTEL_GVT_REQUEST_EMULATE_VBLANK + id,
1774 				       (void *)&gvt->service_request)) {
1775 			if (vgpu->active)
1776 				intel_vgpu_emulate_vblank(vgpu);
1777 		}
1778 	}
1779 	mutex_unlock(&gvt->lock);
1780 }
1781 
1782 static int gvt_service_thread(void *data)
1783 {
1784 	struct intel_gvt *gvt = (struct intel_gvt *)data;
1785 	int ret;
1786 
1787 	gvt_dbg_core("service thread start\n");
1788 
1789 	while (!kthread_should_stop()) {
1790 		ret = wait_event_interruptible(gvt->service_thread_wq,
1791 				kthread_should_stop() || gvt->service_request);
1792 
1793 		if (kthread_should_stop())
1794 			break;
1795 
1796 		if (WARN_ONCE(ret, "service thread is waken up by signal.\n"))
1797 			continue;
1798 
1799 		intel_gvt_test_and_emulate_vblank(gvt);
1800 
1801 		if (test_bit(INTEL_GVT_REQUEST_SCHED,
1802 				(void *)&gvt->service_request) ||
1803 			test_bit(INTEL_GVT_REQUEST_EVENT_SCHED,
1804 					(void *)&gvt->service_request)) {
1805 			intel_gvt_schedule(gvt);
1806 		}
1807 	}
1808 
1809 	return 0;
1810 }
1811 
1812 static void clean_service_thread(struct intel_gvt *gvt)
1813 {
1814 	kthread_stop(gvt->service_thread);
1815 }
1816 
1817 static int init_service_thread(struct intel_gvt *gvt)
1818 {
1819 	init_waitqueue_head(&gvt->service_thread_wq);
1820 
1821 	gvt->service_thread = kthread_run(gvt_service_thread,
1822 			gvt, "gvt_service_thread");
1823 	if (IS_ERR(gvt->service_thread)) {
1824 		gvt_err("fail to start service thread.\n");
1825 		return PTR_ERR(gvt->service_thread);
1826 	}
1827 	return 0;
1828 }
1829 
1830 /**
1831  * intel_gvt_clean_device - clean a GVT device
1832  * @i915: i915 private
1833  *
1834  * This function is called at the driver unloading stage, to free the
1835  * resources owned by a GVT device.
1836  *
1837  */
1838 static void intel_gvt_clean_device(struct drm_i915_private *i915)
1839 {
1840 	struct intel_gvt *gvt = fetch_and_zero(&i915->gvt);
1841 
1842 	if (drm_WARN_ON(&i915->drm, !gvt))
1843 		return;
1844 
1845 	mdev_unregister_parent(&gvt->parent);
1846 	intel_gvt_destroy_idle_vgpu(gvt->idle_vgpu);
1847 	intel_gvt_clean_vgpu_types(gvt);
1848 
1849 	intel_gvt_debugfs_clean(gvt);
1850 	clean_service_thread(gvt);
1851 	intel_gvt_clean_cmd_parser(gvt);
1852 	intel_gvt_clean_sched_policy(gvt);
1853 	intel_gvt_clean_workload_scheduler(gvt);
1854 	intel_gvt_clean_gtt(gvt);
1855 	intel_gvt_free_firmware(gvt);
1856 	intel_gvt_clean_mmio_info(gvt);
1857 	idr_destroy(&gvt->vgpu_idr);
1858 
1859 	kfree(i915->gvt);
1860 }
1861 
1862 /**
1863  * intel_gvt_init_device - initialize a GVT device
1864  * @i915: drm i915 private data
1865  *
1866  * This function is called at the initialization stage, to initialize
1867  * necessary GVT components.
1868  *
1869  * Returns:
1870  * Zero on success, negative error code if failed.
1871  *
1872  */
1873 static int intel_gvt_init_device(struct drm_i915_private *i915)
1874 {
1875 	struct intel_gvt *gvt;
1876 	struct intel_vgpu *vgpu;
1877 	int ret;
1878 
1879 	if (drm_WARN_ON(&i915->drm, i915->gvt))
1880 		return -EEXIST;
1881 
1882 	gvt = kzalloc(sizeof(struct intel_gvt), GFP_KERNEL);
1883 	if (!gvt)
1884 		return -ENOMEM;
1885 
1886 	gvt_dbg_core("init gvt device\n");
1887 
1888 	idr_init_base(&gvt->vgpu_idr, 1);
1889 	spin_lock_init(&gvt->scheduler.mmio_context_lock);
1890 	mutex_init(&gvt->lock);
1891 	mutex_init(&gvt->sched_lock);
1892 	gvt->gt = to_gt(i915);
1893 	i915->gvt = gvt;
1894 
1895 	init_device_info(gvt);
1896 
1897 	ret = intel_gvt_setup_mmio_info(gvt);
1898 	if (ret)
1899 		goto out_clean_idr;
1900 
1901 	intel_gvt_init_engine_mmio_context(gvt);
1902 
1903 	ret = intel_gvt_load_firmware(gvt);
1904 	if (ret)
1905 		goto out_clean_mmio_info;
1906 
1907 	ret = intel_gvt_init_irq(gvt);
1908 	if (ret)
1909 		goto out_free_firmware;
1910 
1911 	ret = intel_gvt_init_gtt(gvt);
1912 	if (ret)
1913 		goto out_free_firmware;
1914 
1915 	ret = intel_gvt_init_workload_scheduler(gvt);
1916 	if (ret)
1917 		goto out_clean_gtt;
1918 
1919 	ret = intel_gvt_init_sched_policy(gvt);
1920 	if (ret)
1921 		goto out_clean_workload_scheduler;
1922 
1923 	ret = intel_gvt_init_cmd_parser(gvt);
1924 	if (ret)
1925 		goto out_clean_sched_policy;
1926 
1927 	ret = init_service_thread(gvt);
1928 	if (ret)
1929 		goto out_clean_cmd_parser;
1930 
1931 	ret = intel_gvt_init_vgpu_types(gvt);
1932 	if (ret)
1933 		goto out_clean_thread;
1934 
1935 	vgpu = intel_gvt_create_idle_vgpu(gvt);
1936 	if (IS_ERR(vgpu)) {
1937 		ret = PTR_ERR(vgpu);
1938 		gvt_err("failed to create idle vgpu\n");
1939 		goto out_clean_types;
1940 	}
1941 	gvt->idle_vgpu = vgpu;
1942 
1943 	intel_gvt_debugfs_init(gvt);
1944 
1945 	ret = mdev_register_parent(&gvt->parent, i915->drm.dev,
1946 				   &intel_vgpu_mdev_driver,
1947 				   gvt->mdev_types, gvt->num_types);
1948 	if (ret)
1949 		goto out_destroy_idle_vgpu;
1950 
1951 	gvt_dbg_core("gvt device initialization is done\n");
1952 	return 0;
1953 
1954 out_destroy_idle_vgpu:
1955 	intel_gvt_destroy_idle_vgpu(gvt->idle_vgpu);
1956 	intel_gvt_debugfs_clean(gvt);
1957 out_clean_types:
1958 	intel_gvt_clean_vgpu_types(gvt);
1959 out_clean_thread:
1960 	clean_service_thread(gvt);
1961 out_clean_cmd_parser:
1962 	intel_gvt_clean_cmd_parser(gvt);
1963 out_clean_sched_policy:
1964 	intel_gvt_clean_sched_policy(gvt);
1965 out_clean_workload_scheduler:
1966 	intel_gvt_clean_workload_scheduler(gvt);
1967 out_clean_gtt:
1968 	intel_gvt_clean_gtt(gvt);
1969 out_free_firmware:
1970 	intel_gvt_free_firmware(gvt);
1971 out_clean_mmio_info:
1972 	intel_gvt_clean_mmio_info(gvt);
1973 out_clean_idr:
1974 	idr_destroy(&gvt->vgpu_idr);
1975 	kfree(gvt);
1976 	i915->gvt = NULL;
1977 	return ret;
1978 }
1979 
1980 static void intel_gvt_pm_resume(struct drm_i915_private *i915)
1981 {
1982 	struct intel_gvt *gvt = i915->gvt;
1983 
1984 	intel_gvt_restore_fence(gvt);
1985 	intel_gvt_restore_mmio(gvt);
1986 	intel_gvt_restore_ggtt(gvt);
1987 }
1988 
1989 static const struct intel_vgpu_ops intel_gvt_vgpu_ops = {
1990 	.init_device	= intel_gvt_init_device,
1991 	.clean_device	= intel_gvt_clean_device,
1992 	.pm_resume	= intel_gvt_pm_resume,
1993 };
1994 
1995 static int __init kvmgt_init(void)
1996 {
1997 	int ret;
1998 
1999 	ret = intel_gvt_set_ops(&intel_gvt_vgpu_ops);
2000 	if (ret)
2001 		return ret;
2002 
2003 	ret = mdev_register_driver(&intel_vgpu_mdev_driver);
2004 	if (ret)
2005 		intel_gvt_clear_ops(&intel_gvt_vgpu_ops);
2006 	return ret;
2007 }
2008 
2009 static void __exit kvmgt_exit(void)
2010 {
2011 	mdev_unregister_driver(&intel_vgpu_mdev_driver);
2012 	intel_gvt_clear_ops(&intel_gvt_vgpu_ops);
2013 }
2014 
2015 module_init(kvmgt_init);
2016 module_exit(kvmgt_exit);
2017 
2018 MODULE_LICENSE("GPL and additional rights");
2019 MODULE_AUTHOR("Intel Corporation");
2020