xref: /linux/drivers/gpu/drm/i915/gvt/gtt.c (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35 
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40 
41 static bool enable_out_of_sync = false;
42 static int preallocated_oos_pages = 8192;
43 
44 /*
45  * validate a gm address and related range size,
46  * translate it to host gm address
47  */
48 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
49 {
50 	if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size
51 			&& !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) {
52 		gvt_err("vgpu%d: invalid range gmadr 0x%llx size 0x%x\n",
53 				vgpu->id, addr, size);
54 		return false;
55 	}
56 	return true;
57 }
58 
59 /* translate a guest gmadr to host gmadr */
60 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
61 {
62 	if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
63 		 "invalid guest gmadr %llx\n", g_addr))
64 		return -EACCES;
65 
66 	if (vgpu_gmadr_is_aperture(vgpu, g_addr))
67 		*h_addr = vgpu_aperture_gmadr_base(vgpu)
68 			  + (g_addr - vgpu_aperture_offset(vgpu));
69 	else
70 		*h_addr = vgpu_hidden_gmadr_base(vgpu)
71 			  + (g_addr - vgpu_hidden_offset(vgpu));
72 	return 0;
73 }
74 
75 /* translate a host gmadr to guest gmadr */
76 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
77 {
78 	if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
79 		 "invalid host gmadr %llx\n", h_addr))
80 		return -EACCES;
81 
82 	if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
83 		*g_addr = vgpu_aperture_gmadr_base(vgpu)
84 			+ (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
85 	else
86 		*g_addr = vgpu_hidden_gmadr_base(vgpu)
87 			+ (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
88 	return 0;
89 }
90 
91 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
92 			     unsigned long *h_index)
93 {
94 	u64 h_addr;
95 	int ret;
96 
97 	ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << GTT_PAGE_SHIFT,
98 				       &h_addr);
99 	if (ret)
100 		return ret;
101 
102 	*h_index = h_addr >> GTT_PAGE_SHIFT;
103 	return 0;
104 }
105 
106 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
107 			     unsigned long *g_index)
108 {
109 	u64 g_addr;
110 	int ret;
111 
112 	ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << GTT_PAGE_SHIFT,
113 				       &g_addr);
114 	if (ret)
115 		return ret;
116 
117 	*g_index = g_addr >> GTT_PAGE_SHIFT;
118 	return 0;
119 }
120 
121 #define gtt_type_is_entry(type) \
122 	(type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
123 	 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
124 	 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
125 
126 #define gtt_type_is_pt(type) \
127 	(type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
128 
129 #define gtt_type_is_pte_pt(type) \
130 	(type == GTT_TYPE_PPGTT_PTE_PT)
131 
132 #define gtt_type_is_root_pointer(type) \
133 	(gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
134 
135 #define gtt_init_entry(e, t, p, v) do { \
136 	(e)->type = t; \
137 	(e)->pdev = p; \
138 	memcpy(&(e)->val64, &v, sizeof(v)); \
139 } while (0)
140 
141 enum {
142 	GTT_TYPE_INVALID = -1,
143 
144 	GTT_TYPE_GGTT_PTE,
145 
146 	GTT_TYPE_PPGTT_PTE_4K_ENTRY,
147 	GTT_TYPE_PPGTT_PTE_2M_ENTRY,
148 	GTT_TYPE_PPGTT_PTE_1G_ENTRY,
149 
150 	GTT_TYPE_PPGTT_PTE_ENTRY,
151 
152 	GTT_TYPE_PPGTT_PDE_ENTRY,
153 	GTT_TYPE_PPGTT_PDP_ENTRY,
154 	GTT_TYPE_PPGTT_PML4_ENTRY,
155 
156 	GTT_TYPE_PPGTT_ROOT_ENTRY,
157 
158 	GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
159 	GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
160 
161 	GTT_TYPE_PPGTT_ENTRY,
162 
163 	GTT_TYPE_PPGTT_PTE_PT,
164 	GTT_TYPE_PPGTT_PDE_PT,
165 	GTT_TYPE_PPGTT_PDP_PT,
166 	GTT_TYPE_PPGTT_PML4_PT,
167 
168 	GTT_TYPE_MAX,
169 };
170 
171 /*
172  * Mappings between GTT_TYPE* enumerations.
173  * Following information can be found according to the given type:
174  * - type of next level page table
175  * - type of entry inside this level page table
176  * - type of entry with PSE set
177  *
178  * If the given type doesn't have such a kind of information,
179  * e.g. give a l4 root entry type, then request to get its PSE type,
180  * give a PTE page table type, then request to get its next level page
181  * table type, as we know l4 root entry doesn't have a PSE bit,
182  * and a PTE page table doesn't have a next level page table type,
183  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
184  * page table.
185  */
186 
187 struct gtt_type_table_entry {
188 	int entry_type;
189 	int next_pt_type;
190 	int pse_entry_type;
191 };
192 
193 #define GTT_TYPE_TABLE_ENTRY(type, e_type, npt_type, pse_type) \
194 	[type] = { \
195 		.entry_type = e_type, \
196 		.next_pt_type = npt_type, \
197 		.pse_entry_type = pse_type, \
198 	}
199 
200 static struct gtt_type_table_entry gtt_type_table[] = {
201 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
202 			GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
203 			GTT_TYPE_PPGTT_PML4_PT,
204 			GTT_TYPE_INVALID),
205 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
206 			GTT_TYPE_PPGTT_PML4_ENTRY,
207 			GTT_TYPE_PPGTT_PDP_PT,
208 			GTT_TYPE_INVALID),
209 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
210 			GTT_TYPE_PPGTT_PML4_ENTRY,
211 			GTT_TYPE_PPGTT_PDP_PT,
212 			GTT_TYPE_INVALID),
213 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
214 			GTT_TYPE_PPGTT_PDP_ENTRY,
215 			GTT_TYPE_PPGTT_PDE_PT,
216 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
217 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
218 			GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
219 			GTT_TYPE_PPGTT_PDE_PT,
220 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
221 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
222 			GTT_TYPE_PPGTT_PDP_ENTRY,
223 			GTT_TYPE_PPGTT_PDE_PT,
224 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
225 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
226 			GTT_TYPE_PPGTT_PDE_ENTRY,
227 			GTT_TYPE_PPGTT_PTE_PT,
228 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
229 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
230 			GTT_TYPE_PPGTT_PDE_ENTRY,
231 			GTT_TYPE_PPGTT_PTE_PT,
232 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
233 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
234 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
235 			GTT_TYPE_INVALID,
236 			GTT_TYPE_INVALID),
237 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
238 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
239 			GTT_TYPE_INVALID,
240 			GTT_TYPE_INVALID),
241 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
242 			GTT_TYPE_PPGTT_PDE_ENTRY,
243 			GTT_TYPE_INVALID,
244 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
245 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
246 			GTT_TYPE_PPGTT_PDP_ENTRY,
247 			GTT_TYPE_INVALID,
248 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
249 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
250 			GTT_TYPE_GGTT_PTE,
251 			GTT_TYPE_INVALID,
252 			GTT_TYPE_INVALID),
253 };
254 
255 static inline int get_next_pt_type(int type)
256 {
257 	return gtt_type_table[type].next_pt_type;
258 }
259 
260 static inline int get_entry_type(int type)
261 {
262 	return gtt_type_table[type].entry_type;
263 }
264 
265 static inline int get_pse_type(int type)
266 {
267 	return gtt_type_table[type].pse_entry_type;
268 }
269 
270 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
271 {
272 	void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
273 	u64 pte;
274 
275 #ifdef readq
276 	pte = readq(addr);
277 #else
278 	pte = ioread32(addr);
279 	pte |= ioread32(addr + 4) << 32;
280 #endif
281 	return pte;
282 }
283 
284 static void write_pte64(struct drm_i915_private *dev_priv,
285 		unsigned long index, u64 pte)
286 {
287 	void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
288 
289 #ifdef writeq
290 	writeq(pte, addr);
291 #else
292 	iowrite32((u32)pte, addr);
293 	iowrite32(pte >> 32, addr + 4);
294 #endif
295 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
296 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
297 }
298 
299 static inline struct intel_gvt_gtt_entry *gtt_get_entry64(void *pt,
300 		struct intel_gvt_gtt_entry *e,
301 		unsigned long index, bool hypervisor_access, unsigned long gpa,
302 		struct intel_vgpu *vgpu)
303 {
304 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
305 	int ret;
306 
307 	if (WARN_ON(info->gtt_entry_size != 8))
308 		return e;
309 
310 	if (hypervisor_access) {
311 		ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
312 				(index << info->gtt_entry_size_shift),
313 				&e->val64, 8);
314 		WARN_ON(ret);
315 	} else if (!pt) {
316 		e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
317 	} else {
318 		e->val64 = *((u64 *)pt + index);
319 	}
320 	return e;
321 }
322 
323 static inline struct intel_gvt_gtt_entry *gtt_set_entry64(void *pt,
324 		struct intel_gvt_gtt_entry *e,
325 		unsigned long index, bool hypervisor_access, unsigned long gpa,
326 		struct intel_vgpu *vgpu)
327 {
328 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
329 	int ret;
330 
331 	if (WARN_ON(info->gtt_entry_size != 8))
332 		return e;
333 
334 	if (hypervisor_access) {
335 		ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
336 				(index << info->gtt_entry_size_shift),
337 				&e->val64, 8);
338 		WARN_ON(ret);
339 	} else if (!pt) {
340 		write_pte64(vgpu->gvt->dev_priv, index, e->val64);
341 	} else {
342 		*((u64 *)pt + index) = e->val64;
343 	}
344 	return e;
345 }
346 
347 #define GTT_HAW 46
348 
349 #define ADDR_1G_MASK (((1UL << (GTT_HAW - 30 + 1)) - 1) << 30)
350 #define ADDR_2M_MASK (((1UL << (GTT_HAW - 21 + 1)) - 1) << 21)
351 #define ADDR_4K_MASK (((1UL << (GTT_HAW - 12 + 1)) - 1) << 12)
352 
353 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
354 {
355 	unsigned long pfn;
356 
357 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
358 		pfn = (e->val64 & ADDR_1G_MASK) >> 12;
359 	else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
360 		pfn = (e->val64 & ADDR_2M_MASK) >> 12;
361 	else
362 		pfn = (e->val64 & ADDR_4K_MASK) >> 12;
363 	return pfn;
364 }
365 
366 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
367 {
368 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
369 		e->val64 &= ~ADDR_1G_MASK;
370 		pfn &= (ADDR_1G_MASK >> 12);
371 	} else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
372 		e->val64 &= ~ADDR_2M_MASK;
373 		pfn &= (ADDR_2M_MASK >> 12);
374 	} else {
375 		e->val64 &= ~ADDR_4K_MASK;
376 		pfn &= (ADDR_4K_MASK >> 12);
377 	}
378 
379 	e->val64 |= (pfn << 12);
380 }
381 
382 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
383 {
384 	/* Entry doesn't have PSE bit. */
385 	if (get_pse_type(e->type) == GTT_TYPE_INVALID)
386 		return false;
387 
388 	e->type = get_entry_type(e->type);
389 	if (!(e->val64 & (1 << 7)))
390 		return false;
391 
392 	e->type = get_pse_type(e->type);
393 	return true;
394 }
395 
396 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
397 {
398 	/*
399 	 * i915 writes PDP root pointer registers without present bit,
400 	 * it also works, so we need to treat root pointer entry
401 	 * specifically.
402 	 */
403 	if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
404 			|| e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
405 		return (e->val64 != 0);
406 	else
407 		return (e->val64 & (1 << 0));
408 }
409 
410 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
411 {
412 	e->val64 &= ~(1 << 0);
413 }
414 
415 /*
416  * Per-platform GMA routines.
417  */
418 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
419 {
420 	unsigned long x = (gma >> GTT_PAGE_SHIFT);
421 
422 	trace_gma_index(__func__, gma, x);
423 	return x;
424 }
425 
426 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
427 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
428 { \
429 	unsigned long x = (exp); \
430 	trace_gma_index(__func__, gma, x); \
431 	return x; \
432 }
433 
434 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
435 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
436 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
437 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
438 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
439 
440 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
441 	.get_entry = gtt_get_entry64,
442 	.set_entry = gtt_set_entry64,
443 	.clear_present = gtt_entry_clear_present,
444 	.test_present = gen8_gtt_test_present,
445 	.test_pse = gen8_gtt_test_pse,
446 	.get_pfn = gen8_gtt_get_pfn,
447 	.set_pfn = gen8_gtt_set_pfn,
448 };
449 
450 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
451 	.gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
452 	.gma_to_pte_index = gen8_gma_to_pte_index,
453 	.gma_to_pde_index = gen8_gma_to_pde_index,
454 	.gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
455 	.gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
456 	.gma_to_pml4_index = gen8_gma_to_pml4_index,
457 };
458 
459 static int gtt_entry_p2m(struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *p,
460 		struct intel_gvt_gtt_entry *m)
461 {
462 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
463 	unsigned long gfn, mfn;
464 
465 	*m = *p;
466 
467 	if (!ops->test_present(p))
468 		return 0;
469 
470 	gfn = ops->get_pfn(p);
471 
472 	mfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, gfn);
473 	if (mfn == INTEL_GVT_INVALID_ADDR) {
474 		gvt_err("fail to translate gfn: 0x%lx\n", gfn);
475 		return -ENXIO;
476 	}
477 
478 	ops->set_pfn(m, mfn);
479 	return 0;
480 }
481 
482 /*
483  * MM helpers.
484  */
485 struct intel_gvt_gtt_entry *intel_vgpu_mm_get_entry(struct intel_vgpu_mm *mm,
486 		void *page_table, struct intel_gvt_gtt_entry *e,
487 		unsigned long index)
488 {
489 	struct intel_gvt *gvt = mm->vgpu->gvt;
490 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
491 
492 	e->type = mm->page_table_entry_type;
493 
494 	ops->get_entry(page_table, e, index, false, 0, mm->vgpu);
495 	ops->test_pse(e);
496 	return e;
497 }
498 
499 struct intel_gvt_gtt_entry *intel_vgpu_mm_set_entry(struct intel_vgpu_mm *mm,
500 		void *page_table, struct intel_gvt_gtt_entry *e,
501 		unsigned long index)
502 {
503 	struct intel_gvt *gvt = mm->vgpu->gvt;
504 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
505 
506 	return ops->set_entry(page_table, e, index, false, 0, mm->vgpu);
507 }
508 
509 /*
510  * PPGTT shadow page table helpers.
511  */
512 static inline struct intel_gvt_gtt_entry *ppgtt_spt_get_entry(
513 		struct intel_vgpu_ppgtt_spt *spt,
514 		void *page_table, int type,
515 		struct intel_gvt_gtt_entry *e, unsigned long index,
516 		bool guest)
517 {
518 	struct intel_gvt *gvt = spt->vgpu->gvt;
519 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
520 
521 	e->type = get_entry_type(type);
522 
523 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
524 		return e;
525 
526 	ops->get_entry(page_table, e, index, guest,
527 			spt->guest_page.gfn << GTT_PAGE_SHIFT,
528 			spt->vgpu);
529 	ops->test_pse(e);
530 	return e;
531 }
532 
533 static inline struct intel_gvt_gtt_entry *ppgtt_spt_set_entry(
534 		struct intel_vgpu_ppgtt_spt *spt,
535 		void *page_table, int type,
536 		struct intel_gvt_gtt_entry *e, unsigned long index,
537 		bool guest)
538 {
539 	struct intel_gvt *gvt = spt->vgpu->gvt;
540 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
541 
542 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
543 		return e;
544 
545 	return ops->set_entry(page_table, e, index, guest,
546 			spt->guest_page.gfn << GTT_PAGE_SHIFT,
547 			spt->vgpu);
548 }
549 
550 #define ppgtt_get_guest_entry(spt, e, index) \
551 	ppgtt_spt_get_entry(spt, NULL, \
552 		spt->guest_page_type, e, index, true)
553 
554 #define ppgtt_set_guest_entry(spt, e, index) \
555 	ppgtt_spt_set_entry(spt, NULL, \
556 		spt->guest_page_type, e, index, true)
557 
558 #define ppgtt_get_shadow_entry(spt, e, index) \
559 	ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
560 		spt->shadow_page.type, e, index, false)
561 
562 #define ppgtt_set_shadow_entry(spt, e, index) \
563 	ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
564 		spt->shadow_page.type, e, index, false)
565 
566 /**
567  * intel_vgpu_init_guest_page - init a guest page data structure
568  * @vgpu: a vGPU
569  * @p: a guest page data structure
570  * @gfn: guest memory page frame number
571  * @handler: function will be called when target guest memory page has
572  * been modified.
573  *
574  * This function is called when user wants to track a guest memory page.
575  *
576  * Returns:
577  * Zero on success, negative error code if failed.
578  */
579 int intel_vgpu_init_guest_page(struct intel_vgpu *vgpu,
580 		struct intel_vgpu_guest_page *p,
581 		unsigned long gfn,
582 		int (*handler)(void *, u64, void *, int),
583 		void *data)
584 {
585 	INIT_HLIST_NODE(&p->node);
586 
587 	p->writeprotection = false;
588 	p->gfn = gfn;
589 	p->handler = handler;
590 	p->data = data;
591 	p->oos_page = NULL;
592 	p->write_cnt = 0;
593 
594 	hash_add(vgpu->gtt.guest_page_hash_table, &p->node, p->gfn);
595 	return 0;
596 }
597 
598 static int detach_oos_page(struct intel_vgpu *vgpu,
599 		struct intel_vgpu_oos_page *oos_page);
600 
601 /**
602  * intel_vgpu_clean_guest_page - release the resource owned by guest page data
603  * structure
604  * @vgpu: a vGPU
605  * @p: a tracked guest page
606  *
607  * This function is called when user tries to stop tracking a guest memory
608  * page.
609  */
610 void intel_vgpu_clean_guest_page(struct intel_vgpu *vgpu,
611 		struct intel_vgpu_guest_page *p)
612 {
613 	if (!hlist_unhashed(&p->node))
614 		hash_del(&p->node);
615 
616 	if (p->oos_page)
617 		detach_oos_page(vgpu, p->oos_page);
618 
619 	if (p->writeprotection)
620 		intel_gvt_hypervisor_unset_wp_page(vgpu, p);
621 }
622 
623 /**
624  * intel_vgpu_find_guest_page - find a guest page data structure by GFN.
625  * @vgpu: a vGPU
626  * @gfn: guest memory page frame number
627  *
628  * This function is called when emulation logic wants to know if a trapped GFN
629  * is a tracked guest page.
630  *
631  * Returns:
632  * Pointer to guest page data structure, NULL if failed.
633  */
634 struct intel_vgpu_guest_page *intel_vgpu_find_guest_page(
635 		struct intel_vgpu *vgpu, unsigned long gfn)
636 {
637 	struct intel_vgpu_guest_page *p;
638 
639 	hash_for_each_possible(vgpu->gtt.guest_page_hash_table,
640 		p, node, gfn) {
641 		if (p->gfn == gfn)
642 			return p;
643 	}
644 	return NULL;
645 }
646 
647 static inline int init_shadow_page(struct intel_vgpu *vgpu,
648 		struct intel_vgpu_shadow_page *p, int type)
649 {
650 	p->vaddr = page_address(p->page);
651 	p->type = type;
652 
653 	INIT_HLIST_NODE(&p->node);
654 
655 	p->mfn = intel_gvt_hypervisor_virt_to_mfn(p->vaddr);
656 	if (p->mfn == INTEL_GVT_INVALID_ADDR)
657 		return -EFAULT;
658 
659 	hash_add(vgpu->gtt.shadow_page_hash_table, &p->node, p->mfn);
660 	return 0;
661 }
662 
663 static inline void clean_shadow_page(struct intel_vgpu_shadow_page *p)
664 {
665 	if (!hlist_unhashed(&p->node))
666 		hash_del(&p->node);
667 }
668 
669 static inline struct intel_vgpu_shadow_page *find_shadow_page(
670 		struct intel_vgpu *vgpu, unsigned long mfn)
671 {
672 	struct intel_vgpu_shadow_page *p;
673 
674 	hash_for_each_possible(vgpu->gtt.shadow_page_hash_table,
675 		p, node, mfn) {
676 		if (p->mfn == mfn)
677 			return p;
678 	}
679 	return NULL;
680 }
681 
682 #define guest_page_to_ppgtt_spt(ptr) \
683 	container_of(ptr, struct intel_vgpu_ppgtt_spt, guest_page)
684 
685 #define shadow_page_to_ppgtt_spt(ptr) \
686 	container_of(ptr, struct intel_vgpu_ppgtt_spt, shadow_page)
687 
688 static void *alloc_spt(gfp_t gfp_mask)
689 {
690 	struct intel_vgpu_ppgtt_spt *spt;
691 
692 	spt = kzalloc(sizeof(*spt), gfp_mask);
693 	if (!spt)
694 		return NULL;
695 
696 	spt->shadow_page.page = alloc_page(gfp_mask);
697 	if (!spt->shadow_page.page) {
698 		kfree(spt);
699 		return NULL;
700 	}
701 	return spt;
702 }
703 
704 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
705 {
706 	__free_page(spt->shadow_page.page);
707 	kfree(spt);
708 }
709 
710 static void ppgtt_free_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
711 {
712 	trace_spt_free(spt->vgpu->id, spt, spt->shadow_page.type);
713 
714 	clean_shadow_page(&spt->shadow_page);
715 	intel_vgpu_clean_guest_page(spt->vgpu, &spt->guest_page);
716 	list_del_init(&spt->post_shadow_list);
717 
718 	free_spt(spt);
719 }
720 
721 static void ppgtt_free_all_shadow_page(struct intel_vgpu *vgpu)
722 {
723 	struct hlist_node *n;
724 	struct intel_vgpu_shadow_page *sp;
725 	int i;
726 
727 	hash_for_each_safe(vgpu->gtt.shadow_page_hash_table, i, n, sp, node)
728 		ppgtt_free_shadow_page(shadow_page_to_ppgtt_spt(sp));
729 }
730 
731 static int ppgtt_handle_guest_write_page_table_bytes(void *gp,
732 		u64 pa, void *p_data, int bytes);
733 
734 static int ppgtt_write_protection_handler(void *gp, u64 pa,
735 		void *p_data, int bytes)
736 {
737 	struct intel_vgpu_guest_page *gpt = (struct intel_vgpu_guest_page *)gp;
738 	int ret;
739 
740 	if (bytes != 4 && bytes != 8)
741 		return -EINVAL;
742 
743 	if (!gpt->writeprotection)
744 		return -EINVAL;
745 
746 	ret = ppgtt_handle_guest_write_page_table_bytes(gp,
747 		pa, p_data, bytes);
748 	if (ret)
749 		return ret;
750 	return ret;
751 }
752 
753 static int reclaim_one_mm(struct intel_gvt *gvt);
754 
755 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_shadow_page(
756 		struct intel_vgpu *vgpu, int type, unsigned long gfn)
757 {
758 	struct intel_vgpu_ppgtt_spt *spt = NULL;
759 	int ret;
760 
761 retry:
762 	spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
763 	if (!spt) {
764 		if (reclaim_one_mm(vgpu->gvt))
765 			goto retry;
766 
767 		gvt_err("fail to allocate ppgtt shadow page\n");
768 		return ERR_PTR(-ENOMEM);
769 	}
770 
771 	spt->vgpu = vgpu;
772 	spt->guest_page_type = type;
773 	atomic_set(&spt->refcount, 1);
774 	INIT_LIST_HEAD(&spt->post_shadow_list);
775 
776 	/*
777 	 * TODO: guest page type may be different with shadow page type,
778 	 *	 when we support PSE page in future.
779 	 */
780 	ret = init_shadow_page(vgpu, &spt->shadow_page, type);
781 	if (ret) {
782 		gvt_err("fail to initialize shadow page for spt\n");
783 		goto err;
784 	}
785 
786 	ret = intel_vgpu_init_guest_page(vgpu, &spt->guest_page,
787 			gfn, ppgtt_write_protection_handler, NULL);
788 	if (ret) {
789 		gvt_err("fail to initialize guest page for spt\n");
790 		goto err;
791 	}
792 
793 	trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
794 	return spt;
795 err:
796 	ppgtt_free_shadow_page(spt);
797 	return ERR_PTR(ret);
798 }
799 
800 static struct intel_vgpu_ppgtt_spt *ppgtt_find_shadow_page(
801 		struct intel_vgpu *vgpu, unsigned long mfn)
802 {
803 	struct intel_vgpu_shadow_page *p = find_shadow_page(vgpu, mfn);
804 
805 	if (p)
806 		return shadow_page_to_ppgtt_spt(p);
807 
808 	gvt_err("vgpu%d: fail to find ppgtt shadow page: 0x%lx\n",
809 			vgpu->id, mfn);
810 	return NULL;
811 }
812 
813 #define pt_entry_size_shift(spt) \
814 	((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
815 
816 #define pt_entries(spt) \
817 	(GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
818 
819 #define for_each_present_guest_entry(spt, e, i) \
820 	for (i = 0; i < pt_entries(spt); i++) \
821 	if (spt->vgpu->gvt->gtt.pte_ops->test_present( \
822 		ppgtt_get_guest_entry(spt, e, i)))
823 
824 #define for_each_present_shadow_entry(spt, e, i) \
825 	for (i = 0; i < pt_entries(spt); i++) \
826 	if (spt->vgpu->gvt->gtt.pte_ops->test_present( \
827 		ppgtt_get_shadow_entry(spt, e, i)))
828 
829 static void ppgtt_get_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
830 {
831 	int v = atomic_read(&spt->refcount);
832 
833 	trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
834 
835 	atomic_inc(&spt->refcount);
836 }
837 
838 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
839 
840 static int ppgtt_invalidate_shadow_page_by_shadow_entry(struct intel_vgpu *vgpu,
841 		struct intel_gvt_gtt_entry *e)
842 {
843 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
844 	struct intel_vgpu_ppgtt_spt *s;
845 
846 	if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(e->type))))
847 		return -EINVAL;
848 
849 	if (ops->get_pfn(e) == vgpu->gtt.scratch_page_mfn)
850 		return 0;
851 
852 	s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
853 	if (!s) {
854 		gvt_err("vgpu%d: fail to find shadow page: mfn: 0x%lx\n",
855 				vgpu->id, ops->get_pfn(e));
856 		return -ENXIO;
857 	}
858 	return ppgtt_invalidate_shadow_page(s);
859 }
860 
861 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
862 {
863 	struct intel_gvt_gtt_entry e;
864 	unsigned long index;
865 	int ret;
866 	int v = atomic_read(&spt->refcount);
867 
868 	trace_spt_change(spt->vgpu->id, "die", spt,
869 			spt->guest_page.gfn, spt->shadow_page.type);
870 
871 	trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
872 
873 	if (atomic_dec_return(&spt->refcount) > 0)
874 		return 0;
875 
876 	if (gtt_type_is_pte_pt(spt->shadow_page.type))
877 		goto release;
878 
879 	for_each_present_shadow_entry(spt, &e, index) {
880 		if (!gtt_type_is_pt(get_next_pt_type(e.type))) {
881 			gvt_err("GVT doesn't support pse bit for now\n");
882 			return -EINVAL;
883 		}
884 		ret = ppgtt_invalidate_shadow_page_by_shadow_entry(
885 				spt->vgpu, &e);
886 		if (ret)
887 			goto fail;
888 	}
889 release:
890 	trace_spt_change(spt->vgpu->id, "release", spt,
891 			spt->guest_page.gfn, spt->shadow_page.type);
892 	ppgtt_free_shadow_page(spt);
893 	return 0;
894 fail:
895 	gvt_err("vgpu%d: fail: shadow page %p shadow entry 0x%llx type %d\n",
896 			spt->vgpu->id, spt, e.val64, e.type);
897 	return ret;
898 }
899 
900 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
901 
902 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_shadow_page_by_guest_entry(
903 		struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
904 {
905 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
906 	struct intel_vgpu_ppgtt_spt *s = NULL;
907 	struct intel_vgpu_guest_page *g;
908 	int ret;
909 
910 	if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(we->type)))) {
911 		ret = -EINVAL;
912 		goto fail;
913 	}
914 
915 	g = intel_vgpu_find_guest_page(vgpu, ops->get_pfn(we));
916 	if (g) {
917 		s = guest_page_to_ppgtt_spt(g);
918 		ppgtt_get_shadow_page(s);
919 	} else {
920 		int type = get_next_pt_type(we->type);
921 
922 		s = ppgtt_alloc_shadow_page(vgpu, type, ops->get_pfn(we));
923 		if (IS_ERR(s)) {
924 			ret = PTR_ERR(s);
925 			goto fail;
926 		}
927 
928 		ret = intel_gvt_hypervisor_set_wp_page(vgpu, &s->guest_page);
929 		if (ret)
930 			goto fail;
931 
932 		ret = ppgtt_populate_shadow_page(s);
933 		if (ret)
934 			goto fail;
935 
936 		trace_spt_change(vgpu->id, "new", s, s->guest_page.gfn,
937 			s->shadow_page.type);
938 	}
939 	return s;
940 fail:
941 	gvt_err("vgpu%d: fail: shadow page %p guest entry 0x%llx type %d\n",
942 			vgpu->id, s, we->val64, we->type);
943 	return ERR_PTR(ret);
944 }
945 
946 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
947 		struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
948 {
949 	struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
950 
951 	se->type = ge->type;
952 	se->val64 = ge->val64;
953 
954 	ops->set_pfn(se, s->shadow_page.mfn);
955 }
956 
957 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
958 {
959 	struct intel_vgpu *vgpu = spt->vgpu;
960 	struct intel_vgpu_ppgtt_spt *s;
961 	struct intel_gvt_gtt_entry se, ge;
962 	unsigned long i;
963 	int ret;
964 
965 	trace_spt_change(spt->vgpu->id, "born", spt,
966 			spt->guest_page.gfn, spt->shadow_page.type);
967 
968 	if (gtt_type_is_pte_pt(spt->shadow_page.type)) {
969 		for_each_present_guest_entry(spt, &ge, i) {
970 			ret = gtt_entry_p2m(vgpu, &ge, &se);
971 			if (ret)
972 				goto fail;
973 			ppgtt_set_shadow_entry(spt, &se, i);
974 		}
975 		return 0;
976 	}
977 
978 	for_each_present_guest_entry(spt, &ge, i) {
979 		if (!gtt_type_is_pt(get_next_pt_type(ge.type))) {
980 			gvt_err("GVT doesn't support pse bit now\n");
981 			ret = -EINVAL;
982 			goto fail;
983 		}
984 
985 		s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
986 		if (IS_ERR(s)) {
987 			ret = PTR_ERR(s);
988 			goto fail;
989 		}
990 		ppgtt_get_shadow_entry(spt, &se, i);
991 		ppgtt_generate_shadow_entry(&se, s, &ge);
992 		ppgtt_set_shadow_entry(spt, &se, i);
993 	}
994 	return 0;
995 fail:
996 	gvt_err("vgpu%d: fail: shadow page %p guest entry 0x%llx type %d\n",
997 			vgpu->id, spt, ge.val64, ge.type);
998 	return ret;
999 }
1000 
1001 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_guest_page *gpt,
1002 		struct intel_gvt_gtt_entry *we, unsigned long index)
1003 {
1004 	struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1005 	struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
1006 	struct intel_vgpu *vgpu = spt->vgpu;
1007 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1008 	struct intel_gvt_gtt_entry e;
1009 	int ret;
1010 
1011 	trace_gpt_change(spt->vgpu->id, "remove", spt, sp->type,
1012 		we->val64, index);
1013 
1014 	ppgtt_get_shadow_entry(spt, &e, index);
1015 	if (!ops->test_present(&e))
1016 		return 0;
1017 
1018 	if (ops->get_pfn(&e) == vgpu->gtt.scratch_page_mfn)
1019 		return 0;
1020 
1021 	if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1022 		struct intel_vgpu_guest_page *g =
1023 			intel_vgpu_find_guest_page(vgpu, ops->get_pfn(we));
1024 		if (!g) {
1025 			gvt_err("fail to find guest page\n");
1026 			ret = -ENXIO;
1027 			goto fail;
1028 		}
1029 		ret = ppgtt_invalidate_shadow_page(guest_page_to_ppgtt_spt(g));
1030 		if (ret)
1031 			goto fail;
1032 	}
1033 	ops->set_pfn(&e, vgpu->gtt.scratch_page_mfn);
1034 	ppgtt_set_shadow_entry(spt, &e, index);
1035 	return 0;
1036 fail:
1037 	gvt_err("vgpu%d: fail: shadow page %p guest entry 0x%llx type %d\n",
1038 			vgpu->id, spt, we->val64, we->type);
1039 	return ret;
1040 }
1041 
1042 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_guest_page *gpt,
1043 		struct intel_gvt_gtt_entry *we, unsigned long index)
1044 {
1045 	struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1046 	struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
1047 	struct intel_vgpu *vgpu = spt->vgpu;
1048 	struct intel_gvt_gtt_entry m;
1049 	struct intel_vgpu_ppgtt_spt *s;
1050 	int ret;
1051 
1052 	trace_gpt_change(spt->vgpu->id, "add", spt, sp->type,
1053 		we->val64, index);
1054 
1055 	if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1056 		s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, we);
1057 		if (IS_ERR(s)) {
1058 			ret = PTR_ERR(s);
1059 			goto fail;
1060 		}
1061 		ppgtt_get_shadow_entry(spt, &m, index);
1062 		ppgtt_generate_shadow_entry(&m, s, we);
1063 		ppgtt_set_shadow_entry(spt, &m, index);
1064 	} else {
1065 		ret = gtt_entry_p2m(vgpu, we, &m);
1066 		if (ret)
1067 			goto fail;
1068 		ppgtt_set_shadow_entry(spt, &m, index);
1069 	}
1070 	return 0;
1071 fail:
1072 	gvt_err("vgpu%d: fail: spt %p guest entry 0x%llx type %d\n", vgpu->id,
1073 			spt, we->val64, we->type);
1074 	return ret;
1075 }
1076 
1077 static int sync_oos_page(struct intel_vgpu *vgpu,
1078 		struct intel_vgpu_oos_page *oos_page)
1079 {
1080 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1081 	struct intel_gvt *gvt = vgpu->gvt;
1082 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1083 	struct intel_vgpu_ppgtt_spt *spt =
1084 		guest_page_to_ppgtt_spt(oos_page->guest_page);
1085 	struct intel_gvt_gtt_entry old, new, m;
1086 	int index;
1087 	int ret;
1088 
1089 	trace_oos_change(vgpu->id, "sync", oos_page->id,
1090 			oos_page->guest_page, spt->guest_page_type);
1091 
1092 	old.type = new.type = get_entry_type(spt->guest_page_type);
1093 	old.val64 = new.val64 = 0;
1094 
1095 	for (index = 0; index < (GTT_PAGE_SIZE >> info->gtt_entry_size_shift);
1096 		index++) {
1097 		ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1098 		ops->get_entry(NULL, &new, index, true,
1099 			oos_page->guest_page->gfn << PAGE_SHIFT, vgpu);
1100 
1101 		if (old.val64 == new.val64
1102 			&& !test_and_clear_bit(index, spt->post_shadow_bitmap))
1103 			continue;
1104 
1105 		trace_oos_sync(vgpu->id, oos_page->id,
1106 				oos_page->guest_page, spt->guest_page_type,
1107 				new.val64, index);
1108 
1109 		ret = gtt_entry_p2m(vgpu, &new, &m);
1110 		if (ret)
1111 			return ret;
1112 
1113 		ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1114 		ppgtt_set_shadow_entry(spt, &m, index);
1115 	}
1116 
1117 	oos_page->guest_page->write_cnt = 0;
1118 	list_del_init(&spt->post_shadow_list);
1119 	return 0;
1120 }
1121 
1122 static int detach_oos_page(struct intel_vgpu *vgpu,
1123 		struct intel_vgpu_oos_page *oos_page)
1124 {
1125 	struct intel_gvt *gvt = vgpu->gvt;
1126 	struct intel_vgpu_ppgtt_spt *spt =
1127 		guest_page_to_ppgtt_spt(oos_page->guest_page);
1128 
1129 	trace_oos_change(vgpu->id, "detach", oos_page->id,
1130 			oos_page->guest_page, spt->guest_page_type);
1131 
1132 	oos_page->guest_page->write_cnt = 0;
1133 	oos_page->guest_page->oos_page = NULL;
1134 	oos_page->guest_page = NULL;
1135 
1136 	list_del_init(&oos_page->vm_list);
1137 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1138 
1139 	return 0;
1140 }
1141 
1142 static int attach_oos_page(struct intel_vgpu *vgpu,
1143 		struct intel_vgpu_oos_page *oos_page,
1144 		struct intel_vgpu_guest_page *gpt)
1145 {
1146 	struct intel_gvt *gvt = vgpu->gvt;
1147 	int ret;
1148 
1149 	ret = intel_gvt_hypervisor_read_gpa(vgpu, gpt->gfn << GTT_PAGE_SHIFT,
1150 		oos_page->mem, GTT_PAGE_SIZE);
1151 	if (ret)
1152 		return ret;
1153 
1154 	oos_page->guest_page = gpt;
1155 	gpt->oos_page = oos_page;
1156 
1157 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1158 
1159 	trace_oos_change(vgpu->id, "attach", gpt->oos_page->id,
1160 			gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1161 	return 0;
1162 }
1163 
1164 static int ppgtt_set_guest_page_sync(struct intel_vgpu *vgpu,
1165 		struct intel_vgpu_guest_page *gpt)
1166 {
1167 	int ret;
1168 
1169 	ret = intel_gvt_hypervisor_set_wp_page(vgpu, gpt);
1170 	if (ret)
1171 		return ret;
1172 
1173 	trace_oos_change(vgpu->id, "set page sync", gpt->oos_page->id,
1174 			gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1175 
1176 	list_del_init(&gpt->oos_page->vm_list);
1177 	return sync_oos_page(vgpu, gpt->oos_page);
1178 }
1179 
1180 static int ppgtt_allocate_oos_page(struct intel_vgpu *vgpu,
1181 		struct intel_vgpu_guest_page *gpt)
1182 {
1183 	struct intel_gvt *gvt = vgpu->gvt;
1184 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1185 	struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
1186 	int ret;
1187 
1188 	WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1189 
1190 	if (list_empty(&gtt->oos_page_free_list_head)) {
1191 		oos_page = container_of(gtt->oos_page_use_list_head.next,
1192 			struct intel_vgpu_oos_page, list);
1193 		ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
1194 		if (ret)
1195 			return ret;
1196 		ret = detach_oos_page(vgpu, oos_page);
1197 		if (ret)
1198 			return ret;
1199 	} else
1200 		oos_page = container_of(gtt->oos_page_free_list_head.next,
1201 			struct intel_vgpu_oos_page, list);
1202 	return attach_oos_page(vgpu, oos_page, gpt);
1203 }
1204 
1205 static int ppgtt_set_guest_page_oos(struct intel_vgpu *vgpu,
1206 		struct intel_vgpu_guest_page *gpt)
1207 {
1208 	struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
1209 
1210 	if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1211 		return -EINVAL;
1212 
1213 	trace_oos_change(vgpu->id, "set page out of sync", gpt->oos_page->id,
1214 			gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1215 
1216 	list_add_tail(&oos_page->vm_list, &vgpu->gtt.oos_page_list_head);
1217 	return intel_gvt_hypervisor_unset_wp_page(vgpu, gpt);
1218 }
1219 
1220 /**
1221  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1222  * @vgpu: a vGPU
1223  *
1224  * This function is called before submitting a guest workload to host,
1225  * to sync all the out-of-synced shadow for vGPU
1226  *
1227  * Returns:
1228  * Zero on success, negative error code if failed.
1229  */
1230 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1231 {
1232 	struct list_head *pos, *n;
1233 	struct intel_vgpu_oos_page *oos_page;
1234 	int ret;
1235 
1236 	if (!enable_out_of_sync)
1237 		return 0;
1238 
1239 	list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1240 		oos_page = container_of(pos,
1241 				struct intel_vgpu_oos_page, vm_list);
1242 		ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
1243 		if (ret)
1244 			return ret;
1245 	}
1246 	return 0;
1247 }
1248 
1249 /*
1250  * The heart of PPGTT shadow page table.
1251  */
1252 static int ppgtt_handle_guest_write_page_table(
1253 		struct intel_vgpu_guest_page *gpt,
1254 		struct intel_gvt_gtt_entry *we, unsigned long index)
1255 {
1256 	struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1257 	struct intel_vgpu *vgpu = spt->vgpu;
1258 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1259 	struct intel_gvt_gtt_entry ge;
1260 
1261 	int old_present, new_present;
1262 	int ret;
1263 
1264 	ppgtt_get_guest_entry(spt, &ge, index);
1265 
1266 	old_present = ops->test_present(&ge);
1267 	new_present = ops->test_present(we);
1268 
1269 	ppgtt_set_guest_entry(spt, we, index);
1270 
1271 	if (old_present) {
1272 		ret = ppgtt_handle_guest_entry_removal(gpt, &ge, index);
1273 		if (ret)
1274 			goto fail;
1275 	}
1276 	if (new_present) {
1277 		ret = ppgtt_handle_guest_entry_add(gpt, we, index);
1278 		if (ret)
1279 			goto fail;
1280 	}
1281 	return 0;
1282 fail:
1283 	gvt_err("vgpu%d: fail: shadow page %p guest entry 0x%llx type %d.\n",
1284 			vgpu->id, spt, we->val64, we->type);
1285 	return ret;
1286 }
1287 
1288 static inline bool can_do_out_of_sync(struct intel_vgpu_guest_page *gpt)
1289 {
1290 	return enable_out_of_sync
1291 		&& gtt_type_is_pte_pt(
1292 			guest_page_to_ppgtt_spt(gpt)->guest_page_type)
1293 		&& gpt->write_cnt >= 2;
1294 }
1295 
1296 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1297 		unsigned long index)
1298 {
1299 	set_bit(index, spt->post_shadow_bitmap);
1300 	if (!list_empty(&spt->post_shadow_list))
1301 		return;
1302 
1303 	list_add_tail(&spt->post_shadow_list,
1304 			&spt->vgpu->gtt.post_shadow_list_head);
1305 }
1306 
1307 /**
1308  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1309  * @vgpu: a vGPU
1310  *
1311  * This function is called before submitting a guest workload to host,
1312  * to flush all the post shadows for a vGPU.
1313  *
1314  * Returns:
1315  * Zero on success, negative error code if failed.
1316  */
1317 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1318 {
1319 	struct list_head *pos, *n;
1320 	struct intel_vgpu_ppgtt_spt *spt;
1321 	struct intel_gvt_gtt_entry ge, e;
1322 	unsigned long index;
1323 	int ret;
1324 
1325 	list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1326 		spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1327 				post_shadow_list);
1328 
1329 		for_each_set_bit(index, spt->post_shadow_bitmap,
1330 				GTT_ENTRY_NUM_IN_ONE_PAGE) {
1331 			ppgtt_get_guest_entry(spt, &ge, index);
1332 			e = ge;
1333 			e.val64 = 0;
1334 			ppgtt_set_guest_entry(spt, &e, index);
1335 
1336 			ret = ppgtt_handle_guest_write_page_table(
1337 					&spt->guest_page, &ge, index);
1338 			if (ret)
1339 				return ret;
1340 			clear_bit(index, spt->post_shadow_bitmap);
1341 		}
1342 		list_del_init(&spt->post_shadow_list);
1343 	}
1344 	return 0;
1345 }
1346 
1347 static int ppgtt_handle_guest_write_page_table_bytes(void *gp,
1348 		u64 pa, void *p_data, int bytes)
1349 {
1350 	struct intel_vgpu_guest_page *gpt = (struct intel_vgpu_guest_page *)gp;
1351 	struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1352 	struct intel_vgpu *vgpu = spt->vgpu;
1353 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1354 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1355 	struct intel_gvt_gtt_entry we;
1356 	unsigned long index;
1357 	int ret;
1358 
1359 	index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1360 
1361 	ppgtt_get_guest_entry(spt, &we, index);
1362 	memcpy((void *)&we.val64 + (pa & (info->gtt_entry_size - 1)),
1363 			p_data, bytes);
1364 
1365 	ops->test_pse(&we);
1366 
1367 	if (bytes == info->gtt_entry_size) {
1368 		ret = ppgtt_handle_guest_write_page_table(gpt, &we, index);
1369 		if (ret)
1370 			return ret;
1371 	} else {
1372 		struct intel_gvt_gtt_entry ge;
1373 
1374 		ppgtt_get_guest_entry(spt, &ge, index);
1375 
1376 		if (!test_bit(index, spt->post_shadow_bitmap)) {
1377 			ret = ppgtt_handle_guest_entry_removal(gpt,
1378 					&ge, index);
1379 			if (ret)
1380 				return ret;
1381 		}
1382 
1383 		ppgtt_set_post_shadow(spt, index);
1384 		ppgtt_set_guest_entry(spt, &we, index);
1385 	}
1386 
1387 	if (!enable_out_of_sync)
1388 		return 0;
1389 
1390 	gpt->write_cnt++;
1391 
1392 	if (gpt->oos_page)
1393 		ops->set_entry(gpt->oos_page->mem, &we, index,
1394 				false, 0, vgpu);
1395 
1396 	if (can_do_out_of_sync(gpt)) {
1397 		if (!gpt->oos_page)
1398 			ppgtt_allocate_oos_page(vgpu, gpt);
1399 
1400 		ret = ppgtt_set_guest_page_oos(vgpu, gpt);
1401 		if (ret < 0)
1402 			return ret;
1403 	}
1404 	return 0;
1405 }
1406 
1407 /*
1408  * mm page table allocation policy for bdw+
1409  *  - for ggtt, only virtual page table will be allocated.
1410  *  - for ppgtt, dedicated virtual/shadow page table will be allocated.
1411  */
1412 static int gen8_mm_alloc_page_table(struct intel_vgpu_mm *mm)
1413 {
1414 	struct intel_vgpu *vgpu = mm->vgpu;
1415 	struct intel_gvt *gvt = vgpu->gvt;
1416 	const struct intel_gvt_device_info *info = &gvt->device_info;
1417 	void *mem;
1418 
1419 	if (mm->type == INTEL_GVT_MM_PPGTT) {
1420 		mm->page_table_entry_cnt = 4;
1421 		mm->page_table_entry_size = mm->page_table_entry_cnt *
1422 			info->gtt_entry_size;
1423 		mem = kzalloc(mm->has_shadow_page_table ?
1424 			mm->page_table_entry_size * 2
1425 				: mm->page_table_entry_size,
1426 			GFP_ATOMIC);
1427 		if (!mem)
1428 			return -ENOMEM;
1429 		mm->virtual_page_table = mem;
1430 		if (!mm->has_shadow_page_table)
1431 			return 0;
1432 		mm->shadow_page_table = mem + mm->page_table_entry_size;
1433 	} else if (mm->type == INTEL_GVT_MM_GGTT) {
1434 		mm->page_table_entry_cnt =
1435 			(gvt_ggtt_gm_sz(gvt) >> GTT_PAGE_SHIFT);
1436 		mm->page_table_entry_size = mm->page_table_entry_cnt *
1437 			info->gtt_entry_size;
1438 		mem = vzalloc(mm->page_table_entry_size);
1439 		if (!mem)
1440 			return -ENOMEM;
1441 		mm->virtual_page_table = mem;
1442 	}
1443 	return 0;
1444 }
1445 
1446 static void gen8_mm_free_page_table(struct intel_vgpu_mm *mm)
1447 {
1448 	if (mm->type == INTEL_GVT_MM_PPGTT) {
1449 		kfree(mm->virtual_page_table);
1450 	} else if (mm->type == INTEL_GVT_MM_GGTT) {
1451 		if (mm->virtual_page_table)
1452 			vfree(mm->virtual_page_table);
1453 	}
1454 	mm->virtual_page_table = mm->shadow_page_table = NULL;
1455 }
1456 
1457 static void invalidate_mm(struct intel_vgpu_mm *mm)
1458 {
1459 	struct intel_vgpu *vgpu = mm->vgpu;
1460 	struct intel_gvt *gvt = vgpu->gvt;
1461 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1462 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1463 	struct intel_gvt_gtt_entry se;
1464 	int i;
1465 
1466 	if (WARN_ON(!mm->has_shadow_page_table || !mm->shadowed))
1467 		return;
1468 
1469 	for (i = 0; i < mm->page_table_entry_cnt; i++) {
1470 		ppgtt_get_shadow_root_entry(mm, &se, i);
1471 		if (!ops->test_present(&se))
1472 			continue;
1473 		ppgtt_invalidate_shadow_page_by_shadow_entry(
1474 				vgpu, &se);
1475 		se.val64 = 0;
1476 		ppgtt_set_shadow_root_entry(mm, &se, i);
1477 
1478 		trace_gpt_change(vgpu->id, "destroy root pointer",
1479 				NULL, se.type, se.val64, i);
1480 	}
1481 	mm->shadowed = false;
1482 }
1483 
1484 /**
1485  * intel_vgpu_destroy_mm - destroy a mm object
1486  * @mm: a kref object
1487  *
1488  * This function is used to destroy a mm object for vGPU
1489  *
1490  */
1491 void intel_vgpu_destroy_mm(struct kref *mm_ref)
1492 {
1493 	struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1494 	struct intel_vgpu *vgpu = mm->vgpu;
1495 	struct intel_gvt *gvt = vgpu->gvt;
1496 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1497 
1498 	if (!mm->initialized)
1499 		goto out;
1500 
1501 	list_del(&mm->list);
1502 	list_del(&mm->lru_list);
1503 
1504 	if (mm->has_shadow_page_table)
1505 		invalidate_mm(mm);
1506 
1507 	gtt->mm_free_page_table(mm);
1508 out:
1509 	kfree(mm);
1510 }
1511 
1512 static int shadow_mm(struct intel_vgpu_mm *mm)
1513 {
1514 	struct intel_vgpu *vgpu = mm->vgpu;
1515 	struct intel_gvt *gvt = vgpu->gvt;
1516 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1517 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1518 	struct intel_vgpu_ppgtt_spt *spt;
1519 	struct intel_gvt_gtt_entry ge, se;
1520 	int i;
1521 	int ret;
1522 
1523 	if (WARN_ON(!mm->has_shadow_page_table || mm->shadowed))
1524 		return 0;
1525 
1526 	mm->shadowed = true;
1527 
1528 	for (i = 0; i < mm->page_table_entry_cnt; i++) {
1529 		ppgtt_get_guest_root_entry(mm, &ge, i);
1530 		if (!ops->test_present(&ge))
1531 			continue;
1532 
1533 		trace_gpt_change(vgpu->id, __func__, NULL,
1534 				ge.type, ge.val64, i);
1535 
1536 		spt = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
1537 		if (IS_ERR(spt)) {
1538 			gvt_err("fail to populate guest root pointer\n");
1539 			ret = PTR_ERR(spt);
1540 			goto fail;
1541 		}
1542 		ppgtt_generate_shadow_entry(&se, spt, &ge);
1543 		ppgtt_set_shadow_root_entry(mm, &se, i);
1544 
1545 		trace_gpt_change(vgpu->id, "populate root pointer",
1546 				NULL, se.type, se.val64, i);
1547 	}
1548 	return 0;
1549 fail:
1550 	invalidate_mm(mm);
1551 	return ret;
1552 }
1553 
1554 /**
1555  * intel_vgpu_create_mm - create a mm object for a vGPU
1556  * @vgpu: a vGPU
1557  * @mm_type: mm object type, should be PPGTT or GGTT
1558  * @virtual_page_table: page table root pointers. Could be NULL if user wants
1559  *	to populate shadow later.
1560  * @page_table_level: describe the page table level of the mm object
1561  * @pde_base_index: pde root pointer base in GGTT MMIO.
1562  *
1563  * This function is used to create a mm object for a vGPU.
1564  *
1565  * Returns:
1566  * Zero on success, negative error code in pointer if failed.
1567  */
1568 struct intel_vgpu_mm *intel_vgpu_create_mm(struct intel_vgpu *vgpu,
1569 		int mm_type, void *virtual_page_table, int page_table_level,
1570 		u32 pde_base_index)
1571 {
1572 	struct intel_gvt *gvt = vgpu->gvt;
1573 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1574 	struct intel_vgpu_mm *mm;
1575 	int ret;
1576 
1577 	mm = kzalloc(sizeof(*mm), GFP_ATOMIC);
1578 	if (!mm) {
1579 		ret = -ENOMEM;
1580 		goto fail;
1581 	}
1582 
1583 	mm->type = mm_type;
1584 
1585 	if (page_table_level == 1)
1586 		mm->page_table_entry_type = GTT_TYPE_GGTT_PTE;
1587 	else if (page_table_level == 3)
1588 		mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1589 	else if (page_table_level == 4)
1590 		mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1591 	else {
1592 		WARN_ON(1);
1593 		ret = -EINVAL;
1594 		goto fail;
1595 	}
1596 
1597 	mm->page_table_level = page_table_level;
1598 	mm->pde_base_index = pde_base_index;
1599 
1600 	mm->vgpu = vgpu;
1601 	mm->has_shadow_page_table = !!(mm_type == INTEL_GVT_MM_PPGTT);
1602 
1603 	kref_init(&mm->ref);
1604 	atomic_set(&mm->pincount, 0);
1605 	INIT_LIST_HEAD(&mm->list);
1606 	INIT_LIST_HEAD(&mm->lru_list);
1607 	list_add_tail(&mm->list, &vgpu->gtt.mm_list_head);
1608 
1609 	ret = gtt->mm_alloc_page_table(mm);
1610 	if (ret) {
1611 		gvt_err("fail to allocate page table for mm\n");
1612 		goto fail;
1613 	}
1614 
1615 	mm->initialized = true;
1616 
1617 	if (virtual_page_table)
1618 		memcpy(mm->virtual_page_table, virtual_page_table,
1619 				mm->page_table_entry_size);
1620 
1621 	if (mm->has_shadow_page_table) {
1622 		ret = shadow_mm(mm);
1623 		if (ret)
1624 			goto fail;
1625 		list_add_tail(&mm->lru_list, &gvt->gtt.mm_lru_list_head);
1626 	}
1627 	return mm;
1628 fail:
1629 	gvt_err("fail to create mm\n");
1630 	if (mm)
1631 		intel_gvt_mm_unreference(mm);
1632 	return ERR_PTR(ret);
1633 }
1634 
1635 /**
1636  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1637  * @mm: a vGPU mm object
1638  *
1639  * This function is called when user doesn't want to use a vGPU mm object
1640  */
1641 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1642 {
1643 	if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
1644 		return;
1645 
1646 	atomic_dec(&mm->pincount);
1647 }
1648 
1649 /**
1650  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1651  * @vgpu: a vGPU
1652  *
1653  * This function is called when user wants to use a vGPU mm object. If this
1654  * mm object hasn't been shadowed yet, the shadow will be populated at this
1655  * time.
1656  *
1657  * Returns:
1658  * Zero on success, negative error code if failed.
1659  */
1660 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1661 {
1662 	int ret;
1663 
1664 	if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
1665 		return 0;
1666 
1667 	atomic_inc(&mm->pincount);
1668 
1669 	if (!mm->shadowed) {
1670 		ret = shadow_mm(mm);
1671 		if (ret)
1672 			return ret;
1673 	}
1674 
1675 	list_del_init(&mm->lru_list);
1676 	list_add_tail(&mm->lru_list, &mm->vgpu->gvt->gtt.mm_lru_list_head);
1677 	return 0;
1678 }
1679 
1680 static int reclaim_one_mm(struct intel_gvt *gvt)
1681 {
1682 	struct intel_vgpu_mm *mm;
1683 	struct list_head *pos, *n;
1684 
1685 	list_for_each_safe(pos, n, &gvt->gtt.mm_lru_list_head) {
1686 		mm = container_of(pos, struct intel_vgpu_mm, lru_list);
1687 
1688 		if (mm->type != INTEL_GVT_MM_PPGTT)
1689 			continue;
1690 		if (atomic_read(&mm->pincount))
1691 			continue;
1692 
1693 		list_del_init(&mm->lru_list);
1694 		invalidate_mm(mm);
1695 		return 1;
1696 	}
1697 	return 0;
1698 }
1699 
1700 /*
1701  * GMA translation APIs.
1702  */
1703 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
1704 		struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
1705 {
1706 	struct intel_vgpu *vgpu = mm->vgpu;
1707 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1708 	struct intel_vgpu_ppgtt_spt *s;
1709 
1710 	if (WARN_ON(!mm->has_shadow_page_table))
1711 		return -EINVAL;
1712 
1713 	s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
1714 	if (!s)
1715 		return -ENXIO;
1716 
1717 	if (!guest)
1718 		ppgtt_get_shadow_entry(s, e, index);
1719 	else
1720 		ppgtt_get_guest_entry(s, e, index);
1721 	return 0;
1722 }
1723 
1724 /**
1725  * intel_vgpu_gma_to_gpa - translate a gma to GPA
1726  * @mm: mm object. could be a PPGTT or GGTT mm object
1727  * @gma: graphics memory address in this mm object
1728  *
1729  * This function is used to translate a graphics memory address in specific
1730  * graphics memory space to guest physical address.
1731  *
1732  * Returns:
1733  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
1734  */
1735 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
1736 {
1737 	struct intel_vgpu *vgpu = mm->vgpu;
1738 	struct intel_gvt *gvt = vgpu->gvt;
1739 	struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
1740 	struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
1741 	unsigned long gpa = INTEL_GVT_INVALID_ADDR;
1742 	unsigned long gma_index[4];
1743 	struct intel_gvt_gtt_entry e;
1744 	int i, index;
1745 	int ret;
1746 
1747 	if (mm->type != INTEL_GVT_MM_GGTT && mm->type != INTEL_GVT_MM_PPGTT)
1748 		return INTEL_GVT_INVALID_ADDR;
1749 
1750 	if (mm->type == INTEL_GVT_MM_GGTT) {
1751 		if (!vgpu_gmadr_is_valid(vgpu, gma))
1752 			goto err;
1753 
1754 		ggtt_get_guest_entry(mm, &e,
1755 			gma_ops->gma_to_ggtt_pte_index(gma));
1756 		gpa = (pte_ops->get_pfn(&e) << GTT_PAGE_SHIFT)
1757 			+ (gma & ~GTT_PAGE_MASK);
1758 
1759 		trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
1760 		return gpa;
1761 	}
1762 
1763 	switch (mm->page_table_level) {
1764 	case 4:
1765 		ppgtt_get_shadow_root_entry(mm, &e, 0);
1766 		gma_index[0] = gma_ops->gma_to_pml4_index(gma);
1767 		gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
1768 		gma_index[2] = gma_ops->gma_to_pde_index(gma);
1769 		gma_index[3] = gma_ops->gma_to_pte_index(gma);
1770 		index = 4;
1771 		break;
1772 	case 3:
1773 		ppgtt_get_shadow_root_entry(mm, &e,
1774 				gma_ops->gma_to_l3_pdp_index(gma));
1775 		gma_index[0] = gma_ops->gma_to_pde_index(gma);
1776 		gma_index[1] = gma_ops->gma_to_pte_index(gma);
1777 		index = 2;
1778 		break;
1779 	case 2:
1780 		ppgtt_get_shadow_root_entry(mm, &e,
1781 				gma_ops->gma_to_pde_index(gma));
1782 		gma_index[0] = gma_ops->gma_to_pte_index(gma);
1783 		index = 1;
1784 		break;
1785 	default:
1786 		WARN_ON(1);
1787 		goto err;
1788 	}
1789 
1790 	/* walk into the shadow page table and get gpa from guest entry */
1791 	for (i = 0; i < index; i++) {
1792 		ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
1793 			(i == index - 1));
1794 		if (ret)
1795 			goto err;
1796 	}
1797 
1798 	gpa = (pte_ops->get_pfn(&e) << GTT_PAGE_SHIFT)
1799 		+ (gma & ~GTT_PAGE_MASK);
1800 
1801 	trace_gma_translate(vgpu->id, "ppgtt", 0,
1802 			mm->page_table_level, gma, gpa);
1803 	return gpa;
1804 err:
1805 	gvt_err("invalid mm type: %d gma %lx\n", mm->type, gma);
1806 	return INTEL_GVT_INVALID_ADDR;
1807 }
1808 
1809 static int emulate_gtt_mmio_read(struct intel_vgpu *vgpu,
1810 	unsigned int off, void *p_data, unsigned int bytes)
1811 {
1812 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1813 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1814 	unsigned long index = off >> info->gtt_entry_size_shift;
1815 	struct intel_gvt_gtt_entry e;
1816 
1817 	if (bytes != 4 && bytes != 8)
1818 		return -EINVAL;
1819 
1820 	ggtt_get_guest_entry(ggtt_mm, &e, index);
1821 	memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
1822 			bytes);
1823 	return 0;
1824 }
1825 
1826 /**
1827  * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
1828  * @vgpu: a vGPU
1829  * @off: register offset
1830  * @p_data: data will be returned to guest
1831  * @bytes: data length
1832  *
1833  * This function is used to emulate the GTT MMIO register read
1834  *
1835  * Returns:
1836  * Zero on success, error code if failed.
1837  */
1838 int intel_vgpu_emulate_gtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
1839 	void *p_data, unsigned int bytes)
1840 {
1841 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1842 	int ret;
1843 
1844 	if (bytes != 4 && bytes != 8)
1845 		return -EINVAL;
1846 
1847 	off -= info->gtt_start_offset;
1848 	ret = emulate_gtt_mmio_read(vgpu, off, p_data, bytes);
1849 	return ret;
1850 }
1851 
1852 static int emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1853 	void *p_data, unsigned int bytes)
1854 {
1855 	struct intel_gvt *gvt = vgpu->gvt;
1856 	const struct intel_gvt_device_info *info = &gvt->device_info;
1857 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1858 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1859 	unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
1860 	unsigned long gma;
1861 	struct intel_gvt_gtt_entry e, m;
1862 	int ret;
1863 
1864 	if (bytes != 4 && bytes != 8)
1865 		return -EINVAL;
1866 
1867 	gma = g_gtt_index << GTT_PAGE_SHIFT;
1868 
1869 	/* the VM may configure the whole GM space when ballooning is used */
1870 	if (WARN_ONCE(!vgpu_gmadr_is_valid(vgpu, gma),
1871 				"vgpu%d: found oob ggtt write, offset %x\n",
1872 				vgpu->id, off)) {
1873 		return 0;
1874 	}
1875 
1876 	ggtt_get_guest_entry(ggtt_mm, &e, g_gtt_index);
1877 
1878 	memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
1879 			bytes);
1880 
1881 	if (ops->test_present(&e)) {
1882 		ret = gtt_entry_p2m(vgpu, &e, &m);
1883 		if (ret) {
1884 			gvt_err("vgpu%d: fail to translate guest gtt entry\n",
1885 					vgpu->id);
1886 			return ret;
1887 		}
1888 	} else {
1889 		m = e;
1890 		m.val64 = 0;
1891 	}
1892 
1893 	ggtt_set_shadow_entry(ggtt_mm, &m, g_gtt_index);
1894 	ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
1895 	return 0;
1896 }
1897 
1898 /*
1899  * intel_vgpu_emulate_gtt_mmio_write - emulate GTT MMIO register write
1900  * @vgpu: a vGPU
1901  * @off: register offset
1902  * @p_data: data from guest write
1903  * @bytes: data length
1904  *
1905  * This function is used to emulate the GTT MMIO register write
1906  *
1907  * Returns:
1908  * Zero on success, error code if failed.
1909  */
1910 int intel_vgpu_emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1911 	void *p_data, unsigned int bytes)
1912 {
1913 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1914 	int ret;
1915 
1916 	if (bytes != 4 && bytes != 8)
1917 		return -EINVAL;
1918 
1919 	off -= info->gtt_start_offset;
1920 	ret = emulate_gtt_mmio_write(vgpu, off, p_data, bytes);
1921 	return ret;
1922 }
1923 
1924 static int create_scratch_page(struct intel_vgpu *vgpu)
1925 {
1926 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
1927 	void *p;
1928 	void *vaddr;
1929 	unsigned long mfn;
1930 
1931 	gtt->scratch_page = alloc_page(GFP_KERNEL);
1932 	if (!gtt->scratch_page) {
1933 		gvt_err("Failed to allocate scratch page.\n");
1934 		return -ENOMEM;
1935 	}
1936 
1937 	/* set to zero */
1938 	p = kmap_atomic(gtt->scratch_page);
1939 	memset(p, 0, PAGE_SIZE);
1940 	kunmap_atomic(p);
1941 
1942 	/* translate page to mfn */
1943 	vaddr = page_address(gtt->scratch_page);
1944 	mfn = intel_gvt_hypervisor_virt_to_mfn(vaddr);
1945 
1946 	if (mfn == INTEL_GVT_INVALID_ADDR) {
1947 		gvt_err("fail to translate vaddr:0x%llx\n", (u64)vaddr);
1948 		__free_page(gtt->scratch_page);
1949 		gtt->scratch_page = NULL;
1950 		return -ENXIO;
1951 	}
1952 
1953 	gtt->scratch_page_mfn = mfn;
1954 	gvt_dbg_core("vgpu%d create scratch page: mfn=0x%lx\n", vgpu->id, mfn);
1955 	return 0;
1956 }
1957 
1958 static void release_scratch_page(struct intel_vgpu *vgpu)
1959 {
1960 	if (vgpu->gtt.scratch_page != NULL) {
1961 		__free_page(vgpu->gtt.scratch_page);
1962 		vgpu->gtt.scratch_page = NULL;
1963 		vgpu->gtt.scratch_page_mfn = 0;
1964 	}
1965 }
1966 
1967 /**
1968  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
1969  * @vgpu: a vGPU
1970  *
1971  * This function is used to initialize per-vGPU graphics memory virtualization
1972  * components.
1973  *
1974  * Returns:
1975  * Zero on success, error code if failed.
1976  */
1977 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
1978 {
1979 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
1980 	struct intel_vgpu_mm *ggtt_mm;
1981 
1982 	hash_init(gtt->guest_page_hash_table);
1983 	hash_init(gtt->shadow_page_hash_table);
1984 
1985 	INIT_LIST_HEAD(&gtt->mm_list_head);
1986 	INIT_LIST_HEAD(&gtt->oos_page_list_head);
1987 	INIT_LIST_HEAD(&gtt->post_shadow_list_head);
1988 
1989 	ggtt_mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_GGTT,
1990 			NULL, 1, 0);
1991 	if (IS_ERR(ggtt_mm)) {
1992 		gvt_err("fail to create mm for ggtt.\n");
1993 		return PTR_ERR(ggtt_mm);
1994 	}
1995 
1996 	gtt->ggtt_mm = ggtt_mm;
1997 
1998 	return create_scratch_page(vgpu);
1999 }
2000 
2001 /**
2002  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2003  * @vgpu: a vGPU
2004  *
2005  * This function is used to clean up per-vGPU graphics memory virtualization
2006  * components.
2007  *
2008  * Returns:
2009  * Zero on success, error code if failed.
2010  */
2011 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2012 {
2013 	struct list_head *pos, *n;
2014 	struct intel_vgpu_mm *mm;
2015 
2016 	ppgtt_free_all_shadow_page(vgpu);
2017 	release_scratch_page(vgpu);
2018 
2019 	list_for_each_safe(pos, n, &vgpu->gtt.mm_list_head) {
2020 		mm = container_of(pos, struct intel_vgpu_mm, list);
2021 		vgpu->gvt->gtt.mm_free_page_table(mm);
2022 		list_del(&mm->list);
2023 		list_del(&mm->lru_list);
2024 		kfree(mm);
2025 	}
2026 }
2027 
2028 static void clean_spt_oos(struct intel_gvt *gvt)
2029 {
2030 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2031 	struct list_head *pos, *n;
2032 	struct intel_vgpu_oos_page *oos_page;
2033 
2034 	WARN(!list_empty(&gtt->oos_page_use_list_head),
2035 		"someone is still using oos page\n");
2036 
2037 	list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2038 		oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2039 		list_del(&oos_page->list);
2040 		kfree(oos_page);
2041 	}
2042 }
2043 
2044 static int setup_spt_oos(struct intel_gvt *gvt)
2045 {
2046 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2047 	struct intel_vgpu_oos_page *oos_page;
2048 	int i;
2049 	int ret;
2050 
2051 	INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2052 	INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2053 
2054 	for (i = 0; i < preallocated_oos_pages; i++) {
2055 		oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2056 		if (!oos_page) {
2057 			gvt_err("fail to pre-allocate oos page\n");
2058 			ret = -ENOMEM;
2059 			goto fail;
2060 		}
2061 
2062 		INIT_LIST_HEAD(&oos_page->list);
2063 		INIT_LIST_HEAD(&oos_page->vm_list);
2064 		oos_page->id = i;
2065 		list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2066 	}
2067 
2068 	gvt_dbg_mm("%d oos pages preallocated\n", i);
2069 
2070 	return 0;
2071 fail:
2072 	clean_spt_oos(gvt);
2073 	return ret;
2074 }
2075 
2076 /**
2077  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2078  * @vgpu: a vGPU
2079  * @page_table_level: PPGTT page table level
2080  * @root_entry: PPGTT page table root pointers
2081  *
2082  * This function is used to find a PPGTT mm object from mm object pool
2083  *
2084  * Returns:
2085  * pointer to mm object on success, NULL if failed.
2086  */
2087 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2088 		int page_table_level, void *root_entry)
2089 {
2090 	struct list_head *pos;
2091 	struct intel_vgpu_mm *mm;
2092 	u64 *src, *dst;
2093 
2094 	list_for_each(pos, &vgpu->gtt.mm_list_head) {
2095 		mm = container_of(pos, struct intel_vgpu_mm, list);
2096 		if (mm->type != INTEL_GVT_MM_PPGTT)
2097 			continue;
2098 
2099 		if (mm->page_table_level != page_table_level)
2100 			continue;
2101 
2102 		src = root_entry;
2103 		dst = mm->virtual_page_table;
2104 
2105 		if (page_table_level == 3) {
2106 			if (src[0] == dst[0]
2107 					&& src[1] == dst[1]
2108 					&& src[2] == dst[2]
2109 					&& src[3] == dst[3])
2110 				return mm;
2111 		} else {
2112 			if (src[0] == dst[0])
2113 				return mm;
2114 		}
2115 	}
2116 	return NULL;
2117 }
2118 
2119 /**
2120  * intel_vgpu_g2v_create_ppgtt_mm - create a PPGTT mm object from
2121  * g2v notification
2122  * @vgpu: a vGPU
2123  * @page_table_level: PPGTT page table level
2124  *
2125  * This function is used to create a PPGTT mm object from a guest to GVT-g
2126  * notification.
2127  *
2128  * Returns:
2129  * Zero on success, negative error code if failed.
2130  */
2131 int intel_vgpu_g2v_create_ppgtt_mm(struct intel_vgpu *vgpu,
2132 		int page_table_level)
2133 {
2134 	u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0]));
2135 	struct intel_vgpu_mm *mm;
2136 
2137 	if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
2138 		return -EINVAL;
2139 
2140 	mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
2141 	if (mm) {
2142 		intel_gvt_mm_reference(mm);
2143 	} else {
2144 		mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_PPGTT,
2145 				pdp, page_table_level, 0);
2146 		if (IS_ERR(mm)) {
2147 			gvt_err("fail to create mm\n");
2148 			return PTR_ERR(mm);
2149 		}
2150 	}
2151 	return 0;
2152 }
2153 
2154 /**
2155  * intel_vgpu_g2v_destroy_ppgtt_mm - destroy a PPGTT mm object from
2156  * g2v notification
2157  * @vgpu: a vGPU
2158  * @page_table_level: PPGTT page table level
2159  *
2160  * This function is used to create a PPGTT mm object from a guest to GVT-g
2161  * notification.
2162  *
2163  * Returns:
2164  * Zero on success, negative error code if failed.
2165  */
2166 int intel_vgpu_g2v_destroy_ppgtt_mm(struct intel_vgpu *vgpu,
2167 		int page_table_level)
2168 {
2169 	u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0]));
2170 	struct intel_vgpu_mm *mm;
2171 
2172 	if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
2173 		return -EINVAL;
2174 
2175 	mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
2176 	if (!mm) {
2177 		gvt_err("fail to find ppgtt instance.\n");
2178 		return -EINVAL;
2179 	}
2180 	intel_gvt_mm_unreference(mm);
2181 	return 0;
2182 }
2183 
2184 /**
2185  * intel_gvt_init_gtt - initialize mm components of a GVT device
2186  * @gvt: GVT device
2187  *
2188  * This function is called at the initialization stage, to initialize
2189  * the mm components of a GVT device.
2190  *
2191  * Returns:
2192  * zero on success, negative error code if failed.
2193  */
2194 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2195 {
2196 	int ret;
2197 
2198 	gvt_dbg_core("init gtt\n");
2199 
2200 	if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)) {
2201 		gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2202 		gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2203 		gvt->gtt.mm_alloc_page_table = gen8_mm_alloc_page_table;
2204 		gvt->gtt.mm_free_page_table = gen8_mm_free_page_table;
2205 	} else {
2206 		return -ENODEV;
2207 	}
2208 
2209 	if (enable_out_of_sync) {
2210 		ret = setup_spt_oos(gvt);
2211 		if (ret) {
2212 			gvt_err("fail to initialize SPT oos\n");
2213 			return ret;
2214 		}
2215 	}
2216 	INIT_LIST_HEAD(&gvt->gtt.mm_lru_list_head);
2217 	return 0;
2218 }
2219 
2220 /**
2221  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2222  * @gvt: GVT device
2223  *
2224  * This function is called at the driver unloading stage, to clean up the
2225  * the mm components of a GVT device.
2226  *
2227  */
2228 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2229 {
2230 	if (enable_out_of_sync)
2231 		clean_spt_oos(gvt);
2232 }
2233