xref: /linux/drivers/gpu/drm/i915/gvt/interrupt.c (revision 815e260a18a3af4dab59025ee99a7156c0e8b5e0)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Kevin Tian <kevin.tian@intel.com>
25  *    Zhi Wang <zhi.a.wang@intel.com>
26  *
27  * Contributors:
28  *    Min he <min.he@intel.com>
29  *
30  */
31 
32 #include <linux/eventfd.h>
33 
34 #include <drm/drm_print.h>
35 
36 #include "i915_drv.h"
37 #include "i915_reg.h"
38 #include "display/intel_display_regs.h"
39 #include "gvt.h"
40 #include "trace.h"
41 
42 struct intel_gvt_irq_info {
43 	char *name;
44 	i915_reg_t reg_base;
45 	enum intel_gvt_event_type bit_to_event[INTEL_GVT_IRQ_BITWIDTH];
46 	int group;
47 	DECLARE_BITMAP(downstream_irq_bitmap, INTEL_GVT_IRQ_BITWIDTH);
48 	bool has_upstream_irq;
49 };
50 
51 struct intel_gvt_irq_map {
52 	int up_irq_group;
53 	int up_irq_bit;
54 	int down_irq_group;
55 	u32 down_irq_bitmask;
56 };
57 
58 /* common offset among interrupt control registers */
59 #define regbase_to_isr(base)	(base)
60 #define regbase_to_imr(base)	(base + 0x4)
61 #define regbase_to_iir(base)	(base + 0x8)
62 #define regbase_to_ier(base)	(base + 0xC)
63 
64 #define iir_to_regbase(iir)    (iir - 0x8)
65 #define ier_to_regbase(ier)    (ier - 0xC)
66 
67 #define get_event_virt_handler(irq, e)	(irq->events[e].v_handler)
68 #define get_irq_info(irq, e)		(irq->events[e].info)
69 
70 #define irq_to_gvt(irq) \
71 	container_of(irq, struct intel_gvt, irq)
72 
73 static void update_upstream_irq(struct intel_vgpu *vgpu,
74 		struct intel_gvt_irq_info *info);
75 
76 static const char * const irq_name[INTEL_GVT_EVENT_MAX] = {
77 	[RCS_MI_USER_INTERRUPT] = "Render CS MI USER INTERRUPT",
78 	[RCS_DEBUG] = "Render EU debug from SVG",
79 	[RCS_MMIO_SYNC_FLUSH] = "Render MMIO sync flush status",
80 	[RCS_CMD_STREAMER_ERR] = "Render CS error interrupt",
81 	[RCS_PIPE_CONTROL] = "Render PIPE CONTROL notify",
82 	[RCS_WATCHDOG_EXCEEDED] = "Render CS Watchdog counter exceeded",
83 	[RCS_PAGE_DIRECTORY_FAULT] = "Render page directory faults",
84 	[RCS_AS_CONTEXT_SWITCH] = "Render AS Context Switch Interrupt",
85 
86 	[VCS_MI_USER_INTERRUPT] = "Video CS MI USER INTERRUPT",
87 	[VCS_MMIO_SYNC_FLUSH] = "Video MMIO sync flush status",
88 	[VCS_CMD_STREAMER_ERR] = "Video CS error interrupt",
89 	[VCS_MI_FLUSH_DW] = "Video MI FLUSH DW notify",
90 	[VCS_WATCHDOG_EXCEEDED] = "Video CS Watchdog counter exceeded",
91 	[VCS_PAGE_DIRECTORY_FAULT] = "Video page directory faults",
92 	[VCS_AS_CONTEXT_SWITCH] = "Video AS Context Switch Interrupt",
93 	[VCS2_MI_USER_INTERRUPT] = "VCS2 Video CS MI USER INTERRUPT",
94 	[VCS2_MI_FLUSH_DW] = "VCS2 Video MI FLUSH DW notify",
95 	[VCS2_AS_CONTEXT_SWITCH] = "VCS2 Context Switch Interrupt",
96 
97 	[BCS_MI_USER_INTERRUPT] = "Blitter CS MI USER INTERRUPT",
98 	[BCS_MMIO_SYNC_FLUSH] = "Billter MMIO sync flush status",
99 	[BCS_CMD_STREAMER_ERR] = "Blitter CS error interrupt",
100 	[BCS_MI_FLUSH_DW] = "Blitter MI FLUSH DW notify",
101 	[BCS_PAGE_DIRECTORY_FAULT] = "Blitter page directory faults",
102 	[BCS_AS_CONTEXT_SWITCH] = "Blitter AS Context Switch Interrupt",
103 
104 	[VECS_MI_FLUSH_DW] = "Video Enhanced Streamer MI FLUSH DW notify",
105 	[VECS_AS_CONTEXT_SWITCH] = "VECS Context Switch Interrupt",
106 
107 	[PIPE_A_FIFO_UNDERRUN] = "Pipe A FIFO underrun",
108 	[PIPE_A_CRC_ERR] = "Pipe A CRC error",
109 	[PIPE_A_CRC_DONE] = "Pipe A CRC done",
110 	[PIPE_A_VSYNC] = "Pipe A vsync",
111 	[PIPE_A_LINE_COMPARE] = "Pipe A line compare",
112 	[PIPE_A_ODD_FIELD] = "Pipe A odd field",
113 	[PIPE_A_EVEN_FIELD] = "Pipe A even field",
114 	[PIPE_A_VBLANK] = "Pipe A vblank",
115 	[PIPE_B_FIFO_UNDERRUN] = "Pipe B FIFO underrun",
116 	[PIPE_B_CRC_ERR] = "Pipe B CRC error",
117 	[PIPE_B_CRC_DONE] = "Pipe B CRC done",
118 	[PIPE_B_VSYNC] = "Pipe B vsync",
119 	[PIPE_B_LINE_COMPARE] = "Pipe B line compare",
120 	[PIPE_B_ODD_FIELD] = "Pipe B odd field",
121 	[PIPE_B_EVEN_FIELD] = "Pipe B even field",
122 	[PIPE_B_VBLANK] = "Pipe B vblank",
123 	[PIPE_C_VBLANK] = "Pipe C vblank",
124 	[DPST_PHASE_IN] = "DPST phase in event",
125 	[DPST_HISTOGRAM] = "DPST histogram event",
126 	[GSE] = "GSE",
127 	[DP_A_HOTPLUG] = "DP A Hotplug",
128 	[AUX_CHANNEL_A] = "AUX Channel A",
129 	[PERF_COUNTER] = "Performance counter",
130 	[POISON] = "Poison",
131 	[GTT_FAULT] = "GTT fault",
132 	[PRIMARY_A_FLIP_DONE] = "Primary Plane A flip done",
133 	[PRIMARY_B_FLIP_DONE] = "Primary Plane B flip done",
134 	[PRIMARY_C_FLIP_DONE] = "Primary Plane C flip done",
135 	[SPRITE_A_FLIP_DONE] = "Sprite Plane A flip done",
136 	[SPRITE_B_FLIP_DONE] = "Sprite Plane B flip done",
137 	[SPRITE_C_FLIP_DONE] = "Sprite Plane C flip done",
138 
139 	[PCU_THERMAL] = "PCU Thermal Event",
140 	[PCU_PCODE2DRIVER_MAILBOX] = "PCU pcode2driver mailbox event",
141 
142 	[FDI_RX_INTERRUPTS_TRANSCODER_A] = "FDI RX Interrupts Combined A",
143 	[AUDIO_CP_CHANGE_TRANSCODER_A] = "Audio CP Change Transcoder A",
144 	[AUDIO_CP_REQUEST_TRANSCODER_A] = "Audio CP Request Transcoder A",
145 	[FDI_RX_INTERRUPTS_TRANSCODER_B] = "FDI RX Interrupts Combined B",
146 	[AUDIO_CP_CHANGE_TRANSCODER_B] = "Audio CP Change Transcoder B",
147 	[AUDIO_CP_REQUEST_TRANSCODER_B] = "Audio CP Request Transcoder B",
148 	[FDI_RX_INTERRUPTS_TRANSCODER_C] = "FDI RX Interrupts Combined C",
149 	[AUDIO_CP_CHANGE_TRANSCODER_C] = "Audio CP Change Transcoder C",
150 	[AUDIO_CP_REQUEST_TRANSCODER_C] = "Audio CP Request Transcoder C",
151 	[ERR_AND_DBG] = "South Error and Debug Interrupts Combined",
152 	[GMBUS] = "Gmbus",
153 	[SDVO_B_HOTPLUG] = "SDVO B hotplug",
154 	[CRT_HOTPLUG] = "CRT Hotplug",
155 	[DP_B_HOTPLUG] = "DisplayPort/HDMI/DVI B Hotplug",
156 	[DP_C_HOTPLUG] = "DisplayPort/HDMI/DVI C Hotplug",
157 	[DP_D_HOTPLUG] = "DisplayPort/HDMI/DVI D Hotplug",
158 	[AUX_CHANNEL_B] = "AUX Channel B",
159 	[AUX_CHANNEL_C] = "AUX Channel C",
160 	[AUX_CHANNEL_D] = "AUX Channel D",
161 	[AUDIO_POWER_STATE_CHANGE_B] = "Audio Power State change Port B",
162 	[AUDIO_POWER_STATE_CHANGE_C] = "Audio Power State change Port C",
163 	[AUDIO_POWER_STATE_CHANGE_D] = "Audio Power State change Port D",
164 
165 	[INTEL_GVT_EVENT_RESERVED] = "RESERVED EVENTS!!!",
166 };
167 
168 static inline struct intel_gvt_irq_info *regbase_to_irq_info(
169 		struct intel_gvt *gvt,
170 		unsigned int reg)
171 {
172 	struct intel_gvt_irq *irq = &gvt->irq;
173 	int i;
174 
175 	for_each_set_bit(i, irq->irq_info_bitmap, INTEL_GVT_IRQ_INFO_MAX) {
176 		if (i915_mmio_reg_offset(irq->info[i]->reg_base) == reg)
177 			return irq->info[i];
178 	}
179 
180 	return NULL;
181 }
182 
183 /**
184  * intel_vgpu_reg_imr_handler - Generic IMR register emulation write handler
185  * @vgpu: a vGPU
186  * @reg: register offset written by guest
187  * @p_data: register data written by guest
188  * @bytes: register data length
189  *
190  * This function is used to emulate the generic IMR register bit change
191  * behavior.
192  *
193  * Returns:
194  * Zero on success, negative error code if failed.
195  *
196  */
197 int intel_vgpu_reg_imr_handler(struct intel_vgpu *vgpu,
198 	unsigned int reg, void *p_data, unsigned int bytes)
199 {
200 	struct intel_gvt *gvt = vgpu->gvt;
201 	const struct intel_gvt_irq_ops *ops = gvt->irq.ops;
202 	u32 imr = *(u32 *)p_data;
203 
204 	trace_write_ir(vgpu->id, "IMR", reg, imr, vgpu_vreg(vgpu, reg),
205 		       (vgpu_vreg(vgpu, reg) ^ imr));
206 
207 	vgpu_vreg(vgpu, reg) = imr;
208 
209 	ops->check_pending_irq(vgpu);
210 
211 	return 0;
212 }
213 
214 /**
215  * intel_vgpu_reg_master_irq_handler - master IRQ write emulation handler
216  * @vgpu: a vGPU
217  * @reg: register offset written by guest
218  * @p_data: register data written by guest
219  * @bytes: register data length
220  *
221  * This function is used to emulate the master IRQ register on gen8+.
222  *
223  * Returns:
224  * Zero on success, negative error code if failed.
225  *
226  */
227 int intel_vgpu_reg_master_irq_handler(struct intel_vgpu *vgpu,
228 	unsigned int reg, void *p_data, unsigned int bytes)
229 {
230 	struct intel_gvt *gvt = vgpu->gvt;
231 	const struct intel_gvt_irq_ops *ops = gvt->irq.ops;
232 	u32 ier = *(u32 *)p_data;
233 	u32 virtual_ier = vgpu_vreg(vgpu, reg);
234 
235 	trace_write_ir(vgpu->id, "MASTER_IRQ", reg, ier, virtual_ier,
236 		       (virtual_ier ^ ier));
237 
238 	/*
239 	 * GEN8_MASTER_IRQ is a special irq register,
240 	 * only bit 31 is allowed to be modified
241 	 * and treated as an IER bit.
242 	 */
243 	ier &= GEN8_MASTER_IRQ_CONTROL;
244 	virtual_ier &= GEN8_MASTER_IRQ_CONTROL;
245 	vgpu_vreg(vgpu, reg) &= ~GEN8_MASTER_IRQ_CONTROL;
246 	vgpu_vreg(vgpu, reg) |= ier;
247 
248 	ops->check_pending_irq(vgpu);
249 
250 	return 0;
251 }
252 
253 /**
254  * intel_vgpu_reg_ier_handler - Generic IER write emulation handler
255  * @vgpu: a vGPU
256  * @reg: register offset written by guest
257  * @p_data: register data written by guest
258  * @bytes: register data length
259  *
260  * This function is used to emulate the generic IER register behavior.
261  *
262  * Returns:
263  * Zero on success, negative error code if failed.
264  *
265  */
266 int intel_vgpu_reg_ier_handler(struct intel_vgpu *vgpu,
267 	unsigned int reg, void *p_data, unsigned int bytes)
268 {
269 	struct intel_gvt *gvt = vgpu->gvt;
270 	struct drm_i915_private *i915 = gvt->gt->i915;
271 	const struct intel_gvt_irq_ops *ops = gvt->irq.ops;
272 	struct intel_gvt_irq_info *info;
273 	u32 ier = *(u32 *)p_data;
274 
275 	trace_write_ir(vgpu->id, "IER", reg, ier, vgpu_vreg(vgpu, reg),
276 		       (vgpu_vreg(vgpu, reg) ^ ier));
277 
278 	vgpu_vreg(vgpu, reg) = ier;
279 
280 	info = regbase_to_irq_info(gvt, ier_to_regbase(reg));
281 	if (drm_WARN_ON(&i915->drm, !info))
282 		return -EINVAL;
283 
284 	if (info->has_upstream_irq)
285 		update_upstream_irq(vgpu, info);
286 
287 	ops->check_pending_irq(vgpu);
288 
289 	return 0;
290 }
291 
292 /**
293  * intel_vgpu_reg_iir_handler - Generic IIR write emulation handler
294  * @vgpu: a vGPU
295  * @reg: register offset written by guest
296  * @p_data: register data written by guest
297  * @bytes: register data length
298  *
299  * This function is used to emulate the generic IIR register behavior.
300  *
301  * Returns:
302  * Zero on success, negative error code if failed.
303  *
304  */
305 int intel_vgpu_reg_iir_handler(struct intel_vgpu *vgpu, unsigned int reg,
306 	void *p_data, unsigned int bytes)
307 {
308 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
309 	struct intel_gvt_irq_info *info = regbase_to_irq_info(vgpu->gvt,
310 		iir_to_regbase(reg));
311 	u32 iir = *(u32 *)p_data;
312 
313 	trace_write_ir(vgpu->id, "IIR", reg, iir, vgpu_vreg(vgpu, reg),
314 		       (vgpu_vreg(vgpu, reg) ^ iir));
315 
316 	if (drm_WARN_ON(&i915->drm, !info))
317 		return -EINVAL;
318 
319 	vgpu_vreg(vgpu, reg) &= ~iir;
320 
321 	if (info->has_upstream_irq)
322 		update_upstream_irq(vgpu, info);
323 	return 0;
324 }
325 
326 static struct intel_gvt_irq_map gen8_irq_map[] = {
327 	{ INTEL_GVT_IRQ_INFO_MASTER, 0, INTEL_GVT_IRQ_INFO_GT0, 0xffff },
328 	{ INTEL_GVT_IRQ_INFO_MASTER, 1, INTEL_GVT_IRQ_INFO_GT0, 0xffff0000 },
329 	{ INTEL_GVT_IRQ_INFO_MASTER, 2, INTEL_GVT_IRQ_INFO_GT1, 0xffff },
330 	{ INTEL_GVT_IRQ_INFO_MASTER, 3, INTEL_GVT_IRQ_INFO_GT1, 0xffff0000 },
331 	{ INTEL_GVT_IRQ_INFO_MASTER, 4, INTEL_GVT_IRQ_INFO_GT2, 0xffff },
332 	{ INTEL_GVT_IRQ_INFO_MASTER, 6, INTEL_GVT_IRQ_INFO_GT3, 0xffff },
333 	{ INTEL_GVT_IRQ_INFO_MASTER, 16, INTEL_GVT_IRQ_INFO_DE_PIPE_A, ~0 },
334 	{ INTEL_GVT_IRQ_INFO_MASTER, 17, INTEL_GVT_IRQ_INFO_DE_PIPE_B, ~0 },
335 	{ INTEL_GVT_IRQ_INFO_MASTER, 18, INTEL_GVT_IRQ_INFO_DE_PIPE_C, ~0 },
336 	{ INTEL_GVT_IRQ_INFO_MASTER, 20, INTEL_GVT_IRQ_INFO_DE_PORT, ~0 },
337 	{ INTEL_GVT_IRQ_INFO_MASTER, 22, INTEL_GVT_IRQ_INFO_DE_MISC, ~0 },
338 	{ INTEL_GVT_IRQ_INFO_MASTER, 23, INTEL_GVT_IRQ_INFO_PCH, ~0 },
339 	{ INTEL_GVT_IRQ_INFO_MASTER, 30, INTEL_GVT_IRQ_INFO_PCU, ~0 },
340 	{ -1, -1, ~0 },
341 };
342 
343 static void update_upstream_irq(struct intel_vgpu *vgpu,
344 		struct intel_gvt_irq_info *info)
345 {
346 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
347 	struct intel_gvt_irq *irq = &vgpu->gvt->irq;
348 	struct intel_gvt_irq_map *map = irq->irq_map;
349 	struct intel_gvt_irq_info *up_irq_info = NULL;
350 	u32 set_bits = 0;
351 	u32 clear_bits = 0;
352 	int bit;
353 	u32 val = vgpu_vreg(vgpu,
354 			regbase_to_iir(i915_mmio_reg_offset(info->reg_base)))
355 		& vgpu_vreg(vgpu,
356 			regbase_to_ier(i915_mmio_reg_offset(info->reg_base)));
357 
358 	if (!info->has_upstream_irq)
359 		return;
360 
361 	for (map = irq->irq_map; map->up_irq_bit != -1; map++) {
362 		if (info->group != map->down_irq_group)
363 			continue;
364 
365 		if (!up_irq_info)
366 			up_irq_info = irq->info[map->up_irq_group];
367 		else
368 			drm_WARN_ON(&i915->drm, up_irq_info !=
369 				    irq->info[map->up_irq_group]);
370 
371 		bit = map->up_irq_bit;
372 
373 		if (val & map->down_irq_bitmask)
374 			set_bits |= (1 << bit);
375 		else
376 			clear_bits |= (1 << bit);
377 	}
378 
379 	if (drm_WARN_ON(&i915->drm, !up_irq_info))
380 		return;
381 
382 	if (up_irq_info->group == INTEL_GVT_IRQ_INFO_MASTER) {
383 		u32 isr = i915_mmio_reg_offset(up_irq_info->reg_base);
384 
385 		vgpu_vreg(vgpu, isr) &= ~clear_bits;
386 		vgpu_vreg(vgpu, isr) |= set_bits;
387 	} else {
388 		u32 iir = regbase_to_iir(
389 			i915_mmio_reg_offset(up_irq_info->reg_base));
390 		u32 imr = regbase_to_imr(
391 			i915_mmio_reg_offset(up_irq_info->reg_base));
392 
393 		vgpu_vreg(vgpu, iir) |= (set_bits & ~vgpu_vreg(vgpu, imr));
394 	}
395 
396 	if (up_irq_info->has_upstream_irq)
397 		update_upstream_irq(vgpu, up_irq_info);
398 }
399 
400 static void init_irq_map(struct intel_gvt_irq *irq)
401 {
402 	struct intel_gvt_irq_map *map;
403 	struct intel_gvt_irq_info *up_info, *down_info;
404 	int up_bit;
405 
406 	for (map = irq->irq_map; map->up_irq_bit != -1; map++) {
407 		up_info = irq->info[map->up_irq_group];
408 		up_bit = map->up_irq_bit;
409 		down_info = irq->info[map->down_irq_group];
410 
411 		set_bit(up_bit, up_info->downstream_irq_bitmap);
412 		down_info->has_upstream_irq = true;
413 
414 		gvt_dbg_irq("[up] grp %d bit %d -> [down] grp %d bitmask %x\n",
415 			up_info->group, up_bit,
416 			down_info->group, map->down_irq_bitmask);
417 	}
418 }
419 
420 /* =======================vEvent injection===================== */
421 
422 #define MSI_CAP_CONTROL(offset) (offset + 2)
423 #define MSI_CAP_ADDRESS(offset) (offset + 4)
424 #define MSI_CAP_DATA(offset) (offset + 8)
425 #define MSI_CAP_EN 0x1
426 
427 static void inject_virtual_interrupt(struct intel_vgpu *vgpu)
428 {
429 	unsigned long offset = vgpu->gvt->device_info.msi_cap_offset;
430 	u16 control, data;
431 	u32 addr;
432 
433 	control = *(u16 *)(vgpu_cfg_space(vgpu) + MSI_CAP_CONTROL(offset));
434 	addr = *(u32 *)(vgpu_cfg_space(vgpu) + MSI_CAP_ADDRESS(offset));
435 	data = *(u16 *)(vgpu_cfg_space(vgpu) + MSI_CAP_DATA(offset));
436 
437 	/* Do not generate MSI if MSIEN is disabled */
438 	if (!(control & MSI_CAP_EN))
439 		return;
440 
441 	if (WARN(control & GENMASK(15, 1), "only support one MSI format\n"))
442 		return;
443 
444 	trace_inject_msi(vgpu->id, addr, data);
445 
446 	/*
447 	 * When guest is powered off, msi_trigger is set to NULL, but vgpu's
448 	 * config and mmio register isn't restored to default during guest
449 	 * poweroff. If this vgpu is still used in next vm, this vgpu's pipe
450 	 * may be enabled, then once this vgpu is active, it will get inject
451 	 * vblank interrupt request. But msi_trigger is null until msi is
452 	 * enabled by guest. so if msi_trigger is null, success is still
453 	 * returned and don't inject interrupt into guest.
454 	 */
455 	if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, vgpu->status))
456 		return;
457 	if (vgpu->msi_trigger)
458 		eventfd_signal(vgpu->msi_trigger);
459 }
460 
461 static void propagate_event(struct intel_gvt_irq *irq,
462 	enum intel_gvt_event_type event, struct intel_vgpu *vgpu)
463 {
464 	struct intel_gvt_irq_info *info;
465 	unsigned int reg_base;
466 	int bit;
467 
468 	info = get_irq_info(irq, event);
469 	if (WARN_ON(!info))
470 		return;
471 
472 	reg_base = i915_mmio_reg_offset(info->reg_base);
473 	bit = irq->events[event].bit;
474 
475 	if (!test_bit(bit, (void *)&vgpu_vreg(vgpu,
476 					regbase_to_imr(reg_base)))) {
477 		trace_propagate_event(vgpu->id, irq_name[event], bit);
478 		set_bit(bit, (void *)&vgpu_vreg(vgpu,
479 					regbase_to_iir(reg_base)));
480 	}
481 }
482 
483 /* =======================vEvent Handlers===================== */
484 static void handle_default_event_virt(struct intel_gvt_irq *irq,
485 	enum intel_gvt_event_type event, struct intel_vgpu *vgpu)
486 {
487 	if (!vgpu->irq.irq_warn_once[event]) {
488 		gvt_dbg_core("vgpu%d: IRQ receive event %d (%s)\n",
489 			vgpu->id, event, irq_name[event]);
490 		vgpu->irq.irq_warn_once[event] = true;
491 	}
492 	propagate_event(irq, event, vgpu);
493 }
494 
495 /* =====================GEN specific logic======================= */
496 /* GEN8 interrupt routines. */
497 
498 #define DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(regname, regbase) \
499 static struct intel_gvt_irq_info gen8_##regname##_info = { \
500 	.name = #regname"-IRQ", \
501 	.reg_base = (regbase), \
502 	.bit_to_event = {[0 ... INTEL_GVT_IRQ_BITWIDTH-1] = \
503 		INTEL_GVT_EVENT_RESERVED}, \
504 }
505 
506 DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(gt0, GEN8_GT_ISR(0));
507 DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(gt1, GEN8_GT_ISR(1));
508 DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(gt2, GEN8_GT_ISR(2));
509 DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(gt3, GEN8_GT_ISR(3));
510 DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(de_pipe_a, GEN8_DE_PIPE_ISR(PIPE_A));
511 DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(de_pipe_b, GEN8_DE_PIPE_ISR(PIPE_B));
512 DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(de_pipe_c, GEN8_DE_PIPE_ISR(PIPE_C));
513 DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(de_port, GEN8_DE_PORT_ISR);
514 DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(de_misc, GEN8_DE_MISC_ISR);
515 DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(pcu, GEN8_PCU_ISR);
516 DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(master, GEN8_MASTER_IRQ);
517 
518 static struct intel_gvt_irq_info gvt_base_pch_info = {
519 	.name = "PCH-IRQ",
520 	.reg_base = SDEISR,
521 	.bit_to_event = {[0 ... INTEL_GVT_IRQ_BITWIDTH-1] =
522 		INTEL_GVT_EVENT_RESERVED},
523 };
524 
525 static void gen8_check_pending_irq(struct intel_vgpu *vgpu)
526 {
527 	struct intel_gvt_irq *irq = &vgpu->gvt->irq;
528 	int i;
529 
530 	if (!(vgpu_vreg(vgpu, i915_mmio_reg_offset(GEN8_MASTER_IRQ)) &
531 				GEN8_MASTER_IRQ_CONTROL))
532 		return;
533 
534 	for_each_set_bit(i, irq->irq_info_bitmap, INTEL_GVT_IRQ_INFO_MAX) {
535 		struct intel_gvt_irq_info *info = irq->info[i];
536 		u32 reg_base;
537 
538 		if (!info->has_upstream_irq)
539 			continue;
540 
541 		reg_base = i915_mmio_reg_offset(info->reg_base);
542 		if ((vgpu_vreg(vgpu, regbase_to_iir(reg_base))
543 				& vgpu_vreg(vgpu, regbase_to_ier(reg_base))))
544 			update_upstream_irq(vgpu, info);
545 	}
546 
547 	if (vgpu_vreg(vgpu, i915_mmio_reg_offset(GEN8_MASTER_IRQ))
548 			& ~GEN8_MASTER_IRQ_CONTROL)
549 		inject_virtual_interrupt(vgpu);
550 }
551 
552 static void gen8_init_irq(
553 		struct intel_gvt_irq *irq)
554 {
555 	struct intel_gvt *gvt = irq_to_gvt(irq);
556 
557 #define SET_BIT_INFO(s, b, e, i)		\
558 	do {					\
559 		s->events[e].bit = b;		\
560 		s->events[e].info = s->info[i];	\
561 		s->info[i]->bit_to_event[b] = e;\
562 	} while (0)
563 
564 #define SET_IRQ_GROUP(s, g, i) \
565 	do { \
566 		s->info[g] = i; \
567 		(i)->group = g; \
568 		set_bit(g, s->irq_info_bitmap); \
569 	} while (0)
570 
571 	SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_MASTER, &gen8_master_info);
572 	SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_GT0, &gen8_gt0_info);
573 	SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_GT1, &gen8_gt1_info);
574 	SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_GT2, &gen8_gt2_info);
575 	SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_GT3, &gen8_gt3_info);
576 	SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_DE_PIPE_A, &gen8_de_pipe_a_info);
577 	SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_DE_PIPE_B, &gen8_de_pipe_b_info);
578 	SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_DE_PIPE_C, &gen8_de_pipe_c_info);
579 	SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_DE_PORT, &gen8_de_port_info);
580 	SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_DE_MISC, &gen8_de_misc_info);
581 	SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_PCU, &gen8_pcu_info);
582 	SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_PCH, &gvt_base_pch_info);
583 
584 	/* GEN8 level 2 interrupts. */
585 
586 	/* GEN8 interrupt GT0 events */
587 	SET_BIT_INFO(irq, 0, RCS_MI_USER_INTERRUPT, INTEL_GVT_IRQ_INFO_GT0);
588 	SET_BIT_INFO(irq, 4, RCS_PIPE_CONTROL, INTEL_GVT_IRQ_INFO_GT0);
589 	SET_BIT_INFO(irq, 8, RCS_AS_CONTEXT_SWITCH, INTEL_GVT_IRQ_INFO_GT0);
590 
591 	SET_BIT_INFO(irq, 16, BCS_MI_USER_INTERRUPT, INTEL_GVT_IRQ_INFO_GT0);
592 	SET_BIT_INFO(irq, 20, BCS_MI_FLUSH_DW, INTEL_GVT_IRQ_INFO_GT0);
593 	SET_BIT_INFO(irq, 24, BCS_AS_CONTEXT_SWITCH, INTEL_GVT_IRQ_INFO_GT0);
594 
595 	/* GEN8 interrupt GT1 events */
596 	SET_BIT_INFO(irq, 0, VCS_MI_USER_INTERRUPT, INTEL_GVT_IRQ_INFO_GT1);
597 	SET_BIT_INFO(irq, 4, VCS_MI_FLUSH_DW, INTEL_GVT_IRQ_INFO_GT1);
598 	SET_BIT_INFO(irq, 8, VCS_AS_CONTEXT_SWITCH, INTEL_GVT_IRQ_INFO_GT1);
599 
600 	if (HAS_ENGINE(gvt->gt, VCS1)) {
601 		SET_BIT_INFO(irq, 16, VCS2_MI_USER_INTERRUPT,
602 			INTEL_GVT_IRQ_INFO_GT1);
603 		SET_BIT_INFO(irq, 20, VCS2_MI_FLUSH_DW,
604 			INTEL_GVT_IRQ_INFO_GT1);
605 		SET_BIT_INFO(irq, 24, VCS2_AS_CONTEXT_SWITCH,
606 			INTEL_GVT_IRQ_INFO_GT1);
607 	}
608 
609 	/* GEN8 interrupt GT3 events */
610 	SET_BIT_INFO(irq, 0, VECS_MI_USER_INTERRUPT, INTEL_GVT_IRQ_INFO_GT3);
611 	SET_BIT_INFO(irq, 4, VECS_MI_FLUSH_DW, INTEL_GVT_IRQ_INFO_GT3);
612 	SET_BIT_INFO(irq, 8, VECS_AS_CONTEXT_SWITCH, INTEL_GVT_IRQ_INFO_GT3);
613 
614 	SET_BIT_INFO(irq, 0, PIPE_A_VBLANK, INTEL_GVT_IRQ_INFO_DE_PIPE_A);
615 	SET_BIT_INFO(irq, 0, PIPE_B_VBLANK, INTEL_GVT_IRQ_INFO_DE_PIPE_B);
616 	SET_BIT_INFO(irq, 0, PIPE_C_VBLANK, INTEL_GVT_IRQ_INFO_DE_PIPE_C);
617 
618 	/* GEN8 interrupt DE PORT events */
619 	SET_BIT_INFO(irq, 0, AUX_CHANNEL_A, INTEL_GVT_IRQ_INFO_DE_PORT);
620 	SET_BIT_INFO(irq, 3, DP_A_HOTPLUG, INTEL_GVT_IRQ_INFO_DE_PORT);
621 
622 	/* GEN8 interrupt DE MISC events */
623 	SET_BIT_INFO(irq, 0, GSE, INTEL_GVT_IRQ_INFO_DE_MISC);
624 
625 	/* PCH events */
626 	SET_BIT_INFO(irq, 17, GMBUS, INTEL_GVT_IRQ_INFO_PCH);
627 	SET_BIT_INFO(irq, 19, CRT_HOTPLUG, INTEL_GVT_IRQ_INFO_PCH);
628 	SET_BIT_INFO(irq, 21, DP_B_HOTPLUG, INTEL_GVT_IRQ_INFO_PCH);
629 	SET_BIT_INFO(irq, 22, DP_C_HOTPLUG, INTEL_GVT_IRQ_INFO_PCH);
630 	SET_BIT_INFO(irq, 23, DP_D_HOTPLUG, INTEL_GVT_IRQ_INFO_PCH);
631 
632 	if (IS_BROADWELL(gvt->gt->i915)) {
633 		SET_BIT_INFO(irq, 25, AUX_CHANNEL_B, INTEL_GVT_IRQ_INFO_PCH);
634 		SET_BIT_INFO(irq, 26, AUX_CHANNEL_C, INTEL_GVT_IRQ_INFO_PCH);
635 		SET_BIT_INFO(irq, 27, AUX_CHANNEL_D, INTEL_GVT_IRQ_INFO_PCH);
636 
637 		SET_BIT_INFO(irq, 4, PRIMARY_A_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_A);
638 		SET_BIT_INFO(irq, 5, SPRITE_A_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_A);
639 
640 		SET_BIT_INFO(irq, 4, PRIMARY_B_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_B);
641 		SET_BIT_INFO(irq, 5, SPRITE_B_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_B);
642 
643 		SET_BIT_INFO(irq, 4, PRIMARY_C_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_C);
644 		SET_BIT_INFO(irq, 5, SPRITE_C_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_C);
645 	} else if (GRAPHICS_VER(gvt->gt->i915) >= 9) {
646 		SET_BIT_INFO(irq, 25, AUX_CHANNEL_B, INTEL_GVT_IRQ_INFO_DE_PORT);
647 		SET_BIT_INFO(irq, 26, AUX_CHANNEL_C, INTEL_GVT_IRQ_INFO_DE_PORT);
648 		SET_BIT_INFO(irq, 27, AUX_CHANNEL_D, INTEL_GVT_IRQ_INFO_DE_PORT);
649 
650 		SET_BIT_INFO(irq, 3, PRIMARY_A_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_A);
651 		SET_BIT_INFO(irq, 3, PRIMARY_B_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_B);
652 		SET_BIT_INFO(irq, 3, PRIMARY_C_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_C);
653 
654 		SET_BIT_INFO(irq, 4, SPRITE_A_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_A);
655 		SET_BIT_INFO(irq, 4, SPRITE_B_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_B);
656 		SET_BIT_INFO(irq, 4, SPRITE_C_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_C);
657 	}
658 
659 	/* GEN8 interrupt PCU events */
660 	SET_BIT_INFO(irq, 24, PCU_THERMAL, INTEL_GVT_IRQ_INFO_PCU);
661 	SET_BIT_INFO(irq, 25, PCU_PCODE2DRIVER_MAILBOX, INTEL_GVT_IRQ_INFO_PCU);
662 }
663 
664 static const struct intel_gvt_irq_ops gen8_irq_ops = {
665 	.init_irq = gen8_init_irq,
666 	.check_pending_irq = gen8_check_pending_irq,
667 };
668 
669 /**
670  * intel_vgpu_trigger_virtual_event - Trigger a virtual event for a vGPU
671  * @vgpu: a vGPU
672  * @event: interrupt event
673  *
674  * This function is used to trigger a virtual interrupt event for vGPU.
675  * The caller provides the event to be triggered, the framework itself
676  * will emulate the IRQ register bit change.
677  *
678  */
679 void intel_vgpu_trigger_virtual_event(struct intel_vgpu *vgpu,
680 	enum intel_gvt_event_type event)
681 {
682 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
683 	struct intel_gvt *gvt = vgpu->gvt;
684 	struct intel_gvt_irq *irq = &gvt->irq;
685 	gvt_event_virt_handler_t handler;
686 	const struct intel_gvt_irq_ops *ops = gvt->irq.ops;
687 
688 	handler = get_event_virt_handler(irq, event);
689 	drm_WARN_ON(&i915->drm, !handler);
690 
691 	handler(irq, event, vgpu);
692 
693 	ops->check_pending_irq(vgpu);
694 }
695 
696 static void init_events(
697 	struct intel_gvt_irq *irq)
698 {
699 	int i;
700 
701 	for (i = 0; i < INTEL_GVT_EVENT_MAX; i++) {
702 		irq->events[i].info = NULL;
703 		irq->events[i].v_handler = handle_default_event_virt;
704 	}
705 }
706 
707 /**
708  * intel_gvt_init_irq - initialize GVT-g IRQ emulation subsystem
709  * @gvt: a GVT device
710  *
711  * This function is called at driver loading stage, to initialize the GVT-g IRQ
712  * emulation subsystem.
713  *
714  * Returns:
715  * Zero on success, negative error code if failed.
716  */
717 int intel_gvt_init_irq(struct intel_gvt *gvt)
718 {
719 	struct intel_gvt_irq *irq = &gvt->irq;
720 
721 	gvt_dbg_core("init irq framework\n");
722 
723 	irq->ops = &gen8_irq_ops;
724 	irq->irq_map = gen8_irq_map;
725 
726 	/* common event initialization */
727 	init_events(irq);
728 
729 	/* gen specific initialization */
730 	irq->ops->init_irq(irq);
731 
732 	init_irq_map(irq);
733 
734 	return 0;
735 }
736