xref: /linux/drivers/gpu/drm/i915/gvt/gtt.c (revision 8e07e0e3964ca4e23ce7b68e2096fe660a888942)
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35 
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40 
41 #include "gt/intel_gt_regs.h"
42 
43 #if defined(VERBOSE_DEBUG)
44 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
45 #else
46 #define gvt_vdbg_mm(fmt, args...)
47 #endif
48 
49 static bool enable_out_of_sync = false;
50 static int preallocated_oos_pages = 8192;
51 
52 /*
53  * validate a gm address and related range size,
54  * translate it to host gm address
55  */
56 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
57 {
58 	if (size == 0)
59 		return vgpu_gmadr_is_valid(vgpu, addr);
60 
61 	if (vgpu_gmadr_is_aperture(vgpu, addr) &&
62 	    vgpu_gmadr_is_aperture(vgpu, addr + size - 1))
63 		return true;
64 	else if (vgpu_gmadr_is_hidden(vgpu, addr) &&
65 		 vgpu_gmadr_is_hidden(vgpu, addr + size - 1))
66 		return true;
67 
68 	gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n",
69 		     addr, size);
70 	return false;
71 }
72 
73 /* translate a guest gmadr to host gmadr */
74 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
75 {
76 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
77 
78 	if (drm_WARN(&i915->drm, !vgpu_gmadr_is_valid(vgpu, g_addr),
79 		     "invalid guest gmadr %llx\n", g_addr))
80 		return -EACCES;
81 
82 	if (vgpu_gmadr_is_aperture(vgpu, g_addr))
83 		*h_addr = vgpu_aperture_gmadr_base(vgpu)
84 			  + (g_addr - vgpu_aperture_offset(vgpu));
85 	else
86 		*h_addr = vgpu_hidden_gmadr_base(vgpu)
87 			  + (g_addr - vgpu_hidden_offset(vgpu));
88 	return 0;
89 }
90 
91 /* translate a host gmadr to guest gmadr */
92 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
93 {
94 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
95 
96 	if (drm_WARN(&i915->drm, !gvt_gmadr_is_valid(vgpu->gvt, h_addr),
97 		     "invalid host gmadr %llx\n", h_addr))
98 		return -EACCES;
99 
100 	if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
101 		*g_addr = vgpu_aperture_gmadr_base(vgpu)
102 			+ (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
103 	else
104 		*g_addr = vgpu_hidden_gmadr_base(vgpu)
105 			+ (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
106 	return 0;
107 }
108 
109 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
110 			     unsigned long *h_index)
111 {
112 	u64 h_addr;
113 	int ret;
114 
115 	ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
116 				       &h_addr);
117 	if (ret)
118 		return ret;
119 
120 	*h_index = h_addr >> I915_GTT_PAGE_SHIFT;
121 	return 0;
122 }
123 
124 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
125 			     unsigned long *g_index)
126 {
127 	u64 g_addr;
128 	int ret;
129 
130 	ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
131 				       &g_addr);
132 	if (ret)
133 		return ret;
134 
135 	*g_index = g_addr >> I915_GTT_PAGE_SHIFT;
136 	return 0;
137 }
138 
139 #define gtt_type_is_entry(type) \
140 	(type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
141 	 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
142 	 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
143 
144 #define gtt_type_is_pt(type) \
145 	(type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
146 
147 #define gtt_type_is_pte_pt(type) \
148 	(type == GTT_TYPE_PPGTT_PTE_PT)
149 
150 #define gtt_type_is_root_pointer(type) \
151 	(gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
152 
153 #define gtt_init_entry(e, t, p, v) do { \
154 	(e)->type = t; \
155 	(e)->pdev = p; \
156 	memcpy(&(e)->val64, &v, sizeof(v)); \
157 } while (0)
158 
159 /*
160  * Mappings between GTT_TYPE* enumerations.
161  * Following information can be found according to the given type:
162  * - type of next level page table
163  * - type of entry inside this level page table
164  * - type of entry with PSE set
165  *
166  * If the given type doesn't have such a kind of information,
167  * e.g. give a l4 root entry type, then request to get its PSE type,
168  * give a PTE page table type, then request to get its next level page
169  * table type, as we know l4 root entry doesn't have a PSE bit,
170  * and a PTE page table doesn't have a next level page table type,
171  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
172  * page table.
173  */
174 
175 struct gtt_type_table_entry {
176 	int entry_type;
177 	int pt_type;
178 	int next_pt_type;
179 	int pse_entry_type;
180 };
181 
182 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
183 	[type] = { \
184 		.entry_type = e_type, \
185 		.pt_type = cpt_type, \
186 		.next_pt_type = npt_type, \
187 		.pse_entry_type = pse_type, \
188 	}
189 
190 static const struct gtt_type_table_entry gtt_type_table[] = {
191 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
192 			GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
193 			GTT_TYPE_INVALID,
194 			GTT_TYPE_PPGTT_PML4_PT,
195 			GTT_TYPE_INVALID),
196 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
197 			GTT_TYPE_PPGTT_PML4_ENTRY,
198 			GTT_TYPE_PPGTT_PML4_PT,
199 			GTT_TYPE_PPGTT_PDP_PT,
200 			GTT_TYPE_INVALID),
201 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
202 			GTT_TYPE_PPGTT_PML4_ENTRY,
203 			GTT_TYPE_PPGTT_PML4_PT,
204 			GTT_TYPE_PPGTT_PDP_PT,
205 			GTT_TYPE_INVALID),
206 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
207 			GTT_TYPE_PPGTT_PDP_ENTRY,
208 			GTT_TYPE_PPGTT_PDP_PT,
209 			GTT_TYPE_PPGTT_PDE_PT,
210 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
211 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
212 			GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
213 			GTT_TYPE_INVALID,
214 			GTT_TYPE_PPGTT_PDE_PT,
215 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
216 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
217 			GTT_TYPE_PPGTT_PDP_ENTRY,
218 			GTT_TYPE_PPGTT_PDP_PT,
219 			GTT_TYPE_PPGTT_PDE_PT,
220 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
221 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
222 			GTT_TYPE_PPGTT_PDE_ENTRY,
223 			GTT_TYPE_PPGTT_PDE_PT,
224 			GTT_TYPE_PPGTT_PTE_PT,
225 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
226 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
227 			GTT_TYPE_PPGTT_PDE_ENTRY,
228 			GTT_TYPE_PPGTT_PDE_PT,
229 			GTT_TYPE_PPGTT_PTE_PT,
230 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
231 	/* We take IPS bit as 'PSE' for PTE level. */
232 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
233 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
234 			GTT_TYPE_PPGTT_PTE_PT,
235 			GTT_TYPE_INVALID,
236 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
237 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
238 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
239 			GTT_TYPE_PPGTT_PTE_PT,
240 			GTT_TYPE_INVALID,
241 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
242 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
243 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
244 			GTT_TYPE_PPGTT_PTE_PT,
245 			GTT_TYPE_INVALID,
246 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
247 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
248 			GTT_TYPE_PPGTT_PDE_ENTRY,
249 			GTT_TYPE_PPGTT_PDE_PT,
250 			GTT_TYPE_INVALID,
251 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
252 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
253 			GTT_TYPE_PPGTT_PDP_ENTRY,
254 			GTT_TYPE_PPGTT_PDP_PT,
255 			GTT_TYPE_INVALID,
256 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
257 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
258 			GTT_TYPE_GGTT_PTE,
259 			GTT_TYPE_INVALID,
260 			GTT_TYPE_INVALID,
261 			GTT_TYPE_INVALID),
262 };
263 
264 static inline int get_next_pt_type(int type)
265 {
266 	return gtt_type_table[type].next_pt_type;
267 }
268 
269 static inline int get_entry_type(int type)
270 {
271 	return gtt_type_table[type].entry_type;
272 }
273 
274 static inline int get_pse_type(int type)
275 {
276 	return gtt_type_table[type].pse_entry_type;
277 }
278 
279 static u64 read_pte64(struct i915_ggtt *ggtt, unsigned long index)
280 {
281 	void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
282 
283 	return readq(addr);
284 }
285 
286 static void ggtt_invalidate(struct intel_gt *gt)
287 {
288 	mmio_hw_access_pre(gt);
289 	intel_uncore_write(gt->uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
290 	mmio_hw_access_post(gt);
291 }
292 
293 static void write_pte64(struct i915_ggtt *ggtt, unsigned long index, u64 pte)
294 {
295 	void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
296 
297 	writeq(pte, addr);
298 }
299 
300 static inline int gtt_get_entry64(void *pt,
301 		struct intel_gvt_gtt_entry *e,
302 		unsigned long index, bool hypervisor_access, unsigned long gpa,
303 		struct intel_vgpu *vgpu)
304 {
305 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
306 	int ret;
307 
308 	if (WARN_ON(info->gtt_entry_size != 8))
309 		return -EINVAL;
310 
311 	if (hypervisor_access) {
312 		ret = intel_gvt_read_gpa(vgpu, gpa +
313 				(index << info->gtt_entry_size_shift),
314 				&e->val64, 8);
315 		if (WARN_ON(ret))
316 			return ret;
317 	} else if (!pt) {
318 		e->val64 = read_pte64(vgpu->gvt->gt->ggtt, index);
319 	} else {
320 		e->val64 = *((u64 *)pt + index);
321 	}
322 	return 0;
323 }
324 
325 static inline int gtt_set_entry64(void *pt,
326 		struct intel_gvt_gtt_entry *e,
327 		unsigned long index, bool hypervisor_access, unsigned long gpa,
328 		struct intel_vgpu *vgpu)
329 {
330 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
331 	int ret;
332 
333 	if (WARN_ON(info->gtt_entry_size != 8))
334 		return -EINVAL;
335 
336 	if (hypervisor_access) {
337 		ret = intel_gvt_write_gpa(vgpu, gpa +
338 				(index << info->gtt_entry_size_shift),
339 				&e->val64, 8);
340 		if (WARN_ON(ret))
341 			return ret;
342 	} else if (!pt) {
343 		write_pte64(vgpu->gvt->gt->ggtt, index, e->val64);
344 	} else {
345 		*((u64 *)pt + index) = e->val64;
346 	}
347 	return 0;
348 }
349 
350 #define GTT_HAW 46
351 
352 #define ADDR_1G_MASK	GENMASK_ULL(GTT_HAW - 1, 30)
353 #define ADDR_2M_MASK	GENMASK_ULL(GTT_HAW - 1, 21)
354 #define ADDR_64K_MASK	GENMASK_ULL(GTT_HAW - 1, 16)
355 #define ADDR_4K_MASK	GENMASK_ULL(GTT_HAW - 1, 12)
356 
357 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
358 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
359 
360 #define GTT_64K_PTE_STRIDE 16
361 
362 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
363 {
364 	unsigned long pfn;
365 
366 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
367 		pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
368 	else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
369 		pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
370 	else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
371 		pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
372 	else
373 		pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
374 	return pfn;
375 }
376 
377 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
378 {
379 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
380 		e->val64 &= ~ADDR_1G_MASK;
381 		pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
382 	} else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
383 		e->val64 &= ~ADDR_2M_MASK;
384 		pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
385 	} else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
386 		e->val64 &= ~ADDR_64K_MASK;
387 		pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
388 	} else {
389 		e->val64 &= ~ADDR_4K_MASK;
390 		pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
391 	}
392 
393 	e->val64 |= (pfn << PAGE_SHIFT);
394 }
395 
396 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
397 {
398 	return !!(e->val64 & _PAGE_PSE);
399 }
400 
401 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
402 {
403 	if (gen8_gtt_test_pse(e)) {
404 		switch (e->type) {
405 		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
406 			e->val64 &= ~_PAGE_PSE;
407 			e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
408 			break;
409 		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
410 			e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
411 			e->val64 &= ~_PAGE_PSE;
412 			break;
413 		default:
414 			WARN_ON(1);
415 		}
416 	}
417 }
418 
419 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
420 {
421 	if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
422 		return false;
423 
424 	return !!(e->val64 & GEN8_PDE_IPS_64K);
425 }
426 
427 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
428 {
429 	if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
430 		return;
431 
432 	e->val64 &= ~GEN8_PDE_IPS_64K;
433 }
434 
435 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
436 {
437 	/*
438 	 * i915 writes PDP root pointer registers without present bit,
439 	 * it also works, so we need to treat root pointer entry
440 	 * specifically.
441 	 */
442 	if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
443 			|| e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
444 		return (e->val64 != 0);
445 	else
446 		return (e->val64 & GEN8_PAGE_PRESENT);
447 }
448 
449 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
450 {
451 	e->val64 &= ~GEN8_PAGE_PRESENT;
452 }
453 
454 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
455 {
456 	e->val64 |= GEN8_PAGE_PRESENT;
457 }
458 
459 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
460 {
461 	return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
462 }
463 
464 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
465 {
466 	e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
467 }
468 
469 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
470 {
471 	e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
472 }
473 
474 /*
475  * Per-platform GMA routines.
476  */
477 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
478 {
479 	unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
480 
481 	trace_gma_index(__func__, gma, x);
482 	return x;
483 }
484 
485 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
486 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
487 { \
488 	unsigned long x = (exp); \
489 	trace_gma_index(__func__, gma, x); \
490 	return x; \
491 }
492 
493 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
494 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
495 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
496 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
497 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
498 
499 static const struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
500 	.get_entry = gtt_get_entry64,
501 	.set_entry = gtt_set_entry64,
502 	.clear_present = gtt_entry_clear_present,
503 	.set_present = gtt_entry_set_present,
504 	.test_present = gen8_gtt_test_present,
505 	.test_pse = gen8_gtt_test_pse,
506 	.clear_pse = gen8_gtt_clear_pse,
507 	.clear_ips = gen8_gtt_clear_ips,
508 	.test_ips = gen8_gtt_test_ips,
509 	.clear_64k_splited = gen8_gtt_clear_64k_splited,
510 	.set_64k_splited = gen8_gtt_set_64k_splited,
511 	.test_64k_splited = gen8_gtt_test_64k_splited,
512 	.get_pfn = gen8_gtt_get_pfn,
513 	.set_pfn = gen8_gtt_set_pfn,
514 };
515 
516 static const struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
517 	.gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
518 	.gma_to_pte_index = gen8_gma_to_pte_index,
519 	.gma_to_pde_index = gen8_gma_to_pde_index,
520 	.gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
521 	.gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
522 	.gma_to_pml4_index = gen8_gma_to_pml4_index,
523 };
524 
525 /* Update entry type per pse and ips bit. */
526 static void update_entry_type_for_real(const struct intel_gvt_gtt_pte_ops *pte_ops,
527 	struct intel_gvt_gtt_entry *entry, bool ips)
528 {
529 	switch (entry->type) {
530 	case GTT_TYPE_PPGTT_PDE_ENTRY:
531 	case GTT_TYPE_PPGTT_PDP_ENTRY:
532 		if (pte_ops->test_pse(entry))
533 			entry->type = get_pse_type(entry->type);
534 		break;
535 	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
536 		if (ips)
537 			entry->type = get_pse_type(entry->type);
538 		break;
539 	default:
540 		GEM_BUG_ON(!gtt_type_is_entry(entry->type));
541 	}
542 
543 	GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
544 }
545 
546 /*
547  * MM helpers.
548  */
549 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
550 		struct intel_gvt_gtt_entry *entry, unsigned long index,
551 		bool guest)
552 {
553 	const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
554 
555 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
556 
557 	entry->type = mm->ppgtt_mm.root_entry_type;
558 	pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
559 			   mm->ppgtt_mm.shadow_pdps,
560 			   entry, index, false, 0, mm->vgpu);
561 	update_entry_type_for_real(pte_ops, entry, false);
562 }
563 
564 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
565 		struct intel_gvt_gtt_entry *entry, unsigned long index)
566 {
567 	_ppgtt_get_root_entry(mm, entry, index, true);
568 }
569 
570 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
571 		struct intel_gvt_gtt_entry *entry, unsigned long index)
572 {
573 	_ppgtt_get_root_entry(mm, entry, index, false);
574 }
575 
576 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
577 		struct intel_gvt_gtt_entry *entry, unsigned long index,
578 		bool guest)
579 {
580 	const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
581 
582 	pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
583 			   mm->ppgtt_mm.shadow_pdps,
584 			   entry, index, false, 0, mm->vgpu);
585 }
586 
587 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
588 		struct intel_gvt_gtt_entry *entry, unsigned long index)
589 {
590 	_ppgtt_set_root_entry(mm, entry, index, false);
591 }
592 
593 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
594 		struct intel_gvt_gtt_entry *entry, unsigned long index)
595 {
596 	const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
597 
598 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
599 
600 	entry->type = GTT_TYPE_GGTT_PTE;
601 	pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
602 			   false, 0, mm->vgpu);
603 }
604 
605 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
606 		struct intel_gvt_gtt_entry *entry, unsigned long index)
607 {
608 	const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
609 
610 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
611 
612 	pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
613 			   false, 0, mm->vgpu);
614 }
615 
616 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
617 		struct intel_gvt_gtt_entry *entry, unsigned long index)
618 {
619 	const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
620 
621 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
622 
623 	pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
624 }
625 
626 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
627 		struct intel_gvt_gtt_entry *entry, unsigned long index)
628 {
629 	const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
630 	unsigned long offset = index;
631 
632 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
633 
634 	if (vgpu_gmadr_is_aperture(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) {
635 		offset -= (vgpu_aperture_gmadr_base(mm->vgpu) >> PAGE_SHIFT);
636 		mm->ggtt_mm.host_ggtt_aperture[offset] = entry->val64;
637 	} else if (vgpu_gmadr_is_hidden(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) {
638 		offset -= (vgpu_hidden_gmadr_base(mm->vgpu) >> PAGE_SHIFT);
639 		mm->ggtt_mm.host_ggtt_hidden[offset] = entry->val64;
640 	}
641 
642 	pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
643 }
644 
645 /*
646  * PPGTT shadow page table helpers.
647  */
648 static inline int ppgtt_spt_get_entry(
649 		struct intel_vgpu_ppgtt_spt *spt,
650 		void *page_table, int type,
651 		struct intel_gvt_gtt_entry *e, unsigned long index,
652 		bool guest)
653 {
654 	struct intel_gvt *gvt = spt->vgpu->gvt;
655 	const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
656 	int ret;
657 
658 	e->type = get_entry_type(type);
659 
660 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
661 		return -EINVAL;
662 
663 	ret = ops->get_entry(page_table, e, index, guest,
664 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
665 			spt->vgpu);
666 	if (ret)
667 		return ret;
668 
669 	update_entry_type_for_real(ops, e, guest ?
670 				   spt->guest_page.pde_ips : false);
671 
672 	gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
673 		    type, e->type, index, e->val64);
674 	return 0;
675 }
676 
677 static inline int ppgtt_spt_set_entry(
678 		struct intel_vgpu_ppgtt_spt *spt,
679 		void *page_table, int type,
680 		struct intel_gvt_gtt_entry *e, unsigned long index,
681 		bool guest)
682 {
683 	struct intel_gvt *gvt = spt->vgpu->gvt;
684 	const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
685 
686 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
687 		return -EINVAL;
688 
689 	gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
690 		    type, e->type, index, e->val64);
691 
692 	return ops->set_entry(page_table, e, index, guest,
693 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
694 			spt->vgpu);
695 }
696 
697 #define ppgtt_get_guest_entry(spt, e, index) \
698 	ppgtt_spt_get_entry(spt, NULL, \
699 		spt->guest_page.type, e, index, true)
700 
701 #define ppgtt_set_guest_entry(spt, e, index) \
702 	ppgtt_spt_set_entry(spt, NULL, \
703 		spt->guest_page.type, e, index, true)
704 
705 #define ppgtt_get_shadow_entry(spt, e, index) \
706 	ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
707 		spt->shadow_page.type, e, index, false)
708 
709 #define ppgtt_set_shadow_entry(spt, e, index) \
710 	ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
711 		spt->shadow_page.type, e, index, false)
712 
713 static void *alloc_spt(gfp_t gfp_mask)
714 {
715 	struct intel_vgpu_ppgtt_spt *spt;
716 
717 	spt = kzalloc(sizeof(*spt), gfp_mask);
718 	if (!spt)
719 		return NULL;
720 
721 	spt->shadow_page.page = alloc_page(gfp_mask);
722 	if (!spt->shadow_page.page) {
723 		kfree(spt);
724 		return NULL;
725 	}
726 	return spt;
727 }
728 
729 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
730 {
731 	__free_page(spt->shadow_page.page);
732 	kfree(spt);
733 }
734 
735 static int detach_oos_page(struct intel_vgpu *vgpu,
736 		struct intel_vgpu_oos_page *oos_page);
737 
738 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
739 {
740 	struct device *kdev = spt->vgpu->gvt->gt->i915->drm.dev;
741 
742 	trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
743 
744 	dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
745 		       DMA_BIDIRECTIONAL);
746 
747 	radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
748 
749 	if (spt->guest_page.gfn) {
750 		if (spt->guest_page.oos_page)
751 			detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
752 
753 		intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
754 	}
755 
756 	list_del_init(&spt->post_shadow_list);
757 	free_spt(spt);
758 }
759 
760 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
761 {
762 	struct intel_vgpu_ppgtt_spt *spt, *spn;
763 	struct radix_tree_iter iter;
764 	LIST_HEAD(all_spt);
765 	void __rcu **slot;
766 
767 	rcu_read_lock();
768 	radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
769 		spt = radix_tree_deref_slot(slot);
770 		list_move(&spt->post_shadow_list, &all_spt);
771 	}
772 	rcu_read_unlock();
773 
774 	list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list)
775 		ppgtt_free_spt(spt);
776 }
777 
778 static int ppgtt_handle_guest_write_page_table_bytes(
779 		struct intel_vgpu_ppgtt_spt *spt,
780 		u64 pa, void *p_data, int bytes);
781 
782 static int ppgtt_write_protection_handler(
783 		struct intel_vgpu_page_track *page_track,
784 		u64 gpa, void *data, int bytes)
785 {
786 	struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
787 
788 	int ret;
789 
790 	if (bytes != 4 && bytes != 8)
791 		return -EINVAL;
792 
793 	ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
794 	if (ret)
795 		return ret;
796 	return ret;
797 }
798 
799 /* Find a spt by guest gfn. */
800 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
801 		struct intel_vgpu *vgpu, unsigned long gfn)
802 {
803 	struct intel_vgpu_page_track *track;
804 
805 	track = intel_vgpu_find_page_track(vgpu, gfn);
806 	if (track && track->handler == ppgtt_write_protection_handler)
807 		return track->priv_data;
808 
809 	return NULL;
810 }
811 
812 /* Find the spt by shadow page mfn. */
813 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
814 		struct intel_vgpu *vgpu, unsigned long mfn)
815 {
816 	return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
817 }
818 
819 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
820 
821 /* Allocate shadow page table without guest page. */
822 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
823 		struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type)
824 {
825 	struct device *kdev = vgpu->gvt->gt->i915->drm.dev;
826 	struct intel_vgpu_ppgtt_spt *spt = NULL;
827 	dma_addr_t daddr;
828 	int ret;
829 
830 retry:
831 	spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
832 	if (!spt) {
833 		if (reclaim_one_ppgtt_mm(vgpu->gvt))
834 			goto retry;
835 
836 		gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
837 		return ERR_PTR(-ENOMEM);
838 	}
839 
840 	spt->vgpu = vgpu;
841 	atomic_set(&spt->refcount, 1);
842 	INIT_LIST_HEAD(&spt->post_shadow_list);
843 
844 	/*
845 	 * Init shadow_page.
846 	 */
847 	spt->shadow_page.type = type;
848 	daddr = dma_map_page(kdev, spt->shadow_page.page,
849 			     0, 4096, DMA_BIDIRECTIONAL);
850 	if (dma_mapping_error(kdev, daddr)) {
851 		gvt_vgpu_err("fail to map dma addr\n");
852 		ret = -EINVAL;
853 		goto err_free_spt;
854 	}
855 	spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
856 	spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
857 
858 	ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
859 	if (ret)
860 		goto err_unmap_dma;
861 
862 	return spt;
863 
864 err_unmap_dma:
865 	dma_unmap_page(kdev, daddr, PAGE_SIZE, DMA_BIDIRECTIONAL);
866 err_free_spt:
867 	free_spt(spt);
868 	return ERR_PTR(ret);
869 }
870 
871 /* Allocate shadow page table associated with specific gfn. */
872 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
873 		struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type,
874 		unsigned long gfn, bool guest_pde_ips)
875 {
876 	struct intel_vgpu_ppgtt_spt *spt;
877 	int ret;
878 
879 	spt = ppgtt_alloc_spt(vgpu, type);
880 	if (IS_ERR(spt))
881 		return spt;
882 
883 	/*
884 	 * Init guest_page.
885 	 */
886 	ret = intel_vgpu_register_page_track(vgpu, gfn,
887 			ppgtt_write_protection_handler, spt);
888 	if (ret) {
889 		ppgtt_free_spt(spt);
890 		return ERR_PTR(ret);
891 	}
892 
893 	spt->guest_page.type = type;
894 	spt->guest_page.gfn = gfn;
895 	spt->guest_page.pde_ips = guest_pde_ips;
896 
897 	trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
898 
899 	return spt;
900 }
901 
902 #define pt_entry_size_shift(spt) \
903 	((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
904 
905 #define pt_entries(spt) \
906 	(I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
907 
908 #define for_each_present_guest_entry(spt, e, i) \
909 	for (i = 0; i < pt_entries(spt); \
910 	     i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
911 		if (!ppgtt_get_guest_entry(spt, e, i) && \
912 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
913 
914 #define for_each_present_shadow_entry(spt, e, i) \
915 	for (i = 0; i < pt_entries(spt); \
916 	     i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
917 		if (!ppgtt_get_shadow_entry(spt, e, i) && \
918 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
919 
920 #define for_each_shadow_entry(spt, e, i) \
921 	for (i = 0; i < pt_entries(spt); \
922 	     i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
923 		if (!ppgtt_get_shadow_entry(spt, e, i))
924 
925 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
926 {
927 	int v = atomic_read(&spt->refcount);
928 
929 	trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
930 	atomic_inc(&spt->refcount);
931 }
932 
933 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
934 {
935 	int v = atomic_read(&spt->refcount);
936 
937 	trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
938 	return atomic_dec_return(&spt->refcount);
939 }
940 
941 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
942 
943 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
944 		struct intel_gvt_gtt_entry *e)
945 {
946 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
947 	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
948 	struct intel_vgpu_ppgtt_spt *s;
949 	enum intel_gvt_gtt_type cur_pt_type;
950 
951 	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
952 
953 	if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
954 		&& e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
955 		cur_pt_type = get_next_pt_type(e->type);
956 
957 		if (!gtt_type_is_pt(cur_pt_type) ||
958 				!gtt_type_is_pt(cur_pt_type + 1)) {
959 			drm_WARN(&i915->drm, 1,
960 				 "Invalid page table type, cur_pt_type is: %d\n",
961 				 cur_pt_type);
962 			return -EINVAL;
963 		}
964 
965 		cur_pt_type += 1;
966 
967 		if (ops->get_pfn(e) ==
968 			vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
969 			return 0;
970 	}
971 	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
972 	if (!s) {
973 		gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
974 				ops->get_pfn(e));
975 		return -ENXIO;
976 	}
977 	return ppgtt_invalidate_spt(s);
978 }
979 
980 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
981 		struct intel_gvt_gtt_entry *entry)
982 {
983 	struct intel_vgpu *vgpu = spt->vgpu;
984 	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
985 	unsigned long pfn;
986 	int type;
987 
988 	pfn = ops->get_pfn(entry);
989 	type = spt->shadow_page.type;
990 
991 	/* Uninitialized spte or unshadowed spte. */
992 	if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
993 		return;
994 
995 	intel_gvt_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
996 }
997 
998 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
999 {
1000 	struct intel_vgpu *vgpu = spt->vgpu;
1001 	struct intel_gvt_gtt_entry e;
1002 	unsigned long index;
1003 	int ret;
1004 
1005 	trace_spt_change(spt->vgpu->id, "die", spt,
1006 			spt->guest_page.gfn, spt->shadow_page.type);
1007 
1008 	if (ppgtt_put_spt(spt) > 0)
1009 		return 0;
1010 
1011 	for_each_present_shadow_entry(spt, &e, index) {
1012 		switch (e.type) {
1013 		case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1014 			gvt_vdbg_mm("invalidate 4K entry\n");
1015 			ppgtt_invalidate_pte(spt, &e);
1016 			break;
1017 		case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1018 			/* We don't setup 64K shadow entry so far. */
1019 			WARN(1, "suspicious 64K gtt entry\n");
1020 			continue;
1021 		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1022 			gvt_vdbg_mm("invalidate 2M entry\n");
1023 			continue;
1024 		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1025 			WARN(1, "GVT doesn't support 1GB page\n");
1026 			continue;
1027 		case GTT_TYPE_PPGTT_PML4_ENTRY:
1028 		case GTT_TYPE_PPGTT_PDP_ENTRY:
1029 		case GTT_TYPE_PPGTT_PDE_ENTRY:
1030 			gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
1031 			ret = ppgtt_invalidate_spt_by_shadow_entry(
1032 					spt->vgpu, &e);
1033 			if (ret)
1034 				goto fail;
1035 			break;
1036 		default:
1037 			GEM_BUG_ON(1);
1038 		}
1039 	}
1040 
1041 	trace_spt_change(spt->vgpu->id, "release", spt,
1042 			 spt->guest_page.gfn, spt->shadow_page.type);
1043 	ppgtt_free_spt(spt);
1044 	return 0;
1045 fail:
1046 	gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
1047 			spt, e.val64, e.type);
1048 	return ret;
1049 }
1050 
1051 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
1052 {
1053 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1054 
1055 	if (GRAPHICS_VER(dev_priv) == 9) {
1056 		u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
1057 			GAMW_ECO_ENABLE_64K_IPS_FIELD;
1058 
1059 		return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
1060 	} else if (GRAPHICS_VER(dev_priv) >= 11) {
1061 		/* 64K paging only controlled by IPS bit in PTE now. */
1062 		return true;
1063 	} else
1064 		return false;
1065 }
1066 
1067 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
1068 
1069 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
1070 		struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
1071 {
1072 	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1073 	struct intel_vgpu_ppgtt_spt *spt = NULL;
1074 	bool ips = false;
1075 	int ret;
1076 
1077 	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
1078 
1079 	if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1080 		ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
1081 
1082 	spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
1083 	if (spt) {
1084 		ppgtt_get_spt(spt);
1085 
1086 		if (ips != spt->guest_page.pde_ips) {
1087 			spt->guest_page.pde_ips = ips;
1088 
1089 			gvt_dbg_mm("reshadow PDE since ips changed\n");
1090 			clear_page(spt->shadow_page.vaddr);
1091 			ret = ppgtt_populate_spt(spt);
1092 			if (ret) {
1093 				ppgtt_put_spt(spt);
1094 				goto err;
1095 			}
1096 		}
1097 	} else {
1098 		int type = get_next_pt_type(we->type);
1099 
1100 		if (!gtt_type_is_pt(type)) {
1101 			ret = -EINVAL;
1102 			goto err;
1103 		}
1104 
1105 		spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
1106 		if (IS_ERR(spt)) {
1107 			ret = PTR_ERR(spt);
1108 			goto err;
1109 		}
1110 
1111 		ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
1112 		if (ret)
1113 			goto err_free_spt;
1114 
1115 		ret = ppgtt_populate_spt(spt);
1116 		if (ret)
1117 			goto err_free_spt;
1118 
1119 		trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
1120 				 spt->shadow_page.type);
1121 	}
1122 	return spt;
1123 
1124 err_free_spt:
1125 	ppgtt_free_spt(spt);
1126 	spt = NULL;
1127 err:
1128 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1129 		     spt, we->val64, we->type);
1130 	return ERR_PTR(ret);
1131 }
1132 
1133 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
1134 		struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
1135 {
1136 	const struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
1137 
1138 	se->type = ge->type;
1139 	se->val64 = ge->val64;
1140 
1141 	/* Because we always split 64KB pages, so clear IPS in shadow PDE. */
1142 	if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1143 		ops->clear_ips(se);
1144 
1145 	ops->set_pfn(se, s->shadow_page.mfn);
1146 }
1147 
1148 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
1149 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1150 	struct intel_gvt_gtt_entry *se)
1151 {
1152 	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1153 	struct intel_vgpu_ppgtt_spt *sub_spt;
1154 	struct intel_gvt_gtt_entry sub_se;
1155 	unsigned long start_gfn;
1156 	dma_addr_t dma_addr;
1157 	unsigned long sub_index;
1158 	int ret;
1159 
1160 	gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
1161 
1162 	start_gfn = ops->get_pfn(se);
1163 
1164 	sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
1165 	if (IS_ERR(sub_spt))
1166 		return PTR_ERR(sub_spt);
1167 
1168 	for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
1169 		ret = intel_gvt_dma_map_guest_page(vgpu, start_gfn + sub_index,
1170 						   PAGE_SIZE, &dma_addr);
1171 		if (ret)
1172 			goto err;
1173 		sub_se.val64 = se->val64;
1174 
1175 		/* Copy the PAT field from PDE. */
1176 		sub_se.val64 &= ~_PAGE_PAT;
1177 		sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
1178 
1179 		ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
1180 		ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
1181 	}
1182 
1183 	/* Clear dirty field. */
1184 	se->val64 &= ~_PAGE_DIRTY;
1185 
1186 	ops->clear_pse(se);
1187 	ops->clear_ips(se);
1188 	ops->set_pfn(se, sub_spt->shadow_page.mfn);
1189 	ppgtt_set_shadow_entry(spt, se, index);
1190 	return 0;
1191 err:
1192 	/* Cancel the existing addess mappings of DMA addr. */
1193 	for_each_present_shadow_entry(sub_spt, &sub_se, sub_index) {
1194 		gvt_vdbg_mm("invalidate 4K entry\n");
1195 		ppgtt_invalidate_pte(sub_spt, &sub_se);
1196 	}
1197 	/* Release the new allocated spt. */
1198 	trace_spt_change(sub_spt->vgpu->id, "release", sub_spt,
1199 		sub_spt->guest_page.gfn, sub_spt->shadow_page.type);
1200 	ppgtt_free_spt(sub_spt);
1201 	return ret;
1202 }
1203 
1204 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
1205 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1206 	struct intel_gvt_gtt_entry *se)
1207 {
1208 	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1209 	struct intel_gvt_gtt_entry entry = *se;
1210 	unsigned long start_gfn;
1211 	dma_addr_t dma_addr;
1212 	int i, ret;
1213 
1214 	gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
1215 
1216 	GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
1217 
1218 	start_gfn = ops->get_pfn(se);
1219 
1220 	entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
1221 	ops->set_64k_splited(&entry);
1222 
1223 	for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1224 		ret = intel_gvt_dma_map_guest_page(vgpu, start_gfn + i,
1225 						   PAGE_SIZE, &dma_addr);
1226 		if (ret)
1227 			return ret;
1228 
1229 		ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
1230 		ppgtt_set_shadow_entry(spt, &entry, index + i);
1231 	}
1232 	return 0;
1233 }
1234 
1235 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
1236 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1237 	struct intel_gvt_gtt_entry *ge)
1238 {
1239 	const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1240 	struct intel_gvt_gtt_entry se = *ge;
1241 	unsigned long gfn;
1242 	dma_addr_t dma_addr;
1243 	int ret;
1244 
1245 	if (!pte_ops->test_present(ge))
1246 		return 0;
1247 
1248 	gfn = pte_ops->get_pfn(ge);
1249 
1250 	switch (ge->type) {
1251 	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1252 		gvt_vdbg_mm("shadow 4K gtt entry\n");
1253 		ret = intel_gvt_dma_map_guest_page(vgpu, gfn, PAGE_SIZE, &dma_addr);
1254 		if (ret)
1255 			return -ENXIO;
1256 		break;
1257 	case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1258 		gvt_vdbg_mm("shadow 64K gtt entry\n");
1259 		/*
1260 		 * The layout of 64K page is special, the page size is
1261 		 * controlled by uper PDE. To be simple, we always split
1262 		 * 64K page to smaller 4K pages in shadow PT.
1263 		 */
1264 		return split_64KB_gtt_entry(vgpu, spt, index, &se);
1265 	case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1266 		gvt_vdbg_mm("shadow 2M gtt entry\n");
1267 		if (!HAS_PAGE_SIZES(vgpu->gvt->gt->i915, I915_GTT_PAGE_SIZE_2M) ||
1268 		    intel_gvt_dma_map_guest_page(vgpu, gfn,
1269 						 I915_GTT_PAGE_SIZE_2M, &dma_addr))
1270 			return split_2MB_gtt_entry(vgpu, spt, index, &se);
1271 		break;
1272 	case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1273 		gvt_vgpu_err("GVT doesn't support 1GB entry\n");
1274 		return -EINVAL;
1275 	default:
1276 		GEM_BUG_ON(1);
1277 		return -EINVAL;
1278 	}
1279 
1280 	/* Successfully shadowed a 4K or 2M page (without splitting). */
1281 	pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
1282 	ppgtt_set_shadow_entry(spt, &se, index);
1283 	return 0;
1284 }
1285 
1286 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
1287 {
1288 	struct intel_vgpu *vgpu = spt->vgpu;
1289 	struct intel_vgpu_ppgtt_spt *s;
1290 	struct intel_gvt_gtt_entry se, ge;
1291 	unsigned long i;
1292 	int ret;
1293 
1294 	trace_spt_change(spt->vgpu->id, "born", spt,
1295 			 spt->guest_page.gfn, spt->shadow_page.type);
1296 
1297 	for_each_present_guest_entry(spt, &ge, i) {
1298 		if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1299 			s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1300 			if (IS_ERR(s)) {
1301 				ret = PTR_ERR(s);
1302 				goto fail;
1303 			}
1304 			ppgtt_get_shadow_entry(spt, &se, i);
1305 			ppgtt_generate_shadow_entry(&se, s, &ge);
1306 			ppgtt_set_shadow_entry(spt, &se, i);
1307 		} else {
1308 			ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1309 			if (ret)
1310 				goto fail;
1311 		}
1312 	}
1313 	return 0;
1314 fail:
1315 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1316 			spt, ge.val64, ge.type);
1317 	return ret;
1318 }
1319 
1320 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1321 		struct intel_gvt_gtt_entry *se, unsigned long index)
1322 {
1323 	struct intel_vgpu *vgpu = spt->vgpu;
1324 	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1325 	int ret;
1326 
1327 	trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1328 			       spt->shadow_page.type, se->val64, index);
1329 
1330 	gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1331 		    se->type, index, se->val64);
1332 
1333 	if (!ops->test_present(se))
1334 		return 0;
1335 
1336 	if (ops->get_pfn(se) ==
1337 	    vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1338 		return 0;
1339 
1340 	if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1341 		struct intel_vgpu_ppgtt_spt *s =
1342 			intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1343 		if (!s) {
1344 			gvt_vgpu_err("fail to find guest page\n");
1345 			ret = -ENXIO;
1346 			goto fail;
1347 		}
1348 		ret = ppgtt_invalidate_spt(s);
1349 		if (ret)
1350 			goto fail;
1351 	} else {
1352 		/* We don't setup 64K shadow entry so far. */
1353 		WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
1354 		     "suspicious 64K entry\n");
1355 		ppgtt_invalidate_pte(spt, se);
1356 	}
1357 
1358 	return 0;
1359 fail:
1360 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1361 			spt, se->val64, se->type);
1362 	return ret;
1363 }
1364 
1365 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1366 		struct intel_gvt_gtt_entry *we, unsigned long index)
1367 {
1368 	struct intel_vgpu *vgpu = spt->vgpu;
1369 	struct intel_gvt_gtt_entry m;
1370 	struct intel_vgpu_ppgtt_spt *s;
1371 	int ret;
1372 
1373 	trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1374 			       we->val64, index);
1375 
1376 	gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1377 		    we->type, index, we->val64);
1378 
1379 	if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1380 		s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1381 		if (IS_ERR(s)) {
1382 			ret = PTR_ERR(s);
1383 			goto fail;
1384 		}
1385 		ppgtt_get_shadow_entry(spt, &m, index);
1386 		ppgtt_generate_shadow_entry(&m, s, we);
1387 		ppgtt_set_shadow_entry(spt, &m, index);
1388 	} else {
1389 		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1390 		if (ret)
1391 			goto fail;
1392 	}
1393 	return 0;
1394 fail:
1395 	gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1396 		spt, we->val64, we->type);
1397 	return ret;
1398 }
1399 
1400 static int sync_oos_page(struct intel_vgpu *vgpu,
1401 		struct intel_vgpu_oos_page *oos_page)
1402 {
1403 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1404 	struct intel_gvt *gvt = vgpu->gvt;
1405 	const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1406 	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1407 	struct intel_gvt_gtt_entry old, new;
1408 	int index;
1409 	int ret;
1410 
1411 	trace_oos_change(vgpu->id, "sync", oos_page->id,
1412 			 spt, spt->guest_page.type);
1413 
1414 	old.type = new.type = get_entry_type(spt->guest_page.type);
1415 	old.val64 = new.val64 = 0;
1416 
1417 	for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1418 				info->gtt_entry_size_shift); index++) {
1419 		ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1420 		ops->get_entry(NULL, &new, index, true,
1421 			       spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1422 
1423 		if (old.val64 == new.val64
1424 			&& !test_and_clear_bit(index, spt->post_shadow_bitmap))
1425 			continue;
1426 
1427 		trace_oos_sync(vgpu->id, oos_page->id,
1428 				spt, spt->guest_page.type,
1429 				new.val64, index);
1430 
1431 		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1432 		if (ret)
1433 			return ret;
1434 
1435 		ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1436 	}
1437 
1438 	spt->guest_page.write_cnt = 0;
1439 	list_del_init(&spt->post_shadow_list);
1440 	return 0;
1441 }
1442 
1443 static int detach_oos_page(struct intel_vgpu *vgpu,
1444 		struct intel_vgpu_oos_page *oos_page)
1445 {
1446 	struct intel_gvt *gvt = vgpu->gvt;
1447 	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1448 
1449 	trace_oos_change(vgpu->id, "detach", oos_page->id,
1450 			 spt, spt->guest_page.type);
1451 
1452 	spt->guest_page.write_cnt = 0;
1453 	spt->guest_page.oos_page = NULL;
1454 	oos_page->spt = NULL;
1455 
1456 	list_del_init(&oos_page->vm_list);
1457 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1458 
1459 	return 0;
1460 }
1461 
1462 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1463 		struct intel_vgpu_ppgtt_spt *spt)
1464 {
1465 	struct intel_gvt *gvt = spt->vgpu->gvt;
1466 	int ret;
1467 
1468 	ret = intel_gvt_read_gpa(spt->vgpu,
1469 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1470 			oos_page->mem, I915_GTT_PAGE_SIZE);
1471 	if (ret)
1472 		return ret;
1473 
1474 	oos_page->spt = spt;
1475 	spt->guest_page.oos_page = oos_page;
1476 
1477 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1478 
1479 	trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1480 			 spt, spt->guest_page.type);
1481 	return 0;
1482 }
1483 
1484 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1485 {
1486 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1487 	int ret;
1488 
1489 	ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1490 	if (ret)
1491 		return ret;
1492 
1493 	trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1494 			 spt, spt->guest_page.type);
1495 
1496 	list_del_init(&oos_page->vm_list);
1497 	return sync_oos_page(spt->vgpu, oos_page);
1498 }
1499 
1500 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1501 {
1502 	struct intel_gvt *gvt = spt->vgpu->gvt;
1503 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1504 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1505 	int ret;
1506 
1507 	WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1508 
1509 	if (list_empty(&gtt->oos_page_free_list_head)) {
1510 		oos_page = container_of(gtt->oos_page_use_list_head.next,
1511 			struct intel_vgpu_oos_page, list);
1512 		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1513 		if (ret)
1514 			return ret;
1515 		ret = detach_oos_page(spt->vgpu, oos_page);
1516 		if (ret)
1517 			return ret;
1518 	} else
1519 		oos_page = container_of(gtt->oos_page_free_list_head.next,
1520 			struct intel_vgpu_oos_page, list);
1521 	return attach_oos_page(oos_page, spt);
1522 }
1523 
1524 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1525 {
1526 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1527 
1528 	if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1529 		return -EINVAL;
1530 
1531 	trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1532 			 spt, spt->guest_page.type);
1533 
1534 	list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1535 	return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1536 }
1537 
1538 /**
1539  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1540  * @vgpu: a vGPU
1541  *
1542  * This function is called before submitting a guest workload to host,
1543  * to sync all the out-of-synced shadow for vGPU
1544  *
1545  * Returns:
1546  * Zero on success, negative error code if failed.
1547  */
1548 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1549 {
1550 	struct list_head *pos, *n;
1551 	struct intel_vgpu_oos_page *oos_page;
1552 	int ret;
1553 
1554 	if (!enable_out_of_sync)
1555 		return 0;
1556 
1557 	list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1558 		oos_page = container_of(pos,
1559 				struct intel_vgpu_oos_page, vm_list);
1560 		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1561 		if (ret)
1562 			return ret;
1563 	}
1564 	return 0;
1565 }
1566 
1567 /*
1568  * The heart of PPGTT shadow page table.
1569  */
1570 static int ppgtt_handle_guest_write_page_table(
1571 		struct intel_vgpu_ppgtt_spt *spt,
1572 		struct intel_gvt_gtt_entry *we, unsigned long index)
1573 {
1574 	struct intel_vgpu *vgpu = spt->vgpu;
1575 	int type = spt->shadow_page.type;
1576 	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1577 	struct intel_gvt_gtt_entry old_se;
1578 	int new_present;
1579 	int i, ret;
1580 
1581 	new_present = ops->test_present(we);
1582 
1583 	/*
1584 	 * Adding the new entry first and then removing the old one, that can
1585 	 * guarantee the ppgtt table is validated during the window between
1586 	 * adding and removal.
1587 	 */
1588 	ppgtt_get_shadow_entry(spt, &old_se, index);
1589 
1590 	if (new_present) {
1591 		ret = ppgtt_handle_guest_entry_add(spt, we, index);
1592 		if (ret)
1593 			goto fail;
1594 	}
1595 
1596 	ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1597 	if (ret)
1598 		goto fail;
1599 
1600 	if (!new_present) {
1601 		/* For 64KB splited entries, we need clear them all. */
1602 		if (ops->test_64k_splited(&old_se) &&
1603 		    !(index % GTT_64K_PTE_STRIDE)) {
1604 			gvt_vdbg_mm("remove splited 64K shadow entries\n");
1605 			for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1606 				ops->clear_64k_splited(&old_se);
1607 				ops->set_pfn(&old_se,
1608 					vgpu->gtt.scratch_pt[type].page_mfn);
1609 				ppgtt_set_shadow_entry(spt, &old_se, index + i);
1610 			}
1611 		} else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
1612 			   old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
1613 			ops->clear_pse(&old_se);
1614 			ops->set_pfn(&old_se,
1615 				     vgpu->gtt.scratch_pt[type].page_mfn);
1616 			ppgtt_set_shadow_entry(spt, &old_se, index);
1617 		} else {
1618 			ops->set_pfn(&old_se,
1619 				     vgpu->gtt.scratch_pt[type].page_mfn);
1620 			ppgtt_set_shadow_entry(spt, &old_se, index);
1621 		}
1622 	}
1623 
1624 	return 0;
1625 fail:
1626 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1627 			spt, we->val64, we->type);
1628 	return ret;
1629 }
1630 
1631 
1632 
1633 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1634 {
1635 	return enable_out_of_sync
1636 		&& gtt_type_is_pte_pt(spt->guest_page.type)
1637 		&& spt->guest_page.write_cnt >= 2;
1638 }
1639 
1640 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1641 		unsigned long index)
1642 {
1643 	set_bit(index, spt->post_shadow_bitmap);
1644 	if (!list_empty(&spt->post_shadow_list))
1645 		return;
1646 
1647 	list_add_tail(&spt->post_shadow_list,
1648 			&spt->vgpu->gtt.post_shadow_list_head);
1649 }
1650 
1651 /**
1652  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1653  * @vgpu: a vGPU
1654  *
1655  * This function is called before submitting a guest workload to host,
1656  * to flush all the post shadows for a vGPU.
1657  *
1658  * Returns:
1659  * Zero on success, negative error code if failed.
1660  */
1661 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1662 {
1663 	struct list_head *pos, *n;
1664 	struct intel_vgpu_ppgtt_spt *spt;
1665 	struct intel_gvt_gtt_entry ge;
1666 	unsigned long index;
1667 	int ret;
1668 
1669 	list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1670 		spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1671 				post_shadow_list);
1672 
1673 		for_each_set_bit(index, spt->post_shadow_bitmap,
1674 				GTT_ENTRY_NUM_IN_ONE_PAGE) {
1675 			ppgtt_get_guest_entry(spt, &ge, index);
1676 
1677 			ret = ppgtt_handle_guest_write_page_table(spt,
1678 							&ge, index);
1679 			if (ret)
1680 				return ret;
1681 			clear_bit(index, spt->post_shadow_bitmap);
1682 		}
1683 		list_del_init(&spt->post_shadow_list);
1684 	}
1685 	return 0;
1686 }
1687 
1688 static int ppgtt_handle_guest_write_page_table_bytes(
1689 		struct intel_vgpu_ppgtt_spt *spt,
1690 		u64 pa, void *p_data, int bytes)
1691 {
1692 	struct intel_vgpu *vgpu = spt->vgpu;
1693 	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1694 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1695 	struct intel_gvt_gtt_entry we, se;
1696 	unsigned long index;
1697 	int ret;
1698 
1699 	index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1700 
1701 	ppgtt_get_guest_entry(spt, &we, index);
1702 
1703 	/*
1704 	 * For page table which has 64K gtt entry, only PTE#0, PTE#16,
1705 	 * PTE#32, ... PTE#496 are used. Unused PTEs update should be
1706 	 * ignored.
1707 	 */
1708 	if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
1709 	    (index % GTT_64K_PTE_STRIDE)) {
1710 		gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
1711 			    index);
1712 		return 0;
1713 	}
1714 
1715 	if (bytes == info->gtt_entry_size) {
1716 		ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1717 		if (ret)
1718 			return ret;
1719 	} else {
1720 		if (!test_bit(index, spt->post_shadow_bitmap)) {
1721 			int type = spt->shadow_page.type;
1722 
1723 			ppgtt_get_shadow_entry(spt, &se, index);
1724 			ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1725 			if (ret)
1726 				return ret;
1727 			ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1728 			ppgtt_set_shadow_entry(spt, &se, index);
1729 		}
1730 		ppgtt_set_post_shadow(spt, index);
1731 	}
1732 
1733 	if (!enable_out_of_sync)
1734 		return 0;
1735 
1736 	spt->guest_page.write_cnt++;
1737 
1738 	if (spt->guest_page.oos_page)
1739 		ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1740 				false, 0, vgpu);
1741 
1742 	if (can_do_out_of_sync(spt)) {
1743 		if (!spt->guest_page.oos_page)
1744 			ppgtt_allocate_oos_page(spt);
1745 
1746 		ret = ppgtt_set_guest_page_oos(spt);
1747 		if (ret < 0)
1748 			return ret;
1749 	}
1750 	return 0;
1751 }
1752 
1753 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1754 {
1755 	struct intel_vgpu *vgpu = mm->vgpu;
1756 	struct intel_gvt *gvt = vgpu->gvt;
1757 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1758 	const struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1759 	struct intel_gvt_gtt_entry se;
1760 	int index;
1761 
1762 	if (!mm->ppgtt_mm.shadowed)
1763 		return;
1764 
1765 	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1766 		ppgtt_get_shadow_root_entry(mm, &se, index);
1767 
1768 		if (!ops->test_present(&se))
1769 			continue;
1770 
1771 		ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1772 		se.val64 = 0;
1773 		ppgtt_set_shadow_root_entry(mm, &se, index);
1774 
1775 		trace_spt_guest_change(vgpu->id, "destroy root pointer",
1776 				       NULL, se.type, se.val64, index);
1777 	}
1778 
1779 	mm->ppgtt_mm.shadowed = false;
1780 }
1781 
1782 
1783 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1784 {
1785 	struct intel_vgpu *vgpu = mm->vgpu;
1786 	struct intel_gvt *gvt = vgpu->gvt;
1787 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1788 	const struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1789 	struct intel_vgpu_ppgtt_spt *spt;
1790 	struct intel_gvt_gtt_entry ge, se;
1791 	int index, ret;
1792 
1793 	if (mm->ppgtt_mm.shadowed)
1794 		return 0;
1795 
1796 	if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, vgpu->status))
1797 		return -EINVAL;
1798 
1799 	mm->ppgtt_mm.shadowed = true;
1800 
1801 	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1802 		ppgtt_get_guest_root_entry(mm, &ge, index);
1803 
1804 		if (!ops->test_present(&ge))
1805 			continue;
1806 
1807 		trace_spt_guest_change(vgpu->id, __func__, NULL,
1808 				       ge.type, ge.val64, index);
1809 
1810 		spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1811 		if (IS_ERR(spt)) {
1812 			gvt_vgpu_err("fail to populate guest root pointer\n");
1813 			ret = PTR_ERR(spt);
1814 			goto fail;
1815 		}
1816 		ppgtt_generate_shadow_entry(&se, spt, &ge);
1817 		ppgtt_set_shadow_root_entry(mm, &se, index);
1818 
1819 		trace_spt_guest_change(vgpu->id, "populate root pointer",
1820 				       NULL, se.type, se.val64, index);
1821 	}
1822 
1823 	return 0;
1824 fail:
1825 	invalidate_ppgtt_mm(mm);
1826 	return ret;
1827 }
1828 
1829 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1830 {
1831 	struct intel_vgpu_mm *mm;
1832 
1833 	mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1834 	if (!mm)
1835 		return NULL;
1836 
1837 	mm->vgpu = vgpu;
1838 	kref_init(&mm->ref);
1839 	atomic_set(&mm->pincount, 0);
1840 
1841 	return mm;
1842 }
1843 
1844 static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1845 {
1846 	kfree(mm);
1847 }
1848 
1849 /**
1850  * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1851  * @vgpu: a vGPU
1852  * @root_entry_type: ppgtt root entry type
1853  * @pdps: guest pdps.
1854  *
1855  * This function is used to create a ppgtt mm object for a vGPU.
1856  *
1857  * Returns:
1858  * Zero on success, negative error code in pointer if failed.
1859  */
1860 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1861 		enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
1862 {
1863 	struct intel_gvt *gvt = vgpu->gvt;
1864 	struct intel_vgpu_mm *mm;
1865 	int ret;
1866 
1867 	mm = vgpu_alloc_mm(vgpu);
1868 	if (!mm)
1869 		return ERR_PTR(-ENOMEM);
1870 
1871 	mm->type = INTEL_GVT_MM_PPGTT;
1872 
1873 	GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1874 		   root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1875 	mm->ppgtt_mm.root_entry_type = root_entry_type;
1876 
1877 	INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1878 	INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1879 	INIT_LIST_HEAD(&mm->ppgtt_mm.link);
1880 
1881 	if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1882 		mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1883 	else
1884 		memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1885 		       sizeof(mm->ppgtt_mm.guest_pdps));
1886 
1887 	ret = shadow_ppgtt_mm(mm);
1888 	if (ret) {
1889 		gvt_vgpu_err("failed to shadow ppgtt mm\n");
1890 		vgpu_free_mm(mm);
1891 		return ERR_PTR(ret);
1892 	}
1893 
1894 	list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1895 
1896 	mutex_lock(&gvt->gtt.ppgtt_mm_lock);
1897 	list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1898 	mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
1899 
1900 	return mm;
1901 }
1902 
1903 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1904 {
1905 	struct intel_vgpu_mm *mm;
1906 	unsigned long nr_entries;
1907 
1908 	mm = vgpu_alloc_mm(vgpu);
1909 	if (!mm)
1910 		return ERR_PTR(-ENOMEM);
1911 
1912 	mm->type = INTEL_GVT_MM_GGTT;
1913 
1914 	nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1915 	mm->ggtt_mm.virtual_ggtt =
1916 		vzalloc(array_size(nr_entries,
1917 				   vgpu->gvt->device_info.gtt_entry_size));
1918 	if (!mm->ggtt_mm.virtual_ggtt) {
1919 		vgpu_free_mm(mm);
1920 		return ERR_PTR(-ENOMEM);
1921 	}
1922 
1923 	mm->ggtt_mm.host_ggtt_aperture = vzalloc((vgpu_aperture_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64));
1924 	if (!mm->ggtt_mm.host_ggtt_aperture) {
1925 		vfree(mm->ggtt_mm.virtual_ggtt);
1926 		vgpu_free_mm(mm);
1927 		return ERR_PTR(-ENOMEM);
1928 	}
1929 
1930 	mm->ggtt_mm.host_ggtt_hidden = vzalloc((vgpu_hidden_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64));
1931 	if (!mm->ggtt_mm.host_ggtt_hidden) {
1932 		vfree(mm->ggtt_mm.host_ggtt_aperture);
1933 		vfree(mm->ggtt_mm.virtual_ggtt);
1934 		vgpu_free_mm(mm);
1935 		return ERR_PTR(-ENOMEM);
1936 	}
1937 
1938 	return mm;
1939 }
1940 
1941 /**
1942  * _intel_vgpu_mm_release - destroy a mm object
1943  * @mm_ref: a kref object
1944  *
1945  * This function is used to destroy a mm object for vGPU
1946  *
1947  */
1948 void _intel_vgpu_mm_release(struct kref *mm_ref)
1949 {
1950 	struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1951 
1952 	if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1953 		gvt_err("vgpu mm pin count bug detected\n");
1954 
1955 	if (mm->type == INTEL_GVT_MM_PPGTT) {
1956 		list_del(&mm->ppgtt_mm.list);
1957 
1958 		mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1959 		list_del(&mm->ppgtt_mm.lru_list);
1960 		mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1961 
1962 		invalidate_ppgtt_mm(mm);
1963 	} else {
1964 		vfree(mm->ggtt_mm.virtual_ggtt);
1965 		vfree(mm->ggtt_mm.host_ggtt_aperture);
1966 		vfree(mm->ggtt_mm.host_ggtt_hidden);
1967 	}
1968 
1969 	vgpu_free_mm(mm);
1970 }
1971 
1972 /**
1973  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1974  * @mm: a vGPU mm object
1975  *
1976  * This function is called when user doesn't want to use a vGPU mm object
1977  */
1978 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1979 {
1980 	atomic_dec_if_positive(&mm->pincount);
1981 }
1982 
1983 /**
1984  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1985  * @mm: target vgpu mm
1986  *
1987  * This function is called when user wants to use a vGPU mm object. If this
1988  * mm object hasn't been shadowed yet, the shadow will be populated at this
1989  * time.
1990  *
1991  * Returns:
1992  * Zero on success, negative error code if failed.
1993  */
1994 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1995 {
1996 	int ret;
1997 
1998 	atomic_inc(&mm->pincount);
1999 
2000 	if (mm->type == INTEL_GVT_MM_PPGTT) {
2001 		ret = shadow_ppgtt_mm(mm);
2002 		if (ret)
2003 			return ret;
2004 
2005 		mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2006 		list_move_tail(&mm->ppgtt_mm.lru_list,
2007 			       &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
2008 		mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2009 	}
2010 
2011 	return 0;
2012 }
2013 
2014 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
2015 {
2016 	struct intel_vgpu_mm *mm;
2017 	struct list_head *pos, *n;
2018 
2019 	mutex_lock(&gvt->gtt.ppgtt_mm_lock);
2020 
2021 	list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
2022 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
2023 
2024 		if (atomic_read(&mm->pincount))
2025 			continue;
2026 
2027 		list_del_init(&mm->ppgtt_mm.lru_list);
2028 		mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2029 		invalidate_ppgtt_mm(mm);
2030 		return 1;
2031 	}
2032 	mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2033 	return 0;
2034 }
2035 
2036 /*
2037  * GMA translation APIs.
2038  */
2039 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
2040 		struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
2041 {
2042 	struct intel_vgpu *vgpu = mm->vgpu;
2043 	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2044 	struct intel_vgpu_ppgtt_spt *s;
2045 
2046 	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
2047 	if (!s)
2048 		return -ENXIO;
2049 
2050 	if (!guest)
2051 		ppgtt_get_shadow_entry(s, e, index);
2052 	else
2053 		ppgtt_get_guest_entry(s, e, index);
2054 	return 0;
2055 }
2056 
2057 /**
2058  * intel_vgpu_gma_to_gpa - translate a gma to GPA
2059  * @mm: mm object. could be a PPGTT or GGTT mm object
2060  * @gma: graphics memory address in this mm object
2061  *
2062  * This function is used to translate a graphics memory address in specific
2063  * graphics memory space to guest physical address.
2064  *
2065  * Returns:
2066  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
2067  */
2068 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
2069 {
2070 	struct intel_vgpu *vgpu = mm->vgpu;
2071 	struct intel_gvt *gvt = vgpu->gvt;
2072 	const struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
2073 	const struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
2074 	unsigned long gpa = INTEL_GVT_INVALID_ADDR;
2075 	unsigned long gma_index[4];
2076 	struct intel_gvt_gtt_entry e;
2077 	int i, levels = 0;
2078 	int ret;
2079 
2080 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
2081 		   mm->type != INTEL_GVT_MM_PPGTT);
2082 
2083 	if (mm->type == INTEL_GVT_MM_GGTT) {
2084 		if (!vgpu_gmadr_is_valid(vgpu, gma))
2085 			goto err;
2086 
2087 		ggtt_get_guest_entry(mm, &e,
2088 			gma_ops->gma_to_ggtt_pte_index(gma));
2089 
2090 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
2091 			+ (gma & ~I915_GTT_PAGE_MASK);
2092 
2093 		trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
2094 	} else {
2095 		switch (mm->ppgtt_mm.root_entry_type) {
2096 		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2097 			ppgtt_get_shadow_root_entry(mm, &e, 0);
2098 
2099 			gma_index[0] = gma_ops->gma_to_pml4_index(gma);
2100 			gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
2101 			gma_index[2] = gma_ops->gma_to_pde_index(gma);
2102 			gma_index[3] = gma_ops->gma_to_pte_index(gma);
2103 			levels = 4;
2104 			break;
2105 		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2106 			ppgtt_get_shadow_root_entry(mm, &e,
2107 					gma_ops->gma_to_l3_pdp_index(gma));
2108 
2109 			gma_index[0] = gma_ops->gma_to_pde_index(gma);
2110 			gma_index[1] = gma_ops->gma_to_pte_index(gma);
2111 			levels = 2;
2112 			break;
2113 		default:
2114 			GEM_BUG_ON(1);
2115 		}
2116 
2117 		/* walk the shadow page table and get gpa from guest entry */
2118 		for (i = 0; i < levels; i++) {
2119 			ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
2120 				(i == levels - 1));
2121 			if (ret)
2122 				goto err;
2123 
2124 			if (!pte_ops->test_present(&e)) {
2125 				gvt_dbg_core("GMA 0x%lx is not present\n", gma);
2126 				goto err;
2127 			}
2128 		}
2129 
2130 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
2131 					(gma & ~I915_GTT_PAGE_MASK);
2132 		trace_gma_translate(vgpu->id, "ppgtt", 0,
2133 				    mm->ppgtt_mm.root_entry_type, gma, gpa);
2134 	}
2135 
2136 	return gpa;
2137 err:
2138 	gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
2139 	return INTEL_GVT_INVALID_ADDR;
2140 }
2141 
2142 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
2143 	unsigned int off, void *p_data, unsigned int bytes)
2144 {
2145 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2146 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2147 	unsigned long index = off >> info->gtt_entry_size_shift;
2148 	unsigned long gma;
2149 	struct intel_gvt_gtt_entry e;
2150 
2151 	if (bytes != 4 && bytes != 8)
2152 		return -EINVAL;
2153 
2154 	gma = index << I915_GTT_PAGE_SHIFT;
2155 	if (!intel_gvt_ggtt_validate_range(vgpu,
2156 					   gma, 1 << I915_GTT_PAGE_SHIFT)) {
2157 		gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma);
2158 		memset(p_data, 0, bytes);
2159 		return 0;
2160 	}
2161 
2162 	ggtt_get_guest_entry(ggtt_mm, &e, index);
2163 	memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
2164 			bytes);
2165 	return 0;
2166 }
2167 
2168 /**
2169  * intel_vgpu_emulate_ggtt_mmio_read - emulate GTT MMIO register read
2170  * @vgpu: a vGPU
2171  * @off: register offset
2172  * @p_data: data will be returned to guest
2173  * @bytes: data length
2174  *
2175  * This function is used to emulate the GTT MMIO register read
2176  *
2177  * Returns:
2178  * Zero on success, error code if failed.
2179  */
2180 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
2181 	void *p_data, unsigned int bytes)
2182 {
2183 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2184 	int ret;
2185 
2186 	if (bytes != 4 && bytes != 8)
2187 		return -EINVAL;
2188 
2189 	off -= info->gtt_start_offset;
2190 	ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
2191 	return ret;
2192 }
2193 
2194 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
2195 		struct intel_gvt_gtt_entry *entry)
2196 {
2197 	const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2198 	unsigned long pfn;
2199 
2200 	pfn = pte_ops->get_pfn(entry);
2201 	if (pfn != vgpu->gvt->gtt.scratch_mfn)
2202 		intel_gvt_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
2203 }
2204 
2205 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
2206 	void *p_data, unsigned int bytes)
2207 {
2208 	struct intel_gvt *gvt = vgpu->gvt;
2209 	const struct intel_gvt_device_info *info = &gvt->device_info;
2210 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2211 	const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
2212 	unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
2213 	unsigned long gma, gfn;
2214 	struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2215 	struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2216 	dma_addr_t dma_addr;
2217 	int ret;
2218 	struct intel_gvt_partial_pte *partial_pte, *pos, *n;
2219 	bool partial_update = false;
2220 
2221 	if (bytes != 4 && bytes != 8)
2222 		return -EINVAL;
2223 
2224 	gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
2225 
2226 	/* the VM may configure the whole GM space when ballooning is used */
2227 	if (!vgpu_gmadr_is_valid(vgpu, gma))
2228 		return 0;
2229 
2230 	e.type = GTT_TYPE_GGTT_PTE;
2231 	memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
2232 			bytes);
2233 
2234 	/* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
2235 	 * write, save the first 4 bytes in a list and update virtual
2236 	 * PTE. Only update shadow PTE when the second 4 bytes comes.
2237 	 */
2238 	if (bytes < info->gtt_entry_size) {
2239 		bool found = false;
2240 
2241 		list_for_each_entry_safe(pos, n,
2242 				&ggtt_mm->ggtt_mm.partial_pte_list, list) {
2243 			if (g_gtt_index == pos->offset >>
2244 					info->gtt_entry_size_shift) {
2245 				if (off != pos->offset) {
2246 					/* the second partial part*/
2247 					int last_off = pos->offset &
2248 						(info->gtt_entry_size - 1);
2249 
2250 					memcpy((void *)&e.val64 + last_off,
2251 						(void *)&pos->data + last_off,
2252 						bytes);
2253 
2254 					list_del(&pos->list);
2255 					kfree(pos);
2256 					found = true;
2257 					break;
2258 				}
2259 
2260 				/* update of the first partial part */
2261 				pos->data = e.val64;
2262 				ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2263 				return 0;
2264 			}
2265 		}
2266 
2267 		if (!found) {
2268 			/* the first partial part */
2269 			partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL);
2270 			if (!partial_pte)
2271 				return -ENOMEM;
2272 			partial_pte->offset = off;
2273 			partial_pte->data = e.val64;
2274 			list_add_tail(&partial_pte->list,
2275 				&ggtt_mm->ggtt_mm.partial_pte_list);
2276 			partial_update = true;
2277 		}
2278 	}
2279 
2280 	if (!partial_update && (ops->test_present(&e))) {
2281 		gfn = ops->get_pfn(&e);
2282 		m.val64 = e.val64;
2283 		m.type = e.type;
2284 
2285 		ret = intel_gvt_dma_map_guest_page(vgpu, gfn, PAGE_SIZE,
2286 						   &dma_addr);
2287 		if (ret) {
2288 			gvt_vgpu_err("fail to populate guest ggtt entry\n");
2289 			/* guest driver may read/write the entry when partial
2290 			 * update the entry in this situation p2m will fail
2291 			 * setting the shadow entry to point to a scratch page
2292 			 */
2293 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2294 		} else
2295 			ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
2296 	} else {
2297 		ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2298 		ops->clear_present(&m);
2299 	}
2300 
2301 	ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2302 
2303 	ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index);
2304 	ggtt_invalidate_pte(vgpu, &e);
2305 
2306 	ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
2307 	ggtt_invalidate(gvt->gt);
2308 	return 0;
2309 }
2310 
2311 /*
2312  * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
2313  * @vgpu: a vGPU
2314  * @off: register offset
2315  * @p_data: data from guest write
2316  * @bytes: data length
2317  *
2318  * This function is used to emulate the GTT MMIO register write
2319  *
2320  * Returns:
2321  * Zero on success, error code if failed.
2322  */
2323 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
2324 		unsigned int off, void *p_data, unsigned int bytes)
2325 {
2326 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2327 	int ret;
2328 	struct intel_vgpu_submission *s = &vgpu->submission;
2329 	struct intel_engine_cs *engine;
2330 	int i;
2331 
2332 	if (bytes != 4 && bytes != 8)
2333 		return -EINVAL;
2334 
2335 	off -= info->gtt_start_offset;
2336 	ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
2337 
2338 	/* if ggtt of last submitted context is written,
2339 	 * that context is probably got unpinned.
2340 	 * Set last shadowed ctx to invalid.
2341 	 */
2342 	for_each_engine(engine, vgpu->gvt->gt, i) {
2343 		if (!s->last_ctx[i].valid)
2344 			continue;
2345 
2346 		if (s->last_ctx[i].lrca == (off >> info->gtt_entry_size_shift))
2347 			s->last_ctx[i].valid = false;
2348 	}
2349 	return ret;
2350 }
2351 
2352 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2353 		enum intel_gvt_gtt_type type)
2354 {
2355 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
2356 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2357 	const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2358 	int page_entry_num = I915_GTT_PAGE_SIZE >>
2359 				vgpu->gvt->device_info.gtt_entry_size_shift;
2360 	void *scratch_pt;
2361 	int i;
2362 	struct device *dev = vgpu->gvt->gt->i915->drm.dev;
2363 	dma_addr_t daddr;
2364 
2365 	if (drm_WARN_ON(&i915->drm,
2366 			type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2367 		return -EINVAL;
2368 
2369 	scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2370 	if (!scratch_pt) {
2371 		gvt_vgpu_err("fail to allocate scratch page\n");
2372 		return -ENOMEM;
2373 	}
2374 
2375 	daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0, 4096, DMA_BIDIRECTIONAL);
2376 	if (dma_mapping_error(dev, daddr)) {
2377 		gvt_vgpu_err("fail to dmamap scratch_pt\n");
2378 		__free_page(virt_to_page(scratch_pt));
2379 		return -ENOMEM;
2380 	}
2381 	gtt->scratch_pt[type].page_mfn =
2382 		(unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2383 	gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2384 	gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2385 			vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2386 
2387 	/* Build the tree by full filled the scratch pt with the entries which
2388 	 * point to the next level scratch pt or scratch page. The
2389 	 * scratch_pt[type] indicate the scratch pt/scratch page used by the
2390 	 * 'type' pt.
2391 	 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2392 	 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2393 	 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2394 	 */
2395 	if (type > GTT_TYPE_PPGTT_PTE_PT) {
2396 		struct intel_gvt_gtt_entry se;
2397 
2398 		memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2399 		se.type = get_entry_type(type - 1);
2400 		ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2401 
2402 		/* The entry parameters like present/writeable/cache type
2403 		 * set to the same as i915's scratch page tree.
2404 		 */
2405 		se.val64 |= GEN8_PAGE_PRESENT | GEN8_PAGE_RW;
2406 		if (type == GTT_TYPE_PPGTT_PDE_PT)
2407 			se.val64 |= PPAT_CACHED;
2408 
2409 		for (i = 0; i < page_entry_num; i++)
2410 			ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2411 	}
2412 
2413 	return 0;
2414 }
2415 
2416 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2417 {
2418 	int i;
2419 	struct device *dev = vgpu->gvt->gt->i915->drm.dev;
2420 	dma_addr_t daddr;
2421 
2422 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2423 		if (vgpu->gtt.scratch_pt[i].page != NULL) {
2424 			daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2425 					I915_GTT_PAGE_SHIFT);
2426 			dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL);
2427 			__free_page(vgpu->gtt.scratch_pt[i].page);
2428 			vgpu->gtt.scratch_pt[i].page = NULL;
2429 			vgpu->gtt.scratch_pt[i].page_mfn = 0;
2430 		}
2431 	}
2432 
2433 	return 0;
2434 }
2435 
2436 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2437 {
2438 	int i, ret;
2439 
2440 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2441 		ret = alloc_scratch_pages(vgpu, i);
2442 		if (ret)
2443 			goto err;
2444 	}
2445 
2446 	return 0;
2447 
2448 err:
2449 	release_scratch_page_tree(vgpu);
2450 	return ret;
2451 }
2452 
2453 /**
2454  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2455  * @vgpu: a vGPU
2456  *
2457  * This function is used to initialize per-vGPU graphics memory virtualization
2458  * components.
2459  *
2460  * Returns:
2461  * Zero on success, error code if failed.
2462  */
2463 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2464 {
2465 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2466 
2467 	INIT_RADIX_TREE(&gtt->spt_tree, GFP_KERNEL);
2468 
2469 	INIT_LIST_HEAD(&gtt->ppgtt_mm_list_head);
2470 	INIT_LIST_HEAD(&gtt->oos_page_list_head);
2471 	INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2472 
2473 	gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2474 	if (IS_ERR(gtt->ggtt_mm)) {
2475 		gvt_vgpu_err("fail to create mm for ggtt.\n");
2476 		return PTR_ERR(gtt->ggtt_mm);
2477 	}
2478 
2479 	intel_vgpu_reset_ggtt(vgpu, false);
2480 
2481 	INIT_LIST_HEAD(&gtt->ggtt_mm->ggtt_mm.partial_pte_list);
2482 
2483 	return create_scratch_page_tree(vgpu);
2484 }
2485 
2486 void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2487 {
2488 	struct list_head *pos, *n;
2489 	struct intel_vgpu_mm *mm;
2490 
2491 	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2492 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2493 		intel_vgpu_destroy_mm(mm);
2494 	}
2495 
2496 	if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2497 		gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2498 
2499 	if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2500 		gvt_err("Why we still has spt not freed?\n");
2501 		ppgtt_free_all_spt(vgpu);
2502 	}
2503 }
2504 
2505 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2506 {
2507 	struct intel_gvt_partial_pte *pos, *next;
2508 
2509 	list_for_each_entry_safe(pos, next,
2510 				 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list,
2511 				 list) {
2512 		gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n",
2513 			pos->offset, pos->data);
2514 		kfree(pos);
2515 	}
2516 	intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2517 	vgpu->gtt.ggtt_mm = NULL;
2518 }
2519 
2520 /**
2521  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2522  * @vgpu: a vGPU
2523  *
2524  * This function is used to clean up per-vGPU graphics memory virtualization
2525  * components.
2526  *
2527  * Returns:
2528  * Zero on success, error code if failed.
2529  */
2530 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2531 {
2532 	intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2533 	intel_vgpu_destroy_ggtt_mm(vgpu);
2534 	release_scratch_page_tree(vgpu);
2535 }
2536 
2537 static void clean_spt_oos(struct intel_gvt *gvt)
2538 {
2539 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2540 	struct list_head *pos, *n;
2541 	struct intel_vgpu_oos_page *oos_page;
2542 
2543 	WARN(!list_empty(&gtt->oos_page_use_list_head),
2544 		"someone is still using oos page\n");
2545 
2546 	list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2547 		oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2548 		list_del(&oos_page->list);
2549 		free_page((unsigned long)oos_page->mem);
2550 		kfree(oos_page);
2551 	}
2552 }
2553 
2554 static int setup_spt_oos(struct intel_gvt *gvt)
2555 {
2556 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2557 	struct intel_vgpu_oos_page *oos_page;
2558 	int i;
2559 	int ret;
2560 
2561 	INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2562 	INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2563 
2564 	for (i = 0; i < preallocated_oos_pages; i++) {
2565 		oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2566 		if (!oos_page) {
2567 			ret = -ENOMEM;
2568 			goto fail;
2569 		}
2570 		oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0);
2571 		if (!oos_page->mem) {
2572 			ret = -ENOMEM;
2573 			kfree(oos_page);
2574 			goto fail;
2575 		}
2576 
2577 		INIT_LIST_HEAD(&oos_page->list);
2578 		INIT_LIST_HEAD(&oos_page->vm_list);
2579 		oos_page->id = i;
2580 		list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2581 	}
2582 
2583 	gvt_dbg_mm("%d oos pages preallocated\n", i);
2584 
2585 	return 0;
2586 fail:
2587 	clean_spt_oos(gvt);
2588 	return ret;
2589 }
2590 
2591 /**
2592  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2593  * @vgpu: a vGPU
2594  * @pdps: pdp root array
2595  *
2596  * This function is used to find a PPGTT mm object from mm object pool
2597  *
2598  * Returns:
2599  * pointer to mm object on success, NULL if failed.
2600  */
2601 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2602 		u64 pdps[])
2603 {
2604 	struct intel_vgpu_mm *mm;
2605 	struct list_head *pos;
2606 
2607 	list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2608 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2609 
2610 		switch (mm->ppgtt_mm.root_entry_type) {
2611 		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2612 			if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2613 				return mm;
2614 			break;
2615 		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2616 			if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2617 				    sizeof(mm->ppgtt_mm.guest_pdps)))
2618 				return mm;
2619 			break;
2620 		default:
2621 			GEM_BUG_ON(1);
2622 		}
2623 	}
2624 	return NULL;
2625 }
2626 
2627 /**
2628  * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2629  * @vgpu: a vGPU
2630  * @root_entry_type: ppgtt root entry type
2631  * @pdps: guest pdps
2632  *
2633  * This function is used to find or create a PPGTT mm object from a guest.
2634  *
2635  * Returns:
2636  * Zero on success, negative error code if failed.
2637  */
2638 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2639 		enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
2640 {
2641 	struct intel_vgpu_mm *mm;
2642 
2643 	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2644 	if (mm) {
2645 		intel_vgpu_mm_get(mm);
2646 	} else {
2647 		mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2648 		if (IS_ERR(mm))
2649 			gvt_vgpu_err("fail to create mm\n");
2650 	}
2651 	return mm;
2652 }
2653 
2654 /**
2655  * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2656  * @vgpu: a vGPU
2657  * @pdps: guest pdps
2658  *
2659  * This function is used to find a PPGTT mm object from a guest and destroy it.
2660  *
2661  * Returns:
2662  * Zero on success, negative error code if failed.
2663  */
2664 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2665 {
2666 	struct intel_vgpu_mm *mm;
2667 
2668 	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2669 	if (!mm) {
2670 		gvt_vgpu_err("fail to find ppgtt instance.\n");
2671 		return -EINVAL;
2672 	}
2673 	intel_vgpu_mm_put(mm);
2674 	return 0;
2675 }
2676 
2677 /**
2678  * intel_gvt_init_gtt - initialize mm components of a GVT device
2679  * @gvt: GVT device
2680  *
2681  * This function is called at the initialization stage, to initialize
2682  * the mm components of a GVT device.
2683  *
2684  * Returns:
2685  * zero on success, negative error code if failed.
2686  */
2687 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2688 {
2689 	int ret;
2690 	void *page;
2691 	struct device *dev = gvt->gt->i915->drm.dev;
2692 	dma_addr_t daddr;
2693 
2694 	gvt_dbg_core("init gtt\n");
2695 
2696 	gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2697 	gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2698 
2699 	page = (void *)get_zeroed_page(GFP_KERNEL);
2700 	if (!page) {
2701 		gvt_err("fail to allocate scratch ggtt page\n");
2702 		return -ENOMEM;
2703 	}
2704 
2705 	daddr = dma_map_page(dev, virt_to_page(page), 0,
2706 			4096, DMA_BIDIRECTIONAL);
2707 	if (dma_mapping_error(dev, daddr)) {
2708 		gvt_err("fail to dmamap scratch ggtt page\n");
2709 		__free_page(virt_to_page(page));
2710 		return -ENOMEM;
2711 	}
2712 
2713 	gvt->gtt.scratch_page = virt_to_page(page);
2714 	gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2715 
2716 	if (enable_out_of_sync) {
2717 		ret = setup_spt_oos(gvt);
2718 		if (ret) {
2719 			gvt_err("fail to initialize SPT oos\n");
2720 			dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL);
2721 			__free_page(gvt->gtt.scratch_page);
2722 			return ret;
2723 		}
2724 	}
2725 	INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2726 	mutex_init(&gvt->gtt.ppgtt_mm_lock);
2727 	return 0;
2728 }
2729 
2730 /**
2731  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2732  * @gvt: GVT device
2733  *
2734  * This function is called at the driver unloading stage, to clean up
2735  * the mm components of a GVT device.
2736  *
2737  */
2738 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2739 {
2740 	struct device *dev = gvt->gt->i915->drm.dev;
2741 	dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2742 					I915_GTT_PAGE_SHIFT);
2743 
2744 	dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL);
2745 
2746 	__free_page(gvt->gtt.scratch_page);
2747 
2748 	if (enable_out_of_sync)
2749 		clean_spt_oos(gvt);
2750 }
2751 
2752 /**
2753  * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2754  * @vgpu: a vGPU
2755  *
2756  * This function is called when invalidate all PPGTT instances of a vGPU.
2757  *
2758  */
2759 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2760 {
2761 	struct list_head *pos, *n;
2762 	struct intel_vgpu_mm *mm;
2763 
2764 	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2765 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2766 		if (mm->type == INTEL_GVT_MM_PPGTT) {
2767 			mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2768 			list_del_init(&mm->ppgtt_mm.lru_list);
2769 			mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2770 			if (mm->ppgtt_mm.shadowed)
2771 				invalidate_ppgtt_mm(mm);
2772 		}
2773 	}
2774 }
2775 
2776 /**
2777  * intel_vgpu_reset_ggtt - reset the GGTT entry
2778  * @vgpu: a vGPU
2779  * @invalidate_old: invalidate old entries
2780  *
2781  * This function is called at the vGPU create stage
2782  * to reset all the GGTT entries.
2783  *
2784  */
2785 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2786 {
2787 	struct intel_gvt *gvt = vgpu->gvt;
2788 	const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2789 	struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2790 	struct intel_gvt_gtt_entry old_entry;
2791 	u32 index;
2792 	u32 num_entries;
2793 
2794 	pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2795 	pte_ops->set_present(&entry);
2796 
2797 	index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2798 	num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2799 	while (num_entries--) {
2800 		if (invalidate_old) {
2801 			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2802 			ggtt_invalidate_pte(vgpu, &old_entry);
2803 		}
2804 		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2805 	}
2806 
2807 	index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2808 	num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2809 	while (num_entries--) {
2810 		if (invalidate_old) {
2811 			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2812 			ggtt_invalidate_pte(vgpu, &old_entry);
2813 		}
2814 		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2815 	}
2816 
2817 	ggtt_invalidate(gvt->gt);
2818 }
2819 
2820 /**
2821  * intel_gvt_restore_ggtt - restore all vGPU's ggtt entries
2822  * @gvt: intel gvt device
2823  *
2824  * This function is called at driver resume stage to restore
2825  * GGTT entries of every vGPU.
2826  *
2827  */
2828 void intel_gvt_restore_ggtt(struct intel_gvt *gvt)
2829 {
2830 	struct intel_vgpu *vgpu;
2831 	struct intel_vgpu_mm *mm;
2832 	int id;
2833 	gen8_pte_t pte;
2834 	u32 idx, num_low, num_hi, offset;
2835 
2836 	/* Restore dirty host ggtt for all vGPUs */
2837 	idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
2838 		mm = vgpu->gtt.ggtt_mm;
2839 
2840 		num_low = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2841 		offset = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2842 		for (idx = 0; idx < num_low; idx++) {
2843 			pte = mm->ggtt_mm.host_ggtt_aperture[idx];
2844 			if (pte & GEN8_PAGE_PRESENT)
2845 				write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte);
2846 		}
2847 
2848 		num_hi = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2849 		offset = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2850 		for (idx = 0; idx < num_hi; idx++) {
2851 			pte = mm->ggtt_mm.host_ggtt_hidden[idx];
2852 			if (pte & GEN8_PAGE_PRESENT)
2853 				write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte);
2854 		}
2855 	}
2856 }
2857