xref: /linux/drivers/gpu/drm/i915/gvt/kvmgt.c (revision 21ab7031cbff8c6b6f608234e18ffe0473e98f9d)
1 /*
2  * KVMGT - the implementation of Intel mediated pass-through framework for KVM
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Kevin Tian <kevin.tian@intel.com>
27  *    Jike Song <jike.song@intel.com>
28  *    Xiaoguang Chen <xiaoguang.chen@intel.com>
29  *    Eddie Dong <eddie.dong@intel.com>
30  *
31  * Contributors:
32  *    Niu Bing <bing.niu@intel.com>
33  *    Zhi Wang <zhi.a.wang@intel.com>
34  */
35 
36 #include <linux/init.h>
37 #include <linux/mm.h>
38 #include <linux/kthread.h>
39 #include <linux/sched/mm.h>
40 #include <linux/types.h>
41 #include <linux/list.h>
42 #include <linux/rbtree.h>
43 #include <linux/spinlock.h>
44 #include <linux/eventfd.h>
45 #include <linux/mdev.h>
46 #include <linux/debugfs.h>
47 
48 #include <linux/nospec.h>
49 
50 #include <drm/drm_edid.h>
51 
52 #include "i915_drv.h"
53 #include "intel_gvt.h"
54 #include "gvt.h"
55 
56 MODULE_IMPORT_NS(DMA_BUF);
57 MODULE_IMPORT_NS(I915_GVT);
58 
59 /* helper macros copied from vfio-pci */
60 #define VFIO_PCI_OFFSET_SHIFT   40
61 #define VFIO_PCI_OFFSET_TO_INDEX(off)   (off >> VFIO_PCI_OFFSET_SHIFT)
62 #define VFIO_PCI_INDEX_TO_OFFSET(index) ((u64)(index) << VFIO_PCI_OFFSET_SHIFT)
63 #define VFIO_PCI_OFFSET_MASK    (((u64)(1) << VFIO_PCI_OFFSET_SHIFT) - 1)
64 
65 #define EDID_BLOB_OFFSET (PAGE_SIZE/2)
66 
67 #define OPREGION_SIGNATURE "IntelGraphicsMem"
68 
69 struct vfio_region;
70 struct intel_vgpu_regops {
71 	size_t (*rw)(struct intel_vgpu *vgpu, char *buf,
72 			size_t count, loff_t *ppos, bool iswrite);
73 	void (*release)(struct intel_vgpu *vgpu,
74 			struct vfio_region *region);
75 };
76 
77 struct vfio_region {
78 	u32				type;
79 	u32				subtype;
80 	size_t				size;
81 	u32				flags;
82 	const struct intel_vgpu_regops	*ops;
83 	void				*data;
84 };
85 
86 struct vfio_edid_region {
87 	struct vfio_region_gfx_edid vfio_edid_regs;
88 	void *edid_blob;
89 };
90 
91 struct kvmgt_pgfn {
92 	gfn_t gfn;
93 	struct hlist_node hnode;
94 };
95 
96 struct gvt_dma {
97 	struct intel_vgpu *vgpu;
98 	struct rb_node gfn_node;
99 	struct rb_node dma_addr_node;
100 	gfn_t gfn;
101 	dma_addr_t dma_addr;
102 	unsigned long size;
103 	struct kref ref;
104 };
105 
106 #define vfio_dev_to_vgpu(vfio_dev) \
107 	container_of((vfio_dev), struct intel_vgpu, vfio_device)
108 
109 static void kvmgt_page_track_write(struct kvm_vcpu *vcpu, gpa_t gpa,
110 		const u8 *val, int len,
111 		struct kvm_page_track_notifier_node *node);
112 static void kvmgt_page_track_flush_slot(struct kvm *kvm,
113 		struct kvm_memory_slot *slot,
114 		struct kvm_page_track_notifier_node *node);
115 
116 static ssize_t intel_vgpu_show_description(struct mdev_type *mtype, char *buf)
117 {
118 	struct intel_vgpu_type *type =
119 		container_of(mtype, struct intel_vgpu_type, type);
120 
121 	return sprintf(buf, "low_gm_size: %dMB\nhigh_gm_size: %dMB\n"
122 		       "fence: %d\nresolution: %s\n"
123 		       "weight: %d\n",
124 		       BYTES_TO_MB(type->conf->low_mm),
125 		       BYTES_TO_MB(type->conf->high_mm),
126 		       type->conf->fence, vgpu_edid_str(type->conf->edid),
127 		       type->conf->weight);
128 }
129 
130 static void gvt_unpin_guest_page(struct intel_vgpu *vgpu, unsigned long gfn,
131 		unsigned long size)
132 {
133 	vfio_unpin_pages(&vgpu->vfio_device, gfn << PAGE_SHIFT,
134 			 DIV_ROUND_UP(size, PAGE_SIZE));
135 }
136 
137 /* Pin a normal or compound guest page for dma. */
138 static int gvt_pin_guest_page(struct intel_vgpu *vgpu, unsigned long gfn,
139 		unsigned long size, struct page **page)
140 {
141 	int total_pages = DIV_ROUND_UP(size, PAGE_SIZE);
142 	struct page *base_page = NULL;
143 	int npage;
144 	int ret;
145 
146 	/*
147 	 * We pin the pages one-by-one to avoid allocating a big arrary
148 	 * on stack to hold pfns.
149 	 */
150 	for (npage = 0; npage < total_pages; npage++) {
151 		dma_addr_t cur_iova = (gfn + npage) << PAGE_SHIFT;
152 		struct page *cur_page;
153 
154 		ret = vfio_pin_pages(&vgpu->vfio_device, cur_iova, 1,
155 				     IOMMU_READ | IOMMU_WRITE, &cur_page);
156 		if (ret != 1) {
157 			gvt_vgpu_err("vfio_pin_pages failed for iova %pad, ret %d\n",
158 				     &cur_iova, ret);
159 			goto err;
160 		}
161 
162 		if (npage == 0)
163 			base_page = cur_page;
164 		else if (base_page + npage != cur_page) {
165 			gvt_vgpu_err("The pages are not continuous\n");
166 			ret = -EINVAL;
167 			npage++;
168 			goto err;
169 		}
170 	}
171 
172 	*page = base_page;
173 	return 0;
174 err:
175 	gvt_unpin_guest_page(vgpu, gfn, npage * PAGE_SIZE);
176 	return ret;
177 }
178 
179 static int gvt_dma_map_page(struct intel_vgpu *vgpu, unsigned long gfn,
180 		dma_addr_t *dma_addr, unsigned long size)
181 {
182 	struct device *dev = vgpu->gvt->gt->i915->drm.dev;
183 	struct page *page = NULL;
184 	int ret;
185 
186 	ret = gvt_pin_guest_page(vgpu, gfn, size, &page);
187 	if (ret)
188 		return ret;
189 
190 	/* Setup DMA mapping. */
191 	*dma_addr = dma_map_page(dev, page, 0, size, DMA_BIDIRECTIONAL);
192 	if (dma_mapping_error(dev, *dma_addr)) {
193 		gvt_vgpu_err("DMA mapping failed for pfn 0x%lx, ret %d\n",
194 			     page_to_pfn(page), ret);
195 		gvt_unpin_guest_page(vgpu, gfn, size);
196 		return -ENOMEM;
197 	}
198 
199 	return 0;
200 }
201 
202 static void gvt_dma_unmap_page(struct intel_vgpu *vgpu, unsigned long gfn,
203 		dma_addr_t dma_addr, unsigned long size)
204 {
205 	struct device *dev = vgpu->gvt->gt->i915->drm.dev;
206 
207 	dma_unmap_page(dev, dma_addr, size, DMA_BIDIRECTIONAL);
208 	gvt_unpin_guest_page(vgpu, gfn, size);
209 }
210 
211 static struct gvt_dma *__gvt_cache_find_dma_addr(struct intel_vgpu *vgpu,
212 		dma_addr_t dma_addr)
213 {
214 	struct rb_node *node = vgpu->dma_addr_cache.rb_node;
215 	struct gvt_dma *itr;
216 
217 	while (node) {
218 		itr = rb_entry(node, struct gvt_dma, dma_addr_node);
219 
220 		if (dma_addr < itr->dma_addr)
221 			node = node->rb_left;
222 		else if (dma_addr > itr->dma_addr)
223 			node = node->rb_right;
224 		else
225 			return itr;
226 	}
227 	return NULL;
228 }
229 
230 static struct gvt_dma *__gvt_cache_find_gfn(struct intel_vgpu *vgpu, gfn_t gfn)
231 {
232 	struct rb_node *node = vgpu->gfn_cache.rb_node;
233 	struct gvt_dma *itr;
234 
235 	while (node) {
236 		itr = rb_entry(node, struct gvt_dma, gfn_node);
237 
238 		if (gfn < itr->gfn)
239 			node = node->rb_left;
240 		else if (gfn > itr->gfn)
241 			node = node->rb_right;
242 		else
243 			return itr;
244 	}
245 	return NULL;
246 }
247 
248 static int __gvt_cache_add(struct intel_vgpu *vgpu, gfn_t gfn,
249 		dma_addr_t dma_addr, unsigned long size)
250 {
251 	struct gvt_dma *new, *itr;
252 	struct rb_node **link, *parent = NULL;
253 
254 	new = kzalloc(sizeof(struct gvt_dma), GFP_KERNEL);
255 	if (!new)
256 		return -ENOMEM;
257 
258 	new->vgpu = vgpu;
259 	new->gfn = gfn;
260 	new->dma_addr = dma_addr;
261 	new->size = size;
262 	kref_init(&new->ref);
263 
264 	/* gfn_cache maps gfn to struct gvt_dma. */
265 	link = &vgpu->gfn_cache.rb_node;
266 	while (*link) {
267 		parent = *link;
268 		itr = rb_entry(parent, struct gvt_dma, gfn_node);
269 
270 		if (gfn < itr->gfn)
271 			link = &parent->rb_left;
272 		else
273 			link = &parent->rb_right;
274 	}
275 	rb_link_node(&new->gfn_node, parent, link);
276 	rb_insert_color(&new->gfn_node, &vgpu->gfn_cache);
277 
278 	/* dma_addr_cache maps dma addr to struct gvt_dma. */
279 	parent = NULL;
280 	link = &vgpu->dma_addr_cache.rb_node;
281 	while (*link) {
282 		parent = *link;
283 		itr = rb_entry(parent, struct gvt_dma, dma_addr_node);
284 
285 		if (dma_addr < itr->dma_addr)
286 			link = &parent->rb_left;
287 		else
288 			link = &parent->rb_right;
289 	}
290 	rb_link_node(&new->dma_addr_node, parent, link);
291 	rb_insert_color(&new->dma_addr_node, &vgpu->dma_addr_cache);
292 
293 	vgpu->nr_cache_entries++;
294 	return 0;
295 }
296 
297 static void __gvt_cache_remove_entry(struct intel_vgpu *vgpu,
298 				struct gvt_dma *entry)
299 {
300 	rb_erase(&entry->gfn_node, &vgpu->gfn_cache);
301 	rb_erase(&entry->dma_addr_node, &vgpu->dma_addr_cache);
302 	kfree(entry);
303 	vgpu->nr_cache_entries--;
304 }
305 
306 static void gvt_cache_destroy(struct intel_vgpu *vgpu)
307 {
308 	struct gvt_dma *dma;
309 	struct rb_node *node = NULL;
310 
311 	for (;;) {
312 		mutex_lock(&vgpu->cache_lock);
313 		node = rb_first(&vgpu->gfn_cache);
314 		if (!node) {
315 			mutex_unlock(&vgpu->cache_lock);
316 			break;
317 		}
318 		dma = rb_entry(node, struct gvt_dma, gfn_node);
319 		gvt_dma_unmap_page(vgpu, dma->gfn, dma->dma_addr, dma->size);
320 		__gvt_cache_remove_entry(vgpu, dma);
321 		mutex_unlock(&vgpu->cache_lock);
322 	}
323 }
324 
325 static void gvt_cache_init(struct intel_vgpu *vgpu)
326 {
327 	vgpu->gfn_cache = RB_ROOT;
328 	vgpu->dma_addr_cache = RB_ROOT;
329 	vgpu->nr_cache_entries = 0;
330 	mutex_init(&vgpu->cache_lock);
331 }
332 
333 static void kvmgt_protect_table_init(struct intel_vgpu *info)
334 {
335 	hash_init(info->ptable);
336 }
337 
338 static void kvmgt_protect_table_destroy(struct intel_vgpu *info)
339 {
340 	struct kvmgt_pgfn *p;
341 	struct hlist_node *tmp;
342 	int i;
343 
344 	hash_for_each_safe(info->ptable, i, tmp, p, hnode) {
345 		hash_del(&p->hnode);
346 		kfree(p);
347 	}
348 }
349 
350 static struct kvmgt_pgfn *
351 __kvmgt_protect_table_find(struct intel_vgpu *info, gfn_t gfn)
352 {
353 	struct kvmgt_pgfn *p, *res = NULL;
354 
355 	hash_for_each_possible(info->ptable, p, hnode, gfn) {
356 		if (gfn == p->gfn) {
357 			res = p;
358 			break;
359 		}
360 	}
361 
362 	return res;
363 }
364 
365 static bool kvmgt_gfn_is_write_protected(struct intel_vgpu *info, gfn_t gfn)
366 {
367 	struct kvmgt_pgfn *p;
368 
369 	p = __kvmgt_protect_table_find(info, gfn);
370 	return !!p;
371 }
372 
373 static void kvmgt_protect_table_add(struct intel_vgpu *info, gfn_t gfn)
374 {
375 	struct kvmgt_pgfn *p;
376 
377 	if (kvmgt_gfn_is_write_protected(info, gfn))
378 		return;
379 
380 	p = kzalloc(sizeof(struct kvmgt_pgfn), GFP_ATOMIC);
381 	if (WARN(!p, "gfn: 0x%llx\n", gfn))
382 		return;
383 
384 	p->gfn = gfn;
385 	hash_add(info->ptable, &p->hnode, gfn);
386 }
387 
388 static void kvmgt_protect_table_del(struct intel_vgpu *info, gfn_t gfn)
389 {
390 	struct kvmgt_pgfn *p;
391 
392 	p = __kvmgt_protect_table_find(info, gfn);
393 	if (p) {
394 		hash_del(&p->hnode);
395 		kfree(p);
396 	}
397 }
398 
399 static size_t intel_vgpu_reg_rw_opregion(struct intel_vgpu *vgpu, char *buf,
400 		size_t count, loff_t *ppos, bool iswrite)
401 {
402 	unsigned int i = VFIO_PCI_OFFSET_TO_INDEX(*ppos) -
403 			VFIO_PCI_NUM_REGIONS;
404 	void *base = vgpu->region[i].data;
405 	loff_t pos = *ppos & VFIO_PCI_OFFSET_MASK;
406 
407 
408 	if (pos >= vgpu->region[i].size || iswrite) {
409 		gvt_vgpu_err("invalid op or offset for Intel vgpu OpRegion\n");
410 		return -EINVAL;
411 	}
412 	count = min(count, (size_t)(vgpu->region[i].size - pos));
413 	memcpy(buf, base + pos, count);
414 
415 	return count;
416 }
417 
418 static void intel_vgpu_reg_release_opregion(struct intel_vgpu *vgpu,
419 		struct vfio_region *region)
420 {
421 }
422 
423 static const struct intel_vgpu_regops intel_vgpu_regops_opregion = {
424 	.rw = intel_vgpu_reg_rw_opregion,
425 	.release = intel_vgpu_reg_release_opregion,
426 };
427 
428 static int handle_edid_regs(struct intel_vgpu *vgpu,
429 			struct vfio_edid_region *region, char *buf,
430 			size_t count, u16 offset, bool is_write)
431 {
432 	struct vfio_region_gfx_edid *regs = &region->vfio_edid_regs;
433 	unsigned int data;
434 
435 	if (offset + count > sizeof(*regs))
436 		return -EINVAL;
437 
438 	if (count != 4)
439 		return -EINVAL;
440 
441 	if (is_write) {
442 		data = *((unsigned int *)buf);
443 		switch (offset) {
444 		case offsetof(struct vfio_region_gfx_edid, link_state):
445 			if (data == VFIO_DEVICE_GFX_LINK_STATE_UP) {
446 				if (!drm_edid_block_valid(
447 					(u8 *)region->edid_blob,
448 					0,
449 					true,
450 					NULL)) {
451 					gvt_vgpu_err("invalid EDID blob\n");
452 					return -EINVAL;
453 				}
454 				intel_vgpu_emulate_hotplug(vgpu, true);
455 			} else if (data == VFIO_DEVICE_GFX_LINK_STATE_DOWN)
456 				intel_vgpu_emulate_hotplug(vgpu, false);
457 			else {
458 				gvt_vgpu_err("invalid EDID link state %d\n",
459 					regs->link_state);
460 				return -EINVAL;
461 			}
462 			regs->link_state = data;
463 			break;
464 		case offsetof(struct vfio_region_gfx_edid, edid_size):
465 			if (data > regs->edid_max_size) {
466 				gvt_vgpu_err("EDID size is bigger than %d!\n",
467 					regs->edid_max_size);
468 				return -EINVAL;
469 			}
470 			regs->edid_size = data;
471 			break;
472 		default:
473 			/* read-only regs */
474 			gvt_vgpu_err("write read-only EDID region at offset %d\n",
475 				offset);
476 			return -EPERM;
477 		}
478 	} else {
479 		memcpy(buf, (char *)regs + offset, count);
480 	}
481 
482 	return count;
483 }
484 
485 static int handle_edid_blob(struct vfio_edid_region *region, char *buf,
486 			size_t count, u16 offset, bool is_write)
487 {
488 	if (offset + count > region->vfio_edid_regs.edid_size)
489 		return -EINVAL;
490 
491 	if (is_write)
492 		memcpy(region->edid_blob + offset, buf, count);
493 	else
494 		memcpy(buf, region->edid_blob + offset, count);
495 
496 	return count;
497 }
498 
499 static size_t intel_vgpu_reg_rw_edid(struct intel_vgpu *vgpu, char *buf,
500 		size_t count, loff_t *ppos, bool iswrite)
501 {
502 	int ret;
503 	unsigned int i = VFIO_PCI_OFFSET_TO_INDEX(*ppos) -
504 			VFIO_PCI_NUM_REGIONS;
505 	struct vfio_edid_region *region = vgpu->region[i].data;
506 	loff_t pos = *ppos & VFIO_PCI_OFFSET_MASK;
507 
508 	if (pos < region->vfio_edid_regs.edid_offset) {
509 		ret = handle_edid_regs(vgpu, region, buf, count, pos, iswrite);
510 	} else {
511 		pos -= EDID_BLOB_OFFSET;
512 		ret = handle_edid_blob(region, buf, count, pos, iswrite);
513 	}
514 
515 	if (ret < 0)
516 		gvt_vgpu_err("failed to access EDID region\n");
517 
518 	return ret;
519 }
520 
521 static void intel_vgpu_reg_release_edid(struct intel_vgpu *vgpu,
522 					struct vfio_region *region)
523 {
524 	kfree(region->data);
525 }
526 
527 static const struct intel_vgpu_regops intel_vgpu_regops_edid = {
528 	.rw = intel_vgpu_reg_rw_edid,
529 	.release = intel_vgpu_reg_release_edid,
530 };
531 
532 static int intel_vgpu_register_reg(struct intel_vgpu *vgpu,
533 		unsigned int type, unsigned int subtype,
534 		const struct intel_vgpu_regops *ops,
535 		size_t size, u32 flags, void *data)
536 {
537 	struct vfio_region *region;
538 
539 	region = krealloc(vgpu->region,
540 			(vgpu->num_regions + 1) * sizeof(*region),
541 			GFP_KERNEL);
542 	if (!region)
543 		return -ENOMEM;
544 
545 	vgpu->region = region;
546 	vgpu->region[vgpu->num_regions].type = type;
547 	vgpu->region[vgpu->num_regions].subtype = subtype;
548 	vgpu->region[vgpu->num_regions].ops = ops;
549 	vgpu->region[vgpu->num_regions].size = size;
550 	vgpu->region[vgpu->num_regions].flags = flags;
551 	vgpu->region[vgpu->num_regions].data = data;
552 	vgpu->num_regions++;
553 	return 0;
554 }
555 
556 int intel_gvt_set_opregion(struct intel_vgpu *vgpu)
557 {
558 	void *base;
559 	int ret;
560 
561 	/* Each vgpu has its own opregion, although VFIO would create another
562 	 * one later. This one is used to expose opregion to VFIO. And the
563 	 * other one created by VFIO later, is used by guest actually.
564 	 */
565 	base = vgpu_opregion(vgpu)->va;
566 	if (!base)
567 		return -ENOMEM;
568 
569 	if (memcmp(base, OPREGION_SIGNATURE, 16)) {
570 		memunmap(base);
571 		return -EINVAL;
572 	}
573 
574 	ret = intel_vgpu_register_reg(vgpu,
575 			PCI_VENDOR_ID_INTEL | VFIO_REGION_TYPE_PCI_VENDOR_TYPE,
576 			VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION,
577 			&intel_vgpu_regops_opregion, OPREGION_SIZE,
578 			VFIO_REGION_INFO_FLAG_READ, base);
579 
580 	return ret;
581 }
582 
583 int intel_gvt_set_edid(struct intel_vgpu *vgpu, int port_num)
584 {
585 	struct intel_vgpu_port *port = intel_vgpu_port(vgpu, port_num);
586 	struct vfio_edid_region *base;
587 	int ret;
588 
589 	base = kzalloc(sizeof(*base), GFP_KERNEL);
590 	if (!base)
591 		return -ENOMEM;
592 
593 	/* TODO: Add multi-port and EDID extension block support */
594 	base->vfio_edid_regs.edid_offset = EDID_BLOB_OFFSET;
595 	base->vfio_edid_regs.edid_max_size = EDID_SIZE;
596 	base->vfio_edid_regs.edid_size = EDID_SIZE;
597 	base->vfio_edid_regs.max_xres = vgpu_edid_xres(port->id);
598 	base->vfio_edid_regs.max_yres = vgpu_edid_yres(port->id);
599 	base->edid_blob = port->edid->edid_block;
600 
601 	ret = intel_vgpu_register_reg(vgpu,
602 			VFIO_REGION_TYPE_GFX,
603 			VFIO_REGION_SUBTYPE_GFX_EDID,
604 			&intel_vgpu_regops_edid, EDID_SIZE,
605 			VFIO_REGION_INFO_FLAG_READ |
606 			VFIO_REGION_INFO_FLAG_WRITE |
607 			VFIO_REGION_INFO_FLAG_CAPS, base);
608 
609 	return ret;
610 }
611 
612 static void intel_vgpu_dma_unmap(struct vfio_device *vfio_dev, u64 iova,
613 				 u64 length)
614 {
615 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
616 	struct gvt_dma *entry;
617 	u64 iov_pfn = iova >> PAGE_SHIFT;
618 	u64 end_iov_pfn = iov_pfn + length / PAGE_SIZE;
619 
620 	mutex_lock(&vgpu->cache_lock);
621 	for (; iov_pfn < end_iov_pfn; iov_pfn++) {
622 		entry = __gvt_cache_find_gfn(vgpu, iov_pfn);
623 		if (!entry)
624 			continue;
625 
626 		gvt_dma_unmap_page(vgpu, entry->gfn, entry->dma_addr,
627 				   entry->size);
628 		__gvt_cache_remove_entry(vgpu, entry);
629 	}
630 	mutex_unlock(&vgpu->cache_lock);
631 }
632 
633 static bool __kvmgt_vgpu_exist(struct intel_vgpu *vgpu)
634 {
635 	struct intel_vgpu *itr;
636 	int id;
637 	bool ret = false;
638 
639 	mutex_lock(&vgpu->gvt->lock);
640 	for_each_active_vgpu(vgpu->gvt, itr, id) {
641 		if (!itr->attached)
642 			continue;
643 
644 		if (vgpu->vfio_device.kvm == itr->vfio_device.kvm) {
645 			ret = true;
646 			goto out;
647 		}
648 	}
649 out:
650 	mutex_unlock(&vgpu->gvt->lock);
651 	return ret;
652 }
653 
654 static int intel_vgpu_open_device(struct vfio_device *vfio_dev)
655 {
656 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
657 
658 	if (vgpu->attached)
659 		return -EEXIST;
660 
661 	if (!vgpu->vfio_device.kvm ||
662 	    vgpu->vfio_device.kvm->mm != current->mm) {
663 		gvt_vgpu_err("KVM is required to use Intel vGPU\n");
664 		return -ESRCH;
665 	}
666 
667 	if (__kvmgt_vgpu_exist(vgpu))
668 		return -EEXIST;
669 
670 	vgpu->attached = true;
671 
672 	vgpu->track_node.track_write = kvmgt_page_track_write;
673 	vgpu->track_node.track_flush_slot = kvmgt_page_track_flush_slot;
674 	kvm_get_kvm(vgpu->vfio_device.kvm);
675 	kvm_page_track_register_notifier(vgpu->vfio_device.kvm,
676 					 &vgpu->track_node);
677 
678 	debugfs_create_ulong(KVMGT_DEBUGFS_FILENAME, 0444, vgpu->debugfs,
679 			     &vgpu->nr_cache_entries);
680 
681 	intel_gvt_activate_vgpu(vgpu);
682 
683 	return 0;
684 }
685 
686 static void intel_vgpu_release_msi_eventfd_ctx(struct intel_vgpu *vgpu)
687 {
688 	struct eventfd_ctx *trigger;
689 
690 	trigger = vgpu->msi_trigger;
691 	if (trigger) {
692 		eventfd_ctx_put(trigger);
693 		vgpu->msi_trigger = NULL;
694 	}
695 }
696 
697 static void intel_vgpu_close_device(struct vfio_device *vfio_dev)
698 {
699 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
700 
701 	if (!vgpu->attached)
702 		return;
703 
704 	intel_gvt_release_vgpu(vgpu);
705 
706 	debugfs_remove(debugfs_lookup(KVMGT_DEBUGFS_FILENAME, vgpu->debugfs));
707 
708 	kvm_page_track_unregister_notifier(vgpu->vfio_device.kvm,
709 					   &vgpu->track_node);
710 	kvm_put_kvm(vgpu->vfio_device.kvm);
711 
712 	kvmgt_protect_table_destroy(vgpu);
713 	gvt_cache_destroy(vgpu);
714 
715 	WARN_ON(vgpu->nr_cache_entries);
716 
717 	vgpu->gfn_cache = RB_ROOT;
718 	vgpu->dma_addr_cache = RB_ROOT;
719 
720 	intel_vgpu_release_msi_eventfd_ctx(vgpu);
721 
722 	vgpu->attached = false;
723 }
724 
725 static u64 intel_vgpu_get_bar_addr(struct intel_vgpu *vgpu, int bar)
726 {
727 	u32 start_lo, start_hi;
728 	u32 mem_type;
729 
730 	start_lo = (*(u32 *)(vgpu->cfg_space.virtual_cfg_space + bar)) &
731 			PCI_BASE_ADDRESS_MEM_MASK;
732 	mem_type = (*(u32 *)(vgpu->cfg_space.virtual_cfg_space + bar)) &
733 			PCI_BASE_ADDRESS_MEM_TYPE_MASK;
734 
735 	switch (mem_type) {
736 	case PCI_BASE_ADDRESS_MEM_TYPE_64:
737 		start_hi = (*(u32 *)(vgpu->cfg_space.virtual_cfg_space
738 						+ bar + 4));
739 		break;
740 	case PCI_BASE_ADDRESS_MEM_TYPE_32:
741 	case PCI_BASE_ADDRESS_MEM_TYPE_1M:
742 		/* 1M mem BAR treated as 32-bit BAR */
743 	default:
744 		/* mem unknown type treated as 32-bit BAR */
745 		start_hi = 0;
746 		break;
747 	}
748 
749 	return ((u64)start_hi << 32) | start_lo;
750 }
751 
752 static int intel_vgpu_bar_rw(struct intel_vgpu *vgpu, int bar, u64 off,
753 			     void *buf, unsigned int count, bool is_write)
754 {
755 	u64 bar_start = intel_vgpu_get_bar_addr(vgpu, bar);
756 	int ret;
757 
758 	if (is_write)
759 		ret = intel_vgpu_emulate_mmio_write(vgpu,
760 					bar_start + off, buf, count);
761 	else
762 		ret = intel_vgpu_emulate_mmio_read(vgpu,
763 					bar_start + off, buf, count);
764 	return ret;
765 }
766 
767 static inline bool intel_vgpu_in_aperture(struct intel_vgpu *vgpu, u64 off)
768 {
769 	return off >= vgpu_aperture_offset(vgpu) &&
770 	       off < vgpu_aperture_offset(vgpu) + vgpu_aperture_sz(vgpu);
771 }
772 
773 static int intel_vgpu_aperture_rw(struct intel_vgpu *vgpu, u64 off,
774 		void *buf, unsigned long count, bool is_write)
775 {
776 	void __iomem *aperture_va;
777 
778 	if (!intel_vgpu_in_aperture(vgpu, off) ||
779 	    !intel_vgpu_in_aperture(vgpu, off + count)) {
780 		gvt_vgpu_err("Invalid aperture offset %llu\n", off);
781 		return -EINVAL;
782 	}
783 
784 	aperture_va = io_mapping_map_wc(&vgpu->gvt->gt->ggtt->iomap,
785 					ALIGN_DOWN(off, PAGE_SIZE),
786 					count + offset_in_page(off));
787 	if (!aperture_va)
788 		return -EIO;
789 
790 	if (is_write)
791 		memcpy_toio(aperture_va + offset_in_page(off), buf, count);
792 	else
793 		memcpy_fromio(buf, aperture_va + offset_in_page(off), count);
794 
795 	io_mapping_unmap(aperture_va);
796 
797 	return 0;
798 }
799 
800 static ssize_t intel_vgpu_rw(struct intel_vgpu *vgpu, char *buf,
801 			size_t count, loff_t *ppos, bool is_write)
802 {
803 	unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
804 	u64 pos = *ppos & VFIO_PCI_OFFSET_MASK;
805 	int ret = -EINVAL;
806 
807 
808 	if (index >= VFIO_PCI_NUM_REGIONS + vgpu->num_regions) {
809 		gvt_vgpu_err("invalid index: %u\n", index);
810 		return -EINVAL;
811 	}
812 
813 	switch (index) {
814 	case VFIO_PCI_CONFIG_REGION_INDEX:
815 		if (is_write)
816 			ret = intel_vgpu_emulate_cfg_write(vgpu, pos,
817 						buf, count);
818 		else
819 			ret = intel_vgpu_emulate_cfg_read(vgpu, pos,
820 						buf, count);
821 		break;
822 	case VFIO_PCI_BAR0_REGION_INDEX:
823 		ret = intel_vgpu_bar_rw(vgpu, PCI_BASE_ADDRESS_0, pos,
824 					buf, count, is_write);
825 		break;
826 	case VFIO_PCI_BAR2_REGION_INDEX:
827 		ret = intel_vgpu_aperture_rw(vgpu, pos, buf, count, is_write);
828 		break;
829 	case VFIO_PCI_BAR1_REGION_INDEX:
830 	case VFIO_PCI_BAR3_REGION_INDEX:
831 	case VFIO_PCI_BAR4_REGION_INDEX:
832 	case VFIO_PCI_BAR5_REGION_INDEX:
833 	case VFIO_PCI_VGA_REGION_INDEX:
834 	case VFIO_PCI_ROM_REGION_INDEX:
835 		break;
836 	default:
837 		if (index >= VFIO_PCI_NUM_REGIONS + vgpu->num_regions)
838 			return -EINVAL;
839 
840 		index -= VFIO_PCI_NUM_REGIONS;
841 		return vgpu->region[index].ops->rw(vgpu, buf, count,
842 				ppos, is_write);
843 	}
844 
845 	return ret == 0 ? count : ret;
846 }
847 
848 static bool gtt_entry(struct intel_vgpu *vgpu, loff_t *ppos)
849 {
850 	unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
851 	struct intel_gvt *gvt = vgpu->gvt;
852 	int offset;
853 
854 	/* Only allow MMIO GGTT entry access */
855 	if (index != PCI_BASE_ADDRESS_0)
856 		return false;
857 
858 	offset = (u64)(*ppos & VFIO_PCI_OFFSET_MASK) -
859 		intel_vgpu_get_bar_gpa(vgpu, PCI_BASE_ADDRESS_0);
860 
861 	return (offset >= gvt->device_info.gtt_start_offset &&
862 		offset < gvt->device_info.gtt_start_offset + gvt_ggtt_sz(gvt)) ?
863 			true : false;
864 }
865 
866 static ssize_t intel_vgpu_read(struct vfio_device *vfio_dev, char __user *buf,
867 			size_t count, loff_t *ppos)
868 {
869 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
870 	unsigned int done = 0;
871 	int ret;
872 
873 	while (count) {
874 		size_t filled;
875 
876 		/* Only support GGTT entry 8 bytes read */
877 		if (count >= 8 && !(*ppos % 8) &&
878 			gtt_entry(vgpu, ppos)) {
879 			u64 val;
880 
881 			ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val),
882 					ppos, false);
883 			if (ret <= 0)
884 				goto read_err;
885 
886 			if (copy_to_user(buf, &val, sizeof(val)))
887 				goto read_err;
888 
889 			filled = 8;
890 		} else if (count >= 4 && !(*ppos % 4)) {
891 			u32 val;
892 
893 			ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val),
894 					ppos, false);
895 			if (ret <= 0)
896 				goto read_err;
897 
898 			if (copy_to_user(buf, &val, sizeof(val)))
899 				goto read_err;
900 
901 			filled = 4;
902 		} else if (count >= 2 && !(*ppos % 2)) {
903 			u16 val;
904 
905 			ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val),
906 					ppos, false);
907 			if (ret <= 0)
908 				goto read_err;
909 
910 			if (copy_to_user(buf, &val, sizeof(val)))
911 				goto read_err;
912 
913 			filled = 2;
914 		} else {
915 			u8 val;
916 
917 			ret = intel_vgpu_rw(vgpu, &val, sizeof(val), ppos,
918 					false);
919 			if (ret <= 0)
920 				goto read_err;
921 
922 			if (copy_to_user(buf, &val, sizeof(val)))
923 				goto read_err;
924 
925 			filled = 1;
926 		}
927 
928 		count -= filled;
929 		done += filled;
930 		*ppos += filled;
931 		buf += filled;
932 	}
933 
934 	return done;
935 
936 read_err:
937 	return -EFAULT;
938 }
939 
940 static ssize_t intel_vgpu_write(struct vfio_device *vfio_dev,
941 				const char __user *buf,
942 				size_t count, loff_t *ppos)
943 {
944 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
945 	unsigned int done = 0;
946 	int ret;
947 
948 	while (count) {
949 		size_t filled;
950 
951 		/* Only support GGTT entry 8 bytes write */
952 		if (count >= 8 && !(*ppos % 8) &&
953 			gtt_entry(vgpu, ppos)) {
954 			u64 val;
955 
956 			if (copy_from_user(&val, buf, sizeof(val)))
957 				goto write_err;
958 
959 			ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val),
960 					ppos, true);
961 			if (ret <= 0)
962 				goto write_err;
963 
964 			filled = 8;
965 		} else if (count >= 4 && !(*ppos % 4)) {
966 			u32 val;
967 
968 			if (copy_from_user(&val, buf, sizeof(val)))
969 				goto write_err;
970 
971 			ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val),
972 					ppos, true);
973 			if (ret <= 0)
974 				goto write_err;
975 
976 			filled = 4;
977 		} else if (count >= 2 && !(*ppos % 2)) {
978 			u16 val;
979 
980 			if (copy_from_user(&val, buf, sizeof(val)))
981 				goto write_err;
982 
983 			ret = intel_vgpu_rw(vgpu, (char *)&val,
984 					sizeof(val), ppos, true);
985 			if (ret <= 0)
986 				goto write_err;
987 
988 			filled = 2;
989 		} else {
990 			u8 val;
991 
992 			if (copy_from_user(&val, buf, sizeof(val)))
993 				goto write_err;
994 
995 			ret = intel_vgpu_rw(vgpu, &val, sizeof(val),
996 					ppos, true);
997 			if (ret <= 0)
998 				goto write_err;
999 
1000 			filled = 1;
1001 		}
1002 
1003 		count -= filled;
1004 		done += filled;
1005 		*ppos += filled;
1006 		buf += filled;
1007 	}
1008 
1009 	return done;
1010 write_err:
1011 	return -EFAULT;
1012 }
1013 
1014 static int intel_vgpu_mmap(struct vfio_device *vfio_dev,
1015 		struct vm_area_struct *vma)
1016 {
1017 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
1018 	unsigned int index;
1019 	u64 virtaddr;
1020 	unsigned long req_size, pgoff, req_start;
1021 	pgprot_t pg_prot;
1022 
1023 	index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT);
1024 	if (index >= VFIO_PCI_ROM_REGION_INDEX)
1025 		return -EINVAL;
1026 
1027 	if (vma->vm_end < vma->vm_start)
1028 		return -EINVAL;
1029 	if ((vma->vm_flags & VM_SHARED) == 0)
1030 		return -EINVAL;
1031 	if (index != VFIO_PCI_BAR2_REGION_INDEX)
1032 		return -EINVAL;
1033 
1034 	pg_prot = vma->vm_page_prot;
1035 	virtaddr = vma->vm_start;
1036 	req_size = vma->vm_end - vma->vm_start;
1037 	pgoff = vma->vm_pgoff &
1038 		((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1);
1039 	req_start = pgoff << PAGE_SHIFT;
1040 
1041 	if (!intel_vgpu_in_aperture(vgpu, req_start))
1042 		return -EINVAL;
1043 	if (req_start + req_size >
1044 	    vgpu_aperture_offset(vgpu) + vgpu_aperture_sz(vgpu))
1045 		return -EINVAL;
1046 
1047 	pgoff = (gvt_aperture_pa_base(vgpu->gvt) >> PAGE_SHIFT) + pgoff;
1048 
1049 	return remap_pfn_range(vma, virtaddr, pgoff, req_size, pg_prot);
1050 }
1051 
1052 static int intel_vgpu_get_irq_count(struct intel_vgpu *vgpu, int type)
1053 {
1054 	if (type == VFIO_PCI_INTX_IRQ_INDEX || type == VFIO_PCI_MSI_IRQ_INDEX)
1055 		return 1;
1056 
1057 	return 0;
1058 }
1059 
1060 static int intel_vgpu_set_intx_mask(struct intel_vgpu *vgpu,
1061 			unsigned int index, unsigned int start,
1062 			unsigned int count, u32 flags,
1063 			void *data)
1064 {
1065 	return 0;
1066 }
1067 
1068 static int intel_vgpu_set_intx_unmask(struct intel_vgpu *vgpu,
1069 			unsigned int index, unsigned int start,
1070 			unsigned int count, u32 flags, void *data)
1071 {
1072 	return 0;
1073 }
1074 
1075 static int intel_vgpu_set_intx_trigger(struct intel_vgpu *vgpu,
1076 		unsigned int index, unsigned int start, unsigned int count,
1077 		u32 flags, void *data)
1078 {
1079 	return 0;
1080 }
1081 
1082 static int intel_vgpu_set_msi_trigger(struct intel_vgpu *vgpu,
1083 		unsigned int index, unsigned int start, unsigned int count,
1084 		u32 flags, void *data)
1085 {
1086 	struct eventfd_ctx *trigger;
1087 
1088 	if (flags & VFIO_IRQ_SET_DATA_EVENTFD) {
1089 		int fd = *(int *)data;
1090 
1091 		trigger = eventfd_ctx_fdget(fd);
1092 		if (IS_ERR(trigger)) {
1093 			gvt_vgpu_err("eventfd_ctx_fdget failed\n");
1094 			return PTR_ERR(trigger);
1095 		}
1096 		vgpu->msi_trigger = trigger;
1097 	} else if ((flags & VFIO_IRQ_SET_DATA_NONE) && !count)
1098 		intel_vgpu_release_msi_eventfd_ctx(vgpu);
1099 
1100 	return 0;
1101 }
1102 
1103 static int intel_vgpu_set_irqs(struct intel_vgpu *vgpu, u32 flags,
1104 		unsigned int index, unsigned int start, unsigned int count,
1105 		void *data)
1106 {
1107 	int (*func)(struct intel_vgpu *vgpu, unsigned int index,
1108 			unsigned int start, unsigned int count, u32 flags,
1109 			void *data) = NULL;
1110 
1111 	switch (index) {
1112 	case VFIO_PCI_INTX_IRQ_INDEX:
1113 		switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) {
1114 		case VFIO_IRQ_SET_ACTION_MASK:
1115 			func = intel_vgpu_set_intx_mask;
1116 			break;
1117 		case VFIO_IRQ_SET_ACTION_UNMASK:
1118 			func = intel_vgpu_set_intx_unmask;
1119 			break;
1120 		case VFIO_IRQ_SET_ACTION_TRIGGER:
1121 			func = intel_vgpu_set_intx_trigger;
1122 			break;
1123 		}
1124 		break;
1125 	case VFIO_PCI_MSI_IRQ_INDEX:
1126 		switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) {
1127 		case VFIO_IRQ_SET_ACTION_MASK:
1128 		case VFIO_IRQ_SET_ACTION_UNMASK:
1129 			/* XXX Need masking support exported */
1130 			break;
1131 		case VFIO_IRQ_SET_ACTION_TRIGGER:
1132 			func = intel_vgpu_set_msi_trigger;
1133 			break;
1134 		}
1135 		break;
1136 	}
1137 
1138 	if (!func)
1139 		return -ENOTTY;
1140 
1141 	return func(vgpu, index, start, count, flags, data);
1142 }
1143 
1144 static long intel_vgpu_ioctl(struct vfio_device *vfio_dev, unsigned int cmd,
1145 			     unsigned long arg)
1146 {
1147 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
1148 	unsigned long minsz;
1149 
1150 	gvt_dbg_core("vgpu%d ioctl, cmd: %d\n", vgpu->id, cmd);
1151 
1152 	if (cmd == VFIO_DEVICE_GET_INFO) {
1153 		struct vfio_device_info info;
1154 
1155 		minsz = offsetofend(struct vfio_device_info, num_irqs);
1156 
1157 		if (copy_from_user(&info, (void __user *)arg, minsz))
1158 			return -EFAULT;
1159 
1160 		if (info.argsz < minsz)
1161 			return -EINVAL;
1162 
1163 		info.flags = VFIO_DEVICE_FLAGS_PCI;
1164 		info.flags |= VFIO_DEVICE_FLAGS_RESET;
1165 		info.num_regions = VFIO_PCI_NUM_REGIONS +
1166 				vgpu->num_regions;
1167 		info.num_irqs = VFIO_PCI_NUM_IRQS;
1168 
1169 		return copy_to_user((void __user *)arg, &info, minsz) ?
1170 			-EFAULT : 0;
1171 
1172 	} else if (cmd == VFIO_DEVICE_GET_REGION_INFO) {
1173 		struct vfio_region_info info;
1174 		struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
1175 		unsigned int i;
1176 		int ret;
1177 		struct vfio_region_info_cap_sparse_mmap *sparse = NULL;
1178 		int nr_areas = 1;
1179 		int cap_type_id;
1180 
1181 		minsz = offsetofend(struct vfio_region_info, offset);
1182 
1183 		if (copy_from_user(&info, (void __user *)arg, minsz))
1184 			return -EFAULT;
1185 
1186 		if (info.argsz < minsz)
1187 			return -EINVAL;
1188 
1189 		switch (info.index) {
1190 		case VFIO_PCI_CONFIG_REGION_INDEX:
1191 			info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1192 			info.size = vgpu->gvt->device_info.cfg_space_size;
1193 			info.flags = VFIO_REGION_INFO_FLAG_READ |
1194 				     VFIO_REGION_INFO_FLAG_WRITE;
1195 			break;
1196 		case VFIO_PCI_BAR0_REGION_INDEX:
1197 			info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1198 			info.size = vgpu->cfg_space.bar[info.index].size;
1199 			if (!info.size) {
1200 				info.flags = 0;
1201 				break;
1202 			}
1203 
1204 			info.flags = VFIO_REGION_INFO_FLAG_READ |
1205 				     VFIO_REGION_INFO_FLAG_WRITE;
1206 			break;
1207 		case VFIO_PCI_BAR1_REGION_INDEX:
1208 			info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1209 			info.size = 0;
1210 			info.flags = 0;
1211 			break;
1212 		case VFIO_PCI_BAR2_REGION_INDEX:
1213 			info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1214 			info.flags = VFIO_REGION_INFO_FLAG_CAPS |
1215 					VFIO_REGION_INFO_FLAG_MMAP |
1216 					VFIO_REGION_INFO_FLAG_READ |
1217 					VFIO_REGION_INFO_FLAG_WRITE;
1218 			info.size = gvt_aperture_sz(vgpu->gvt);
1219 
1220 			sparse = kzalloc(struct_size(sparse, areas, nr_areas),
1221 					 GFP_KERNEL);
1222 			if (!sparse)
1223 				return -ENOMEM;
1224 
1225 			sparse->header.id = VFIO_REGION_INFO_CAP_SPARSE_MMAP;
1226 			sparse->header.version = 1;
1227 			sparse->nr_areas = nr_areas;
1228 			cap_type_id = VFIO_REGION_INFO_CAP_SPARSE_MMAP;
1229 			sparse->areas[0].offset =
1230 					PAGE_ALIGN(vgpu_aperture_offset(vgpu));
1231 			sparse->areas[0].size = vgpu_aperture_sz(vgpu);
1232 			break;
1233 
1234 		case VFIO_PCI_BAR3_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX:
1235 			info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1236 			info.size = 0;
1237 			info.flags = 0;
1238 
1239 			gvt_dbg_core("get region info bar:%d\n", info.index);
1240 			break;
1241 
1242 		case VFIO_PCI_ROM_REGION_INDEX:
1243 		case VFIO_PCI_VGA_REGION_INDEX:
1244 			info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1245 			info.size = 0;
1246 			info.flags = 0;
1247 
1248 			gvt_dbg_core("get region info index:%d\n", info.index);
1249 			break;
1250 		default:
1251 			{
1252 				struct vfio_region_info_cap_type cap_type = {
1253 					.header.id = VFIO_REGION_INFO_CAP_TYPE,
1254 					.header.version = 1 };
1255 
1256 				if (info.index >= VFIO_PCI_NUM_REGIONS +
1257 						vgpu->num_regions)
1258 					return -EINVAL;
1259 				info.index =
1260 					array_index_nospec(info.index,
1261 							VFIO_PCI_NUM_REGIONS +
1262 							vgpu->num_regions);
1263 
1264 				i = info.index - VFIO_PCI_NUM_REGIONS;
1265 
1266 				info.offset =
1267 					VFIO_PCI_INDEX_TO_OFFSET(info.index);
1268 				info.size = vgpu->region[i].size;
1269 				info.flags = vgpu->region[i].flags;
1270 
1271 				cap_type.type = vgpu->region[i].type;
1272 				cap_type.subtype = vgpu->region[i].subtype;
1273 
1274 				ret = vfio_info_add_capability(&caps,
1275 							&cap_type.header,
1276 							sizeof(cap_type));
1277 				if (ret)
1278 					return ret;
1279 			}
1280 		}
1281 
1282 		if ((info.flags & VFIO_REGION_INFO_FLAG_CAPS) && sparse) {
1283 			switch (cap_type_id) {
1284 			case VFIO_REGION_INFO_CAP_SPARSE_MMAP:
1285 				ret = vfio_info_add_capability(&caps,
1286 					&sparse->header,
1287 					struct_size(sparse, areas,
1288 						    sparse->nr_areas));
1289 				if (ret) {
1290 					kfree(sparse);
1291 					return ret;
1292 				}
1293 				break;
1294 			default:
1295 				kfree(sparse);
1296 				return -EINVAL;
1297 			}
1298 		}
1299 
1300 		if (caps.size) {
1301 			info.flags |= VFIO_REGION_INFO_FLAG_CAPS;
1302 			if (info.argsz < sizeof(info) + caps.size) {
1303 				info.argsz = sizeof(info) + caps.size;
1304 				info.cap_offset = 0;
1305 			} else {
1306 				vfio_info_cap_shift(&caps, sizeof(info));
1307 				if (copy_to_user((void __user *)arg +
1308 						  sizeof(info), caps.buf,
1309 						  caps.size)) {
1310 					kfree(caps.buf);
1311 					kfree(sparse);
1312 					return -EFAULT;
1313 				}
1314 				info.cap_offset = sizeof(info);
1315 			}
1316 
1317 			kfree(caps.buf);
1318 		}
1319 
1320 		kfree(sparse);
1321 		return copy_to_user((void __user *)arg, &info, minsz) ?
1322 			-EFAULT : 0;
1323 	} else if (cmd == VFIO_DEVICE_GET_IRQ_INFO) {
1324 		struct vfio_irq_info info;
1325 
1326 		minsz = offsetofend(struct vfio_irq_info, count);
1327 
1328 		if (copy_from_user(&info, (void __user *)arg, minsz))
1329 			return -EFAULT;
1330 
1331 		if (info.argsz < minsz || info.index >= VFIO_PCI_NUM_IRQS)
1332 			return -EINVAL;
1333 
1334 		switch (info.index) {
1335 		case VFIO_PCI_INTX_IRQ_INDEX:
1336 		case VFIO_PCI_MSI_IRQ_INDEX:
1337 			break;
1338 		default:
1339 			return -EINVAL;
1340 		}
1341 
1342 		info.flags = VFIO_IRQ_INFO_EVENTFD;
1343 
1344 		info.count = intel_vgpu_get_irq_count(vgpu, info.index);
1345 
1346 		if (info.index == VFIO_PCI_INTX_IRQ_INDEX)
1347 			info.flags |= (VFIO_IRQ_INFO_MASKABLE |
1348 				       VFIO_IRQ_INFO_AUTOMASKED);
1349 		else
1350 			info.flags |= VFIO_IRQ_INFO_NORESIZE;
1351 
1352 		return copy_to_user((void __user *)arg, &info, minsz) ?
1353 			-EFAULT : 0;
1354 	} else if (cmd == VFIO_DEVICE_SET_IRQS) {
1355 		struct vfio_irq_set hdr;
1356 		u8 *data = NULL;
1357 		int ret = 0;
1358 		size_t data_size = 0;
1359 
1360 		minsz = offsetofend(struct vfio_irq_set, count);
1361 
1362 		if (copy_from_user(&hdr, (void __user *)arg, minsz))
1363 			return -EFAULT;
1364 
1365 		if (!(hdr.flags & VFIO_IRQ_SET_DATA_NONE)) {
1366 			int max = intel_vgpu_get_irq_count(vgpu, hdr.index);
1367 
1368 			ret = vfio_set_irqs_validate_and_prepare(&hdr, max,
1369 						VFIO_PCI_NUM_IRQS, &data_size);
1370 			if (ret) {
1371 				gvt_vgpu_err("intel:vfio_set_irqs_validate_and_prepare failed\n");
1372 				return -EINVAL;
1373 			}
1374 			if (data_size) {
1375 				data = memdup_user((void __user *)(arg + minsz),
1376 						   data_size);
1377 				if (IS_ERR(data))
1378 					return PTR_ERR(data);
1379 			}
1380 		}
1381 
1382 		ret = intel_vgpu_set_irqs(vgpu, hdr.flags, hdr.index,
1383 					hdr.start, hdr.count, data);
1384 		kfree(data);
1385 
1386 		return ret;
1387 	} else if (cmd == VFIO_DEVICE_RESET) {
1388 		intel_gvt_reset_vgpu(vgpu);
1389 		return 0;
1390 	} else if (cmd == VFIO_DEVICE_QUERY_GFX_PLANE) {
1391 		struct vfio_device_gfx_plane_info dmabuf;
1392 		int ret = 0;
1393 
1394 		minsz = offsetofend(struct vfio_device_gfx_plane_info,
1395 				    dmabuf_id);
1396 		if (copy_from_user(&dmabuf, (void __user *)arg, minsz))
1397 			return -EFAULT;
1398 		if (dmabuf.argsz < minsz)
1399 			return -EINVAL;
1400 
1401 		ret = intel_vgpu_query_plane(vgpu, &dmabuf);
1402 		if (ret != 0)
1403 			return ret;
1404 
1405 		return copy_to_user((void __user *)arg, &dmabuf, minsz) ?
1406 								-EFAULT : 0;
1407 	} else if (cmd == VFIO_DEVICE_GET_GFX_DMABUF) {
1408 		__u32 dmabuf_id;
1409 
1410 		if (get_user(dmabuf_id, (__u32 __user *)arg))
1411 			return -EFAULT;
1412 		return intel_vgpu_get_dmabuf(vgpu, dmabuf_id);
1413 	}
1414 
1415 	return -ENOTTY;
1416 }
1417 
1418 static ssize_t
1419 vgpu_id_show(struct device *dev, struct device_attribute *attr,
1420 	     char *buf)
1421 {
1422 	struct intel_vgpu *vgpu = dev_get_drvdata(dev);
1423 
1424 	return sprintf(buf, "%d\n", vgpu->id);
1425 }
1426 
1427 static DEVICE_ATTR_RO(vgpu_id);
1428 
1429 static struct attribute *intel_vgpu_attrs[] = {
1430 	&dev_attr_vgpu_id.attr,
1431 	NULL
1432 };
1433 
1434 static const struct attribute_group intel_vgpu_group = {
1435 	.name = "intel_vgpu",
1436 	.attrs = intel_vgpu_attrs,
1437 };
1438 
1439 static const struct attribute_group *intel_vgpu_groups[] = {
1440 	&intel_vgpu_group,
1441 	NULL,
1442 };
1443 
1444 static int intel_vgpu_init_dev(struct vfio_device *vfio_dev)
1445 {
1446 	struct mdev_device *mdev = to_mdev_device(vfio_dev->dev);
1447 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
1448 	struct intel_vgpu_type *type =
1449 		container_of(mdev->type, struct intel_vgpu_type, type);
1450 	int ret;
1451 
1452 	vgpu->gvt = kdev_to_i915(mdev->type->parent->dev)->gvt;
1453 	ret = intel_gvt_create_vgpu(vgpu, type->conf);
1454 	if (ret)
1455 		return ret;
1456 
1457 	kvmgt_protect_table_init(vgpu);
1458 	gvt_cache_init(vgpu);
1459 
1460 	return 0;
1461 }
1462 
1463 static void intel_vgpu_release_dev(struct vfio_device *vfio_dev)
1464 {
1465 	struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
1466 
1467 	intel_gvt_destroy_vgpu(vgpu);
1468 }
1469 
1470 static const struct vfio_device_ops intel_vgpu_dev_ops = {
1471 	.init		= intel_vgpu_init_dev,
1472 	.release	= intel_vgpu_release_dev,
1473 	.open_device	= intel_vgpu_open_device,
1474 	.close_device	= intel_vgpu_close_device,
1475 	.read		= intel_vgpu_read,
1476 	.write		= intel_vgpu_write,
1477 	.mmap		= intel_vgpu_mmap,
1478 	.ioctl		= intel_vgpu_ioctl,
1479 	.dma_unmap	= intel_vgpu_dma_unmap,
1480 	.bind_iommufd	= vfio_iommufd_emulated_bind,
1481 	.unbind_iommufd = vfio_iommufd_emulated_unbind,
1482 	.attach_ioas	= vfio_iommufd_emulated_attach_ioas,
1483 };
1484 
1485 static int intel_vgpu_probe(struct mdev_device *mdev)
1486 {
1487 	struct intel_vgpu *vgpu;
1488 	int ret;
1489 
1490 	vgpu = vfio_alloc_device(intel_vgpu, vfio_device, &mdev->dev,
1491 				 &intel_vgpu_dev_ops);
1492 	if (IS_ERR(vgpu)) {
1493 		gvt_err("failed to create intel vgpu: %ld\n", PTR_ERR(vgpu));
1494 		return PTR_ERR(vgpu);
1495 	}
1496 
1497 	dev_set_drvdata(&mdev->dev, vgpu);
1498 	ret = vfio_register_emulated_iommu_dev(&vgpu->vfio_device);
1499 	if (ret)
1500 		goto out_put_vdev;
1501 
1502 	gvt_dbg_core("intel_vgpu_create succeeded for mdev: %s\n",
1503 		     dev_name(mdev_dev(mdev)));
1504 	return 0;
1505 
1506 out_put_vdev:
1507 	vfio_put_device(&vgpu->vfio_device);
1508 	return ret;
1509 }
1510 
1511 static void intel_vgpu_remove(struct mdev_device *mdev)
1512 {
1513 	struct intel_vgpu *vgpu = dev_get_drvdata(&mdev->dev);
1514 
1515 	if (WARN_ON_ONCE(vgpu->attached))
1516 		return;
1517 
1518 	vfio_unregister_group_dev(&vgpu->vfio_device);
1519 	vfio_put_device(&vgpu->vfio_device);
1520 }
1521 
1522 static unsigned int intel_vgpu_get_available(struct mdev_type *mtype)
1523 {
1524 	struct intel_vgpu_type *type =
1525 		container_of(mtype, struct intel_vgpu_type, type);
1526 	struct intel_gvt *gvt = kdev_to_i915(mtype->parent->dev)->gvt;
1527 	unsigned int low_gm_avail, high_gm_avail, fence_avail;
1528 
1529 	mutex_lock(&gvt->lock);
1530 	low_gm_avail = gvt_aperture_sz(gvt) - HOST_LOW_GM_SIZE -
1531 		gvt->gm.vgpu_allocated_low_gm_size;
1532 	high_gm_avail = gvt_hidden_sz(gvt) - HOST_HIGH_GM_SIZE -
1533 		gvt->gm.vgpu_allocated_high_gm_size;
1534 	fence_avail = gvt_fence_sz(gvt) - HOST_FENCE -
1535 		gvt->fence.vgpu_allocated_fence_num;
1536 	mutex_unlock(&gvt->lock);
1537 
1538 	return min3(low_gm_avail / type->conf->low_mm,
1539 		    high_gm_avail / type->conf->high_mm,
1540 		    fence_avail / type->conf->fence);
1541 }
1542 
1543 static struct mdev_driver intel_vgpu_mdev_driver = {
1544 	.device_api	= VFIO_DEVICE_API_PCI_STRING,
1545 	.driver = {
1546 		.name		= "intel_vgpu_mdev",
1547 		.owner		= THIS_MODULE,
1548 		.dev_groups	= intel_vgpu_groups,
1549 	},
1550 	.probe			= intel_vgpu_probe,
1551 	.remove			= intel_vgpu_remove,
1552 	.get_available		= intel_vgpu_get_available,
1553 	.show_description	= intel_vgpu_show_description,
1554 };
1555 
1556 int intel_gvt_page_track_add(struct intel_vgpu *info, u64 gfn)
1557 {
1558 	struct kvm *kvm = info->vfio_device.kvm;
1559 	struct kvm_memory_slot *slot;
1560 	int idx;
1561 
1562 	if (!info->attached)
1563 		return -ESRCH;
1564 
1565 	idx = srcu_read_lock(&kvm->srcu);
1566 	slot = gfn_to_memslot(kvm, gfn);
1567 	if (!slot) {
1568 		srcu_read_unlock(&kvm->srcu, idx);
1569 		return -EINVAL;
1570 	}
1571 
1572 	write_lock(&kvm->mmu_lock);
1573 
1574 	if (kvmgt_gfn_is_write_protected(info, gfn))
1575 		goto out;
1576 
1577 	kvm_slot_page_track_add_page(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE);
1578 	kvmgt_protect_table_add(info, gfn);
1579 
1580 out:
1581 	write_unlock(&kvm->mmu_lock);
1582 	srcu_read_unlock(&kvm->srcu, idx);
1583 	return 0;
1584 }
1585 
1586 int intel_gvt_page_track_remove(struct intel_vgpu *info, u64 gfn)
1587 {
1588 	struct kvm *kvm = info->vfio_device.kvm;
1589 	struct kvm_memory_slot *slot;
1590 	int idx;
1591 
1592 	if (!info->attached)
1593 		return 0;
1594 
1595 	idx = srcu_read_lock(&kvm->srcu);
1596 	slot = gfn_to_memslot(kvm, gfn);
1597 	if (!slot) {
1598 		srcu_read_unlock(&kvm->srcu, idx);
1599 		return -EINVAL;
1600 	}
1601 
1602 	write_lock(&kvm->mmu_lock);
1603 
1604 	if (!kvmgt_gfn_is_write_protected(info, gfn))
1605 		goto out;
1606 
1607 	kvm_slot_page_track_remove_page(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE);
1608 	kvmgt_protect_table_del(info, gfn);
1609 
1610 out:
1611 	write_unlock(&kvm->mmu_lock);
1612 	srcu_read_unlock(&kvm->srcu, idx);
1613 	return 0;
1614 }
1615 
1616 static void kvmgt_page_track_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1617 		const u8 *val, int len,
1618 		struct kvm_page_track_notifier_node *node)
1619 {
1620 	struct intel_vgpu *info =
1621 		container_of(node, struct intel_vgpu, track_node);
1622 
1623 	if (kvmgt_gfn_is_write_protected(info, gpa_to_gfn(gpa)))
1624 		intel_vgpu_page_track_handler(info, gpa,
1625 						     (void *)val, len);
1626 }
1627 
1628 static void kvmgt_page_track_flush_slot(struct kvm *kvm,
1629 		struct kvm_memory_slot *slot,
1630 		struct kvm_page_track_notifier_node *node)
1631 {
1632 	int i;
1633 	gfn_t gfn;
1634 	struct intel_vgpu *info =
1635 		container_of(node, struct intel_vgpu, track_node);
1636 
1637 	write_lock(&kvm->mmu_lock);
1638 	for (i = 0; i < slot->npages; i++) {
1639 		gfn = slot->base_gfn + i;
1640 		if (kvmgt_gfn_is_write_protected(info, gfn)) {
1641 			kvm_slot_page_track_remove_page(kvm, slot, gfn,
1642 						KVM_PAGE_TRACK_WRITE);
1643 			kvmgt_protect_table_del(info, gfn);
1644 		}
1645 	}
1646 	write_unlock(&kvm->mmu_lock);
1647 }
1648 
1649 void intel_vgpu_detach_regions(struct intel_vgpu *vgpu)
1650 {
1651 	int i;
1652 
1653 	if (!vgpu->region)
1654 		return;
1655 
1656 	for (i = 0; i < vgpu->num_regions; i++)
1657 		if (vgpu->region[i].ops->release)
1658 			vgpu->region[i].ops->release(vgpu,
1659 					&vgpu->region[i]);
1660 	vgpu->num_regions = 0;
1661 	kfree(vgpu->region);
1662 	vgpu->region = NULL;
1663 }
1664 
1665 int intel_gvt_dma_map_guest_page(struct intel_vgpu *vgpu, unsigned long gfn,
1666 		unsigned long size, dma_addr_t *dma_addr)
1667 {
1668 	struct gvt_dma *entry;
1669 	int ret;
1670 
1671 	if (!vgpu->attached)
1672 		return -EINVAL;
1673 
1674 	mutex_lock(&vgpu->cache_lock);
1675 
1676 	entry = __gvt_cache_find_gfn(vgpu, gfn);
1677 	if (!entry) {
1678 		ret = gvt_dma_map_page(vgpu, gfn, dma_addr, size);
1679 		if (ret)
1680 			goto err_unlock;
1681 
1682 		ret = __gvt_cache_add(vgpu, gfn, *dma_addr, size);
1683 		if (ret)
1684 			goto err_unmap;
1685 	} else if (entry->size != size) {
1686 		/* the same gfn with different size: unmap and re-map */
1687 		gvt_dma_unmap_page(vgpu, gfn, entry->dma_addr, entry->size);
1688 		__gvt_cache_remove_entry(vgpu, entry);
1689 
1690 		ret = gvt_dma_map_page(vgpu, gfn, dma_addr, size);
1691 		if (ret)
1692 			goto err_unlock;
1693 
1694 		ret = __gvt_cache_add(vgpu, gfn, *dma_addr, size);
1695 		if (ret)
1696 			goto err_unmap;
1697 	} else {
1698 		kref_get(&entry->ref);
1699 		*dma_addr = entry->dma_addr;
1700 	}
1701 
1702 	mutex_unlock(&vgpu->cache_lock);
1703 	return 0;
1704 
1705 err_unmap:
1706 	gvt_dma_unmap_page(vgpu, gfn, *dma_addr, size);
1707 err_unlock:
1708 	mutex_unlock(&vgpu->cache_lock);
1709 	return ret;
1710 }
1711 
1712 int intel_gvt_dma_pin_guest_page(struct intel_vgpu *vgpu, dma_addr_t dma_addr)
1713 {
1714 	struct gvt_dma *entry;
1715 	int ret = 0;
1716 
1717 	if (!vgpu->attached)
1718 		return -ENODEV;
1719 
1720 	mutex_lock(&vgpu->cache_lock);
1721 	entry = __gvt_cache_find_dma_addr(vgpu, dma_addr);
1722 	if (entry)
1723 		kref_get(&entry->ref);
1724 	else
1725 		ret = -ENOMEM;
1726 	mutex_unlock(&vgpu->cache_lock);
1727 
1728 	return ret;
1729 }
1730 
1731 static void __gvt_dma_release(struct kref *ref)
1732 {
1733 	struct gvt_dma *entry = container_of(ref, typeof(*entry), ref);
1734 
1735 	gvt_dma_unmap_page(entry->vgpu, entry->gfn, entry->dma_addr,
1736 			   entry->size);
1737 	__gvt_cache_remove_entry(entry->vgpu, entry);
1738 }
1739 
1740 void intel_gvt_dma_unmap_guest_page(struct intel_vgpu *vgpu,
1741 		dma_addr_t dma_addr)
1742 {
1743 	struct gvt_dma *entry;
1744 
1745 	if (!vgpu->attached)
1746 		return;
1747 
1748 	mutex_lock(&vgpu->cache_lock);
1749 	entry = __gvt_cache_find_dma_addr(vgpu, dma_addr);
1750 	if (entry)
1751 		kref_put(&entry->ref, __gvt_dma_release);
1752 	mutex_unlock(&vgpu->cache_lock);
1753 }
1754 
1755 static void init_device_info(struct intel_gvt *gvt)
1756 {
1757 	struct intel_gvt_device_info *info = &gvt->device_info;
1758 	struct pci_dev *pdev = to_pci_dev(gvt->gt->i915->drm.dev);
1759 
1760 	info->max_support_vgpus = 8;
1761 	info->cfg_space_size = PCI_CFG_SPACE_EXP_SIZE;
1762 	info->mmio_size = 2 * 1024 * 1024;
1763 	info->mmio_bar = 0;
1764 	info->gtt_start_offset = 8 * 1024 * 1024;
1765 	info->gtt_entry_size = 8;
1766 	info->gtt_entry_size_shift = 3;
1767 	info->gmadr_bytes_in_cmd = 8;
1768 	info->max_surface_size = 36 * 1024 * 1024;
1769 	info->msi_cap_offset = pdev->msi_cap;
1770 }
1771 
1772 static void intel_gvt_test_and_emulate_vblank(struct intel_gvt *gvt)
1773 {
1774 	struct intel_vgpu *vgpu;
1775 	int id;
1776 
1777 	mutex_lock(&gvt->lock);
1778 	idr_for_each_entry((&(gvt)->vgpu_idr), (vgpu), (id)) {
1779 		if (test_and_clear_bit(INTEL_GVT_REQUEST_EMULATE_VBLANK + id,
1780 				       (void *)&gvt->service_request)) {
1781 			if (vgpu->active)
1782 				intel_vgpu_emulate_vblank(vgpu);
1783 		}
1784 	}
1785 	mutex_unlock(&gvt->lock);
1786 }
1787 
1788 static int gvt_service_thread(void *data)
1789 {
1790 	struct intel_gvt *gvt = (struct intel_gvt *)data;
1791 	int ret;
1792 
1793 	gvt_dbg_core("service thread start\n");
1794 
1795 	while (!kthread_should_stop()) {
1796 		ret = wait_event_interruptible(gvt->service_thread_wq,
1797 				kthread_should_stop() || gvt->service_request);
1798 
1799 		if (kthread_should_stop())
1800 			break;
1801 
1802 		if (WARN_ONCE(ret, "service thread is waken up by signal.\n"))
1803 			continue;
1804 
1805 		intel_gvt_test_and_emulate_vblank(gvt);
1806 
1807 		if (test_bit(INTEL_GVT_REQUEST_SCHED,
1808 				(void *)&gvt->service_request) ||
1809 			test_bit(INTEL_GVT_REQUEST_EVENT_SCHED,
1810 					(void *)&gvt->service_request)) {
1811 			intel_gvt_schedule(gvt);
1812 		}
1813 	}
1814 
1815 	return 0;
1816 }
1817 
1818 static void clean_service_thread(struct intel_gvt *gvt)
1819 {
1820 	kthread_stop(gvt->service_thread);
1821 }
1822 
1823 static int init_service_thread(struct intel_gvt *gvt)
1824 {
1825 	init_waitqueue_head(&gvt->service_thread_wq);
1826 
1827 	gvt->service_thread = kthread_run(gvt_service_thread,
1828 			gvt, "gvt_service_thread");
1829 	if (IS_ERR(gvt->service_thread)) {
1830 		gvt_err("fail to start service thread.\n");
1831 		return PTR_ERR(gvt->service_thread);
1832 	}
1833 	return 0;
1834 }
1835 
1836 /**
1837  * intel_gvt_clean_device - clean a GVT device
1838  * @i915: i915 private
1839  *
1840  * This function is called at the driver unloading stage, to free the
1841  * resources owned by a GVT device.
1842  *
1843  */
1844 static void intel_gvt_clean_device(struct drm_i915_private *i915)
1845 {
1846 	struct intel_gvt *gvt = fetch_and_zero(&i915->gvt);
1847 
1848 	if (drm_WARN_ON(&i915->drm, !gvt))
1849 		return;
1850 
1851 	mdev_unregister_parent(&gvt->parent);
1852 	intel_gvt_destroy_idle_vgpu(gvt->idle_vgpu);
1853 	intel_gvt_clean_vgpu_types(gvt);
1854 
1855 	intel_gvt_debugfs_clean(gvt);
1856 	clean_service_thread(gvt);
1857 	intel_gvt_clean_cmd_parser(gvt);
1858 	intel_gvt_clean_sched_policy(gvt);
1859 	intel_gvt_clean_workload_scheduler(gvt);
1860 	intel_gvt_clean_gtt(gvt);
1861 	intel_gvt_free_firmware(gvt);
1862 	intel_gvt_clean_mmio_info(gvt);
1863 	idr_destroy(&gvt->vgpu_idr);
1864 
1865 	kfree(i915->gvt);
1866 }
1867 
1868 /**
1869  * intel_gvt_init_device - initialize a GVT device
1870  * @i915: drm i915 private data
1871  *
1872  * This function is called at the initialization stage, to initialize
1873  * necessary GVT components.
1874  *
1875  * Returns:
1876  * Zero on success, negative error code if failed.
1877  *
1878  */
1879 static int intel_gvt_init_device(struct drm_i915_private *i915)
1880 {
1881 	struct intel_gvt *gvt;
1882 	struct intel_vgpu *vgpu;
1883 	int ret;
1884 
1885 	if (drm_WARN_ON(&i915->drm, i915->gvt))
1886 		return -EEXIST;
1887 
1888 	gvt = kzalloc(sizeof(struct intel_gvt), GFP_KERNEL);
1889 	if (!gvt)
1890 		return -ENOMEM;
1891 
1892 	gvt_dbg_core("init gvt device\n");
1893 
1894 	idr_init_base(&gvt->vgpu_idr, 1);
1895 	spin_lock_init(&gvt->scheduler.mmio_context_lock);
1896 	mutex_init(&gvt->lock);
1897 	mutex_init(&gvt->sched_lock);
1898 	gvt->gt = to_gt(i915);
1899 	i915->gvt = gvt;
1900 
1901 	init_device_info(gvt);
1902 
1903 	ret = intel_gvt_setup_mmio_info(gvt);
1904 	if (ret)
1905 		goto out_clean_idr;
1906 
1907 	intel_gvt_init_engine_mmio_context(gvt);
1908 
1909 	ret = intel_gvt_load_firmware(gvt);
1910 	if (ret)
1911 		goto out_clean_mmio_info;
1912 
1913 	ret = intel_gvt_init_irq(gvt);
1914 	if (ret)
1915 		goto out_free_firmware;
1916 
1917 	ret = intel_gvt_init_gtt(gvt);
1918 	if (ret)
1919 		goto out_free_firmware;
1920 
1921 	ret = intel_gvt_init_workload_scheduler(gvt);
1922 	if (ret)
1923 		goto out_clean_gtt;
1924 
1925 	ret = intel_gvt_init_sched_policy(gvt);
1926 	if (ret)
1927 		goto out_clean_workload_scheduler;
1928 
1929 	ret = intel_gvt_init_cmd_parser(gvt);
1930 	if (ret)
1931 		goto out_clean_sched_policy;
1932 
1933 	ret = init_service_thread(gvt);
1934 	if (ret)
1935 		goto out_clean_cmd_parser;
1936 
1937 	ret = intel_gvt_init_vgpu_types(gvt);
1938 	if (ret)
1939 		goto out_clean_thread;
1940 
1941 	vgpu = intel_gvt_create_idle_vgpu(gvt);
1942 	if (IS_ERR(vgpu)) {
1943 		ret = PTR_ERR(vgpu);
1944 		gvt_err("failed to create idle vgpu\n");
1945 		goto out_clean_types;
1946 	}
1947 	gvt->idle_vgpu = vgpu;
1948 
1949 	intel_gvt_debugfs_init(gvt);
1950 
1951 	ret = mdev_register_parent(&gvt->parent, i915->drm.dev,
1952 				   &intel_vgpu_mdev_driver,
1953 				   gvt->mdev_types, gvt->num_types);
1954 	if (ret)
1955 		goto out_destroy_idle_vgpu;
1956 
1957 	gvt_dbg_core("gvt device initialization is done\n");
1958 	return 0;
1959 
1960 out_destroy_idle_vgpu:
1961 	intel_gvt_destroy_idle_vgpu(gvt->idle_vgpu);
1962 	intel_gvt_debugfs_clean(gvt);
1963 out_clean_types:
1964 	intel_gvt_clean_vgpu_types(gvt);
1965 out_clean_thread:
1966 	clean_service_thread(gvt);
1967 out_clean_cmd_parser:
1968 	intel_gvt_clean_cmd_parser(gvt);
1969 out_clean_sched_policy:
1970 	intel_gvt_clean_sched_policy(gvt);
1971 out_clean_workload_scheduler:
1972 	intel_gvt_clean_workload_scheduler(gvt);
1973 out_clean_gtt:
1974 	intel_gvt_clean_gtt(gvt);
1975 out_free_firmware:
1976 	intel_gvt_free_firmware(gvt);
1977 out_clean_mmio_info:
1978 	intel_gvt_clean_mmio_info(gvt);
1979 out_clean_idr:
1980 	idr_destroy(&gvt->vgpu_idr);
1981 	kfree(gvt);
1982 	i915->gvt = NULL;
1983 	return ret;
1984 }
1985 
1986 static void intel_gvt_pm_resume(struct drm_i915_private *i915)
1987 {
1988 	struct intel_gvt *gvt = i915->gvt;
1989 
1990 	intel_gvt_restore_fence(gvt);
1991 	intel_gvt_restore_mmio(gvt);
1992 	intel_gvt_restore_ggtt(gvt);
1993 }
1994 
1995 static const struct intel_vgpu_ops intel_gvt_vgpu_ops = {
1996 	.init_device	= intel_gvt_init_device,
1997 	.clean_device	= intel_gvt_clean_device,
1998 	.pm_resume	= intel_gvt_pm_resume,
1999 };
2000 
2001 static int __init kvmgt_init(void)
2002 {
2003 	int ret;
2004 
2005 	ret = intel_gvt_set_ops(&intel_gvt_vgpu_ops);
2006 	if (ret)
2007 		return ret;
2008 
2009 	ret = mdev_register_driver(&intel_vgpu_mdev_driver);
2010 	if (ret)
2011 		intel_gvt_clear_ops(&intel_gvt_vgpu_ops);
2012 	return ret;
2013 }
2014 
2015 static void __exit kvmgt_exit(void)
2016 {
2017 	mdev_unregister_driver(&intel_vgpu_mdev_driver);
2018 	intel_gvt_clear_ops(&intel_gvt_vgpu_ops);
2019 }
2020 
2021 module_init(kvmgt_init);
2022 module_exit(kvmgt_exit);
2023 
2024 MODULE_LICENSE("GPL and additional rights");
2025 MODULE_AUTHOR("Intel Corporation");
2026